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Abstract

We introduce a generalization of temporal-difference (TD) learning to networks of 

interrelated predictions. Rather than relating a single prediction to itself at a later 

time, as in conventional TD methods, a TD network relates each prediction in a 

set of predictions to other predictions in the set at a later time. TD networks ap­

ply TD learning to a wider class of predictions than previously considered. We 

demonstrate that TD networks can learn predictive state representations that en­

able exact solution of non-Markov problems. We introduce two extensions to TD 

networks including augmenting the input representation to include recent history 

and generalizing the learning algorithm to use TD(A) style eligibility traces. We 

argue that TD networks represent an extension to TD methods and bring us closer 

to the goal of representing world knowledge in predictive, grounded terms.
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Chapter 1

Introduction

Predicting future experience from past experience is a problem of interest in a variety 

of disciplines including psychology, economics, engineering, and physics. Whether 

the objective is to estimate the course of a distant comet or a stock’s opening price, 

prediction requires a model: a simplified description of a complex process.

A paradigm or representation is the set of beliefs and assumptions that pro­

vide the foundation for a particular class of models. Each paradigm has its own 

own strengths and weaknesses. For example, vast amounts of computation may 

be required to create a theoretically correct model in one paradigm, while another 

representation may be used to produce inaccurate models inexpensively.

This thesis explores a new predictive knowledge representation, called temporal- 

difference (TD) networks.

1.1 D iscre te  D y n a m ica l S ystem s

TD networks are models of discrete dynamical systems (DDS) with discrete obser­

vations and actions. Any DDS is fully specified by three things: O , A, and V- At

1
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each discrete time step, a DDS emits an observation ot from a discrete set of output 

symbols O and accepts an action at from a set of discrete input symbols A. Based 

on all preceding events and at, the DDS probabilistically emits a new observation 

ot+i- The sequence of actions and observations that begins at time 0 (oo) and ends 

at time t (at) is called the history of the system at time t, or ht■ The symbol ot+i is 

chosen probabilistically from a distribution conditioned on ht. V  is the probabilistic 

mapping from a history to an observation; V% corresponds to Pr(ot+\ =  o\ht =  h).

Any representation of a DDS requires some structure in V, some way to sum­

marize this function that can generate infinite sequences of experience. Chapter 

2  contains discussion of some common representations and the constraints and as­

sumptions they imply on V.

A sufficient statistic or state is any lossless summary of the history ht■ In the 

literature, the term “state” is sometimes used quite loosely. For example, Russell 

and Norvig imply that future experience can depend on the previous state, the 

previous two states, or the previous n states [Russell and Norvig, 2003]. Their 

definition of state does not mean sufficient statistic of the system.

1.2 P red ic tiv e  R ep resen ta tio n s

Predictive representations are a novel paradigm used to create models of DDSs 

[Rivest and Schapire, 1990; Littman et ah, 2002; Jaeger, 1998]. In predictive repre­

sentations, the model is a collection of predictions about future experience and the 

mechanisms for updating those predictions.

If different histories have identical probability distributions over all future ex­

perience, they correspond to the same state. The implied assumption of predictive

2
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representations is that equivalence of probabilities over all future experience can be 

summarized using predictions about a carefully selected subset of future experience. 

These predictions would then be a sufficient statistic.

1.3 T em poral-D ifference N etw ork s

Temporal-difference (TD) networks are a formalism for expressing and learning 

grounded knowledge about dynamical systems. A TD network is a predictive model 

that combines aspects of temporal-difference methods, predictive representations, 

and neural networks.

Knowledge is grounded if it can be directly related to experience: it is in terms 

of actions the agent can choose and symbols the agent can observe. Knowledge is 

not grounded when represented in some abstract sense that is understood by the 

designer and only indirectly related to the agent.

TD networks are an extension to existing work on temporal-difference methods. 

The idea of conventional TD methods is to “learn a guess from a guess” , where both 

guesses are predictions about the same event made at different times. TD networks 

generalize this idea and learn from predictions of different events made at different 

times.

A TD network is a generative model of a discrete dynamical system. In a TD 

network, each prediction is the answer to some question about future interaction 

with the DDS. These questions may take a variety of forms, although most generally 

they are some function of future predictions and observations.

3
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1.4 T D  N etw ork  O verview

A TD network is a network of nodes, each representing a single scalar prediction. 

The nodes are interconnected by links representing the TD relationships among the 

predictions and to the observations and actions. These links determine the extensive 

semantics of each prediction—its desired or target relationship to the data. They 

represent what the agent should predict about the data as opposed to how the agent 

should predict it. These links determine a set of questions being asked about the 

data, and accordingly are called the question network.

Independent of the question network, a separate set of interconnections deter­

mine the actual computational process—the calculation of the predictions for each 

node at each time step. This process provides the answers to the questions, and 

accordingly is called the answer network. The question network provides targets for 

a learning process that shapes the answer network.

1.4.1 Q uestion  N etw orks

Figure 1.1 shows three suggestive examples of potential question networks. Assume 

the systems being modeled by these networks have two observations, O =  {0 , 1 }. 

The boxes at the top of each question network represent the observation bit ot+\.

The node labeled 1 is directly connected to Ot+i and represents a question or 

prediction of the probability that the observation bit will be 1 on the next time step. 

For now, let the prediction of node i at time t be y\ and the TD target for y\ is z\. 

The target for Node 1 can be described as z\ = Pr(ot+ 1  =  1).

The node labeled 2 is a prediction of the expected value of Node 1 on the next 

step, z} = E{y}+1). The extensive definition of Node 2’s prediction is the probability

4
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Network 1 Network 2 Network 3

't+1 't+1 't+1

OR

Figure 1.1: Three example question networks. The observation is represented as 
a box at the top while actual nodes of the TD network, corresponding each to a 
separate prediction, are below.

that the first observation bit will be 1 in two time step, Pr(ot+ 2  =  !)•

Node 3 similarly predicts the expected value of Node 2 at the next time step 

z f = E(yf+1). To unroll a question is to examine the implications of its questions 

to identify their extensive definition. If Node 3’s question is unrolled, it can be 

interpreted as £’(yf1+2) or Pr(ot+ 3 =  1 ).

Node 4 is more complicated, it can be thought of as the expected average value of 

the three nodes it is pointing to. The numbers on the links indicate the weight of each 

connection. The target for Node 4 is z f  =  (g (y*+i)+-E(yt+0+Pr(o*+i U)  ̂ Unrolled, 

the question is W or

Node 5 is a conventional TD prediction, in this case of the future 7  discounted 

sum of the observation bit. Its target is the familiar TD target, the data bit plus 

the node’s own prediction on the next time step (with weightings (1  — 7 ) and 7  

respectively). The immediate target is z f  =  (1 — 7 )ot+i +  7 yf+1- Unrolled, the

5
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target is:
OO

(1 - 7 )Y l^ ° t+ i+ i
i—0

Node 6  predicts the expected value of Node 5 at the next time step z f  =  E(yf+1), 

or unrolling the question further it is:

OO

(1 -  7 ) Yot+i+2
i=0

Nodes 7 and 8  predict the probability of the observation bit being 1 if particular 

actions a or b are taken respectively. In target notation, z j = Pr(ot+i =  l |a t =  A a) 

and zf — Pr(ot+ 1  = l\at = A b). If the action at time t does not match the condition 

of the prediction, the prediction will not have a valid target.

Node 9 is a prediction of whether yj+1 or yf+1 will predict 1. The “or” can be 

defined arbitrarily, assume here it is the maximum of the two values. The TD target 

for Node 9 is z f = max[E(yJ+1), E(yf+1)\. Unrolled, Node 9 is asking a question 

about the observation, max[Pr(ot+ 2  =  l|fq+i =  A a), Pr(ot+ 2  =  l|cq+i =  *4h)].

As the questions become more complex, they become harder to unroll and ex­

press in terms that can be understood by the designer. More nodes can be added, 

their extensive definitions are difficult to express but nevertheless are completely 

defined as long as the local TD relationships are clear.

1.4.2 T D  N etw ork  O peration

The operation of a TD network can be summarized by five steps. A detailed explana­

tion of the TD network operation is provided after these steps have been introduced.

1. Choose an action at~ \ and receive an observation from the environment ot

6
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2 . Calculate the input vector x< as a function of the previous predictions y t- i ,  

the action just taken a t-1 , and the new observation ot

3. Create the new predictions y t =  cr(WjXt)

4. Calculate the targets z t- i  f°r the previous predictions y t_x using y t and the 

observation ot according to the question network’s links and the action condi­

tions

5. Update the weights W  according to (zt_i — y t- \)

The operation of the answer network is defined by a set of vector valued functions. 

Let y\ G [0,1], i =  1 , . . . ,  n denote the prediction of the ith  node at time step t. The 

column vector of predictions y t =  (y}7. . .  ,y t ) T is calculated using a vector-valued 

function u  with modifiable parameter W :

y t =  u(yt_ 1 ,a t_ i,o t ,W t) <E 3?n. (1.1)

The function u corresponds to the answer network, with W  being the weights 

on its links. In general u is an arbitrary function approximator, but for concreteness 

it is defined to be of a generalized linear form

y t =  e r ( W tx t ) (1.2)

where x t 6 5Rm is a feature vector, W t is a n x rn matrix, and a is some n-vector 

activation function, in our experiments either the identity function or the S-shaped 

logistic function a(s) = The feature vector is an arbitrary function of the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



preceding action, observation, and node values:

x t =  x (a t_i, ot, y t_i) G $Rm. (1.3)

For example, X( might have one component for each observation bit, one for each

possible action (one of which is 1 , the rest 0 ), and n more for the previous node

values yt_i-

Each weight corresponds to the weight of input xj for prediction y j . The 

update for each component w f  of W j is a fixed step size gradient descent update 

in least squares objective

wl+i  -  wl3 = a (4 -  (i-4)owt

where a  is a step-size parameter, z] is the TD target, and c\ is an update condition 

(described later).

The TD target z\ for y\ defined by the question network is a function of the 

successive predictions and observations. In vector form,

z t =  z(ot+i , y t+i) €$ l n, (1.5)

where y 4+1 is like y t in Equation 1.1, except calculated with the old weights before

they are updated on the basis of zt:

y t =  u (y t_ 1,a t_ i ,o t, W t_i)  € 9fT. (1.6)

8
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(This temporal subtlety also arises in conventional TD learning.) In addition to 

defining the TD targets, the question network also specifies action-conditions for 

predictions.

For example, Node 7 in Figure 1.1 predicts what the third observation bit will 

be if action a is taken. To arrange for such semantics there is a new vector ct of 

conditions, cj, indicating the extent to which y\ is held responsible for matching 

z\, thus making the fth prediction conditional on c\. Each c\ is determined as an 

arbitrary function cl of at and yt- In vector form,

For Node 7 in Figure 1.1, cj =  1 if at = A a, otherwise cj = 0.

The timing details may be clarified by writing the sequence of quantities in the 

order in which they are computed:

Prior work related to TD networks is presented in Chapter 2. We present ex­

periments with TD networks in Chapter 3, followed by extensions to TD network 

specification in chapters 4 and 5. Finally, we conclude with an overall discussion of 

our results and future work in Chapter 6 .

ct =  c(a j,y t) € [0 , l]n. (1.7)

y t at ct ot+1 x t+i y t+l zt W m  yt+1. ( 1.8)

9
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Chapter 2

R elated Work

This chapter includes a survey of some prior work that is related to TD networks. 

Many representations can be used to model dynamical systems; a brief survey of the 

approaches that are most directly related to TD networks is presented. This sur­

vey includes methods that assume an underlying abstract state space, history-based 

methods, and existing predictive representations of state. This chapter includes a 

brief introduction to networks of interrelated predictors (artificial neural networks). 

TD networks are an extension of conventional temporal-difference methods of pre­

diction, which are also briefly summarized in this chapter.

2.1 T em p oral-D ifference M eth o d s o f  P red ic tio n

Temporal-difference (TD) methods were formalized and studied by Sutton [1988] as 

a solution to the problem of making multi-step predictions of future events based on 

past experience. Previous to Sutton’s formalization, well-understood techniques for 

learning predictions were trained using differences between predictions and the ac­

tual future outcomes. With TD methods, learning was applied using the differences

10
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between temporally successive predictions. The example used by Sutton is that of 

a weatherman making a prediction on Monday about if it will rain on Saturday. 

The conventional approach would have been to wait until Saturday, observe if it 

rained, and then update the function to make better prediction on future similar 

Mondays. With Sutton’s method, the weatherman would make a second prediction 

of Saturday’s rain on Tuesday. The temporal-difference error between Monday and 

Tuesday’s predictions could be used to improve predictions for similar Mondays. 

Sutton refers to the intuition of temporal-difference learning as “learning a guess 

from a guess”.

TD methods are incremental, so they require fewer computational resources than 

their counterparts. In the weatherman example, after Tuesday has passed, no book­

keeping or future information must be updated to improve the Monday prediction. 

With other approaches, extra work is required to keep track of all the predictions 

and then to finally update them when their target values are available. Sutton also 

claims that TD methods are more data efficient than the competing approaches; 

they converge faster and learn better predictions with limited data [Sutton, 1988].

2.2 D iscre te  D yn am ica l S y stem s

All discrete dynamical systems (DDSs) with discrete actions and discrete obser­

vations can be described by a tuple of three sets: {0 ,A ,V ).  Subscript notation 

is used to identify the time at which some event occurred; at each time step the 

agent chooses an action at € A  and the system returns an observation ot+i G O. 

This sequence of actions and observations that begins at time 0 and ends at time t, 

{ooaoO\ai,..., otat}, is called the history of the system at time t, or ht . The symbol

11
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ot-|-i is chosen probabilistically by the system from a distribution conditioned on its 

current history, ht-

The observation function V  is characterized by an observation matrix with an 

infinite number of rows and \0\ columns. Each row in the observation matrix cor­

responds to some possible history, and each column corresponds to an observation 

from O. The entries are probabilities: V% = Pr(ot+ 1 =  o\ht = h).

For convenience, the rows of the matrix are ordered by length, the first row is the 

null history 0 , followed by all possible length one histories, then all possible length 

two histories, etc. The entry at row i, column j  corresponds to the probability that 

observation Oj will be emitted by the system after observing history hi-

Any representation of a DDS requires some structure in V, some way to sum­

marize this function that can generate infinite sequences of experience. A model is 

perfect if it is equivalent to V. Another way to think about these representations is 

that they are generators of the observation matrix. If a model generates the same 

observation matrix as V  then it is a perfect model of the DDS.

Sections 2.3.1-2.3.11 discuss some common representations and the constraints 

or assumptions they put on V-

2.3 M o d elin g  D yn am ica l S y stem s

When considering representations of dynamical systems, there are many different 

axes that can be used for comparison. One approach might work well with a small 

amount of data and a large amount of computation, while a different approach may 

use a relatively small amount of computation but needs much more data. There are 

a large number of other properties such as the ability to specify prior knowledge,

12
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History P(ou) P(oi)
0  (h9) 0 1

0 o°a° (h1) 0 1

0 o°a1 (h2) 1 0

0 o1a° (h3) .5 .5
0 o1a 1 (h4) .1 .9

0 o°aoo°ao (h5) 1 0’"boOo<3oO

0 1

0 o°a°o1ao (h7) 0 1

0 o°a°o1a 1 (h8) 0 1

0 o°a1o°ao (h9) 1 0

0 o°a1o°a1 (h10) 1 0

0 o°a1o1a° (hn ) 1 0

0 o°a1o1a 1 (h12) .5 .5
0 o1a°o°ao (h13) .75 .25
0 o1o°o°a1 (h14) .45 .65
0 o1a°o1a° (h ) 0 1

0 o1o°o1a1 (h16) 1 0

0 o1a 1o°a° (h17) 1 0

0 o1a 1o°a1 (h18) .5 .5
0 o1a1o1a° (h19) .4 .6

0 o1a 1o1a 1 (h20) .8 .2

Table 2.1: Example of the observation matrix for a DDS with 2 observations and 2 
actions. Superscript notation refers to a particular element from a set. For example, 
oi corresponds to the ith element from O (starting at 0), and aP corresponds to the 
j th element from A.

exact vs. approximate models, deterministic vs. stochastic models, etc., that can 

strengthen or weaken the case for using a certain approach depending on the context. 

The varying requirements of each situation dictate that there will be no approach 

that is right for all tasks. TD networks are no exception to this rule: while they are 

well suited to some tasks, they may be poorly suited to others.

The following sections include a brief introduction to various representations 

used for modeling dynamical systems. The focus of this discussion is representa­

tional power: some description of what types of DDSs the representation can model 

accurately.

13
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2.3.1 M arkov D ecision  P rocesses

The Markov decision process (MDP) representation assumes a fixed number of sit­

uations in the system, each deterministically emitting a unique symbol [Sutton and 

Barto, 1998]. There is a one to one mapping between the symbols in O and the 

situations in the system. This representation implies that V° is conditioned only 

on the previous observation and action. The observation ot is therefore a sufficient 

statistic in an MDP. This constraint reduces the number of unique rows in the obser­

vation matrix to be equal to the number of observations multiplied by the number 

of actions ( |0 | • |.4|). The size of an MDP model is the same size as the number of 

unique rows in the observation matrix. A graphical illustration of an MDP and its 

corresponding observation matrix are shown in Figure 2.1 and Table 2.2 respectively.

Figure 2.1: Graphical representation of a simple MDP with 5 states and 2 actions. 
The .5 links coming from state 1 correspond to a stochastic transition; taking action 
a0 in state 1 can lead to either state 2 or state 3. The observation matrix for this 
MDP is shown in Table 2.2.

14
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History P(o°) P(^) P(o2) P(o3) P(o4)
...o0a0 0 1 0 0 0

o o © 1 0 0 0 0oeo 1 0 .5 .5 0
...oW 0 0 0 0 1
...o2a° 0 0 0 0 1
...o2a1 0 0 0 1 0
...o3a° 0 0 0 0 1
...o V 1 0 0 0 0
...o4a° 0 0 0 0 1
...o4a1 1 0 0 0 0

Table 2.2: Example of the observation matrix for a DDS with 2 actions and 5 
observations that can be modeled by an MDP. The “...” denotes that all preceeding 
histories are irrelevant. The corresponding graphical representation of this MDP is 
shown in Figure 2.1.

2.3.2 ./V^-Order M arkov M od els

An nlh'-order Markov representation (also known as a k-Markov or k-order Markov 

model) is a generalized version of the MDP representation. This representation 

requires that there are a fixed number of situations that can each be uniquely iden­

tified by the previous n observations and actions. An MDP is an n th-order Markov 

model with n = 1. An n4/l-order Markov model constrains the observation matrix 

such that there may be a unique row for each unique history suffix of length n. The 

number of unique rows in this matrix is (\0 \n ■ |A|n). The size of this model is the 

same size as the number of unique rows in the observation matrix. The state in this 

representation is the length n suffix of the current history. A sample observation 

matrix for an nth-order Markov model is shown in Table 2.3.

2.3 .3  T he S y stem -D yn am ics M atrix

The representations discussed in the following sections are distinct from those dis­

cussed previously because their models are more compact than their associated

15
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History P M P M
...ouauo°a° .5 .5
...o°a°o°a1 1 0

...o0a°o°a0 .75 .25

...o°a°o°a1 0 1

...o°a°o1a° 0 1

...o°a°o1a1 1 0

...o°a°o1a° .5 .5

...o°a°o1a1 0 1

...o°a1o°a0 1 0

...o°a1o°a1 1 0

...o°a1o°a° 0 1

...o°a1o°a1 1 0

...o°a1o1a° .6 .4"eo"eoo

.8 .2

...o°a1o1a° 0 1

...o°a1o1a1 1 0

...o1a°o°a° 0 1

...o1a°o°a1 .5 .5
etc.

...o1a 1o1a° 0 1

...o1a 1o1a1 1 1

Table 2.3: Example of the V  function for a DDS with 2 actions and 2 observations 
that can be modeled by a 2nd-order Markov model. The “...” denotes that all 
preceeding histories are irrelevant, it is only the suffix of the history that matters.

observation matrices. These models can generate an observation matrix with a 

near infinite number of unique rows, but cannot generate all possible observation 

matrices. To accurately discuss the constraints on V  that are induced by these rep­

resentations, it is necessary to further develop our understanding of the observation 

matrix and the complexity of dynamical systems.

Originally introduced by Singh et al. [2004], the system-dynamics vector is a 

theoretical construct that can be used to represent any discrete dynamical system. 

The observation matrix is an isomorphic transformation of the systems-dynamics 

vector. The systems-dynamics vector d has infinite length, each element corresponds 

to the probability of the DDS emitting a sequence of k observations given a particular

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sequence of k — 1 actions. All sequences of lengths 1, 2,3 , ,n  are included in this 

vector.

Each element in d has the form {OQaoOia\...ak-2 0 k - i}> corresponding to 

Pt(oqoi ■ ■ ■ Ok-\\aoa\ ■ ■ ■ ak- 2). The probability of the full sequence is the product 

of several rows in the observation matrix:

Pr(o0oi ■ ■ -ok^i\a0ai ■ ■ ■ ak_2) =  Pr(o0\$)xPr(o1\ooa0)x-  • •xPr(ofc_i|o0a0 oia1 • ■ • afc_

Any element (sequence) from d can be interpreted as a collection of histories, 

e =  {0, ooao, ooaocqai,. . . ,  ooaooiai • • • ak- 2 0 k~i}- These histories are labeled {(0 = 

e°), (ooao =  e1) , . . . ,  (ooaooiai • • • ak - 2  = The element in d can be expressed

as:
fc-i

Pr(o0oi • • • ofe_ i|a0ai • • • afc_2) =  J J  V°}
i= 0

The systems-dynamics vector d has an infinite number of entries that can be 

thought of as columns; the observation matrix has an infinite number of rows. These 

ideas can be combined to construct a new matrix with an infinite number of rows 

and columns, known as the systems-dynamics matrix T> [Singh et al., 2004], Like the 

observation matrix, each row of V  corresponds to a particular history. Like d, each 

column corresponds to a sequence of observations and actions. In the literature, 

these sequences are called futures /  or tests. Each entry corresponds to the 

probability of observing the observations in test f % given the history b? and the 

action sequence of f l . The first \0\ columns of the matrix correspond to the one- 

step tests, the probability of seeing each observation given the history, exactly as in 

the observation matrix.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



History o1 o 0 a ° O° o°a°o1 o°a1o° o°a1o1

0 ( h u ) X X X X X X X

h 1 X X X X X X X

h 2 X X X X X X X

h 3 X X X X X X X

/I4 X X X X X X X

h'5 X X X X X X X

h& X X X X X X X

Table 2.4: Sample systems-dynamics matrix for a DDS with 2 observations and 2 
actions. In the columns of this matrix, the notation ola?ok... is short form for the 
test Pr{o t + 1  =  o \ ot+ 2  =  ok\at = a3), given the history corresponding to the row.

The system-dynamics matrix is directly computable from d or the observation 

matrix and therefore contains no more information than either of these representa­

tions. The advantage of considering V  is that it has certain properties that allow 

for better analysis of the complexity of a DDS. Singh et al. define the linear dimen­

sion of a DDS as the rank of its system-dynamics matrix [Singh et al., 2004], The 

linear dimension of V  is a measure of the complexity of a DDS, so a model that can 

accurately represent a given system should have complexity that is a function of the 

linear dimension. For example, because the maximum number of unique rows in the 

observation matrix for an n th-order Markov model is k = ( |0 |n • |M|n), V  cannot 

have rank greater than k. Therefore, the linear dimension of any system that can 

be represented by an n^'-order Markov model cannot be greater than k.

2.3 .4  P artia lly  O bservable M arkov D ecision  P rocesses

Partially observable Markov decision processes (POMDPs) are like MDPs in the 

sense that they require n unique underlying situations in the system [Littman, 1996]. 

These situations are called nominal states. In the POMDP model, nominal states

18
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do not emit symbols deterministically. Instead, each nominal state has a stochas­

tic function to determine which symbol is emitted. A POMDP model maintains a 

probability distribution over how likely it is that the system is in each of the nom­

inal states. This distribution is known as the belief state. POMDPs can represent 

systems that cannot be represented by any fixed-length history model. An example 

POMDP with deterministic transitions and observations is shown in Figure 2.2.

Ring World

Figure 2.2: An indefinite-memory POMDP problem, the eight-state deterministic 
ring world. There are two actions in this world, left and right. Right advances 
in clockwise rotation while left advances in counter-clockwise rotation. Prediction 
methods using a finite length history will lose localization after some number of 
transitions back and forth between the states that emit observation 0.

Singh et al. have shown that the system-dynamics matrix T> that can be gener­

ated by a POMDP with k nominal states can have rank no greater than k. Therefore, 

a POMDP with k nominal states cannot model a dynamical system with linear di­

mension greater than k [Singh et al., 2004]. The converse of this result is not true; 

there are DDSs with finite linear dimension that cannot be modeled by any POMDP 

[Jaeger, 1998].
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2.3.5 P red ictive  R ep resen tation s

The DDS representations above all require that the behaviour of the DDS can be 

described in terms of either some abstract space of situations or some suffix of 

history. Predictive representations instead characterize the state of the system in 

terms of questions about future sequences of actions and observations. Much of 

the work on predictive representations has been inspired by Rivest and Schapire’s 

work [1994] on inferring the structure of deterministic finite automata. Rivest and 

Schapire were the first to propose that the state of a deterministic system could be 

represented by a vector of predictions about future tests that could be performed in 

the system.

There are several variations of predictive representations: most notably predic­

tive state representations (PSRs) and observable operator models [Littman et al., 

2002; Jaeger, 1998]. PSRs and observable operator models are similar in many ways, 

and are even equivalent under certain conditions [Singh et al., 2004]. For clarity, 

our focus will be specifically on Littman et aVs PSR model.

2.3 .6  Linear P red ic tiv e  S ta te  R ep resen tation s

The linear predictive state representation (linear PSR) is derived directly from the 

system-dynamics matrix V. If V  has finite rank k, there exist k linearly independent 

columns in V  that can be used to generate the rest of T>. In a linear PSR, the tests 

that correspond to these k linearly independent columns from T> are known as core 

tests [Littman et al., 2002], The PSR model explicitly estimates the probability 

that each core test will succeed if its action sequence is chosen. Because a PSR is 

derived directly from V, there is a PSR model with k core tests for every DDS with
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finite rank k [Singh et al., 2004], This result means that there is a PSR that can 

represent any n^-order Markov model and POMDP, while the converse is not true.

2.3 .7  T D  N etw ork s and  P red ictive  S ta te  R epresen tation s

TD networks and PSRs have many similarities. Both methods are grounded, predic­

tive representations. Both methods learn their model parameters from experience 

with the system. The work in both areas has progressed very quickly, and both rep­

resentations have been used in various ways. Even so, there are some fundamental 

differences between TD networks and PSRs.

One clear difference is the type of tests that are used in each model. In the linear 

PSR literature, tests are for an entire sequence:

Pr(ot+1 =  o \ ot + 2  =  o>, ■ ■ • , ot+k =  ox|at =  Aa, at+1 = Ab, ■ ■ ■ , at+fc_i =  Af )

In TD networks, the questions are about the observation at the end of a sequence, 

similar to the e-tests in nonlinear PSRs [Rudary and Singh, 2004]:

Pr(ot+k = ok\at = aa, at+1 = Ab, ■ ■ ■ , at+k- i =  Af )

The information that can be represented by these predictions is different. The 

implications of these differences are not completely clear.

To understand further differences between TD networks and PSRs, it is impor­

tant to understand how these methods work.
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Linear PSRs

This section presents a high level explanation of the linear PSR representation. For 

additional details, see the PSR literature [Littman et al., 2002; Singh et al., 2003; 

Singh et al., 2004; James and Singh, 2004; Wolfe et al., 2005].

Recall that a PSR representation assumes the existence of a maximal set of 

linearly independent columns in the system-dynamics matrix corresponding to core 

tests. If the core test values are known, the probability of all other tests can be 

calculated as a linear combination of the core tests.

The vector of core test probabilities is called Q. For every test / ,  there is weight 

vector w? such that the probability of /  succeeding can be calculated as a linear 

function of Q (ft =  Qt ■ vjf). Consider a single core test, q. There is a test f aoq 

which is a one time step extension of q: the probability of the system generating the 

observation o following the action a and then the test q succeeding. There is also 

a test f ao, the probability of seeing o after taking action a. Both f aoq and f ao are 

linearly calculable from Q (/ “°9 =  Qt ■ wJa°q and f f °  = Qt • w ^°). The properties 

of the system-dynamics matrix (and Bayes’ rule) allows the value of q at the next 

time step to be calculated:
/ aoq

__ t__
m + l ja o

The core test probabilities can each be updated by dividing their appropriate 

one step extension test by the appropriate one step test. The parameters that a 

PSR learns are the weights w^a°q for all core tests in Q and w fa°, the one step tests. 

The PSR representation requires that for every ao pair, there are two scalars for 

each qt € Qt that can be calculated linearly from Qt ■ These scalars can then be
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divided to calculate the value of qt+\-

TD Networks

TD networks are not derived directly from the system-dynamics matrix and there­

fore the update procedure of the answer network is more difficult to analyze. The 

problem is compounded by the general nature of the TD network; there is no single 

“correct” update function, input representation, or question network.

Consider a simplified TD network update procedure where the input vector does 

not contain any direct information about the action and observation most recently 

taken. Instead, the input vector at time t is the prediction vector from the previous 

step (xt+i =  y t). A bias term for the input representation can be used by adding 

a “null” question whose answer is always 1. Also, instead of using a single weight 

matrix W  for calculating predictions, a different set of weights will be used for each 

at-iot pair. Assuming that the cr activation function is the identity function, each 

prediction y% e  y can be calculated as:

y\+ l= y t -wao

At this level, the difference between the mechanics of a PSR and a TD network 

is clear. To calculate the value of a core test a PSR model computes both the 

values of the appropriate ao test and the one step extension to the core test, then 

divides these two numbers. In a TD network, the answers for the next time step are 

calculated directly as a linear function of the answers from the current time step. 

The derivation of the PSR update falls out directly from the definition of the core 

tests. The exact implications of the TD network update is less clear and is an active
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area of investigation.

Discussion

TD networks and PSRs are two distinct representations and algorithms for learning 

predictive models. Although their predictive nature makes them similar, it is still 

unclear exactly what their relationship is. Is one of these two approaches superior? 

Are there certain problem classes in which each method has its strengths and weak­

nesses? In the future, will these two methods become more closely associated? We 

think that both methods will thrive and future work will further bridge the gap 

between them.

2.3.8 N on lin ear P red ictive  S ta te  R ep resen tation s

Nonlinear PSRs do not require that the core tests be a maximally linearly inde­

pendent set. Relaxing this constraint implies that one step extension to the core 

tests may not be a linear function of the core tests. The one step extension tests 

are instead calculated using some non-linear function [Rudary and Singh, 2004], 

While the tests in a linear PSR predict the probability of a sequence of observations 

given a sequence of actions, other tests are possible. Nonlinear PSRS are based on 

e-tests, which predict the final observation given a sequence of actions [Rudary and 

Singh, 2004], In their work, Rudary and Singh showed that in certain determin­

istic dynamical systems, nonlinear PSR models can be exponentially smaller than 

the equivalent linear PSR or POMDP model. It is currently unclear how nonlinear 

PSRs can be learned or applied in general.
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2 .3 .9  Schem as

Schemas are a DDS representation, originally introduced by Drescher [1991]. Drescher’s 

original work was recently extended by Holmes and Isbell [2005]. This representa­

tion was introduced as a way to model a DDS where the observations come as a 

vector ot , each element of the vector represents the discrete value of a sensor. In 

this representation, the model is a collection of action-conditional predictors called 

schemas. Each schema predicts the observation vector at time t + 1. To improve 

their discriminative power, each schema has a filter or rule called a context that 

is only active if certain conditions are true of oj. As the agent gets more experi­

ence with the DDS, new schemas are added and the context of existing schemas 

are refined to make them more reliable. This agent also adds virtual sensors called 

synthetic items which represent hidden state. If some sensor cannot be predicted 

reliably, the agent assumes that there is some hidden variable (the synthetic item) 

that, if known, could help with prediction. Over time, the schemas will use and 

predict synthetic items just as they do regular observations.

Schemas are intended for deterministic DDSs -  environments where V  is such 

that, given some history ht , the DDS will always generate the same sequence of 

observations for a particular action sequence. It is not clear how successfully the 

schema approach can model stochastic systems. There is no theoretical analysis of 

the potential representational power of the schema system.

2 .3 .10  V ariable L ength  M em ory M ethod s

Several representations have been proposed to model DDSs using variable length 

memories. These models are similar to the ntft-order Markov models discussed
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above, but are distinct because not all histories are the same length. Variable 

length memory models are more efficient and tractable than nt/l-order Markov mod­

els because long memories are used only in situations where shorter memories are 

not a sufficient statistic. Like n th-order Markov models, variable length methods 

still cannot represent indefinite-memory problems like the ring world in Figure 2.2.

2.3.11 O ther M eth od s

The preceding sections are a brief summary of the most relevant existing representa­

tions of dynamical systems. There are numerous other methods, each with their own 

assumptions and constraints. There are methods that only consider uncontrolled 

systems [Shalizi and Shalizi, 2004], methods for deterministic systems [Shen, 1993], 

methods that explicitly use a reinforcement signal in building a state representation 

[Ring, 1994; McCallum, 1995].

2.4  A rtific ia l N eu ra l N etw ork s

Artificial neural networks (ANN) are an approach to information processing that 

was inspired by biological learning systems like the brain. Discussion about neurons 

and their behavior dates back as far as the 1940s and continues to be an active 

area of research [Mehrotra et al., 1997]. The ANN literature is sufficiently diverse 

and extensive that an attempt to summarize it here would be distracting to the 

reader. Instead, we present a general sketch of the neural network approach. For 

more information on neural networks, see Mehrotra et al.'s textbook [1997].

A neural network is a collections of nodes and weighted edges that transforms a 

vector of n inputs into a vector of m  outputs. These networks are often structured
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Output Layer

Hidden Layer(s)

Input Layer

Figure 2.3: Artificial neural network with 6 input units, two hidden layers of 3 units 
each, and 4 output units.

using layers: there is an input layer, an output layer, and potentially several hid­

den layers in between. Information travels (usually directionally) along the edges 

between connected nodes. The information on the incoming edges to each node 

is summarized by an activation function and then transmitted through the node’s 

outgoing edges. Figure 2.3 is a graphical representation of a neural network with 

two hidden layers. This type of network is known as a feed-forward neural network: 

the activations flow in a single direction.

Artificial neural networks that have backward connections are known as recurrent 

neural networks.

2.4.1 T D  N etw ork s and A rtificia l N eural N etw orks

It is natural to relate TD networks to artificial neural networks. Both are networks 

of interrelated predictors. ANNs are very general -  they have been used in several 

configurations to solve many problems. The simplest way to relate TD networks to 

ANNs is to describe a TD network as an ANN with recurrent connections.
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T D  Netw orks as R ecurrent A N N s

TD Network Nodes

Input Layer

External Inputs

Figure 2.4: TD network with two predictive nodes drawn as a recurrent neural 
network. This figure describes the answer network and has no information about 
the question network.

A TD network can be thought of as a neural network with two layers, an input 

layer and an output layer. A sample TD network with two predictive nodes is 

shown in Figure 2.6. Each TD network node yl £ y corresponds to a node in the 

output layer, and each element xJ 6 x corresponds to a node in the input layer. 

The activation function can be whatever is desired. This is all that is required to 

understand the answer network of a TD network in terms of a recurrent ANN.

ANNs are often trained using input-output pairs: each output unit has a specific, 

well-defined target for each input vector. The target function in a TD network may 

include experience from future time steps and therefore does not fit this mold.

O ther R ecu rren t N eural N etw orks

TD networks are not the first connectionist approach to make use of recurrent 

connections. There is a large body of literature that involves using recurrent ANNs 

for a variety of classification and prediction tasks.
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Output Layer

Hidden Layer

Input Layer

Feedback
Unit

Feedback
Unit

Plan Inputs

Figure 2.5: Example of Jordan’s recurrent ANN with 4 external plan input units, 2 
feedback units, 1 hidden layer of 3 units, and 2 output units.

Jordan [1986] proposed a multilayer feed-forward style network that connects 

output units back to certain special “feedback” units that operate in parallel to the 

external inputs units (called plan units). Jordan’s networks can be used to produce 

a fixed sequence of outputs given a static input pattern.

Output Layer

Hidden Layer

Input Layer

Context
Unit

Context
Unit

Input Units

Figure 2.6: Example of Elman’s recurrent ANN with 4 external plan input units, 2 
feedback units, 1 hidden layer of three units, and 2 output units.

Elman [1988] suggested a similar network using recurrent connections from the 

hidden units rather than the output units. Elman’s networks learn structure in time 

and were able to solve temporal XOR, learn about the structure in a sequence of
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letters, and learn interesting knowledge in several other domains.

A variety of other recurrent network architectures also been proposed, including 

some fully recurrent variations [Rumelhart et al., 1986; Pineda, 1988; Williams and 

Zipser, 1989].

All of these models are trained using some variation of the error-propagation 

(back-propagation) learning algorithm [Mehrotra et al., 1997]. The back-propagation 

learning algorithm uses general purpose hidden units to correct to facilitate accu­

rate predictions in the output units. This is different from the TD network learning 

algorithm where every unit has a well defined target function.

Discussion

Several types of recurrent artificial neural networks have been proposed in the past. 

To our knowledge, none of these approaches were intended to learn a predictive 

model of a dynamical system. None of these approaches learn TD style predictions. 

Although at first glance TD networks may seem similar to existing recurrent neural 

network architectures, comparison shows that TD networks are a novel, unique 

idea that cannot be directly equated with prior work in the recurrent connectionist 

literature.
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Chapter 3

TD  Network Experim ents

In this chapter, we show that TD networks can be used to learn accurate, probabilis­

tic predictions in a simple random-walk world. 1 When actions are introduced and 

the inter-prediction relationships aremade contingent on them, the usual learning- 

efficiency advantage of TD methods over Monte Carlo (supervised learning) methods 

becomes particularly pronounced. Finally, we demonstrate that TD networks can 

learn predictive state representations that enable exact solution of a non-Markov 

problem.

3.1 Error R ep o rtin g

The error of any particular prediction at one instant is not representative of the 

quality of the overall model; it is more meaningful to report error of predictions 

over the entire environment. Better yet, error could be reported over the entire 

environment weighted by the frequency that each state is visited. Finally, because

1This work was orig inally presented at the Advances in Neural In form ation Processing Systems 
Conference [Sutton and Tanner, 2005].
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the TD network state representation is influenced by recent experience, the error 

should be averaged over these histories. The error of a node at some time step is 

defined as the root mean-squared error (RMSE) of that node’s predictions over a 

window of some number of time steps (1000, for example). The errors observed 

within this window are a large enough sample to be representative of approximately 

regular experience in the environment. Let z*1 be the extensive, correct target for 

Node i.

Formally, the RMSE of Node 1 over a 1000 step window is defined as:

RMSEl = X -  { z f ^y t^ W in dow

The average error of an TD network with n nodes over a 1000 step window is 

then:

1 n
R M S E  =  -  V "  R M S E 1 

n '
i —\

The targets (z*l) are provided by asking an oracle what the unrolled answer 

to each question would be if the node’s action sequence were performed from the 

current time. This oracle is not used for anything other than evaluation.

3.2 R an d om  W alk

The experiments in this section use the 7-state random walk environment shown in 

Figure 3.1. Several variations of this world are used, including:

Fully observable stochastic walk This variation of the random walk environ­

ment has a single action. On each time step, the environment randomly moves
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the agent either left or right with equal probability. This version of the ran­

dom walk has been artificially made Markov, as shown in Figure 3.2. The 

observation matrix corresponding to V  for this environment has exactly one 

row for each observation. Although the artificial state label is visible to the 

agent, the objective is to predict the observable bit.

Fully observable determ inistic walk This environment is the observable stochas­

tic walk with two actions. The first action deterministically moves the agent 

to the left, the other deterministically to the right. Again, the environment 

has been artificially labeled as in Figure 3.2.

7-state partially observable walk In this case their are two actions and the en­

vironment has not been artificially made Markov. Only the observation bit (1 

or 0) is available to the agent.

Random Walk 

Observations

Figure 3.1: 7-state stochastic random walk world. The state transitions with equal 
probability to the left or the right on each time step.

3.2.1 E xperim en t 1: n -step  U n con d ition a l P red iction

In this experiment, the TD networks learned to predict the observation bit precisely 

n steps in advance, for n = 1, 2, 5, 10, and 25 in the observable stochastic walk
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Random Walk

Observations

State Labels

Figure 3.2: Fully observable 7-state stochastic random walk world used in our 
Markov experiments. The agent is able to observe the label of the state (bottom) 
and is trying to predict the observation in each step (top).

environment. In order to predict n steps in advance we also have to predict n — 1 

steps in advance, n —2 steps in advance, etc., all the way down to predicting one step 

ahead. This is specified by a TD network consisting of a single chain of predictions 

like the left column of Figure 3.3, but of length 25 rather than 5.

Random-walk sequences were constructed by starting at the center state and 

then taking random actions for 50, 100, 150, and 200 steps (100 sequences each).

A TD network and a corresponding Monte Carlo approach were both provided 

this data. The Monte Carlo method learned the same predictions, but learned them 

by comparing them to the actual outcomes in the sequence (instead of z\ in (1.4)). 

Both algorithms used feature vectors of 7 binary components, one for each of the 

seven states, all of which were zero except for that corresponding to the current 

state. Both algorithms formed their predictions linearly (cr(-) was the identity) and 

unconditionally (c\ = 1 Vi,f).

In an initial set of experiments, both algorithms were applied online with a 

variety of values for their step-size parameter a. Under these conditions neither 

algorithm was clearly better in terms of the root mean square error in their pre-
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Question Network (a) Question Network (b)

o t+1 t+1

...etc

Figure 3.3: Question networks similar to those in our experiments. Question network 
(a) is a 5 step unconditioned “chain” question network, network (b) is a 3-level “tree” 
symmetric action-conditional question network.

dictions over the data sets. The difference is obvious when both algorithms were 

trained using batch updating, in which weight changes are collected “on the side” 

over an experience sequence and then made all at once at the end, and the whole 

process is repeated until convergence. Under batch updating, convergence is to 

the same predictions regardless of initial conditions or a value (as long as a  is 

sufficiently small), which greatly simplifies comparison of algorithms. The predic­

tions learned under batch updating are also the same as would be computed by 

least squares algorithms such as LSTD(A) [Bradke and Barto, 1996; Boyan, 2002; 

Lagoudakis and Parr, 2003].

For 1-step predictions, the Monte-Carlo and TD methods performed identically,
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Time
Steps

1-step
MC/TD

2-s
MC

tep
TD

5-s
MC

;ep
TD

10-E
MC

>tep
TD

25-s
MC

>tep
TD

50
100
150
200

0.205
0.124
0.089
0.076

0.219
0.133
0.103
0.084

0.172
0.100
0.073
0.060

0.234
0.160
0.121
0.109

0.159
0.098
0.076
0.065

0.249
0.168
0.130
0.112

0.139
0.079
0.063
0.056

0.297
0.187
0.153
0.118

0.129
0.068
0.054
0.049

Table 3.1: RMSE of Monte-Carlo and TD-network predictions of various lengths and 
for increasing amounts of training data over all states on the random-walk example. 
These results are for offline, batching training.

but for longer predictions a significant difference was observed. The RMSE of the 

Monte Carlo method increased with prediction length whereas for the TD network 

it decreased. The largest standard error in any of the numbers shown in the table 

is 0.008, so almost all of the differences are statistically significant. TD methods 

appear to have a significant data-efficiency advantage over non-TD methods in this 

prediction-by-n context (and this task) just as they do in conventional multi-step 

prediction [Sutton, 1988].

3.2 .2  E xp erim en t 2: A ction -con d ition a l P red iction

The advantage of TD methods should be greater for predictions that apply only 

when the experience sequence unfolds in a particular way, such as when a par­

ticular sequence of actions is chosen. In a second experiment the TD networks 

learned n-step-ahead predictions conditional on action selections in the observable 

deterministic walk environment. The question network for learning all 2-step-ahead 

predictions is shown in Figure 3.3b. The upper two nodes predict the observation 

bit conditional on taking a left action (L) or a right action (R). The lower four nodes 

correspond to the two-step predictions, e.g., the second lower node is the prediction 

of what the observation bit will be if an R action is taken followed by an L action.
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These predictions are similar to the e-tests used in some of the work on predictive 

state representations [Rudary and Singh, 2004].

This experiment used a question network like that in Figure 3.3b except of depth 

four, consisting of 30 (2+4+8+16) nodes. The conditions for each node were set to 

0 or 1 depending on whether the action taken on the step matched that indicated in 

the figure. The feature vectors were the same as the previous experiment. Now that 

predictions are conditioned on actions, the problem is deterministic and a  can be set 

uniformly to 1. A Monte Carlo prediction can be learned only when its corresponding 

action sequence occurs in its entirety, but then it is complete and accurate in one 

step. The TD network, on the other hand, can learn from incomplete sequences 

but must propagate them back one level at a time. First the one-step predictions 

must be learned, then the two-step predictions from them, and so on. The results 

for online and batch training are shown in Tables 3.2 and 3.3.

1-Step 2-Step 3-Step 4-Step
Time Step MC/TD MC TD MC TD MC TD

100 0.153 0.222 0.182 0.253 0.195 0.285 0.185
200 0.019 0.092 0.044 0.142 0.054 0.196 0.062
300 0.000 0.040 0.000 0.089 0.013 0.139 0.017
400 0.000 0.019 0.000 0.055 0.000 0.093 0.000
500 0.000 0.019 0.000 0.038 0.000 0.062 0.000

Table 3.2: Online performance. RMSE of the action-conditional predictions of vari­
ous lengths for Monte-Carlo and TD-network methods on the random-walk problem.

As anticipated, the TD network learns much faster than Monte Carlo with both 

online and batch updating. Because the TD network learns its n step predictions 

based on its n — 1 step predictions, it has a clear advantage for this task. Once the 

TD Network has seen each action in each state, it can quickly learn any prediction 

2, 10, or 1000 steps in the future. Monte Carlo, on the other hand, must sample
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Time Steps MC TD
50 53.48% 17.21%
100 30.81% 4.50%
150 19.26% 1.57%
200 11.69% 0.14%

Table 3.3: Batch performance. Average proportion of incorrect action-conditional 
predictions for batch-updating versions of Monte-Carlo and TD-network methods, 
for various amounts of data, on the random-walk task. All differences are statisti­
cally significant.

actual sequences, so each exact action sequence must be observed.

3.2 .3  E xp erim en t 3: L earning a P red ictive  S ta te  R ep resen ta tion

Experiments 1 and 2 showed advantages for TD learning methods in Markov prob­

lems. The feature vectors in both experiments provided complete information about 

the nominal state of the random walk. In Experiment 3, on the other hand, TD 

networks learned about a non-Markov version of the random-walk example, the 

partially observable random walk. In this case it is not possible to make accurate 

predictions based solely on the current action and observation.

As in the previous experiment, the TD network learned n-step predictions using 

action-conditional question networks of depths 2, 3, and 4. The feature vector x, 

consisted of three parts: a constant 1, four binary features to represent the pair 

of action at- i  and observation bit ot , and n more features corresponding to the 

components of yt_i- The features vectors were thus of length m = 11,19, and 35 

for the three depths. In this experiment, cr(-) was the S-shaped logistic function. 

The initial weights Wo and predictions y0 were both 0.

Fifty random-walk sequences were constructed, each of 250,000 time steps, and 

presented to TD networks of the three depths, with a range of step-size parameters
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a. The data performance measure was the RMSE of all predictions made by the 

networks (computed from knowledge of the task) and also the “empirical RMSE,” 

the error in the one-step prediction for the action actually taken on each step. In all 

cases the errors approached zero over time, showing that the problem was completely 

solved. Figure 3.4 shows some representative learning curves for the depth-2 and 

depth-4 TD networks.

Empirical 
RMS error

3

2

1
,oc=25

a=.7:
0

0 50K 100K 150K 200K 250K

Time Steps

Figure 3.4: Prediction performance on the non-Markov random walk with depth-4 
TD networks (and one depth-2 network) with various step-size parameters, averaged 
over 50 runs and 1000 time-step bins. The “bump” most clearly seen with small 
step sizes is reliably present and may be due to predictions of different lengths being 
learned at different times.

In ongoing experiments on other non-Markov problems, TD networks do not 

always find such complete solutions. Other problems seem to require more than 

one step of history information (the one-step-preceding action and observation), 

though much less than would be required using history information alone. Previous 

algorithms have also been found to be effective on some tasks but not on others 

[Singh et al., 2003; Rudary and Singh, 2004; James and Singh, 2004], Our results
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as a whole suggest that TD networks may provide an effective alternative learning 

algorithm for predictive state representations [Littman et al., 2002],

3.3 C onclu sion

Our initial experiments with TD networks suggest a large set of possibilities for 

learning to predict, and in this chapter we have begun exploring the first few. Our 

results show that even in a fully observable setting there may be significant advan­

tages to TD methods when learning TD-defined predictions. Our action-conditional 

results show that TD methods can learn dramatically faster than other methods. 

TD networks allow the expression of many new kinds of predictions whose extensive 

semantics is not immediately clear, but which are ultimately fully grounded in data.
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Chapter 4

TD Networks w ith  H istory

TD networks are not able to learn perfect models of some small, deterministic 

POMDPs. In this chapter, we extend TD networks by allowing the network-update 

process (the answer network) to depend on the recent history of previous actions 

and observations rather than only on the most recent action and observation. 1 

This extension enables the solution of a larger class of problems than can be solved 

by the original TD networks or by history-based methods alone.

4.1  T D  N etw ork  C ou n ter-exam p les

TD networks are able to solve some, but not all of our small testing problems. 

Careful analysis has determined that the question networks that were used were 

sufficient to represent the appropriate model, so the issue must lie somewhere in the 

TD network specification.

Figure 4.1 presents a simple example of a task and question network for which

lrThe work in  th is chapter was orig inally presented at the International Joint Conference on 
A rtific ia l Intelligence [Tanner and Sutton, 2005b],
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the solution is representable but not learnable by TD networks without history. The 

cycle world consists of the four states shown on the left. The current state of the 

system cycles clockwise through the states. There is a single observation bit that is 

1 at the top of the cycle, and 0 at all other times. On the right of Figure 4.1 is a 

question network which asks what the observation bit will be one, two, and three 

time steps in the future. Recall that at time t, y t is calculated as a function of 

(yt_i, at_i, Ot. Wf). Assuming that the y t-1 is correct, there is a solution for the 

weights that will keep y t correct at each successive time step. Unfortunately, y t_x 

will never be correct; the solution exists but will not be found.

Recall that the question network specifies the source of target values for the 

answer network. At the start of training, y t-1 will likely be incorrect. There are no 

actions in this environment, so the current observation o* is the only useful input 

feature in x*. For the network to become correct, it is necessary that some sequence 

of questions can eventually be answered, starting only with knowledge of ot . Also 

note that when training begins, the only node with a valid target is y l , because 

its target is not a prediction, but rather the grounded observable value of ot+1- As

Cycle World Question Network

Figure 4.1: A counterexample for TD-network learning without history. On the left 
is a representation of the cycle world. This environment has four states that are 
cycled through deterministically. On the right is the associated question network. 
There are no actions in this world.
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training progresses, the agent interacts with the environment and some answers will 

be learned using only the grounded observations. Eventually, the environment will 

reach a point where ot =  0 and y} should be 1. The information that distinguishes 

this case from the case where ot = 0 and y} should be 0 lies in a correct answer for 

Vt-i- Unfortunately, the target for y ^ i  is y j . In this case, the cyclic dependency 

between the question network and the temporal flow of information eliminates the 

possibility of the TD network learning a correct solution.

Information flow dependency occurs when ylt critically depends on an input fea­

ture in xt that corresponds to y£_1? and the target zj_1 is a function of y\. This 

dependency can be eliminated by providing additional input features to the TD 

network.

The cycle world is a problem in which there is a simple relationship between the 

observations and recent experience. Methods that try to directly learn such rela­

tionships are called history-based methods. We will consider history-based methods 

which predict ot+i using a different variable for each unique k-length window of 

history where a k-length window of history is defined as at ~ k Of -  fc+ 1 • • ■ ai - 1 °t • In this 

case, a window of length 3 would be sufficient to uniquely identify each state of the 

system and thus would be able to make accurate predictions. Incorporating short 

history into the feature vector x< of a TD network should allow the TD network to 

learn a correct solution to this problem. Figure 4.2 shows an example of a hybrid 

input vector that uses 3 time steps of history and 3 predictive nodes.
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Features Initial Final

1 1
history = 000 0
history = 001 0
history = 010 0
history = 011 0
history = 100 1
history = 101 0
history = 110 0
history = 111 0

»Y, .5
.5

v3m
.5

Figure 4.2: Input vector for cycle world with 3-step history and 3 levels of predictive 
nodes. On the left is the definition of each feature. The first feature is the bias term. 
The next 8 features correspond to the 8 distinct 3-step histories {ot-2 ° t-i° t}  (not all 
are possible in this world). The final 3 features are the predictions from the previous 
time step. The middle vector is a sample input vector for the third state from the 
top of the cycle world at the start of learning. At this point, all of the predictions 
are at their initial value, .5. Finally, the rightmost vector is the input vector for the 
third state when learning is complete, all of the predictions are accurate.

4.1 .1  E xperim en ta l R esu lts

The hybrid approach is tested using a cycle world like that in Figure 4.1, except with 

six states instead of four. This size was chosen to clearly illustrate the effectiveness 

of different configurations of history and predictive nodes. Three different methods 

were tested in this domain: (1) TD networks as previously specified without history, 

(2) a simple history-based approach, (3) a combination of TD networks and history 

together. For each method, several values for the step size parameter were used; 

the best of these was used as the performance measure for that method. For each 

method and step size, the network was trained for at least one million time steps. 

The 1-step RMSE over the final 20 000 steps is used as an overall performance 

measure for each experiment.

The results in Figure 4.3 show that the simple history-based method only per­

formed well when it had enough history to solve the problem exactly. TD networks
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Figure 4.3: Performance on the 6-state cycle world of TD networks extend to incor­
porate various lengths of history. The different lines correspond to different depths 
of the question network, as indicated by the numeric label.

without history correspond to the data points with history length one. These TD 

network performances are better than history alone, but not as good as the TD net­

works augmented with history. It is also interesting to notice that the TD network 

is able to solve the problem with a much shorter window than the history-based 

method alone. This illustrates that our combined algorithm is not simply using his­

tory instead of the predictive representation, but rather is leveraging the history to 

learn a predictive representation. It is interesting that the performance of the vari­

ous combinations of history and predictive nodes do not follow a clear pattern. For 

example, when there are 2 predictive nodes, it appears that 2 or 4 steps of history 

is better than having 3 steps. The minimum length of history required to exactly 

model the 6-state cycle world with 2 predictive nodes is a 4-step history. This means 

that the low error seen with 2 steps of history is a case of the TD network stumbling 

on a good approximate solution when it could not represent an exact solution (as 

discussed in Chapter 4.1.2).
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4.1.2 A p p roxim ate Solu tions

State Observation Sequence A Sequence B
1 1 .83 .05
2 0 .00 .00
3 0 .02 .01
4 0 .03 .02
5 0 .06 .03
6 0 .15 .04
1 1 .83 .07

Table 4.1: Unstable approximate solutions learned by a single node TD Network on 
the 6-state cycle world. The predictions in sequence A are at a point in training 
where the TD network has found a very good approximate solution. The predictions 
in sequence B are from a different point in training. The behavior of the TD network 
oscillates indefinitely between producing solutions like sequence A and solutions like 
sequence B.

Approximate solutions to the cycle world can be learned by TD networks con­

sisting of a single node. There is no way that a single predictive node can solve 

this problem perfectly, but it can achieve very low error in an unusual way. Table 

4.1 shows two sequences of predictions that are made by a TD network at different 

stages of training. Neither sequence is stable, the TD network will oscillate between 

predictions like sequence A and predictions like sequence B.

The mean squared error of sequence A (over 1 trip around the cycle) is .0094 

and sequence B is .151. The maximum likelihood model of this system based only 

on 1-step observations would predict 0 for the next step if 1 is observed, and would 

predict |  if 0 is observed. This model would have MSE=.133, better than sequence 

B but far worse than sequence A.
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4.2  In d efin ite-m em ory  P ro b lem s

Introducing history to the TD network specification can eliminate cyclic depen­

dencies and increase the class of problems where solutions can be learned with TD 

networks. There may be a tradeoff between predictive levels in the question network 

and lengths of history that are provided. From the cycle world example, it may not 

be clear that the hybrid approach is superior to a history-only approach.

There is a potentially large class of problems that cannot be represented with 

a history-only approach, but can be represented and solved by TD networks. En­

vironments in this class are such that there is no finite length of history that can 

uniquely identify the current state of the environment. Problems in this class are 

called indefinite-memory problems.

One simple example of an indefinite-memory problem is the ring world shown in 

Figure 4.4. Because states B, C, D, and E are indistinguishable, there are sequences 

of actions that keep the environment in that subset of states and will eventually fill a 

fixed-length memory with useless information. In contrast, a TD network can model 

this environment, and can never be made to forget its location in the environment.

4.2 .1  E xp erim en ta l R esu lts

We applied TD networks with various depths of question network and lengths of 

history to the 5-state ring world problem. The performance measure used was the 

same as in the previous experiments, except in this case averaged over 25 indepen­

dent runs of 10 million time steps. The results are shown in Figure 4.5. As the 

history window increases, the history-only method more closely approximates the 

correct solution. This improvement seems to diminish as the history window gets
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Ring World Question Network
State A

’t+i

State E I 0 State B

State C State D

Figure 4.4: An indefinite-memory problem, the five-state deterministic ring world 
and an example question network of depth 2. There are two actions in this world, 
left or simply L and right R. right advances in clockwise rotation while left advances 
in counter-clockwise rotation. Prediction methods using a finite length history will 
lose localization after some number of transitions back and forth between the states 
that emit observation 0 .

larger, and is further hampered by the fact that the number of unique histories 

grows exponentially with the length of the window. With the predictive approach, 

the problem is solved correctly with only 1 level of history and a predictive question 

network of depth 3.

Provided enough time, the TD network can learn a correct model of this envi­

ronment without history, something which it could not do for the cycle world. This 

is puzzling given that these two problems seemed highly related, the cycle world 

seemingly even less complex than the ring world. In the ring world, actions have 

inverses which may eliminate the information flow dependencies that existed in the 

cycle world. In the ring world, the agent can incrementally learn more and more 

about the environment. In early training, the agent can orient itself when o* =  1 

because this observation uniquely identifies this state. As time passes, the agent 

can learn accurate 1-step predictions from that location. It can also learn 2-step 

predictions that involve leaving this position and then returning immediately. This 

process can continue until this chaining effect has allowed the agent to make accurate
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Figure 4.5: Performance on the 5-state ring world as a function of length of history 
and depth of question network. The history method suffers from diminishing returns 
as size of the history window increases. Learning also slows considerably because 
the number of unique histories that can be observed grows exponentially.

predictions from all positions in the ring.

4.3  C onclu sion s

We have presented a straightforward extension of TD networks to incorporate the 

strengths of history-based methods. The combination of history-based learning and 

TD network learning is more than putting two algorithms into one box and using the 

appropriate approach for a particular problem; the combined algorithm is stronger 

than either of its parts on their own.
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Chapter 5

TD(A) Networks

TD networks are similar to conventional TD(0) predictors, both algorithms use 1- 

step backups to train prediction units about future events. In conventional TD 

learning, the TD(A) algorithm is often used to do more general multi-step backups 

of future predictions. In this chapter, we introduce a generalization of the 1-step 

TD network specification that is based on the TD(A) learning algorithm, creating 

TD(A) networks. 1 We present experimental results that show TD(A) networks can 

learn solutions in more complex environments than TD networks. We also show 

that in problems that can be solved by TD networks, TD(A) networks generally 

learn solutions much faster than their 1-step counterparts. Finally, we present an 

analysis of our algorithm that shows that the computational cost of TD(A) networks 

is only slightly more than that of TD networks.

1The work in  th is chapter was orig ina lly presented at the International Conference on Machine 
Learning [Tanner and Sutton, 2005a].
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5.1 Q u estion s and T argets

In general, questions can be any function of future predictions or observations. In 

this section, consider the special case of question network in which each node i has 

a single target, either some other prediction or the observation at the next time 

step. This type of question network is called a single-target question network. This 

special case includes all of the question networks that were implemented in this 

research. The target of node i is the parent of i or p(i). The later parents of node 

i: {p(p(i)), p{p{p(i))), •••} are written in the short form {p2{i), p3(i), •••}•

Figure 5.1: Symmetric action-conditional question network. The network forms a 
symmetric tree, with a branching factor equal to |A|. This example has depth d = 4. 
Some of the labels have been left out of this diagram for clarity, each of these nodes 
should have a label y% and each is conditioned on some action.

In Figure 5.1 the parent of Node 9 is Node 4, p(9) =  4. The parent of Node 

4 is Node 1 (p(4) =  1), so p(p(9)) =  p2 (9) =  1. The third parent of Node 9, 

p(p(p(9))) =  p3 (9) =  o, the observation bit.

In Section 1.4.2, the target of a node was defined in a general sense. With 

single-target question networks, the target can be defined more specifically.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In these networks, the target for node i is:

zx =  or 0t+l (5'1)

Recall that each component w\3 of W* is updated by the learning rule:

wl+ 1 -  w\3 = a(zl - y t y ^  (5 -2 )

where a  is a step-size parameter and c\ corresponds to whether the action condition 

of the question was met.

Predictions are calculated using the logistical sigmoid function, so the exact 

weight update rule is:

Aw\3 = a(z\ -  y\)y\{l -  y\)x{c\ (5.3)

5.2 TD (A ) N etw ork s

The target function described in Equation 5.1 is correct for single-step TD(0) up­

dates. Each prediction made at time t has a TD target that may become available 

at time t + 1. This TD target may itself be a prediction of some other value that will 

be available at time t + 2. Recall that predictions also have an extensive definition;

it is possible to unroll the first prediction: to ask a question at time t about an event

at time t +  2 . A question can be unrolled step by step until it is asking a question 

about the data, the observation bit. Each prediction made at time t is indirectly 

predicting several events at different moments in time and therefore has a different
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target for each moment.

t+ i t+2 t+3 t+5t+4

a2 a2

Figure 5.2: Extended target flow diagram for nodes {1,4,9} of question network in 
Figure 5.1. The links in this diagram show the flow of target values back toward 
the original predictions. The solid links are the l-step TD targets for these pre­
dictions. The dashed links are a sample of the unrolled multi-step targets. The 
action-condition labeling have been omitted on the d dashed links to reduce clutter.

Using the parent function p(i), the relationship between targets follows the struc­

ture of the question network. The first target for y\ comes directly from the 1- 

step TD relationship in the question network, and is simply z\. The second target 

is recursively defined, it is the target of the parent of node i at the next time 

step, . Following this process, there is a k step sequence of targets for y\: 

zh zt+i> zt+2 ^’ ■ ■ ■ i zt+k~i ’ where pk(i) is the observation bit.

In order to keep notation a simple as possible, consider a single node i and a 

single starting time step t. Under these conditions, let the first target of a prediction 

be ^(0). The subsequent targets are z( 1), z(2), z(3),..., z(k  — 1).

Consider the prediction Node 9 in Figures 5.1 and 5.2. In this case, z(0) = 

z( 1 ) =  yj_|_2, and z(2) = ot+3 . Although each target in this sequence is a prediction of 

the same event ot+3 , each was calculated using different information. Our intuition 

is that the targets generated later in time may sometimes be more accurate than
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the earlier targets. Some combination of the targets from this sequence may then 

be better than any particular single target in the sequence.

While the conditions of the predictions match the experience of the agent, this

sequence of targets is available and valid. If the agent’s experience diverges from the

conditions of the question network, no further updates are performed. If multiple 

targets become available, any (or all) of these targets can be used for learning. As 

with TD(A), we propose an exponentially weighted average of these targets. The 

multi-step weighted target for prediction y\ is denoted as v\, where:

fc-i
vt = ((1 — A) ^  Anz(n)) + Xkz(k -  1) (5.4)

n= 0

The one-step target is given weight (1 — A), the two-step target is given (1 — A)A, the 

three-step target is given (1 — A)A2, etc. The last item in this sequence will receive 

all of the remaining weight (AA:).

Ideally, we would like to use the blended target v\ in an update rule such as:

Aw\3 = ot(y\ -  y\)y\{l -  y\)x3 (5.5)

We desire an online, incremental algorithm where the value of v\ will not be 

available at time t. Some standard (and novel) tricks to allow this learning rule to 

be implemented incrementally using a variation of eligibility traces as with TD(A). 

Pseudo-code for the TD(A) networks learning algorithm is in Figure 5.3. The weight 

update rule in this algorithm achieves the behavior of Equation 5.5 using incremental 

updates of successive targets.

Because the predictions made within TD networks are of different events, im-
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plementing eligibility traces is not as simple as with conventional TD(A). Each 

prediction y\ needs its own eligibility trace. This makes our algorithm slightly more 

complicated than traditional TD(A).

5.2.1 TD(A) N etw ork  L earning A lgorithm

Traces <— {} 
for t = 0 to T  do 

newTraces <— {} 
a <— chooseActionQ 
o <— getObservation(a) 
x t <- x(a ,o ,yt- 1) 
yt <- cr{W x () 
for (i, k ) G Traces do

if checkCondition(pt~k~1 (i), a) == TR U E  then  
if pt~k(i) ^  observation then  

2  v- y t-i\p t~k(i)\
else 

2: <— o 
end if
p *- yt-i[pt-fc_1W] 
for lid  G W[i] do

w-7+ =  0 (2: — p)p( 1 — p)xJkXt~k~1 
end for
if pt~k(i) ^  observation then  

newTraces newTraces U (i, fc) 
end if 

end if 
end for 
for « G y do

newTraces <— newTraces U (*, t) 
end for
Traces <— newTraces 

end for

Figure 5.3: Pseudo-code for TD(A) learning algorithm. The algorithm uses a boolean 
function checkCondition(i: a) which will return true if the action a is consistent with 
the action condition of node i, and false otherwise.
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5.2.2 TD(A) N etw ork  Learning A lgorith m  D iscu ssion

The TD(A) learning algorithm keeps a record of predictions and whether the con­

ditions of the unrolled definition of those predictions are consistent with later ex­

perience of the agent. At each time step, new targets become available for past 

predictions. By combining the temporal-difference (yt — yt_i) with historic infor­

mation about the inputs to the answer network (xt-k), the weight vector W  is 

updated (scaled by A*- *1-1) towards the new target to improve the past prediction

y t ~ k -

This algorithm has some interesting properties, controlled by the particular value 

of A that is used.

If A =  0, the first target of a prediction will get weight 0° =  1, meaning that this 

first target will get the full weight of the update. For subsequent targets, 0t ~ k ~ 1 =  0 

resulting in the update having no effect. This behavior is exactly the same as the 

previous 1-step TD network learning algorithm.

If A =  1, each target available gets the full weight of the update, because l x — 1. 

Each subsequent temporal-difference effectively overwrites the update made by the 

previous target. The net effect is that the last available target receives the full weight 

of the update and the intermediate targets receive no weight. If the prediction’s 

conditions match exactly with the stream of experience, all of the weight will go 

to the grounded, unrolled target. If the stream of experience diverges from the 

conditions of the prediction, the weight of the update will go to some intermediate 

TD target. This behavior is analogous to a Monte Carlo style of update, with one 

important difference. In a Monte Carlo approach, an update would only occur if 

the conditions of the completely unrolled definition of a prediction were met. Nodes
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at deeper depths would be exponentially less likely to receive updates, because the 

exact sequence of the conditions is less likely to occur. With TD(1), these predictions 

will always receive an update if their first condition is met.

Finally, if an intermediate value of A is used, the weight of the updates are 

divided among the targets that become available. The remainder of the weight will 

always be assigned to the final available target.

5.3  E x p er im en ta l R esu lts

There are certain partially-observable environments for which a TD network solution 

exists, but the TD(0) learning algorithm cannot find it. The recursive nature of 

TD networks allow the occurrence of information flow dependencies between the 

question and answer networks. These information flow dependencies are a major 

obstacle when trying to learn a model of certain dynamical systems. One TD(0) 

solution to this problem is to augment the input vector x  by including recent actions 

and observations in addition to the immediately previous action and observation. 

This recent history allows the TD(0) learning algorithm to solve problems that could 

not be solved without history. History also allows the TD(0) learning algorithm to 

solve existing problems faster than before.

Our hypothesis is that for some values of A > 0, the TD(A) network learn­

ing algorithm can solve this information flow dependency problem without adding 

additional information to the input vector.

TD(A) networks are compared to TD(0) networks in three domains. It isn’t clear 

exactly what is the best metric to compare one TD network learning algorithm to 

another; we will report the average RMSE of the answer network vs. amount of
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data use to learn that model. This measure will illustrate both the speed of learning 

and the relative error of the models that are learned.

In each experiment, a variety of values were used for the step size parameters a, 

and the results presented are for whichever value of a  performed best. In general, if 

any value of a could solve the problem, then all values of a that were used {.5, .25, 

.125, .0625} were able to solve the problem. Lowering a increased the amount of 

data required to learn a solution of the same quality. In each of these experiments, 

the initial weights in the answer network were set uniformly, =  |Tj. Each 

environment (discussed further below) is started in the state where ot =  1 .

The first experimental results (Figure 5.4) are for the 6 -state cycle world in Fig­

ure 4.1. The question network used for this experiment was a chain of 5 predictions 

like that in Figure 4.1. In Chapter 4.1, this problem could not be solved with TD(0) 

networks unless the input vector x is expanded to include recent history. TD(A) 

networks can solve this problem without history.

RMSE

1000 10000 100000 1000000 
Time Steps

Figure 5.4: Learning curves of our learning algorithm for various values of A on 
the 6 -state cycle world. This chart represents the average RMSE over all of the 
nodes in the TD(A) network as the amount of data is increased. Each data point 
in this graph is the average error of the network over 500 time steps. Note that 
the x-axis (amount of data) is an exponential scale. The cycle world is completely 
deterministic, so these results are for a single training run.
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For all values of A > 0, the TD(A) network learning algorithm is able to find 

a solution. As A increases, the amount of data required for learning decreases. A 

good model (RMSE < .05) is found with A =  1 in under 5 000 steps. To learn an 

equivalent model, A =  .75 requires 7 000 steps, A =  .5 requires 32 000 steps, and 

A =  .25 requires 189 000 steps.

Ring World Question Network

Figure 5.5: 8 -state version of the ring world. On the left is a representation of 
the ring world. One of the states has an observation bit of 1, all of the others are 
0. There are two actions in this world, one that moves the agent clockwise (call 
it ‘right’ or just R) and one that moves the agent counter-clockwise (’left’ or L). 
The question network on the right side of this figure is a sparse action conditional 
network that can represent a solution to this world. This question network has 8  

levels, at each level there is a question about action L and a question about action 
R.

The second experimental domain is the n-state ring world, shown in Figure 5.5. 

This domain is more complex than the cycle world because it has multiple actions. 

The actions used to generate experience for our experiments are chosen randomly. 

The results from testing our algorithm for various value of A on the 5-node and 

8 -node versions of the ring world are shown in Figures 5.6 and 5.7 respectively.

It is important to experiment with the 5-state ring world to investigate the effect 

of A on a problem that can be solved with TD(A = 0). For all of the A > 0 values 

that were used, RMSE < .05 was achieved in under 10 000 time steps. As before,
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0.45

RMSE

0.3
X=0

lX=.250.15 -
■X=.5

500 10500 20500 30500 40500
Time Steps

Figure 5.6: Learning curves of our algorithm for various values of A on the 5-state 
ring world. This chart represents the average RMSE over all of the nodes in the 
TD(A) network. The question network used is of the form seen in Figure 5.1, a full, 
symmetric, action-conditional question network with depth d =  3. Each data point 
in this graph is the average error of the network over 500 time steps. These results 
are the average of 50 trials.

increasing A reduced the amount of data that was required to reach a the same error 

level. In the extreme TD(0) case, the model will not reach RMSE < .05 until over 

150 000 time steps have passed.

The number of nodes in fully symmetric question networks rises exponentially 

with the depth of the network, making it quite costly to make longer predictions. 

There is a smaller question network that can represent the ring world shown in 

Figure 5.5. The size of this question network scales linearly with the number of 

states in the ring. In this experiment, TD(0) could not find a solution to the 8 -state 

ring world in any of the configurations that were tried. Although not shown, the 

experiment continued for over ten million steps and the TD(0) networks did not 

improve. TD(A > 0) was able to solve this problem for all values of A that were 

tried. Again, increasing A decreases the amount of data required by the algorithm.

Although not presented in detail here, we have seen similar improvements with 

TD(A) vs TD(0) on other problems such as the partially-observable random walk
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5 255 505 755 1005 1255
Time Steps (x 1000)

Figure 5.7: Learning curves of our algorithm for various values of A on the 8 -state 
ring world. The question network used is of the form in Figure 5.5 with depth d = 8 . 
This chart represents the average RMSE over all of the nodes in the TD(A) network. 
Each data point in this graph is the average error of the network over 5000 time 
steps. These results are the average of 50 trials.

world and Littman et aVs float-reset problem [2002],

C om p lex ity  o f  th e  C ycle  and R ing W orlds

The domains used in these experiments behave deterministically but have extreme 

state aliasing. It is conceivable that these environments are trivial, and that our 

success is not encouraging. To test this theory, we have attempted to learn POMDP 

models of these three environments using the EM (Baum-Welch) algorithm .2

Problem
RMSE (amo 

EM
unt of data) 

TD(1)
6  State Cycle 
5 State Ring 
8  State Ring

.313 (10 000) 
.37 (10 000) 
.28 (250 000)

.05 (5 000) 

.05 (5 000) 
.05 (125 000)

Table 5.1: RMSE of EM and TD(1) algorithm on the 6 -state cycle, 5-state ring, 
and 8 -state ring worlds. Error is calculated by comparing the learned POMDP 
observation predictions to the true probabilities over a 1 0 0 0  step test sequence.

2 Code graciously provided for us for comparison was the same as used in Wolfe et al. [2005].
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For each domain, we provided EM with the correct number of nominal states and 

ran 100 trials of 20 iterations each. In each case the EM algorithm was provided with 

more data than the TD(1) learning algorithm required. In Table 5.1 the minimum 

RMSE error achieved of any of the 100 trials with the EM algorithm is compared 

to our TD(1) results. The TD network model does considerably better than the 

model learned with EM in all cases. The results strongly suggest that the cycle and 

ring worlds are not trivial. Very little time was spent tuning the parameters of the 

EM algorithm; these results are not meant in any way to suggest TD networks are 

superior or inferior to learning POMDPs with EM.

5.4  T h e C o m p u ta tio n a l C ost o f  A

The benefits that are gained by using TD(A) over TD(0) must come at a cost. In 

our algorithm, memory and computation resource usage grows at approximately the 

same rate, collectively they are called the cost. We consider two different families of 

question network that exemplify the additional cost of TD(A) networks over TD(0) 

networks.

First, consider an unconditioned question network like the one shown in Figure 

4.1, but of an arbitrary depth, d. This is the chain question network. Second, 

consider an action-conditional question network like that in Figure 5.1, but with 

arbitrary branching factor (number of actions) b and depth d. This is the tree 

question network.

The largest computational cost of either algorithm is the number of weight up­

dates that are performed at each time step. Other book-keeping costs are negligible 

and are not included in the analysis.
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With an unconditional “chain” question network, the number of updates for 

TD(0) at each step will be one update for each node, or equal to the depth of the 

network, d. In a TD(A) network of the same depth, the number of updates is:

Chain network updates for TD(A) =  — ^

The ratio of the cost of TD(A) over TD(0) gives us a measure of the factor of 

additional cost of TD(A). This additional cost factor is:

Chain network work ratio =  ^ 4 —̂

This is an upper bound on the additional cost that will be incurred by TD(A) 

networks for any single-target question network. This is a degenerate case, where 

the length of the longest question is equal to the number of nodes in the network, 

and every prediction always has a target. In practice, TD networks will ask a variety 

of action-conditional questions of different lengths, and they will not always have a 

valid target. For this reason, our primary interest is not the “chain” network, it is 

the “tree” question network.

In a tree question network with depth d and branching factor (number of actions) 

b , the number of updates on each time step for the TD(0) learning algorithm is:

bd -  1
Tree network updates for TD(0) =  —— —

For the same network, the number of updates performed by the TD(A) learning
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algorithm is:

bd+l -  (d + l)b + d
Tree network updates for TD(A) =

The ratio of these two costs can be used to make a rough estimate of the extra 

work required to use TD(A) for a given question network. This ratio is:

, bd+1 - ( d + l ) b  + dfree network work ratio =  —  ----- -----------—
( b -  l)(bd -  1 )

This equation holds as long as b > 1 and d > =  1. When b = 2, this ratio rises

from 1.0 to a maximum of 2.0 as the depth of the network increases. As the number

of actions increase, this ratio decreases to 1 .0  + e, a negligible amount of extra work.

In future applications of TD(A) networks a variety of question networks will be 

used. The topology of these networks (on average) will fall somewhere between the 

chain and tree question networks. When the question network is not a full tree, the 

number of node updates per step will depend on the policy being followed. Some 

of the ring world experiments in this chapter used a question network with d = 8  

which had only 16 nodes. In this case, the formulae predict that for d = 8 , the 

number of node updates will be 16 for a symmetric tree and 36 for a chain network. 

The average number of node updates per step for this question network is 14.5, less 

than either estimate.

We propose one modification to our algorithm that would mitigate the additional 

cost of TD(A), if required. In our algorithm, the target v\ is based on the full parental 

hierarchy of the prediction, right up to the observation bit. One simple change to 

the algorithm could cut off these traces after they have used some bounded number
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of targets. This “bounded lookahead” parameter would allow the number of updates 

per step to be tuned between d and easily to suit any particular situation.

5.5 C onclu sion s

In all of our experiments, TD(A) networks with A > 0 have learned faster than 

with A =  0. This is strong evidence that our generalized TD(A) network learning 

algorithm is an improvement over the existing TD(0) learning algorithm. TD(A) 

networks have also solved problems that were not solvable with the TD(0) learn­

ing algorithm. These problems may be solvable because the multi-step backups of 

the TD(A) learning algorithm eliminate information flow dependencies between the 

question and answer networks. The cost of the TD(A) network learning algorithm 

is less than twice that of the TD(0) algorithm for the types of questions that are 

important to represent a model of a controlled dynamical system (action-conditional 

questions). For some other question networks (the chain network) the additional 

cost is larger, but with simple techniques such as adding a bounded lookahead pa­

rameter, this cost can easily be controlled.

In the conventional TD(A) learning algorithm, no single value of A is always best. 

It is surprising that our experiments suggest A =  1 is better than any other value for 

A. This disparity may be related to our class of problems, partially-observable (non- 

Markov) environments. In reinforcement learning, the value of A can be thought of 

as a parameter to specify a mixture of TD and Monte Carlo backups. TD is more 

data efficient and requires less computation while Monte Carlo is more robust in 

non-Markov environments. In Chapter 3, TD(0) backups were better than Monte 

Carlo backups for TD network learning in certain Markov environments. In this
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TD(A) work, we have only considered partially-observable environments, a situation 

that favors Monte Carlo or TD(1) backups. It is intuitive that in this case, learning 

favors higher values of A.
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Chapter 6

Conclusion

6.1 D iscu ssio n  and C on trib u tion s

In this thesis we have introduce temporal-difference networks as a formalism for 

expressing and learning grounded world knowledge in a predictive form. TD net­

works suggest a much larger set of possibilities than conventional TD methods for 

learning to predict. Chapter 3 explored the first few of these possibilities. In a fully 

observable setting there are sometimes significant advantages to using TD learning 

when learning TD-defined predictions. The action-conditional results in that chap­

ter shows that TD methods can learn dramatically faster than other methods. TD 

networks allow the expression of many new kinds of predictions whose extensive 

semantics is not immediately clear, but which are ultimately fully grounded in data.

TD networks have been extended to incorporate the strengths of history-based 

methods in order to better learn models of non-Markov environments. This com­

bined approach leverages history information to learn a better predictive represen­

tation.
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In Chapter 5, the TD(O) updates of the TD network learning algorithm were gen­

eralized to create TD(A) networks. In our experiments, TD(A) networks with A > 0 

learn faster than with A =  0. This is strong evidence that the generalized TD(A) 

network learning algorithm is an improvement over the TD(0) learning algorithm. 

TD(A) networks have also solved problems that were not solvable with the TD(0) 

learning algorithm. These problems may be solvable because the multi-step back­

ups of the TD(A) learning algorithm help eliminate information flow dependencies 

between the question and answer networks.

The scope of the work presented in this thesis is large and leaves us with many 

open questions. TD networks can learn predictive models of some small test envi­

ronments. The representational power of TD networks is still unknown, there may 

be environments that cannot be represented by TD networks. It is not clear how 

our learning algorithms will fare as the size and complexity of these environments 

increase. It may be difficult to learn a TD network model even if the question net­

work is known to be sufficient. When the question network is not sufficient, there 

is evidence that TD network learning is unstable, as shown in Chapter 4.1.2.

In the face of these open questions, TD networks are a novel research area that 

we intend to pursue further.

6.2 F uture W ork

There are many interesting, open questions about TD networks. The following 

sections briefly introduce a few open areas that we plan on investigating in our 

future work.
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6.2.1 D iscovery

How can we create question networks dynamically to suit a particular task? Dis­

covery is the procedure of automatically finding an appropriate question network. 

The current approach of manually specifying the structure of the question network 

is only feasible for simple tasks that can either be analytically discovered or rep­

resented by a symmetric action conditional tree network of a small depth. It will 

soon be important to have a method of growing an appropriate question network 

through experience with the system. We are currently working on a heuristic, on­

line, incremental algorithm that will further reduce the need for designer influence 

in learning predictive models of dynamical systems.

6.2.2 Fast Learning

The techniques that are currently used to learn predictions in a TD network are not 

efficient. Although TD networks can learn models from a small batch of data that 

is presented over and over in an offline fashion, TD networks are not data efficient 

when operating online. TD network learning is slow for a few reasons. First, the 

method of using big tree question networks creates redundant nodes in the question 

network. Redundant questions lead to redundant inputs, which is known to slow 

learning. A discovery algorithm will help to eliminate this redundancy, which will in 

turn speed up learning. We are investigating other methods of directly identifying 

and removing correlation in the input vector. We are also interested in using the 

incremental delta-bar-delta algorithm to adjust the learning rate on a per-feature 

basis, so that the learning update puts more weight on the features with the most 

information content [Sutton, 1992].
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6.2.3 T em poral A b straction

Sutton et al. [2005] have suggested that TD networks can be extended to ask 

temporally abstract questions, using the options framework [Sutton et al., 1999]. 

Their preliminary results indicate that the options framework may offer a way to 

scale TD networks to much larger environments.

6.2 .4  R ein forcem ent L earning

Our eventual ambition is that TD network models of an environment could be used 

by a sequential decision making algorithm to perform tasks in the world. In future 

work we intend to apply reinforcement learning directly to TD network representa­

tions. Rafols et al. [2005] have seen promising results while exploring the general 

implications of using predictive representation as state representations for reinforce­

ment learning.
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