
University of Alberta

T e m p o r a l - D i f f e r e n c e N e t w o r k s

by

Brian Tim othy Tanner

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of M aster of Science.

Department of Computing Science

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09297-1
Our file Notre reference
ISBN: 0-494-09297-1

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

We introduce a generalization of temporal-difference (TD) learning to networks of

interrelated predictions. Rather than relating a single prediction to itself at a later

time, as in conventional TD methods, a TD network relates each prediction in a

set of predictions to other predictions in the set at a later time. TD networks ap­

ply TD learning to a wider class of predictions than previously considered. We

demonstrate that TD networks can learn predictive state representations that en­

able exact solution of non-Markov problems. We introduce two extensions to TD

networks including augmenting the input representation to include recent history

and generalizing the learning algorithm to use TD(A) style eligibility traces. We

argue that TD networks represent an extension to TD methods and bring us closer

to the goal of representing world knowledge in predictive, grounded terms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I would like to thank my supervisor Dr. Richard Sutton, for introducing me to an

interesting area of research so early in my academic career. Also, for believing that

I was worth the countless hours he spent helping improve my writing and research

skills. I ’d also like to thank everyone in the RLAI lab, but specially Eddie Rafols,

Anna Koop, Dan Lizotte, Peter McCracken, David Silver, and Mark Ring. I would

have been lost without all of those afternoon whiteboard sessions :)

Finally, I just want to thank my beautiful wife Ariel for having the patience to

not only survive, but to support the late nights and the long hours. Thanks for

understanding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 Discrete Dynamical System s... 1

1.2 Predictive Representations.. 2

1.3 Temporal-Difference Networks.. 3

1.4 TD Network O verview ... 4

1.4.1 Question N etw orks.. 4

1.4.2 TD Network Operation ... 6

2 Related Work 10

2.1 Temporal-Difference Methods of P re d ic tio n .. 10

2.2 Discrete Dynamical System s.. 11

2.3 Modeling Dynamical S y stem s.. 12

2.3.1 Markov Decision Processes ... 14

2.3.2 N th-Order Markov Models ... 15

2.3.3 The System-Dynamics M atrix .. 15

2.3.4 Partially Observable Markov Decision Processes 18

2.3.5 Predictive Representations ... 20

2.3.6 Linear Predictive State R epresentations.................................. 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.7 TD Networks and Predictive State Representations............... 21

2.3.8 Nonlinear Predictive State R epresentations........................... 24

2.3.9 Schem as... 25

2.3.10 Variable Length Memory M e th o d s ... 25

2.3.11 Other M eth o d s... 26

2.4 Artificial Neural N etw orks... 26

2.4.1 TD Networks and Artificial Neural N etw o rk s........................ 27

3 TD Network Experiments 31

3.1 Error R eporting... 31

3.2 Random W alk.. 32

3.2.1 Experiment 1: n-step Unconditional P red ic tion 33

3.2.2 Experiment 2: Action-conditional P re d ic tio n 36

3.2.3 Experiment 3: Learning a Predictive State Representation . . 38

3.3 Conclusion .. 40

4 TD Networks w ith History 41

4.1 TD Network Counter-examples... 41

4.1.1 Experimental Results ... 44

4.1.2 Approximate Solutions... 46

4.2 Indefinite-memory Problem s.. 47

4.2.1 Experimental Results ... 47

4.3 Conclusions.. 49

5 TD(A) Networks 50

5.1 Questions and T a rg e ts ... 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 TD(A) N e tw o rk s .. 52

5.2.1 TD(A) Network Learning A lg o rith m .. 55

5.2.2 TD(A) Network Learning Algorithm Discussion....................... 56

5.3 Experimental Results.. 57

5.4 The Computational Cost of A .. 62

5.5 Conclusions.. 65

6 Conclusion 67

6.1 Discussion and C ontributions... 67

6.2 Future Work .. 6 8

6.2.1 D iscovery... 69

6.2.2 Fast Learning... 69

6.2.3 Temporal A b strac tio n .. 70

6.2.4 Reinforcement L earn in g .. 70

Bibliography 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Three sample question networks... 5

2.1 Simple MDP with 5 states and 2 actions... 14

2.2 8 -state ring w orld ... 19

2.3 Artificial neural ne tw ork ... 27

2.4 TD network drawn as a recurrent neural ne tw ork 28

2.5 Jordan’s recurrent A N N ... 29

2.6 Elman’s recurrent A N N ... 29

3.1 7-state stochastic random walk world.. 33

3.2 Fully observable 7-state stochastic random walk w o r ld 34

3.3 Sample question n e tw orks.. 35

3.4 RMSE of TD-network predictions on non-Markov t a s k 39

4.1 4-state cycle w o r ld .. 42

4.2 Sample input vector for cycle w orld.. 44

4.3 TD network performance on 7-state cycle w orld 45

4.4 5-state ring world and question n e tw o rk ... 48

4.5 Performance of TD network on 5-state ring w orld 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Symmetric action-conditional question network..................................... 51

5.2 Target flow d ia g ra m ... 53

5.3 Pseudo-code for TD(A) learning algorithm..................................... 55

5.4 Learning curves for TD(A) learning algorithm on cycle world 58

5.5 8 -state ring world and question n e tw o rk ... 59

5.6 Learning curves for TD(A) learning algorithm on 5-state ring world . 60

5.7 Learning curves for TD(A) learning algorithm on 8 -state ring world . 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Observation matrix : 2 observations and actions................................. 13

2.2 Observation matrix : MDP.. 15

2.3 V function : 27ld-order Markov model... 16

2.4 Systems-dynamics matrix: 2 observations and actions 18

3.1 RMSE of Monte-Carlo and TD-network predictions (no actions) . . 36

3.2 RMSE of Monte-Carlo and TD-network predictions (with actions) . 37

3.3 Batch performance of Monte-Carlo and TD-network predictions . . . 38

4.1 Unstable approximate solutions learned by a TD n e tw o rk 46

5.1 RMSE of EM and TD(1) algorithm on cycle and ring worlds 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Predicting future experience from past experience is a problem of interest in a variety

of disciplines including psychology, economics, engineering, and physics. Whether

the objective is to estimate the course of a distant comet or a stock’s opening price,

prediction requires a model: a simplified description of a complex process.

A paradigm or representation is the set of beliefs and assumptions that pro­

vide the foundation for a particular class of models. Each paradigm has its own

own strengths and weaknesses. For example, vast amounts of computation may

be required to create a theoretically correct model in one paradigm, while another

representation may be used to produce inaccurate models inexpensively.

This thesis explores a new predictive knowledge representation, called temporal-

difference (TD) networks.

1.1 D iscre te D y n a m ica l S ystem s

TD networks are models of discrete dynamical systems (DDS) with discrete obser­

vations and actions. Any DDS is fully specified by three things: O , A, and V- At

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each discrete time step, a DDS emits an observation ot from a discrete set of output

symbols O and accepts an action at from a set of discrete input symbols A. Based

on all preceding events and at, the DDS probabilistically emits a new observation

ot+i- The sequence of actions and observations that begins at time 0 (oo) and ends

at time t (at) is called the history of the system at time t, or ht■ The symbol ot+i is

chosen probabilistically from a distribution conditioned on ht. V is the probabilistic

mapping from a history to an observation; V% corresponds to Pr(ot+\ = o\ht = h).

Any representation of a DDS requires some structure in V, some way to sum­

marize this function that can generate infinite sequences of experience. Chapter

2 contains discussion of some common representations and the constraints and as­

sumptions they imply on V.

A sufficient statistic or state is any lossless summary of the history ht■ In the

literature, the term “state” is sometimes used quite loosely. For example, Russell

and Norvig imply that future experience can depend on the previous state, the

previous two states, or the previous n states [Russell and Norvig, 2003]. Their

definition of state does not mean sufficient statistic of the system.

1.2 P red ic tiv e R ep resen ta tio n s

Predictive representations are a novel paradigm used to create models of DDSs

[Rivest and Schapire, 1990; Littman et ah, 2002; Jaeger, 1998]. In predictive repre­

sentations, the model is a collection of predictions about future experience and the

mechanisms for updating those predictions.

If different histories have identical probability distributions over all future ex­

perience, they correspond to the same state. The implied assumption of predictive

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representations is that equivalence of probabilities over all future experience can be

summarized using predictions about a carefully selected subset of future experience.

These predictions would then be a sufficient statistic.

1.3 T em poral-D ifference N etw ork s

Temporal-difference (TD) networks are a formalism for expressing and learning

grounded knowledge about dynamical systems. A TD network is a predictive model

that combines aspects of temporal-difference methods, predictive representations,

and neural networks.

Knowledge is grounded if it can be directly related to experience: it is in terms

of actions the agent can choose and symbols the agent can observe. Knowledge is

not grounded when represented in some abstract sense that is understood by the

designer and only indirectly related to the agent.

TD networks are an extension to existing work on temporal-difference methods.

The idea of conventional TD methods is to “learn a guess from a guess” , where both

guesses are predictions about the same event made at different times. TD networks

generalize this idea and learn from predictions of different events made at different

times.

A TD network is a generative model of a discrete dynamical system. In a TD

network, each prediction is the answer to some question about future interaction

with the DDS. These questions may take a variety of forms, although most generally

they are some function of future predictions and observations.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 T D N etw ork O verview

A TD network is a network of nodes, each representing a single scalar prediction.

The nodes are interconnected by links representing the TD relationships among the

predictions and to the observations and actions. These links determine the extensive

semantics of each prediction—its desired or target relationship to the data. They

represent what the agent should predict about the data as opposed to how the agent

should predict it. These links determine a set of questions being asked about the

data, and accordingly are called the question network.

Independent of the question network, a separate set of interconnections deter­

mine the actual computational process—the calculation of the predictions for each

node at each time step. This process provides the answers to the questions, and

accordingly is called the answer network. The question network provides targets for

a learning process that shapes the answer network.

1.4.1 Q uestion N etw orks

Figure 1.1 shows three suggestive examples of potential question networks. Assume

the systems being modeled by these networks have two observations, O = {0 , 1 }.

The boxes at the top of each question network represent the observation bit ot+\.

The node labeled 1 is directly connected to Ot+i and represents a question or

prediction of the probability that the observation bit will be 1 on the next time step.

For now, let the prediction of node i at time t be y\ and the TD target for y\ is z\.

The target for Node 1 can be described as z\ = Pr(ot+ 1 = 1).

The node labeled 2 is a prediction of the expected value of Node 1 on the next

step, z} = E{y}+1). The extensive definition of Node 2’s prediction is the probability

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Network 1 Network 2 Network 3

't+1 't+1 't+1

OR

Figure 1.1: Three example question networks. The observation is represented as
a box at the top while actual nodes of the TD network, corresponding each to a
separate prediction, are below.

that the first observation bit will be 1 in two time step, Pr(ot+ 2 = !)•

Node 3 similarly predicts the expected value of Node 2 at the next time step

z f = E(yf+1). To unroll a question is to examine the implications of its questions

to identify their extensive definition. If Node 3’s question is unrolled, it can be

interpreted as £’(yf1+2) or Pr(ot+ 3 = 1).

Node 4 is more complicated, it can be thought of as the expected average value of

the three nodes it is pointing to. The numbers on the links indicate the weight of each

connection. The target for Node 4 is z f = (g (y*+i)+-E(yt+0+Pr(o*+i U) ̂ Unrolled,

the question is W or

Node 5 is a conventional TD prediction, in this case of the future 7 discounted

sum of the observation bit. Its target is the familiar TD target, the data bit plus

the node’s own prediction on the next time step (with weightings (1 — 7) and 7

respectively). The immediate target is z f = (1 — 7)ot+i + 7 yf+1- Unrolled, the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

target is:
OO

(1 - 7)Y l^ ° t+ i+ i
i—0

Node 6 predicts the expected value of Node 5 at the next time step z f = E(yf+1),

or unrolling the question further it is:

OO

(1 - 7) Yot+i+2
i=0

Nodes 7 and 8 predict the probability of the observation bit being 1 if particular

actions a or b are taken respectively. In target notation, z j = Pr(ot+i = l |a t = A a)

and zf — Pr(ot+ 1 = l\at = A b). If the action at time t does not match the condition

of the prediction, the prediction will not have a valid target.

Node 9 is a prediction of whether yj+1 or yf+1 will predict 1. The “or” can be

defined arbitrarily, assume here it is the maximum of the two values. The TD target

for Node 9 is z f = max[E(yJ+1), E(yf+1)\. Unrolled, Node 9 is asking a question

about the observation, max[Pr(ot+ 2 = l|fq+i = A a), Pr(ot+ 2 = l|cq+i = *4h)].

As the questions become more complex, they become harder to unroll and ex­

press in terms that can be understood by the designer. More nodes can be added,

their extensive definitions are difficult to express but nevertheless are completely

defined as long as the local TD relationships are clear.

1.4.2 T D N etw ork O peration

The operation of a TD network can be summarized by five steps. A detailed explana­

tion of the TD network operation is provided after these steps have been introduced.

1. Choose an action at~ \ and receive an observation from the environment ot

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 . Calculate the input vector x< as a function of the previous predictions y t- i ,

the action just taken a t-1 , and the new observation ot

3. Create the new predictions y t = cr(WjXt)

4. Calculate the targets z t- i f°r the previous predictions y t_x using y t and the

observation ot according to the question network’s links and the action condi­

tions

5. Update the weights W according to (zt_i — y t- \)

The operation of the answer network is defined by a set of vector valued functions.

Let y\ G [0,1], i = 1 , . . . , n denote the prediction of the ith node at time step t. The

column vector of predictions y t = (y}7. . . ,y t) T is calculated using a vector-valued

function u with modifiable parameter W :

y t = u(yt_ 1 ,a t_ i,o t ,W t) <E 3?n. (1.1)

The function u corresponds to the answer network, with W being the weights

on its links. In general u is an arbitrary function approximator, but for concreteness

it is defined to be of a generalized linear form

y t = e r (W tx t) (1.2)

where x t 6 5Rm is a feature vector, W t is a n x rn matrix, and a is some n-vector

activation function, in our experiments either the identity function or the S-shaped

logistic function a(s) = The feature vector is an arbitrary function of the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preceding action, observation, and node values:

x t = x (a t_i, ot, y t_i) G $Rm. (1.3)

For example, X(might have one component for each observation bit, one for each

possible action (one of which is 1 , the rest 0), and n more for the previous node

values yt_i-

Each weight corresponds to the weight of input xj for prediction y j . The

update for each component w f of W j is a fixed step size gradient descent update

in least squares objective

wl+i - wl3 = a (4 - (i-4)owt

where a is a step-size parameter, z] is the TD target, and c\ is an update condition

(described later).

The TD target z\ for y\ defined by the question network is a function of the

successive predictions and observations. In vector form,

z t = z(ot+i , y t+i) €$ l n, (1.5)

where y 4+1 is like y t in Equation 1.1, except calculated with the old weights before

they are updated on the basis of zt:

y t = u (y t_ 1,a t_ i ,o t, W t_i) € 9fT. (1.6)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(This temporal subtlety also arises in conventional TD learning.) In addition to

defining the TD targets, the question network also specifies action-conditions for

predictions.

For example, Node 7 in Figure 1.1 predicts what the third observation bit will

be if action a is taken. To arrange for such semantics there is a new vector ct of

conditions, cj, indicating the extent to which y\ is held responsible for matching

z\, thus making the fth prediction conditional on c\. Each c\ is determined as an

arbitrary function cl of at and yt- In vector form,

For Node 7 in Figure 1.1, cj = 1 if at = A a, otherwise cj = 0.

The timing details may be clarified by writing the sequence of quantities in the

order in which they are computed:

Prior work related to TD networks is presented in Chapter 2. We present ex­

periments with TD networks in Chapter 3, followed by extensions to TD network

specification in chapters 4 and 5. Finally, we conclude with an overall discussion of

our results and future work in Chapter 6 .

ct = c(a j,y t) € [0 , l]n. (1.7)

y t at ct ot+1 x t+i y t+l zt W m yt+1. (1.8)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

This chapter includes a survey of some prior work that is related to TD networks.

Many representations can be used to model dynamical systems; a brief survey of the

approaches that are most directly related to TD networks is presented. This sur­

vey includes methods that assume an underlying abstract state space, history-based

methods, and existing predictive representations of state. This chapter includes a

brief introduction to networks of interrelated predictors (artificial neural networks).

TD networks are an extension of conventional temporal-difference methods of pre­

diction, which are also briefly summarized in this chapter.

2.1 T em p oral-D ifference M eth o d s o f P red ic tio n

Temporal-difference (TD) methods were formalized and studied by Sutton [1988] as

a solution to the problem of making multi-step predictions of future events based on

past experience. Previous to Sutton’s formalization, well-understood techniques for

learning predictions were trained using differences between predictions and the ac­

tual future outcomes. With TD methods, learning was applied using the differences

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between temporally successive predictions. The example used by Sutton is that of

a weatherman making a prediction on Monday about if it will rain on Saturday.

The conventional approach would have been to wait until Saturday, observe if it

rained, and then update the function to make better prediction on future similar

Mondays. With Sutton’s method, the weatherman would make a second prediction

of Saturday’s rain on Tuesday. The temporal-difference error between Monday and

Tuesday’s predictions could be used to improve predictions for similar Mondays.

Sutton refers to the intuition of temporal-difference learning as “learning a guess

from a guess”.

TD methods are incremental, so they require fewer computational resources than

their counterparts. In the weatherman example, after Tuesday has passed, no book­

keeping or future information must be updated to improve the Monday prediction.

With other approaches, extra work is required to keep track of all the predictions

and then to finally update them when their target values are available. Sutton also

claims that TD methods are more data efficient than the competing approaches;

they converge faster and learn better predictions with limited data [Sutton, 1988].

2.2 D iscre te D yn am ica l S y stem s

All discrete dynamical systems (DDSs) with discrete actions and discrete obser­

vations can be described by a tuple of three sets: {0 ,A ,V). Subscript notation

is used to identify the time at which some event occurred; at each time step the

agent chooses an action at € A and the system returns an observation ot+i G O.

This sequence of actions and observations that begins at time 0 and ends at time t,

{ooaoO\ai,..., otat}, is called the history of the system at time t, or ht . The symbol

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ot-|-i is chosen probabilistically by the system from a distribution conditioned on its

current history, ht-

The observation function V is characterized by an observation matrix with an

infinite number of rows and \0\ columns. Each row in the observation matrix cor­

responds to some possible history, and each column corresponds to an observation

from O. The entries are probabilities: V% = Pr(ot+ 1 = o\ht = h).

For convenience, the rows of the matrix are ordered by length, the first row is the

null history 0 , followed by all possible length one histories, then all possible length

two histories, etc. The entry at row i, column j corresponds to the probability that

observation Oj will be emitted by the system after observing history hi-

Any representation of a DDS requires some structure in V, some way to sum­

marize this function that can generate infinite sequences of experience. A model is

perfect if it is equivalent to V. Another way to think about these representations is

that they are generators of the observation matrix. If a model generates the same

observation matrix as V then it is a perfect model of the DDS.

Sections 2.3.1-2.3.11 discuss some common representations and the constraints

or assumptions they put on V-

2.3 M o d elin g D yn am ica l S y stem s

When considering representations of dynamical systems, there are many different

axes that can be used for comparison. One approach might work well with a small

amount of data and a large amount of computation, while a different approach may

use a relatively small amount of computation but needs much more data. There are

a large number of other properties such as the ability to specify prior knowledge,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

History P(ou) P(oi)
0 (h9) 0 1

0 o°a° (h1) 0 1

0 o°a1 (h2) 1 0

0 o1a° (h3) .5 .5
0 o1a 1 (h4) .1 .9

0 o°aoo°ao (h5) 1 0’"boOo<3oO

0 1

0 o°a°o1ao (h7) 0 1

0 o°a°o1a 1 (h8) 0 1

0 o°a1o°ao (h9) 1 0

0 o°a1o°a1 (h10) 1 0

0 o°a1o1a° (hn) 1 0

0 o°a1o1a 1 (h12) .5 .5
0 o1a°o°ao (h13) .75 .25
0 o1o°o°a1 (h14) .45 .65
0 o1a°o1a° (h) 0 1

0 o1o°o1a1 (h16) 1 0

0 o1a 1o°a° (h17) 1 0

0 o1a 1o°a1 (h18) .5 .5
0 o1a1o1a° (h19) .4 .6

0 o1a 1o1a 1 (h20) .8 .2

Table 2.1: Example of the observation matrix for a DDS with 2 observations and 2
actions. Superscript notation refers to a particular element from a set. For example,
oi corresponds to the ith element from O (starting at 0), and aP corresponds to the
j th element from A.

exact vs. approximate models, deterministic vs. stochastic models, etc., that can

strengthen or weaken the case for using a certain approach depending on the context.

The varying requirements of each situation dictate that there will be no approach

that is right for all tasks. TD networks are no exception to this rule: while they are

well suited to some tasks, they may be poorly suited to others.

The following sections include a brief introduction to various representations

used for modeling dynamical systems. The focus of this discussion is representa­

tional power: some description of what types of DDSs the representation can model

accurately.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.1 M arkov D ecision P rocesses

The Markov decision process (MDP) representation assumes a fixed number of sit­

uations in the system, each deterministically emitting a unique symbol [Sutton and

Barto, 1998]. There is a one to one mapping between the symbols in O and the

situations in the system. This representation implies that V° is conditioned only

on the previous observation and action. The observation ot is therefore a sufficient

statistic in an MDP. This constraint reduces the number of unique rows in the obser­

vation matrix to be equal to the number of observations multiplied by the number

of actions (|0 | • |.4|). The size of an MDP model is the same size as the number of

unique rows in the observation matrix. A graphical illustration of an MDP and its

corresponding observation matrix are shown in Figure 2.1 and Table 2.2 respectively.

Figure 2.1: Graphical representation of a simple MDP with 5 states and 2 actions.
The .5 links coming from state 1 correspond to a stochastic transition; taking action
a0 in state 1 can lead to either state 2 or state 3. The observation matrix for this
MDP is shown in Table 2.2.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

History P(o°) P(^) P(o2) P(o3) P(o4)
...o0a0 0 1 0 0 0

o o © 1 0 0 0 0oeo 1 0 .5 .5 0
...oW 0 0 0 0 1
...o2a° 0 0 0 0 1
...o2a1 0 0 0 1 0
...o3a° 0 0 0 0 1
...o V 1 0 0 0 0
...o4a° 0 0 0 0 1
...o4a1 1 0 0 0 0

Table 2.2: Example of the observation matrix for a DDS with 2 actions and 5
observations that can be modeled by an MDP. The “...” denotes that all preceeding
histories are irrelevant. The corresponding graphical representation of this MDP is
shown in Figure 2.1.

2.3.2 ./V^-Order M arkov M od els

An nlh'-order Markov representation (also known as a k-Markov or k-order Markov

model) is a generalized version of the MDP representation. This representation

requires that there are a fixed number of situations that can each be uniquely iden­

tified by the previous n observations and actions. An MDP is an n th-order Markov

model with n = 1. An n4/l-order Markov model constrains the observation matrix

such that there may be a unique row for each unique history suffix of length n. The

number of unique rows in this matrix is (\0 \n ■ |A|n). The size of this model is the

same size as the number of unique rows in the observation matrix. The state in this

representation is the length n suffix of the current history. A sample observation

matrix for an nth-order Markov model is shown in Table 2.3.

2.3 .3 T he S y stem -D yn am ics M atrix

The representations discussed in the following sections are distinct from those dis­

cussed previously because their models are more compact than their associated

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

History P M P M
...ouauo°a° .5 .5
...o°a°o°a1 1 0

...o0a°o°a0 .75 .25

...o°a°o°a1 0 1

...o°a°o1a° 0 1

...o°a°o1a1 1 0

...o°a°o1a° .5 .5

...o°a°o1a1 0 1

...o°a1o°a0 1 0

...o°a1o°a1 1 0

...o°a1o°a° 0 1

...o°a1o°a1 1 0

...o°a1o1a° .6 .4"eo"eoo

.8 .2

...o°a1o1a° 0 1

...o°a1o1a1 1 0

...o1a°o°a° 0 1

...o1a°o°a1 .5 .5
etc.

...o1a 1o1a° 0 1

...o1a 1o1a1 1 1

Table 2.3: Example of the V function for a DDS with 2 actions and 2 observations
that can be modeled by a 2nd-order Markov model. The “...” denotes that all
preceeding histories are irrelevant, it is only the suffix of the history that matters.

observation matrices. These models can generate an observation matrix with a

near infinite number of unique rows, but cannot generate all possible observation

matrices. To accurately discuss the constraints on V that are induced by these rep­

resentations, it is necessary to further develop our understanding of the observation

matrix and the complexity of dynamical systems.

Originally introduced by Singh et al. [2004], the system-dynamics vector is a

theoretical construct that can be used to represent any discrete dynamical system.

The observation matrix is an isomorphic transformation of the systems-dynamics

vector. The systems-dynamics vector d has infinite length, each element corresponds

to the probability of the DDS emitting a sequence of k observations given a particular

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequence of k — 1 actions. All sequences of lengths 1, 2,3 , ,n are included in this

vector.

Each element in d has the form {OQaoOia\...ak-2 0 k - i}> corresponding to

Pt(oqoi ■ ■ ■ Ok-\\aoa\ ■ ■ ■ ak- 2). The probability of the full sequence is the product

of several rows in the observation matrix:

Pr(o0oi ■ ■ -ok^i\a0ai ■ ■ ■ ak_2) = Pr(o0\$)xPr(o1\ooa0)x- • •xPr(ofc_i|o0a0 oia1 • ■ • afc_

Any element (sequence) from d can be interpreted as a collection of histories,

e = {0, ooao, ooaocqai,. . . , ooaooiai • • • ak- 2 0 k~i}- These histories are labeled {(0 =

e°), (ooao = e1) , . . . , (ooaooiai • • • ak - 2 = The element in d can be expressed

as:
fc-i

Pr(o0oi • • • ofe_ i|a0ai • • • afc_2) = J J V°}
i= 0

The systems-dynamics vector d has an infinite number of entries that can be

thought of as columns; the observation matrix has an infinite number of rows. These

ideas can be combined to construct a new matrix with an infinite number of rows

and columns, known as the systems-dynamics matrix T> [Singh et al., 2004], Like the

observation matrix, each row of V corresponds to a particular history. Like d, each

column corresponds to a sequence of observations and actions. In the literature,

these sequences are called futures / or tests. Each entry corresponds to the

probability of observing the observations in test f % given the history b? and the

action sequence of f l . The first \0\ columns of the matrix correspond to the one-

step tests, the probability of seeing each observation given the history, exactly as in

the observation matrix.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

History o1 o 0 a ° O° o°a°o1 o°a1o° o°a1o1

0 (h u) X X X X X X X

h 1 X X X X X X X

h 2 X X X X X X X

h 3 X X X X X X X

/I4 X X X X X X X

h'5 X X X X X X X

h& X X X X X X X

Table 2.4: Sample systems-dynamics matrix for a DDS with 2 observations and 2
actions. In the columns of this matrix, the notation ola?ok... is short form for the
test Pr{o t + 1 = o \ ot+ 2 = ok\at = a3), given the history corresponding to the row.

The system-dynamics matrix is directly computable from d or the observation

matrix and therefore contains no more information than either of these representa­

tions. The advantage of considering V is that it has certain properties that allow

for better analysis of the complexity of a DDS. Singh et al. define the linear dimen­

sion of a DDS as the rank of its system-dynamics matrix [Singh et al., 2004], The

linear dimension of V is a measure of the complexity of a DDS, so a model that can

accurately represent a given system should have complexity that is a function of the

linear dimension. For example, because the maximum number of unique rows in the

observation matrix for an n th-order Markov model is k = (|0 |n • |M|n), V cannot

have rank greater than k. Therefore, the linear dimension of any system that can

be represented by an n^'-order Markov model cannot be greater than k.

2.3 .4 P artia lly O bservable M arkov D ecision P rocesses

Partially observable Markov decision processes (POMDPs) are like MDPs in the

sense that they require n unique underlying situations in the system [Littman, 1996].

These situations are called nominal states. In the POMDP model, nominal states

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do not emit symbols deterministically. Instead, each nominal state has a stochas­

tic function to determine which symbol is emitted. A POMDP model maintains a

probability distribution over how likely it is that the system is in each of the nom­

inal states. This distribution is known as the belief state. POMDPs can represent

systems that cannot be represented by any fixed-length history model. An example

POMDP with deterministic transitions and observations is shown in Figure 2.2.

Ring World

Figure 2.2: An indefinite-memory POMDP problem, the eight-state deterministic
ring world. There are two actions in this world, left and right. Right advances
in clockwise rotation while left advances in counter-clockwise rotation. Prediction
methods using a finite length history will lose localization after some number of
transitions back and forth between the states that emit observation 0.

Singh et al. have shown that the system-dynamics matrix T> that can be gener­

ated by a POMDP with k nominal states can have rank no greater than k. Therefore,

a POMDP with k nominal states cannot model a dynamical system with linear di­

mension greater than k [Singh et al., 2004]. The converse of this result is not true;

there are DDSs with finite linear dimension that cannot be modeled by any POMDP

[Jaeger, 1998].

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.5 P red ictive R ep resen tation s

The DDS representations above all require that the behaviour of the DDS can be

described in terms of either some abstract space of situations or some suffix of

history. Predictive representations instead characterize the state of the system in

terms of questions about future sequences of actions and observations. Much of

the work on predictive representations has been inspired by Rivest and Schapire’s

work [1994] on inferring the structure of deterministic finite automata. Rivest and

Schapire were the first to propose that the state of a deterministic system could be

represented by a vector of predictions about future tests that could be performed in

the system.

There are several variations of predictive representations: most notably predic­

tive state representations (PSRs) and observable operator models [Littman et al.,

2002; Jaeger, 1998]. PSRs and observable operator models are similar in many ways,

and are even equivalent under certain conditions [Singh et al., 2004]. For clarity,

our focus will be specifically on Littman et aVs PSR model.

2.3 .6 Linear P red ic tiv e S ta te R ep resen tation s

The linear predictive state representation (linear PSR) is derived directly from the

system-dynamics matrix V. If V has finite rank k, there exist k linearly independent

columns in V that can be used to generate the rest of T>. In a linear PSR, the tests

that correspond to these k linearly independent columns from T> are known as core

tests [Littman et al., 2002], The PSR model explicitly estimates the probability

that each core test will succeed if its action sequence is chosen. Because a PSR is

derived directly from V, there is a PSR model with k core tests for every DDS with

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finite rank k [Singh et al., 2004], This result means that there is a PSR that can

represent any n^-order Markov model and POMDP, while the converse is not true.

2.3 .7 T D N etw ork s and P red ictive S ta te R epresen tation s

TD networks and PSRs have many similarities. Both methods are grounded, predic­

tive representations. Both methods learn their model parameters from experience

with the system. The work in both areas has progressed very quickly, and both rep­

resentations have been used in various ways. Even so, there are some fundamental

differences between TD networks and PSRs.

One clear difference is the type of tests that are used in each model. In the linear

PSR literature, tests are for an entire sequence:

Pr(ot+1 = o \ ot + 2 = o>, ■ ■ • , ot+k = ox|at = Aa, at+1 = Ab, ■ ■ ■ , at+fc_i = Af)

In TD networks, the questions are about the observation at the end of a sequence,

similar to the e-tests in nonlinear PSRs [Rudary and Singh, 2004]:

Pr(ot+k = ok\at = aa, at+1 = Ab, ■ ■ ■ , at+k- i = Af)

The information that can be represented by these predictions is different. The

implications of these differences are not completely clear.

To understand further differences between TD networks and PSRs, it is impor­

tant to understand how these methods work.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Linear PSRs

This section presents a high level explanation of the linear PSR representation. For

additional details, see the PSR literature [Littman et al., 2002; Singh et al., 2003;

Singh et al., 2004; James and Singh, 2004; Wolfe et al., 2005].

Recall that a PSR representation assumes the existence of a maximal set of

linearly independent columns in the system-dynamics matrix corresponding to core

tests. If the core test values are known, the probability of all other tests can be

calculated as a linear combination of the core tests.

The vector of core test probabilities is called Q. For every test / , there is weight

vector w? such that the probability of / succeeding can be calculated as a linear

function of Q (ft = Qt ■ vjf). Consider a single core test, q. There is a test f aoq

which is a one time step extension of q: the probability of the system generating the

observation o following the action a and then the test q succeeding. There is also

a test f ao, the probability of seeing o after taking action a. Both f aoq and f ao are

linearly calculable from Q (/ “°9 = Qt ■ wJa°q and f f ° = Qt • w ^°). The properties

of the system-dynamics matrix (and Bayes’ rule) allows the value of q at the next

time step to be calculated:
/ aoq

__ t__
m + l ja o

The core test probabilities can each be updated by dividing their appropriate

one step extension test by the appropriate one step test. The parameters that a

PSR learns are the weights w^a°q for all core tests in Q and w fa°, the one step tests.

The PSR representation requires that for every ao pair, there are two scalars for

each qt € Qt that can be calculated linearly from Qt ■ These scalars can then be

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

divided to calculate the value of qt+\-

TD Networks

TD networks are not derived directly from the system-dynamics matrix and there­

fore the update procedure of the answer network is more difficult to analyze. The

problem is compounded by the general nature of the TD network; there is no single

“correct” update function, input representation, or question network.

Consider a simplified TD network update procedure where the input vector does

not contain any direct information about the action and observation most recently

taken. Instead, the input vector at time t is the prediction vector from the previous

step (xt+i = y t). A bias term for the input representation can be used by adding

a “null” question whose answer is always 1. Also, instead of using a single weight

matrix W for calculating predictions, a different set of weights will be used for each

at-iot pair. Assuming that the cr activation function is the identity function, each

prediction y% e y can be calculated as:

y\+ l= y t -wao

At this level, the difference between the mechanics of a PSR and a TD network

is clear. To calculate the value of a core test a PSR model computes both the

values of the appropriate ao test and the one step extension to the core test, then

divides these two numbers. In a TD network, the answers for the next time step are

calculated directly as a linear function of the answers from the current time step.

The derivation of the PSR update falls out directly from the definition of the core

tests. The exact implications of the TD network update is less clear and is an active

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

area of investigation.

Discussion

TD networks and PSRs are two distinct representations and algorithms for learning

predictive models. Although their predictive nature makes them similar, it is still

unclear exactly what their relationship is. Is one of these two approaches superior?

Are there certain problem classes in which each method has its strengths and weak­

nesses? In the future, will these two methods become more closely associated? We

think that both methods will thrive and future work will further bridge the gap

between them.

2.3.8 N on lin ear P red ictive S ta te R ep resen tation s

Nonlinear PSRs do not require that the core tests be a maximally linearly inde­

pendent set. Relaxing this constraint implies that one step extension to the core

tests may not be a linear function of the core tests. The one step extension tests

are instead calculated using some non-linear function [Rudary and Singh, 2004],

While the tests in a linear PSR predict the probability of a sequence of observations

given a sequence of actions, other tests are possible. Nonlinear PSRS are based on

e-tests, which predict the final observation given a sequence of actions [Rudary and

Singh, 2004], In their work, Rudary and Singh showed that in certain determin­

istic dynamical systems, nonlinear PSR models can be exponentially smaller than

the equivalent linear PSR or POMDP model. It is currently unclear how nonlinear

PSRs can be learned or applied in general.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 .3 .9 Schem as

Schemas are a DDS representation, originally introduced by Drescher [1991]. Drescher’s

original work was recently extended by Holmes and Isbell [2005]. This representa­

tion was introduced as a way to model a DDS where the observations come as a

vector ot , each element of the vector represents the discrete value of a sensor. In

this representation, the model is a collection of action-conditional predictors called

schemas. Each schema predicts the observation vector at time t + 1. To improve

their discriminative power, each schema has a filter or rule called a context that

is only active if certain conditions are true of oj. As the agent gets more experi­

ence with the DDS, new schemas are added and the context of existing schemas

are refined to make them more reliable. This agent also adds virtual sensors called

synthetic items which represent hidden state. If some sensor cannot be predicted

reliably, the agent assumes that there is some hidden variable (the synthetic item)

that, if known, could help with prediction. Over time, the schemas will use and

predict synthetic items just as they do regular observations.

Schemas are intended for deterministic DDSs - environments where V is such

that, given some history ht , the DDS will always generate the same sequence of

observations for a particular action sequence. It is not clear how successfully the

schema approach can model stochastic systems. There is no theoretical analysis of

the potential representational power of the schema system.

2 .3 .10 V ariable L ength M em ory M ethod s

Several representations have been proposed to model DDSs using variable length

memories. These models are similar to the ntft-order Markov models discussed

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

above, but are distinct because not all histories are the same length. Variable

length memory models are more efficient and tractable than nt/l-order Markov mod­

els because long memories are used only in situations where shorter memories are

not a sufficient statistic. Like n th-order Markov models, variable length methods

still cannot represent indefinite-memory problems like the ring world in Figure 2.2.

2.3.11 O ther M eth od s

The preceding sections are a brief summary of the most relevant existing representa­

tions of dynamical systems. There are numerous other methods, each with their own

assumptions and constraints. There are methods that only consider uncontrolled

systems [Shalizi and Shalizi, 2004], methods for deterministic systems [Shen, 1993],

methods that explicitly use a reinforcement signal in building a state representation

[Ring, 1994; McCallum, 1995].

2.4 A rtific ia l N eu ra l N etw ork s

Artificial neural networks (ANN) are an approach to information processing that

was inspired by biological learning systems like the brain. Discussion about neurons

and their behavior dates back as far as the 1940s and continues to be an active

area of research [Mehrotra et al., 1997]. The ANN literature is sufficiently diverse

and extensive that an attempt to summarize it here would be distracting to the

reader. Instead, we present a general sketch of the neural network approach. For

more information on neural networks, see Mehrotra et al.'s textbook [1997].

A neural network is a collections of nodes and weighted edges that transforms a

vector of n inputs into a vector of m outputs. These networks are often structured

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output Layer

Hidden Layer(s)

Input Layer

Figure 2.3: Artificial neural network with 6 input units, two hidden layers of 3 units
each, and 4 output units.

using layers: there is an input layer, an output layer, and potentially several hid­

den layers in between. Information travels (usually directionally) along the edges

between connected nodes. The information on the incoming edges to each node

is summarized by an activation function and then transmitted through the node’s

outgoing edges. Figure 2.3 is a graphical representation of a neural network with

two hidden layers. This type of network is known as a feed-forward neural network:

the activations flow in a single direction.

Artificial neural networks that have backward connections are known as recurrent

neural networks.

2.4.1 T D N etw ork s and A rtificia l N eural N etw orks

It is natural to relate TD networks to artificial neural networks. Both are networks

of interrelated predictors. ANNs are very general - they have been used in several

configurations to solve many problems. The simplest way to relate TD networks to

ANNs is to describe a TD network as an ANN with recurrent connections.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T D Netw orks as R ecurrent A N N s

TD Network Nodes

Input Layer

External Inputs

Figure 2.4: TD network with two predictive nodes drawn as a recurrent neural
network. This figure describes the answer network and has no information about
the question network.

A TD network can be thought of as a neural network with two layers, an input

layer and an output layer. A sample TD network with two predictive nodes is

shown in Figure 2.6. Each TD network node yl £ y corresponds to a node in the

output layer, and each element xJ 6 x corresponds to a node in the input layer.

The activation function can be whatever is desired. This is all that is required to

understand the answer network of a TD network in terms of a recurrent ANN.

ANNs are often trained using input-output pairs: each output unit has a specific,

well-defined target for each input vector. The target function in a TD network may

include experience from future time steps and therefore does not fit this mold.

O ther R ecu rren t N eural N etw orks

TD networks are not the first connectionist approach to make use of recurrent

connections. There is a large body of literature that involves using recurrent ANNs

for a variety of classification and prediction tasks.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output Layer

Hidden Layer

Input Layer

Feedback
Unit

Feedback
Unit

Plan Inputs

Figure 2.5: Example of Jordan’s recurrent ANN with 4 external plan input units, 2
feedback units, 1 hidden layer of 3 units, and 2 output units.

Jordan [1986] proposed a multilayer feed-forward style network that connects

output units back to certain special “feedback” units that operate in parallel to the

external inputs units (called plan units). Jordan’s networks can be used to produce

a fixed sequence of outputs given a static input pattern.

Output Layer

Hidden Layer

Input Layer

Context
Unit

Context
Unit

Input Units

Figure 2.6: Example of Elman’s recurrent ANN with 4 external plan input units, 2
feedback units, 1 hidden layer of three units, and 2 output units.

Elman [1988] suggested a similar network using recurrent connections from the

hidden units rather than the output units. Elman’s networks learn structure in time

and were able to solve temporal XOR, learn about the structure in a sequence of

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

letters, and learn interesting knowledge in several other domains.

A variety of other recurrent network architectures also been proposed, including

some fully recurrent variations [Rumelhart et al., 1986; Pineda, 1988; Williams and

Zipser, 1989].

All of these models are trained using some variation of the error-propagation

(back-propagation) learning algorithm [Mehrotra et al., 1997]. The back-propagation

learning algorithm uses general purpose hidden units to correct to facilitate accu­

rate predictions in the output units. This is different from the TD network learning

algorithm where every unit has a well defined target function.

Discussion

Several types of recurrent artificial neural networks have been proposed in the past.

To our knowledge, none of these approaches were intended to learn a predictive

model of a dynamical system. None of these approaches learn TD style predictions.

Although at first glance TD networks may seem similar to existing recurrent neural

network architectures, comparison shows that TD networks are a novel, unique

idea that cannot be directly equated with prior work in the recurrent connectionist

literature.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

TD Network Experim ents

In this chapter, we show that TD networks can be used to learn accurate, probabilis­

tic predictions in a simple random-walk world. 1 When actions are introduced and

the inter-prediction relationships aremade contingent on them, the usual learning-

efficiency advantage of TD methods over Monte Carlo (supervised learning) methods

becomes particularly pronounced. Finally, we demonstrate that TD networks can

learn predictive state representations that enable exact solution of a non-Markov

problem.

3.1 Error R ep o rtin g

The error of any particular prediction at one instant is not representative of the

quality of the overall model; it is more meaningful to report error of predictions

over the entire environment. Better yet, error could be reported over the entire

environment weighted by the frequency that each state is visited. Finally, because

1This work was orig inally presented at the Advances in Neural In form ation Processing Systems
Conference [Sutton and Tanner, 2005].

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the TD network state representation is influenced by recent experience, the error

should be averaged over these histories. The error of a node at some time step is

defined as the root mean-squared error (RMSE) of that node’s predictions over a

window of some number of time steps (1000, for example). The errors observed

within this window are a large enough sample to be representative of approximately

regular experience in the environment. Let z*1 be the extensive, correct target for

Node i.

Formally, the RMSE of Node 1 over a 1000 step window is defined as:

RMSEl = X - { z f ^y t^ W in dow

The average error of an TD network with n nodes over a 1000 step window is

then:

1 n
R M S E = - V " R M S E 1

n '
i —\

The targets (z*l) are provided by asking an oracle what the unrolled answer

to each question would be if the node’s action sequence were performed from the

current time. This oracle is not used for anything other than evaluation.

3.2 R an d om W alk

The experiments in this section use the 7-state random walk environment shown in

Figure 3.1. Several variations of this world are used, including:

Fully observable stochastic walk This variation of the random walk environ­

ment has a single action. On each time step, the environment randomly moves

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the agent either left or right with equal probability. This version of the ran­

dom walk has been artificially made Markov, as shown in Figure 3.2. The

observation matrix corresponding to V for this environment has exactly one

row for each observation. Although the artificial state label is visible to the

agent, the objective is to predict the observable bit.

Fully observable determ inistic walk This environment is the observable stochas­

tic walk with two actions. The first action deterministically moves the agent

to the left, the other deterministically to the right. Again, the environment

has been artificially labeled as in Figure 3.2.

7-state partially observable walk In this case their are two actions and the en­

vironment has not been artificially made Markov. Only the observation bit (1

or 0) is available to the agent.

Random Walk

Observations

Figure 3.1: 7-state stochastic random walk world. The state transitions with equal
probability to the left or the right on each time step.

3.2.1 E xperim en t 1: n -step U n con d ition a l P red iction

In this experiment, the TD networks learned to predict the observation bit precisely

n steps in advance, for n = 1, 2, 5, 10, and 25 in the observable stochastic walk

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Random Walk

Observations

State Labels

Figure 3.2: Fully observable 7-state stochastic random walk world used in our
Markov experiments. The agent is able to observe the label of the state (bottom)
and is trying to predict the observation in each step (top).

environment. In order to predict n steps in advance we also have to predict n — 1

steps in advance, n —2 steps in advance, etc., all the way down to predicting one step

ahead. This is specified by a TD network consisting of a single chain of predictions

like the left column of Figure 3.3, but of length 25 rather than 5.

Random-walk sequences were constructed by starting at the center state and

then taking random actions for 50, 100, 150, and 200 steps (100 sequences each).

A TD network and a corresponding Monte Carlo approach were both provided

this data. The Monte Carlo method learned the same predictions, but learned them

by comparing them to the actual outcomes in the sequence (instead of z\ in (1.4)).

Both algorithms used feature vectors of 7 binary components, one for each of the

seven states, all of which were zero except for that corresponding to the current

state. Both algorithms formed their predictions linearly (cr(-) was the identity) and

unconditionally (c\ = 1 Vi,f).

In an initial set of experiments, both algorithms were applied online with a

variety of values for their step-size parameter a. Under these conditions neither

algorithm was clearly better in terms of the root mean square error in their pre-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Question Network (a) Question Network (b)

o t+1 t+1

...etc

Figure 3.3: Question networks similar to those in our experiments. Question network
(a) is a 5 step unconditioned “chain” question network, network (b) is a 3-level “tree”
symmetric action-conditional question network.

dictions over the data sets. The difference is obvious when both algorithms were

trained using batch updating, in which weight changes are collected “on the side”

over an experience sequence and then made all at once at the end, and the whole

process is repeated until convergence. Under batch updating, convergence is to

the same predictions regardless of initial conditions or a value (as long as a is

sufficiently small), which greatly simplifies comparison of algorithms. The predic­

tions learned under batch updating are also the same as would be computed by

least squares algorithms such as LSTD(A) [Bradke and Barto, 1996; Boyan, 2002;

Lagoudakis and Parr, 2003].

For 1-step predictions, the Monte-Carlo and TD methods performed identically,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time
Steps

1-step
MC/TD

2-s
MC

tep
TD

5-s
MC

;ep
TD

10-E
MC

>tep
TD

25-s
MC

>tep
TD

50
100
150
200

0.205
0.124
0.089
0.076

0.219
0.133
0.103
0.084

0.172
0.100
0.073
0.060

0.234
0.160
0.121
0.109

0.159
0.098
0.076
0.065

0.249
0.168
0.130
0.112

0.139
0.079
0.063
0.056

0.297
0.187
0.153
0.118

0.129
0.068
0.054
0.049

Table 3.1: RMSE of Monte-Carlo and TD-network predictions of various lengths and
for increasing amounts of training data over all states on the random-walk example.
These results are for offline, batching training.

but for longer predictions a significant difference was observed. The RMSE of the

Monte Carlo method increased with prediction length whereas for the TD network

it decreased. The largest standard error in any of the numbers shown in the table

is 0.008, so almost all of the differences are statistically significant. TD methods

appear to have a significant data-efficiency advantage over non-TD methods in this

prediction-by-n context (and this task) just as they do in conventional multi-step

prediction [Sutton, 1988].

3.2 .2 E xp erim en t 2: A ction -con d ition a l P red iction

The advantage of TD methods should be greater for predictions that apply only

when the experience sequence unfolds in a particular way, such as when a par­

ticular sequence of actions is chosen. In a second experiment the TD networks

learned n-step-ahead predictions conditional on action selections in the observable

deterministic walk environment. The question network for learning all 2-step-ahead

predictions is shown in Figure 3.3b. The upper two nodes predict the observation

bit conditional on taking a left action (L) or a right action (R). The lower four nodes

correspond to the two-step predictions, e.g., the second lower node is the prediction

of what the observation bit will be if an R action is taken followed by an L action.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These predictions are similar to the e-tests used in some of the work on predictive

state representations [Rudary and Singh, 2004].

This experiment used a question network like that in Figure 3.3b except of depth

four, consisting of 30 (2+4+8+16) nodes. The conditions for each node were set to

0 or 1 depending on whether the action taken on the step matched that indicated in

the figure. The feature vectors were the same as the previous experiment. Now that

predictions are conditioned on actions, the problem is deterministic and a can be set

uniformly to 1. A Monte Carlo prediction can be learned only when its corresponding

action sequence occurs in its entirety, but then it is complete and accurate in one

step. The TD network, on the other hand, can learn from incomplete sequences

but must propagate them back one level at a time. First the one-step predictions

must be learned, then the two-step predictions from them, and so on. The results

for online and batch training are shown in Tables 3.2 and 3.3.

1-Step 2-Step 3-Step 4-Step
Time Step MC/TD MC TD MC TD MC TD

100 0.153 0.222 0.182 0.253 0.195 0.285 0.185
200 0.019 0.092 0.044 0.142 0.054 0.196 0.062
300 0.000 0.040 0.000 0.089 0.013 0.139 0.017
400 0.000 0.019 0.000 0.055 0.000 0.093 0.000
500 0.000 0.019 0.000 0.038 0.000 0.062 0.000

Table 3.2: Online performance. RMSE of the action-conditional predictions of vari­
ous lengths for Monte-Carlo and TD-network methods on the random-walk problem.

As anticipated, the TD network learns much faster than Monte Carlo with both

online and batch updating. Because the TD network learns its n step predictions

based on its n — 1 step predictions, it has a clear advantage for this task. Once the

TD Network has seen each action in each state, it can quickly learn any prediction

2, 10, or 1000 steps in the future. Monte Carlo, on the other hand, must sample

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time Steps MC TD
50 53.48% 17.21%
100 30.81% 4.50%
150 19.26% 1.57%
200 11.69% 0.14%

Table 3.3: Batch performance. Average proportion of incorrect action-conditional
predictions for batch-updating versions of Monte-Carlo and TD-network methods,
for various amounts of data, on the random-walk task. All differences are statisti­
cally significant.

actual sequences, so each exact action sequence must be observed.

3.2 .3 E xp erim en t 3: L earning a P red ictive S ta te R ep resen ta tion

Experiments 1 and 2 showed advantages for TD learning methods in Markov prob­

lems. The feature vectors in both experiments provided complete information about

the nominal state of the random walk. In Experiment 3, on the other hand, TD

networks learned about a non-Markov version of the random-walk example, the

partially observable random walk. In this case it is not possible to make accurate

predictions based solely on the current action and observation.

As in the previous experiment, the TD network learned n-step predictions using

action-conditional question networks of depths 2, 3, and 4. The feature vector x,

consisted of three parts: a constant 1, four binary features to represent the pair

of action at- i and observation bit ot , and n more features corresponding to the

components of yt_i- The features vectors were thus of length m = 11,19, and 35

for the three depths. In this experiment, cr(-) was the S-shaped logistic function.

The initial weights Wo and predictions y0 were both 0.

Fifty random-walk sequences were constructed, each of 250,000 time steps, and

presented to TD networks of the three depths, with a range of step-size parameters

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a. The data performance measure was the RMSE of all predictions made by the

networks (computed from knowledge of the task) and also the “empirical RMSE,”

the error in the one-step prediction for the action actually taken on each step. In all

cases the errors approached zero over time, showing that the problem was completely

solved. Figure 3.4 shows some representative learning curves for the depth-2 and

depth-4 TD networks.

Empirical
RMS error

3

2

1
,oc=25

a=.7:
0

0 50K 100K 150K 200K 250K

Time Steps

Figure 3.4: Prediction performance on the non-Markov random walk with depth-4
TD networks (and one depth-2 network) with various step-size parameters, averaged
over 50 runs and 1000 time-step bins. The “bump” most clearly seen with small
step sizes is reliably present and may be due to predictions of different lengths being
learned at different times.

In ongoing experiments on other non-Markov problems, TD networks do not

always find such complete solutions. Other problems seem to require more than

one step of history information (the one-step-preceding action and observation),

though much less than would be required using history information alone. Previous

algorithms have also been found to be effective on some tasks but not on others

[Singh et al., 2003; Rudary and Singh, 2004; James and Singh, 2004], Our results

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as a whole suggest that TD networks may provide an effective alternative learning

algorithm for predictive state representations [Littman et al., 2002],

3.3 C onclu sion

Our initial experiments with TD networks suggest a large set of possibilities for

learning to predict, and in this chapter we have begun exploring the first few. Our

results show that even in a fully observable setting there may be significant advan­

tages to TD methods when learning TD-defined predictions. Our action-conditional

results show that TD methods can learn dramatically faster than other methods.

TD networks allow the expression of many new kinds of predictions whose extensive

semantics is not immediately clear, but which are ultimately fully grounded in data.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

TD Networks w ith H istory

TD networks are not able to learn perfect models of some small, deterministic

POMDPs. In this chapter, we extend TD networks by allowing the network-update

process (the answer network) to depend on the recent history of previous actions

and observations rather than only on the most recent action and observation. 1

This extension enables the solution of a larger class of problems than can be solved

by the original TD networks or by history-based methods alone.

4.1 T D N etw ork C ou n ter-exam p les

TD networks are able to solve some, but not all of our small testing problems.

Careful analysis has determined that the question networks that were used were

sufficient to represent the appropriate model, so the issue must lie somewhere in the

TD network specification.

Figure 4.1 presents a simple example of a task and question network for which

lrThe work in th is chapter was orig inally presented at the International Joint Conference on
A rtific ia l Intelligence [Tanner and Sutton, 2005b],

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the solution is representable but not learnable by TD networks without history. The

cycle world consists of the four states shown on the left. The current state of the

system cycles clockwise through the states. There is a single observation bit that is

1 at the top of the cycle, and 0 at all other times. On the right of Figure 4.1 is a

question network which asks what the observation bit will be one, two, and three

time steps in the future. Recall that at time t, y t is calculated as a function of

(yt_i, at_i, Ot. Wf). Assuming that the y t-1 is correct, there is a solution for the

weights that will keep y t correct at each successive time step. Unfortunately, y t_x

will never be correct; the solution exists but will not be found.

Recall that the question network specifies the source of target values for the

answer network. At the start of training, y t-1 will likely be incorrect. There are no

actions in this environment, so the current observation o* is the only useful input

feature in x*. For the network to become correct, it is necessary that some sequence

of questions can eventually be answered, starting only with knowledge of ot . Also

note that when training begins, the only node with a valid target is y l , because

its target is not a prediction, but rather the grounded observable value of ot+1- As

Cycle World Question Network

Figure 4.1: A counterexample for TD-network learning without history. On the left
is a representation of the cycle world. This environment has four states that are
cycled through deterministically. On the right is the associated question network.
There are no actions in this world.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training progresses, the agent interacts with the environment and some answers will

be learned using only the grounded observations. Eventually, the environment will

reach a point where ot = 0 and y} should be 1. The information that distinguishes

this case from the case where ot = 0 and y} should be 0 lies in a correct answer for

Vt-i- Unfortunately, the target for y ^ i is y j . In this case, the cyclic dependency

between the question network and the temporal flow of information eliminates the

possibility of the TD network learning a correct solution.

Information flow dependency occurs when ylt critically depends on an input fea­

ture in xt that corresponds to y£_1? and the target zj_1 is a function of y\. This

dependency can be eliminated by providing additional input features to the TD

network.

The cycle world is a problem in which there is a simple relationship between the

observations and recent experience. Methods that try to directly learn such rela­

tionships are called history-based methods. We will consider history-based methods

which predict ot+i using a different variable for each unique k-length window of

history where a k-length window of history is defined as at ~ k Of - fc+ 1 • • ■ ai - 1 °t • In this

case, a window of length 3 would be sufficient to uniquely identify each state of the

system and thus would be able to make accurate predictions. Incorporating short

history into the feature vector x< of a TD network should allow the TD network to

learn a correct solution to this problem. Figure 4.2 shows an example of a hybrid

input vector that uses 3 time steps of history and 3 predictive nodes.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Features Initial Final

1 1
history = 000 0
history = 001 0
history = 010 0
history = 011 0
history = 100 1
history = 101 0
history = 110 0
history = 111 0

»Y, .5
.5

v3m
.5

Figure 4.2: Input vector for cycle world with 3-step history and 3 levels of predictive
nodes. On the left is the definition of each feature. The first feature is the bias term.
The next 8 features correspond to the 8 distinct 3-step histories {ot-2 ° t-i° t} (not all
are possible in this world). The final 3 features are the predictions from the previous
time step. The middle vector is a sample input vector for the third state from the
top of the cycle world at the start of learning. At this point, all of the predictions
are at their initial value, .5. Finally, the rightmost vector is the input vector for the
third state when learning is complete, all of the predictions are accurate.

4.1 .1 E xperim en ta l R esu lts

The hybrid approach is tested using a cycle world like that in Figure 4.1, except with

six states instead of four. This size was chosen to clearly illustrate the effectiveness

of different configurations of history and predictive nodes. Three different methods

were tested in this domain: (1) TD networks as previously specified without history,

(2) a simple history-based approach, (3) a combination of TD networks and history

together. For each method, several values for the step size parameter were used;

the best of these was used as the performance measure for that method. For each

method and step size, the network was trained for at least one million time steps.

The 1-step RMSE over the final 20 000 steps is used as an overall performance

measure for each experiment.

The results in Figure 4.3 show that the simple history-based method only per­

formed well when it had enough history to solve the problem exactly. TD networks

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMS-2 '
Error

.1 -

.0 - -

.3 -
History only

1 2 3 4
Length o f History

5

Figure 4.3: Performance on the 6-state cycle world of TD networks extend to incor­
porate various lengths of history. The different lines correspond to different depths
of the question network, as indicated by the numeric label.

without history correspond to the data points with history length one. These TD

network performances are better than history alone, but not as good as the TD net­

works augmented with history. It is also interesting to notice that the TD network

is able to solve the problem with a much shorter window than the history-based

method alone. This illustrates that our combined algorithm is not simply using his­

tory instead of the predictive representation, but rather is leveraging the history to

learn a predictive representation. It is interesting that the performance of the vari­

ous combinations of history and predictive nodes do not follow a clear pattern. For

example, when there are 2 predictive nodes, it appears that 2 or 4 steps of history

is better than having 3 steps. The minimum length of history required to exactly

model the 6-state cycle world with 2 predictive nodes is a 4-step history. This means

that the low error seen with 2 steps of history is a case of the TD network stumbling

on a good approximate solution when it could not represent an exact solution (as

discussed in Chapter 4.1.2).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2 A p p roxim ate Solu tions

State Observation Sequence A Sequence B
1 1 .83 .05
2 0 .00 .00
3 0 .02 .01
4 0 .03 .02
5 0 .06 .03
6 0 .15 .04
1 1 .83 .07

Table 4.1: Unstable approximate solutions learned by a single node TD Network on
the 6-state cycle world. The predictions in sequence A are at a point in training
where the TD network has found a very good approximate solution. The predictions
in sequence B are from a different point in training. The behavior of the TD network
oscillates indefinitely between producing solutions like sequence A and solutions like
sequence B.

Approximate solutions to the cycle world can be learned by TD networks con­

sisting of a single node. There is no way that a single predictive node can solve

this problem perfectly, but it can achieve very low error in an unusual way. Table

4.1 shows two sequences of predictions that are made by a TD network at different

stages of training. Neither sequence is stable, the TD network will oscillate between

predictions like sequence A and predictions like sequence B.

The mean squared error of sequence A (over 1 trip around the cycle) is .0094

and sequence B is .151. The maximum likelihood model of this system based only

on 1-step observations would predict 0 for the next step if 1 is observed, and would

predict | if 0 is observed. This model would have MSE=.133, better than sequence

B but far worse than sequence A.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 In d efin ite-m em ory P ro b lem s

Introducing history to the TD network specification can eliminate cyclic depen­

dencies and increase the class of problems where solutions can be learned with TD

networks. There may be a tradeoff between predictive levels in the question network

and lengths of history that are provided. From the cycle world example, it may not

be clear that the hybrid approach is superior to a history-only approach.

There is a potentially large class of problems that cannot be represented with

a history-only approach, but can be represented and solved by TD networks. En­

vironments in this class are such that there is no finite length of history that can

uniquely identify the current state of the environment. Problems in this class are

called indefinite-memory problems.

One simple example of an indefinite-memory problem is the ring world shown in

Figure 4.4. Because states B, C, D, and E are indistinguishable, there are sequences

of actions that keep the environment in that subset of states and will eventually fill a

fixed-length memory with useless information. In contrast, a TD network can model

this environment, and can never be made to forget its location in the environment.

4.2 .1 E xp erim en ta l R esu lts

We applied TD networks with various depths of question network and lengths of

history to the 5-state ring world problem. The performance measure used was the

same as in the previous experiments, except in this case averaged over 25 indepen­

dent runs of 10 million time steps. The results are shown in Figure 4.5. As the

history window increases, the history-only method more closely approximates the

correct solution. This improvement seems to diminish as the history window gets

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ring World Question Network
State A

’t+i

State E I 0 State B

State C State D

Figure 4.4: An indefinite-memory problem, the five-state deterministic ring world
and an example question network of depth 2. There are two actions in this world,
left or simply L and right R. right advances in clockwise rotation while left advances
in counter-clockwise rotation. Prediction methods using a finite length history will
lose localization after some number of transitions back and forth between the states
that emit observation 0 .

larger, and is further hampered by the fact that the number of unique histories

grows exponentially with the length of the window. With the predictive approach,

the problem is solved correctly with only 1 level of history and a predictive question

network of depth 3.

Provided enough time, the TD network can learn a correct model of this envi­

ronment without history, something which it could not do for the cycle world. This

is puzzling given that these two problems seemed highly related, the cycle world

seemingly even less complex than the ring world. In the ring world, actions have

inverses which may eliminate the information flow dependencies that existed in the

cycle world. In the ring world, the agent can incrementally learn more and more

about the environment. In early training, the agent can orient itself when o* = 1

because this observation uniquely identifies this state. As time passes, the agent

can learn accurate 1-step predictions from that location. It can also learn 2-step

predictions that involve leaving this position and then returning immediately. This

process can continue until this chaining effect has allowed the agent to make accurate

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.45

0.3
RMS
Error

History Alone

1 Predictive Level0.15 .
2 Predictive Levels

3 Predictive Levels
2 3 4 5

Levels o f History

Figure 4.5: Performance on the 5-state ring world as a function of length of history
and depth of question network. The history method suffers from diminishing returns
as size of the history window increases. Learning also slows considerably because
the number of unique histories that can be observed grows exponentially.

predictions from all positions in the ring.

4.3 C onclu sion s

We have presented a straightforward extension of TD networks to incorporate the

strengths of history-based methods. The combination of history-based learning and

TD network learning is more than putting two algorithms into one box and using the

appropriate approach for a particular problem; the combined algorithm is stronger

than either of its parts on their own.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

TD(A) Networks

TD networks are similar to conventional TD(0) predictors, both algorithms use 1-

step backups to train prediction units about future events. In conventional TD

learning, the TD(A) algorithm is often used to do more general multi-step backups

of future predictions. In this chapter, we introduce a generalization of the 1-step

TD network specification that is based on the TD(A) learning algorithm, creating

TD(A) networks. 1 We present experimental results that show TD(A) networks can

learn solutions in more complex environments than TD networks. We also show

that in problems that can be solved by TD networks, TD(A) networks generally

learn solutions much faster than their 1-step counterparts. Finally, we present an

analysis of our algorithm that shows that the computational cost of TD(A) networks

is only slightly more than that of TD networks.

1The work in th is chapter was orig ina lly presented at the International Conference on Machine
Learning [Tanner and Sutton, 2005a].

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Q u estion s and T argets

In general, questions can be any function of future predictions or observations. In

this section, consider the special case of question network in which each node i has

a single target, either some other prediction or the observation at the next time

step. This type of question network is called a single-target question network. This

special case includes all of the question networks that were implemented in this

research. The target of node i is the parent of i or p(i). The later parents of node

i: {p(p(i)), p{p{p(i))), •••} are written in the short form {p2{i), p3(i), •••}•

Figure 5.1: Symmetric action-conditional question network. The network forms a
symmetric tree, with a branching factor equal to |A|. This example has depth d = 4.
Some of the labels have been left out of this diagram for clarity, each of these nodes
should have a label y% and each is conditioned on some action.

In Figure 5.1 the parent of Node 9 is Node 4, p(9) = 4. The parent of Node

4 is Node 1 (p(4) = 1), so p(p(9)) = p2 (9) = 1. The third parent of Node 9,

p(p(p(9))) = p3 (9) = o, the observation bit.

In Section 1.4.2, the target of a node was defined in a general sense. With

single-target question networks, the target can be defined more specifically.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In these networks, the target for node i is:

zx = or 0t+l (5'1)

Recall that each component w\3 of W* is updated by the learning rule:

wl+ 1 - w\3 = a(zl - y t y ^ (5 -2)

where a is a step-size parameter and c\ corresponds to whether the action condition

of the question was met.

Predictions are calculated using the logistical sigmoid function, so the exact

weight update rule is:

Aw\3 = a(z\ - y\)y\{l - y\)x{c\ (5.3)

5.2 TD (A) N etw ork s

The target function described in Equation 5.1 is correct for single-step TD(0) up­

dates. Each prediction made at time t has a TD target that may become available

at time t + 1. This TD target may itself be a prediction of some other value that will

be available at time t + 2. Recall that predictions also have an extensive definition;

it is possible to unroll the first prediction: to ask a question at time t about an event

at time t + 2 . A question can be unrolled step by step until it is asking a question

about the data, the observation bit. Each prediction made at time t is indirectly

predicting several events at different moments in time and therefore has a different

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

target for each moment.

t+ i t+2 t+3 t+5t+4

a2 a2

Figure 5.2: Extended target flow diagram for nodes {1,4,9} of question network in
Figure 5.1. The links in this diagram show the flow of target values back toward
the original predictions. The solid links are the l-step TD targets for these pre­
dictions. The dashed links are a sample of the unrolled multi-step targets. The
action-condition labeling have been omitted on the d dashed links to reduce clutter.

Using the parent function p(i), the relationship between targets follows the struc­

ture of the question network. The first target for y\ comes directly from the 1-

step TD relationship in the question network, and is simply z\. The second target

is recursively defined, it is the target of the parent of node i at the next time

step, . Following this process, there is a k step sequence of targets for y\:

zh zt+i> zt+2 ^’ ■ ■ ■ i zt+k~i ’ where pk(i) is the observation bit.

In order to keep notation a simple as possible, consider a single node i and a

single starting time step t. Under these conditions, let the first target of a prediction

be ^(0). The subsequent targets are z(1), z(2), z(3),..., z(k — 1).

Consider the prediction Node 9 in Figures 5.1 and 5.2. In this case, z(0) =

z(1) = yj_|_2, and z(2) = ot+3 . Although each target in this sequence is a prediction of

the same event ot+3 , each was calculated using different information. Our intuition

is that the targets generated later in time may sometimes be more accurate than

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the earlier targets. Some combination of the targets from this sequence may then

be better than any particular single target in the sequence.

While the conditions of the predictions match the experience of the agent, this

sequence of targets is available and valid. If the agent’s experience diverges from the

conditions of the question network, no further updates are performed. If multiple

targets become available, any (or all) of these targets can be used for learning. As

with TD(A), we propose an exponentially weighted average of these targets. The

multi-step weighted target for prediction y\ is denoted as v\, where:

fc-i
vt = ((1 — A) ^ Anz(n)) + Xkz(k - 1) (5.4)

n= 0

The one-step target is given weight (1 — A), the two-step target is given (1 — A)A, the

three-step target is given (1 — A)A2, etc. The last item in this sequence will receive

all of the remaining weight (AA:).

Ideally, we would like to use the blended target v\ in an update rule such as:

Aw\3 = ot(y\ - y\)y\{l - y\)x3 (5.5)

We desire an online, incremental algorithm where the value of v\ will not be

available at time t. Some standard (and novel) tricks to allow this learning rule to

be implemented incrementally using a variation of eligibility traces as with TD(A).

Pseudo-code for the TD(A) networks learning algorithm is in Figure 5.3. The weight

update rule in this algorithm achieves the behavior of Equation 5.5 using incremental

updates of successive targets.

Because the predictions made within TD networks are of different events, im-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plementing eligibility traces is not as simple as with conventional TD(A). Each

prediction y\ needs its own eligibility trace. This makes our algorithm slightly more

complicated than traditional TD(A).

5.2.1 TD(A) N etw ork L earning A lgorithm

Traces <— {}
for t = 0 to T do

newTraces <— {}
a <— chooseActionQ
o <— getObservation(a)
x t <- x(a ,o ,yt- 1)
yt <- cr{W x ()
for (i, k) G Traces do

if checkCondition(pt~k~1 (i), a) == TR U E then
if pt~k(i) ^ observation then

2 v- y t-i\p t~k(i)\
else

2: <— o
end if
p *- yt-i[pt-fc_1W]
for lid G W[i] do

w-7+ = 0 (2: — p)p(1 — p)xJkXt~k~1
end for
if pt~k(i) ^ observation then

newTraces newTraces U (i, fc)
end if

end if
end for
for « G y do

newTraces <— newTraces U (*, t)
end for
Traces <— newTraces

end for

Figure 5.3: Pseudo-code for TD(A) learning algorithm. The algorithm uses a boolean
function checkCondition(i: a) which will return true if the action a is consistent with
the action condition of node i, and false otherwise.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 TD(A) N etw ork Learning A lgorith m D iscu ssion

The TD(A) learning algorithm keeps a record of predictions and whether the con­

ditions of the unrolled definition of those predictions are consistent with later ex­

perience of the agent. At each time step, new targets become available for past

predictions. By combining the temporal-difference (yt — yt_i) with historic infor­

mation about the inputs to the answer network (xt-k), the weight vector W is

updated (scaled by A*- *1-1) towards the new target to improve the past prediction

y t ~ k -

This algorithm has some interesting properties, controlled by the particular value

of A that is used.

If A = 0, the first target of a prediction will get weight 0° = 1, meaning that this

first target will get the full weight of the update. For subsequent targets, 0t ~ k ~ 1 = 0

resulting in the update having no effect. This behavior is exactly the same as the

previous 1-step TD network learning algorithm.

If A = 1, each target available gets the full weight of the update, because l x — 1.

Each subsequent temporal-difference effectively overwrites the update made by the

previous target. The net effect is that the last available target receives the full weight

of the update and the intermediate targets receive no weight. If the prediction’s

conditions match exactly with the stream of experience, all of the weight will go

to the grounded, unrolled target. If the stream of experience diverges from the

conditions of the prediction, the weight of the update will go to some intermediate

TD target. This behavior is analogous to a Monte Carlo style of update, with one

important difference. In a Monte Carlo approach, an update would only occur if

the conditions of the completely unrolled definition of a prediction were met. Nodes

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at deeper depths would be exponentially less likely to receive updates, because the

exact sequence of the conditions is less likely to occur. With TD(1), these predictions

will always receive an update if their first condition is met.

Finally, if an intermediate value of A is used, the weight of the updates are

divided among the targets that become available. The remainder of the weight will

always be assigned to the final available target.

5.3 E x p er im en ta l R esu lts

There are certain partially-observable environments for which a TD network solution

exists, but the TD(0) learning algorithm cannot find it. The recursive nature of

TD networks allow the occurrence of information flow dependencies between the

question and answer networks. These information flow dependencies are a major

obstacle when trying to learn a model of certain dynamical systems. One TD(0)

solution to this problem is to augment the input vector x by including recent actions

and observations in addition to the immediately previous action and observation.

This recent history allows the TD(0) learning algorithm to solve problems that could

not be solved without history. History also allows the TD(0) learning algorithm to

solve existing problems faster than before.

Our hypothesis is that for some values of A > 0, the TD(A) network learn­

ing algorithm can solve this information flow dependency problem without adding

additional information to the input vector.

TD(A) networks are compared to TD(0) networks in three domains. It isn’t clear

exactly what is the best metric to compare one TD network learning algorithm to

another; we will report the average RMSE of the answer network vs. amount of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data use to learn that model. This measure will illustrate both the speed of learning

and the relative error of the models that are learned.

In each experiment, a variety of values were used for the step size parameters a,

and the results presented are for whichever value of a performed best. In general, if

any value of a could solve the problem, then all values of a that were used {.5, .25,

.125, .0625} were able to solve the problem. Lowering a increased the amount of

data required to learn a solution of the same quality. In each of these experiments,

the initial weights in the answer network were set uniformly, = |Tj. Each

environment (discussed further below) is started in the state where ot = 1 .

The first experimental results (Figure 5.4) are for the 6 -state cycle world in Fig­

ure 4.1. The question network used for this experiment was a chain of 5 predictions

like that in Figure 4.1. In Chapter 4.1, this problem could not be solved with TD(0)

networks unless the input vector x is expanded to include recent history. TD(A)

networks can solve this problem without history.

RMSE

1000 10000 100000 1000000
Time Steps

Figure 5.4: Learning curves of our learning algorithm for various values of A on
the 6 -state cycle world. This chart represents the average RMSE over all of the
nodes in the TD(A) network as the amount of data is increased. Each data point
in this graph is the average error of the network over 500 time steps. Note that
the x-axis (amount of data) is an exponential scale. The cycle world is completely
deterministic, so these results are for a single training run.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For all values of A > 0, the TD(A) network learning algorithm is able to find

a solution. As A increases, the amount of data required for learning decreases. A

good model (RMSE < .05) is found with A = 1 in under 5 000 steps. To learn an

equivalent model, A = .75 requires 7 000 steps, A = .5 requires 32 000 steps, and

A = .25 requires 189 000 steps.

Ring World Question Network

Figure 5.5: 8 -state version of the ring world. On the left is a representation of
the ring world. One of the states has an observation bit of 1, all of the others are
0. There are two actions in this world, one that moves the agent clockwise (call
it ‘right’ or just R) and one that moves the agent counter-clockwise (’left’ or L).
The question network on the right side of this figure is a sparse action conditional
network that can represent a solution to this world. This question network has 8

levels, at each level there is a question about action L and a question about action
R.

The second experimental domain is the n-state ring world, shown in Figure 5.5.

This domain is more complex than the cycle world because it has multiple actions.

The actions used to generate experience for our experiments are chosen randomly.

The results from testing our algorithm for various value of A on the 5-node and

8 -node versions of the ring world are shown in Figures 5.6 and 5.7 respectively.

It is important to experiment with the 5-state ring world to investigate the effect

of A on a problem that can be solved with TD(A = 0). For all of the A > 0 values

that were used, RMSE < .05 was achieved in under 10 000 time steps. As before,

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.45

RMSE

0.3
X=0

lX=.250.15 -
■X=.5

500 10500 20500 30500 40500
Time Steps

Figure 5.6: Learning curves of our algorithm for various values of A on the 5-state
ring world. This chart represents the average RMSE over all of the nodes in the
TD(A) network. The question network used is of the form seen in Figure 5.1, a full,
symmetric, action-conditional question network with depth d = 3. Each data point
in this graph is the average error of the network over 500 time steps. These results
are the average of 50 trials.

increasing A reduced the amount of data that was required to reach a the same error

level. In the extreme TD(0) case, the model will not reach RMSE < .05 until over

150 000 time steps have passed.

The number of nodes in fully symmetric question networks rises exponentially

with the depth of the network, making it quite costly to make longer predictions.

There is a smaller question network that can represent the ring world shown in

Figure 5.5. The size of this question network scales linearly with the number of

states in the ring. In this experiment, TD(0) could not find a solution to the 8 -state

ring world in any of the configurations that were tried. Although not shown, the

experiment continued for over ten million steps and the TD(0) networks did not

improve. TD(A > 0) was able to solve this problem for all values of A that were

tried. Again, increasing A decreases the amount of data required by the algorithm.

Although not presented in detail here, we have seen similar improvements with

TD(A) vs TD(0) on other problems such as the partially-observable random walk

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.4 -i

RMSE
l=.25

0.2

5 255 505 755 1005 1255
Time Steps (x 1000)

Figure 5.7: Learning curves of our algorithm for various values of A on the 8 -state
ring world. The question network used is of the form in Figure 5.5 with depth d = 8 .
This chart represents the average RMSE over all of the nodes in the TD(A) network.
Each data point in this graph is the average error of the network over 5000 time
steps. These results are the average of 50 trials.

world and Littman et aVs float-reset problem [2002],

C om p lex ity o f th e C ycle and R ing W orlds

The domains used in these experiments behave deterministically but have extreme

state aliasing. It is conceivable that these environments are trivial, and that our

success is not encouraging. To test this theory, we have attempted to learn POMDP

models of these three environments using the EM (Baum-Welch) algorithm .2

Problem
RMSE (amo

EM
unt of data)

TD(1)
6 State Cycle
5 State Ring
8 State Ring

.313 (10 000)
.37 (10 000)
.28 (250 000)

.05 (5 000)

.05 (5 000)
.05 (125 000)

Table 5.1: RMSE of EM and TD(1) algorithm on the 6 -state cycle, 5-state ring,
and 8 -state ring worlds. Error is calculated by comparing the learned POMDP
observation predictions to the true probabilities over a 1 0 0 0 step test sequence.

2 Code graciously provided for us for comparison was the same as used in Wolfe et al. [2005].

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each domain, we provided EM with the correct number of nominal states and

ran 100 trials of 20 iterations each. In each case the EM algorithm was provided with

more data than the TD(1) learning algorithm required. In Table 5.1 the minimum

RMSE error achieved of any of the 100 trials with the EM algorithm is compared

to our TD(1) results. The TD network model does considerably better than the

model learned with EM in all cases. The results strongly suggest that the cycle and

ring worlds are not trivial. Very little time was spent tuning the parameters of the

EM algorithm; these results are not meant in any way to suggest TD networks are

superior or inferior to learning POMDPs with EM.

5.4 T h e C o m p u ta tio n a l C ost o f A

The benefits that are gained by using TD(A) over TD(0) must come at a cost. In

our algorithm, memory and computation resource usage grows at approximately the

same rate, collectively they are called the cost. We consider two different families of

question network that exemplify the additional cost of TD(A) networks over TD(0)

networks.

First, consider an unconditioned question network like the one shown in Figure

4.1, but of an arbitrary depth, d. This is the chain question network. Second,

consider an action-conditional question network like that in Figure 5.1, but with

arbitrary branching factor (number of actions) b and depth d. This is the tree

question network.

The largest computational cost of either algorithm is the number of weight up­

dates that are performed at each time step. Other book-keeping costs are negligible

and are not included in the analysis.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With an unconditional “chain” question network, the number of updates for

TD(0) at each step will be one update for each node, or equal to the depth of the

network, d. In a TD(A) network of the same depth, the number of updates is:

Chain network updates for TD(A) = — ^

The ratio of the cost of TD(A) over TD(0) gives us a measure of the factor of

additional cost of TD(A). This additional cost factor is:

Chain network work ratio = ^ 4 —̂

This is an upper bound on the additional cost that will be incurred by TD(A)

networks for any single-target question network. This is a degenerate case, where

the length of the longest question is equal to the number of nodes in the network,

and every prediction always has a target. In practice, TD networks will ask a variety

of action-conditional questions of different lengths, and they will not always have a

valid target. For this reason, our primary interest is not the “chain” network, it is

the “tree” question network.

In a tree question network with depth d and branching factor (number of actions)

b , the number of updates on each time step for the TD(0) learning algorithm is:

bd - 1
Tree network updates for TD(0) = —— —

For the same network, the number of updates performed by the TD(A) learning

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is:

bd+l - (d + l)b + d
Tree network updates for TD(A) =

The ratio of these two costs can be used to make a rough estimate of the extra

work required to use TD(A) for a given question network. This ratio is:

, bd+1 - (d + l) b + dfree network work ratio = — ----- -----------—
(b - l)(bd - 1)

This equation holds as long as b > 1 and d > = 1. When b = 2, this ratio rises

from 1.0 to a maximum of 2.0 as the depth of the network increases. As the number

of actions increase, this ratio decreases to 1 .0 + e, a negligible amount of extra work.

In future applications of TD(A) networks a variety of question networks will be

used. The topology of these networks (on average) will fall somewhere between the

chain and tree question networks. When the question network is not a full tree, the

number of node updates per step will depend on the policy being followed. Some

of the ring world experiments in this chapter used a question network with d = 8

which had only 16 nodes. In this case, the formulae predict that for d = 8 , the

number of node updates will be 16 for a symmetric tree and 36 for a chain network.

The average number of node updates per step for this question network is 14.5, less

than either estimate.

We propose one modification to our algorithm that would mitigate the additional

cost of TD(A), if required. In our algorithm, the target v\ is based on the full parental

hierarchy of the prediction, right up to the observation bit. One simple change to

the algorithm could cut off these traces after they have used some bounded number

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of targets. This “bounded lookahead” parameter would allow the number of updates

per step to be tuned between d and easily to suit any particular situation.

5.5 C onclu sion s

In all of our experiments, TD(A) networks with A > 0 have learned faster than

with A = 0. This is strong evidence that our generalized TD(A) network learning

algorithm is an improvement over the existing TD(0) learning algorithm. TD(A)

networks have also solved problems that were not solvable with the TD(0) learn­

ing algorithm. These problems may be solvable because the multi-step backups of

the TD(A) learning algorithm eliminate information flow dependencies between the

question and answer networks. The cost of the TD(A) network learning algorithm

is less than twice that of the TD(0) algorithm for the types of questions that are

important to represent a model of a controlled dynamical system (action-conditional

questions). For some other question networks (the chain network) the additional

cost is larger, but with simple techniques such as adding a bounded lookahead pa­

rameter, this cost can easily be controlled.

In the conventional TD(A) learning algorithm, no single value of A is always best.

It is surprising that our experiments suggest A = 1 is better than any other value for

A. This disparity may be related to our class of problems, partially-observable (non-

Markov) environments. In reinforcement learning, the value of A can be thought of

as a parameter to specify a mixture of TD and Monte Carlo backups. TD is more

data efficient and requires less computation while Monte Carlo is more robust in

non-Markov environments. In Chapter 3, TD(0) backups were better than Monte

Carlo backups for TD network learning in certain Markov environments. In this

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TD(A) work, we have only considered partially-observable environments, a situation

that favors Monte Carlo or TD(1) backups. It is intuitive that in this case, learning

favors higher values of A.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 D iscu ssio n and C on trib u tion s

In this thesis we have introduce temporal-difference networks as a formalism for

expressing and learning grounded world knowledge in a predictive form. TD net­

works suggest a much larger set of possibilities than conventional TD methods for

learning to predict. Chapter 3 explored the first few of these possibilities. In a fully

observable setting there are sometimes significant advantages to using TD learning

when learning TD-defined predictions. The action-conditional results in that chap­

ter shows that TD methods can learn dramatically faster than other methods. TD

networks allow the expression of many new kinds of predictions whose extensive

semantics is not immediately clear, but which are ultimately fully grounded in data.

TD networks have been extended to incorporate the strengths of history-based

methods in order to better learn models of non-Markov environments. This com­

bined approach leverages history information to learn a better predictive represen­

tation.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Chapter 5, the TD(O) updates of the TD network learning algorithm were gen­

eralized to create TD(A) networks. In our experiments, TD(A) networks with A > 0

learn faster than with A = 0. This is strong evidence that the generalized TD(A)

network learning algorithm is an improvement over the TD(0) learning algorithm.

TD(A) networks have also solved problems that were not solvable with the TD(0)

learning algorithm. These problems may be solvable because the multi-step back­

ups of the TD(A) learning algorithm help eliminate information flow dependencies

between the question and answer networks.

The scope of the work presented in this thesis is large and leaves us with many

open questions. TD networks can learn predictive models of some small test envi­

ronments. The representational power of TD networks is still unknown, there may

be environments that cannot be represented by TD networks. It is not clear how

our learning algorithms will fare as the size and complexity of these environments

increase. It may be difficult to learn a TD network model even if the question net­

work is known to be sufficient. When the question network is not sufficient, there

is evidence that TD network learning is unstable, as shown in Chapter 4.1.2.

In the face of these open questions, TD networks are a novel research area that

we intend to pursue further.

6.2 F uture W ork

There are many interesting, open questions about TD networks. The following

sections briefly introduce a few open areas that we plan on investigating in our

future work.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1 D iscovery

How can we create question networks dynamically to suit a particular task? Dis­

covery is the procedure of automatically finding an appropriate question network.

The current approach of manually specifying the structure of the question network

is only feasible for simple tasks that can either be analytically discovered or rep­

resented by a symmetric action conditional tree network of a small depth. It will

soon be important to have a method of growing an appropriate question network

through experience with the system. We are currently working on a heuristic, on­

line, incremental algorithm that will further reduce the need for designer influence

in learning predictive models of dynamical systems.

6.2.2 Fast Learning

The techniques that are currently used to learn predictions in a TD network are not

efficient. Although TD networks can learn models from a small batch of data that

is presented over and over in an offline fashion, TD networks are not data efficient

when operating online. TD network learning is slow for a few reasons. First, the

method of using big tree question networks creates redundant nodes in the question

network. Redundant questions lead to redundant inputs, which is known to slow

learning. A discovery algorithm will help to eliminate this redundancy, which will in

turn speed up learning. We are investigating other methods of directly identifying

and removing correlation in the input vector. We are also interested in using the

incremental delta-bar-delta algorithm to adjust the learning rate on a per-feature

basis, so that the learning update puts more weight on the features with the most

information content [Sutton, 1992].

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.3 T em poral A b straction

Sutton et al. [2005] have suggested that TD networks can be extended to ask

temporally abstract questions, using the options framework [Sutton et al., 1999].

Their preliminary results indicate that the options framework may offer a way to

scale TD networks to much larger environments.

6.2 .4 R ein forcem ent L earning

Our eventual ambition is that TD network models of an environment could be used

by a sequential decision making algorithm to perform tasks in the world. In future

work we intend to apply reinforcement learning directly to TD network representa­

tions. Rafols et al. [2005] have seen promising results while exploring the general

implications of using predictive representation as state representations for reinforce­

ment learning.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Boyan, 2002] Boyan, J. A. (2002). Least-squares temporal difference learning. Ma­
chine Learning, 49(2-3) :233-246.

[Bradke and Barto, 1996] Bradke, S. J. and Barto, A. G. (1996). Linear least-
squares algorithms for temporal difference learning. Machine Learning, 22(1-
3) :33—57.

[Drescher, 1991] Drescher, G. L. (1991). Made-up minds: a constructivist approach
to artificial intelligence. MIT Press.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive Science,
14(2):179-211.

[Holmes and Isbell, Jr., 2005] Holmes, M. P. and Isbell, Jr., C. L. (2005). Schema
learning: Experience-based construction of predictive action models. In Advances
in Neural Information Processing Systems 17, pages 585-592. MIT Press, Cam­
bridge, MA.

[Jaeger, 1998] Jaeger, H. (1998). Discrete-time, discrete-valued observable opera­
tor models: a tutorial. Technical report, German National Research Center for
Information Technology.

[James and Singh, 2004] James, M. R. and Singh, S. (2004). Learning and discovery
of predictive state representations in dynamical systems with reset. In Proceedings
of the Twenty-First International Conference on Machine Learning, pages 719-
726.

[Jordan, 1986] Jordan, M. I. (1986). The learning of representations for sequential
performance. PhD thesis, University of California in San Diego.

[Lagoudakis and Parr, 2003] Lagoudakis, M. and Parr, R. (2003). Least-squares
policy iteration. Journal of Machine Learning Research, 4:1107-1149.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Littman, 1996] Littman, M. L. (1996). Algorithms for sequential decision-making.
PhD thesis, Brown University.

[Littman et al., 2002] Littman, M. L., Sutton, R. S., and Singh, S. (2002). Pre­
dictive representations of state. In Advances in Neural Information Processing
Systems 14, Cambridge, MA. MIT Press.

[McCallum, 1995] McCallum, A. (1995). Instance-based utile distinctions for rein­
forcement learning with hidden state. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 387-395.

[Mehrotra et al., 1997] Mehrotra, K., Mohan, C. K., and Ranka, S. (1997). Ele­
ments of Artificial Neural Networks, chapter 4, pages 136-139. MIT Press.

[Pineda, 1988] Pineda, F. J. (1988). Generalization of backpropagation to recurrent
and higher order neural networks. In Advances in Neural Information Processing
Systems 1, pages 602-611.

[Rafols et al., 2005] Rafols, E. J., Ring, M. B., Sutton, R. S., and Tanner, B. (2005).
Using predictive representations to improve generalization in reinforcement learn­
ing. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pages 835-840.

[Ring, 1994] Ring, M. B. (1994). Continual Learning in Reinforcement Environ­
ments. PhD thesis, University of Texas at Austin, Texas.

[Rivest and Schapire, 1990] Rivest, R. L. and Schapire, R. E. (1990). A new ap­
proach to unsupervised learning in deterministic environments. In Machine Learn­
ing, An Artificial Intelligence Approach, volume III, pages 670-684. Morgan Kauf-
mann Publishers Inc.

[Rivest and Schapire, 1994] Rivest, R. L. and Schapire, R. E. (1994). Diversity-
based inference of finite automata. Journal of the Association for Computing
Machinery, 41(3):555-589.

[Rudary and Singh, 2004] Rudary, M. R. and Singh, S. (2004). A nonlinear predic­
tive state representation. In Advances in Neural Information Processing Systems
16, Cambridge, MA. MIT Press.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error propagation. In Parallel Dis­
tributed Processing.

[Russell and Norvig, 2003] Russell, S. J. and Norvig, P. (2003). Artificial Intelli­
gence: A Modern Approach. Pearson Education.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Shalizi and Shalizi, 2004] Shalizi, C. R. and Shalizi, K. L. (2004). Blind construc­
tion of optimal nonlinear recursive predictors for discrete sequences. In Proceed­
ings of the Twentieth Conference on Uncertainty in Artificial Intelligence, pages
504-511.

[Shen, 1993] Shen, W. M. (1993). Learning finite state automata using local dis­
tinguishing experiments. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, pages 1088-1093.

[Singh et al., 2004] Singh, S., James, M. R., and Rudary, M. R. (2004). Predictive
state representations: A new theory for modeling dynamical systems. In Proceed­
ings of the Twenthieth Conference on Uncertainty in Artificial Intelligence, pages
512-519.

[Singh et al., 2003] Singh, S., Littman, M. L., Jong, N., Pardoe, D., and Stone, P.
(2003). Learning predictive state representations. In Proceedings of the Twentieth
International Conference on Machine Learning, pages 712-719.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3(l):9-44.

[Sutton, 1992] Sutton, R. S. (1992). Adapting bias by gradient descent: An incre­
mental version of delta-bar-delta. In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), pages 171-176, San Jose, CA.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning : An Introduction. MIT Press.

[Sutton et al., 1999] Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence, 112:181-211.

[Sutton et al., 2005] Sutton, R. S., Rafols, E. J., and Koop, A. (2005). Temporal
abstraction in TD networks. Technical report, University of Alberta.

[Sutton and Tanner, 2005] Sutton, R. S. and Tanner, B. (2005). Temporal-
difference networks. In Advances in Neural Information Processing Systems 17,
pages 1377-1384, Cambridge, MA. MIT Press.

[Tanner and Sutton, 2005a] Tanner, B. and Sutton, R. S. (2005a). Temporal-
difference networks with eligibility traces : TD(A) networks. In Proceedings of
the 22nd International Conference on Machine Learning, pages 889-896.

[Tanner and Sutton, 2005b] Tanner, B. and Sutton, R. S. (2005b). Temporal-
difference networks with history. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 865-870.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Williams and Zipser, 1989] Williams, R. J. and Zipser, D. (1989). A learning algo­
rithm for continually running fully recurrent neural networks. Neural Computa­
tion, 1:270-280.

[Wolfe et al., 2005] Wolfe, B., James, M. R., and Singh, S. (2005). Learning predic­
tive state representations in dynamical systems without reset. In Proceedings of
the 22nd International Conference on Machine Learning, pages 985-992.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

