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Abstract

Introduction: Gene set analysis (GSA) examines the association between pre-

defined gene sets and a phenotype and is becoming a topic of growing interest in

DNA microarray studies. However, when a gene set is identified to be significant,

often not all the genes within the gene set are responsible for the significance. Iden-

tifying core subsets improves understanding of biological mechanisms and reduces

costs from diagnosis to treatment. Few methods have been introduced to isolate

core genes from significant gene sets. There are no methods for continuous phe-

notype that eliminate redundant genes and effectively reduce the gene sets to core

subsets, explaining the observed association.

Objective: Our research objective is to reduce gene sets associated with a continu-

ous phenotype to subsets of genes that chiefly contribute to the association.

Methods: Our method tests subsets of a differentially expressed gene set by grad-

ually eliminating genes not associated with the phenotype. A computationally effi-

cient method, namely Linear Combination Test (LCT), is used to test the association

between each gene set and the phenotype of interest. Within the significant gene

sets we used Significance Analysis of Microarrays (SAM) to order individual gene-

phenotype association. Again, LCT is used to get the most differentially expressed

subset of genes which is obtained by the ordered genes.

Results: We studied our proposed method using a real microarray data consisting of

gene expression levels of 13,233 genes measured on 33 African-American prostate

cancer patients and 1403 gene sets obtained from C2 catalog of the Molecular Sig-

nature Database (http://www.broadinstitute.org/gsea/msigdb). We showed results



of both individual gene analysis and gene-set analysis on this data using SAM and

LCT, respectively. LCT identified 30 statistical significant gene sets. We used our

gene reduction method to extract core subsets of genes and calculate percent reduc-

tion in each of the 30 sets. We calculated frequencies of core genes among all the

significant sets.

Conclusion: This work enables us to effectively reduce the gene sets to the most

important genes that contribute to disease. This approach may bring faster and

more cost efficient diagnosis and treatment of chronic diseases by focusing only on

differentially expressed genes in the reduced sets.
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Chapter 1

Introduction

DNA microarray studies open a new platform to us with an opportunity to study and

compare thousands of genes at the same time. Identifying differentially expressed

genes helps with early and more accurate diagnosis as well as improved tailored

treatment. Individual Gene Analysis (IGA) and Gene Set Analysis (GSA) target

identification of differentially expressed genes, or sets of genes. Therefore, IGA

and GSA quickly became popular analysis methods for data measured by DNA

microarray investigations.

GSA methods group all the genes based on similarity in chromosomal location and

functions, therefore making use of biological knowledge in interpreting the results

becomes easy (Geoman and Buhlman, 2007). The achievement of GSA is that it

enables the analysis to be interpretable. This biologically interpretable results make

GSA methods more feasible than the IGA methods to the biologists. Based on these

advantages, scientists often prefer GSA over IGA.

Many GSA methods have been proposed, especially for a binary phenotype. Equal-

ly, if not more, important is the ability to test the enrichment of a gene signature or

pathway against a continuous phenotype which are routinely commonly observed,

e.g., in clinico-pathological parameters. They include tissue features as a tumor

size, staining based readouts; cellular characteristics such as the amount of lym-

phocytic infiltration in a tumor environment; and subject-specific measurements

such as diagnostic or prognostic marker protein or metabolic concentrations. It may
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not always be easy or meaningful to dichotomize continuous phenotypes into two

classes, which may lead to inaccurate classification of the samples thus affecting

the downstream gene-set analysis. Our proposed work builds upon recent efforts to

incorporate correlation structure within gene sets and pathways into the GSA test

statistic. To address the issue of continuous phenotypes directly without the need

for artificial discrete classification, and thus increase the power of the test while

ensuring computational efficiency and rigor, new GSA methods that can incorpo-

rate the covariance matrix estimator for a continuous phenotype present an effective

approach (Dinu et. al., 2013).

All the members within a gene set are not responsible for the significance, so iden-

tifying core subsets from the gene set can improve understanding the biological

mechanism. Therefore, reducing the sets to their core subsets is an important step.

To the best of our knowledge, there is only one method for identifying core subsets

for a binary phenotype, and no methods for continuous phenotype.

In this thesis, we address the problem of finding differentially expressed core genes

for continuous phenotype. In the next sections, we discuss some aspects of DNA

microarray studies, the challenges of analyzing microarray data and the contribu-

tions of this work.

1.1 Brief Overview of DNA Microarray Studies

Microarray data is a highly technical and instrumental process combining robotics,

chemistry, computer science, and biology in a biology laboratory. For more than

three decades, it has been an attractive platform of studying a massive amount of

data in genomic studies. DNA microarrays allow the researchers to study thousands

of genes or entire genome in a single assay. It enables us to explore the disease state

by recognizing any difference in gene expressions comparing with healthy state.

Thus the genes that change their functions during disease can be captured through

their expressions with microarray technology. This technology captures the expres-

sions of thousands of mRNA species simultaneously using transcriptional profiling,
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a technological breakthrough in the analysis of biological specimens (Pusztai et al.,

2003). Using microarrays, researchers study and compare the diseased tissues with

healthy normal tissues and understand disease mechanisms.

DNA microarray enables researchers to improve personalized medicine, understand

the complex biology of chronic diseases and to update the knowledge of the change

of gene expression during a therapy. DNA microarray studies can measure gene

expressions with a high degree of accuracy (Pusztai et al., 2003). Microarray studies

provide very precise state of the cell because mRNA contains the current reflection

of the cell condition.

1.2 Challenges in Analysis Methods for DNA Micro-
array Studies

Understanding disease mechanisms is one of the most rising concerns in micro-

array gene analysis and other computational biological studies. The main charac-

teristic of genomic data is that it consists of much larger number of features p than

the sample size N . We denote this characteristic as p� N .

High variance and overfitting are a big concern for p� N types of data. Therefore,

methods for analyzing them by reducing high variance and controlling overfitting

have been introduced and still improving. Highly regularized approaches such as

Lasso and Ridge regression are used to solve this problem. The problem of Lasso

shrinkage is that it fails to incorporate a priori biological knowledge (Hastie et al.,

2001). Inconsistency of Lasso shrinkage regression is also a big concern to the

researchers.

Although Gene Set Analysis (GSA) methods are introduced to incorporate a priori

biological knowledge in understanding disease mechanisms, methods for finding

core genes from significant gene sets still need to improve. It is very important

to obtain only those genes that are differentially expressed with the phenotype, as

subset. We know that a gene set can show significance only because a subset of

genes inside the set is actually differentially expressed, and the rest of the of genes
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can be redundant in terms of the association of our phenotype of interest. Identify-

ing core subsets is crucial in advancing our understanding of issues such as disease

prevention, faster and more efficient diagnosis and tailored treatment.

1.3 Contributions

If a gene-set analysis identifies differential expression of a gene set in the microar-

ray data, a natural step would be to ask: “are all members of this gene set essential,

or is a subset sufficient, in considering its link with the phenotype of interest?” Our

contribution here is to introduce a method for extracting a core set of genes that

chiefly contribute to the statistical significance of differential expression of a given

gene set by a phenotype. Our proposed method to identify core subsets of genes

is a new direction of GSA methods. While this direction has been explored for a

binary phenotype, there is no work for the continuous phenotype. We illustrate our

gene-set reduction method on a real microarray study of prostate cancer patients

with a continuous phenotype.

1.4 Thesis Organization

We organized our thesis in five chapters. In chapter 2, we discuss background of

microarray studies. Here we discuss both individual gene analysis and gene set

analysis. In chapter 3, we describe our analysis for identifying significant gene-sets

and extracting core sub-sets. In chapter 4, we describe our microarray expression

data and processing of the data to fit in our analysis. We also present all the results

of our analysis and biological interpretations in chapter 4. In chapter 5, we discuss

some aspects of LCT method and future directions of this research work.
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Chapter 2

Background

In this chapter, we critically review the major microarray study methods that have a

huge impact on bringing gene analysis studies to its current state. We describe dif-

ferent types of individual gene and gene set analysis methods for both binary and

continuous phenotype. We thoroughly discuss the method of Significance Analysis

of Microarrays (SAM) in the section of single gene analysis. We summarize some

gene set analysis methods such as Over-Representation analysis and Gene Set En-

richment Analysis. We describe an extension method of Linear Combination Test

(LCT) for continuous phenotype. In the last section we describe briefly about the

gene-set reduction method for a binary phenotype.

2.1 Methods for Individual Gene Analysis

Many individual gene analysis methods have been proposed, for example Fold

Change (DeRisi et al., 1996), Significance Analysis of Microarrays (Tusher et al.,

2001), Regularized t-test (Baldi & Long, 2001) and Regression modeling (Thomas

et al., 2001).

Fold change is a measure of change of a gene expression from one condition to

another condition. This value compares with a pre-specified non-zero fold change

value, t. If xi1 and xi2 denote the average expression levels of gene i under two dif-

ferent conditions of patients then a positive significant gene must satisfy |xi2/xi1| ≥
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t and a negative significant gene must satisfy |xi1/xi2| ≤ 1/t. Fold change method

does not perform any statistical test that can identify differentially or non-differen-

tially expressed genes Chu et al., (2002).

Perhaps among all the single gene analysis methods, SAM is the most popular

method that tests the significance of the genes. We discus SAM elaborately in the

next section.

The SAM Method

SAM (Significance Analysis of Microarrays), proposed by Tusher et al. (2001) and

later extended and developed by Storey and Tibshirani (2003), is a popular analyti-

cal method that searches for statistically significant genes associated with a pheno-

type of interest in a microarray data set. SAM identifies the differentially expressed

genes associated with the response variable (phenotype) by using repeated permu-

tations of the data. This repeated permutation accounts for correlation of the genes

and avoids parametric assumptions about the distribution of the genes. SAM can be

used for different formats of the response types of data.

The advantage of SAM over other techniques is that we do not have to assume equal

variance and independence of genes like other techniques (e.g., ANOVA and Bon-

ferroni method). Another important advantage of SAM is that it does not require

applying the same cut point to the positive and negative values of test statistic to

get the differentially expressed genes. Separate cut points can be used for the two

cases.

SAM can be used for different phenotypes of data, for example, continuous phe-

notype, binary phenotype, multi-class response, censored survival data etc. In the

following we discuss the technical details of the SAM method only for continuous

phenotype, since continuous phenotype case is the focus of our proposed gene-set

reduction method.

Let us consider that our gene expression data is in a matrix x and the response
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data is in a vector y. More precisely, xij denotes gene expression measurement for

gene i and patient j, and yj denotes phenotype measurement for patient j, where

i = 1, 2, . . . , p represent the genes, and j = 1, 2, . . . , n represent the patients. The

test statistic of SAM calculates relative difference of the gene expression with a

phenotype. SAM uses moderated gene specific t-test. Here the test statistic di

measures the change of the gene expression for gene i adding a constant s0 to the

denominator.

For each gene i, null hypothesis of SAM can be defined as follows:

H0 : There is no association between the gene expressions and the phenotype. We

note that this can be reformulated in the context of simple linear regression co-

efficient for gene i, testing a linear association between gene expressions xij and

continuous phenotype yj .

The test statistic di is defined as

di =
ri

si + s0
, i = 1, 2, ..., p, (2.1)

where ri is the linear regression coefficient of gene i on the outcome:

ri =

∑
j yj(xij − xi)∑
j(yj − y)2

, (2.2)

where

xi =
∑
j

xij
n
. (2.3)

Here si is a standard error of ri:

si =
σ̂i[∑

j(yj − y)2
]1/2 , (2.4)

and σ̂i is the square root of residual error:

σ̂i =

[∑
j(xij − x̂ij)2

n− 2

]1/2
. (2.5)
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where

x̂ij = β̂i0 + riyi (2.6)

β̂i0 = xi − riy. (2.7)

In SAM analysis, s0 is the exchangeability factor or a constant. The calculation of

this s0 is described below.

As noted above, si is the standard error of ri-th gene. Let us assume that sα be the

α-th percentile of all si values. Let us denote by

dαi =
ri

si + sα
. (2.8)

Now, 100 quantiles of si values are calculated. They are ordered as, q1 < q2 <

· · · < q100. We choose α among the following values: (0, 0.05, 0.1, . . . , 1.0). For

each value of α, vj of dαi is calculated as:

vj = mad
(
dαi |si ∈ [qj, qj+1)

)
, j = 1, 2, . . . , n; (2.9)

where mad is the median absolute deviation from the median divided by 0.64. Now,

Let cv(α)= coefficient of variation of vj values, which is the measure of the range of

variability from the population mean. Now we can choose α̂ such that, coefficient

of variation of vj values is minimum:

α̂ = argminα[cv(α)] (2.10)

Then ŝ0 = sα̂ is calculated, and s0 is fixed at the value of ŝ0. Sometimes s0 can show

better performance by setting a fixed value rather than estimating automatically.

The value s0 plays an important role in estimating the moderated t-statistic. If s0
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is too large, then the non-null genes with small si will be lost with noise. On the

other hand, if s0 is comparatively too small, then for null genes with very small si,

t-statistic will become very large. The value of s0 is chosen such that the estimated

coefficient of variation of di is minimized. For detailed information, please see the

SAM users guide and technical document by Chu et al. (2002).

Steps of SAM Procedure:

1. First calculate SAM statistic di for each gene i in microarray study.

2. Then calculate and rank the di values according to their order, d(1) ≤ d(2) ≤

d(3) ≤ · · · ≤ d(p).

3. Then permute the phenotype levels to get a new data set for the same mea-

surements for each gene i. For each permutation b, calculate SAM statistic

d∗bi and calculate order statistic again after the permutation, d∗b(1) ≤ d∗b(2) ≤

d∗b(3) ≤ ... ≤ d∗b(p).

4. From the set of B permutations, estimate the expected order statistics by

d̄i = 1/B
∑

b d
∗b
(i) for i = 1, 2, . . . , p.

5. For each d(i) values, we get corresponding expected d̄(i) values after permu-

tation. Plot the moderated di values versus the expected d(i) values.

6. At this stage we set a pre-specified threshold value set up by researchers. For

a pre-specified threshold ∆, if di − d̄(i) > ∆, genes are called significant

positive and if d̄(i) − di > ∆, genes are called significant negative. The

smallest and the largest thresholds, ∆ are denoted by cutlow(∆) and cutup(∆)

respectively.

Multiple Hypothesis Testing

SAM tests thousands of genes associated with the phenotype of interest simulta-

neously, and we need to estimate an overall measure of error for this multiple hy-

pothesis testing. A measure of error for single hypothesis testing is type I error. A

variety of generalizations of the type I error for multiple hypothesis are possible.

One of them is family-wise error rate (FWER). FWER is the probability of at least
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one false rejection among multiple tests. If type I error is α, then FWER of the

collection of test is (1 − (1 − α)M), where M is the number of total genes. When

M is very large, which is typical in microarray analysis, this FWER becomes very

high (close to one).

Another simple approach for multiple testing is Bonferroni method. It controls the

FWER. In order to make the FWER equal at most α, we reject H0i with a type

I error of α/M , for i = 1, 2, . . . ,M number of genes. Bonferroni method can

be useful for testing small number of genes. But for large number of genes this

method is too conservative in the sense that only very few number of genes can be

significant in this case.

Table 2.1: Possible outcomes from M hypothesis tests.

Called Not Significant Called Significant Total
H0 True U V M0

H0 False T S M1

Total M −R R M

A different approach for error rate in multiple testing is False Discovery Rate

(FDR). FDR focuses on the proportion of falsely significant genes. From table

2.1, type I error = V/M0, type II error = T/M1 and power = 1 − T/M1. Here,

FDR = V/R.

SAM reports FDR values for each significant genes. Storey and Tibshirani (2003)

proposed FDR by estimating the proportion of true null genes or the unaffected

genes in the data set. Details about calculation of FDR value for SAM is given

below.

False Discovery Rate (FDR) Calculation in SAM

1. For a grid of ∆ values, calculate the total number of significant genes (from

step 6 of SAM procedure). Median number and 90th percentile of falsely

called genes are calculated by computing median number and 90th percentile

of values from each of the B permutation sets of d∗bi that fall above cutup(∆)

or below cutlow(∆) values.
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2. Calculate 25% and 75% points of the permuted d values.

3. Compute π̂0= {di ∈ (q25, q75)}/(0.5p), where p is the number of genes. Let

π̂0 = min(π̂0, 1), That is, π̂0 is truncated at 1.

4. Finally, FDR is calculated as the ratio of number of 50th or 90th percentile of

falsely called genes times π̂0 divided by the number of significant genes (Chu

et al., 2002).

SAM can be downloaded for free as a user friendly Excel Add-Inn. The different

formats of the response for SAM can be quantitative, two class paired and unpaired,

multi class, survival data time course paired and unpaired etc.

2.2 Methods for Gene Set Analysis

Individual gene analysis result in a long list of significant genes, that is hard to

interpret. Biologists have put together sets of genes that share common biological

functions, called biological pathways. Interpreting results of pathway or gene-set

analyses makes more biological sense than interpreting results of individual gene

analysis.

Another important limitation of individual gene analyses is that they extensively

depend on using cutoff threshold values. According to these methods, significance

of genes is highly affected by the cutoff values which is often chosen arbitrarily by

the researchers (Nam & Kim, 2008). Hence, using different threshold values can

severely change the list of significant genes. A large list of significant genes is hard

to interpret. Again, genes that are moderately significant can get eliminated from

the significance list if any researcher decided to use a strict cutoff threshold. This

approach can reduce the power of the test (Nam & Kim, 2008).

Gene-set analysis (GSA) represent a cut-off free approach to analysis of microar-

ray studies. GSA methods use pre-defined gene sets, grouped based on biological

knowledge. Finally, GSA identifies significant gene sets for even a slight change of

the coordinated similar functioning genes. The benefit of using coordinated genes

11
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Figure 2.1: Individual gene analysis vs. gene set analysis.

enables to understand the process of the biological pathways and gives a better un-

derstanding behind disease mechanism. Some individual gene analysis methods are

developed assuming the genes are independent. This leads to large number of false

positive rates. Actually, genes within a gene set can be highly correlated as they

share the common biological function, chromosomal location or regulations. So,

GSA gives more consistent results than the result of single gene analysis among

microarray studies. Hence, the biological interpretations from GSA methods are

more consistent and convenient than individual gene analyses.

GSA methods are developed based on different hypothesis testing and methodolo-

gies (Nam & Kim, 2008). According to Tian et al. (2005) GSA methods are clas-

sified with two different tests of hypotheses. To test the association between gene

sets and the phenotype of interest, one hypothesis is Q1 or competitive methods

and the another one is Q2 or self-contained methods. These terms are given in and

discussed by Geoman and Buhlman (2007).

Competitive or Q1 hypothesizes that the level of association of a gene set with a

given phenotype is same as the complement of the gene set. The second type, Q2

or self-contained method considers only the genes within the gene set and hypothe-
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sizes that there is no gene in the gene set associated with the phenotype. Predictions

in self-contained (Q2) methods are strong, because it uses the information within

a gene set. On the other hand, competitive method (Q1) is based on the assump-

tion that the genes are independent. In fact, the genes can be highly correlated

within a gene set (Dinu et al., 2008). The key methodological difference between

the two approaches is that the competitive approach uses genes as the sampling

units, whereas self contained method uses subjects as sampling units. Geoman

and Buhlmann (2007) discussed the problem of testing gene sampling (competi-

tive) method assuming independence of genes. They compared the performance of

three methods; self-contained, competitive and GSEA by simulating data under Q1

or competitive hypothesis, and highly discouraged using competitive method men-

tioning its wrong assumption of independence across genes. Q3 is a another null

hypothesis of GSEA, that correlations of the genes in the set with the phenotype

are clustered. Q3 is a hybrid between Q1 and Q2. GSEA is hybrid between self-

contained and competitive method. An extensive review on methodological issues

of gene set analysis has been performed by Nam and Kim (2008) and Dinu et al.,

(2008).

2.2.1 Over-Representation Analysis

Over-representation method was introduced by Draghichi et al. (2003) to demon-

strate the validity and utility among the results of two different microarray studies.

The authors developed Onto-Express tool to be able to automatically translate the

list of differentially expressed genes according to their functional impact. This

analysis is one of the early suggested gene set analysis methods by Draghichi et al.

(2003). The main idea of this method is to analyze microarray data at the pathway

level, rather than individual gene level. This enables researchers to understand the

biological function and its process.

Over-representation method first determines a list of significant genes. Based on

these significant genes a measure of over representation is calculated for each gene

set. This measure of overrepresentation is measured by tagging each gene of the
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gene set F or NF considering whether they are significant or not. With the re-

searcher’s own selection procedure, the genes are found F (significant genes) or

NF (not significant genes). From the observed F (significant genes) the proba-

bility of getting significant genes are calculated to check whether they are selected

either by chance or not. The p-value for over represented categories is calculated

with hyper-geometric distribution or alternatively χ2 test for equality of proportions

and Fishers exact test for small samples arranging in a 2 × 2 table to obtain over-

representation of differentially expressed genes from the gene sets as shown in table

2.2.

Table 2.2: A 2× 2 table for calculating over-representation.

Diff. Non-diff. Total
expressed gene expressed gene

Within gene set x M − x M

Not within gene set K − x N −K −M + x N −M
Total K N −K N

Let us consider that the total number of genes is N , where M of them are within

the gene set. If K is the total number of differential expressed genes where x of

these genes are coded as F , then the probability of being F can be calculated.

The probability of occurring x differentially regulated genes is modeled as hyper-

geometric distribution using sampling without replacement:

P (X = x|N,M,K) =

(
M
x

)(
N−M
K−x

)(
N
K

) . (2.11)

Then the p-value of having x genes or fewer in F can be calculated by summing the

probabilities of a random list of K genes having 1, 2, . . . , x genes of category F :

p =
x∑
i=0

(
M
i

)(
N−M
K−i

)(
N
K

) . (2.12)
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This p-value is one sided test which finds the probability of underrepresented cat-

egories of genes. The p-value of overrepresented categories of genes is calculated

as

p = 1−
x∑
i=0

(
M
i

)(
N−M
K−i

)(
N
K

) , (2.13)

when the sum is larger than 0.5 For large number of sample N , hypergeometric

distribution tends to be binomial distribution.

Although over-representation method was developed to explain the biological path-

ways by combining similar functional genes in a gene set, it has some limitations.

Firstly, in spite of combining genes in a gene set according to their functions, they

do not consider correlations among the genes inside a gene set. The assumption

of Fishers exact test considers all genes to be independent. This violates the most

important characteristics of pathways that genes within a set are highly correlated

with each other. Another limitation of this method is that the test statistic does not

include the correlation of the phenotype with the significant genes. An important

aspect of this overrepresentation is that the input of identifying statistically signif-

icant gene ontology is the list of already defined differentially expressed genes for

a certain phenotype. The major problem of this approach is that those genes which

are not differentially expressed are not included in the list. As a result, marginally

significant genes are discarded from the output, and it is well known that marginally

significant genes may work together and achieve significance when considered as a

set, or pathway.

2.2.2 Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis (GSEA) was first proposed by Mootha et al. (2003)

and later improved by Subramanianan et al. (2005). Among Gene set analysis meth-

ods, GSEA has the most comprehensive and accessible output. In spite of being

heavily criticized, it is still a gold standard among gene-set analysis users.
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Method of GSEA:

In GSEA method, genes are ordered in a list L according to their differential expres-

sion levels with the binary phenotype labeled as 1 or 2. For a priori defined gene set

S, the goal of GSEA is to find whether the genes in S are either primarily located

at the top or bottom of the list L or they are found by chance. An enrichment score

(ES) is used to rank the genes in a list L.

In the calculation of enrichment score (ES), a running sum statistic is calculated

by picking genes from the L list to be found in a gene set S gradually using a for

loop procedure. If the gene from list L is found in the gene set S, the running

sum statistic increases and when the gene is not found in the gene set the running

sum statistic decreases. The correlation of the gene with the phenotype decides the

magnitude increment of the running sum statistic. Now, the enrichment score for a

gene set is calculated by getting the maximum deviation from zero encountered in

the random walk which is similar to the weighted Kolmogorov-Smirnov statistic.

Let us define rj as the correlation coefficient between the expression measurements

in the list of total number of genes, L = {g1, ...gN}. Genes are listed in the list

according to their correlation r(gj) = rj order with gene expression profiles C.

For all the genes N , estimate fraction of genes in S (“hits”) weighted by their

correlation and fraction of genes not in S (“misses”) present up to a given position

i in L.

Phit(S, i) =
∑

gj∈S&j≤i

|rj|p

NR

, (2.14)

Pmiss(S, i) =
∑

gj /∈S&j≤i

1

N −NH

. (2.15)

where NR =
∑

gj∈S |rj|
p and N −NH is the number of genes in the gene set S and

p is the exponent component to control the weight of the “hit” genes. By putting

p = 0 and p = 1 we get a list of paired scores Phit and Pmiss. Enrichment score

(ES) is the maximum deviation from the zero Phit − Pmiss. For p = 0, by walking
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down the L list a reduced standardize Kolmogorov-Smirnov statistic is obtained

and when p = 1 genes are weighted in S by their correlation with C normalized

by the sum of the correlations over all of the genes in S. Significance of ES is

calculated by phenotype label permutation. For randomly distributed S, E[ES]

is relatively small and for non-randomly distributed S, E[ES] is relatively high.

That is, when the genes are concentrated to the top or to the bottom, E[ES] is

differentially expressed.

For estimating the significance of a gene set, first the authors computed ESNULL

with randomly assigned phenotypes. ES is compared with the set of scoresESNULL.

Then performing this for 1 to 1000 permutations, a histogram of the corresponding

ESNULL is created. After getting the significant gene sets, multiple hypothesis

testing is adjusted.

1. First estimate the ES(S) for each gene set from the data base.

2. For each S and 1000 fixed permutations π of the phenotype labels, reorder

the genes in L and determine ES(S, π).

3. Adjust the variation in gene set size and normalize ES(S, π) the observed

ES(S) . Dividing by the mean of ES(S, π), positive and negative scores are

separately rescaled. This way normalized scores for both NES(S, π) and

NES(S) are obtained.

4. Then FDR values are calculated by gaining a fixed level of significance for

both (positive and negative) NES(S) and NES(S, π) to control the ratio of

FDR to the total number of gene sets.

5. A histogram of NES(S, π) values are achieved and FDR q values are com-

puted by using null distribution values. FDR is the ratio of the percentage of

all (S, π) values when NES(S, π) ≥ 0.
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2.3 Gene Set Analysis for Continuous Phenotype

The urge of improving gene set analysis (GSA) method for continuous phenotype

has risen based on the fact that the gene expression variables sometimes are taken

in continuous measurements. Such variables can be tumor size or measurements of

the marker proteins. It is inadvisable to the researchers to set the continuous mea-

surements into binary or categorical variables by giving a range. It is inappropriate

in the sense that some specific ranges may fail to express the biological function-

ing capacity for each patient. Different specialists may want to use different ranges

according to the patient’s health condition. So, directly analyzing the continuous

variables may result in an improved GSA method in genomics study.

In the following we discuss a GSA method for continuous phenotype known as

Linear Combination Test (LCT).

Linear Combination Test Analysis

Let us consider, our gene expression data consists of n total subjects. If a gene

set has pre-defined genes {X1, X2, ..., Xp} , then we test the hypothesis that the

pre-defined gene set is not associated with the phenotype. This multivariate hy-

pothesis can be written in a univariate way, such as, H0 : no linear combination

of X1, X2, ..., Xp is associated with the phenotype of interest. For X1, X2, ..., Xp

genes, the linear combination can be written as Z(β) = β1X1 +β2X2 + ...+βpXp.

For a given vector β of combination coefficients, whether the combination Z(β)

is associated with the phenotype or not can be tested in the following univariate

model: Yi = α0 +α1Zi(β)+ei, where α0 and α1 are the intercept and slope respec-

tively, ei ∼ N(0, σ2), and i denotes subjects 1, ..., n. This is a classical simple lin-

ear regression problem. For testing H0, we can consider the most-significant linear

combination of {X1, X2, ..., Xp}, that is, the linear combination with the maximum

correlation with the phenotype among all possible linear combinations. We have,
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β∗ = argmaxβ ρ
2
Y,Z(β), (2.16)

where correlation between Y and Z(β) is

ρ2Y,Z(β) =
Cov(Y, Z(β))2

σ2
Y σ

2
Z(β)

. (2.17)

If we ignore the σ−2Y in the square of correlation, then we can write

ρ2Y,Z(β) =
Cov(Y, Z(β))2

σ2
Z(β)

. (2.18)

Now, we can write,

ρ2Y,Z(β) =
Cov(Y, Z(β))2

βT Ω̂β
. (2.19)

where,

σ2
Z(β) = E[Z(β)− E[Z(β)]2] (2.20)

= E
[
(β>X − E[β>X])2

]
(2.21)

= E
[
{β>(X − E[X])}2

]
(2.22)

= E
[
β>(X − E[X])β>(X − E[X])

]
(2.23)

= β>Ω̂β. (2.24)

Here Ω̂ is the gene expression covariance matrix, where hh′-th entry can be written

as

ωhh′ =
1

n− 1

n∑
l=1

(xhl − xh)(xh′l − xh′) (2.25)

From the numerator of equation 2.19 we can write,
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Cov(Y, Z(β))2 = Cov(Y, Z(β))Cov(Y, Z(β)) (2.26)

= E2[(Y − E[Y ])(Z(β)− E[Z(β)])] (2.27)

= E2[(Y − E[Y ])(β>X − E[β>X])] (2.28)

= (β>E[(Y − E[Y ])(X − E[X])])2 (2.29)

= β>E
[
(Y − E[Y ])(X − E[X])

]
× E[(Y − E[Y ])(X − E[X])]>β (2.30)

= β>CovY,XCov>Y,Xβ (2.31)

Hence equation 2.19 can be written as,

ρ2Y,Z(β) =
β>CovY,XCov>Y,Xβ

β>Ω̂β
, (2.32)

where CovY,X = (Cov(Y,X1), . . . ,Cov(Y,Xp))
T . Now the optimization problem

can be written as,

ρ2Y,Z(β) =
β>Aβ

β>Bβ
, (2.33)

where A = CovY,XCov>Y,X and B = Ω̂. The solution to this optimization problem

is the maximal eigen-vector of AB−1 and ρ2Y,Z(β∗) is the corresponding eigenvalue

(Johnson, 2002).

When the size of the gene set is larger than the sample size in genomic data sets,

that is p > N , matrix B from equation (2.33) is singular. Similar to the adjustment

implemented in MANOVA-GSA (Tsai and Chen, 2009), a possible solution for the

singularity is to incorporate a shrinkage covariance matrix as proposed previously

by Schafer and Strimmer (2005). Thus the singular covariance matrix Ω̂ can be

replaced with shrinkage covariance matrix Ω̂∗ given by ω∗hh′ = ρ∗hh′
√
ωhhωh′h′ with

shrinkage co-efficients ρ∗hh′ = 1, if h = h′ and ρ∗hh′ = ρhh′min{1,max(0, 1− λ̂∗)},
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if h 6= h′, where ρhh′ is the sample correlation between h-th and h′-th genes. The

optimal shrinkage intensity λ̂∗ is estimated as, λ̂∗ =
∑

h6=h′ Var(ρhh′)/
∑

h6=h′ ρ
2
hh′ .

Incorporating the covariance matrix estimator into the test statistic reflects high

computational cost which introduces lack of computational efficiency. Thus after

identifying this computational efficiency problem for continuous phenotype Dinu

et al. (2013) proposed a strategy. The strategy is to use an orthogonal transfor-

mation of the original gene expression measurements. To get the orthogonal basis

vectors, Dinu et al. performed an eigenvalue decomposition of the shrinkage co-

variance matrix, Ω̂∗ = UDU>. Then obtain (V1, . . . , Vp) = (X1, . . . , Xp)UD
−1/2

as orthogonal basis vectors. Now the square of the correlation is,

ρ2(γ) =
γ>CovY,V Cov>Y,V γ

γ>γ
(2.34)

where, γ = D1/2U>β and CovY,V = (Cov(Y, V1), . . . ,Cov(Y, Vp))
>. According to

a calculation of matrix algebra (Schafer & Strimmer, 2005), the coefficients of the

most significant combinations are given by γ∗ ∝ CovY,V . The Linear Combination

Test statistic is proportional to the sum over the gene set of the square covariance

between the phenotype and gene expression measurements. After taking orthogonal

transformation,

ρ2(γ∗) = c

p∑
j=1

Cov(Y, Vj)
2, (2.35)

where c is a constant. This c can be ignored in the permutation test. We use per-

mutation test to evaluate the statistical significance against the null hypothesis by

permuting the phenotype labels. This approach is computationally advantageous

as Ω̂∗ = UDU> is evaluated only once for the original data; we do not need to

evaluate this covariance matrix for each permuted data set.
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2.4 Gene Set Reduction for Binary Phenotype

We discuss here the concept and analysis procedure of gene set reduction proposed

by Dinu et al. (2008). For that we first discuss some of the concepts of two different

hypothesis of GSA methods described by Dinu et al., (2008). Some GSA methods

are based on a priori defined pathway databases, such as Gene Ontology, KEGG

and BioCarta. There are also some other applications which are not well defined

a priori. In those cases researchers are more interested to know the information

provided by the microarray data sets. In any of these analyses, it is interesting to

find out whether all the genes or some of the genes are actually contributing to

the disease. If a gene set contains a large number of genes, it may be possible to

achieve the statistical significance easily, but all the members of that gene set may

not be differentially expressed for the phenotype. For this, Dinu et al., (2008) have

explored a new direction of finding a core subset of genes from a gene set. Initially

authors have performed a study to get differentially expressed gene sets illustrating

the difference of Q1 and Q2 hypothesis that we discussed in section 2.2, and showed

supportive argument for self- contained methods over competitive methods.

Dinu et al. (2008) compared p-values obtained from Q1, Q2 and Q3 hypotheses with

simulated data and point out the difference of these analytical procedure. They have

generated 4000 gene expression profiles with two groups each containing 20 sam-

ples. One group with 2000 genes divided into 100 gene sets followed multivariate

normal distribution, data generated based on Q2 hypothesis where mean vector is

zero and constant off diagonal entry is generated from Uniform (0.5, 0.9). Corre-

lated pair of genes are generated within a set uniformly from 0.5 to 0.9. Another

group with 2000 genes were sampled following standard normal distribution con-

sidering gene expressions are not correlated. Dinu et al. (2008) computed average

t-statistic in a gene set and compared the three hypotheses. Their result showed that

Q2 hypothesis does not identified any differentially expressed gene sets and Q1

hypothesis incorrectly recognized 27 out of 100 gene sets which are differentially

expressed with 0.05 cutoff level. Authors have also mentioned that by increasing

the genes in gene sets with constant correlation (0.9) across genes showed more
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misleading result. On the other hand, GSEA method identified 64 gene sets as dif-

ferentially expressed. Dinu et al., (2008) nullify the idea proposed by Nam and

Kim (2008) that GSEA is a mixed approach that works in between competitive

and self-contained. The reason behind nullifying the idea is that GSEA method

gives inaccurate result as a consequences of testing the genes using their correla-

tion order. This approach can be problematic when it declares genes clustered in

low correlation region as highly associated with the phenotype (Dinu et al., 2007),

more specifically GSEA tests the clustering of the genes within a gene sets along

the correlation with the phenotype axis. When the clustering occurs in the high

correlation region, the gene-set is correctly identified as associated with the pheno-

type. But GSEA incorrectly identifies as significant genes clustered in the low to

very low correlation region. Another limitation of GSEA is that it fails to identify

those significant gene sets that are not clustered. For example, if a gene set consists

of a mix of moderate to highly positive and negative correlations, GSEA will fail to

identify that set is significant.

One aspect of simulation study is that, data generated based on competitive or self-

contained method would naturally support either of the two methods. So the results

of simulation study should be considered carefully. A limitation of self-contained

method is that a gene-set may be identified as significant even if only a small num-

ber of genes are associated with the phenotype. Therefore, Dinu et al., (2008)

proposed a method of finding core subsets of genes.

To get the significant gene sets Dinu et.al. (2008) used SAM-GS, which combines

t-like statistics of single genes into a measure of association of a gene set with the

phenotype. For a given gene set S, SAM-GS is the L2 norm of the t-like statistics,

SAM-GS =

|s|∑
i=1

d2i , (2.36)

where, di = (x̄1(i)− x̄2(i))/(s(i)+s0) is estimated for each gene i, x̄1(i) and x̄2(i)

are the sample average of the two groups of phenotype, s(i) is a pooled standard

deviation over the two groups and s0 is a small positive constant. Permutation test
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is used to get the significance of gene set S. The principle for reducing the gene

sets using SAM-GS is: for a pair of genes in S of gene i and gene j, |di| > |dj|

suggests j belongs to a subset only if i belongs to that same subset. SAM-GSR is

their proposed gene reduction method that gradually partitions the whole gene set

into two subsets of genes and evaluates their associations with the phenotype.

SAM-GSR proceeds as follows. For each gene set select k genes with largest statis-

tic |d| gradually. For a reduced set, the stopping rule for the analysis is that the

p-value of SAM-GS reaches to a certain threshold value. Following this procedure,

core subsets of genes are obtained. Threshold values can be arbitrarily chosen by

the researchers according to the biological association with the genes and the phe-

notype.
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Chapter 3

Proposed Method

In this chapter, we describe our proposed method for obtaining core subsets of genes

from significant gene sets. First, we describe the method for identifying gene sets.

Then we discuss our algorithm for obtaining core genes to concentrate on specific

genes that are chiefly contributing to the association of the set with the phenotype.

3.1 Identifying Significant Gene Sets for Continuous
Phenotype

First, We need to identify the significant gene sets. Genes within a gene set are

correlated as a consequence of sharing similar biological functions and same chro-

mosomal locations. We use LCT, a gene-set analysis method described in section

2.3, which incorporates covariance matrix estimator into the test statistic. However,

the covariance matrix is singular because of the number of genes in the sets exceed-

ing the sample size. Incorporating the shrinkage covariance matrix estimator can be

beneficial in this situation. To reduce the high computational cost of incorporating

a shrinkage covariance matrix estimator, we perform an eigenvalue decomposition

of the shrinkage covariance matrix which needs to be calculated only once for the

original data. If the covariance estimator is, Ω̂∗ = UDU>, then the orthogonal basis

vectors are (V1, ..., Vp) = (X1, ..., Xp)UD
−1/2. The correlation among the genes in

a set can be calculated as
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ρ2(γ) =
γ>CovY,V Cov>Y,V γ

γ>γ
. (3.1)

Permutation test is used to evaluate the statistical significance against the null hy-

pothesis by permuting phenotype labels. It is computationally advantageous be-

cause the shrinkage covariance matrix Ω̂∗ = UDU> for the orthogonal basis vector

is computed only once in our original data. For this, we do not need to compute this

covariance matrix for each permuted data. Details about this method are described

in the section 2.3.

To get the p-values of the gene sets we permute the phenotype level 1000 times. We

set up the significance level at 0.05.

3.2 Selecting Core Genes for Continuous Phenotype

After we obtain significant gene sets using LCT, we use a gene-set reduction method

to obtain core genes. To the best of our knowledge, there are no current methods for

reducing gene-sets to their core members. In this section we discuss our proposed

algorithm for gene set reduction for a continuous phenotype. We state the steps of

the reduction method. We also propose the criteria for choosing the cut off value

that separates the core genes from the rest within a gene set.

Following are the steps of our proposed algorithm for gene set reduction for a con-

tinuous phenotype:

step 1: Obtain the list of significant gene sets applying Linear Combination Test

(LCT) for continuous phenotype.

step 2: For each significant gene set, repeat the following. For all genes in a sig-

nificant gene set apply Significant Analysis of Microarrays (SAM). For each

gene, a SAM statistic di is obtained.

step 3: If S is the total number of genes in a gene set, then for k = 1, . . . , |S| − 1,

select the first k genes with largest statistic |di| to form a reduced set Rk. Let
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R̄k be the complement gene set of Rk in S, and pk be the corresponding LCT

p-value of the complement gene set.

step 4: The final reduced set Rk is chosen such that pk is larger than a certain thresh-

old c, chosen by the analyst.

To accomplish the first step, we use Linear Combination Test, described in section

2.3.

In step 2, we obtain the SAM statistic for all the genes for continuous response type

using R package (SAMr). The SAMr statistic for continuous response is defined as

di =
ri

si + s0
, i = 1, 2, ..., p (3.2)

where ri is the linear regression coefficient of expression measurements for gene

i on the outcome, si is a pooled standard error of ri and s0 is the exchangeability

factor or a small positive constant that adjusts for the variability in the microarray

measurement. The calculations of ri, si and s0 are described in section 2.1.

In step 3, we order the genes inside a gene set according to SAM statistic with

their decreasing order. That is, the first gene of a gene set is found to be the most

differentially expressed, the second gene is the second most differentially expressed

and so on. In this stage we actually want to check whether all the genes in this set

are differentially expressed associated with the phenotype or a small number of the

subset among the most differentially expressed genes are causing the whole gene set

to be significant. To get the core genes, first we remove the gene that has the largest

statistic and check whether the complement gene set is still differentially expressed

by conducting the LCT method and obtaining p-values for the complement set.

In step 4, we choose a cut-off value as a stopping rule for taking the genes gradu-

ally and test the complement set with the LCT method. The procedure stops after

the LCT p-value of the complement subset reaches a specified threshold. Actually

researchers can arbitrarily choose any cut-off point based on the biological impor-

tance of the genes associated with the phenotype. Selecting this cut-off point for
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getting core genes can be made more flexible by using different cut-offs for differ-

ent gene sets. We used 0.1 cut-off as previously used by Dinu et al. (2008) for gene

set reduction with binary phenotype. We used this large threshold so that we do not

overlook the genes in a significant set that may not be differentially expressed by

themselves but connecting with other genes as a teamwork, many have a biological

impact associating with the phenotype. When the LCT p-value of a complementary

set is reached at the threshold point, we can remove those genes of the complement

set from the original gene set and obtain the core genes.

False Discovery Rate (FDR) is calculated as described by Storey 2002. FDR values

can be used to adjust multiple comparison for testing multiple gene sets.
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Chapter 4

Data Description and Results

In this chapter, we described the real microarray gene expression data that we used

for our study, LEPTIN phenotype with which gene expression association is an-

alyzed, and the processing of data to fit in our analysis. In the result section, we

reported significant gene-sets with their p-values, described gene-set reduction with

an example and reported core genes obtained from reducing the significant gene

sets.

4.1 Data Description

We apply our method for obtaining significant gene sets and their reductions on a

real Affymetrics microarray dataset. This dataset consist of genome-wide transcrip-

tomic measurements of prostate tumor samples from African-American prostate

cancer patients (Wallace et al., 2008) against the continuous phenotype of human

LEPTIN gene expression values. Using surgical procedure primary prostate tumors

were removed and the gene expression profiles were collected from these men.

These patients did not receive any therapy prior to prostatectomy. These tumor

samples were obtained from the National Cancer Institute-supported Cooperative

Prostate Cancer Tissue Resource (CPCTR) and the Department of Pathology at the

University of Maryland. According to Wallace et al. (2008), the macro dissected

CPCTR tumor specimens were reviewed by a CPCTR-associated pathologist and
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confirmed the presence of tumor in the specimens. The tissues were collected be-

tween 2002 and 2004 at four different sites.

We downloaded the expression data from Gene Expression Omnibus (Edgar et al.

2002). Our accession ID is GSE 6956. RNAs were labeled and hybridized using

Affymetrix standard protocols. Detail RNA extraction, labeling and hybridization

are discussed in the paper by Edgar et al. (2002). The gene expressions were cen-

tered and scaled across samples before applying a GSA method.

The incidence and mortality rate of prostate cancer actually varies in different re-

gions and ethnic groups. In particular, African-American men have the highest risk

of developing prostate cancer (Edgar et al. 2002). Edgar et al. showed in their paper

that tumor immunobiology is different for African-American men and European-

American men and explained the factors that make the differences. The authors sug-

gested that the presence of genetic factors that increase the risk of prostate cancer

may be higher when African-American men experience such disease. Therefore,

we only use the gene expression levels of 33 African American men, which is the

part of a larger microarray study into immunobiological differences in prostate can-

cer tumors between African-American and European-American men. The LEPTIN

expression levels may be different between these two groups. So, for our analy-

sis, we focus on the data consisting of 13,233 gene expressions measured in 33

African-American prostate cancer patients.

For the data we considered, LEPTIN levels may also be influenced by patient spe-

cific covariates, such as BMI, age and smoking status. Smoking status did not

show a significant association with LEPTIN (p-value=0.36). BMI and age were not

available for our analysis. The median age of protatectomy was 61 and the median

prostate-specific antigen (PSA) at diagnosis was 6.1 ng/ml.

In table 4.1, we show an example of our gene expression data which represents

genes on the rows and samples on the columns. Each cell represents the continuous

measurement of gene expression level.
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Table 4.1: An example of microarray gene expression data set.

Gene name Sample 1 Sample 2 Sample 3 . . . Sample N

Gene 1 88.00161 70.52682 76.43981 . . . 213.1661
Gene 2 71.51296 42.41818 37.55037 . . . 104.91981
...

...
...

... . . . ...
Gene p 13579.23568 15149.50266 13089.98246 . . . 40574.49724

LEPTIN Phenotype

LEPTIN is a widely known marker protein for human adiposity, where excessive

levels of adiposity damage health and lead to various chronic diseases. Circulating

levels of LEPTIN in the blood are directly proportional to the total amount of body

fat. LEPTIN is also associated with various metabolic and inflammatory conditions.

Researchers found that increased plasma or serum LEPTIN levels are associated

with the development of prostate cancer (Chang et al., 2001, Saglam et al., 2003

and Singh et al., 2010).

In our analysis, we screened sets of genes for the association with LEPTIN gene

expression measurements. Here, we used LEPTIN gene expression measurements

of the patients’ as a surrogate measure of serum LEPTIN in blood. We used LEPTIN

gene as a response variable structured in a vector of 33 expressions of the samples.

4.2 C2 Curated Gene Sets

In order to perform gene-set analysis, we need a data set of pre-defined gene sets.

We downloaded C2 catalog from Broad Institute of MIT and Harvard, (http:

//www.broad.mit.edu/gsea) for a priori defined gene sets. This C2 catalog

consists of 1,892 pre-defined gene sets. They are collected from on-line databases

biomedical literatures including 340 PubMed articles, gene sets from published

mammalian studies, and knowledge of domain experts. Sources of the gene sets

are provided with gene set files in the C2 catalog. Gene set sizes in C2 catalog were

restricted between 15 to 500 following Subramanian et al. (2005), so we used 1403
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gene sets from C2 catalog that satisfied this restriction. Each gene set was screened

for the association with LEPTIN gene expression, a well studied marker of adipos-

ity, and various metabolic and inflammatory conditions. Currently the developers

are working to create more automated method of curating gene sets from published

literatures. In C2 catalog, rows represent gene-sets and columns represent genes.

Each gene set contains pre-defined number of genes. An example of C2 catalog is

given in table 4.2.

Table 4.2: An example of C2 curated gene set.

Gene set name Gene name 1 Gene name 2 . . . Gene name p

Gene set 1 Gene 1.1 Gene 1.2 . . . Gene 1.p
Gene set 2 Gene 2.1 Gene 2.2 . . . Gene 2.p

...
...

... . . . ...
Gene set 1403 Gene 1403.1 Gene 1403.2 . . . Gene 1403.p

4.3 Processing Data for Permutation (0/1 Matrix)

Conventional statistical tests such as t-test strictly assumes the data follows normal

distribution. But using a permutation test we can avoid assuming the data is normal,

as the permutation test does not use such an assumption. Even when the data is

normal and has same variance for two groups, permutation test gives close to the

result using equal variance for sufficiently large sample size (Ewens et al., 2006).

Using a permutation test we can obtain an empirical distribution that do not assume

normality and get p-values for statistical significance.

Based on the list of genes in the gene expression data and the gene sets in the C2

catalog, we process a new data set and refer to it as the 0/1 matrix. It enables us to

check whether a gene from the gene expression data exists in the C2 catalog. The

rows of the 0/1 matrix represents genes and each columns represents gene sets. The

elements of this data file are 0 or 1. Let us denote the 0/1 matrix as M . Then Mij

denotes the cell entry for the i-th row and j-th column. If the entry is 1, it means

32



that the i-th gene from the gene expression data exists in the j-th gene set from C2

catalog. If the entry is 0, then it means that the i-th gene from the gene expression

data does not exist in the j-th gene set from C2 catalog. This matrix is used as

an input to the Linear Combination Test. This matrix helps during permutation by

searching genes of gene expression levels in the gene sets defined in C2 catalog.

An example of the 0/1 matrix is given in table 4.3.

Table 4.3: An example of mapping data: 0/1 Matrix.

Gene name Gene set 1 Gene set 2 Gene set 3 . . . Gene set 1403

Gene 1 0 0 1 . . . 0
Gene 2 0 1 0 . . . 0
...

...
...

... . . . ...
Gene 13233 1 0 0 . . . 0

4.4 Results

In this section, we first report results of individual-gene analysis obtained using

SAM and gene-set analysis obtained using LCT. Then we describe gene-set reduc-

tion with an example and report core genes obtained from reducing the significant

gene-sets.

4.4.1 Results Using SAM and LCT

First, we present results of individual gene analysis as an explanatory step before

running gene set analysis. A histogram distribution of p-value from SAM are pre-

sented in Figure 4.1 (a). Here, Y-axis is representing number of genes and X-axis

is denoting p-values of the SAM analysis. From this individual gene analysis, there

are about 600 genes which have p-values between 0 to 0.05. Although a large

number of genes are showing significance in SAM analysis but before running any

analysis SAM can play an important tool as an initial step to identify differentially

expressed genes in microarray studies.
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Figure 4.1: Distribution of p-values using SAM and LCT. (a) Histogram of SAM
p-values for individual gene analysis. (b) Histogram of LCT p-values for gene set
analysis.
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In figure 4.1 (b), we present a histogram of LCT p-values for the 1403 gene sets.

Here, Y-axis is representing number of gene sets and X-axis is denoting the p-values

of LCT analysis. LCT yields 66 gene sets when p-value is < 0.1. We report 30

significant gene sets from Dinu et al’s (2013) paper. This same data set was used by

Dinu et al. (2013) and they reported gene sets that are found significant by at least

one of the four different GSA methods: LCT, LCT2, SAM-GS and Global test with

5% significance level. We obtained gene sets from this list that has p-value< 0.1

from LCT analysis and use them for our gene set reduction analysis.

We report the 30 significant gene sets in table 4.4. The biological interpretation of

the association of these 30 gene sets with LEPTIN phenotype is described in the

section 4.4.3.
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Table 4.4: LCT analysis: 30 gene sets associated with LEPTIN phenotype.

Gene Set Size P -value

NADLER OBESITY UP 46 0
HSA04920 ADIPOCYTOKINE SIGNALING PATHWAY 68 0.003
HSA04140 REGULATION OF AUTOPHAGY 26 0.004
HIF1 TARGETS 32 0.006
DORSEY DOXYCYCLINE UP 29 0.011
SHIPP DLBCL CURED UP 28 0.013
JNK UP 24 0.015
PROSTAGLANDIN SYNTHESIS REGULATION 28 0.016
CARDIACEGFPATHWAY 16 0.019
CITED1 KO HET UP 23 0.022
XU CBP DN 32 0.022
CHREBPPATHWAY 16 0.027
OXSTRESS BREASTCA UP 24 0.027
AGUIRRE PANCREAS CHR17 61 0.029
ST GAQ PATHWAY 27 0.031
HSA04340 HEDGEHOG SIGNALING PATHWAY 46 0.032
NFATPATHWAY 47 0.034
HYPOXIA REVIEW 75 0.035
HSA04614 RENIN ANGIOTENSIN SYSTEM 16 0.04
CPR NULL LIVER DN 16 0.041
HSA00380 TRYPTOPHAN METABOLISM 49 0.043
HSA04630 JAK STAT SIGNALING PATHWAY 135 0.045
DIAB NEPH UP 58 0.046
TRYPTOPHAN METABOLISM 57 0.049
INSULIN SIGNALING 93 0.049
PASSERINI GROWTH 32 0.049
TNFA NFKB DEP UP 18 0.05
FRUCTOSE AND MANNOSE METABOLISM 24 0.055
ANDROGEN AND ESTROGEN METABOLISM 21 0.058
POMEROY DESMOPLASIC VS CLASSIC MD DN 38 0.091
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4.4.2 Gene-Set Reduction for Continuous Phenotype with LCT

We used the SAM statistic to rank the differentially expressed genes inside a gene

set in a decreasing order, so that we can gradually discover the core genes associ-

ated with LEPTIN phenotype. SAM is an analytical tool for microarray analysis at

individual gene level. It can be used as an exploratory data analysis step before run-

ning gene-set analysis, and we presented a histogram with p-values in the previous

section. Here we use SAM to rank the genes in a set, which is a step in our gene-set

reduction algorithm. SAM statistics is calculated using the SAM-R package for

our analysis. The SAM analysis gives result in both FDR values and p-values. But

assuming that some of the FDR values can be similar for several genes, ordering

the genes according to their significance would be a problem. On the other hand,

each statistic for each gene is different than the others. Hence, we used the SAM

statistic for continuous phenotype instead of p-values or FDR values.

We begin by presenting the reduction process for one of the sets, called REGU-

LATION OF AUTOPHAGY. Autophay can act as a tumor-suppression mechanism.

Again, defective autophagy provides oncogenic stimulus, causing malignant trans-

formation and self-generated tumor. So, understanding the module of autophagy

pathway may provide new approaches to cancer therapy and prevention (Dalby et

al., 2010).

To illustrate our proposed gene-set reduction method, we present the following ex-

ample using the real microarray expression data described in chapter 4. Figure 4.2

contains the plot for REGULATION OF AUTOPHAGY gene set which consists

of 26 genes defined in the C2 catalog. We plot these 26 genes according to the

decreasing order of the absolute value of their SAM statistic. First we select the

gene with the largest SAM statistic PRKAA2 in the core set and the rest of the gene

set forms the complement set. We obtain the LCT p-value of the complement set

and check whether it reached our pre-specified cut off value 0.1. While the LCT

p-value is still < 0.1 threshold, we gradually select the gene with the second largest

SAM statistic IFNA7 and the third largest IFNA17. We found that the p-value of
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Figure 4.2: Gene set reduction by example. This example shows graph-
ically how our proposed method performs gene-set reduction. We used
HSA04140 REGULATION OF AUTOPHAGY gene set, found significant by
LCT, for this example. Each plot shows the SAM statistic (magnitude) of con-
stituent genes of this gene set in decreasing order. Three plots corresponds to three
consecutive iterations of the gene-set reduction method.
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the complement set is > 0.1 after taking out PRKAA2, IFNA7 and IFNA17 genes.

Genes in their complement set together are not differentially expressed with the

phenotype. So the complement set represents the redundant gene set. Therefore,

PRKAA2, IFNA7 and IFNA17 represent the core sub-set, associated with LEPTIN

phenotype.

In table 4.5, we report the gene set sizes, core pathway sizes, percent reduction

across each pathway and the core members of each pathway. By core pathway size

we mean the number of core genes that we obtained from the reduction method

from each significant gene sets. We calculated percent reduction by number of

genes eliminated divided by the total number of genes in a set multiplied by 100.

We observed from the table that 20 of the sets are reduced to a single gene. This

speaks to the fact that, a large number of genes in a gene set are not differentially

expressed as we hypothesized before. The reduced subsets of these significant gene

sets contain 31 unique core genes in total.

Table 4.5: Core subsets of genes associated with LEPTIN phenotype of 33 African
American patients.

Gene set Set
size

Core
path-
way
size

Percent
reduc-
tion

Core pathway members

Gene1 Gene2 Gene3
NADLER
OBESITY UP 46 1 97.83 LEP

HSA04920
ADIPOCYTOKINE
SIGNALING
PATHWAY 68 2 97.06 LEP PRKAA2

HSA04140
REGULATION
OF AUTOPHAGY 26 3 88.46 PRKAA2 IFNA7 IFNA17

HIF1
TARGETS 32 1 96.88 EDN1
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DORSEY
DOXYCYCLINE
UP 29 1 96.55 REN

SHIPP
DLBCL
CURED UP 28 3 89.29 CYP4A11 DRP2 CLCNKB

JNK UP 24 2 91.67 EFNB2 XRCC5
PROSTAGLANDIN
SYNTHESIS
REGULATION 28 1 96.43 EDN1

CARDIACEGF-
PATHWAY 16 1 93.75 EDN1
CITED1 KO
HET UP 23 1 95.65 DDX6

XU CBP DN 32 3 90.63 ERCC2 RAB14 EPHA4
CHREBP
PATHWAY 16 1 93.75 PRKAA2
OXSTRESS
BREASTCA UP 24 1 95.83 EDN1

AGUIRRE SPANXA1
PANCREAS SPANXA2
CHR17 61 2 96.72 SPA GRP

ST GAQ
PATHWAY 27 3 88.89 NFKB2 PDK1 DAG1

HSA04340
HEDGEHOG
SIGNALING
PATHWAY 46 2 95.65 WNT10B PRKACG

NFATPATHWAY 47 1 97.87 EDN1
HYPOXIA
REVIEW 75 1 98.67 EDN1

HSA04614 RENIN
ANGIOTENSIN
SYSTEM 16 1 93.75 REN

CPR NULL
LIVER DN 16 1 93.75 CYP7B1
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HSA00380
TRYPTOPHAN
METABOLISM 49 1 97.96 KMO

HSA04630
JAK STAT
SIGNALING
PATHWAY 135 1 99.26 LEP

DIAB NEPH UP 58 1 98.28 PTPRB
TRYPTOPHAN
METABOLISM 57 1 98.25 TDRD12

INSULIN
SIGNALING 93 1 98.92 LEP

PASSERINI
GROWTH 32 1 96.88 EDN1

TNFA NFKB
DEP UP 18 2 88.89 CXCL3 NFKB2

FRUCTOSE
AND MANNOSE
METABOLISM 24 2 91.67 PFKFB4 FBP2

ANDROGEN AND
ESTROGEN
METABOLISM 21 1 95.24 CYP11B2

POMEROY
DESMOPLASIC
VS CLASSIC
MD DN 37 1 97.30 CITED1

In table 4.6, we report the frequencies of 31 core genes obtained from the reduction

method and their p-values from SAM analysis. Core gene EDN1 or Endothelin-1

is the most frequently appeared gene, appeared in 7 significant gene sets. LEP

or LEPTIN appeared 4 times, PRKAA2 or Protein kinase, AMP-activated, alpha 2

catalytic subunit 3 times, NFKB2 or Nuclear factor NF-kappa-B p100 subunit 2

times, REN or Renin 2 times and rest of the 26 core genes appeared once in the

significant gene sets.
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4.4.3 Biological Interpretation of Our Findings

Biological interpretation and validation of statistically significant results is an es-

sential step in gene-set analysis. We found that Adipocytokine signaling Pathway is

significantly associated with LEPTIN phenotype with p-value 0.003 (FDR 0.7015).

Adipocytokines including LEPTIN are a group of adipose tissue-derived hormones.

Adipocytokines play an important role in the regulation of angiogenesis and tu-

mor growth connected to obesity and diabetes (Housa et al., 2006). Regulation of

autophagy is another significant gene set found associated with LEPTIN expres-

sion measurement (p-value 0.004 and FDR 0.894802). Autophagy is a fundamen-

tal process in tumorigenesis and treatment response. It acts as a tumor-supression

mechanism (White et al., 2009). On the other hand, defective autophagy provides

oncogenic stimulus, causing malignant transformation and self-generated growing

tumor. Some studies have showed that inhibiting autophagy in cancer cells may be

therapeutically beneficial in some circumstances.

EDN1 or Endothelin-1 produced by prostate epithelia is a core gene of HIF1 TAR-

GET pathway. It plays an important role in the progression of prostate cancer (Nel-

son et al., 2005). Endothelin-1 prohibits apoptosis in prostate cancer meaning that

it hinders the normal process of Programmed Cell Death (PCD). PCD is a natu-

ral fundamental functioning for both plants and multicellular organisms. Defective

process of apoptotic by Endothelin-1 stops the processing of PCD, thus develop-

ing of cancer occurs in the body by cell proliferation. Prostate cancer is found in

association with this increased amount of Endothelin-1 gene.
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Table 4.6: Frequencies of the genes selected in the core gene sets

Genes Frequency P -value

EDN1 7 0.00032
LEP 4 0.000076
PRKAA2 3 0.001831
NFKB2 2 0.030352
REN 2 0.001613
CITED1 1 0.006569
CLCNKB 1 0.01356
CXCL3 1 0.01181
CYP11B2 1 0.01073
CYP4A11 1 0.00363
CYP7B1 1 0.005802
DAG1 1 0.04713
DDX6 1 0.002168
DRP2 1 0.003859
EFNB2 1 0.002347
EPHA4 1 0.036321
ERCC2 1 0.009041
FBP2 1 0.029190
GRP 1 0.001197
IFNA17 1 0.010825
IFNA7 1 0.010224
KMO 1 0.000113
PDK1 1 0.030424
PFKFB4 1 0.008381
PRKACG 1 0.003645
PTPRB 1 0.00142
RAB14 1 0.025018
SPANXA1 /// SPANXA2 /// SPA 1 0.000561
TDRD12 1 0.00173
WNT10B 1 0.002774
XRCC5 1 0.003382
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Chapter 5

Conclusion

Our gene-set reduction method is an extension of GSA self-contained method from

binary to continuous phenotype. Many of the GSA self-contained methods are

generalized for binary or categorical outcomes. But for continuous phenotype, ex-

tension of self-contained GSA methods have rarely been reported. As an extension

of GSA self contained method, we obtained significant gene-sets and successfully

reduced subsets to its core genes.

We use LCT for obtaining significant gene sets for continuous phenotype. There

are several benefits of using LCT method for continuous phenotype. First, the ex-

tension of the enrichment test for continuous phenotype is rigorous and computa-

tionally efficient. Because there is scope of inaccurately categorizing the response

variable, the variable may not still be informative about the disease progression after

categorizing. Second, while most of the traditional GSA methods are unsuccess-

ful to accommodate the correlation characteristic in the test statistic, our method

incorporates correlation among the similar genes in a set. The incorporation of co-

variance matrix into the test statistic gives better power using permutation method

(Dinu et al., 2013). But this covariance matrix gets ill-conditioned when genes in

a set are larger than the sample size. Calculation of a shrinkage covariance matrix

estimation can solve this problem. But the computational cost of this solution is

high. The computational cost efficiency problem is overcome by taking orthogo-

nal transformation of the gene expressions. Therefore, eigenvalue decomposition of
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the shrinkage covariance matrix is performed only once for the real gene expression

data and it does not need to be estimated for each permuted version of data.

Our method adds to the gene-set analysis of a continuous phenotype literature by

providing the community with a tool for reducing the sets to their members. Our

method incorporates some improvements into existing GSA methods. We hope this

method can be used as an advantageous tool for testing the association between dif-

ferent molecular pathways and gene signatures. Again, a significant reduced gene

set helps understand the biological mechanism underlying the gene-set associated

with a phenotype of interest. Targeted therapies and intervention strategies (Ein-

Dor et al., 2006) may improve by concentrating only on the reduced gene sets. On

the other hand, examining the expression levels of the genes that are not differen-

tially expressed with the phenotype can increase the unnecessary cost and fails to

improve in clinical decision makings.

Future Studies

An Explanatory data analysis of our gene expression data can be done before run-

ning a formal inference. But a small number of sample size can be a limitation to

check thoroughly for non-linearity. Furthermore, LCT method can be extended for

non-linear data using a large number of sample size,.

The results of our analysis can play an important role as a source of information

to improve personalized medicine and intervention therapy by interpreting the bi-

ological association with our obtained core genes. We attempt explaining the bio-

logical interpretation by reviewing literature in section 4.4.3. We suggest to build

the biological understanding underlying a disease mechanism through an extensive

literature review.
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Software Packages

Linear Combination Test (LCT) has been analyzed with free R software, version

2.15.3. Free R codes for performing LCT for continuous and binary phenotype is

available at http://www.ualberta.ca/∼yyasui/homepage.html. Our operating system

used for running the codes is Windows 8. SAS 9.3 is used to process our mapping

0/1 matrix data using gene expression data and C2 catalog.

46



References

Baldi, P. and Long, A.D. (2001). A Bayesian framework for the analysis of microar-

ray expression data: regularized t -test and statistical inferences of gene changes.

Bioinformatics, 17, 509–519.

Chang, S., Hursting, S. D., Contois, J. H., Strom, S. S., Yamamura, Y., Babaian,

R. J., Troncoso, P., Scardino, P. T., Wheeler, T. M., Amos, C. I. and Spitz, M. R.

(2001). Leptin and prostate cancer. Prostate. 46: 62–67.

Chu, G., Narasimham, B., Tibshirani, R., and Tusher, V. (2002). SAM “Signifi-

cance Analysis of Microarrays”, Users guide and technical document. Stanford

University.

Dalby, K. N., Tekedereli, I., Lopez-Berestein, G., Ozpolat, B. (2010). Targeting the

prodeath and prosurvival functions of autophagy as novel therapeutic strategies

in cancer. Autophagy, 6(3):322–329.

Dinu, I., Potter, J., Mueller, T., Liu, Q., Adewale, A., Jhangri, G., Einecke, G.,

Famulski, K., Halloran, P., Yasui, Y. (2007). Improving gene set analysis of

microarray data by SAM-GS. BMC Bioinformatics, 8(1): 242.

Dinu, I., Potter, J.D., Mueller, T., Liu, Q., Adewale, A.J., Jhangri, G.S., Einecke,

G., Famulsky, K.S., Halloran, P. F., Yasui, Y. (2008). Gene Set Analysis and

Reduction. Briefings in Bioinformatics, 10(1): 24–34.

Dinu, I., Wang, X., Kelemen, E. L., Vatanpour, S. and Pyne, S. (2013). Linear

combination test for gene set analysis of a continuous phenotype. BMC Bioinfor-

matics, 14:212.

DeRisi, J., Penland, L., Brown, P. O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen,

Y., Su Y.A., Trent, J. M. (1996). Use of a cDNA microarray to analyse gene

47



expression patterns in human cancer. Nature genetics, 14:457–460, PubMed.

Draghici, S., Khatri, P., Martins, P. R., Ostermeier, C. G., and Krawetz, A. S. (2003).

Global functional profiling of gene expression. Genomics 81.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus:

NCBI gene expression and hybridization array data repository. Nucleic Acids

Res., 30, 207–210.

Ein-Dor, L., Zuk, O., Domany, E. (2006). Thousands of samples are needed to

generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci

USA. 103(15):5923–5928.

Ewens, J. W., and Grant, R. G. (2006). Statistical Methods in Bioinformatics: An

Introduction (Statistics for Biology and Health), 2nd edition.

Goeman, J. J. and Buhlmann, P. (2007). Analyzing gene expression data in terms

of gene sets: methodological issues. Bioinformatics, 23:980–987.

Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction, Springer, New York.

Housa, D., Housova, J., Vernerova, Z., and Haluzik, M. (2006). Adipocytokines

and Cancer. Physiol. Res. 55:233–244.

Johnson, R. A. and Wichern, D. W., (2002). Applied Multivariate Statistical Anal-

ysis, Prentice Hall.

Mootha, V. K., Lindgren, C. M., Eriksson, K.F. (2003). PGC- 1alpha-responsive

genes involved in oxidative phosphorylation are coordinately down regulated in

human diabetes. Nature Genetics, 34:267–273.

Nam, D. and Kim, S.Y. (2008). Gene-set approach for expression pattern analysis.

Brief Bioinformatics, 9:189–197.

Nelson, J. B, Udan, M. S., Guruli, G., Pflug, B. R., ( 2005). Endothelin-1 inhibits

apoptosis in prostate cancer. Neoplasia.7:631–637.

Pusztai, L., Ayers M, Stec J., Hortobagyi, G. N. (2003). Clinical application of

cDNA microarrays in oncology. Oncologist, 8:252–258.

Saglam, K., Aydur E, Yilmaz M, Goktas S. (2003). Leptin influences cellular dif-

ferentiation and progression in prostate cancer. J Urol 169:1308–1311.

48



Schafer, J. and K. Strimmer (2005). A shrinkage approach to large-scale covariance

matrix estimation and implications for functional genomics. Statist. Appl. Genet.

Mol. Biol. 4(32).

Singh, S.K., Grifson J.J., Mavuduru R.S., Agarwal M.M., Mandal A.K., Jha V.

(2010). Serum leptin: A marker of prostate cancer irrespective of obesity. Cancer

Biomarkers, 7(1):11–15.

Storey, J.D. & Tibshirani, R. (2003). Statistical significance for genomewide stud-

ies. Proc. Natl. Acad. Sci. USA 100, 9440–9445.

Storey, J.D. (2002). A direct approach to false discovery rates. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 64:479–498.

Subramanianan, A., Tamayoa, P., Moothaa, K. V., Mukherjeed, S., Eberta, L. B.,

Gillettea A. Michael, Amanda Paulovichg, Scott L. Pomeroy, Todd R. Golub,

Eric S. Landera and Jill P. Mesirova. (2005). Gene set enrichment analysis:

a knowledge-based approach for interpreting genome-wide expression profiles.

Proc. Natl Acad. Sci. USA, 15545–15550.

Thomas, J.G., Olson, J.M., Tapscott, S.J. and Zhao, L.P. (2001). An efficient and

robust statistical modeling approach to discover differentially expressed genes

using genomic expression profiles. Genome Res., 11:1227–1236.

Tian, L., Greenberg, S., Kong, S., Altschuler, J., Kohane, I. and Park, P. (2005). Dis-

covering statistically significant pathways in expression profiling studies. Proc.

Natl. Acad. Sci. 102:13544–13545.

Tsai, C. and Chen J.J. (2009) . Multivariate analysis of variance test for gene set

analysis. Bioinformatics 25(7):897–903.

Tusher, G. V., Tibshirani, R., and Chu, G. (2001). Significance analysis of microar-

rays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98:

5116–5121.

Wang, X, Dinu I., Liu W., Yasui Y. (2011). Linear Combination Test for Hierar-

chical Gene Set Analysis. Statistical Applications in Genetics and Molecular

Biology, 10(1): Article 13.

Wallace, T.A., Prueitt R.L., Yi M.H., Howe T.M., Gillespie J.W., Yfantis H.G.,

49



Stephens R.M., Caporaso N.E., Loffredo C.A., Ambs S. (2008). Tumor Im-

munobiological Differences in Prostate Cancer between African-American and

European-American Men. Cancer Research, 68:927–936.

White, E., DiPaola, R.S. (2009). The double-edged sword of autophagy modulation

in cancer. Clin. Cancer Res. 15:5308–5316.

50


