
Reinforcement Learning-Driven Local Transactive Energy Market for
Distributed Energy Resources

by

Shida Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Shida Zhang, 2023

Abstract

Technological breakthroughs in renewable power generation, battery storage, electric

mobility, and advanced data logistics are changing the electric grid. The huge influx of

distributed energy resources (DERs), while important to curb carbon emissions, is not

without consequences. The highly intermittent nature of renewable energy resources

(RES), combined with the decreased visibility of DERs (from the system operator’s

perspective), makes it increasingly difficult for the grid utility companies to balance

generation with loads over time. If this trend continues, then phenomena such as

voltage fluctuations, reverse power flow, and degraded power quality are expected to

increase in frequency, bringing higher costs to the customers while decreasing quality

of service they receive.

To overcome these challenges, research have been underway to find alternative

demand management strategies that can better integrate DERs. Transactive Energy

(TE) is a framework that promises to achieve flexible, robust, and adaptive energy

management systems that properly integrate DERs. Local energy markets are emerg-

ing as a tool for coordinating generation, storage, and consumption of energy from

distributed resources. In combination with automation, they promise to provide an

effective energy management framework that is fair and brings system-level savings.

This thesis presents work towards advancing the practical implementation of econ-

omy focused TE systems. Specifically, on multi-agent systems with learning energy

trading agents that exploits the cooperative-competitive nature of auction markets

to dynamically balance of supply and demand in a local community.

A TE simulator is first developed to complete the subsequent tasks. Next, the

ii

relationship between double auction market properties and reinforcement learning is

examined. This is a critical step, as a poorly designed market may yield unintended

behavior of market participants. Results show that the market must be truthful and

weakly budget balanced in order for the agents to develop behaviours that reflect

price theory, which is a necessary condition to generate strong and relevant reward

signals.

Since the price generation process in the local energy market is fundamentally

different from contemporary pricing schemes (such as time-of-use), a mathemati-

cal model that aggregates and converts individual agent policies to a global pricing

scheme is created so that some properties of pricing schemes can be compared di-

rectly. In this study, it can be shown that the TE price model is far more responsive

and relevant compared to time-of-use, which is suggests that agent behaviours can be

more accurate and efficient when used for load shaping. Furthermore, significant bill

reductions are achieved when compared to net billing. The community as a whole

experienced a bill reduction of 35.9%, and the mean and median of individual bill

reductions are 74.51% and 38.8%, respectively.

Finally, the dynamic power balancing aspect of the proposed TE system is studied

with the integration of battery energy storage. A test circuit was created so that

voltage violations exist, but cannot be eliminated or reduced via self sufficiency alone.

By combining local energy trading with a battery storage, all of the voltage violations

are completely eliminated.

iii

Preface

The research presented in this thesis was performed under the supervision of Dr. Petr

Musilek and the co-supervision of Dr. Mustafa Gul.

A version of Chapter 4 has been published in Energy and AI as ”Reinforce-

ment Learning-Driven Local Transactive Energy Market for Distributed Energy Re-

sources” [1]. Daniel May developed the game theoretic models used in 4.4 and 4.5. I

was responsible for the rest of the study, which includes major areas of concept formu-

lation, agent design, market design and implementation, data collection and analysis,

and manuscript composition. Dr. Petr Musilek was the supervisory author of this

article and was involved throughout the project, and aided in the initial formulation

of the topic, and the manuscript composition and refinement process.

The contents of Section 4.6.2 has not been published. It is meant to address a

reviewer comment for the aforementioned article. This content was not a necessary

addition to the article at the time of publication.

The contents of Section 4.6.3 has been published in Energies as ”The Impact of

Battery Storage on Power Flow and Economy in an Automated Transactive Energy

Market” [2]. I conceived and designed the concept formulation, market design, battery

model and control scheme, agent design, data collection and analysis, and manuscript

composition. Dr. Petr Musilek was the supervisory author of this article and was

involved throughout the project, and aided in the initial formulation of the topic, and

the manuscript composition and refinement process.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Petr Musilek, for providing support, guid-

ance, and feedback throughout my time as his student.

I would like to thank Dr. Mustafa Gul for your role as my co-supervisor, and for

providing critical feedback for several publications.

I would like to thank my team mates, Daniel May and Peter Atrazhev, for existing.

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Layout . 3

2 Background 4

2.1 Energy and Markets . 4

2.1.1 Demand Side Management . 4

2.1.2 Transactive Energy . 5

2.1.3 Agent-Based Computational Economics 6

2.1.4 Net Billing Vs. Net Metering 7

2.1.5 Efficient Market Hypothesis 8

2.1.6 Double Auction . 8

2.2 Artificial Intelligence and Machine Learning 10

2.2.1 Artificial Intelligence . 10

2.2.2 Machine Learning . 10

2.2.3 Neural Networks . 12

2.2.4 Deep Learning . 13

2.2.5 Reinforcement Learning . 15

2.2.6 Multi-Armed Bandit . 17

2.2.7 Q-Learning . 18

2.2.8 Deep Reinforcement Learning 19

vi

2.2.9 RL for Local Energy Markets 19

3 T-REX Simulation Software 23

3.1 Introduction . 23

3.2 Design Requirements and Constraints 24

3.3 System Architecture . 25

3.3.1 Networking and Scalability . 27

3.3.2 Servers and Clients . 28

3.3.3 Bridge Server . 28

3.4 T-REX Software Functions . 29

3.4.1 Configuration File . 29

3.4.2 Study Parameters . 30

3.4.3 Server Parameters . 34

3.4.4 Training Parameters . 35

3.4.5 Market Parameters . 37

3.4.6 Participant Parameters . 40

3.5 Using T-REX . 45

3.5.1 Running a Simulation . 45

3.5.2 Output Data . 46

3.5.3 Simulation Controller . 47

3.5.4 Data Processors and Extensions 47

3.5.5 Power Flow Simulations . 50

4 ALEX: Autonomous Local Energy Exchange 53

4.1 Introduction . 53

4.2 Core Concept . 53

4.3 Market Mechanism . 54

4.4 Market Interaction . 56

4.5 ALEX as a Stochastic Game . 59

vii

4.6 ALEX Experiments . 60

4.6.1 Determining the Optimal Settlement Mechanism 61

4.6.2 Evaluating Fitness for Demand Response 69

4.6.3 The Effects of Battery Storage on Power Flow 79

5 Conclusion and Future Work 91

5.1 Summary . 91

5.2 Contributions . 92

5.3 Future Work . 94

Bibliography 95

Appendix A: Configuration File 103

viii

List of Tables

4.1 Settlement mechanism properties . 63

4.2 ALEX vs. Net Billing (NB) . 78

4.3 Profile IDs and Corresponding Node Locations 83

ix

List of Figures

2.1 The classic representation of an “deep” neural network. 12

2.2 An illustration of deep learning. 14

2.3 Deep learning performance vs. amount of data 15

2.4 A typical representation of a reinforcement learning loop. 16

3.1 Simplified T-REX V3 Architecture Diagram 25

3.2 Overview of T-REX V3 Event Flow Diagram 26

3.3 T-REX Bridge Architecture Diagram 29

4.1 Sequence diagram of ALEX market interactions 58

4.2 Validation policies for bid, ask, and resulting settlement prices for

agents operating under M1. 66

4.3 Validation policies for bid, ask, and resulting settlement prices for

agents operating under M2. 67

4.4 Validation policies for bid, ask, and resulting settlement prices for

agents operating under M3. 68

4.5 Total supply and demand profile of the residential community test over

one summer day in June 1, 2015 . 71

4.6 Expanded policies for bid, ask, and resulting settlement prices for four

agents operating under M3. 72

4.7 System-wide pricing model developed for the virtual community. . . . 73

4.8 Internal prices of ALEX used to conduct transactions 74

x

4.9 Local market pricing schedule compared against Ontario summer TOU

prices. 76

4.10 Electricity bill comparison between net billing and ALEX 77

4.11 Price policies for bid, ask, and resulting settlement prices for 10 agents

operating under M3. 80

4.12 Topology of the North American low voltage distribution network bench-

mark. 82

4.13 Energy profiles and node voltages for the baseline experiment (B1). . 86

4.14 Energy profiles and node voltages for the experiment B2. 87

4.15 Energy profiles and node voltages for the experiment B3. 88

4.16 Comparing the state of charges of the BESS in B2 and B3. 89

xi

Abbreviations

ACE Agent-based computational economics.

AI Artificial intelligence.

ALEX Autonomous Local Energy Exchange.

ANN Artificial neural network.

API Application programming interface.

BB Budget balancing.

BESS Battery energy storage system.

DER Distributed energy resource.

DL Deep learning.

DP dynamic pricing.

DR Demand response.

DRL Deep reinforcement learning.

EE Economic efficiency.

EMH Efficient Market Hypothesis.

EV Electric vehicle.

xii

GWAC GridWise Architecture Council.

HVAC heating, ventilation, and air conditioning.

IR Individual rationality.

LEM Local energy market.

ML Machine learning.

MPC Model predictive control.

NIST National Institute of Standards and Technology.

NN Neural network.

OPF Optimal power flow.

RES Renewable energy source.

RL Reinforcement learning.

ROI Return on investment.

RTP Real-time pricing.

TCL Thermostatically controlled load.

TF Truthfulness.

TOU Time-of-use.

T-REX Transactive Renewable Energy Exchange.

TC Transactive control.

TE Transactive energy.

xiii

Chapter 1

Introduction

1.1 Motivation

Technological breakthroughs in renewable power generation, battery storage, electric

mobility, and advanced data logistics are changing the electric grid. The huge influx of

distributed energy resources (DERs), while important to curb carbon emissions, is not

without consequences. The highly intermittent nature of renewable energy sources

(RES), combined with the decreased visibility of DERs (from the system operator’s

perspective), makes it increasingly difficult for the grid utility companies to balance

generation with loads at the right time. If this trend continues, then phenomena

such as voltage fluctuations, reverse power flow, and degraded power quality [3–5]

are expected to increase in frequency, bringing higher costs to the customers while

decreasing quality of life.

To overcome these challenges, works have been underway to find alternative de-

mand management strategies that can better integrate DERs. Transactive Energy

(TE) is one such framework that promises to achieve flexible, robust, and adaptive

energy management systems that properly integrates DERs. The GridWise Architec-

ture Council (GWAC) defines TE as “a set of economic and control mechanisms that

allows the dynamic balance of supply and demand across the entire electrical infras-

tructure using value as a key operational parameter.” [6]. This high level definition

provides some clues as to how TE should work, but leaves the specific implementation

1

details to system designers.

Currently, one of the most popular forms of TE implementation is transactive

control (TC), which aims to generate fine-grained price and/or control signals that

can reach optimal power flow. However, as we will see in literature review presented

in Chapter 2, this approach has the same limitations as existing demand management

schemes. An alternative form of TE is the economy-based approach, which does not

aim for optimal powerflow, but simply observes it as a consequence of efficient market

transactions. This form of TE is the focus of this thesis.

1.2 Objectives

The ultimate objective of this thesis is to answer the following questions:

• What market mechanism and market properties will allow a set of independent

reinforcement learning (RL) agents to trade energy in a way that reflects price

theory?

• Can optimal, or near optimal power flow be achieved as a consequence of efficient

market transactions?

The following tasks are completed as part of the process to answering these research

questions:

• Developed a economy focused transactive energy simulator that enabled the

completion of subsequent tasks.

• Designed and implemented methods that allow agents to trade energy in a

double auction market.

• Examined the relationships between double auction market properties and re-

inforcement learning, specifically:

– Investigated how the market properties affect RL policy development.

2

– Determined the strength of each property required for RL policy to reflect

price theory.

• Inspected the developed RL policies, and devised methods to make comparisons

to contemporary demand response pricing scheme, specifically:

– Created a generalized math model to aggregate and convert individual

agent policies to a global pricing scheme.

– Compared responsiveness, relevancy, and bill cost against net billing and

time-of-use.

• Studied the effects of integrating battery storage in the local energy market,

with a focus on changes to power flow:

– Designed and implemented a rule-based battery management agent that

maximizes market interactions.

– Contrasted the resulting power flow with and without local energy trading.

1.3 Thesis Layout

This thesis is composed of five chapters. Chapter 2 presents relevant background,

such as demand management techniques, transactive energy systems, agent-based

economics, and reinforcement learning. Chapter 3 describes Transactive Renewable

Energy Exchange (T-REX), the simulation software developed to perform economy

focused TE simulations. Chapter 4 introduces Autonomous Local Energy Exchange

(ALEX), the framework for studying market-based coordination in a behind-the-

meter community. A series of experiments are performed using ALEX to answer the

research questions posed in Section 1.2. Conclusions and future work are discussed

in Chapter 5.

3

Chapter 2

Background

This section provides the necessary background on related topics and concepts that

are used throughout the thesis. It also offers a literature review relevant to the

presented research.

2.1 Energy and Markets

2.1.1 Demand Side Management

The addition of DERs, especially at grid edge, creates difficult problems for the

electric grid. The foremost problem is the decreased visibility into the behaviour of

these DERs, which in turn makes load balancing much more difficult. Improper load

management can lead to phenomena that can affect everyday lives, such as voltage

fluctuations, reverse power flow, and degraded power quality [3–5]. Utility companies

use demand response (DR) techniques to alleviate some of these issues by trying to

align customer and/or DER behaviours closer to ideal load curves.

Demand response methods can be divided into two categories: direct, and indirect.

Direct DR refers to methods where the electric utility company or grid operator

is given direct control over heavy appliances, such HVACs, to increase or decrease

the load on the grid as needed. Direct DR is limited in scope due to the large

infrastructure overhead [7–9]. It is also considered more invasive, and tends to create

more friction between the utility company and customers, such as when turning up

4

thermostats during heatwaves to counter decreased line capacity. Indirect DR, on

the other hand, tries to uses incentive signals to influence customer behaviour, with

the hope that enough customers will respond to make a difference. Popular methods

include time-of-use (TOU) pricing, critical peak pricing, real-time pricing (RTP),

and dynamic pricing (DP) [7]. Unfortunately, a survey conducted by Chen et al. [8]

concludes that customers generally prioritize comfort over responding to price signals.

This means that the response rate will be lower when a high level of response is needed

the most, rendering indirect DR largely ineffective.

2.1.2 Transactive Energy

Given the challenges and limitations facing DR, interest in transactive energy (TE)

has been increasing. The GridWise Architecture Council (GWAC) officially defines

TE as “a system of economic and control mechanisms that allows the dynamic balance

of supply and demand across the entire electrical infrastructure using value as a key

operational parameter” [6].

A large body of research exists on TE in the form of transactive control (TC),

which uses the TE framework to generate a combination of direct and indirect control

signals to reach optimal power flow (OPF). Typically, transactive control schedules

are calculated via a utility function in conjunction with forecasts and expert-designed

behavioral models [7–9]. Some notable TC approaches include:

• Works by Hu et al. [10], who proposed an aggregator-based optimization ap-

proach that generates charging/discharging schedules for electric vehicles (EVs).

A simulation was performed on a Danish distribution network to show the de-

creased frequency of line congestion and voltage violation.

• Nazir et al. [11] used an aggregator-based model incorporated into a model

predictive control (MPC) framework to both calculate optimal price signals

and to control thermostatically controlled loads (TCLs) and storage devices to

5

decrease power oscillations at substation feeders.

• Soarez et al. [12] introduced a comparable aggregator-based approach using a

dual decomposition algorithm. To validate the efficacy of the algorithm, they

performed a field test involving six houses. Despite the promising simulation

results, the field test was inconclusive due to the lack of flexibility at the test

site.

A smart grid with a large number of independently operating DERs can be modelled

as a non-stationary stochastic system. Since TC schemes are generally derived from

deterministic models, optimal control cannot be guaranteed when the outputs are

used on stochastic systems. This uncertainty of the load response to the control

signal itself is the same challenge that indirect DR still faces [7, 8]. Although certain

aspects of these challenges have been modeled by Yu et al. [13], Huang et al. [14],

and Ferreira et al. [15] in an effort to find a solution, the fundamental weaknesses of

schedule-based DR remain.

2.1.3 Agent-Based Computational Economics

TC largely focuses on creating schedules to reach optimal power flow, and relegates

price signals as a control proxy that must be followed. The focus on making customers

follow a strict schedule is one of the factors contributing to the failure of TC and

other indirect DR approaches. Findings by Chen et al. [8] back up this claim, and

suggest that automated responses will be the key to making DR and DR-like programs

successful.

Unlike TC, economy-based TE does not create schedules that must be strictly

followed to reach optimal power flow. However, power flow improvements may be

observed as a result of efficient market transactions. This approach is more inline with

the definition of TE, which suggests the use of economic principles to dynamically

balance supply and demand. This also makes it possible to use the agent-based

6

computational economics (ACE) framework for studying and discovering alternative

TE approaches, especially ones that are fully automated.

ACE is used in the study of open-ended dynamic systems of interacting agents,

where agents may be defined as an independent entity capable of affecting the tra-

jectory of outcomes for the system they inhabit. Real-world economies exhibit five

essential properties [16, 17]:

1. The world consists of heterogeneous interacting participants;

2. The world dynamics are driven by successive interactions of participants;

3. Participant decisions take into account previous actions and potential future

actions by other participants;

4. All participants are locally constructive;

5. Actions taken by participants at any given time affect future local states.

These properties imply that real-world economies can be modeled as locally-constructive

sequential games.

2.1.4 Net Billing Vs. Net Metering

This section clarifies the distinction between net billing and net metering. In cer-

tain jurisdictions, such as Alberta, Canada, the electricity market is “unbundled”.

In simple terms, electric utilities are only in charge of building and operating the

infrastructure (wires), and a multitude of retailers (which cannot be the same entity

as the electric utility company) are allowed to sell electricity to end users, with al-

most complete freedom to set the rate of electricity. Customer bills are therefore also

separated into two main components: infrastructure (transmission and distribution,

or T&D fees1, which can have a fixed component and a variable component), and

1T&D fees are not the only non-energy fees. Other fees can include administration, riders,
property taxes, “adjustments”, etc. In most cases, T&D fees makes up the vast majority of of the
fees, and is therefore simpler and good enough to ignore the others.

7

energy. Under net metering, any electricity that flows into the meter (loads) incurs

both energy and T&D costs, and any electricity that flows out of the meter (gen-

eration) has both energy and T&D costs deducted, either as credits or cash. Net

billing is the same for loads, but only the energy component is deducted for gener-

ation. One way to avoid this infrastructure cost is to install both the solar panel

and a battery behind the meter to minimize the amount of energy flowing out of

the meter, effectively making net billing into net metering. The advantage of net

billing is the socialized cost of infrastructure, which is more evenly divided amongst

all customers. In contrast, net metering tends to shift these costs onto the segment of

the population who cannot afford their own solar (this is called uneconomic bypass,

a well known and often criticized problem). The disadvantage of net billing is that

the return on investment (ROI) can be significantly longer due to less bill deductions.

From this perspective, net billing is a more fair baseline. It also provides more op-

portunities for community-based energy management, such as through local energy

markets described in Chapter 4.

2.1.5 Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) [18] states that the price of assets reflects

all available information. EMH is usually applied to security markets, but should be

applicable capital markets in general. It is believed that, in an efficient capital market,

new information spreads quickly, and is then incorporated into the price with little to

no delay. Real world markets that are operated by humans are not perfectly efficient,

and the actors are not fully rational, which led to criticisms of the theory [19].

2.1.6 Double Auction

Double auction [20, 21] is a type of market that facilitates the process of buying

and selling goods between multiple buyers and multiple sellers. A well known double

auction market is the stock exchange.

8

For each auction round, potential sellers must submit their desired sell price (ask, or

S) to the auctioneer. Likewise, potential buyers must submit their desired purchase

price (bid, or B). The auctioneer then uses some settlement mechanism to find a

settlement price, p, that maximizes the quantity of goods exchanged. There exists

many types of settlement mechanisms [22], but all can be completely described by

four properties [23]:

1. Individual rationality (IR), which states that a participant will not join an

auction where they will lose money.

2. Economic efficiency (EE). In an economically efficient system, at the end of

all trading, the highest bidder should be the winner and receive the item(s).

3. Budget balancing (BB). Budget balancing comes in a strong variant (SBB)

and a weak variant (WBB). In a SBB system, all money transacted go from the

buyer to the seller. In a WBB system, a portion of the money transacted goes

to the auctioneer.

4. Truthfulness (TF). The dominant strategy for participants in a truthful mar-

ket is report prices at what they believe should be the true value of the item to

be exchanged. i.e., there is no incentive to lie.

According to the Myerson–Satterthwaite theorem [23], an ideal double auction

market satisfies all four properties, but it is not possible in practice, even for markets

with one buyer, one seller, and one item. Therefore, a practical market design must

first determine the required properties, then make compromises for the rest. A market

mechanism study is carried out in Section 4.6.1.

9

2.2 Artificial Intelligence and Machine Learning

2.2.1 Artificial Intelligence

Artificial Intelligence (AI) [24] is a field of computer science/engineering that focuses

on creating intelligent machines, especially through computer software. In essence,

AI takes some input data through one or many computational models to produce out-

puts that are useful. Today, the applications of AI is numerous, and include (but not

exclusive to) search engines, product recommendations, speech recognition, playing

competitive games (chess, go, StarCraft, etc.), image/feature recognition, autopilot,

stock trading, and so on. The process for the computational models used in AI has

evolved over time. Early on, AI applications used rule based systems that are highly

situation specific, and required immense expert knowledge to design and implement.

Later, fuzzy systems and similar augmentations simplified the process with more gen-

eralized rules. Then, simple machine learning techniques were introduced to extract

knowledge from raw data. Today, the combination of sophisticated machine learning

techniques, massive data sets, and powerful computer hardware is the primary way

to build models for AI applications.

2.2.2 Machine Learning

Machine Learning (ML) is a branch of artificial intelligence in which algorithms are

used to learn from data to create or improve a model (or models) for use in AI appli-

cations. ML can be categorized into three types: supervised learning, unsupervised

learning, and semi-supervised learning, with the main difference being the amount of

human influence on training data.

Supervised learning uses datasets that are completely labeled for training. Prob-

lems that uses supervised learning can be further broken down into classification,

which attempts to assign data presented into a category or several categories, and

regression, which is used to understand relationships between labels. Application

10

of supervised learning include computer vision (to accurately identify objects in an

image. For example, in self driving vehicles), spam detection, sentiment analysis,

predictive analysis, etc. K-fold cross validation is typically used to ensure that the

trained model is generalizable and does not over- or underfit to the training data.

The major drawback of supervised learning is the time and effort required by humans

to label data, which, as the amount of data increases, can quickly become expensive.

Unlike supervised learning, unsupervised learning uses data that is completely

unlabelled, and instead relies on the algorithm to identify important patterns and re-

lationships (i.e, clustering). Clustering algorithms are mainly used to group data with

similar features or patterns. Common application of clustering are: pattern recogni-

tion, anomaly detection, recommendation engines, etc. Outputs from unsupervised

learning algorithms may be used as one of the steps for deep learning. For example,

the data clusters may be treated as labels to further process the data through super-

vised learning algorithms. Similarly, dimensionality reduction (principal component

analysis, autoencoders, etc.) can be used to create new representations of the data

that may be more computationally efficient for training. Although using unlabelled

data with unsupervised learning may be faster to start compared to supervised learn-

ing, the outputs are often less accurate, and may require extensive post-analysis to

fully understand the results.

Semi-supervised learning uses a small set of labelled data and a larger set of

unlabelled data for training. Unlike unsupervised learning, which could create clusters

that are difficult for humans to understand, semi-supervised learning uses the labelled

data to help label the unlabelled data. This approach attempts to strike a “happy

medium” between supervised and unsupervised learning, and can solve the problem of

either not having enough labelled data, or the potential high cost of labelling sufficient

amounts of data.

As computers are expected to increasingly perform complex tasks in place of hu-

mans, Goodfellow et al. contend that “machine learning is the only viable approach to

11

building AI systems that can operate in complicated real-world environments.” [24].

Two sub-fields of ML, deep learning and reinforcement learning (which can be com-

bined into deep reinforcement learning), have recently been highly successful at train-

ing AI to perform tasks in complex, real-world environments.

2.2.3 Neural Networks

Neural networks (NNs), or artificial neural networks (ANNs), are a sub-field of ma-

chine learning. As the name suggests, neural networks are inspired by the human

brain, and have structures that mimic the way signals are passed between biological

neurons.

The base unit of a neural network is a node. Each node contains an activation

function, which typically produces an output when some input threshold is reached.

Connections between neurons can be augmented by weights. Multiple neurons can

form a layer that takes multiple inputs and produces multiple outputs, and layers of

neurons can be connected to form a network. The depth of a neural network is usually

defined by the hidden layers (layers that are not the input or output of the network),

and a network consisting of more than two hidden layers can be considered a deep

neural network. Figure 2.1 shows the classic representation of a neural network.

Input layer Hidden layers Output layer

Figure 2.1: The classic representation of an “deep” neural network. More specifically,
this is a feed-forward network, as the signals flow in one direction only, from input to
output.

12

Neural networks are trained via supervised learning using back propagation. In

basic terms, for each set of inputs that goes through the network, an error is produced

by comparing the output to the known output. A backpropagation algorithm [25, 26]

is then used to adjust the network weights to decrease this error.

An important property of neural networks is that they can be universal approxi-

mators [27], even for networks with a single hidden layer. Essentially, a number of

neurons, each representing a simple math function, can be combined using arithmetic

manipulation to form a more complex function. Therefore, any function can be ac-

curately approximated as the number of neurons approach infinity. The combination

the universal approximator theorem, more sophisticated network architectures, and

the explosion of computational power, allowed neural networks and deep learning to

achieve much success in many fields in recent years.

2.2.4 Deep Learning

Deep learning (DL) is a sub-field of neural networks that focuses on deep neural net-

works. One of the earliest and seminal works that demonstrated the usefulness of

deep neural networks was published in 1989, in which LeCun et al. [28] used a neural

network to recognize handwritten zip codes provided by USPS. It was demonstrated

that a single network can learn the entire recognition operation, from image nor-

malization, to character classification. More importantly, this demonstration hinted

at the central principal of deep learning - complex concepts can be broken down

into multiple simple concepts that build on each other, aka. learning hierarchical

representations [29].

Figure 2.2 shows a more clear illustration of deep learning on image recognition,

and how each subsequent layer learns new features from the outputs of the previous

layer. A big advantage of feature learning over many hidden layers is that this pro-

cess is unsupervised, making the data labelling requirement much less intensive. For

example, only the objects need to be labelled for object recognition. There is no need

13

CHAPTER 1. INTRODUCTION

Visible layer

(input pixels)

1st hidden layer

(edges)

2nd hidden layer

(corners and

contours)

3rd hidden layer

(object parts)

CAR PERSON ANIMAL
Output

(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus 2014().

6

Figure 2.2: An illustration of deep learning. Originally from “Deep Learning” [24],
pg. 6

for the network designer to manually label extract what they think the important

features are needed in order for the network to learn. Over the years, deep learn-

ing models, such as ResNet [30], have achieved error rates that outperform human

accuracy.

Despite these impressive feats, deep learning is notoriously “data-hungry”. As

illustrated by Alom et al. [31] in Figure 2.3, traditional machine learning approaches

outperforms deep learning for smaller datasets. As the amount of data increases, DL

performance drastically increases traditional approaches plateau. This property can

be considered a double-edged sword, as it may potentially lock out the use of DL in

industries where data generation or collection is minimal or restricted. Solving this

problem is currently an active area of research.

14

Electronics 2019, 8, 292 7 of 67

does not have sufficient available data. There are a number of literatures that have discussed this
concept (See Section 4).

1.5.4. Scalability

The DL approach is highly scalable. Microsoft invented a deep network known as ResNet [11].
This network contains 1202 layers and is often implemented at a supercomputing scale. There is a big
initiative at Lawrence Livermore National Laboratory (LLNL) in developing frameworks for
networks like this, which can implement thousands of nodes [24].

1.6. Challenges of DL

There are several challenges for DL:
 Big data analytics using DL
 Scalability of DL approaches
 Ability to generate data which is important where data is not available for learning the

system (especially for computer vision task, such as inverse graphics).
 Energy efficient techniques for special purpose devices, including mobile intelligence,

FPGAs, and so on.
 Multi-task and transfer learning or multi-module learning. This means learning from

different domains or with different models together.
 Dealing with causality in learning.

Most of the above-mentioned challenges have already been considered by the DL community.
Firstly, for the big data analytics challenge, there is a good survey that was conducted in 2014 [30]. In
this paper, the authors explained details on how DL can deal with different criteria, including
volume, velocity, variety, and veracity of the big data problem. The authors also showed different
advantages of DL approaches when dealing with big data problems [31,32]. Figure 7 clearly
demonstrates that the performance of traditional ML approaches shows better performance for lesser
amounts of input data. As the amount of data increases beyond a certain number, the performance
of traditional machine learning approaches becomes steady, whereas DL approaches increase with
respect to the increment of the amount of data.

Figure 7. The performance of deep learning with respect to the amount of data.

Secondly, in most of the cases for solving large-scale problems, the solution is being
implemented on High-Performance Computing (HPC) system (super-computing, cluster, sometimes
considered cloud computing) which offers immense potential for data-intensive business computing.
As data explodes in velocity, variety, veracity, and volume, it is getting increasingly difficult to scale
compute performance using enterprise-class servers and storage in step with the increase. Most of
the articles considered all the demands and suggested efficient HPC with heterogeneous computing
systems. In one example, Lawrence Livermore National Laboratory (LLNL) has developed a
framework which is called Livermore Big Artificial Neural Networks (LBANN) for large-scale

Figure 2.3: Deep learning performance vs. amount of data. Originally from “A
State-of-the-Art Survey on Deep Learning Theory and Architectures” [31], pg. 7

2.2.5 Reinforcement Learning

There have been numerous approaches used to address the optimization problems

inherent to demand side management [7–9], including mixed-integer programming,

stochastic programming, and dynamic programming. After reinforcement learning

(RL) demonstrated great competence in partially observable, stochastic game envi-

ronments [32–34], it also gained popularity as a control method for DR [35]. The

learned policy can substitute the solution of the equivalent optimization problem at

each time step. As a result, RL approaches can be more computationally efficient at

scale, when compared to conventional optimization methods.

At a high level, RL is a type of machine learning in which an entity, referred to as an

agent, learns through trial-and-error interaction with its environment [36]. An agent

performs actions and is provided feedback on the impact of these actions through a

scalar value known as reward rt. The goal is to maximize the sum of future rewards

known collectively as the return Gt =
∑︁∞

t=0 rt. In addition to rewards, the agent

also collects information about the environment through observations ot. Through

rewards and observations, agents learn policy π(ot) that guides their actions. To

formulate this policy, agents keep tabs on the value of states, Vt(s) = E[Gt|St = s],

15

or quality of state action pairs, Qt(s, a) = E[Gt|St = s, At = a].

Since RL agents learn through trial and error, they extract information about their

environment through the feedback of their actions. Since agents seek to maximize

return, they must have a mechanism to gain information about their environment;

this is known as exploration. The balance between exploring the environment and

exploiting information already known to the agent is of pivotal significance across

RL learning algorithms. A popular way to create an exploratory drive is to inject

a random action selection with a certain probability ϵ, this is known as ϵ-greedy

exploration.

Environment

Agent

Action State,
Reward

Figure 2.4: A typical representation of a reinforcement learning loop. In the RL
setting, an agent learns to maximize the return G by interacting with its environment
through actions a while receiving observations of the environmental state s. G is
commonly defined as the expected, discounted cumulant of future reward R

Gt =
T∑︂
i=t

γ(i−t)Ri, ∀γ ∈ [0...1], (2.1)

where γ is the discount factor. The expected value of Gt, given the current state st

or the current state-action tuple (st, at), is referred to as the state value

V (st) = E
(︁
Gt|st,π(st)

)︁
, (2.2)

or action value

Q(st, at) = E
(︁
Gt|st,at

)︁
, (2.3)

respectively. An RL agent acts according to a policy π

π : S × A→ [0...1]. (2.4)

16

Policy is a (probabilistic) mapping of the state space S on action space A, i.e.∑︂
a

π(a, st) = 1. (2.5)

This allows the definition of the state value V as action value Q weighted by π

V (st) =
1

na

∑︂
a

π(a, st)Q(st, a). (2.6)

This system of equations (2.1-2.6) is sufficient to broadly classify all RL algorithms

along two axes: the learned function and the relation between the target and behavior

policy. According to the learned function, RL algorithms can be classified as policy-

gradient methods and value-based methods. The policy-gradient methods directly

learn the policy π, while the value-based methods learn estimations for either V

or Q, and employ a fixed mapping of these values to π. RL algorithms can also

be classified into on-policy and off-policy methods, by comparing their target and

exploratory behavior. An on-policy RL algorithm explores the environment with the

same policy that is optimized, while an off-policy algorithm explores the environment

with a behavioral policy b ̸= π.

2.2.6 Multi-Armed Bandit

A multi-armed bandit [37] is a type of problem where an actor chooses actions in a

way that maximizes returns. The agent acts on partial information known about each

action, and gains more knowledge about each action as they are taken. Multi-armed

bandit is special case of reinforcement learning where the next state does not depend

on the action taken in the previous step, and exemplifies the exploration-exploitation

trade-off. The classic example of a multi-arm bandit is a gambler in front of a row of

slot machines, where each slot machine may have a different payoff. At every step,

gambler must decide whether to continue with the same machine, use the machine

that is known to give the highest payoffs so far, or try a new machine. Any time a

machine is used, information about the machine is updated, which helps the bandit

make the next action. A form of multi-armed bandit is used in Section 4.6.1.

17

2.2.7 Q-Learning

Q-learning is a well-established, value-based, off-policy algorithm. It is named as such

because the learning function calculates the quality of each state-action combination.

It learns the greedy policy, a deterministic policy that always picks a corresponding

to the largest Q, by following behavioral policy b. A popular choice for b is the ϵ-

greedy policy, which takes a random action with probability ϵ and otherwise follows

the greedy policy, as follows.

π(s) =

{︄
randomaQ(s, a) if ϵ

argmaxaQ(s, a) otherwise
(2.7)

The Q(s, a) values are usually stored in a lookup table. Value updates follow the

Markov Decision Process (MDP), which allows Q(s, a) to be expressed recursively as

the Bellman’s equation:

Q(s, a) = r(s, a) + γmaxa′(Q(s′, a′)) (2.8)

The Q-Learning rule can then be written as:

Qnew(st, at)← Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at)) (2.9)

where α is the learning rate, rt is the reward, and γ is the discount factor.

Q-learning is a relatively well-understood RL algorithm, and commonly used in the

related literature reviewed in section 2.2.9. The Q-function has strong convergence

criteria, as long as both ϵ and α are annealed towards 0 at infinity. However, the

tabular-Q has two major weaknesses. First, the state table is inefficient, and only

suitable for a small set of discrete states, whereas state representations for real world

problems are far more complex. Second, unseen states are not updated, even if some

properties of nearby states are shared. These weaknesses can apply to other tabular

methods as well. While quantization of the state-action combinations may seem like

a reasonable solution, it results in inefficient learning, largely due to the curse of

18

dimensionality. Hence, the most the real solution to these weaknesses is to use deep

neural networks to approximate the state table.

2.2.8 Deep Reinforcement Learning

As previously mentioned, traditional reinforcement learning algorithms are generally

unsuitable for solving real world problems. This is largely due to the large number

of state representations, and the inefficiencies of tabular methods. The real solution

to this problem is to replace the state-action table with a function approximator,

usually with a deep neural network (hence, deep reinforcement learning). The Deep

Q-networks algorithm (DQN) [38] is the first to successfully demonstrate the use

of a deep reinforcement learning (DRL) to learn control policies directly from high-

dimensional inputs. By combining Q-Learning, convolutional neural networks, and

experience replay, the agent learned to play a few Atari 2600 games at superhuman-

level performance. This work kick started a wave of DRL research, and since then,

multiple extensions have been proposed to improve efficiency and performance (Dou-

ble DQN [39], prioritized experience replay [40], dueling DQN [41], Distributional

Q-Learning [42], etc.) Hessel et al. [43] combined six extensions (Rainbow) to achieve

the same performance as the benchmarks faster, and better performance overall. DRL

has since demonstrated superhuman performance in more complex domains [33, 34,

44], and continues to solidify itself as one of the best candidate to perform highly com-

plex tasks in partially observable, stochastic environments, such as real-time double

auction markets.

2.2.9 RL for Local Energy Markets

Several articles investigate the combination of RL and DP for centralized control.

Notably, Kim et al. [45], and Lu et al. [46] develop RL-based approaches for DP from

the perspective of a service retailer. Both articles address difficulties in predicting

participant response to a pricing schedule by mitigating reliance on accurate cus-

19

tomer side information. A Markov decision process is formulated based on customer

behaviour models and preferences. A Q-learning agent is trained to simultaneously

minimize customer costs and maximize the service provider benefit. The two articles

differ in the formulation of the reward function, which is generally a major influencing

factor in RL algorithms. Lu et al. [46] use a weighted sum of retailer and customers,

while Kim et al. [45] use a modelled utility function. Although both proposed ap-

proaches successfully implement a non-scheduling-based DP strategy, they still rely

on modeling consumer behavior and preferences via utility functions.

Zhang et al. [47] train a RL agent to manage a community-shared battery and

trade its resources in economy-maximizing fashion on a TE market. As such, the

reward function is the economic performance of the battery. The authors show that

even considering the running costs of the battery, positive economic benefits can be

achieved.

Xiao et al. [48] investigate optimized trading between a large number of intercon-

nected microgrids using a deep Q-network (DQN) based RL agent. Similarly to Kim

et al. [45], a utility function is used to determine the reward. As expected, the more

sophisticated DQN algorithm outperforms the benchmark hotbooting Q-learning al-

gorithm.

Foruzan et al [49] investigate the behavior of self-interested Q-learning agents,

exchanging energy within a micro grid over a LEM. The agent’s goal is to maximize

its own profit. Managed DERs include battery energy storage systems, solar rooftop,

wind and diesel generators. The participant’s stochastic behavior is approximated

using random models. The authors perform an in-depth hyperparameter study of

the RL algorithm with regards to return, self-sufficiency and fairness metrics and

investigate several different micro grid configurations.

Zhou et al. [50] combine fuzzy rule-based systems with Q-learning to train agents

to exchange energy resources over a peer-to-peer LEM setup whose pricing is directly

tied to the ratio of supply and demand. They investigate the performance of several

20

community configurations with ranging number of battery energy storage systems and

renewable generation assets. They show that such a system setup generally achieves

lower bills than TOU and net-billing baselines.

Chen et al. [51] employ a DQN variant to automate the interactions of prosumers

equipped with battery energy storage system in a LEM. The RL agents’ action space

consists of four distinct, discrete actions covering buy/sell and charge/discharge.

Their learned policy outperforms an intuitive, rule-based strategy and a pure ran-

dom policy equivalent to a zero-intelligence agent, originally proposed by Ghode et

al. [52] as a baseline for agent competence in automated markets. In another arti-

cle, Chen et al. [53] investigate the function of Q-learning based energy brokers as

LEM consensus mechanism for settlements. The agent’s reward is its profit. The au-

thors perform several ablation and sensitivity studies and show that this the brokers

efficiently learn how to maximize their own profit and the market’s efficiency.

Kim et al. [54] extend a DQN variant designed for stock trading applications to

manage a household’s participation in a peer-to-peer energy exchange. They set

up experiments including several different rate schemes and demonstrate that their

developed agent outperforms the simplified versions in a set of experiments in terms

of loss minimization and revenue maximization.

Bose et al. [55] focus on the emerging participant interaction within a fixed LEM

setup under differing levels of DER penetration. They demonstrate that RL-based

agents in such a setup can lead to the emergence of partial energy self-sufficiency,

and further show that the degree of such self-sufficiency and the complexity of agent

interactions depends on the degree of DER penetration within the LEM.

Mengelkamp et al. [56] study three different extensions of the Erev-Roth RL algo-

rithm applied to automate LEM participation. They find that the extensions further

increase the self-sufficiency of the LEM when compared to the original Erev-Roth

algorithm proposed by Erev et al. [57].

Mengelkamp et al. [58] compare a peer-to-peer LEM against a closed book, double-

21

auction LEMwith settlement rounds. They compare the performance of zero-intelligence

agents and “intelligent” agents adopted from Nicolaisen et al. [59] on both LEM de-

signs. They conclude that all market scenarios offer similar economic advantages,

with the peer-to-peer LEM used by intelligent agents slightly outperforming the re-

maining variants. However, they also note that using the same strategy on a different

market results in different price trends and conclude that the agent strategy and

market design need to be co-developed to guarantee the system’s performance.

22

Chapter 3

T-REX Simulation Software

3.1 Introduction

Most modern engineering solutions start with simulations in software. However, the

simulators for power engineering have not evolved much over the years, and are in-

adequate for holistically studying TE in depth. A report by NIST [60] details four

prominent TE simulators designed for the NIST Transactive Energy Modelling and

Simulation Challenge for the Smart Grid, and summarizes the pros and cons of each.

In addition, several other simulators exist that function in a similar vein: FNCS [61],

TESP [62], IESM [63], SEPSS [64], C2WT-TE [65], and TE-SAT [66]. In general,

these simulators primarily focus on solving for optimal power flow, and aim to pro-

duce external control signals that can steer human behaviours or devices to reach this

state (aka. transactive control). Regardless of the complexity or detail of the signals

generated this way, fundamentally speaking, this is not too different from existing

DR techniques, and therefore still does not solve the problems with scalability or low

customer participation rates.

One other obvious weakness of this collection of TE simulators is that, by primarily

focusing on optimal power flow, the economic aspect is overlooked. As a reminder,

TE is defined “a system of economic and control mechanisms that allows the dynamic

balance of supply and demand across the entire electrical infrastructure using value

as a key operational parameter” [6]. Although a small number of economy focused

23

TE simulators (and related research) exist [59, 67], they do not offer the flexibility

required to easily integrate software defined markets with modern machine learning

frameworks that can be used to create powerful agents. In order to conduct the

research objectives for this thesis, such a simulator first had to be created. This

chapter summarizes the simulator design and goes over some key topics, from the

high level architecture, to implementations of some lower level functions. The latest

stable release of the simulator is available on GitHub [68].

3.2 Design Requirements and Constraints

The end goal of the simulator is to enable a group of learning agents to manage DERs,

using markets as a coordination mechanism. The name, T-REX, short for Transactive

Renewable Energy Exchange, is carried over from an earlier design concept that had

to be abandoned, because it was impossible to practically implement.

To study as many combinations of markets and agents as possible, the simulator

must be modular. The simulation environment should also be as realistic as possible,

and include real world limitations if necessary. In order to achieve these goals, the

following requirements should be met at a minimum:

1. It must not be purely focused on solving for optimal power flow.

2. It must integrate well with modern ML frameworks, such as Tensorflow and

PyTorch.

3. It should be based on the principles of agent-based economics.

4. Systems designed in the simulator should be deployable with minimal changes.

The last point is especially important, as practical TE systems may differ from

theoretical designs and are often difficult to implement [12]. By adding the constraints

for deployment, systems designed in T-REX should be more practical and easier to

deploy.

24

When considering practical constraints, the biggest source is arguably the life cy-

cle cost of the system. This usually involves the costs of developing, purchasing,

installing, operating, and maintaining the hardware and software. Certain trade offs

must be made in order to minimize this cost. These trade offs can greatly influence

the overall system architecture.

3.3 System Architecture

This section provides a high level overview of the current system architecture. A

simplified architecture diagram is shown in Figure 3.1, and an overview of a typical

event flow diagram is shown in Figure 3.2.

Sim Controller ParticipantMarket

Socket Server

Simulation Namespace Market Namespace Other Namespaces
Duplicate
Servers

Other
Clients...

...
Simulation Rooms Market Rooms Other Rooms

Figure 3.1: Simplified T-REX V3 Architecture Diagram

The event flow diagram shows the sequence of events that occur for a typical time

step. As part of the design goals, the vast majority of the event sequencing is kept

identical between simulation and real-time (deployment) mode. The major difference

between the two modes is timing control. In deployment mode, timing is based on

a global clock, and the market will advance when a set interval lapses, regardless of

whether participants are able to complete their actions during this time. In simu-

lation mode, the timing is controlled by the simulation controller. The simulation

controller ensures that all agents have completed all of their actions before directing

the market to advance. Beyond timing control, the simulation controller is also in

charge of monitoring the health of all other modules, as well as controlling the train-

25

Pa
rti

ci
pa

nt
M

ar
ke

t

M
ai

n
Lo

op
O

th
er

 A
sy

nc
 F

un
ct

io
ns

M
ai

n
Lo

op

U
pd

at
e

Ti
m

e

St
ar

t R
ou

nd

St
ar

t R
ou

nd

Ac
t

Le
ar

n

M
et

er

U
pd

at
e

O
pe

n
Bi

ds
/A

sk
s

U
pd

at
e

M
et

er

Ex
ch

an
ge

En

er
gy

En
d

R
ou

nd

O
th

er
 A

sy
nc

Fu

nc
tio

ns

U
pd

at
e

In
te

rn
al

R

ec
or

ds

U
pd

at
e

Le
dg

er
M

at
ch

 &
 S

et
tle

Ti
m

eo
ut

Ex
ch

an
ge

En

er
gy

Al
l P

ar
tic

ip
an

ts
En

d
Tu

rn
s

Si
m

 C
on

tro
lle

r

M
ai

n
Lo

op

N
ex

t T
im

es
te

p

En
d

Tu
rn

N
et

w
or

k
Ev

en
ts

In
te

rn
al

 E
ve

nt
s

Si
m

ul
at

io
n

M
od

e
Ex

cl
us

iv
e

Le
ge

nd

R
ea

l-t
im

e
M

od
e

Ex
cl

us
iv

e

F
ig
u
re

3.
2:

O
ve
rv
ie
w

of
T
-R

E
X

V
3
E
ve
n
t
F
lo
w

D
ia
gr
am

26

ing curriculum. For example, signaling hyperparameter changes as the simulation

progresses. More efficient agent designs results in shorter simulation times, and as

a consequence, can allow tighter timings when operating in deployment mode, mak-

ing sub-minute transactions viable (in contrast to the industry standard 15-minute

trading intervals).

3.3.1 Networking and Scalability

One of the major bottlenecks of operating TE systems is the large amounts of data

that need to be collected, processed, and transmitted. The amount of data available

grows exponentially as we move towards the grid edge, making networking a critical

cost factor when considering TE at distribution scale. Dedicated fiber networks are

nearly non-existent on the distribution scale due to the prohibitively high cost, and

consumer broadband networks may not be reliable enough to transmit time sensitive,

high-frequency data required for TE, especially in rural areas.

An alternative that is both low cost and highly reliable is to build dedicated wireless

mesh networks using LoRaWAN, which has become the industry standard. The

900MHz configuration is especially enticing, as it can transmit over several kilometers

with greater penetrability over dense material. The drawback is the much lower

bandwidth, which makes it unsuitable for centralized TE over large, densely populated

areas. It was decided that decentralized TE over smaller, densely populated areas

is more suitable for this particular setup, and may be most effective application of

distribution level TE.

To further increase ease of development and deployment, the rest of the sys-

tem is build on top of a hardware agnostic network software stack, socket.io [69].

Socket.io is widely used in applications and services where a large number of users

must be served in parallel, and can scale well for decentralized TE. This is one of

the reasons that socket.io is used instead of more traditional Python parallel com-

puting libraries, such as Ray. Since the first alpha in early 2018, T-REX has not

27

encountered any scaling issues thus far. Most of the performance constraints come

from the CPU core count limitations for multiprocessing, and physical media write

speeds when logging large amounts of data.

3.3.2 Servers and Clients

A typical T-REX environment consists of one socket.io server and multiple clients,

as shown in Figure 3.1. Client modules, and the interactions between them is purely

through socket.io’s messaging API. Currently, three main types of clients are im-

plemented, as described below:

• Participant modules, which are in charge of energy trading and managing energy

resources that are directly accessible. Participants are, for example, households

and self-driving EVs.

• Non-participant modules, e.g., the TE market. The market facilitates the dis-

covery and exchange of energy between participants.

• Simulation-only modules, e.g., the simulation controller. The simulation con-

troller augments the deployment environment to form a simulation model. It

can also perform advanced functions such as training curricula for ML applica-

tions.

With a few restrictions pertaining to the simulation controller, the number of

modules of each type is unlimited. The functions are also not restricted to the list

described above. For example, a power flow co-simulator can be added to calculate

power flow in real-time based on the market transactions.

3.3.3 Bridge Server

Building T-REX on top of socket.io makes it easy to run T-REX simulations on

one computer, or multiple computers across a local network or the internet. How-

ever, sometimes it is not possible to directly use socket.io as the communication

28

protocol. For example, some LoRa-based modules cannot communicate over TCP/IP,

and instead rely on MQTT for messaging. Bridge servers are designed to translate

socket.io events and messages to a comparable format in other communication pro-

tocols, with a relatively low computational cost. The architecture diagram for a

T-REX system using bridge servers is shown in Figure 3.3.

T-REX Hardware Client

Bridge ServerT-REX Client

socket.io
messages

T-REX Hardware Client

Bridge
Server T-REX Client

T-REX Hardware Client

Bridge
Server T-REX Client

Directly controllable
devices

OpenADR, etc.

Alternative network(s),
Meshtastic, LoRaWan, etc.

Figure 3.3: T-REX Bridge Architecture Diagram

As the architecture diagram shows, the typical application of bridge servers is when

connecting multiple, single client machines. The single, centralized socket.io server

shown in Figure 3.1, is replaced by a bridge server running concurrently on each

machine. Aside from enabling more networking options, bridge servers is another

modular design concept that makes sure T-REX remains internally consistent, so

that the same code can run in any hardware configuration. Like other specialized

features, bridge servers can be easily enabled or disabled through the configuration

file.

3.4 T-REX Software Functions

3.4.1 Configuration File

T-REX simulations are configured using a single, json format file. To remain consis-

tent, this file is also used for other co-simulation or post-simulation pipelines. Not all

29

parameters will be used for all types of applications, but as much relevant information

should be included as possible for record keeping and repeatability. As the simulator

is under constant development, new features may be introduced, and old features may

be modified or deprecated. In order to keep track of the feature changes, a version

check is performed by the simulator prior to initialization.

Depending on base configuration file and the type of simulation to be performed,

the T-REX launcher may further modify the configurations to be simulation specific.

For example, a baseline simulation will always be performed for only one episode,

using the built-in baseline agent for all traders. Similarly, validation runs will use the

same trader type as the simulation run, but the learning flags will always be “false”.

For record keeping purposes, the original and modified configurations will be stored

inside the simulation database.

The rest of this section explains the purposes of some typical configurations in the

style of a code documentation. The complete configuration file used is available in

Appendix A.

3.4.2 Study Parameters

Parameters used to perform specific studies are configured under the “study” section.

An example of the section that includes all the configurable parameters are as follows.

"study": {

"name": "descriptive_name",

"description": "long_description",

"start_datetime": "YYYY-MM-DD hh:mm:ss",

"start_datetime_sequence": "sequential",

"timezone": "America/Vancouver",

"days": 1,

"time_step_size": 3600,

30

"generations": 10

}

Study Name {name}

The name of the study to be performed should be short and descriptive. The study

name is also used to create database, table, and directory names for the simulation

database, and subdirectories in the simulation root folder. While the data created by

T-REX will be saved to the database, some exceptions, such as TensorFlow weights

or TensorBoard data must be saved in the file system. Having a consistent naming

scheme helps with organization, and makes automated tasks that require access to

data from multiple locations much easier.

Study Description {description}

An optional, long description of the study can be stored in this section to expand

upon the study name. The text in this section is not used anywhere else, and is purely

for note keeping.

Start Time and Date {start datetime}

The start time and date dictates the beginning of the data stream for each episode.

Wherever possible, any human readable time strings must be encoded in the ISO

8601 format, i.e. YYYY-MM-DD hh:mm:ss, alongside a timezone. This is required

so that T-REX can accurately convert time from a human readable format to UNIX

timestamps for internal use. This also removes any potential “false gaps” or time

repetitions caused by daylight savings changes, leap seconds, etc.

For most situation, starting each episode at the same point in time is sufficient.

However, there are certain situations where different starting points for each episode

may be required. T-REX allows this to be configured in two ways using a list of

timestamps. Note that “episodes” and “generations” are currently used interchange-

ably.

31

1. If the list contains only two elements, i.e. [dt1, dt2], a list of timestamps equalling

to the number of generations will be created, using dt1 and dt2 as range limits.

2. If the list contains more than two elements, i.e. [dt1, dt2, ..., dtn], a list of start

times will be created in one of the following ways:

(a) If the number of elements is greater than the number of generations, the

list is truncated so that its length is equal to the number of generations

(b) If the number of elements is less than the number of generations, the list

is repeated until the number of elements is equal to or longer than the

number of generations, then truncated to the number of generations if

necessary

(c) If the number of elements is equal to the number of generations, no further

modifications are necessary

Once this list of start times are created, the simulation controller will transmit the

corresponding start times for each episode.

Start Time Sequence {start datetime sequence}

This parameter is only used if start datetime is a list containing multiple times-

tamps. If the text is set to sequential, then the start times of each episode will follow

the list sequence. If the text is set to shuffled, then the list will be shuffled once. The

default option is sequential.

Time Zone {timezone}

Time zones must be declared alongside a human readable time string, following the

format defined in the IANA time zone database, i.e. “America/Vancouver”. This

allows accurate conversions to UNIX timestamps for internal use, and removes the

most common sources of “false gaps” created by day light savings, leap seconds, etc.

32

Number of Days to be Simulated per Generation {days}

This parameter defines the number of days that should be simulated for each episode.

Since T-REX uses one-minute time intervals by default for all internal operations,

decimal days are accepted, and will be rounded to the nearest number of minutes.

Number of Seconds per Step {time step size}

Timing control in T-REX is globally aligned with the data time intervals in energy

profiles. By default, T-REX expects energy readings in one-minute intervals. How-

ever, data from external sources often have lower time resolutions (5, 15, and 60

minute intervals are common). Although a data processor is available to convert this

data to one-minute intervals, the conversion process is time consuming. Furthermore,

simulation and training efficiency may be negatively affected due to the repeat pre-

sentation of the same data. This parameter allows the default time interval to be

manually adjusted to align with the timestamps in existing profiles. Currently, it is

up to the user to ensure that all the energy profiles used in the simulation have the

same time interval. If a check is implemented to automate this process in the future,

this parameter will be removed.

Number of Generations to be Simulated {generations}

The definition of an episode for reinforcement learning [36] is used here. In the context

T-REX, a generation and an episode is synonymous. A generation is

Data Locations {profiles db location}

"study": {

"profiles_db_location": "postgresql://un:pws@localhost/profiles",

"output_db_location": "postgresql://un:pw@localhost",

"sim_root": "/home/trex/sim/"

}

33

As T-REX works mostly with time-series data in a time-sequential nature, a re-

lational database (i.e. PostgreSQL, TimescaleDB, SQLite, etc.) is used to provide

quick and efficient access to energy profiles. Additional tools are available to convert

data from outside vendors to be suitable for immediate use by T-REX. The tools can

be found on GitHub [70]. Similar to the profile database, most data generated by

simulations is stored in a relational database. Only the base location is necessary

here, as a database will be created and used for each simulation based on the study

name.

The example given uses the simple authentication method, where the username

and password are given in the same string in plain text. This is only recommended

for low security situations 1. Follow the documentation provided by the database

engine of your choice if more security is required.

Although T-REX tries to make the most use of relational databases, there are

certain situations where the file system must be used, i.e. TensorFlow saved weights

or TensorBoard files. These files are stored under the directory defined by sim root.

For organization reasons, a subdirectory that is the same as the study name will be

created and used for each simulation. If this parameter is undefined, then the T-REX

Python working directory will be used.

3.4.3 Server Parameters

"server": {

"host": "localhost",

"port": "5100"

}

In order to prevent cross-talk between simulations, a unique combination of socket.io

server address and port should exist for each running T-REX instance. If the server

1To make configurations more easily publishable, this parameter, along with certain others, can
be stored in a separate file. See the updated documentations on GitHub for details on how to do
this

34

address is undefined, then ”localhost” will be used by default. If a T-REX simula-

tion is performed on multiple machines, then the server address should be set to the

IP address of the machine that the server is running on to enable network access.

As of configuration version 3.7.0, defining a unique port each running simulation is

optional, but still recommended. In the event that two configuration files share the

same port, the T-REX launcher will attempt to detect if any defined port is already

in use, and increment the port number until a free one is found.

3.4.4 Training Parameters

Agent training is an important part of T-REX, and the reason for its creation. In some

reinforcement learning environments, hyperparameter adjustments are usually hidden

within the agents themselves, and could make inspection difficult if one is unfamiliar

with the underlying code. Great effort has been put into T-REX to expose these

hyperparameters in the configuration file in an easily understandable manner. As of

configuration version 3.7.0, two major features are available: hyperparameter search,

and training curriculum.

Hyperparameter Search {hyperparameters}

"training": {

"hyperparameters": {

"alpha_critic": {"start": 0.1, "stop": 0.2, "num": 2},

"alpha_actor": 0.1

}

}

Hyperparameter search is one of the most crucial and time consuming tasks in

machine learning, as a well tuned set of hyperparameters can drastically improve

performance. This is usually accomplished via grid search. The T-REX runner creates

a number of simulations based on combinations of all elements in all hyperparameters

35

to be searched, then performs them in parallel.

The hyperparameter to search, range of search, and resolution are defined using

the same keyword arguments for np.linspace, rounded to four decimal places. Only

hyperparameters that are defined for the agent will be tuned. In the above example,

the list of alpha critic to be searched is [0.1, 0.2]. Since alpha actor is set to a single

value, any agents that have alpha actor as a hyperparameter will have the value

overwritten as 0.1, unless otherwise defined in the training curriculum.

Training Curriculum {curriculum}

"training": {

"curriculum": {

"0": {

"learning": false

},

"1": {

"learning": true,

"exploration_factor": 0.5

},

"50": {

"anneal": {

"exploration_factor": [0.01, "subtract", 0.05],

"alpha_actor": [0.98, "multiply", 1e-7]}

}

}

}

In addition to hyperparameter search, agent performance can be influenced by

changing hyperparameters over time, such as annealing learning rates. As previously

mentioned, training curriculum is often embedded inside the agents, which adds lay-

36

ers of obscurity and makes inspections difficult. T-REX allows the user to program

the training curriculum in a clear manner in the configuration file. The simulation

controller and the training controller will then instruct the agents to make the appro-

priate changes during run time.

The training curriculum can be programmed in two layers. The first layer denotes

the episode that any changes should be made, and the second layer is what and how

the changes should be made. Any changes made is carried through to all subsequent

generations until another change to the same parameter/hyperparameter is made later

on. The episode number must be an integer string to conform to JSON formatting.

In the example above, learning is turned off for all agents in episode 0 to establish

a random policy baseline. Learning is turned on again in episode 1 and exploration

factor is set to 0.5. As training continues, it may make sense to start annealing some

hyperparameters. Episode 50 shows two ways of annealing. Exploration factor is

annealed by subtracting 0.01 every episode starting from episode 50 until it reaches

0.05. Similarly, alpha actor is annealed by multiplying by 0.98 every episode starting

from episode 50 until it reaches 1e− 7. This gives the user an easy way to implement

both a linear and an exponential decay curve.

3.4.5 Market Parameters

"market": {

"id": "M3B1",

"type": "MicroTE3B",

"close_steps": 2

}

}

One of the focuses of T-REX is to enable market mechanisms to be written in code.

Unlike market designs written in prose, markets written in code leave no room for

different interpretations, which is critical for training RL agents. The market section

37

of the configuration is the place for setting market parameters, so that the market

module can assemble and link submodules appropriately during run time.

The top level parameters are for the main market. A unique market ID is required

to run in deployment mode, but is also recommended for simulation mode for clarity.

If the ID is not set, then the T-REX runner will create an ID based on the simulation

type. In the example above, MicroTE3B is used as the main market mechanism,

which is the double auction based transactive energy market. The market specific

parameter, close steps, is set to 2 to indicate that settlements occur 2 rounds before

delivery.

Default Retail Parameters {grid}

"market": {

"grid": {

"price": 0.069,

"fee_ratio": 1.1

}

}

The current implementations assume that local energy markets are imperfect and

cannot fully balance energy using local DERs alone. As a consequence, the electricity

grid must be relied upon to compensate for these imperfections by either sinking the

excess energy, or supplying any shortages. These energy compensations follow net

billing rules by default, and is implemented under the grid section.

In the net billing setting, energy from the grid is billed as the sum of energy price

plus fees, and energy going into the grid is paid as the energy price only. Fees consists

of many components, such as transmission, distribution, delivery, riders, adjustments,

property taxes, etc. Although the exact fee components can be can be implemented,

often times it is sufficient to calculate the sum of fees as a ratio of the base energy

price. This implementation is shown in the example above.

38

If fees are not defined, then the net metering setting is assumed to be in effect,

and the fees are included in the base energy price.

Time-of-use Schedule {tou}

"market": {

"tou": {

"5,6,7,8,9,10": {

"7,8,9,10,17,18": 0.144,

"11,12,13,14,15,16": 0.208

},

"1,2,3,4,11,12": {

"11,12,13,14,15,16": 0.144,

"7,8,9,10,17,18": 0.208

}

}

}

The default retail pricing can be further augmented to be time-of-use. Time-of-

use schedules is defined using a double nested dictionary, with the first layer of keys

setting the months, and second layer of keys setting the hours. The example above

shows a how a time-of-use schedule similar to Ontario’s implementation can be set

up. The first half follows the summer schedule, which means that it is in effect from

May to October. Peak rate is between 11AM and 4PM, and the rate is $0.208/kWh.

Mid-peak rate is from 7AM to 10AM and 5PM to 6PM, and the rate is $0.144/kWh.

The hours undefined is assumed to be off-peak, and uses the base energy price defined

in the grid section as the rate. The second half follows the winter schedule, which is

in effect November to April. The peak rate and mid-peak rate are switched from the

summer schedule for the winter.

39

3.4.6 Participant Parameters

The parameters for each participant in the simulation must be configured individually.

The configurable parameters include, but are not limited to: participant type, energy

profiles to use, DERs attached, and agent related parameters.

Participant Type type

"participants": {

"R5": {

"type": "Residential"

}

}

The type of participant (i.e. residential, commercial, farm, hospital, etc.) must

be properly identified. In some market configurations, different energy rates and fees

may be a applied depending on the participant types. For example, a commercial

type may incur demand charges, whereas a residential type will not. Differentiating

the types of participant could also influence the types of strategies that agents will

develop. For example, agents for commercial customers may adopt a more peak-

shaving focused strategy to avoid demand charges by bidding at a higher price than

residential customers, thus creating more price incentive for selling to large, peaky

loads. Participant type differentiation also allows markets with priority levels to be

designed and studied, especially when mixed participant type trading is allowed. For

example, if a hospital and a store bids at the same price, then the hospital may be

prioritized.

Trader Parameters {trader}

"participants": {

"R5": {

"trader": {

40

"type": "qlearn_bandit",

"bid_price": 0.07,

"ask_price": 0.14,

"learning": true,

"reward_function": "net_profit",

"learning_rate": 0.1,

"exploration_factor": 0.1,

"track_metrics": true,

"use_synthetic_profile": "test_profile_1kw_constant_gl"

}

}

}

The trader section defines the agent type used, as well as any hyperparameters

associated with it. In general, agent types state the type of learning algorithms used,

but may also be a description of its purpose (e.g., “basic trader” is an agent that acts

in accordance to net metering). T-REX agents are implemented as self-contained

modules, and must exist in the ” agent/traders” directory. The module name must

be identical (case sensitive) to the trader type to be usable.

Similar to agents, reward functions are also implemented as independent modules,

and must exist in the ” agent/rewards” directory to be usable. Since rewards play a

large role in reinforcement learning, separating the reward calculations away from the

core functionalities of the agent makes it easy to pair different learning algorithms

with different reward functions to see the outcomes. Currently, two reward functions

are available as part of the T-REX package: net profit, and relative advantage. Net

profit calculates the net profit of transactions occurred the last round, and relative

advantage calculates the difference between net profit and the equivalent situation

without the local energy market.

41

Aside from trader type, any other variable can be configured in this section as long

as it exists as a keyword argument for the agent itself. Any hyperparameter that need

to be tuned through hyperparameter search must also be set with a default value here.

These variables will be passed into the trader module as keyword arguments during

initialization.

Two special parameters to note are track metrics and use synthetic profile. T-REX

has a built-in system that allows user-defined metrics to be streamed to the T-REX

database system in real-time, which is useful for analysis during simulations. This

option lets the user choose whether to save those metrics on an agent-by-agent basis.

The use of a standard SQL database for storage makes it easy to develop third party

tools, such as real-time visualizations.

use synthetic profile is an option that allows an energy profile that is different from

the participant ID to be used. This is useful in early testing, as synthetic profiles

are more predictable and less noisy compared to real profiles, and makes algorithm

performance evaluations easier.

Profile Augmentations

"participants": {

"R5": {

"load": {

"scale": 1

},

"generation": {

"scale": 10

}

}

}

Scaling the energy profiles is an easy way to augment the overall system supply/de-

42

mand without additional computational resources. Currently, it is possible to scale

the amplitude of both the load and generation profiles of individual participants.

Profile scaling happens at run time, and is applied after the load and generation of

the relevant timestamp is read from the database.

Energy Storage Device storage

"participants": {

"R5": {

"storage": {

"type": "Bess",

"capacity": 10000,

"power": 5000,

"efficiency": 0.95,

"monthly_sdr": 0.05

}

}

}

Storage devices are implemented in a similar way to traders, as independent mod-

ules. The storage type must be a Python module that exists in the ” devices” directory

in order to be usable. The rest of the parameters are passed into the storage device

module as keyword arguments, if applicable. All storage modules, regardless of type,

are controlled the same way via scheduling. This is both a simplification of the con-

trol system that is easily usable by the agents, and an attempt at abstracting and

unifying the control interface of devices from different vendors.

The above example is the configurations for a battery energy storage system

(BESS). These parameters are derived using data sheets provided by BESS ven-

dors, such as Tesla and Siemens, and should be a fair representation of BESS systems

available on the market at the moment of writing. The battery’s usable capacity and

43

continuous power ratings are defined in units of watt hours and watts, respectively.

For simplicity, batteries are currently designed to operate on a programmable

schedule. The current design paradigm allows agents to schedule a fixed amount

of energy to be charged or discharged over some interval in the future, and is as-

sumed to be at constant power. The schedule can be freely adjusted until one time

step before execution. The energy quantity to be scheduled will be automatically

capped by the battery power limit and the predicted state of charge at the end of the

scheduled interval.

The existing battery module uses an ideal battery model to calculate the state of

charge based on the total energy charged or discharged over a certain time interval.

This largely corresponds to the linear region of a real battery. It is assumed that the

battery management system will keep the battery operating in this region, and there-

fore the ideal model approximation is sufficiently accurate for most cases. Additional

battery modules that use more accurate charge and discharge curves can be easily

implemented following the template in the code repository.

The last two options shown in the example are battery efficiency and self discharge

rates. These parameters make the battery behaviour more realistic and can also affect

economic calculations, which may affect agent behaviour. The battery efficiency is

set as one-way efficiency, and can be squared to obtain the round-trip efficiency. Note

that since T-REX measures energy at the meter, battery efficiency directly affects

the state of charge (SoC) after each battery action. When efficiency is less than 1,

battery needs to discharge more than measured at the meter. Similarly, battery SoC

increases less than measured at the meter for charging.

Self discharge rate is usually represented as a percentage decrease per month. This

is internally converted to Wh loss per minute, using 28 days/month2 for convenience.

Since the SDR is small, this approximation is acceptable.

228 days/month is exactly 4 weeks, which is computationally simple

44

3.5 Using T-REX

3.5.1 Running a Simulation

Assuming the project directory is set up correctly, running a T-REX simulation is as

simple as executing main.py, which typically looks as follows:

if __name__ == '__main__':

from _utils.runner.runner import Runner

runner = Runner(config='config_name', resume=False, purge=True)

simulations = {

'baseline',

'training',

'validation'

}

runner.run(simulations)

The configuration files to be used must be under the ” configs” folder in the working

directory. The configuration name must be the same as the file name (case sensitive).

Simulation lists the different types of simulations that can be run in parallel. The

T-REX runner will modify the configuration file for each simulation type during

simulation startup according to the type of simulation. In general, it is recommended

to perform both base line and training at minimum. As of version 3.7.3, the runner

automatically sets a number of parallel simulation to be launched based on the number

of CPU cores available and the number of subprocesses used for each simulation. At

the same time, the simulation controller has been modified so that it is able to reuse

the existing clients for a different simulation once the current set is complete. This

is especially useful for hyperparameter search, where previously a large number of

parallel simulations would launch and cause the operating system to thread overflow.

45

3.5.2 Output Data

T-REX simulations operate on the principles of agent-based economics, and therefore

primarily focus on market interactions. Every simulation will produce a set of market

transactions with the following headers:

• Transaction ID

• Transaction Quantity (Wh)

• Seller ID

• Buyer ID

• Energy source

• Settled sell price

• Settled buy price

• Ask fees

• Bid fees

• Energy creation time

• Energy purchase time

• Energy consumption time

Each row of information is produced using a combination of trading data and me-

tered data. The entire data set is stored in a relational database, such as PostgreSQL.

So far, this set of information has been sufficient for a variety of post-processors to

extract/recreate data for analysis. Minimizing the amount of data required is overall

beneficial for the system, and can result in decreased network and storage usage, and

increased data privacy.

46

3.5.3 Simulation Controller

The event flow diagram in Figure 3.2 shows two modes of operation: real-time mode,

and simulation mode. In real-time mode, the market has control of advancing system

timing based on a predefined interval, which is 60 seconds by default. However,

advancing simulations at a set time interval is not ideal. Setting the interval longer

is safer, but can create unnecessary wait times that prolong simulations. Setting the

interval shorter may shorten simulation time, but may fail to handle edge cases where

some processes take longer than expected, potentially causing the entire simulation

to fail. More precise timing control results in faster and more reliable simulations,

and is one of the primary reasons for creation of the simulation controller.

In essence, the simulation controller inserts itself into the market timing loop,

checks the statuses of all connected clients, and only allows the simulation to continue

if everything reports normal. The simulation controller may also issue commands at

certain checkpoints (for example, changing the training curriculum). Status check-

ing happens in two ways: first, all connected clients are required to report a status

update at certain checkpoints. Second, the simulation controller performs periodic

status checks as a background process. The simulation will be held until every client

successfully reports reaching the required checkpoint. If the simulation fails to con-

tinue after five minutes (in real time), then the background status check loop will

begin to broadcast special messages at fixed intervals to attempt to revive the sim-

ulation. If the simulation fails to revive after five minutes, then a system status will

be printed out at five minute intervals (while still broadcasting the revival messages),

to help developers find potential failure points.

3.5.4 Data Processors and Extensions

A set of post-processors has been created to extract and reconstruct simulation data

for analysis, and used throughout this thesis [70]. Functions include extracting trans-

action summaries for specific time intervals, recreating load profiles from market

47

transactions, etc. With a few exceptions, these post-processors are highly specialized,

and therefore are kept separately from the core. Update and maintenance should be

done by individual contributors. Individual contributors may also submit an request

to make their tools visible on an index page in the T-REX GitHub Wiki.

Data Ingest Pipeline

The data ingest pipeline is one of the most critical preprocessing steps to ensure that

T-REX simulations can be executed quickly and consistently, regardless of the the

modules used to assemble the simulation3.

Since different data vendors store data in different formats, it is necessary to convert

them to a common format for later access. We have currently made two data ingestors

available, for eGauge and the SunDance [71] data set. As we work with data from

more vendors, the appropriate data ingestors will be created and released.

Regardless of the original data format, the current ingest pipeline follows these

steps:

1. Study the original data format

2. If the original data is readable as a table format, continue to the next step.

Otherwise, create code that first converts the data into a readable table format.

3. Analyze timestamp sequence, and convert to UNIX timestamp format by con-

verting the time to UTC+timezone and removing daylight savings. This ensures

that time is continuous and at fixed intervals.

4. Import and process the data, add ”generation” and ”consumption” fields with

corresponding values.

5. Record the converted data to a relational database, such as PostgreSQL.

3Assuming that custom modules follow the templates provided in the source code

48

6. Write metadata regarding each imported profile into the corresponding table(s).

Metadata may include timezone, geographic coordinates, profile statistics, etc.

Synthetic Profile Generators

Even though T-REX is designed to work with real data, it is sometime advantageous

to work with synthetic energy profiles with well known properties to remove potential

sources of noise when developing new learning algorithms.

Currently, three types of commonly used profiles can be generated: flat, cosine,

and square. To generate any profile, the following inputs are required:

• Profile start date/time as a string, formatted as ”YYYY-MM-DD hh:mm:ss”

• Profile end date/time as a string, formatted as ”YYYY-MM-DD hh:mm:ss”

• Profile time zone in IANA time zone format, e.g., ”America/Vancouver”

• Peak power in watts

For the cosine and square profiles, two additional inputs may be used to set the

period and offset. By default, the offset is zero and the period is 1440. As the profiles

are generated in one minute intervals, a period of 1440 means that the profile pattern

is repeated daily. The peak power is used to set the magnitude of the profile in watt

hours. For a one minute interval profile, the power is divided by 60.

Statistical Measures of Profiles

Although the data ingest pipeline introduced previously attempts to create relevant

metadata, it is sometimes the case that additional data or metadata is required after

the fact. Typically, the way to deal with this requirement is to do this data process-

ing during run-time, since the additional data may only be needed for experimental

agents, and the relatively low cost computation time is not worth the trade off of

using more data storage until much later in time. However, there are cases where

49

processing on-the-fly is not possible. Normalizing the energy profiles as an obser-

vation is one such case, which requires all rows of data to be read to generate the

relevant statistics. This functionality is not available to any of the existing T-REX

clients, since they are only designed to process incoming data streams.

One way of producing normalized and directly comparable observations from sets

of data with vastly different magnitudes is with standard scores, or z-scores. The

z-score measures the distance between the original value and the mean of the data in

units of standard deviation, and can be calculated as

z =
x− µ

σ
(3.1)

where µ is the mean of the data, and σ is the standard deviation of the data.

The data processors provided in the TREX-Tools repository can calculate the sta-

tistical measures of a given energy profile, then store them in the ”statistics” table in

the profiles database. PostgreSQL has built-in functions for calculating the mean and

standard deviation, ensuring minimal time cost even for extremely large number of

rows of data. These statistical measures allows the z-score of each measurement to be

calculated at run time. Calculating z-scores at run time is overall more efficient than

pre-calculating them, as the math is simple and computationally cheap. Furthermore,

it avoids the need to completely recalculate the z-scores when new data is appended,

which can be time consuming and takes a lot of storage.

3.5.5 Power Flow Simulations

Since the main focus of T-REX is market based TE, power flow simulations is not in-

tegral to the simulation pipeline, and is instead implemented as a separate module for

post-simulation analysis. Currently, power flow analysis is done using OpenDSS [72],

a free and open source tool created and maintained by EPRI. OpenDSS was chosen

because it is one of the few free power flow simulators capable of solving North Amer-

ican unbalanced distribution circuits, has multiple Python interfaces [73, 74], and can

50

achieve results nearly identical to commercial software [75].

To perform post-simulation power flow analysis, a data processor is first used to

convert market transactions recorded on the database into the appropriate time-series

load profiles for OpenDSS. Then, a separate script loads up the matching circuit model

and performs time-series power flow analysis. Finally, a few plotters can be used to

visualize the results for inspection. This workflow is used in Section 4.6.3.

As previously mentioned, power flow co-simulations is a secondary option in T-

REX. The primary reason behind this design decision is that acquiring accurate power

flow data in deployment, on-site, in real-time is only feasible in rare circumstances.

Therefore, it is highly difficult to directly deploy TE solutions that rely on data

from power flow co-simulators. Despite this drawback, however, have the option of

acquiring power flow data through co-simulations is still a useful way to compare

performance or study system sensitivity in the presence/absence of data. In order to

add power flow co-simulations, the ”powerflow” section of the configuration file must

be filled. This will launch a power flow client alongside the other clients, and enable

relevant events and messages on the server. An example of the configuration section

is as follows.

"powerflow": {

"circuit_model": "557_NALV_RES",

"node_map":{

"P_x": "N0",

"P_y": "N1"

}

}

Currently, the name of the circuit model and a node map are required. The number

of nodes in the circuit model should be greater than or equal to the number of

participants, and a default load or load profile should be present for each node. The

51

node map defines the physical location of each participant on the circuit model, and

is needed even if the participant name can be found in the circuit model.

52

Chapter 4

ALEX: Autonomous Local Energy
Exchange

4.1 Introduction

The previous chapter described T-REX as the simulation software to study TE sys-

tems. This chapter introduces ALEX, which is an implementation of a TE system for

studying specific system behaviours. ALEX is intended to be used as a framework to

validate whether decentralized agents can, through the use of a partially observable

market mechanism, achieve DER coordination on an arbitrary electrical system. The

outcomes of these studies may help find solutions that address critical weaknesses

of existing DR approaches, such as the need to model customer and system specific

utility functions, or the relatively rigid schedules that do not adjust well to differences

between predicted and actual behaviours.

4.2 Core Concept

Conceptually, ALEX is structured as a behind-the-meter community. This commu-

nity operates in two layers. The inside layer consists of all the participants, which are

allowed to exchange energy with each other over a local energy market. Energy rates

for energy exchanged this way are determined through the local market mechanism.

The outside layer is the interface between the community and the rest of the grid.

Energy exchanged this way uses standard retail rates as determined by the electricity

53

retailer or the electric utility company, depending on the jurisdiction.

To further implement ALEX, the following assumptions have been made:

• Participants are self-interested and, therefore, prioritize their own economic

well-being and comfort in the decision making process.

• Participants are willing to automate some, or all decision making regarding

interactions with indirect DR measures (e.g., using RL agents).

• Each participating unit is equipped with a smart meter, and has collected a

sufficient amount of high-resolution historical data to train the RL agents.

• The electricity grid that the community is connected to is an infinite bus. This

means that it can supply or sink the deficient/excess energy from the community

without causing violations.

4.3 Market Mechanism

Like any market-based approach, it is critical for the the market used in ALEX to

accurately reflect price theory. Price theory states that the price of any specific good

or service only comes from the balance of supply and demand at the time of exchange.

To accomplish this, it is reasonable to start with a well known market design, and

make adjustments to adapt to ALEX specific considerations:

1. Suitability for electricity grids with high penetration of DER and

RES. This means that, from a high level perspective, a market (or a collection

of markets) must be able to effectively target localization and the intermittent

nature of RES.

2. Technical constraints and requirements of deployment: Data acquisi-

tion, transportation, storage, and overall lifetime cost must be minimized to be

viable for deployment.

54

3. Machine learning considerations for agents: Related to the point above,

artificial intelligence will play an important role in trading and managing of

energy resources. For this reason, the market should be conducive to machine

learning (especially reinforcement learning). One way to achieve this is to com-

pose the market with a small set of explicit rules, with no exceptions, no loop-

holes, and no room for different interpretations.The rules should also provide

enough flexibility to offer large action spaces. The Market should provide strong

feedback signals for learning.

The market implemented is based on double auctions [20, 21], which is a well

known, widely used design that provides the scalability and efficiency required. The

following is an description of the market rules for ALEX:

1. Rates for energy exchanged with the grid is done through net billing. Using

retail electricity prices in Alberta as a reference, buying energy from the grid

costs $0.1449/kWh, and selling earns $0.069/kWh1.

2. Auctions settle for energy to be delivered during the one-round period from the

end of the current round. However, the delivery period can be adjusted during

run-time for future design explorations.

3. During the current round, participants can submit bids and asks for energy to

be delivered during or beyond the next delivery period. Not joining the local

energy market means defaulting to the retail electricity prices.

4. Bids/asks are settled pairwise, with bids sorted from the highest to lowest, and

asks in reverse to ensure pareto equality.

5. Bid/ask quantities can be partially settled2.

1As mentioned in Chapter 3, the grid price model can and should be adjusted to best reflect the
jurisdiction where ALEX will be deployed

2The market is capable of settling both integer and floating point quantities, but the implemen-
tation is dependendent on the next rule.

55

6. A bid/ask quantity must be an integer multiple of 1 Wh. This is in consideration

of hardware integration, to allow direct use of the watt-pulse function of most

smart-meters3.

7. During the delivery period, if a seller is in short supply, it must financially

compensate for the shortage by buying the difference from the grid at retail

prices. If batteries are available, the seller has the option to first compensate

by discharging its batteries for all or part of the shortage during this period.

8. During the delivery period, if a buyer settled for more energy than used, the

buyer must still pay the seller for the unused energy at the settlement price.

The major difference between this version of the market and a standard double

auction market is that pool settlements is replaced by pairwise settlements. This

borrows from peer-to-peer markets and allows the reward signals received by agents

to be more personalized, and should help develop policies that are better adapted to

each participant. Also note that specific mechanisms for determining settlement prices

are intentionally left out, as the suitability of settlement mechanisms is a major study

performed using ALEX. As will be shown later, subtle differences in the settlement

mechanism can have drastic impacts on the policies developed by the agents and

overall market behaviour, and therefore should be empirically studied for every market

design.

4.4 Market Interaction

This section provides a more detailed look at how agents interact with the market.

Currently, the market operates with fixed settlement frequency ∆t at fixed intervals

[t, t + ∆t). During each interval, participants can communicate their intention to

trade energy by submitting bids

bidt = (qbidt , pbidt), q ∈ [0...qbidmax], p ∈ [pmin, ...pmax], (4.1)

3Future variations may allow the use of floating point values, depending on hardware capabilities.

56

and asks

askt = (qaskt , paskt), q ∈ [0...qaskmax], p ∈ [pmin, ...pmax], (4.2)

where bidt and askt communicate the intention to buy or sell energy, respectively.

Bids and asks are represented by tuples consisting of the desired quantity q and

desired price p of energy to be exchanged. Quantities are expressed in Wh as integers.

The settlement signal mt is represented as a list of tuples containing the settled

quantities, which the agents may use to calculate a reward at the end of each round.

Participants only receive relevant information about their settlements and there-

fore, do not have access to information on the behaviour of other participants. This

omission is intentionally implemented in order to avoid targeted exploitation.

mt = (qsettlement
t , psettlement

t) (4.3)

In contrast to most other DR approaches, which use price signals as a form of open-

loop control, the market design for ALEX is effectively a closed-loop control system.

In this market, participant actions directly affect the price signals in real-time, and

the new price, in turn, determine the subsequent actions. For a fully automated

system, closed-loop control is proven to be superior.

After energy exchanges within the community are concluded, the grid (as an infinite

bus) is used to compensate for any surpluses or shortages using net billing. Surplus

energy is sold to the grid at price pgridsell and deficient energy is purchased from the

grid for price pgridbuy , including fees. This setup grants the community as a whole to

effectively avoid a portion of the fees by increasing self sufficiency. The natural bounds

of the local market prices then become

pmin = pgridsell <= pmarket <= pgridbuy = pmax, (4.4)

For a graphical overview, Figure 4.1 shows a sequence diagram of the interactions

between the server, market, and agents in T-REX.

57

Se
rv
er

Ag
en

t
M
ar
ke

t
M
ar
ke

t.
up

da
te
_t
im

e(
)

M
ar
ke

t.
up

da
te
_p

ri
ce

()
M
ar
ke

t.
Le

ge
r(
)

op
t

[I
f

bi
d

pr
ic

e
>=

 A
sk

 p
ri

ce
]

lo
op

[M
at

ch
in

g]

lo
op

[M
ai

n
M

ar
ke

t
Lo

op
]

op
t

[i
f

bi
d/

as
k

is
 v

al
id

]

Re
qu

es
t

cu
rr

en
t

ti
m

e
an

d
ro

un
d

du
ra

ti
on

Ca
lc

ul
at

e
ad

di
ti

on
al

 t
im

e
in

te
rv

al
s

fo
r

ea
se

 o
f

us
e

Ch
ec

k
an

d
up

da
te

 G
ri

d
pr

ic
e,

 in
 c

as
e

of
 T

O
U

St
ar

t
cu

rr
en

t
ro

un
d

of
 a

uc
ti

on
s

As
k

fo
r

al
l v

al
id

 b
id

s/
as

ks
 f

ro
m

 la
st

 s
et

tl
ed

 r
ou

nd

G
et

 a
ll

va
lid

 b
id

s/
as

ks
 f

ro
m

 la
st

 s
et

tl
ed

 r
ou

nd

So
rt

 b
id

s
by

 d
es

ce
nd

in
g

pr
ic

e,
 a

nd
 a

sk
 b

y
as

ce
nd

in
g

pr
ic

e

Fo
r

ea
ch

 b
id

/a
sk

 p
ai

r,
 a

tt
em

pt
 t

o
se

tt
le

Se
nd

 s
et

tl
em

en
t

in
fo

rm
at

io
n

Cl
ea

n
m

es
sa

ge
,

th
en

 r
el

ay
 s

et
tl

em
en

t
in

fo
rm

at
io

n
to

 b
ot

h
bu

ye
r

an
d

se
lle

r

U
pd

at
e

bi
d/

as
k

qu
an

ti
ty

En
d

cu
rr

en
t

ro
un

d
of

 a
uc

ti
on

s

St
ar

t
cu

rr
en

t
ro

un
d

of
 a

uc
ti

on
s

Su
bm

it
 b

id
/a

sk

St
or

e
bi

d/
as

k
in

 le
ge

r

re
tu

rn
 v

al
id

at
io

n

En
d

cu
rr

en
t

ro
un

d
of

 a
uc

ti
on

s

Se
nd

 s
ub

m
et

er
in

g
da

ta
 f

ro
m

 t
he

 r
ou

nd
 t

ha
t

ju
st

 e
nd

ed

W
ai

t
to

 r
ec

ei
ve

 s
ub

m
et

er
in

g
da

ta
 f

ro
m

 a
ll

ag
en

ts

Pr
oc

es
s

su
bm

et
er

in
g

da
ta

,
ca

lc
ul

at
e

fi
na

nc
ia

l c
om

pe
ns

at
io

ns

Se
nd

 a
dj

us
te

d
le

ge
r

to
 e

ac
h

ag
en

t
fo

r
la

st
 r

ou
nd

re
ce

iv
e

ad
ju

st
ed

 le
ge

r
fo

r
la

st
 r

ou
nd

Se
rv
er

Ag
en

t
M
ar
ke

t
M
ar
ke

t.
up

da
te
_t
im

e(
)

M
ar
ke

t.
up

da
te
_p

ri
ce

()
M
ar
ke

t.
Le

ge
r(
)

F
ig
u
re

4.
1:

S
eq
u
en
ce

d
ia
gr
am

of
A
L
E
X

m
ar
ke
t
in
te
ra
ct
io
n
s

58

4.5 ALEX as a Stochastic Game

Although T-REX is designed to emphasize empirical analysis in accordance to the

principles of agent-based computational economics, it may still be useful to model

ALEX as a discounted stochastic game to allow game theory to be used for theoretical

analysis to supplement the empirical results.

Γ := (n, L, S,A, P,R) ∀t ∈ [0...T], λ ∈ (0...1), (4.5)

where n is the number of players, L is the list players of length |L| = n, S is the state

space, A is the action space, P represents the state transition probabilities, R is the

reward function, t is the current time step over the modelling period [0...T], and λ is

the discount factor.

Both S and A can be decomposed into n individual components Si and Ai, as

shown below

S = S1 × ...× Sn, (4.6)

A = A1 × ...× An. (4.7)

Superscript i refers to a specific individual Li, while the subscript is reserved for

time t. The action space A is separated in notation from a specific set of actions at

at time step t, as in the commonly used RL nomenclature [36].

State transition probabilities are defined for any set of actions at taken at time

step t, as follows

∀at : P (St+1|St, at) := St → St+1 (4.8)

The reward or payoff in the stochastic game at time step t is defined analogously

to the RL setting, by

Rt := S × A→ r, (4.9)

59

which maps from (St, at) to a real number r ∈ R. Similarly, each agent aims to

maximize their own return Gt. Thus, all participants use their individually developed

policy πi, to determine action set ait based on observations from Si
t .

At each time step, all agents can interact with the market by submitting bids (4.1)

and asks (4.2). This leads to the following definition of action

ait = (bidi
t, ask

i
t, e

i
t), (4.10)

where the additional parameter, eit, is contingency for expansion of the model, e.g., to

define nonmarket actions, such as battery management and/or thermal load control.

Finally, the state observations for each agent are defined as follows

Si = (dit, g
i
t,m

i
t−1), (4.11)

where dit and git are, respectively, the load demand and generation at time t, and mi
t−1

are settlements received at time t− 1.

Note that the transition probabilities P result from the collective actions of all

agents. However, due to the pairwise settlement mechanism, market design, and the

observation space, P is not fully accessible to Li. This ensures that the developed

model is a truly stochastic game. At least one stable Nash equilibrium is guaranteed

to exist within Γ, as long as n, S and A are finite. This condition can be guaranteed

by limiting prices p to a reasonable degree of accuracy (e.g., 4 or 5 significant digits

commonly used in banking). A is logically bounded by the condition previously

defined by (4.4). As a result, S must also be finite, therefore guaranteeing at least

one stable Nash equilibrium for each instance of ALEX.

4.6 ALEX Experiments

This section details the three experiments performed under ALEX to progressively

answer the research questions outlined in Chapter 1. As a reminder, the objectives

for each experiment are as follows:

60

1. The first experiment studies the market properties required for the reinforce-

ment learning agents to learn trading policies that can properly reflect price

theory.

2. The second experiment compares economic advantages against time-of-use pric-

ing and net billing by mathematically modelling an equivalent global price

scheme for ALEX.

3. The last experiment adds energy storage as load shaping devices. More ad-

vanced agents are used to perform both trading and storage control. The

resulting power flow will be compared to the scenario where agents follow a

commonly used greedy policy, which only focuses on achieving self sufficiency.

4.6.1 Determining the Optimal Settlement Mechanism

One key takeaway in Chapter 2 is that automation is critical in increasing the effec-

tiveness of DR when high penetration levels of DERs are involved. This is one of

the reasons why ALEX is designed to be fully automated. Because humans have no

input into any control decisions, it is paramount for the agents to learn to make the

right decisions to adapt to human behaviour and market behaviour.

Predicting human behaviour via load profiles is a well studied topic, and relatively

simple for modern machine learning techniques, especially since the data stream is

fully observable. On the other hand, agent-to-market behaviour is more complex.

Depending on the implementation, the environment (market) is more likely to be

only partially observable, and when only a handful of other competing agents are

involved, their individual behaviours can have drastic influences on the environment.

Finally, as agents learn to compete against each other, the same action performed

likely will not end in the same state, making the environment nonstationary and even

more complex to learn.

All these complexities can be solved with more sophisticated machine learning

61

techniques. However, a prerequisite condition must be fulfilled: any interactions

between agents through the market must reflect price theory. Therefore, the focus of

this experiment is to find the market mechanisms required for reinforcement learning

agents to develop policies that properly and truly reflect price theory.

Experimental Design

The market rules described earlier in Section 4.3 is used as the the starting point for

the settlement mechanism designs to be studied. For this experiment, three different

mechanisms are designed for testing, and are described as follows:

1. Average-Price (M1): Trades are settled if the bid price is greater than or equal

to ask price. The settlement price is the average of the bid and ask prices.

2. Exact-Match (M2): Sellers and buyers can choose bid and ask prices from a list

of 100 available prices. Trades are settled if and only if the bid price equals the

ask price.

3. Action-Price (M3): Trades are settled if the bid price is greater than or equal

to the ask price. The buyer buys from the auctioneer at the bid price, and the

seller sells to the auctioneer at the ask price.

Because the market in ALEX is based on double auction, it can be completely

described by the same properties described in Section 2.1.6. Use reinforcement learn-

ing agents as the only participants in this market simplifies the parameter testing

process, as both individual rationality and economic efficiency can be guaranteed4.

This reduces the number of candidate designs to be tested from 16 to 4 for complete

coverage, since only budget balancing and truthfulness are relevant in differentiating

the settlement mechanisms. The properties for the settlement mechanisms tested for

this experiment are summarized in Table 4.1. Note that a market with weak budget

4Assuming that the agent is designed to maximize the users’ financial gain and comfort.

62

balancing and no truthfulness is strictly worse than M1, and therefore excluded from

the experiment.

Market Property Settings

Mechanism Individual Economic Budget Truthfulness

rationality efficiency balancing

M1 Yes Yes Strong False

M2 Yes Yes Strong True

M3 Yes Yes Weak True

Table 4.1: Settlement mechanism properties

Methods and Procedure

Three ratios of supply/demand are evaluated for all the settlement mechanisms tested:

over-supply (10:1), over-demand (1:10), and equal (1:1). The emerging market be-

haviour for bid, ask, and settlement prices as a result of policies developed by the

agents are plotted as probability distributions. The market that reflects the law of

supply and demand will be considered the most fitting candidate for subsequent work,

and is expected to produce the following results:

• Over-supply: The sellers should compete for demand, and drive ask prices low.

Bid prices should be slightly higher than ask prices.

• Over-demand: The buyers should compete for supply, and drive bid prices high.

Ask prices should be slightly lower than bid prices.

• Equal supply and demand: The bid and ask prices should converge around the

middle of the available price range. Bid prices should be somewhat higher than

this value, and ask prices should be somewhat lower than this value.

In order to avoid the emergence monopolistic behaviour by any agent, at least two

buyers (di > gi) and two sellers (di < gi) must exist to maintain competition on both

63

sides of the market. For this reason, a set of n = 4 learning participants is used.

Since the task for this experiment is only to find equilibrium pricing, only steady-

state (flat, time-invariant) energy profiles are employed, with the supply or demand

scales adjusted to match the ratios previously given.

Reducing the task to only finding equilibrium pricing collapses the observation

space for each agent to a single point and fixes qibid or qiask to the residual load, which

means that only price policy needs to be learned. From the view of individual agents,

the experiment becomes a partially observable, nonstationary multi-armed bandit,

where the number of arms corresponds to a number of discrete price actions |p|. For

these experiments, a set of 100 discrete price points between $0.07 and $0.14 (both

inclusive) are available for the agents to choose from. Independent tabular Q-learning

is used for learning, with α set to 0.1, γ to 0.98, and ϵ to 0.1. This setup maintains

loose convergence guarantees despite the properties of the resulting environment [76].

The reward function used for learning is the net profit of the last delivery interval,

which is calculated as total profit - total cost. The sources of total profit/cost can

each be broken down into three components: local market, the grid, and financial

compensations. Each reward component is derived from the ledger module that keeps

track of successful transactions. For example, equations 4.12 and 4.12 show the

calculations for the profit and cost from successful transactions on the local market.

LMProfitt =
N∑︂
i=1

qaski × paski (4.12)

LMCostt =
N∑︂
i=1

qbidi × pbidi (4.13)

Where t is the time interval, N is the number of transactions recorded, q is the

quantity of energy transacted in Wh, and p is the settlement price in $/kWh.

The grid and financial compensation components can be calculated in a similar

way. The specific implementation of reward calculations can be found in the source

code.

64

Results and Discussion

The results for the experiments are shown in Figures 4.2 through 4.4.

For settlement mechanism M1, we can observe that the bid, ask, and settlement

prices closely converge near the low end of the price range for the over-supply sce-

nario, and near the high end of the price range for the over-demand scenario. These

observations fit the first and second conditions described previously. However, the

balanced supply to demand scenario shows that the bid and ask prices diverge to

the limits of the price range, and therefore does not fulfil the third condition. This

phenomenon is likely attributed to the lack of truthfulness of this market design.

Since the settlement price is the mean of the each bid/ask pair, as long as a trade

is settled, both parties benefit more than the expectation (i.e., buyer pays less than

the bid price, and seller makes more than the ask price). Because of this, the agents

have no incentive to truthfully report what they believe is the true value of the asset

to be traded, and will instead lie to maximize the chances to making a settlement.

This result suggests that truthfulness is a necessary market property.

65

0.0

0.5

1.0

Excess Demand (supply:demand = 1.0:10.0)
settlements
asks
bids

0.0

0.5

1.0

De
ns

ity

Excess Supply (supply:demand = 10.0:1.0)

7 8 9 10 11 12 13 14
Price (¢/kWh)

0

1

Equal Supply and Demand

Figure 4.2: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M1 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

Fig. 4.3 shows the results for settlement mechanism M2. The density plots for the

prices appear very flat, with no clear indications of convergence. These plots suggest

that this market design does not meet any of the aforementioned criteria for reflecting

price theory, which is especially apparent for the balanced scenario where the aver-

age bid and ask prices are on the opposite sides of where they are expected to be.

One possible explanation is that the strong budget balancing drastically decreases

the number of successful settlements, which in turn increases the sparsity of rewards,

making the training time given insufficient. Another possibility may be a much sim-

pler explanation: M2 satisfies the conditions to be an ideal double auction market.

66

As a reminder, the Myerson–Satterthwaite theorem [23] states that a perfect double

auction is impossible to practically implement, even for markets with one buyer, one

seller, and one item. The results for M2 is empirical proof of this theorem, and also

suggests that budget balancing should be weakened.

0.0

0.5

Excess Demand (supply:demand = 1.0:10.0)
settlements
asks
bids

0.0

0.2

De
ns

ity

Excess Supply (supply:demand = 10.0:1.0)

7 8 9 10 11 12 13 14
Price (¢/kWh)

0.0

0.5

Equal Supply and Demand

Figure 4.3: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M2 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

Fig. 4.4 shows the results for settlement mechanism M3. Similar to M1, the prices

converge towards the low end of the price range for the over-supply scenario, and the

high end of the price range for the over-demand scenario. However, the average bid,

ask, and settlement prices are clustered closer together compared to M1. Furthermore,

in contrast to M1, price convergence can be observed for the balanced supply-demand

67

scenario as well, with the prices clustered closely near the middle of the available price

range. Clearly, this market design satisfies all the criteria for reflecting price theory,

and suggests that a double auction market most suitable for reinforcement learning

should be truthful and weakly budget balanced. This particular market design is used

for subsequent experiments conducted in this chapter.

0.0

0.5

1.0
Excess Demand (supply:demand = 1.0:10.0)

settlements
asks
bids

0.0

0.5

1.0

De
ns

ity

Excess Supply (supply:demand = 10.0:1.0)

7 8 9 10 11 12 13 14
Price (¢/kWh)

0.0

0.2

0.4

Equal Supply and Demand

Figure 4.4: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M3 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

Achieving full automation is critical in increasing the effectiveness of demand re-

sponse. A prerequisite condition to achieving this goal in ALEX is that any interac-

tions between agents through the market must reflect price theory. The goal of the

experiments performed in this section is to empirically determine the properties of a

68

double auction market required to fulfil this condition.

The results of the three performed experiments make it clear that the market must

be truthful and weakly budget balanced. Truthfulness is necessary to prevent the

agents from advantaging themselves by lying, and to ensure that the emerging be-

haviour truly reflects the law of supply and demand. Weakening budget balancing

is both necessary to fulfil the Myerson–Satterthwaite theorem, as well as to pro-

duce a stronger, denser reward signal that makes agent training time reasonable.

Reinforcement agents deployed in this market should maximize the value exchanged

between participants to guarantee both individual rationality and economic efficiency.

Although a stronger budget balancing cannot be achieved, it is notable that many no-

table real world double auction markets, such as the stock exchange, are also weakly

budget balanced. These markets ultimately need to make a small profit from con-

duction transactions in order to maintain market operations.

4.6.2 Evaluating Fitness for Demand Response

The previous experiment determined the market properties necessary for reinforce-

ment learning agents to develop trading policies that reflect price theory. The goal

of this section is to design a simple experiment that makes the resulting behaviour

more easily comparable to more contemporary pricing schemes. Three criteria will

be investigated to evaluate the fitness of ALEX for demand response: responsiveness,

relevancy, and economic performance.

Experimental Design

Recall that the previous experiments focuses on deducing the statistical equilibrium

pricing from agent behaviours. Different equilibrium prices can be deduced by train-

ing agents in different stateless environments, each with a unique ratio of supply to

demand. These stateless environments can be thought of as a snapshot in time. Given

enough snapshots, an approximation of agent behaviour in a stateful environment can

69

be constructed without needing to perform a time-series simulation with time-varying

energy profiles. At the time of writing, deep reinforcement learning agents specific to

ALEX are still being developed by other members of the research lab, making stateful

simulation more difficult, slower, and more noisy in comparison.

Evaluating the fitness of ALEX for demand response is performed in three steps.

The first step is to find more equilibrium prices with more supply to demand ratios on

market M3 by following the same procedures in the previous experiment. This creates

additional data points for more accurate interpolation. Next, the equilibrium prices

for all the available supply to demand ratios are interpolated to produce a generalized

mathematical model of the price behaviour. Finally, the pricing model is applied to

a virtual community, and the responsiveness, relevancy, and the resulting economic

performance are evaluated and compared against net billing and time-of-use.

The virtual community is modelled as a North American low voltage circuit consis-

tent of ten residential participants [77] situated behind an community meter upstream

from node R1. A corresponding number of energy profiles were randomly selected

from the openly available SunDance data set [71, 78], then sequentially to the par-

ticipants. The selected profile IDs and the corresponding node are as follows: 10011

(R5), 1001625 (R6), 1002714 (R7), 10068 (R8), 100703 (R9), 1001420 (R10), 1003173

(R11), 1001230 (R12), 100114 (R13), 100196 (R14). Because the virtual community

consists of prosumers who can generate their own energy using rooftop solar, a single

summer day (June 1, 2015) is used to illustrate the widest range of supply-to-demand

ratios. A plot of the aggregate values of supply and demand of the community for

this day is shown in Figure 4.5, illustrating the wide range of supply-to-demand ratios

experienced throughout the day.

70

00:00
01-Jun

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time

0

5

10

15

20

25

30
Po

we
r (

kW
)

Total Supply and Demand
load
generation

Figure 4.5: Total supply and demand profile of the residential community test over
one summer day in June 1, 2015

Results and Discussion

The simulations for M3 from the previous experiment is extended, and also supple-

mented by four additional experiments using the following supply-to-demand ratios:

1:1.5, 1:2, 1.5:1, 2:1. To help accelerate convergence, exploration factor and learning

rate are annealed starting from episode 100 with a multiplier of 0.98 applied at the

beginning of each episode. The expanded distribution plots for the price behaviours

of all seven supply-to-demand ratios are shown in Figure 4.6. The histograms show

the probabilities of the discrete bid, ask, and resulting settlement prices. Modes of the

prices are highlighted and shown by the vertical lines. Probability density functions

of the histograms are overlaid on top, which are approximated with the Gaussian

KDE function in the scikit-learn Python package with default parameters.

71

0

1

2

Excess Demand (supply:demand = 1.0:10.0)
settlements
asks
bids

0

1

2
Excess Demand (supply:demand = 1.0:2.0)

0.0

0.5

Excess Demand (supply:demand = 1.0:1.5)

0

1

De
ns

ity

Equal Supply and Demand

Price (¢/kWh)0

1

Excess Supply (supply:demand = 1.5:1.0)

0

1

Excess Supply (supply:demand = 2.0:1.0)

7 8 9 10 11 12 13 14
0

1

Excess Supply (supply:demand = 10.0:1.0)

Figure 4.6: Expanded policies for bid, ask, and resulting settlement prices for four
agents operating under market M3.

72

Interpolating over the means of the bid and ask prices for each supply-to-demand

ratio produces the equation for the generalized mathematical model of the price curve

(equation 4.14). A plot of this model is showin in Figure 4.7

P (s, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P grid
NB,load P (s, d) ≥ P grid

NB,buy

P grid
NB,gen P (s, d) ≤ P grid

NB,sell

−0.0254 s
d
+ 0.1426CTOU

H,M,L if buying

−0.0280 s
d
+ 0.1299CTOU

H,M,L if selling,

(4.14)

where s is energy supply, d is energy demand, P grid
NB,load is price of electricity when

buying electricity from the grid under net billing, P grid
NB,gen is price of electricity when

selling electricity to the grid under net billing, and CTOU
H,M,L are the adjustment factors

when TOU is used for energy transacted with the grid.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Supply/Demand

0.06

0.08

0.10

0.12

0.14

pr
ice

 ($
/k

W
h)

Price Vs. Supply/Demand

sell price
buy price

Figure 4.7: System-wide pricing model developed for the virtual community. The
dotted lines show the price boundaries defined by (4.4). Linear regression between
the price points leads to a well-fit mathematical model.

73

A supply-to-demand dependent pricing schedule for the local market can be ob-

tained by applying equation 4.14 to the aggregate energy profiles for all participants

in a given time interval. The aggregate load and generation profiles for the virtual

community is show in Figure 4.5. The resulting price schedule for the virtual commu-

nity is shown in Figure 4.8. As a reminder, agents cannot observe the system-wide

supply-to-demand and will develop personalized price curves. Therefore, the analysis

performed here should only be used for initial exploration.

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
Time

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Pr
ice

 ($
/k

W
h)

Internal prices

sell price
buy price

Figure 4.8: Internal prices of ALEX used to conduct transactions

Not surprisingly, the resulting price schedule determined using the model corre-

sponds exactly to the ratio of supply and demand of the community throughout the

day. For example, at midnight, when solar generation is nil, the price for selling

energy to a peer is $0.1449, which is the same for the buyer as if purchasing energy

from the grid. Later in the morning, at 7:00AM, when solar energy becomes available,

74

the price for selling to peers lowers accordingly. Starting at around 9:00AM, when

generation is significantly higher than demand, the price for selling to peers drops to

$0.069, which is the same as selling to the grid under net billing. Prices then increase

later in the day as local generation decreases and demand increases.

A time-varying and supply-to-demand dependent price schedule is similar to the

philosophy behind the development of TOU. However, TOU derives its prices from the

time-varying supply/demand of the entire grid instead of individual areas. Therefore,

the community pricing schedule should be compared to TOU to quantify their relative

performance. Ontario TOU is used as a benchmark in Canada and is often referenced

by utility companies in jurisdictions without TOU, such as Alberta.

Fig. 4.9 displays the two pricing schedules, showing the stark contrast between their

shapes. Whereas the local energy price decreases toward noon due to the increase

in generation, TOU price increases, which suggests that there is more load than

generation during this period. This is likely due to the fact that more commercial

and industrial loads exist during the day, which are the type of loads putting the most

strain on the grid. However, since TOU is targeted towards residential customers, it

also suggests TOU tries to shift the responsibility of decreasing loads onto residential

customers. Since TOU is not highly correlated to residential customer behaviour,

this may explain the lack of participation in TOU mentioned in Chapter 2. It also

suggests the need for very localized, highly relevant pricing signals to increase the

efficiency of managing DERs and the overall system.

75

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
Time

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ice

 ($
/k

W
h)

Internal prices compared against TOU
Internal energy price
TOU energy price

Figure 4.9: Local market pricing schedule compared against Ontario summer TOU
prices.

The following analysis evaluates the the economic performance of all participants

under this price curve. Since TOU is less relevant and will performe worse than net

billing, the resulting electricity bills will only be compared to the net billing equivalent.

The results of this comparison are shown in Fig. 4.10 and summarized in Table 4.2. In

accordance with the operating principles of net billing, described in 2.1.4, the entire

community is placed behind a primary meter, and energy exchanged directly between

peers do not incur T&D fees.

76

10
01

1

10
01

62
5

10
02

71
4

10
06

8

10
07

03

10
01

42
0

10
03

17
3

10
01

23
0

10
01

14

10
01

96
5

Participant ID

0

1

2

3

4

5

6

7
El

ec
tri

cit
y

Bi
ll

($
)

Electricity Bills for Test Scenario
Electricity bill with ALEX
Electricity bill under Net Billing

Figure 4.10: Electricity bill comparison between net billing and ALEX

The results in Table 4.2 show that the implementation of a local energy market

can financially benefit the community as a whole, reducing the total community bill

by 35.9%. The mean and median of individual bill reductions are 74.51% and 38.8%,

respectively. This reduction in bills is due to the more efficient usage of local energy

resources, which is more accurately reflected by the local market price. By putting the

whole community behind-the-meter, financial benefits may even be gained by those

who cannot afford the expense of acquiring and installing their own DERs. This is

because they have direct access to residual generations of their neighbours, that may

be priced lower in comparison to buying at retail prices from the grid. Similarly,

there is an inherent financial incentive to sell excess generation to peers first, as

the profits can be higher than selling to the grid at retail prices. In maximizing

individual economic gains, local energy markets may further socialize the benefits

77

T
ab

le
4.
2:

A
L
E
X

v
s.

N
et

B
il
li
n
g
(N

B
)

B
il
l
($

)
E
n
e
rg

y
(k

W
h
)

b
o
u
g
h
t
fr
o
m

G
ri
d

E
n
e
rg

y
(k

W
h
)

b
o
u
g
h
t
lo
c
a
ll
y

E
n
e
rg

y
(k

W
h
)

so
ld

to
G
ri
d

E
n
e
rg

y
(k

W
h
)

so
ld

lo
c
a
ll
y

P
a
rt
ic
ip
a
n
t

N
B

A
L
E
X

%
N
B

A
L
E
X

%
N
B

A
L
E
X

N
B

A
L
E
X

%
N
B

A
L
E
X

10
0
11

0
.1
0

-0
.2
8

3
8
3.
2

6.
83

2.
35

65
.5
9

-
4.
48

12
.8
8

0
10

0
-

12
.8
8

10
0
16

2
5

0
.8
0

0.
13

83
.2

10
.7
3

2.
28

78
.7
5

-
8.
45

10
.9
7

0
10

0
-

10
.9
7

10
0
27

1
4

4
.3
4

3.
26

24
.8

32
.4
5

13
.1
0

59
.6
3

-
19

.3
5

5.
31

0
10

0
-

5.
31

10
0
68

2
.8
0

1.
55

44
.7

22
.3
7

4.
08

81
.7
6

-
18

.2
9

6.
41

0
10

0
-

6.
41

10
0
70

3
2
.3
5

1.
32

44
.0

22
.4
7

5.
94

73
.5
6

-
16

.5
3

13
.1
7

0
10

0
-

13
.1
7

10
0
14

2
0

2
.2
1

1.
47

33
.6

17
.6
3

11
.9
6

32
.1
6

-
5.
67

4.
98

0
10

0
-

4.
98

10
0
31

7
3

7
.5
6

5.
09

32
.7

61
.7
3

22
.0
0

64
.3
6

-
39

.7
3

20
.0
3

0
10

0
-

20
.0
3

10
0
12

3
0

3
.5
5

2.
69

24
.2

24
.8
9

8.
03

67
.7
4

-
16

.8
6

0.
80

0
10

0
-

0.
80

10
0
11

4
5
.2
2

2.
70

48
.2

49
.5
5

12
.6
5

74
.4
7

-
36

.9
28

.4
0

0
10

0
-

28
.4
0

10
0
19

6
5

6
.5
0

4.
78

26
.5

50
.7
8

19
.0
7

62
.4
5

-
31

.7
1

12
.4
5

0
10

0
-

12
.4
5

T
o
ta

l
3
5
.4
3

2
2
.7
0

3
5
.9

2
9
9
.4
4

1
0
1
.4
6

6
6
.1
2

1
9
8

1
1
5
.4
0

0
1
0
0

1
1
5
.4
0

78

of DERs. Although not directly comparable, recent work by Jogunola et al. [79]

obtained average financial benefits of 35% by leveraging energy storage, and 55%

when leveraging both PV and storage. While the proposed approach currently uses

only PV, energy storage will be added in future studies. Similar or better performance

than that reported by Jogunola et al. [79] should be expected.

The Effect of Number of Participants on Price Behaviour

After the article containing these results were published [1], discussions among peers

brought up whether the price behaviour is affected by the number of participants.

This is mainly due to the fact that the price behaviour of four agents was used to

create the price model for a community of 10 participants. Since price theory is purely

dictated by the ratio of supply and demand, which already includes the number of

participants, the price behaviour should be similar regardless of the number of agents.

However, for the sake of completeness, a set of simulations is performed for M3 using

10 agents following the same procedures as described in Section 4.6.1. The resulting

distribution plots are shown in Figure 4.11.

As expected, the price distribution with 10 agents is highly similar to the four

agent case previously shown in Figure 4.4. This means that price theory holds true,

and the pricing model developed in equation 4.14 is a valid model regardless of the

number of participants in the market.

4.6.3 The Effects of Battery Storage on Power Flow

A part of the financial gains seen in the previous experiment can be attributed to

the more accurate tracking of energy flow, which include the source, destination, and

amount of infrastructure used. However, these gains may be short-lived without a

more flexible and robust way shape generation and loads to combat the negative

effects of the non-dispatchable nature of renewable energy sources.

The currently technology landscape clearly favors battery energy storage, which

79

0

1

2
Excess Demand (supply:demand = 1.0:10.0)

settlements
asks
bids

0

1

2

De
ns

ity

Excess Supply (supply:demand = 10.0:1.0)

7 8 9 10 11 12 13 14
Price (¢/kWh)

0.00

0.25

0.50

Equal Supply and Demand

Figure 4.11: Price policies for bid, ask, and resulting settlement prices for 10 agents
operating under M3.

80

includes electric vehicles with vehicle-to-grid (V2G) capabilities, as the provider of

such micro-ancillary services. The most common use case of home battery storage

today is to complement rooftop solar to improve self sufficiency, usually accomplished

using a greedy policy. This often leads to batteries that are either undersized, or

underutilized, since it is rarely possible for the battery capacity to perfectly match

the generation and load profiles of any home. Although research exist to optimize

battery sizes for residential systems [80], it is rare for vendors to offer more than

one or two capacity options for purchase. Furthermore, studies have shown that the

addition of a battery energy storage system is generally unprofitable over its lifetime

under net billing or net metering [81, 82]. However, due to surrounding loads and

generation made available through ALEX, BESS utilization and financial gains may

both increase. More importantly, generation or load spikes may also be flattened as a

side effect, resulting in a more stable power grid. Empirically testing this hypothesis

is the focus of this experiment.

Experimental Design

This experiment requires power flow simulations to be performed in order to show

the possible effects of load shaping. The simulation circuit used is the CIGRE North

America low voltage residential benchmark circuit [77, 83], shown in Figure 4.12.

Since a simulation model of this circuit is not available, one had to be created for

OpenDSS, and is made available on GitHub for general use [84]. Baseline simulations

are performed and evaluated against the published results to check for accuracy and

validity. The simulation results show that node voltages are all within 2% of the

values in the CIGRE report [77]. As node voltages are the primary metric used for

evaluation, the circuit model is deemed sufficiently accurate for the purposes of this

experiment.

The energy profile selection criteria differ from the previous experiment, as the

original locations of the profiles and profile shapes can greatly affect power flow. For

81

 44

Figure 7.1: Topology of North American LV distribution network benchmark

In the case of single-phase overhead lines, the MV is stepped down with a single-phase
MV/LV transformer mounted on the pole between the MV and LV lines, as depicted in
Figure 7.2. The single-phase LV line is a set of three bundled conductors shown as the
bottom group of conductors on the top left quadrant of Figure 7.2.

Three-phase overhead lines have a similar configuration, with the MV lines located at the top
of the structure, and the LV lines as a set of bundled conductors below. In this case, three
single-phase transformers step down voltage from the MV to the LV level. This is shown in
the top right quadrant of Figure 7.2. For underground LV distribution, sets of bundled
conductors are employed similarly to the overhead case, as shown in the bottom half of
Figure 7.2.

Figure 4.12: Topology of the North American low voltage distribution network bench-
mark. Originally from “Benchmark Systems for Network Integration of Renewable
and Distributed Energy Resources”, pg. 44 [77]

these reasons, the SunDance [71, 78] profiles are re-selected from the only the Denver

time zone5. Monte-Carlo search is then performed to generate over 500 combina-

tions of profile to node mappings, each followed by a one-day time-series power flow

simulation. Finally, resulting voltage plots are both programmatically and visually

inspected to choose the most suitable candidate to perform the experiment on. The

resulting profile IDs and corresponding node locations are shown in Table 4.3. The

energy profiles and node voltages for the final configuration is shown in Figure 4.13.

5The Denver time zone is an arbitrary choice. We hoped that the climate might be similar to
central Canada, but it is not an important criteria

82

Table 4.3: Profile IDs and Corresponding Node Locations

Node Profile ID

R5 1001230

R6 1001974

R7 100500

R8 10068

R9 10011

R10 10063

R11 100124

R12 100502

R13 1003842

R14 1002705

With the baseline (B1) established, two BESS-based load shaping strategies can be

deployed for comparison. Since R10 is the only node experiencing voltage violations,

it will be the target of load shaping strategies. The strategies are described as follows:

1. B2: Attach a BESS to R10. Use greedy control with no local market access.

2. B3: Attach a BESS to R10. Use rule-based controller with local market access.

The BESS used are modelled after a typical Tesla Powerwall 2, with a usable ca-

pacity of 13.5 kWh and a continuous charge/discharge power of 5 kW. B2 is designed

to emulate existing control strategies that focus on self-sufficiency. The general strat-

egy is to charge the battery with residual generation, and discharge the battery if

there is residual load. This strategy relies upon having an oversized solar generation

system and is often not feasible due to regulatory, roof area, or cost constraints.

B3 is designed as a simple way to demonstrate the effects of maximizing the uti-

lization of the local market for one load shaping capable participant only. Ideally, a

learning agent would be used. However, due to the complexities of the agent, devel-

opment is slower than expected. As a result, a rule based agent that uses fixed prices

83

and a trading schedule is used instead. The agent used for B3 can be described by

the pseudocode shown in Algorithm 1. The actual Python code can be found on the

project repository on GitHub [85] as basic trader.py.

84

Algorithm 1 Energy Trading and Management Algorithm for B3

for each market round do
for last settled round do

adjust BESS schedule based on successful settlements
end for
if residual load > 0 then

if BESS is available then
if next settle is between 7AM to 3PM (inclusive) then

Battery is allowed to charge
Submit bid where,
quantity = residual load + max charge capacity
price = $0.14/kWh

else
Battery is allowed to discharge
Submit ask where,
quantity = max(0, max discharge capacity - residual load)
price = $0.07/kWh

end if
else

Submit bid where,
quantity = residual load
price = $0.14/kWh

end if
else

if residual generation > 0 then
if BESS is available then

if next settle is between 8AM to 4PM (inclusive) then
Battery is allowed to charge
Submit bid where,
quantity = max(0, max charge capacity - residual generation)
price = $0.14/kWh

else
Battery is allowed to discharge
Submit ask where,
quantity = max discharge capacity + residual generation
price = $0.07/kWh

end if
else

Submit ask where,
quantity = residual generation
price = $0.07/kWh

end if
end if

end if
end for

85

Results and Discussion

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
10
5
0
5

10
15
20

Ne
t L

oa
d

(k
W

)
Load Profiles and Node Voltages for Scenario B1

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
Time (h)

114.0
116.4

120.0

123.6
126.0

No
de

 V
ol

ta
ge

 (v
) R5

R6
R7
R8

R9
R10

R11
R12

R13
R14

Figure 4.13: Energy profiles and node voltages for the baseline experiment (B1).

Figure 4.13 shows the energy profiles and node voltages for the baseline experiment,

taking place across three summer days (June 1-3, 2015). Multiple days are used to

show possible effects of leftover energy in storage from the previous day(s), if available.

The top graph shows the hourly net loads, where positive means net consumption, and

negative net generation. Major y-axes show the nominal operating voltage, the ± 3%

voltage thresholds that some utility companies use, and the ± 5% standard instituted

by IEEE. With the exception of R10, all other energy profiles show behaviours that

are representative of typical residential prosumers. Consequently, R10’s large loads

caused four under-voltage violations over three days (hours 18, 41, 42, and 66). As

such, R10 is the ideal target for studying load shaping strategies.

86

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
10
5
0
5

10
15
20

Ne
t L

oa
d

(k
W

)

Load Profiles and Node Voltages for Scenario B2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
Time (h)

114.0
116.4

120.0

123.6
126.0

No
de

 V
ol

ta
ge

 (v
) R5

R6
R7
R8

R9
R10

R11
R12

R13
R14

Figure 4.14: Energy profiles and node voltages for the experiment B2.

The typical application of BESS for a residential prosumer is to increase self suf-

ficiency. The BESS usage strategy is generally greedy, i.e. charge if there is residual

generation, and discharge if there is residual load. Charge/discharge times may be

modified by a schedule if time-of-use or dynamic pricing is in play. Figure 4.14 shows

the results when greedy battery management is used by R10. At first glance, the

difference between B2 and B1 is minuscule. This is not unexpected, as R10 has

short windows where small amounts of net generation is available (hours 12, 60 to

63, peaking at approximately 2.5kW). As a result, the loads at hours 13 and 64 are

decreased by the BESS. However, these load decreases are not significant enough to

eliminate the voltage violations. One can argue that the greedy policy is sub-optimal,

and may have eliminated or reduced the under-voltage at hour 66 if the BESS was

not discharged at hour 64. While this may be true in retrospect, predicting the load

87

spike at hour 66 with a high degree of precision can be very difficult for practical

applications, and is one of the reasons why schedule-based transactive control have

been generally unsuccessful [12].

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
10
5
0
5

10
15
20

Ne
t L

oa
d

(k
W

)

Load Profiles and Node Voltages for Scenario B3

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
Time (h)

114.0
116.4

120.0

123.6
126.0

No
de

 V
ol

ta
ge

 (v
) R5

R6
R7
R8

R9
R10

R11
R12

R13
R14

Figure 4.15: Energy profiles and node voltages for the experiment B3.

Unlike R10, its neighbours have much more residual generation available. The local

energy market could allow R10’s BESS to utilize this additional source of energy over

longer periods of time. Figure 4.15 shows the resulting node voltages where local

energy trading is enabled via ALEX. Compared to B1 and B2, the improvements are

clear and drastic, with the most obvious being the elimination of all voltage violations.

The clear cause of this is the reduction of R10’s peak load, which is decreased by as

much as 5 kW, the peak continuous discharge capacity of the BESS. This suggests that

the BESS has enough energy charged to be utilized for longer periods of time, which

can be seen in Figure 4.16, where the state of charges (SoC) of the BESS between

88

B2 and B3 are shown. As expected, as opposed to B2, which is unable to utilize the

BESS’s full capacity due to R10’s lack of residual generation, B3 manages to almost

always fully charge the BESS using energy bought via the local energy market. This

is a much more effective use of local resources that would otherwise be simply sold to

the grid. As shown previous experiments, better utilization of local resources leads

to financial improvements for the community as a whole. Furthermore, the electric

utility company can benefit as well. Typically, solving the under-voltage violation

can involve transformer or line upgrades, which may cost tens of thousands of dollars

in materials alone. A BESS installed in a single home is less expensive, and is shown

here to be highly effective under the right conditions.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
Time (h)

0

25

50

75

100

St
at

e
of

 C
ha

rg
e

(%
)

Battery State of Charge for B2 and B3
B2
B3

Figure 4.16: Comparing the state of charges of the BESS in B2 and B3.

This experiment uses a heavily solar penetrated community to test and compare

BESS profile shaping strategies. The community consists of nine typical residential

prosumers, and one heavily loaded prosumer (R10). A baseline time-series power flow

simulation was performed, and shows that R10 suffers from multiple under-voltage

violations throughout the three test days. Two profile shaping strategies (B2, B3)

with a 13.5kWh BESS installed at R10 were tested and compared. B2 uses a greedy

control strategy that maximizes self sufficiency, with no local market access. B3 uses

a rule-based controller that maximizes local market interactions.

The results for B2 show that, due to R10’s lack of residual generation, the BESS is

89

underutilized and is unable to make significant improvements to power flow. However,

B3 is able to effectively utilize the full capacity of the BESS and reduce peaks loads

by as much as 5kW. As a result, all of the under-voltage violations are eliminated.

Finally, this experiment provides concrete evidence that targeted BESS installations

can be used a more cost effective alternative to transformer, line, or other equipment

upgrades.

Although the results achieved are impressive, they are still limited in scope. One of

the biggest limitations is the rule based agent used for B3. Due to its current inability

to learn prices, it is impossible to deploy multiple BESS enabled participants in ALEX

and achieve deterministic, or probabilistic results with low variance without artificially

introducing bias. This can be solved with more sophisticated reinforcement learning

agents that can simultaneously learn energy trading and battery management. Work

on the reinforcement learning agent is still being conducted at the time of writing,

and will be published in a journal article in the future.

90

Chapter 5

Conclusion and Future Work

5.1 Summary

The ultimate objective of this thesis is to answer the following questions:

• What market mechanism and market properties will allow a set of independent

reinforcement learning (RL) agents to trade energy in a way that reflects price

theory?

• Can optimal, or near optimal power flow be achieved as a side effect of efficient

market transactions?

Finding the answers to these questions started with a review of the current state

of the art methods to simulate transactive energy. The findings in Chapter 2 show

that the existing transactive energy simulators primarily focus on solving for optimal

power flow, and relegate the resulting price signals as a proxy to control appliances,

or influence human behaviours. There is a clear lack of an economy focused TE

simulator that is required to complete to conduct this research. As such, such as

simulator had to be created. Chapter 3 details the simulator design, and goes over

some key topics, from the high level architecture, to implementations of some lower

level functions.

The experimental part of this thesis is presented in Chapter 4. The experiments are

presented in three parts, each build on top of the results of the previous experiment

91

to progressively answer the research questions. The first experiment (Section 4.6.1)

focuses on investigating the necessary market properties for RL agents to behave

in accordance to price theory. The second experiment (Section 4.6.2) shows the

advantages of a market-based TE compared to contemporary DR pricing schemes in

terms of responsiveness, relevancy, and bill cost. The last experiment (Section 4.6.3)

shows the combined effectiveness of a local energy market and battery management

in eliminating circuit violations.

5.2 Contributions

The original contributions described in this thesis can be summarized as follows:

• Developed T-REX, an economy focused transactive energy simulator that en-

abled the completion of subsequent tasks. The design of the simulator is detailed

extensively in Chapter 3.

• Designed and implemented methods that allow agents to trade energy in a

double auction market. This is introduced as the Autonomous Local Energy

Exchange (ALEX) in the first part of Chapter 4.

• Examined the relationships between double auction market properties and re-

inforcement learning. Specifically, the experiments conducted in Section 4.6.1

investigated how the market properties affect RL policy development. The re-

sults show that the market must be truthful and weakly budget balanced in

order for the agents to develop behaviours that reflect price theory. Truthful-

ness is necessary for agent behaviour policies to align with price theory, and

weak budget balancing results in a stronger, denser reward signal that makes

training complete in a reasonable amount of time.

• Inspected the developed RL policies, and devised methods to make compar-

isons to contemporary demand response pricing scheme. This work is presented

92

in Section 4.6.2. A generalized mathematical model that aggregates and con-

verts individual agent policies to a global pricing scheme is first created, so that

pricing schemes can be compared directly. Empirical testing shows that this

math model is largely unaffected by the the total number of participants, and

is instead only based on the global ratio of supply and demand. Then, the

resulting price model is compared against net billing and time-of-use in terms

of responsiveness, relevancy, and bill cost. The resulting price model is far more

responsive and relevant compared to time-of-use, which is suggests that agent

behaviours can be more accurate and efficient when used for load shaping. Fur-

thermore, significant bill reductions are achieved when compared to net billing.

The community as a whole experienced a bill reduction of 35.9%, and the mean

and median of individual bill reductions are 74.51% and 38.8%, respectively.

• Studied the effects of integrating battery storage in the local energy market, with

a focus on power flow. This is demonstrated in Section 4.6.3. The CIGRE North

America low voltage residential benchmark circuit [77, 83] is used as the test

circuit for power flow, and a set of load profiles from the SunDance data set was

chosen using Monte-Carlo search to create voltage violations on the circuit as the

starting condition. Two scenarios are tested with identical battery placement

and specifications. The first is the baseline, where participants cannot trade

energy with each other. The second enables energy trading, and the agents

are designed to maximize market interactions to maximize battery utilization.

The results show the elimination of all voltage violations when energy trading

is allowed. Although this test scenario is one extreme and narrow example, it

is clear that efficient market interactions can result in improvements in power

flow.

In conclusion, the work presented in this thesis has adequately answered the re-

search questions posed in Chapter 1. It also provides strong evidence for the practical

93

application of agent-based, economy focused transactive energy systems as a more ro-

bust and flexible alternative to transactive control.

5.3 Future Work

The two research objectives have been adequately answered, although opportunity

still exists to further explore the load shaping capabilities. Because the experiment

performed in this thesis is an controlled initial exploration, the setup and methods

used had to be limited in scope. Future work will build upon the work presented,

with the primary focus on more sophisticated RL agents that can learn both energy

trading and battery management. This will, at minimum, allow multiple battery users

on the local market. Holistic studies of the entire system will be enabled as well, and

should allow simultaneous analysis of economic benefits, power flow improvements,

and return on investment. Beyond further academic studies, T-REX and ALEX

have garnered some interest in the industry, and a project is currently underway

for potential field deployment. In terms of AI and ML related studies, some team

members are developing methods to use T-REX with commonly used ML frameworks,

such as gym [86]. This will allow machine learning researchers to use more familiar

tools to research algorithms with T-REX.

94

Bibliography

[1] S. Zhang, D. May, M. Gül, and P. Musilek, “Reinforcement learning-driven
local transactive energy market for distributed energy resources,” Energy and
AI, vol. 8, p. 100 150, 2022, issn: 2666-5468. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2666546822000118.

[2] S. Zhang and P. Musilek, “The impact of battery storage on power flow and
economy in an automated transactive energy market,” Energies, vol. 16, no. 5,
2023. doi: 10.3390/en16052251. [Online]. Available: https://www.mdpi.com/
1996-1073/16/5/2251.

[3] S. M. Ismael, S. H. A. Aleem], A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-
art of hosting capacity in modern power systems with distributed generation,”
Renewable Energy, vol. 130, pp. 1002 –1020, 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0960148118307936.

[4] T. O. Olowu, A. Sundararajan, M. Moghaddami, and A. I. Sarwat, “Future
challenges and mitigation methods for high photovoltaic penetration: A survey,”
Energies, vol. 11, no. 7, 2018.

[5] C Chapelsky, K Gerasimov, and P Musilek, “DER impacts to urban utilities
study summary,” 2019. [Online]. Available: https://www.epcor.com/products-
services/power/Documents/micro-generation-research-solar-energy-electricity-
grid-2019.pdf.

[6] D. Forfia, M. Knight, and R. Melton, “The view from the top of the moun-
tain: Building a community of practice with the gridwise transactive energy
framework,” IEEE Power and Energy Magazine, vol. 14, no. 3, pp. 25–33, 2016.

[7] M. D. A.Fattahi Meyabadi, “A review of demand-side management: Reconsider-
ing theoretical framework,” Renewable and Sustainable Energy Reviews, vol. 80,
pp. 367–379, 2017.

[8] S. Chen and C.-C. Liu, “From demand response to transactive energy: State
of the art,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 1,
pp. 10–19, 2017.

[9] O. Abrishambaf, F. Lezama, P. Faria, and Z. Vale, “Towards transactive en-
ergy systems: An analysis on current trends,” Energy Strategy Reviews, vol. 26,
p. 100 418, 2019.

95

https://www.sciencedirect.com/science/article/pii/S2666546822000118
https://www.sciencedirect.com/science/article/pii/S2666546822000118
https://doi.org/10.3390/en16052251
https://www.mdpi.com/1996-1073/16/5/2251
https://www.mdpi.com/1996-1073/16/5/2251
http://www.sciencedirect.com/science/article/pii/S0960148118307936
http://www.sciencedirect.com/science/article/pii/S0960148118307936
https://www.epcor.com/products-services/power/Documents/micro-generation-research-solar-energy-electricity-grid-2019.pdf
https://www.epcor.com/products-services/power/Documents/micro-generation-research-solar-energy-electricity-grid-2019.pdf
https://www.epcor.com/products-services/power/Documents/micro-generation-research-solar-energy-electricity-grid-2019.pdf

[10] J. Hu, G. Yang, C. Ziras, and K. Kok, “Aggregator operation in the balancing
market through network-constrained transactive energy,” IEEE Transactions
on Power Systems, vol. 34, no. 5, pp. 4071–4080, 2019.

[11] M. S. Nazir and I. A. Hiskens, “A dynamical systems approach to modeling
and analysis of transactive energy coordination,” IEEE Transactions on Power
Systems, vol. 34, no. 5, pp. 4060–4070, 2019.

[12] A. Soares, O. De Somer, D. Ectors, F. Aben, J. Goyvaerts, M. Broekmans,
F. Spiessens, D. van Goch, and K. Vanthournout, “Distributed optimization
algorithm for residential flexibility activation—results from a field test,” IEEE
Transactions on Power Systems, vol. 34, no. 5, pp. 4119–4127, 2019.

[13] S. H. Mengmeng Yu Renzhi Lu, “A real-time decision model for industrial
load management in a smart grid,” Applied Energy, vol. 183, Dec. 2016. doi:
10.1016/j.apenergy.2016.09.021.

[14] X. Huang, S. H. Hong, and Y. Li, “Hour-ahead price based energy management
scheme for industrial facilities,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 6, pp. 2886–2898, 2017. doi: 10.1109/TII.2017.2711648.

[15] R. de Sá Ferreira, L. A. Barroso, P. R. Lino, M. M. Carvalho, and P. Valenzuela,
“Time-of-use tariff design under uncertainty in price-elasticities of electricity
demand: A stochastic optimization approach,” IEEE Transactions on Smart
Grid, vol. 4, no. 4, pp. 2285–2295, 2013. doi: 10.1109/TSG.2013.2241087.

[16] L. Tesfatsion, “Agent-based computational economics: Growing economies from
the bottom up.,” Artificial Life, vol. 8, no. 1, pp. 55–82, 2002.

[17] L. Tesfatsion, “Modeling economic systems as locally-constructive sequential
games,” Journal of Economic Methodology, vol. 24, no. 4, pp. 384–409, 2017.

[18] E. F. Fama, “Efficient capital markets: A review of theory and empirical work,”
The Journal of Finance, vol. 25, no. 2, pp. 383–417, 1970, issn: 00221082,
15406261. [Online]. Available: http://www.jstor.org/stable/2325486 (visited
on 11/29/2022).

[19] B. G. Malkiel, “The efficient market hypothesis and its critics,” English, Jour-
nal of Economic Perspectives, vol. 17, no. 1, pp. 59–82, 2003, Cited By :841.
[Online]. Available: www.scopus.com.

[20] D. Friedman and J. Rust, The Double Auction Market: Institutions, Theories,
and Evidence. Reading, Mass., 1993.

[21] D. Friedman, “A simple testable model of double auction markets,” Journal of
Economic Behavior & Organization, 1991.

[22] M. Babaioff and N. Nisan, “Concurrent auctions across the supply chain,”
CoRR, vol. abs/1107.0028, 2011. arXiv: 1107.0028. [Online]. Available: http:
//arxiv.org/abs/1107.0028.

[23] R. B. Myerson and M. A. Satterthwaite, “Efficient mechanisms for bilateral
trading,” en, Journal of Economic Theory, vol. 29, no. 2, pp. 265–281, 1983.
(visited on 02/24/2021).

96

https://doi.org/10.1016/j.apenergy.2016.09.021
https://doi.org/10.1109/TII.2017.2711648
https://doi.org/10.1109/TSG.2013.2241087
http://www.jstor.org/stable/2325486
www.scopus.com
https://arxiv.org/abs/1107.0028
http://arxiv.org/abs/1107.0028
http://arxiv.org/abs/1107.0028

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[25] P. Werbos and P. John, “Beyond regression : New tools for prediction and
analysis in the behavioral sciences,” Jan. 1974.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[27] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989, issn: 0893-6080. doi: https ://doi .org/10.1016/0893- 6080(89)90020-
8. [Online]. Available: https ://www.sciencedirect . com/science/article/pii/
0893608089900208.

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recogni-
tion,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. doi: 10.1162/neco.
1989.1.4.541.

[29] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional net-
works, 2013. doi: 10 . 48550 /ARXIV . 1311 . 2901. [Online]. Available: https :
//arxiv.org/abs/1311.2901.

[30] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. doi: 10 .48550/ARXIV.1512 .03385. [Online]. Available: https :
//arxiv.org/abs/1512.03385.

[31] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M.
Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A state-of-the-art
survey on deep learning theory and architectures,” Electronics, vol. 8, no. 3,
2019, issn: 2079-9292. doi: 10 .3390/electronics8030292. [Online]. Available:
https://www.mdpi.com/2079-9292/8/3/292.

[32] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural net-
works and tree search,” Nature, vol. 529, pp. 484–489, Jan. 2016. doi: 10.1038/
nature16961.

[33] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I.
Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezh-
nevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy,
T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama,
D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II us-
ing multi-agent reinforcement learning,” en, Nature, vol. 575, no. 7782, 2019,
Number: 7782 Publisher: Nature Publishing Group. (visited on 02/24/2021).

97

http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.48550/ARXIV.1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.3390/electronics8030292
https://www.mdpi.com/2079-9292/8/3/292
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

[34] OpenAI, : C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Den-
nison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C.
Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans, J.
Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang,
Dota 2 with large scale deep reinforcement learning, 2019. arXiv: 1912.06680
[cs.LG].

[35] J. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response:
A review of algorithms and modeling techniques,” Applied Energy, vol. 235,
pp. 1072–89, Feb. 2019. doi: 10.1016/j.apenergy.2018.11.002.

[36] A. Barto and R. Sutton, Reinforcment Learning, an Introduction, 2nd ed. MIT
Press, 2018.

[37] A. Slivkins, Introduction to multi-armed bandits, 2019. doi: 10.48550/ARXIV.
1904.07272. [Online]. Available: https://arxiv.org/abs/1904.07272.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, Playing atari with deep reinforcement learning, 2013. doi:
10.48550/ARXIV.1312.5602. [Online]. Available: https://arxiv.org/abs/1312.
5602.

[39] H. Hasselt, “Double q-learning,” in Advances in Neural Information Process-
ing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Cu-
lotta, Eds., vol. 23, Curran Associates, Inc., 2010. [Online]. Available: https://
proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-
Paper.pdf.

[40] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, Prioritized experience replay,
2015. doi: 10.48550/ARXIV.1511.05952. [Online]. Available: https://arxiv.
org/abs/1511.05952.

[41] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,
Dueling network architectures for deep reinforcement learning, 2015. doi: 10.
48550/ARXIV.1511.06581. [Online]. Available: https://arxiv.org/abs/1511.
06581.

[42] M. G. Bellemare, W. Dabney, and R. Munos, A distributional perspective on
reinforcement learning, 2017. doi: 10 . 48550 /ARXIV . 1707 . 06887. [Online].
Available: https://arxiv.org/abs/1707.06887.

[43] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D.
Horgan, B. Piot, M. Azar, and D. Silver, Rainbow: Combining improvements in
deep reinforcement learning, 2017. doi: 10.48550/ARXIV.1710.02298. [Online].
Available: https://arxiv.org/abs/1710.02298.

[44] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D.
Hassabis, Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. doi: 10.48550/ARXIV.1712.01815. [Online]. Avail-
able: https://arxiv.org/abs/1712.01815.

98

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://doi.org/10.1016/j.apenergy.2018.11.002
https://doi.org/10.48550/ARXIV.1904.07272
https://doi.org/10.48550/ARXIV.1904.07272
https://arxiv.org/abs/1904.07272
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.48550/ARXIV.1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://doi.org/10.48550/ARXIV.1511.06581
https://doi.org/10.48550/ARXIV.1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://doi.org/10.48550/ARXIV.1707.06887
https://arxiv.org/abs/1707.06887
https://doi.org/10.48550/ARXIV.1710.02298
https://arxiv.org/abs/1710.02298
https://doi.org/10.48550/ARXIV.1712.01815
https://arxiv.org/abs/1712.01815

[45] B.-G. Kim, Y. Zhang, M. van der Schaar, and J.-W. Lee, “Dynamic pricing
and energy consumption scheduling with reinforcement learning,” IEEE Trans-
actions on Smart Grid, vol. 7, no. 5, pp. 2187–2198, 2016. doi: 10.1109/TSG.
2015.2495145.

[46] R. Lu, S. Hong, and X. Zhang, “A dynamic pricing demand response algorithm
for smart grid: Reinforcement learning approach,” Applied Energy, vol. 220,
pp. 220–230, Jun. 2018. doi: 10.1016/j.apenergy.2018.03.072.

[47] H. Zang and J. Kim, “Reinforcement learning based peer-to-peer energy trade
management using community energy storage in local energy market,” Ener-
gies, vol. 14, no. 14, 2021, issn: 1996-1073. doi: 10.3390/en14144131. [Online].
Available: https://www.mdpi.com/1996-1073/14/14/4131.

[48] L. Xiao, X. Xiao, C. Dai, M. Pengy, L. Wang, and H. V. Poor, Reinforcement
learning-based energy trading for microgrids, 2018. arXiv: 1801.06285 [cs.SY].

[49] E. Foruzan, L.-K. Soh, and S. Asgarpoor, “Reinforcement learning approach for
optimal distributed energy management in a microgrid,” IEEE Transactions on
Power Systems, vol. 33, no. 5, pp. 5749–5758, 2018. doi: 10.1109/TPWRS.2018.
2823641.

[50] S. Zhou, Z. Hu, W. Gu, M. Jiang, and X.-P. Zhang, “Artificial intelligence based
smart energy community management: A reinforcement learning approach,”
CSEE Journal of Power and Energy Systems, vol. 5, no. 1, pp. 1–10, 2019. doi:
10.17775/CSEEJPES.2018.00840.

[51] T. Chen and W. Su, “Local energy trading behavior modeling with deep re-
inforcement learning,” IEEE Access, vol. 6, pp. 62 806–62 814, 2018. doi: 10.
1109/ACCESS.2018.2876652.

[52] D. K. Gode and S. Sunder, “Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality,” Journal of
Political Economy, vol. 101, no. 1, pp. 119–137, 1993.

[53] T. Chen and W. Su, “Indirect customer-to-customer energy trading with rein-
forcement learning,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4338–
4348, 2019. doi: 10.1109/TSG.2018.2857449.

[54] J.-G. Kim and B. Lee, “Automatic p2p energy trading model based on reinforce-
ment learning using long short-term delayed reward,” Energies, vol. 13, no. 20,
2020, issn: 1996-1073. [Online]. Available: https : / /www .mdpi . com/1996 -
1073/13/20/5359.

[55] S. Bose, E. Kremers, E. M. Mengelkamp, J. Eberbach, and C. Weinhardt, “Re-
inforcement learning in local energy markets,” Energy Informatics, vol. 4, no. 1,
p. 7, May 2021, issn: 2520-8942. doi: 10.1186/s42162-021-00141-z. [Online].
Available: https://doi.org/10.1186/s42162-021-00141-z.

99

https://doi.org/10.1109/TSG.2015.2495145
https://doi.org/10.1109/TSG.2015.2495145
https://doi.org/10.1016/j.apenergy.2018.03.072
https://doi.org/10.3390/en14144131
https://www.mdpi.com/1996-1073/14/14/4131
https://arxiv.org/abs/1801.06285
https://doi.org/10.1109/TPWRS.2018.2823641
https://doi.org/10.1109/TPWRS.2018.2823641
https://doi.org/10.17775/CSEEJPES.2018.00840
https://doi.org/10.1109/ACCESS.2018.2876652
https://doi.org/10.1109/ACCESS.2018.2876652
https://doi.org/10.1109/TSG.2018.2857449
https://www.mdpi.com/1996-1073/13/20/5359
https://www.mdpi.com/1996-1073/13/20/5359
https://doi.org/10.1186/s42162-021-00141-z
https://doi.org/10.1186/s42162-021-00141-z

[56] E. Mengelkamp, J. Gärttner, and C. Weinhardt, “Intelligent agent strategies for
residential customers in local electricity markets,” in Proceedings of the Ninth
International Conference on Future Energy Systems, ser. e-Energy ’18, New
York, NY, USA: Association for Computing Machinery, 2018, 97–107, isbn:
9781450357678.

[57] I. Erev and A. E. Roth, “Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria,” The
American Economic Review, vol. 88, no. 4, pp. 848–881, 1998, issn: 00028282.
[Online]. Available: http://www.jstor.org/stable/117009.

[58] E. Mengelkamp, P. Staudt, J. Garttner, and C. Weinhardt, “Trading on local
energy markets: A comparison of market designs and bidding strategies,” in
2017 14th International Conference on the European Energy Market (EEM),
2017, pp. 1–6.

[59] J. Nicolaisen, V. Petrov, and L. Tesfatsion, “Market power and efficiency in a
computational electricity market with discriminatory double-auction pricing,”
IEEE Transactions on Evolutionary Computation, vol. 5, no. 5, pp. 504–523,
2001.

[60] D. Holmberg, M. Burns, S. Bushby, A. Gopstein, T. McDermott, Y. Tang, Q.
Huang, A. Pratt, M. Ruth, F. Ding, Y. Bichpuriya, N. Rajagopal, M. Ilic, R.
Jaddivada, and H. Neema, “NIST transactive energy modeling and simulation
challenge phase II final report,” National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Rep. NIST SP 1900-603, 2019.

[61] S. Ciraci, J. A. Daily, J. C. Fuller, A. R. Fisher, L. D. Marinovici, and K.
Agarwal, “Fncs: A framework for power system and communication networks
co-simulation,” 2014.

[62] Q. Huang, T. E. McDermott, Y. Tang, A. Makhmalbaf, D. J. Hammerstrom,
A. R. Fisher, L. D. Marinovici, and T. Hardy, “Simulation-Based Valuation of
Transactive Energy Systems,” IEEE Transactions on Power Systems, vol. 34,
no. 5, 2019.

[63] S. Mittal, M. Ruth, A. Pratt, M. Lunacek, D. Krishnamurthy, and W. Jones,
“A System-of-Systems Approach for Integrated Energy Systems Modeling and
Simulation: Preprint,” en, 2015.

[64] M. D. Ilić, R. Jaddivada, and X. Miao, “Scalable Electric Power System Sim-
ulator,” in 2018 IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), 2018.

[65] H. Neema, J. Sztipanovits, M. Burns, and E. Griffor, “C2WT-TE: A model-
based open platform for integrated simulations of transactive smart grids,” in
2016 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2016. doi: 10.1109/MSCPES.2016.7480218.

[66] H. Neema, J. Sztipanovits, D. J. Hess, and D. Lee, “TE-SAT: Transactive En-
ergy Simulation and Analysis Toolsuite,” in 2020 IEEE Workshop on Design
Automation for CPS and IoT (DESTION), 2020.

100

http://www.jstor.org/stable/117009
https://doi.org/10.1109/MSCPES.2016.7480218

[67] L. Tesfatsion, “Chapter 13 - electric power markets in transition: Agent-based
modeling tools for transactive energy support,” in, ser. Handbook of Compu-
tational Economics, C. Hommes and B. LeBaron, Eds., vol. 4, Elsevier, 2018,
pp. 715 –766.

[68] Steven, Dc-May, and P. Atrazhev, Trex-ai/trex-core: V3.7.5, version v3.7.5,
Oct. 2022. doi: 10.5281/zenodo.7240411. [Online]. Available: https://doi.org/
10.5281/zenodo.7240411.

[69] D. Arrachequesne, Socket.io, 2021. [Online]. Available: https://github.com/
socketio/socket.io (visited on 02/24/2021).

[70] S. Zhang, TREX Analysis Tools, https : / / github . com / sd - zhang /TREX -
Analysis-Tools, 2020.

[71] D. I. Dong Chen, “Sundance: Black-box behind-the-meter solar disaggregation,”
in e-Energy ’17: Proceedings of the Eighth International Conference on Future
Energy Systems, May 2017, pp. 45–55.

[72] EPRI, Epri distribution system simulator, 2021. [Online]. Available: https://
sourceforge.net/projects/electricdss/ (visited on 02/24/2021).

[73] Opendssdirect.py, version 00. [Online]. Available: https : / / www . osti . gov /
/servlets/purl/1374532.

[74] A. Latif, M. Ikechi, USDOE, S. E. Industries, and I. Hawaiian Electric Com-
pany, Pydss. doi: 10.11578/dc.20190514.1. [Online]. Available: https://www.
osti.gov//servlets/purl/1512458.

[75] J. C. Fuller, S. E. McHann, and W. Sunderman, “Using open source modeling
tools to enhance engineering analysis,” in 2014 IEEE Rural Electric Power Con-
ference (REPC), 2014, pp. C4–1–C4–5. doi: 10.1109/REPCon.2014.6842209.

[76] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,”
Journal of machine learning research, vol. 4, no. Nov, pp. 1039–1069, 2003.

[77] K. Strunz, E. Abbasi, R. Fletcher, N. Hatziargyriou, R. Iravani, and G. Joos, TF
C6.04.02 : TB 575 – Benchmark Systems for Network Integration of Renewable
and Distributed Energy Resources. Apr. 2014, isbn: 9782858732708.

[78] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht, “Smart*:
An open data set and tools for enabling research in sustainable homes,” Proc.
SustKDD., Jan. 2012.

[79] O. Jogunola, Y. Tsado, B. Adebisi, and R. Nawaz, “Trading strategy in a
local energy market, a deep reinforcement learning approach,” in 2021 IEEE
Electrical Power and Energy Conference (EPEC), 2021, pp. 347–352. doi: 10.
1109/EPEC52095.2021.9621459.

[80] H. C. Hesse, R. Martins, P. Musilek, M. Naumann, C. N. Truong, and A. Jossen,
“Economic optimization of component sizing for residential battery storage sys-
tems,” Energies, vol. 10, no. 7, 2017, issn: 1996-1073. doi: 10.3390/en10070835.
[Online]. Available: https://www.mdpi.com/1996-1073/10/7/835.

101

https://doi.org/10.5281/zenodo.7240411
https://doi.org/10.5281/zenodo.7240411
https://doi.org/10.5281/zenodo.7240411
https://github.com/socketio/socket.io
https://github.com/socketio/socket.io
https://github.com/sd-zhang/TREX-Analysis-Tools
https://github.com/sd-zhang/TREX-Analysis-Tools
https://sourceforge.net/projects/electricdss/
https://sourceforge.net/projects/electricdss/
https://www.osti.gov//servlets/purl/1374532
https://www.osti.gov//servlets/purl/1374532
https://doi.org/10.11578/dc.20190514.1
https://www.osti.gov//servlets/purl/1512458
https://www.osti.gov//servlets/purl/1512458
https://doi.org/10.1109/REPCon.2014.6842209
https://doi.org/10.1109/EPEC52095.2021.9621459
https://doi.org/10.1109/EPEC52095.2021.9621459
https://doi.org/10.3390/en10070835
https://www.mdpi.com/1996-1073/10/7/835

[81] S. Zhang, R. Martins, M. Gul, and P. Musilek, “Economy of residential pho-
tovoltaic generation and battery energy storage in alberta, canada,” in 2017
IEEE Electrical Power and Energy Conference (EPEC), 2017, pp. 1–5. doi:
10.1109/EPEC.2017.8286177.

[82] C. CRISTEA, M. CRISTEA, I. BIROU, and R.-A. TÎRNOVAN, “Techno-
economic evaluation of a grid-connected residential rooftop photovoltaic sys-
tem with battery energy storage system: A romanian case study,” in 2020 In-
ternational Conference on Development and Application Systems (DAS), 2020,
pp. 44–48. doi: 10.1109/DAS49615.2020.9108954.

[83] K. Strunz, R. H. Fletcher, R. Campbell, and F. Gao, “Developing benchmark
models for low-voltage distribution feeders,” in 2009 IEEE Power and Energy
Society General Meeting, 2009, pp. 1–3. doi: 10.1109/PES.2009.5260227.

[84] S. Zhang, CIGRE North American Low Voltage Residential Circuit OpenDSS
Model for T-REX, https://github.com/sd-zhang/TREX-Analysis-Tools/tree/
powerflow, 2022.

[85] S. Zhang, TREX-Core-sd-zhang-dev, https://github.com/sd- zhang/TREX-
Core/tree/dev, 2020.

[86] P. Atrazhev and P. Musilek, “Investigating effects of centralized learning decen-
tralized execution on team coordination in the level based foraging environment
as a sequential social dilemma,” in International Conference on Practical Ap-
plications of Agents and Multi-Agent Systems, Springer, 2022, pp. 15–23.

102

https://doi.org/10.1109/EPEC.2017.8286177
https://doi.org/10.1109/DAS49615.2020.9108954
https://doi.org/10.1109/PES.2009.5260227
https://github.com/sd-zhang/TREX-Analysis-Tools/tree/powerflow
https://github.com/sd-zhang/TREX-Analysis-Tools/tree/powerflow
https://github.com/sd-zhang/TREX-Core/tree/dev
https://github.com/sd-zhang/TREX-Core/tree/dev

Appendix A: Configuration File

Listing A.1: example of configs.json used in T-REX
{

"version" : "3.7.0" ,
"study" : {

"name" : "descriptive_name" ,
"description" : "long_description" ,
"start_datetime" : "YYYY -MM -DD hh:mm:ss" ,
"start_datetime_sequence" : "sequential" ,
"timezone" : "America/Vancouver" ,
"days" : 1 ,
"generations" : 10 ,
"profiles_db_location" : "postgresql ://un:pws@localhost/profiles" ,
"output_db_location" : "postgresql ://un:pw@localhost" ,
"sim_root" : "/home/trex/sim/"

} ,
"server" : {

"host" : "localhost" ,
"port" : "5100"

} ,
"training" : {

"hyperparameters" : {
"alpha_critic" : {"start" : 0 . 1 , "stop" : 0 . 2 , "num" : 2} ,
"alpha_actor" : 0 . 1

} ,
"curriculum" : {

"0" : {
"learning" : f a l s e

} ,
"1" : {

"learning" : t rue
} ,
"50" : {

"anneal" : {"exploration_factor" : [0 . 9 5 , "multiply" , 0 . 1] }
} ,
"100" : {

"anneal" : {"learning_rate" : [0 . 9 8 , "multiply" , 1e−7]}
}

}
} ,
"market" : {

"id" : "" ,
"type" : "MicroTE3B" ,
"close_steps" : 2 ,
"grid" : {

"price" : 0 . 069 ,
"fee_ratio" : 1 . 1 ,
"tou" : {

"5,6,7,8,9,10" : {
"7,8,9,10,17,18" : 0 . 144 ,
"11,12,13,14,15,16" : 0 .208

} ,
"1,2,3,4,11,12" : {

103

"11,12,13,14,15,16" : 0 . 144 ,
"7,8,9,10,17,18" : 0 .208

}
}

}
} ,
"participants" : {

"R5" : {
"type" : "Residential" ,
"trader" : {

"track_metrics" : true ,
"type" : "qlearn_bandit" ,
"bid_price" : 0 . 07 ,
"ask_price" : 0 . 14 ,
"learning" : true ,
"reward_function" : "net_profit" ,
"use_synthetic_profile" : "test_profile_1kw_constant_gl" ,
"trader_specific_parameters" : param(s)

} ,
"load" : {

"scale" : 1
} ,
"generation" : {

"scale" : 10
} ,
"storage" : {

"type" : "Bess" ,
"capacity" : 10000 ,
"power" : 5000 ,
"efficiency" : 0 . 95 ,
"monthly_sdr" : 0 .05

}
}

}
}

104

	Introduction
	Motivation
	Objectives
	Thesis Layout

	Background
	Energy and Markets
	Demand Side Management
	Transactive Energy
	Agent-Based Computational Economics
	Net Billing Vs. Net Metering
	Efficient Market Hypothesis
	Double Auction

	Artificial Intelligence and Machine Learning
	Artificial Intelligence
	Machine Learning
	Neural Networks
	Deep Learning
	Reinforcement Learning
	Multi-Armed Bandit
	Q-Learning
	Deep Reinforcement Learning
	RL for Local Energy Markets

	T-REX Simulation Software
	Introduction
	Design Requirements and Constraints
	System Architecture
	Networking and Scalability
	Servers and Clients
	Bridge Server

	T-REX Software Functions
	Configuration File
	Study Parameters
	Server Parameters
	Training Parameters
	Market Parameters
	Participant Parameters

	Using T-REX
	Running a Simulation
	Output Data
	Simulation Controller
	Data Processors and Extensions
	Power Flow Simulations

	ALEX: Autonomous Local Energy Exchange
	Introduction
	Core Concept
	Market Mechanism
	Market Interaction
	ALEX as a Stochastic Game
	ALEX Experiments
	Determining the Optimal Settlement Mechanism
	Evaluating Fitness for Demand Response
	The Effects of Battery Storage on Power Flow

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	Bibliography
	Appendix A: Configuration File

