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Abstract 

 

The escalating global climate change poses a more severe challenge, and Canada, as a high-

latitude country, is experiencing heightened Urban Heat Island (UHI) effects. Given the 

substantial influence of UHIs on urban, regional, and national climates, ecosystems, and human 

life, researching this issue has become a focal point. This study, based on land use cover data, 

land surface temperature (LST) data, vegetation cover data, water body index, nighttime light 

value data, and census data in 2021, employed statistical analysis, correlation analysis, regression 

analysis, local and global spatial autocorrelation Moran’s I analysis, ordinary least squares 

(OLS), and geographically weighted regression (GWR) models. It quantitatively investigated the 

spatiotemporal distribution patterns of monthly, seasonal, and annual average UHI intensity, as 

well as the influencing factors of UHI at the scale of cities and census tracts for five cities: 

Toronto, Montreal, Vancouver, Edmonton and Calgary.  

 

The research reveals distinct seasonal variations in the UHI for each city. Moreover, the high 

Urban Heat Island Intensity (UHI) areas showed in the annual average UHI distribution maps are 

consistent with built-up areas in each city, indicating that as urbanization intensifies, the UHI 

effect becomes stronger. In addition, the UHI data of all cities have significant spatial 

autocorrelation, indicating that the UHI phenomenon exists with interdependencies among 

residential areas in each city. The results showed that Vancouver had the highest GWR model fit. 

Among all cities, the Enhanced Vegetation Index (EVI) and Normalized Difference Water Index 

(NDWI) are closely correlated with the UHI, but significant spatial differences exist both within 

cities and among different urban areas. However, in most urban areas, there is a notable negative 
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correlation between EVI, NDWI, and UHI. The results of this study can help in developing more 

environmentally friendly cities and urban planning policies with the aim of reducing the urban 

heat island effect. 

 

Keywords：Urban Heat Island, Land Surface Temperature, Spatiotemporal Variation, Spatial 

Differences 
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Chapter 1. Introduction 

In recent years, with the process of large-scale urbanization, the research on ecological and 

environmental problems in cities and their surrounding areas has become a major issue (Dalby, 

2002). According to the 2018 revision of the world urbanization prospects of the United Nations 

(United Nations, 2018), about 55% of the global population now live in urban areas, and this 

proportion is expected to increase to 68% within the next 30 years. Cities are the centers of 

demographic, intellectual, political and economic activities of human societies. However, 

urbanization also brings several negative consequences. Rapid urbanization is a key contributor 

to greenhouse gas (GHG) emissions (Hoornweg et al., 2011; Chien et al., 2022). Large-scale 

urbanization is also increasing the land surface temperature inside urban areas leading to the 

Urban Heat Island (UHI) effect (Li et al., 2017; Parker, 2010).  

 

The massive emissions of GHG have been recognized as the major driver of global warming and 

climate change. In turn, climate change can trigger a series of adverse reactions, such as melting 

glaciers, rising sea levels, frequent extreme weather events, such as heavy rainfall and heat 

waves, and desertification (IPCC, 2014). These phenomena have significant impacts on the 

ecosystems, human activities, and overall life safety (IPCC, 2014). Particularly during the 

summer, higher temperatures within urban areas not only increase the energy consumption for 

cooling but also raise the probability of extreme weather events (Kornhuber et al., 2019). This 

has significant negative impacts not only on humans but also on the growth of vegetation and 

wildlife (Huang et al., 2012; Hondula, 2017). 

 

As extreme high temperatures become more prevalent worldwide, countries located at high 

latitudes, such as Canada, are not exempted from this trend (Welegedara et al., 2023). In fact, 

Canada is experiencing even greater warming compared to some other regions, and the warming 

rate in Canada is about twice the global average (Wang et al., 2016; Hayes et al., 2022). Health 

Canada (2020) also indicates that the rise in outdoor temperatures has led to an increase in heat-

related illnesses and deaths. Across Canada, the impact on public health due to the rising urban 

temperatures has significantly increased. For instance, in July 2009, 156 people died due to 

extreme heat weather in British Columbia, and in July 2010, 280 people died from heat-related 
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causes in Quebec. In July 2018 heat waves in Quebec resulted in 86 deaths (Health Canada, 

2020). 

 

The UHI refers to the phenomenon of higher temperatures in urban areas than in the surrounding 

rural areas (Maimaitiyiming et al., 2014). The UHIs occur primarily due to the reduced natural 

land cover and the increased absorption and retention of heat by urban built-up materials (Bokaie 

et al., 2016). Urbanization often involves the replacement of natural landscapes with impervious 

surfaces, such as buildings and roads, which can reduce green spaces and limit evaporative 

cooling, contributing to higher UHI intensity (He et al., 2007; Chen et al., 2006). The UHI has 

far-reaching impacts that can affect every aspect of urban life. In addition to the ecological 

impact of high temperatures, the UHI phenomenon is closely related to increased air pollution. 

UHI can lead to increased energy consumption and exacerbate the emission of air pollutants, 

which can lead to the degradation of air quality and adversely affect the health of urban residents 

who are chronically exposed to high concentrations of pollutants (Crutzen, 2004; Singh et al., 

2020). Therefore, understanding the characteristics and the influencing factors of UHI is critical 

to developing effective mitigation strategies and urban planning efforts and is worthy of an in-

depth study. 

 

Furthermore, studying the spatiotemporal changes and the influencing factors of UHI is crucial 

not only for addressing local environmental problems but also for broader implications for 

regional, national, and even global climate change considerations. Despite the importance of 

research on UHI, there is a lack of comprehensive and systematic research on the similarities and 

differences in the spatial variation of UHI across major Canadian cities. 

 

To bridge this research gap, this study aims to conduct a detailed analysis of the spatial variation 

patterns of the daytime and nighttime UHI in five major Canadian cities (Edmonton, Calgary, 

Vancouver, Toronto and Montreal) throughout the four seasons of 2021. These five cities were 

chosen because of their large populations, large size, high population density, and high degree of 

urbanization (Newbold, 2011). In addition, the year 2021 was exceptionally warm, indicating 

that the UHI in this year would also be more pronounced. Therefore, selecting the year 2021 as 

the focus of this study would be more conducive to find the spatial and temporal distribution 
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patterns of UHI in Canadian cities which are situated at higher latitudes, as well as identifying 

the influencing factors of the UHI phenomenon. This study is guided by three fundamental 

research questions: 

 

1. What are the spatial variation patterns of UHI in 2021 in five major Canadian cities (Toronto, 

Montreal, Vancouver, Edmonton and Calgary)? 

2. What are the similarities or differences in the UHI distribution patterns among these five 

cities? 

3. What are the factors that influence the daytime and nighttime UHI in the five cities? And 

what are their spatial characteristics? 

 

Through comparing the spatial and temporal distribution patterns of UHI in these cities and 

investigating potential spatial variations in the effects of each influencing factor on the daytime 

and nighttime UHI, this study aimed to identify the main influencing factors of UHI in each 

major city, as well as the similarities and differences among the cities. This provides a better 

reference for planners when formulating unified plans or seeking inspiration from each other. On 

the other hand, due to the larger size, substantial population, and diverse geographical 

characteristics of the five cities chosen for this analysis—Edmonton is positioned significantly 

northward, Calgary is located near Rocky Mountains, Vancouver is close to the Pacific Ocean, 

and Toronto is adjacent to Lake Ontario—studying these five cities could provide valuable 

insights for better improving urban ecosystems and promoting sustainable urban development.  

 

This study primarily uses the land surface temperature (LST) product of MODIS satellite 

imagery data to calculate the urban heat island intensity (UHII) and create the distribution maps 

of UHII. Additionally, due to the spatial heterogeneity commonly present in UHI (Buyantuyev & 

Wu, 2010; Zhao et al., 2018), both Ordinary Least Squares (OLS) and Geographically Weighted 

Regression (GWR) spatial regression models used to analyze the main factors influencing the 

spatial distribution of daytime and nighttime UHI in each city. 

 

The findings of this study can be used as a basis for urban planning decisions in these five cities, 

enabling policymakers to design more efficient and sustainable cities that consider the potential 
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impacts of UHI. Moreover, the results can offer guidance to researchers and environmental 

practitioners in related fields to develop effective strategies to mitigate the UHI effect, ultimately 

leading to improved living conditions and well-being for urban residents. As global urbanization 

continues, understanding and addressing the challenges posed by UHI is critical in achieving a 

more resilient and sustainable urban future. 
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Chapter 2. Literature review 

Due to the increasing severity of the UHI problem and the lack of research on the spatial 

variation patterns of UHI and the main factors affecting UHI in Canadian cities, this study 

examined the current status of UHI research around the world, as well as the factors affecting the 

UHI in different regions and the methods of spatial analysis. 

 

2.1 The current status of global urban heat island research 

The UHI phenomenon mainly results from the absorption, storage and re-radiation of solar 

radiation by the urban structures (Rizwan et al., 2008). Urbanization disrupts the equilibrium of 

urban surface energy, leading to a decrease in evaporative cooling and subsequently creating the 

temperature difference between urban areas and rural areas (Gunawardena et al., 2017; Zhao et 

al., 2014). The concept of UHI was first observed by Luke Howard in 1833, who noticed that 

urban areas tend to have higher temperatures than their surrounding regions (Oke, 1982). 

Subsequently, Manley (1958) introduced the term “urban heat island” in 1958. Initially, the 

researchers calculated the UHI intensity using air temperatures from observation stations (Oke, 

1973). In recent years, satellite-obtained surface temperature data, such as Landsat TM/ETM+ 

data and MODIS data, have become increasingly prevalent in the study of UHI (Zhou et al., 

2014; Li & Zhou, 2019). 

 

Urbanization leads to urban warming, and this trend has been continuing (Cai et al., 2017; 

McCarthy et al., 2010). The UHI effect is the most evident urban environmental change resulting 

from urbanization (Oke & Maxwell, 1975). This is mainly because urbanization alters the energy 

balance in cities, reducing latent heat flux and increasing sensible heat flux (Oke, 1982). Urban 

land covers replace natural environment land covers, fundamentally changing the aerodynamic, 

radiative, thermal, and humidity properties within the urban areas (Oke & Maxwell, 1975). In 

addition, Imhoff et al. (2010) found that the ecological environment is one of the main factors 

influencing the daytime UHI. They studied the UHI in different ecological environments across 

the United States and observed that areas with forest ecosystems have higher UHI intensity 

compared to arid or desert regions (Imhoff et al., 2010). 
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The UHII is generally calculated by subtracting the rural temperature from the urban temperature 

(Hardin et al., 2018). UHI research can be classified into two types based on the different 

methods of obtaining temperature data: UHI based on air temperature and UHI based on land 

surface temperature (Imhoff et al., 2010; Zhou et al., 2014). Specifically, when the land surface 

temperature is used to calculate UHI intensity, it is referred to as surface urban heat island 

intensity (SUHII) (Peng et al., 2012). The UHI based on air temperature is determined using 

observed data from ground-based meteorological stations. However, this UHI value is sensitive 

to various factors such as the selection of indicators, environmental influences, and experimental 

conditions (Schwarz et al., 2012). Moreover, Stewart (2011) suggested that the UHI research 

based on meteorological data often lacks comparability due to uncontrollable factors such as 

weather, topography, or time. In contrast, SUHII is not affected by these factors and offers more 

comparable results. 

 

Furthermore, according to the different scales of the study area, research on UHI can be 

conducted at various spatial scales, including the global scale, national scale, regional scale, and 

city scale (Wang, 2018). On a global scale, by investigating SUHI in 419 large cities around the 

world, Peng et al. (2012) found that SUHII was higher during the day than at night, and there 

was no correlation between these. At the regional level, Santamouris (2015) found that there are 

obvious seasonal variations in the UHI effect in Asia and Oceania. Zhao et al. (2014) studied 65 

major cities in North America and found that local climate has a strong influence on UHI. On a 

national scale, Kalnay and Cai (2003) found that changes in land use due to urbanization led to a 

reduction in the temperature difference between day and night in cities across the USA. At the 

city scale, Huang and Wang (2019) found that both the two-dimensional and three-dimensional 

urban forms have a combined influence on the local LST within the city of Wuhan. 

 

Research on strategies to mitigate UHI in Canada has primarily focused on individual cities. 

Rinner and Hussain (2011) conducted that in Toronto, the average temperature of commercial 

and industrial lands is significantly higher, while the average temperature of non-built-up areas 

such as parks and water bodies is lower. Wang et al. (2016) found that increasing vegetation and 

shading within the urban area significantly contributed to UHI reduction in the case of Toronto. 

Additionally, Welegedara et al. (2021) conducted an analysis of neighborhood-level UHI in 
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Edmonton and discovered that increasing natural land cover played a crucial role in mitigating 

UHI in high-latitude cities, with a 20% increase in vegetation coverage there is a 30% reduction 

in surrounding UHI intensity. 

 

Gaur et al. (2018) utilized the statistical-dynamical Physical Scaling (SP) downscaling model to 

study the future evolution of the UHI phenomenon in Canada. Their research predicted an 

increase in UHI intensity for more than half of the 16 Canadian cities previously affected by 

UHI, with the larger cities experiencing a more significant rise in UHI intensity. Therefore, for 

most major cities in Canada, it is imperative to urgently develop and implement effective 

strategies to reduce UHI intensity. 

 

2.2 Factors contributing to urban heat island formation 

It is evident that the UHI is not the result of a single factor but a complex interaction of many 

features within the urban environmental system (Oke & Maxwell, 1975). In addition, Oke and 

Maxwell (1975) illustrated that the features include possible “causes” such as, “the release of 

anthropogenic heat; the high heat capacity of building materials; the reduction of the area of 

evapotranspiration and transpiration surfaces; the trapping of long-wave radiation beneath roof-

level; increased counter-radiation from the urban pollution dome; trapping of heat due to 

stagnation between the large roughness elements; and redistribution of potential energy in an 

initially stable rural atmosphere due to increased mechanical turbulence over the rough city.” 

 

UHI is influenced firstly by climatic conditions determined by environmental natural factors, 

such as geographical latitude, topography, proximity to bodies of water, and vegetation cover. 

Kalnay and Cai (2003) illustrated that land use cover change is one of the most important factors 

affecting climate. Water bodies had the strongest impact in reducing UHI, while vegetation 

exhibited a smaller effect on UHI, and built-up areas significantly enhanced the UHI 

phenomenon (Tran et al., 2017; Zhang et al., 2013). Schwaab et al. (2021) found that there is a 

negative correlation between vegetation cover and the land surface temperature. Huang and 

Wang (2019) indicated that the distribution of high-rise buildings and scattered vegetation, 

including grasslands and shrubs, played a significant role in alleviating the UHI effect in the city. 

Besides, the climate of the area is also an important influencing factor on UHI. Zhao et al. (2014) 



8 

showed that humid areas with higher vegetation cover have lower cooling efficiency than arid 

regions, making temperature extremes worse. Although many studies have shown that daytime 

UHI is higher than nighttime UHI, certain research demonstrates variations in SUHI across 

different cities, and it is not necessarily the case that nighttime UHI is higher or daytime UHI is 

higher (Peng et al., 2012; Memon et al., 2009; Jin et al., 2005). 

 

In addition, Wienert & Kuttler (2005) found that the higher the latitude, the higher the UHI. By 

analyzing the UHI in 28 cities situated in northern West Siberia at the 60º north latitude, Miles & 

Esau (2017) discovered that the average UHI is higher in winter than in summer, and they also 

noted a strong correlation between the UHI of high-latitude cities and population density and 

surrounding temperature. Furthermore, Welegedara et al. (2021) also discovered that the 

influencing factors for UHI in Edmonton, a high-latitude city, include vegetation, water bodies, 

urban density, population density, and household income. 

 

Moreover, the UHI also can be affected by some socio-economic factors arising from the process 

of urbanization and industrialization. Estoque et al. (2017) found out that the size, shape, and 

density of impervious surfaces and green spaces have a significant impact on the distribution of 

surface temperature. Oke (1973) showed that the logarithm of the population is related to the 

UHI intensity. Later, Li et al. (2017) also stated that urban size significantly affects UHI 

intensity. However, Buyantuyev & Wu (2010) found that socioeconomic factors such as median 

household income have a much greater impact on UHI during the daytime than during the 

nighttime. 

 

2.3 Research method 

MODIS and Landsat remote sensing satellite imagery are frequently used to calculate UHI, and 

each type of imagery has its own advantages and limitations. MODIS data offers a higher 

temporal coverage (twice daily), providing data for both daytime and nighttime UHI. On the 

other hand, Landsat data has a better spatial resolution (resampled to 30 m), enabling a clearer 

identification of hotspots (Sidiqui et al., 2016). In pursuit of extensive and detailed data, many 

researchers have used Landsat data in the study of UHI. For example, Rajasekar and Weng 

(2009) conducted research on the spatiotemporal variations of UHI in Indianapolis over a fifteen-
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year period using Landsat data, while Peng et al. (2018) analyzed the seasonal variations and 

influencing factors of UHI intensity in Shenzhen, China, using Landsat data. However, due to 

MODIS only becoming operational on the Aqua satellite in 2002, its archive data available for 

research is limited (Tomlinson et al., 2012). Nevertheless, the high temporal resolution of 

MODIS (twice daily for each satellite) has led many researchers to consider MODIS data as an 

ideal choice for studying UHI (Tomlinson et al., 2012). 

 

Most of the previous studies used linear regression models to examine the driving factors of 

SUHI intensity (Zhou et al., 2014; Li & Zhou, 2019; Mohammad & Goswami, 2021). At the 

same time, geographically weighted regression also can be applied to the UHI studies similar to 

studies conducted to understand the regional patterns of crime, regional characterization of the 

prevalence of specific diseases, and key influences on the frequency of forest fires (Martínez-

Fernández, Chuvieco & Koutsias, 2013; Cahill & Mulligan, 2007; Fotheringham, Charlton & 

Brunsdon, 1998; Fotheringham, Brunsdon & Charlton, 2003). 
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Chapter 3. Research area, Data and Methodology 

3.1 Study area 

The purpose of this study is to investigate the spatial and temporal variation of UHI under 

different geographical and climatic conditions as well as to analyze relevant factors affecting 

UHIs. Canada is a vast country, spanning a large area from north to south and east to west. 

However, the population of Canada is small, especially in the northern area. In this study, I 

selected five major Canadian cities, including Toronto, Montreal, Vancouver, Edmonton and 

Calgary, as case studies. These cities are located in different regions of the country and have 

different geographic features. For instance, Edmonton and Calgary are prairie cities. Vancouver 

is on the west coast of Canada and is a coastal city, while Montreal and Toronto are in the center 

area of the country and situated next to the Great River and the Great Lakes, respectively. 

 

Edmonton is the northernmost city in North America with a million population. Edmonton is 

also the capital of the Alberta province and the center of the Edmonton metropolitan area. 

Edmonton is located on the North Saskatchewan River, at an elevation of 670 meters above sea 

level (Young et al., 1994). Edmonton is located near 53 degrees north latitude in central Alberta 

and covers an area of 765.61 square kilometers (Census Profile, 2021 Census of Population, 

n.d.). Edmonton is the furthest north of these five cities. Statistics Canada census data indicates 

that in 2021, the city of Edmonton has a population of 1,010,899, with a population density of 

1320.4 persons per square kilometer, placing Edmonton as the fifth largest city in Canada 

(Census Profile, 2021 Census of Population, n.d.). Edmonton is characterized by a humid 

continental climate, with dry and cold winters and warm and sunny summers. 

 

Calgary is also located in the province of Alberta, and it is the largest city in Alberta and the 

largest metropolitan area in the provinces of Alberta, Saskatchewan and Manitoba. Statistics 

Canada census data for 2021 shows that Calgary has a population of 1,306,784, with a 

population density of 1592.4 persons per square kilometer, and covers an area of 820.62 square 

kilometers (Census Profile, 2021 Census of Population, n.d.). Calgary is the third largest city in 

Canada. Calgary is located at 51 degrees north latitude at the confluence of two rivers, the Bow 

and Elbow, and at an elevation of 1,060 meters above sea level (Young et al., 1994). In addition, 

the city is bordered by the foothills of the Rocky Mountains to the west and the Canadian 
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Prairies region to the east, resulting in a subarctic climate in the western part of Calgary and a 

semi-monsoon humid continental climate in the east, with a warm summer and a cold, dry 

winter. 

 

 

Figure 3.1 Study area 

 

Vancouver, the most populous city in British Columbia, is located on the Burrard Peninsula in 

the Lower Mainland region at 49 degrees north latitude and covers an area of approximately 

115.18 square kilometers (Vancouver, n.d.; Census Profile, 2021 Census of Population, n.d.). 

With an average elevation of 34 meters above sea level and bordering the Strait of Georgia, 

Vancouver has an oceanic climate with dry summers and rainy winters. Due to the influence of 

the Rocky Mountains and the warm currents of the Pacific Ocean, Vancouver is one of the 

warmest cities in Canada and the warmest of the five cities in this research. According to the 

2021 Census, Vancouver has a total population of 662,248, making it the most densely populated 

of the five cities, with a population density of 5,749.9 persons per square kilometer (Census 

Profile, 2021 Census of Population, n.d.). 
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Toronto is located in the southern part of Ontario on the northwestern shore of Lake Ontario and 

is the capital of Ontario province. According to the 2021 census, Toronto has a total population 

of 2,794,356 and a total area of 631.10 square kilometers, resulting in a population density of 

4427.8 persons per square kilometer, making it the largest city in Canada (Census Profile, 2021 

Census, n.d.). Toronto is located at 43 degrees north latitude, which is the furthest north of the 

five cities in this study. With an average elevation of 76 meters above sea level (Elevation 

Schedule, n.d.), Toronto has a hot summer humid continental climate, with four distinct seasons 

throughout the year, and a small difference in daytime and nighttime temperatures due to the 

influence of Lake Ontario and urbanization. 

 

Montreal is located on the Island of Montreal and surrounding islets in the St. Lawrence River in 

southwestern Quebec, surrounded by water. Montreal is the economic center of Quebec and the 

largest city in the Quebec province by area. According to the 2021 census, Montreal has a total 

population of 1,762,949 and a total area of 364.74 square kilometers, resulting in a population 

density of 4833.4 persons per square kilometer (Census Profile, 2021 Census, n.d.). Located at 

45 degrees north latitude, with an average elevation of 112 meters above sea level, Montreal has 

a warm-summer humid continental climate with four clearly defined seasons. Influenced by 

several neighboring climate zones, Montreal receives abundant rainfall, with hot, rainy summers 

and cold, wet, snowy winters. 

 

To understand the differences in UHI for each city in terms of geographic areas,  

I use the census tracts of each city to analyze the spatial differences in UHI and their associated 

factors. In addition, this allows us to obtain the factors influencing the UHI of each city in 

different urban contexts. 

 

3.2 Data 

This study used data from the year 2021, as this year was marked by its exceptional warmth, 

providing an excellent opportunity to investigate the spatial and temporal distribution patterns of 

UHIs and their influencing factors in high-latitude Canadian cities. The details of the data used to 

derive different variables are presented in Table 3.1. 
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Table 3.1 A summary of a variables and data sources 

Number Variable Dataset Source 
Spatial 

resolution 

1 
Land use/land cover 

data 
MCD12Q1 Esri Inc. 500m 

2 

Land surface 

temperature data 

(Daytime)  

MOD11A1 MODIS(GEE) 1000m 

3 

Land surface 

temperature data 

(Nighttime) 

MYD 11A1 MODIS(GEE) 1000m 

4 Vegetation data MOD13A1 MODIS(GEE) 500m 

5 Water data MOD 09GA MODIS(GEE) 500m 

6 Night time light Annual VNL V1 
Earth Observation 

Group (EOG) 
500m 

7 
Socio-economic 

statistics 
Census data 2021 Statistics Canada  

8 Digital boundary data 
2021 Census – 

Boundary files 
Statistics Canada  

 

3.2.1 Land use/land cover data 

In this study, I used Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 land 

use/cover data acquired by the Terra satellite in 2021 with a spatial resolution of 500m available 

at https://www.arcgis.com. In addition, referring to the land classification methodology of 

Schneider et al. (2009) and based on the surface classification scheme of this project, I combined 

different land use classes into eight main categories that are built-up, croplands, trees, shrubs and 

grasslands, flooded vegetation, bare grounds, surface water bodies, as well as snow and ice. 

 

https://www.arcgis.com/
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3.2.2 Land surface temperature data 

MODIS land surface temperature (LST) data contain data derived from Terra and Aqua satellites 

(Zhu et al., 2013). In this study, I used the MYD11A1 data that was obtained by the Aqua 

satellite to get the daytime LSTs, and MOD11A1 data that was obtained by the Terra satellite to 

get the nighttime LSTs. The spatial resolution of MODIS LST data is 1km. The calculation 

formula of surface temperature is as follows: 

                                      𝑇 =  (𝐷𝑁 ×  0.02)  −  273.15                            (Equation 3-1) 

Where, 𝐷𝑁 is the brightness value of the pixel, and 𝑇 is the surface temperature (0C) (Wan, 

2014). Through Google Earth Engine codes, I directly downloaded the day and night LST data 

from MOD11A2 and MYD11A2, and calculated the monthly average LST data by using the 

GEE codes. 

 

3.2.3 Enhanced Vegetation Index 

I used the Enhanced Vegetation Index (EVI), which is the MOD13A1 product, to obtain 

vegetation data. The product has a production interval of 16 days and a resolution of 500 meters. 

Based on the attributes of leaf area, leaf chlorophyll and leaf crown structure, it provides a 

consistent spatial and temporal comparison of vegetation canopy greenness (NASA, n.d.). 

MODIS has two vegetation indices: the Normalized Difference Vegetation Index (NDVI) and 

the Enhanced Vegetation Index (EVI). “Two vegetation indices are derived from 

atmospherically-corrected reflectance in the red, near-infrared, and blue wavebands: The 

normalized difference vegetation index (NDVI), which provides continuity with NOAA’s 

AVHRR NDVI time series record for historical and climate applications, and the enhanced 

vegetation index (EVI), which minimizes canopy-soil variations and improves sensitivity over 

dense vegetation conditions.” (NASA, n.d.). Due to the strong urbanization of these five cities, I 

chose to use EVI as the vegetation index to analyze the relationship with UHI. The formulas for 

calculating the EVI is as follows: 

                        𝐸𝑉𝐼 = 2.5 ×  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 6.0𝜌𝑅𝐸𝐷 − 7.5𝜌𝐵𝐿𝑈𝐸 + 1
                     (Equation 3-2) 

Where, 𝜌𝑁𝐼𝑅, 𝜌𝑅𝐸𝐷 and 𝜌𝐵𝐿𝑈𝐸 represent the reflectance of the near-infrared (NIR), red and blue 

bands, respectively (Esri, n.d.). 
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3.2.4 Normalized Difference Water Index 

The Normalized Difference Water Index (NDWI) is also generally considered to be an important 

factor of SUHII. In this research, I use the MODIS NDWI product downloaded from the GEE as 

the water index to study the effect of water on the UHI. The formulas for calculating the NDWI 

is as follows: 

                                         𝑁𝐷𝑊𝐼 =  
𝜌𝐺𝑅𝐸𝐸𝑁 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑅𝐸𝐸𝑁 + 𝜌𝑁𝐼𝑅
                                    (Equation 3-3) 

Where, 𝜌𝑁𝐼𝑅 and 𝜌𝐺𝑅𝐸𝐸𝑁 represent the reflectance of the near-infrared (NIR) and green bands, 

respectively (Esri, n.d.; McFeeters, 1996). 

 

3.2.5 Nighttime light data 

In recent years, nighttime light images have become an effective tool for measuring the level of 

urbanization (Henderson et al., 2003; Elvidge et al., 2010). In this study, I used the global 

nighttime light product from the Earth Observation Group (EOG) as an index of urban 

development intensity. The EOG produced the high-quality global nighttime light products using 

nighttime light data from the sensors (Operational Linescan System, OLS) carried by the 

Defense Meteorological Satellite Program (DMSP) of the United States, and the Visible and 

Infrared Imaging Suite (VIIRS) Day Night Band (DNB) on board of Joint Polar-orbiting Satellite 

System (JPSS) available at https://eogdata.mines.edu/products/vnl/#v1.  

 

3.2.6 Socio-economic data 

In this research, I obtained socio-economic data including total population, population density 

and median after-tax income of households from Statistics Canada to understand the relationship 

between socio-economic conditions and UHI. 

 

3.3 Methodology 

3.3.1 Methodological Framework  

The flow chart of the research methodology is shown in Figure 3.2. It has four major 

components: collecting data from different datasets, data processing, understanding influencing 

factors and different statistical and geospatial analyses. 

https://eogdata.mines.edu/products/vnl/#v1
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Figure 3.2 Research Methodology 

 

3.3.2 Calculation of urban heat island intensity 

In this study, I demarcated the urban boundary of each city based on the built-up surfaces in 

residential, industrial, transportation and other construction areas within the city. Then, the rural 

area of each city was demarcated by creating buffer zones that extended outward from the built-

up boundaries. The buffer zone radius varies depending on the size of each city. The buffer zone 

radius for Vancouver is 10 kilometers from the city boundary, for Edmonton it is 5 kilometers, 

for Toronto it is 15 kilometers, for Montreal it is 10 kilometers, and for Calgary it is 5 

kilometers. However, due to urban development and expansion, built-up areas may also exist 

within the buffer zones or rural areas, which may affect the results of UHI intensity calculations. 

The built-up area refers to the non-agricultural production construction area developed through 

construction in the administrative area (Zhang et al., 2018). Therefore, I defined the buffer zones 

without the urban, transportation and other built-up lands as rural areas, and removed the urban 

land, transportation land and other construction land from the rural area. The schematic 

representation of urban area, rural area and related indicators of UHIs is shown in Figure 3.3.  
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Figure 3.3 Schematic diagram of urban, rural and the relevant indicators for UHI (take Edmonton 

as an example) 

 

I derived the UHI intensities in each city using MODIS land surface temperature data as 

indicated in equation 3-4 to compare UHI intensities in different cities. 

𝑆𝑈𝐻𝐼𝐼 =   𝑇𝑢  −   𝑇𝑠                                (Equation 3-4) 

Where, 𝑆𝑈𝐻𝐼𝐼 is the intensity of the surface urban heat island;   𝑇𝑢 is the urban surface 

temperature;  𝑇𝑠  is the rural surface temperature. Positive UHI intensity indicates that the urban 
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area is experiencing higher temperature than that of the rural areas. In contrast, negative intensity 

indicates an urban heat sink or cooler urban areas than rural (Clinton & Gong, 2013). 

 

In order to analyze the similarities and differences of UHI in the five cities, I calculated the 

monthly and annual averages, and seasonal day and night UHI averages for each considered city. 

I have considered four seasons which are: June, July and August as summer; September, October 

and November as autumn; December, January and February as winter; and March, April and 

May as spring. 

 

3.3.3 Correlation analysis 

Correlation analysis is used to analyze the strength and direction of linear relationship between 

two or more variables. The correlation coefficient is used to indicate the intensity and direction 

of the relationship between two variables. The correlation coefficient is generally represented by 

the symbol “r”. The formula for calculating the correlation coefficient (r) is as follows: 

                                𝑟 =  
∑(𝑋 − �̅�)(𝑌 − �̅�)

√∑(𝑋 − �̅�)2√∑(𝑌 − �̅�)2
                                      (Equation 3-5) 

where 𝑋 and 𝑌 represent two variables, 𝑋 is the mean value of 𝑋, 𝑌is the mean value of 𝑌, and 

the value of 𝑟 is between -1 and 1. When the value of 𝑟 is positive, it means that the two 

variables are positively correlated, and when the value of 𝑟 is negative, it means that the two 

variables are negatively correlated. The absolute value of 𝑟 reflects the closeness of the 

correlation between the two variables, and the larger the absolute value is, the closer the 

correlation is. When the absolute value of 𝑟 is equal to 1, the two variables are completely 

correlated, and when 𝑟 is equal to 0, it means that there is no correlation between the two 

variables. The confidence level is used to test for statistical significance and is expressed as 𝑝. 

When 𝑝 <  0.05, it means that the correlation coefficient is statistically significant, and when 

𝑝 >  0.05, it means that the correlation coefficient is not statistically significant. However, in 

some cases it is considered to indicate that the coefficients are statistically significant when 𝑝 <

 0.01, and in some cases when 𝑝 <  0.1 can also indicate that the coefficients are statistically 

significant. 
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3.3.4 ANOVA 

Analysis of variance (ANOVA), also known as “F-test”, is used to test the significance of the 

difference between the means of two or more categories/classes. The basic principle of ANOVA 

is to consider more than two classes that cause differences between the means of different 

experimental groups, which are the experimental conditions and the random error. The 

experimental condition is the difference caused by the different treatments, called the difference 

between groups, which is expressed as the sum of the squared deviations of the mean of each 

group variable from the total mean, denoted as SSb. The calculation formula is as follows: 

𝑆𝑆𝑏 = 𝑘 × ∑(�̅�  − �̅�)2                                     (Equation 3-6) 

where 𝑘 represents the number of groups, �̅� represents the mean of each group, and �̅� represents 

the overall mean (St & Wold, 1989). 

 

Random errors, such as differences due to measurement errors or differences between 

individuals, are called differences within groups, which is expressed as the sum of the squared 

deviations of the mean of each group variable from the values of the variables within that group, 

denoted as SSw. The calculation formula is as follows: 

𝑆𝑆𝑤 =  ∑(𝑥 −  �̅�)2                                      (Equation 3-7) 

where 𝑥 represents the values of the variables within each group and �̅� denotes the mean within 

each group (St & Wold, 1989). 

 

The formula for calculating the F-statistic of ANOVA is: 

𝐹 =  
𝑆𝑆𝑏/(𝑚−1)

𝑆𝑆𝑤/(𝑛−𝑚)
                                        (Equation 3-8) 

where 𝑛 represents the total number of samples and 𝑚 represents the number of subgroups. If the 

p-value of the F statistic is less than a certain threshold (usually taken as 0.05), the difference in 

the means of the groups can be considered significant (St & Wold, 1989). 

  

3.3.5 Regression analysis 

Regression analysis is a statistical analysis method to determine the quantitative interdependent 

relationships between two or more variables, which focuses on building regression models to 

express the quantitative relationships between variables in functional form (Draper & Smith, 

1998). In this paper, I used linear regression analysis to analyze the linear correlation between 
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the daytime and nighttime UHI intensity and the influencing factors in each city, and the 

equation expressions are shown in Equation 3-9: 

𝑌 =  𝑎 + 𝑏𝑥 + 𝑒                                            (Equation 3-9) 

where 𝑎 denotes the intercept, 𝑏 denotes the slope of the line, and 𝑒 is the error term. The fitness 

of the regression model was measured by 𝑅2, and the larger the  𝑅2, the better the fit of the 

regression model. In this paper, SPSS 21 software was used for the analyses. 

 

3.3.6 Spatial autocorrelation analysis 

Spatial autocorrelation refers to the potential interdependence between observations of some 

variables within the same distribution. In order to analyze the influence of the structural 

configurations on the UHI of each city, I conducted the spatial autocorrelation analysis. Tobler 

(1970) pointed out the first law of geography, which states that everything is related to 

everything else, but the closer things are to each other, the greater the connection. Spatial 

autocorrelation methods are broadly classified into two types by function, which are global 

spatial autocorrelation and local spatial autocorrelation. The commonly used spatial 

autocorrelations are Moran’s I, Geary’s C, Getis, Join count, etc. (Fortin et al., 2002; Myint, 

2003; Yin et al., 2018; Sun et al., 2020). 

 

The global spatial autocorrelation is used to describe the overall distribution of a phenomenon 

and to determine whether the phenomenon has aggregation characteristics in space, but it does 

not exactly indicate in which areas the aggregation exists. The global spatial autocorrelation is 

expressed by the global Moran I index, which is calculated as follows: 

𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑟𝑎𝑛′𝑠 𝐼 =  
𝑛 ∑  ∑ 𝑊𝑖,𝑗 𝑛

𝑗=1
𝑛
𝑖=1 (𝑥𝑖− �̅�) (𝑥𝑗− �̅�)

𝑆0  ∑  (𝑥𝑖− �̅�)2𝑛
𝑗=1

                 (Equation 3-10) 

where 𝑥𝑖 represents the attribute of element 𝑖 and 𝑥𝑗 represents the attribute of element 𝑗; n 

represents the total number of samples; 𝑊𝑖,𝑗 represents the spatial weight, defined by the 

adjacency criterion, when 𝑖 and 𝑗 are adjacent, 𝑊𝑖,𝑗 =  1, otherwise, 𝑊𝑖,𝑗 =  0; 𝑖 =  1, 2, … , 𝑛; 

𝑗 =  1, 2, … , 𝑚 (Wang, 2018); 𝑥 is the average of 𝑥; 𝑆0 is the aggregation of all spatial weights, 

and the formula is as follows: 

    𝑆𝑜 =   ∑  ∑ 𝑊𝑖𝑗  𝑛
𝑗=1

𝑛
𝑖=1                                    (Equation 3-11) 
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The value of global Moran’s I ranges from -1 to 1, when 𝐼 >  0, it indicates a positive spatial 

correlation, and the closer the value is to 1, the stronger the positive spatial autocorrelation, and 

the values of the objects are aggregated; when 𝐼 <  0, it indicates a negative spatial correlation, 

and the closer the value is to -1, the stronger the negative spatial autocorrelation, and the values 

of the objects are discrete and mutually exclusive (high values are excluded around high values, 

and low values are excluded around low values); when 𝐼 =  0, the values of the objects are 

randomly distributed, indicating no spatial correlation. (Esri, n.d.) 

 

The p-value represents the probability and the Z-score represents the multiple of the standard 

deviation. The calculation formula of the Z-score is as follows: 

𝑍 =  
𝐼−𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
                                          (Equation 3-12) 

where, 

𝐸(𝐼) =  
− 1

𝑛−1
                                          (Equation 3-13) 

𝑉𝑎𝑟(𝐼) =  𝐸(𝐼2) − 𝐸(𝐼)2                            (Equation 3-14) 

when |𝑍|  >  1.65, indicating that the data have significant spatial autocorrelation; when|𝑍|  >

 1.96, it means there is 95% probability that the data have significant spatial autocorrelation; 

when |𝑍|  >  2.58, it means there is 99% probability that the data have significant spatial 

autocorrelation, as shown in Figure 3.4. (Esri, n.d.) 
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Figure 3.4 Schematic diagram of significance level and critical value of global spatial 

autocorrelation 

 

However, partial spatial positive correlation and partial spatial negative correlation may coexist 

in the overall study area, and Local Indicators Spatial Autocorrelation (LISA) is needed to reveal 

the possible spatial variability (Li, M., Ou, J., & Li, X., 2016). Local spatial autocorrelation is the 

study of spatial correlation in different areas of the study area. LISA mainly uses local Moran’s I 

coefficients and Getis coefficients to respond to the degree of spatial clustering of the variables 

at the local area scale. Local Moran’s I is calculated as follows: 

𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑟𝑎𝑛′𝑠 𝐼 =  
𝑥𝑖− �̅�

𝑆𝑖
2  ∑ 𝑊𝑖,𝑗 (𝑥𝑖 − �̅�)𝑛

𝑗=1,𝑗≠𝑖                 (Equation 3-15) 

𝑆𝑖
2  =  

∑ (𝑥𝑖− �̅�)2𝑛
𝑗=1,𝑗≠𝑖

𝑛−1
                                     (Equation 3-16) 

where 𝑥𝑖 is the attribute of element 𝑖; �̅� is the average of 𝑥; 𝑊𝑖,𝑗 represents the spatial weight 

between element 𝑖 and element 𝑗; 𝑛 represents the total number of samples. (Esri, n.d.) 
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The calculation formula of Z-score is as follows (Esri, n.d.): 

𝑍 =  
𝐼−𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
                                           (Equation 3-17) 

where, 

𝐸(𝐼) =  
− ∑ 𝑊𝑖,𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝑛−1
                                    (Equation 3-18) 

𝑉𝑎𝑟(𝐼) =  𝐸(𝐼2) − 𝐸(𝐼)2                             (Equation 3-19) 

 

The spatial association pattern of LISA is represented by four types of High-High (H-H), High-

Low (H-L), Low-High (L-H), Low-Low (L-L) clusters. Among them, High-High and Low-Low 

clusters indicate positive spatial correlation, that is, high UHI in one community will affect 

surrounding communities’ UHI to become higher. High-low and low-high clusters indicate 

negative spatial correlations, that is, high UHI in one community will affect surrounding 

communities’ UHI to become lower.  

 

The calculation formula of Getis is as follows: 

𝐺𝑒𝑡𝑖𝑠 =   
∑  𝑊𝑖,𝑗 𝑥𝑗− �̅�  ∑  𝑊𝑖,𝑗

𝑛
𝑗=1

𝑛
𝑗=1

𝑆 
√[𝑛 ∑ 𝑊2

𝑖,𝑗 − (∑ 𝑊𝑖,𝑗
𝑛
𝑗=1 )

2𝑛
𝑗=1 ]

𝑛−1

                           (Equation 3-20) 

                                                       𝑥 =  
∑  𝑥𝑗

𝑛
𝑗=1

𝑛
                                           (Equation 3-21) 

                                             𝑆 =  √
∑  𝑥2

𝑗
𝑛
𝑗=1

𝑛
 −  (�̅�)2                                     (Equation 3-22) 

where 𝑥𝑗 represents the attribute of element 𝑗; 𝑊𝑖,𝑗 represents the spatial weight between element 

𝑖 and 𝑗; 𝑛 represents the total number of samples. (Esri, n.d.) 

Since Getis is z-scored, no further calculation is required. Compared to local Moran’s I, Getis is 

more sensitive to weights but only calculates p-values and z-scores.  

 

3.3.7 Geographically weighted regression 

Geographically weighted regression (GWR) is one of the spatial regression methods. The GWR 

model is currently used in a variety of disciplines such as geography, economics, natural 

resource management, medicine, etc. GWR is a type of linear regression oriented to local 

modeling, which is used to reflect the spatial heterogeneity and spatial relationships and changes 
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in spatial non-stationarity. The Monte Carlo significance test is generally considered to perform 

spatial non-stationarity tests (Brunsdon, Fotheringham & Charlton, 1996; Gollini et al., 2013).  

 

GWR explores the spatial variability of a study target at a certain scale and related influencing 

factors by establishing local regression equations at each point in the spatial scale, and can be 

used to make predictions about future outcomes. Thus, the regression coefficients of independent 

variables of this model vary with spatial location. These independent equations were constructed 

in the GWR model by combining the dependent and explanatory variables for the elements that 

are located within the neighboring area of each target element. The geographically weighted 

regression is an extension of the ordinary linear regression model with the addition of geographic 

location parameters, which are calculated as follows: 

𝑦𝑖 =  𝛽0(𝑢𝑖, 𝑣𝑖) +   ∑  𝛽𝑘 (𝑢𝑖, 𝑣𝑖) 𝑥𝑖𝑘 +  𝜀𝑖
𝑝
𝑘=1                    (Equation 3-23) 

where, (𝑢𝑖 , 𝑣𝑖) is the coordinate of point 𝑖; 𝛽0(𝑢𝑖, 𝑣𝑖) is the intercept of point 𝑖; 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) is the 

k-th localized estimate coefficient of the independent variable 𝑥𝑖, 𝑖 = 1, 2, … , 𝑛. (Esri, n.d.) 

 

It is often assumed that features that are closer have a stronger correlation, i.e., the concept of 

distance decay (Guo et al., 2018; Wheeler & Tiefelsdorf, 2005). GWR calibrates the model by 

weighting all observation points around the sample point. Therefore, the core of the GWR model 

is the spatial weight matrix, and the common spatial weight functions are: 1. Distance threshold 

method; 2. Inverse distance method; 3. Gaussian function method, etc. Among them, the 

Gaussian function method represents the relationship between weights and distances by selecting 

a continuous monotonically decreasing function. Compared with the other two methods, Gauss 

function overcomes the disadvantage of discontinuity of spatial weight function and there are 

many functions that can fulfill the requirements, so Gaussian function is widely used, and its 

function form is as follows: 

𝑊𝑖𝑗 = 𝑒𝑥𝑝 (−(
𝑑𝑖𝑗

𝑏
)2)                                    (Equation 3-24) 

where, 𝑊𝑖𝑗 represents the weight of 𝑗 observed from point 𝑖; 𝑑𝑖𝑗 represents the distance between 

observation points 𝑖 and 𝑗; 𝑏 represents a non-negative decay parameter that describes the 

functional relationship between weights and distance, called the bandwidth. (Esri, n.d.) 
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The larger the bandwidth, the slower the weights decay with distance, and conversely the smaller 

the bandwidth the faster the weights decay. The bandwidth is very important for the weight 

function in GWR. An excessive bandwidth can lead to an excessive bias in the regression 

parameter estimates, while a tiny bandwidth can lead to an excessive variance in the regression 

parameter estimates. The AIC criterion is widely used to select the optimal bandwidth. Akaike 

(1974) proposed a general model selection criterion, called Akaike Information Criterion (AIC), 

by modifying the parameter estimation method of the great likelihood principle. Afterwards, 

Brunsdon, Fotheringha & Charlton (2000) further used it for weighting function bandwidth 

selection in GWR analysis. 

 

The results of the GWR analysis in ArcGIS provide the following various model diagnostic 

parameters for significance testing (Esri, n.d.). 

1. Sigma-Squared. This is the sum of squares of the residuals of the model. The smaller the 

value of this statistic the better the GWR model fits. Sigma squared is used in AICc 

calculations. 

2. Sigma-Squared MLE. This is the maximum likelihood estimate (MLE) of the variance of the 

residuals. The smaller the value of this statistic, the better. 

3. Effective Degrees of Freedom. This is a compromise between the variance of the fitted 

values and the deviation of the coefficient estimates. As the neighborhood tends to infinity, 

the geographic weight assigned to an observation tends to 1. In contrast, as the neighborhood 

becomes smaller and gets closer to 0, the geographic weight will approach 0 (except for the 

regression point itself).  

4. 𝑅2. Its value varies between 0 and 1, with the larger the value the better the fit of the model. 

5. 𝐴𝑑𝑗𝑅2. This is the Adjusted 𝑅2 value, which is the result of compensating for the number of 

model variables. 

6. AICc. This is the measure used to test model performance and compare regression models. 

The lower the AICc value, the better the model fits the observed data. 
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Chapter 4. Spatial and temporal distribution patterns of UHI in Vancouver, Edmonton, 

Calgary, Toronto, and Montreal 

Based on the understanding of the current state of UHI research worldwide and in Canada and 

research methodologies, as well as a primary analysis of the selected study area, this chapter 

focused on the analysis of spatial and temporal distribution patterns of both LST and UHI in 

Vancouver, Edmonton, Calgary, Toronto, and Montreal. This chapter describes the spatial and 

temporal distribution patterns of LST and UHI, the relationship between different land cover 

types and LST, as well as the spatial and temporal trends of the monthly, seasonal and annual 

average daytime and nighttime UHII in these five cities at the urban and census tracts scales. 

 

4.1 Spatial and temporal distribution patterns of LST 

4.1.1 Spatial and temporal distribution patterns of day and night LST 

Figure 4.1 shows the distribution of land cover types in five cities. These land use data were 

obtained using ESA Sentinel-2 imagery (Esri, 2022). As shown in the figure, the built-up areas 

of Vancouver, Toronto and Montreal make up the majority of the urban area, while the cities of 

Calgary and Edmonton are surrounded by large crop areas around the city in addition to built-up 

areas. Also, it can be seen that Vancouver, Toronto and Montreal have more tree cover and fewer 

shrub and grass lands within their cities, while Calgary and Edmonton have more shrub and grass 

landa than tree cover. Vancouver and Montreal have large, concentrated tree areas, while the 

other three cities have less tree areas. 
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Figure 4.1 Land use land cover maps 

 

Figure 4.2 illustrates the distribution of the annual average day and night LST of each city in 

2021 observed by the MODIS satellite. The LST fluctuates with the surface energy balance and 

is controlled by surface radiation and thermodynamic properties, including surface humidity, 

thermal conductivity and surface emissivity, surface radiation input from the solar energy and 

atmosphere, as well as the influence of the near-surface atmosphere and the turbulent effect of 

ground gases (Voogt & Oke, 2003). As shown in Figure 4.2, the land surface temperature in all 

five cities is high in the downtown area and relatively low near the surface water bodies such as 

ocean, lakes or rivers. However, the distribution of the LST varies from city to city, with 

Vancouver having high daytime temperatures concentrated in the southeast part of the city and 
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high nighttime temperatures in the downtown areas; Calgary having high daytime temperatures 

in the east-central part of the city and high nighttime temperature in the central region of the city, 

and spreading outward in a radial pattern; Edmonton having high daytime temperatures in two 

major areas, respectively in the northwest, southeast and the central areas of the city, and having 

high nighttime temperature in the entire central part of the city; Toronto experience high surface 

temperatures within the entire city limits, with extreme daytime temperatures in the southwest 

and extreme nighttime temperature in the middle part, i.e., the downtown area; and Montreal 

having high daytime and nighttime temperatures mainly in the central part of the city, and having 

high nighttime temperature in some places near the water. 
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Figure 4.2 Annual average day and night LST distribution map 
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As shown in Table 4.1, the annual average of daytime LST is higher than nighttime LST in all 

five cities, with Calgary having the largest temperature difference between day and night at 

16.86 ℃, followed by Edmonton and Toronto, while Montreal has the smallest temperature 

difference between day and night at 11.43 ℃. The city with the highest annual average LST at 

both the night and day is Vancouver, followed by Toronto, and the city with the lowest annual 

average LST during the day is Edmonton and the city with the lowest annual average LST at 

night is Calgary.  

 

Table 4.1 Annual average day and night LST (℃) for each city 

City Vancouver Edmonton Calgary Toronto Montreal 

Day LST 20.17 12.94 15.81 19.54 17.00 

Night LST 7.15 -1.01 -1.05 5.67 5.57 

 

The difference in temperature between the city with the highest daytime temperature and the city 

with the lowest daytime temperature is 7.2 ℃, while the difference in temperature between the 

city with the highest nighttime temperature and the city with the lowest nighttime temperature is 

8.2 ℃. These differences may be linked to the geography and the latitude of the city of these five 

cities, the city located at higher latitudes, like Edmonton which experiences longer cold periods, 

has lower annual average land surface temperatures and the cities located at relatively low 

latitudes, such as Vancouver and Toronto, have higher annual average land surface temperatures. 

 

4.1.2 Effect of Land cover type on LST 

In this research, I calculated the average day and night surface temperatures for different land 

cover types. Snow and ice were not considered as their temperatures are always below 0 and are 

not affected by other factors. In addition, flooded vegetation and shrubs and grass are combined 

into one category, making a total of six land types, as shown in Table 4.1. In general, the highest 

daytime LST was observed in the built-up area, and the lowest daytime LST was observed in the 

vegetated areas. In Vancouver, the highest daytime LST was found in the grass areas, followed 

by the built-up areas, but the standard deviation of the daytime LST in the grass areas is 2.52℃, 

indicating that the data has huge variation, i.e., the difference of the daytime LST between 

different grass area is large.  
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From Figure 4.2, it can be seen that most of the grass areas in Vancouver are scattered within 

built-up areas, which means that the grass areas in downtown might be influenced by the 

surrounding built-up areas and heat is trapped in these grass areas, which make the daytime LST 

higher. In Edmonton, Calgary and Toronto, daytime LST is highest in built-up areas, while in 

Montreal, daytime LST is highest in bare ground, followed by built-up areas. In Vancouver, bare 

grounds have the lowest daytime LST and tree areas have relatively lower daytime LST, 

however, the standard deviation of the daytime LST of the tree areas in Vancouver is 5.13℃, 

demonstrating that there is a huge variation of the data, i.e., the daytime LST in the trees area 

fluctuated greatly. In terms of Vancouver’s geographic characteristics, trees close to the ocean 

are affected by cold air, making the temperature lower in these tree areas, and therefore, the 

temperature difference in tree areas is greater compared to tree areas in the downtown area that 

are affected by buildings. In Calgary, tree areas have the lowest daytime LST. In addition, in 

Edmonton, Toronto and Montreal, the crop areas have the lowest daytime LST, which is likely 

because in all three cities, the crop is distributed at the edge of the city, making their daytime 

LST lower than that of the city center areas. 

 

 

Table 4.2 Annual average day and night LST for different land cover types 

Daytime 

City  Built-up Crop Trees Grasses Bare ground Water body 

Vancouver 
Mean (℃) 20.26 17.90 15.62 20.81 15.32 17.48 

Std dev. 2.33 0.00 5.13 2.52 0.37 0.00 

Edmonton 
Mean (℃) 13.36 12.11 12.23 12.90 13.33 12.32 

Std dev. 1.00 0.80 1.08 1.15 1.29 1.26 

Calgary 
Mean (℃) 16.04 15.26 14.69 15.48 14.92 15.30 

Std dev. 0.88 0.96 1.23 1.07 1.02 1.29 

Toronto 
Mean (℃) 19.70 16.20 18.22 19.17 17.85 17.39 

Std dev. 1.38 0.35 2.07 1.90 0.00 2.59 

Montreal 
Mean (℃) 17.48 13.01 13.35 14.89 18.93 15.02 

Std dev. 1.93 3.31 2.54 2.91 1.03 2.95 
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Nighttime 

City  Built-up Crop Trees Grasses Bare ground Water body 

Vancouver 
Mean (℃) 7.14 6.86 7.57 7.07 7.40 7.03 

Std dev. 0.33 0.00 0.41 0.22 0.58 0.00 

Edmonton 
Mean (℃) -0.13 -3.31 -1.36 -1.18 -1.41 -0.52 

Std dev. 1.26 1.24 1.65 1.26 0.94 1.53 

Calgary 
Mean (℃) -0.52 -3.21 -1.65 -1.59 -1.74 -1.25 

Std dev. 1.06 1.01 1.39 1.15 0.70 1.22 

Toronto 
Mean (℃) 5.70 3.84 5.51 5.56 6.71 6.12 

Std dev. 0.61 0.35 0.76 0.77 0.00 0.85 

Montreal 
Mean (℃) 5.64 4.82 5.13 4.76 6.14 5.72 

Std dev. 0.69 1.40 1.37 0.73 1.12 0.97 

 

During the night, in Edmonton and Calgary, it is still the built-up areas that have the highest LST 

and the crop areas that have the lowest LST. In Vancouver, the highest LST at night is in the 

trees area which might be due to heat-trapping within the area, followed by the bare ground, and 

the lowest LST at night is in the crop area, which is different from the daytime situation. All of 

these results indicate that the distance to large water bodies is significant, and there is variability 

in land use classifications based on location. In Edmonton and Calgary, the highest nighttime 

LST are found in the built-up areas and the lowest nighttime LST is found in the crop areas. The 

land type with the highest nighttime land surface temperatures in Montreal remain the same as 

during the daytime, and remain bare ground, while the lowest nighttime LST in Montreal is 

found in grasses areas. In Toronto, it is also the bare ground that has the highest nighttime LST, 

yet it is the crop areas that has the lowest nighttime LST.  

 

In addition, Vancouver’s built-up areas have the highest daytime LST, followed by Toronto, and 

Edmonton’s built-up areas have the lowest daytime LST. Although, Vancouver’s built-up areas 

continues to have the highest LST at night, followed by Toronto. However, different from 

daytime, Calgary’s built-up area have the lowest LST at night. From this, it can be seen that the 

annual average daytime and nighttime LST in the built-up areas of each city is essentially 

consistent with the overall situation of the annual average daytime and nighttime land surface 
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temperature in each city described above. In this case, the LST in built-up area mainly influences 

the overall LST value. 

 

4.2 Spatial and temporal distribution patterns of urban heat island 

4.2.1 Annual average day and night urban heat island characteristics 

Figure 4.3 illustrates the spatial distribution characteristics of the annual average urban heat 

island intensity (UHII) for the five cities during daytime and nighttime. As shown in the daytime 

UHII distribution, Vancouver, Toronto and Montreal have higher UHII than Calgary and 

Edmonton. The UHII is above 9.9 ℃ in southeast Vancouver and mostly above 6.5 ℃ in the 

central regions of Montreal and Toronto. The central area of the northern Edmonton has an UHII 

of over 5.6 ℃. Nevertheless, in the vast majority of Calgary, the UHII does not exceed 3.9 ℃. In 

addition, as shown in the figure, each city shows a negative UHII in some areas, which indicates 

that the urban heat sink occurs in some areas of each city (Clinton & Gong, 2013). For example, 

the UHI intensity is negative in the Edmonton Valley region and west of Calgary due to the 

influence of water bodies. Moreover, in certain areas of Vancouver and Montreal, the UHII is 

even below -5.4 ℃. The distribution of nighttime UHII is the opposite of that during the day, 

Calgary and Edmonton have higher UHII than Vancouver, Toronto and Montreal. The nighttime 

UHII in the central parts of Edmonton and Calgary is above 5.2 ℃, while the nighttime UHII in 

most parts of Vancouver and Montreal is below 2.8 ℃. As shown in Figure 4.4, the annual 

average daytime UHIIs are higher than the annual average nighttime UHIIs in Vancouver, 

Toronto, and Montreal, with the exception of Calgary and Edmonton, where the nighttime UHIIs 

are higher than the daytime UHIIs. 

 

The surface energy balance can be viewed as: 

𝑄 + 𝑄𝐴 =  𝐸 + 𝐻 + 𝐺                                       (Equation 4-1) 

where, 𝑄 is full-wave net radiation; 𝑄𝐴 is anthropogenic heat emissions; 𝐸 is latent heat flux; H 

is sensible heat flux; G is ground heat flux (Clinton & Gong, 2013; Friedl, 2002; Price, 1985; 

Rizwan et al., 2008; Taha, 1997). The daytime UHII is widely considered to be the result of a 

decrease in latent heat flux and an increase in sensible heat flux due to a decrease in surfaces 

such as vegetation and soil and an increase in impermeable surfaces (Voogt and Oke, 2003). In 

addition, the research of Zhao et al. (2014), who studied the daytime UHI in various regions of 
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North America that are in different climatic contexts, found that the daytime urban-rural 

temperature difference is also influenced by two things: convective efficiency, which is related to 

aerodynamic forces and drag, as well as air humidity. They argue that in humid climate zones, 

heat dissipation through convection is lower in urban areas than in rural areas, thereby increasing 

the temperature in urban areas and resulting in the heat island effect (Zhao et al., 2014). In this 

regard, this could explain the high UHII in southeast Vancouver.  

 

Rural areas in humid regions have low aerodynamic drag due to abundant precipitation and high 

vegetation cover, thus dissipating heat well. However, in arid areas, the opposite is true. 

Convective efficiency in urban areas is stronger than in rural areas, so temperatures in urban 

areas are lower than those in rural areas, leading to a negative heat island (Zhao et al., 2014). 

This may be due to the fact that urban built-up areas located in arid inland cities have higher soil 

moisture and more vegetation cover compared to the surrounding rural areas, which lead to the 

lower LST in the urban areas than the rural areas. So, the daytime UHII in the arid inland cities is 

lower. These could explain the phenomenon of urban heat sink in more areas of Calgary that 

appeared in the results of this study. In contrast, Toronto, which is in the Great Lakes region, and 

Vancouver, which is on the coast, have stronger UHII during the day. 

 



35 

 

 

Figure 4.3 Annual average day and night UHI distribution map 
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At night, the flux to the air generally comes from radiative transfer, i.e. the thermal release of 

heat stored in urban areas during the day as well as the increase of anthropogenic heat emissions 

during the night (Masson, 2000; Rizwan et al., 2008; Clinton & Gong, 2013). During the day, 

building materials absorb thermal radiation for heat storage, and at night, the thermal release of 

this stored heat is a major contributor to nighttime UHII (Oke, 1982; Oke, 1988). Therefore, the 

nighttime UHII is dependent on the size of the urban areas (Sobstyl et al., 2018). The heat 

released at night usually enters the lower atmosphere. As the air passes through urban areas, the 

longer the distance from the edge of the urban area to the center of the city, the more heat 

accumulates in the air (Soltan & Sharifi, 2017). Thus, the larger the city, the higher the nighttime 

UHII. It appears that, under approximately the same climatic conditions, altitudes and 

geographic location, the total area of Toronto and its surrounding built-up area is about 1,570 

square kilometers, while the total area of Montreal and its surrounding built-up area is about 966 

square kilometers, resulting in a higher UHI intensity in Toronto than in Montreal, as shown in 

Figure 4.4.  

 

 

Figure 4.4 Annual average day and night UHII 
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effect, while impervious surfaces absorb the energy of solar radiation, which leads to high 

daytime temperatures in the urban areas and low temperatures in the rural areas, creating a large 

daytime temperature difference between urban and rural areas. Daytime UHII is also influenced 

by the degree of urbanization (Zhou & Chen, 2018). However, the vegetation has a smaller effect 

on nighttime UHII, because vegetation does not conduct transpiration at night. In addition, the 

elevation differences between urban and rural areas, topographic features of the city and 

surrounding areas, and the type of land use in the surrounding areas of the city all have an impact 

on the UHI (Tang et al., 2022; Chen et al., 2017; Sun et al., 2019; Badaro-Saliba et al., 2021). 

 

4.2.2 Spatial autocorrelation of annual average day and night urban heat island 

4.2.2.1 Annual average day and night urban heat island global Moran’s I index 

In order to study the spatial autocorrelation of the daytime and nighttime UHI in the five cities, I 

first used the distance decay weighting method to establish a spatial weight matrix for the vector 

data of the annual average daytime and nighttime UHI in the five cities. This weight matrix 

assigns greater weights to the locations that are closer to the observation points. Next, this spatial 

weight matrix is used to calculate the global and local Moran’s I index. 

 

Table 4.3 Global Moran’s I index summary 

 City Moran’s Index Z score P value 

Daytime 

Montreal 0.318 27.325 0.000 

Toronto 0.437 30.079 0.000 

Calgary 0.300 15.639 0.000 

Edmonton 0.421 25.462 0.000 

Vancouver 0.837 17.240 0.000 

Nighttime 

Montreal 0.498 40.648 0.000 

Toronto 0.524 36.009 0.000 

Calgary 0.756 33.146 0.000 

Edmonton 0.531 36.072 0.000 

Vancouver 0.759 17.949 0.000 
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The global Moran’s I index for the daytime and nighttime UHI in each of the five cities are 

shown in Table 4.3. The global Moran’s I index for the daytime and nighttime UHII in the five 

cities are all greater than 0, with z-scores exceeding 2.58 and p-values less than 0.01. This result 

indicates that the UHII at the census tract scale in these five cities have significant positive 

spatial autocorrelation. 

 

4.2.2.2 Annual average day and night urban heat island hot spots analysis 

As shown in Figures 4.5 and 4.6, the spatial clustering patterns of daytime and nighttime UHI 

among the five cities are generally similar, with some slight differences. In Edmonton, during the 

day, the hot spots (high-high clustering) are mainly distributed in the northern and southeastern 

regions, while the cold spots (low-low clustering) are primarily located in the western and 

southwestern regions. The not significant values are scattered in the central and northern areas. 

During the nighttime, the hot spots (high-high clustering) are distributed in the entire central part 

of Edmonton and the cold spots (low-low clustering) are distributed in the north and south 

region. In Calgary, during the daytime, the hot spots (high-high clustering) are mainly 

concentrated in the central area, while the cold spots (low-low clustering) are primarily 

distributed in the northwestern and southwestern parts. The Not significant values are clustered 

in the northern and southern areas. At night, as in Edmonton, the hot spots (high-high clustering) 

are concentrated throughout the center of Calgary and the cold spots (low-low clustering) are 

primarily distributed in the north part.  

 

For Toronto, during the day, the hot spots (high-high clustering) are mainly found in the 

northwestern and northeastern parts, and the cold spots (low-low clustering) are mainly 

distributed in the southern lakeside areas. The Not significant values are primarily concentrated 

in the central area. At night, hot spots (high-high clustering) are found in the central part, and the 

cold spots (low-low clustering) are mainly distributed in the northeast and southeast areas. In 

Montreal, the spatial clustering patterns of daytime and nighttime UHI are generally similar, the 

hot spots (high-high clustering) are concentrated in the central area of the city, while the cold 

spots (low-low clustering) are scattered around the city’s periphery. The not significant values 

are also scattered around the city’s periphery. As for Vancouver, the clustering pattern of the 

daytime UHII is relatively straightforward, with hot spots (high-high clustering) concentrated in 
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the southeastern region and cold spots (low-low clustering) in the northwestern area. The Not 

significant values are distributed in the areas between the cold and hot spots. However, the hot 

spots (high-high clustering) of the nighttime UHII mainly concentrated in the downtown area 

and cold spots (low-low clustering) mainly located in the northeast part. 

 

Overall, the daytime and nighttime UHI in these five cities demonstrate spatial clustering 

patterns with distinct hotspots and coldspots, indicating the presence of significant spatial 

autocorrelation in the UHI phenomenon. Combined with the global Moran’s I index, this reveals 

the presence of both global and local spatial autocorrelation, and indicates that there is spatial 

non-stationarity in the dataset. 
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Figure 4.5 Daytime and Nighttime UHII LISA map 
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Figure 4.6 Daytime and Nighttime UHII Hot spots map 
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4.2.3 Seasonal influence on day and night urban heat island 

As shown in Figures 4.7 and 4.8, the daytime and nighttime UHII shows obvious seasonal 

characteristics due to climatic influences and vegetation changes, and there are certain spatial 

differences in the UHII across the four seasons. Notably, Edmonton and Calgary exhibit the most 

significant seasonal variations in UHI. During the summer, fall, and spring, their UHII 

distribution trends are similar, but in the winter, they display contrasting patterns of UHII 

distribution. Specifically, areas with higher UHII in the summer, fall, and spring become lower 

UHII areas throughout the cities in the winter, particularly during daytime in Calgary and 

nighttime in Edmonton. On the other hand, Vancouver, Toronto, and Montreal exhibit consistent 

patterns of UHI distribution across all four seasons, although they also experience lower UHII 

values for the entire city during winter.  

 

During the day, the highest summer UHII value is found in Vancouver, reaching up to 12.46℃, 

and a region near Lake Ontario in Toronto has the lowest value at -8.30℃. Obviously, in summer 

all five cities experience remarkably high daytime UHII values encompassing their entire urban 

areas. In the fall, the daytime UHII starts to decline in all cities, and the regions showing 

relatively high UHII values experience a substantial reduction in each city. Nevertheless, even 

during this season, the highest daytime UHII values exceeded 3℃ in all cities. Moreover, both 

the highest value and the lowest value are in Vancouver at 6.39℃ and at -4.82℃. During the 

winter months, the daytime UHII values are lowest. However, in winter Vancouver is still 

warmer than other cities, and different from the other seasons, in winter the daytime UHII of 

Vancouver greater than 0℃ across its entire city. This phenomenon is likely attributed to the 

very wet winter in Vancouver, which diminish the capacity of urban areas to dissipate heat. 

Additionally, Calgary and Edmonton experience higher maximum daytime UHII during the 

winter months compared to all other seasons. But the central regions of Calgary and Edmonton’s 

urban areas display significant urban heat sinks. The low UHII observed in Edmonton and 

Calgary during winter might be attributed to the climate effects and air pollution. Both cities 

experience excessively harsh winters. At the same time, much of the power is generated by coal, 

which leads to increased emissions of air pollutants and thus reduces the absorption of shortwave 

solar radiation within urban areas (Zhou et al., 2015). Consequently, a combination of climatic 

causes and human activities reduces the LST in urban areas and leads to the urban heat sink 
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during winter. In the spring, the daytime UHII starts to increase. Similar to summer, the highest 

daytime UHII value is found in Montreal, reaching 10.42℃, while the lowest value is still 

observed along the lake in Toronto at -9.70℃. 

 

 

Figure 4.7 Four-season daytime UHI distribution map 
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Figure 4.8 Four-season nighttime UHI distribution map 

 

During the nighttime, all cities except Vancouver have a maximum summer UHII value of 6.5℃ 

or higher. Edmonton reaches its peak summer UHII value of 8.20℃, while Toronto and Calgary 

also experience a peak summer UHII value of over 7.3℃. Moreover, in Edmonton, regions near 

the surrounding rural areas still maintain a lower nighttime UHII value in the summer, at -

1.89℃, respectively. In the fall, the peaks of the nighttime UHII were substantially decreased in 

all cities. In Vancouver, the highest recorded nighttime UHII value is only 2.59℃, which is 
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almost half of the peaks of other four cities. Meanwhile, in Montreal, regions near the water 

surfaces have the lowest nighttime UHII in the fall, at -2.58℃. During the winter season, Calgary 

and Edmonton show the significant nighttime UHI, that the central parts of cities exhibit extreme 

high nighttime UHII values. Besides, the highest nighttime UHII values among the five cities is 

observed in Montreal, at 8.94℃ and the lowest nighttime UHII values is observed in Calgary, at -

2.68℃. During winter, the nighttime UHII in Vancouver remains above -0.01 ℃ across the entire 

urban area. During the spring season, the nighttime UHII significantly increased in Calgary, 

where the highest values reached 6.25℃ from -3.82℃. But the distribution patterns of spring 

nighttime UHII in all five cities remain consistent with the rest of the seasons. 

 

As shown in Figure 4.9, with the exception of Edmonton, the seasonal trends in UHII for the 

other four cities are roughly the same during the day and at night. During the daytime, Toronto, 

Montreal, Vancouver and Calgary have relatively minimal seasonal variation in UHII, while 

Edmonton has more substantial seasonal fluctuations. Edmonton’s daytime UHII value is below 

-1℃ during the winter months, while by nighttime it is instead higher than the UHII values 

during the fall and spring months. The relative stability of UHII values in Toronto, Montreal, 

Vancouver and Calgary during the day may be attributed to their proximity to bodies of water, as 

water bodies tend to have a temperature-regulating effect, helping to moderate the daytime UHII. 

Additionally, compared to cities with harsh winters such as Edmonton and Calgary, Vancouver 

has milder winters which may result in less variation in the daytime UHII during the winter 

months.  

 

In contrast, the seasonal changes in nighttime UHII are smooth in all cities. In Edmonton, the 

nighttime UHII remains above 1℃ in all four seasons, which are higher than during the day. 

Calgary exhibits the nighttime UHII values above 2℃ for all seasons. In addition, Figure 4.9 

illustrates that the summer season exhibits the highest daytime and nighttime UHII values. All 

five cities have average daytime UHII values greater than 2℃, and average nighttime UHII 

values greater than 1.6℃. Among them, Vancouver, Toronto and Montreal are particularly 

notable for having daytime UHII values exceeding 4℃, and the daytime UHII values are above 

6℃ in both Vancouver and Toronto. In addition, the nighttime UHII values of Edmonton and 

Calgary are above 3℃ during the summer months, making the UHI effect particularly significant 
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during this period. This is the same result as the study findings of Li et al. (2017) on UHI in the 

continental United States. Furthermore, Edmonton, Calgary and Toronto had higher nighttime 

UHII values in winter compared to the fall and spring, mainly attributable to lower LST in rural 

areas, while all other cities had the lowest winter UHII values of the year. 

 

  

Figure 4.9 Annual average four-season day and night UHII 

  

 

4.2.4 Monthly variation of average day and night urban heat island 

In Figures 4.10, the shifting trends of monthly average daytime and nighttime land surface 

temperatures (LST) and urban heat island (UHII) are presented. As shown in Figure 4.8, daytime 

LST in the five cities are approximately the same from April through September, with 

Vancouver experiencing higher temperatures from January through March and Toronto 

experiencing higher temperatures from October through December. However, Vancouver’s 

daytime UHII values only higher than other cities from April to July, while Calgary’s daytime 

UHII values consistently maintain the lowest all year, except for January and December when it 

is the lowest in Edmonton.  

 

In addition, Montreal has a very large increase in daytime UHII in March, and a small increase in 

Edmonton and Calgary. This phenomenon might be attributed to the extremely cold winters in 
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all three cities, with daytime land surface temperatures falling below -10℃, and nighttime land 

surface temperatures even below -20℃ in Edmonton and Calgary in February. As temperatures 

warmed up in March, the snow in the cities was cleared, while the rural areas still retained snow 

and ice. This created a substantial temperature difference between the urban areas and the rural 

areas, contributing to the significant increase in daytime UHII in Montreal and a relatively 

smaller rise in Edmonton and Calgary. 

 

In comparison to the daytime, the fluctuations in both LST and UHII during the nighttime are 

more pronounced in all five cities, with larger ups and downs. As shown in Figures 4. 11, the 

trends in nighttime LST vary across the five cities, with only Calgary and Edmonton being 

roughly the same, but all of the nighttime UHII trends are quite different. Among them, Toronto 

has the most fluctuating trend in the nighttime UHII variation, while Vancouver has the 

smoothest UHII variation trend. This may account for small city size of Vancouver which makes 

it susceptible to the influence of the surrounding ocean on temperature moderation. The 

nighttime UHII in Toronto has a large drop in October and this is due to the fact that rural areas 

around Toronto are warmer than urban areas in October. 

 

 

-20

-10

0

10

20

30

40

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Daytime LST

Edmonton Calgary Vancouver Toronto Montreal



48 

 

Figure 4.10 Monthly average daytime LST and UHII 

  

 

 

Figure 4.11 Monthly average nighttime LST and UHII 
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Considering that the daytime and nighttime UHII in Vancouver and Toronto are significantly 

higher than in other cities, possibly due to the influence of nearby water bodies (i.e., the North 

Pacific Ocean and Lake Ontario), this study conducted an analysis of the variations in the annual 

average LST for both urban and rural areas at different distances from the water bodies in these 

two cities. Additionally, the study also examines the differences in LST between the urban and 

rural regions at the same distance from the water bodies. To achieve this, buffer zones were 

created at 1-kilometer intervals around the water bodies to obtain urban and rural area bands at 

varying distances from the water bodies, thus acquiring the LST for each area band, as well as 

the temperature differences between the urban and rural area bands at the same distance from the 

water bodies.  

 

As shown in Figure 4.12, in Vancouver, during the daytime, the closer the distance to the water 

bodies, the lower the LST in the urban area and the higher the LST in the rural area. Therefore, 

the daytime LST difference between the urban and rural areas at the same distance from the 

water bodies increases with the distance, indicating that the North Pacific Ocean has a significant 

influence on the daytime UHII in Vancouver. On the other hand, the variation trend of the 

nighttime LST in urban area is not very different from that in rural areas, so the variation of the 

LST difference between the urban and rural areas is not very significant at night. Thus, the 

impact of the North Pacific Ocean on the nighttime UHII in Vancouver is not significant. As 

shown in Figure 4.13, in Toronto, the daytime LST in the urban area decreases as the distance to 

Lake Ontario gets closer, but beyond 4 kilometers, the daytime LST in the urban area does not 

vary with distance. However, in the rural areas of Toronto within 2 kilometers from the water 

body, the daytime LST is lower when closer to the water body, and beyond 2 kilometers, the 

daytime LST decreases as the distance from the water body increases. Therefore, although Lake 

Ontario has little impact on the daytime LST in Toronto’s urban area, it still influences the 

daytime LST in the rural areas to some extent, indicating that Lake Ontario has an effect on the 

daytime UHII in Toronto. Furthermore, at night, although the variation trend of the LST in urban 

area is smooth, the LST in rural areas decreases significantly as the distance from the water body 

increases, leading to the increase of the LST difference. Therefore, Lake Ontario also has an 

effect on the nighttime UHII in Toronto. In this regard, oceans have a greater impact on UHI 

than lakes during the day, while lakes have a greater impact on UHI than ocean at night. 
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Figure 4.12 Urban and rural LST at different distances from water bodies in Vancouver 

 

Figure 4.13 Urban and rural LST at different distances from water bodies in Toronto 

 

4.3 Chapter Summary 

This chapter analyzed the spatial and temporal distribution patterns of daytime and nighttime 

UHI in these five cities, as well as the effects of different land cover types on LST, based on 

MODIS LST data and land use data. 
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It was found that the daytime and nighttime UHII in all these five cities had significant seasonal 

and monthly variations. Vancouver and Toronto have the highest daytime UHII among the five 

cities, and Edmonton and Calgary have the highest nighttime UHII among the five cities. Large 

water bodies such as oceans or lakes have a certain impact on the UHI in the waterfront areas of 

Vancouver and Toronto, but the overall influence is not significant. Moreover, the LST trends 

for different land cover types in cities were different between daytime and nighttime, and built-

up areas had the higher daytime and bare grounds had higher nighttime LST of the six land cover 

types. Besides, the influence of the ocean on LST within Vancouver’s build-up area is minimal. 

In Vancouver and Toronto, grasslands do not provide much cooling effect. However, the ocean 

and lake can impact both daytime and nighttime UHI in these cities. In addition, the daytime and 

nighttime UHI intensities of all five cities have significant spatial autocorrelation.  
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Chapter 5. Factors influencing urban heat islands in Vancouver, Edmonton, Calgary, 

Toronto, and Montreal 

Chapter 4 of this study delved into the spatial and temporal distribution of land surface 

temperature and UHIs, and then identified noticeable seasonal variations in UHIs. In this chapter, 

I further investigated the six environmental and socio-economic influencing factors contributing 

to the UHI. I conducted spatial effect analysis and developed the spatial regression models at the 

scale of census tracts to quantify the influential factors of the day and night UHI in the five cities 

in this study to gain a deeper understanding of the drivers of UHIs and their spatial patterns 

across these urban areas. 

 

5.1 Effects of demographic factors 

Two demographic factors were selected for this study, that are total urban population and urban 

population density. As shown in Figures 5.1 and 5.2, in each city, there are several 

neighborhoods with high population totals, exceeding 6,400 individuals. But no clear pattern of 

aggregation is represented. In contrast, when it comes to high population densities, only 

Montreal and Toronto have some neighborhoods with high population densities of more than 

13,947.7 persons per square kilometer, all of which are concentrated in their respective 

downtown areas. Vancouver also has a few neighbourhoods with high population densities in the 

northern part of the city. In contrast, the population densities of both Edmonton and Calgary 

neighborhoods generally remain below 5,412.9 persons per square kilometer. 
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Figure 5.1 Total population distribution map 

 

Figure 5.2 Population density distribution map 
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5.2 Socioeconomic factors 

Due to the income inequality among individuals, median income is often considered a more 

reliable measure than average income, especially when the income gap is significant (Manitoba 

Collaborative Data Portal, 2018). This preference is due to its ability to withstand the influence 

of extreme values or outliers, ensuring a more accurate representation of the central income level 

in such scenarios. Hence, this study used the 2020 median after-tax income of households as an 

economic influencing factor. As presented in Figure 5.3, Calgary has the highest median after-

tax income of households in 2020 at $85,000, followed by Edmonton at $79,500, while Montreal 

reports the lowest median after-tax income at $56,000. 

 

 

Figure 5.3 Median after-tax income of households in 2020 in five cities 

 

As can be seen in Figure 5.4, similar to the cities’ overall median after-tax income of households, 

Montreal’s neighborhoods generally exhibit lower median after-tax incomes, essentially below 

$56,800, with only a few neighborhoods above $71,500. However, neighborhoods in Edmonton, 

Calgary, Vancouver and Toronto, with the exception of a few sparsely populated areas, have 

median after-tax incomes that are largely above $71,500. In Edmonton, Calgary and Toronto, 

there are several communities where the median after-tax income exceeds $111,000. 
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Figure 5.4 Median after-tax income of household distribution map 

 

Figure 5.5 Nighttime light (NTL) value distribution map 
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The nighttime light (NTL) value can to some extent reflect the level of urbanization and socio-

economic development (Zhao et al., 2019), and an increasing number of people are using 

nighttime light values to predict the intensity of UHIs (Sun et al., 2020; Sun et al., 2019). As 

shown in Figure 5.5, in the central part of Edmonton, the southwestern area of Calgary, and the 

central area of Montreal, the nighttime light values are relatively high, with NTL values 

generally reaching 75.29 and above in these areas. The areas with high NTL values in Vancouver 

are mainly concentrated in the downtown area, while in Toronto, the distribution of NTL values 

is more scattered, but the highest NTL values are also concentrated in the downtown area. 

 

5.3 Natural environmental factors 

The natural environment plays a crucial role in influencing the UHI. Vegetation including trees 

and green spaces in urban areas, can provide shade and cooling through evapotranspiration. 

These natural elements help to absorb and dissipate heat, reducing overall UHI intensity. 

Moreover, the configuration and distribution of green spaces in cities affect the spatial 

distribution and intensity of UHI. In addition, natural features such as water bodies, rivers and 

lakes can influence UHII. Water bodies have a cooling effect and can moderate temperature 

fluctuations in the surrounding urban areas, thereby mitigating the UHI effect. 

 

Figures 5.6 and 5.7 display the distribution maps of Enhanced Vegetation Index (EVI) and 

Normalized Difference Water Index (NDWI) for the five cities. Typically, an area is considered 

a water body when the NDWI value is greater than 0.2 (EOS Data Analytics, 2023). However, as 

can be seen from Figure 5.7, all values are less than 0.1, so there are no water bodies at the 

neighborhood level in these five cities. 
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Figure 5.6 EVI distribution map 

 

 

Figure 5.7 NDWI distribution map 
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As shown in Figures 5.6 and 5.7, Toronto has generally higher values for both vegetation index 

and water index, indicating more extensive vegetation cover and water presence. On the other 

hand, both Edmonton and Calgary exhibit overall lower values for the water index, indicating 

relatively less water presence in these two cities. 

 

5.4 Establishment of indicator system 

The larger the city, the higher the level of urbanization. City size is positively correlated with the 

rate of increase in UHII (Zhao et al., 2016), and besides being influenced by solar radiation, the 

UHI is also affected by the level of urbanization. However, due to the possibility of collinearity, 

this study chose nighttime light value data as the indicator representing the degree of 

urbanization. In other words, areas with higher levels of development have higher nighttime light 

values. I selected six natural environmental and socio-economic factors that influence the UHI, 

as shown in Table 5.1. 

 

Table 5.1 Urban heat island influencing factor indicator system 

Number Type of indicator Catalog 

1 

Socio-economic factors 

Total population 

2 Population density 

3 Income (after-tax) 

4 NTL 

5 
Natural environmental factors 

NDWI 

6 EVI 

 

5.5 Regression model 

5.5.1 Correlation analysis 

Before conducting regression analysis, the correlation between daytime and nighttime UHII and 

the independent variables is analyzed, and the correlation coefficients between daytime and 

nighttime UHII and the independent variables are shown in Tables 5.2 and 5.3. From Table 5.2, 

it can be observed that the daytime UHII in Edmonton has a significant correlation with all six 

variables, while the daytime UHII in Montreal has a significant correlation with all variables 

except the total population, which did not pass the 5% significance level test. Similarly, the 
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daytime UHII in Calgary has a significant correlation with all variables except total population 

and NDWI, which did not pass the significance level test. The daytime UHII in Vancouver has a 

significant correlation with population density, median after-tax income of households, NDWI 

and EVI. Toronto’s daytime UHII shows significant correlations with median after-tax income of 

households, NTL, NDWI and EVI. 

 

Overall, the daytime UHII shows the strongest correlation with median after-tax income of 

households and EVI, both of which exhibit significant negative relationships with the daytime 

UHII in all cities except Vancouver. This indicates that areas with higher vegetation coverage or 

higher income population tend to have lower daytime UHII values. This could be attributed to 

wealthier residential areas having higher vegetation coverage, leading to lower UHII in those 

regions. Similarly, there is a significant negative correlation between NDWI and the daytime 

UHII, meaning that areas with more water bodies tend to have lower daytime UHII values. On 

the contrary, NTL shows a positive correlation with daytime UHII, indicating that areas with 

higher levels of urbanization tend to have stronger daytime UHII. 

 

Interestingly, population density exhibits a significant positive correlation with the daytime UHII 

in Montreal, Edmonton, and Calgary, while it shows a significant negative correlation with 

daytime UHII in Vancouver. This suggests that in Montreal, Edmonton, and Calgary, higher 

population density is associated with stronger daytime UHII, while in densely populated areas of 

Vancouver, the daytime UHII is lower. Similarly, when the nighttime UHII in other cities shows 

a significant negative correlation with EVI and median after-tax income of households, in 

Vancouver, it shows a significant positive correlation with EVI and median after-tax income of 

households. The reason for this difference may be due to the fact that in Vancouver, most people 

reside in areas where is close to the coastline, and as previously found in Chapter 4, areas closer 

to water bodies in Vancouver tend to have lower daytime UHII values. In addition, because the 

downtown area in Vancouver is located near the coast, and high-income individuals tend to 

reside in areas away from the downtown area. As a result, the downtown area with higher 

population density experiences lower daytime UHII due to the influence of the ocean. On the 

other hand, areas where high-income individuals reside have higher vegetation cover, but since 

they are located further away from the coastline, they experience higher daytime UHII. 
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Table 5.2 Correlation coefficient between daytime UHII and independent variables 

 Montreal Edmonton Calgary Toronto Vancouver 

Total population -0.042 -0.151* -0.032 -0.049 0.072 

Population density 0.246** 0.265** 0.303** -0.016 -0.372** 

Income (after-tax) -0.141** -0.286** -0.418** -0.098* 0.261** 

NTL 0.301** 0.391** 0.426** 0.190** -0.086 

NDWI -0.538** -0.515** 0.098 -0.342** -0.344** 

EVI -0.281** -0.597** -0.479** -0.337** 0.195* 

* Significant at the 0.05 level. ** Significant at the 0.01 level. 

 

The correlation coefficients between nighttime UHII and the independent variables are shown in 

Table 5.3. different with the daytime UHI, the nighttime UHII in Edmonton is significantly 

correlated with only four independent variables, that is population density, median after-tax 

income of households, NTL and EVI. In Montreal, the nighttime UHII also shows significant 

correlations with four out of six independent variables, excluding median after-tax income of 

households and NTL. In Calgary, the nighttime UHII shows significant correlations with five out 

of six independent variables, except for total population. However, unlike daytime UHI, the 

nighttime UHII in Toronto shows significant correlations with only three independent variables, 

that is, population density, NTL and NDWI. In Vancouver, the nighttime UHII is significantly 

correlated with population density, median after-tax income of households, NTL, and EVI. 

 

Table 5.3 Correlation coefficient between nighttime UHII and independent variables 

 Montreal Edmonton Calgary Toronto Vancouver 

Total population -0.128** -0.079 -0.079 -0.035 0.049 

Population density 0.218** 0.204** 0.298** 0.318** 0.389** 

Income (after-tax) -0.046 -0.240** -0.450** 0.067 -0.252** 

NTL 0.060 0.584** 0.586** 0.111** 0.323** 

NDWI -0.208** 0.107 0.561** 0.153** 0.058 

EVI -0.141** -0.439** -0.302** -0.067 -0.311** 

* Significant at the 0.05 level. ** Significant at the 0.01 level. 
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From the overall nighttime UHI situation, nighttime UHII exhibits the strongest correlations with 

population density, which shows significant positive correlation with nighttime UHII in all five 

cities. NTL also shows a significant positive correlation with nighttime UHII in four cities, 

except for Montreal. EVI is significantly negatively correlated with nighttime UHII in four cities, 

except for Toronto. However, there are some differences between these cities. The nighttime 

UHII in Calgary and Edmonton show a significant positive correlation with NDWI, while in 

Montreal, it shows a significant negative correlation with NDWI. This might be because that the 

climate in Calgary and Edmonton is more arid, and water bodies have an insulating effect as the 

temperature drops slowly at night. 

 

5.5.2 Ordinary least squares (OLS) 

Spatial autocorrelation analysis indicates that both the daytime and nighttime UHI in the five 

cities show significant spatial dependence. To compare with the geographic weighted regression 

(GWR), this study also establishes global regression models using ordinary least squares (OLS) 

regression for the daytime and nighttime UHII in each city. Exclude variables that did not pass 

the 5% significance test in the correlation analysis and conduct spatial regression analysis on the 

remaining independent variables and daytime and nighttime UHI. 

 

Furthermore, it is crucial to conduct multicollinearity tests because high correlations and 

interrelationships among independent variables in the regression model can seriously affect the 

analysis results. In this paper, the variance inflation factor (VIF) is used to test for 

multicollinearity among independent variables. When VIF > 7.5, it indicates the presence of 

multicollinearity issues among variables (Zhu, 2016). Based on the VIF test, no multicollinearity 

problems were found among these independent variables, allowing for further regression 

analysis. Then, by performing a significance test and removing the nulls, the best-fitting models 

were established. 

 

Table 5.4 presents the detailed results of the OLS estimation for the daytime and nighttime UHI. 

The AIC test of the OLS models indicates the optimal bandwidth and the goodness of fit 𝑅2 for 

daytime and nighttime UHII in each city. A higher 𝑅2 value and a smaller AIC value indicate a 

better fit of the model. For the daytime UHI, the OLS model of Edmonton shows the best 
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explanatory effect with an 𝑅2 of 0. 455 and a AIC of 1019.722, followed by Vancouver. For the 

nighttime UHI, the OLS model of Calgary exhibits the best explanatory effect with an 𝑅2 of 0. 

651 and an AIC of 560.181, followed by Edmonton. However, the 𝑅2 for the OLS model of 

nighttime UHI in Montreal is only 0.092, indicating that the model cannot explain nighttime UHI 

in Montreal effectively. Further research is needed to identify the influencing factors of 

nighttime UHI in Montreal.  

 

Table 5.4 Comparison of the goodness of fit for the OLS models of day and night UHI 

  Montreal Edmonton Calgary Toronto Vancouver 

Day 

𝑅2 0.335 0.455 0.315 0.130 0.454 

Adjusted 𝑅2 0.331 0.444 0.311 0.127 0.441 

AIC 2077.698 1019.722 985.596 2372.132 697.869 

Night 

𝑅2 0.092 0.375 0.651 0.167 0.263 

Adjusted 𝑅2 0.087 0.367 0.646 0.163 0.245 

AIC 806.643 737.986 560.181 871.532 62.729 

 

5.5.3 Geographically weighted regression (GWR) 

Because regression models with statistically significant non-stationarity are often suitable for 

Geographic Weighted Regression (GWR) analysis, this study conducted GWR analysis 

separately for daytime and nighttime UHI in each of the five cities. As shown in Table 5.5, 

compared to the goodness of fit and AIC values of the OLS models, the GWR models have 

higher global 𝑅2 values and lower AIC values. In particular, the nighttime UHI OLS model in 

Montreal shows a low 𝑅2 value of 0.092, whereas the nighttime UHI GWR model exhibits a 

significantly higher 𝑅2 value of 0.51. Therefore, it can be concluded that for the daytime and 

nighttime UHI in each city, the GWR models are more appropriate and show the best goodness 

of fit performance. Meanwhile, the GWR models also consider the spatial variations. 
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Table 5.5 Comparison of the goodness of fit for the GWR models of day and night UHI 

  Montreal Edmonton Calgary Toronto Vancouver 

Day 

𝑅2 0.759 0.688 0.636 0.606 0.846 

Adjusted 𝑅2 0.713 0.622 0.556 0.553 0.796 

AIC 1663.889 929.187 884.481 1986.287 581.457 

Bandwidth 2917.141 6282.316 4326.532 3535.025 2316.929 

Night 

𝑅2 0.506 0.804 0.753 0.758 0.531 

Adjusted 𝑅2 0.464 0.772 0.722 0.699 0.448 

AIC 567.323 491.478 496.724 340.408 32.262 

Bandwidth 5139.201 5364.575 7544.095 2956.353 3294.304 

 

Figure 5.8 displays the spatial distribution maps of the local 𝑅2 for the GWR models of daytime 

and nighttime UHI in Edmonton, as well as the spatial distribution maps of intercepts and 

coefficients for the significant variables. As shown in Figure 5.8, the Local 𝑅2 values for 

daytime UHI in Edmonton range from 0.21 to 0.86, with higher fit in the northern and western 

regions, indicating a more significant impact of explanatory variables on daytime UHI in those 

areas. Daytime UHI intensity in the northern region may be influenced more by factors such as 

vegetation coverage, and population density. For nighttime UHI in Edmonton, the Local 𝑅2 

values for the GWR models range from 0.18 to 0.86, with higher fit observed in the northern and 

southeastern areas, suggesting that explanatory variables have a stronger impact on nighttime 

UHI in these regions. Vegetation and NTL, i.e., degree of urban industrialization, have 

significant influence on nighttime UHI intensity in these areas. 

 

Intercepts typically represent the strength of UHI, independent of influencing factors. As shown 

in Figure 5.8, the intercept values for daytime UHI are higher in the south and north regions, 

gradually decreasing towards the central areas. This suggests that when all explanatory variables 

are zero, the model predicts higher UHI values in the south and north regions. For nighttime 

UHI, the intercept values are higher in the northwestern regions, gradually decreasing towards 

the southeastern areas. Additionally, the coefficients of the five main variables related to daytime 

and nighttime UHI intensity exhibit significant spatial variability.  
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Regarding daytime UHI, the spatial distribution of the EVI coefficient indicates higher absolute 

values in the northern and western regions, while the southern and central regions display 

slightly lower absolute values, suggesting that vegetation has a greater impact on UHI in the 

northern and western regions compared to the southern and central regions, that is, vegetation 

plays a more significant role in mitigating UHI in the northern and western regions compared to 

the southern and central regions. The spatial distribution pattern of the NDWI coefficient differs 

from EVI and exhibits opposite correlations in different regions. In the central region, NDWI 

shows a significant negative correlation with daytime UHI, indicating that higher water body 

coverage leads to lower UHI values.  

 

In contrast, in the northern and southern regions, NDWI shows a significant positive correlation 

with daytime UHI, suggesting that higher water body coverage leads to higher UHI values in 

these regions. This indicates that water bodies play a warming role in urban fringe areas with 

more vegetation, while in urban areas with more buildings and less vegetation, water bodies have 

a cooling effect, alleviating the UHI effect. Similarly, the spatial distribution of population 

density, total population and income correlate differently in various urban regions. In the north 

parts, population density and income exhibit a negative correlation with daytime UHI, while in 

the southern regions, population density and income and daytime UHI are positively correlated. 

This suggests that high population densities and low population incomes in the north parts of 

Edmonton exacerbate the UHI effect during the daytime. 

 

For nighttime UHI, as shown in Figure 5.8, the spatial distribution patterns of EVI and 

population density coefficients in the GWR models is basically the same with those of daytime 

UHI. The coefficient values of NTL are higher in the northern and eastern regions and relatively 

lower in the western areas, indicating that the degree of urbanization has a greater influence on 

nighttime UHI in the northern and eastern regions and a relatively smaller impact in the western 

areas. Additionally, the smaller coefficients for NTL and population density are due to the 

difference in units between NTL, population density and UHII values, not that they are not 

significantly correlated with the UHI. 

 



65 

 

Figure 5.8 Spatial distribution maps of Local 𝑅2, intercepts, and coefficients of the main 

variables for the GWR models of daytime and nighttime UHI in Edmonton 

 

Figure 5.9 presents the spatial distribution maps of Local 𝑅2, intercepts, and main variable 

coefficients for the GWR models of daytime and nighttime UHI in Calgary. As shown in Figure 

5.9, the daytime UHI GWR model in Calgary exhibits a Local 𝑅2 range of 0.01-0.76, with higher 

goodness of fit observed in the eastern and western regions, indicating a more significant impact 

of explanatory variables on daytime UHI in these areas. The daytime UHI intensity in these 

regions may be influenced more by EVI. For the nighttime UHI GWR model in Calgary, the 



66 

Local 𝑅2 varies from 0.32 to 0.79, with higher goodness of fit observed in the central part of the 

city, suggesting a more significant impact of explanatory variables on nighttime UHI in these 

areas. NDWI has a more pronounced effect on nighttime UHI intensity in these regions. 

However, it is evident that the overall Local 𝑅2 values for both daytime and nighttime UHI in 

Calgary are lower compared to Edmonton. As depicted in Figure 5.9, the intercept values for 

daytime UHI are higher in the northeastern and southwestern regions, gradually decreasing 

towards the central region. This indicates that the daytime UHI intensity is higher in the 

northeastern and southwestern part of Calgary. However, the intercept values at nighttime are 

higher in the western region and middle eastern region. Additionally, the coefficients of the main 

variables associated with daytime and nighttime UHI in Calgary also display substantial spatial 

variability.  

 

Regarding the coefficients of EVI, it can be observed that the western region has higher absolute 

values, while the central region, where is the downtown area, has lower absolute values for 

daytime UHI, which indicate that the influence of vegetation is higher in the western regions 

compared to the central regions, indicating weaker associations between vegetation and daytime 

UHI in these areas. This situation is similar to the distribution of EVI coefficients in Edmonton, 

where the impact of vegetation is higher in areas with higher levels of urban economic 

development. Income exhibits a positive correlation with daytime UHI in the central and 

southeastern region and a negative correlation with daytime UHI in the northeastern and 

southwestern region, indicating a stronger influence of urban development on daytime UHI in 

northeastern and southwestern areas.  

 

For the nighttime UHI GWR model in Calgary, the spatial distribution of EVI coefficients differ 

from daytime, where vegetation has a limited impact on nighttime UHI in the entire eastern 

region but a higher impact in western regions. The coefficients of NTL in the central-eastern 

region are greater than in the southern region. The trends in nighttime light values are often 

closely related to the intensity of urban economic development, and the central-eastern regions of 

Calgary generally have stronger nighttime light values. Moreover, higher income in the 

northeastern and southeastern region correspond to higher UHI values, while in the western 

region, higher nighttime light values are associated with lower UHI values. In contrast to other 
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cities, in Calgary, NDWI is significantly positively correlated with nighttime UHI, i.e., the more 

moisture, the higher the UHI value, and the effect of NDWI on nighttime UHI is greater in the 

western part of Calgary. 

 

 

Figure 5.9 Spatial distribution maps of Local 𝑅2, intercepts, and coefficients of the main 

variables for the GWR models of daytime and nighttime UHI in Calgary 

 

Figure 5.10 presents the spatial distribution maps of Local 𝑅2, intercepts, and main variable 

coefficients for the GWR models of daytime and nighttime UHI in Vancouver. As shown in 

Figure 5.10, the daytime UHI GWR model in Vancouver exhibits a Local 𝑅2 range of 0.07-0.59, 

with higher goodness of fit observed in the central part and southern part of the city, indicating a 

more significant impact of explanatory variables on daytime UHI in these areas. For the 

nighttime UHI GWR model in Vancouver, the Local 𝑅2 varies from 0.02 to 0.48, with higher 

goodness of fit observed in the western areas, suggesting a more significant impact of 
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explanatory variables on nighttime UHI in these regions. Population density, vegetation and 

water bodies are the main significant explanatory variables influencing both daytime and 

nighttime UHI intensity. As depicted in Figure 5.10, the intercept values for daytime UHI in 

Vancouver are higher in the southern regions and gradually decrease towards the northern 

regions, indicating higher daytime UHI intensity in the southern part of Vancouver. For the 

nighttime UHI, the intercept values are higher in the northwestern regions, indicating stronger 

nighttime UHI in these areas. Moreover, there is substantial spatial variability in the coefficients 

of the key variables associated with daytime and nighttime UHI intensity in Vancouver. 

 

Regarding the daytime UHI, the spatial distribution of NDWI coefficients indicates higher 

absolute values in the western region and lower absolute values in the northeastern region. 

Moreover, in the western region, NDWI shows a negative correlation with the daytime UHI, 

indicating a stronger impact of water bodies on UHI mitigation in these areas. However, in the 

northeastern region of Vancouver, the influence of water bodies on daytime UHI is weaker and it 

can even exacerbate the UHI effect, suggesting the need for considering other measures to 

alleviate daytime UHI in this area. Similar, EVI in the central part of Vancouver has significant 

positive correlation with daytime UHI, which is different from most of the previous findings that 

vegetation has a negative correlation with the UHI (Tran et al., 2017; Zhang et al., 2013; 

Schwaab et al., 2021). Only in the very small part of the north and south areas can vegetation 

serve to mitigate the UHI. From the results in Chapter 4, this may be due to the fact that among 

the vegetation, it is the trees that have a mitigating effect on the UHI in Vancouver, whereas in 

Vancouver the LST of grasses, shrubs, and flood plants are even higher than the LST in built-up 

areas. 

 

For the nighttime UHI GWR model in Vancouver, the spatial distribution of EVI coefficients 

shows that vegetation has a greater impact on nighttime UHI in the western regions than the 

eastern regions. However, it can be seen that during the nighttime EVI also has a significant 

positive correlation with the nighttime UHI in some parts of eastern region. The spatial 

distribution of NDWI coefficients for nighttime UHI is different with the daytime pattern. NDWI 

is significantly positively correlated with nighttime UHI throughout northern Vancouver, i.e., the 

more moisture, the higher the UHI value in these areas. Additionally, Vancouver’s nighttime 
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UHI is significantly negatively correlated with EVI, with higher coefficient estimates in the 

western region, indicating a stronger impact of vegetation on nighttime UHI in this area. 

 

 

Figure 5.10 Spatial distribution maps of Local 𝑅2, intercepts, and coefficients of the main 

variables for the GWR models of daytime and nighttime UHI in Vancouver 
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Figure 5.11 displays the spatial distribution maps of Local 𝑅2, intercepts, and main variable 

coefficients for the GWR models of daytime and nighttime UHI in Toronto. As shown in Figure 

5.11, the daytime UHI GWR model in Toronto exhibits a Local 𝑅2 range of 0.02 to 0.64, with 

higher goodness of fit observed in the eastern and central-western parts, indicating a more 

significant impact of explanatory variables on daytime UHI in these areas. Water bodies and 

vegetation are the main significant explanatory variables influencing daytime UHI intensity in 

these regions. For the nighttime UHI GWR model in Toronto, the Local 𝑅2 varies from 0.001 to 

0.55, with higher goodness of fit observed in the northern region, suggesting a more significant 

impact of explanatory variables on nighttime UHI in these areas. NTL and water bodies are the 

main significant explanatory variables influencing nighttime UHI intensity in these regions. The 

GWR models for daytime and nighttime UHI in Toronto exhibit the widest range of Local 𝑅2 

values among the five cities. 

 

As shown in Figure 5.11, the intercept values for daytime UHI in Toronto are higher in the 

northeastern and northwestern parts, indicating higher daytime UHI intensity in these areas, 

which is consistent with the spatial distribution of daytime UHI in Toronto. For the nighttime 

UHI, the intercept values are higher in the southeastern and western areas, indicating stronger 

nighttime UHI in these regions. Certainly, there is significant spatial heterogeneity in the 

coefficients of the key variables related to both daytime and nighttime UHI intensity in Toronto. 

 

Regarding the daytime UHI, the spatial distribution of EVI coefficients indicates a positive 

correlation with UHI in the southeastern, and southwestern, northern parts, which means that 

higher vegetation cover is associated with higher daytime UHI values. This finding is consistent 

with the results of the study of Wang (2018) on the correlation between vegetation and daytime 

UHI in major cities in China. However, in the central-southern regions, vegetation cover exhibits 

a significant negative correlation with daytime UHI, indicating that vegetation can reduce 

daytime UHI intensity in these areas. This central-southern region corresponds to Toronto's 

downtown area, so increasing vegetation cover in downtown Toronto can effectively mitigate 

daytime UHI effects. The spatial distribution pattern of NDWI coefficients is opposite to EVI. 

NDWI exhibits a significant negative correlation with daytime UHI in the eastern and western 

parts, while showing a significant positive correlation in the downtown area. This may be 



71 

because Toronto’s downtown area is adjacent to Lake Ontario, resulting in higher humidity, and 

thus poorer cooling effects during the daytime, leading to higher daytime UHI values where 

water bodies are more abundant and the environment is more humid. 

 

The GWR model for nighttime UHI, in Toronto, NTL exhibits a similar spatial distribution of 

coefficients to the EVI. In the central area, NTL and NDWI have positive correlation with the 

nighttime UHI, while in the western and eastern region, they have negative correlation with the 

nighttime UHI. Additionally, the nighttime UHI in Toronto also shows a correlation with 

population density, with a positive correlation between population density and nighttime UHI in 

the most parts of Toronto, and a negative correlation in the southeastern parts. 
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Figure 5.11 Spatial distribution maps of Local 𝑅2, intercepts, and coefficients of the main 

variables for the GWR models of daytime and nighttime UHI in Toronto 
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Figure 5.12 displays the spatial distribution of the Local 𝑅2, intercept, and coefficients of the key 

variables in the GWR model for daytime and nighttime UHI intensity in Montreal. As shown in 

the Figure 5.12, the Local 𝑅2 values for daytime UHI in Montreal range from 0.01 to 0.89, with 

higher fit observed in the western and northern parts, indicating that the explanatory variables 

have a more significant impact on daytime UHI in these areas. The main variables that have a 

relatively significant impact on daytime UHI intensity are vegetation coverage, water bodies and 

population density. Similarly, for nighttime UHI, the Local 𝑅2 values range from 0.001 to 0.88, 

with higher fit observed in the same western and northern regions, suggesting that the 

explanatory variables have a more pronounced influence on nighttime UHI in these areas. The 

key variables that have a relatively significant impact on nighttime UHI intensity are water 

bodies, population density and total population. 

 

Furthermore, the intercept values for both daytime and nighttime UHI are higher in the western 

and central region and gradually decrease towards the south and northeast, as shown in Figure 

5.12, indicating that daytime UHI intensity is higher in the central region compared to the 

southern, and northeastern areas, which aligns with the general distribution of daytime and 

nighttime UHI in Montreal. There is substantial spatial heterogeneity in the coefficients of the 

main variables strongly associated with both daytime and nighttime UHI. 

 

Concerning daytime UHI, the EVI coefficients are higher in the fringe areas than in the central 

areas. In the northern and southern regions, EVI is significantly positively correlated with 

daytime UHI, while in the western region, it shows a significant negative correlation. As for 

NDWI coefficients, they are positive in the middle part of the south side and negative in the 

western and northern regions. This signifies a noteworthy correlation between water bodies and 

daytime UHI in Montreal, with a more pronounced overall impact in the northern areas. For 

nighttime UHI, the spatial distribution of NDWI and population density coefficients are 

generally consistent with the daytime patterns. This suggests that the factors influencing both 

daytime and nighttime UHI in Montreal are largely similar, allowing for a unified consideration 

of mitigation strategies without significant differences between daytime and nighttime UHI. 
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Figure 5.12 Spatial distribution maps of Local 𝑅2, intercepts, and coefficients of the main 

variables for the GWR models of daytime and nighttime UHI in Montreal 
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5.6 Chapter Summary 

This chapter investigated the relationship between UHI and each of the influencing factors in the 

five cities based on MODIS EVI and NDWI data, 2021 Census data, and VIIRS nighttime light 

values data. In all cities, correlation analyses revealed that the factors influencing daytime UHI 

are different with those influencing nighttime UHI.  

 

The OLS results show the best model fit for explaining nighttime UHI in Calgary, suggesting 

that these factors (NTL, income, EVI and NDWI) explain Calgary’s nighttime UHI well. From 

the GWR result, it can be seen that population density, EVI and NDWI are basically significantly 

correlated with both daytime and nighttime UHI in each city, which suggests that vegetation and 

water bodies in certain areas within these cities are able to mitigate and ameliorate UHI in the 

five cities and large population density can contribute to the exacerbation of UHI. In addition, 

NTL values were significantly positively correlated with nighttime UHI most of the time, 

indicating that the higher the degree of urbanization, the higher the intensity of UHI in these five 

cities. 
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Chapter 6. Conclusion and limitations 

This chapter summarized the key findings of the entire study, reviewed and addressed the 

research questions, highlighted the novelty and findings of the study, acknowledged its 

limitations, and outlined future research directions. 

 

6.1 Conclusion 

The urban natural environment system plays a crucial role for urban residents, and with the 

continuous progress of urbanization, our concern for the entire global ecological environment is 

increasing. In this study, based on theories from geography and statistics, and utilizing remote 

sensing and geographic information systems, I analyzed the spatiotemporal patterns of daytime 

and nighttime UHI in five major Canadian cities in 2021, focusing on identifying their 

influencing factors. I selected two major categories of factors: natural environment and socio-

economic factors, and used spatial models to analyze their impact on UHIs from a 

spatiotemporal perspective. Additionally, I investigated the spatiotemporal variations in UHIs 

among these cities. The main conclusions are as follows: 

 

1. Using remote sensing data, I studied the SUHII in five major Canadian cities from both 

regional and seasonal perspectives and explored the spatiotemporal distribution patterns of 

UHI effects and their relationship with land use land covers. The results showed that the 

intensity of UHI exhibits clear seasonal variations, with the strongest UHI effect observed in 

summer and the weakest in winter in all cities. Besides, this study found that Vancouver, 

Toronto, and Montreal experience significantly higher daytime UHI effects across all four 

seasons compared to Edmonton and Calgary. However, during the nighttime, Edmonton and 

Calgary have higher UHI than the other three cities. In addition, among all types of land 

covers, built-up areas have the most significant impact on daytime LST in almost all cities, 

while bare ground has the most significant impact on nighttime LST in Toronto and 

Montreal. 

 

2. Through analyzing the spatial distribution patterns of daytime and nighttime UHI in these 

five cities, differences and similarities were discovered among them. During the day, the 

spatial pattern of UHI in all cities except Edmonton is roughly the same across the four 
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seasons, while at night, all cities show a clear seasonal variation in the spatial pattern of UHI. 

In Edmonton, the spatial pattern of daytime UHI in winter was different from the other three 

seasons, with urban heat sinks occurring in winter. Additionally, the distribution patterns of 

UHI in these cities all exhibit an outward expansion from the city center, and the daytime and 

nighttime distribution patterns in each city are different. 

 

3. Through spatial autocorrelation and heterogeneity tests, I found that both daytime and 

nighttime UHII demonstrate significant spatial dependence and heterogeneity. By comparing 

the indicators of ordinary least squares (OLS) and geographically weighted regression 

(GWR) models, I found that the GWR models consistently outperform the OLS models. The 

regression results indicate that the explanatory power of 𝑅2 varies depending on the research 

subject and model, and the influencing factors of daytime and nighttime UHI differ among 

each city. Furthermore, the analysis showed that population density, EVI and NDWI were the 

most influential factors for all cities, but their impact on UHI varies with geographic location 

and between daytime and nighttime. 

 

The spatiotemporal changes of UHI also reflect the temporal and spatial patterns of urbanization 

and industrialization in these cities. The changes in land use patterns and the interplay of natural 

and anthropogenic factors during the urbanization process have varying degrees of impact on the 

urban ecological environment.  

 

6.2 Novelty 

1. The study focused on five major Canadian cities situated in high-latitude regions. Examined 

the spatial distribution patterns of daytime and nighttime UHI across these cities at various 

temporal scales. 

 

2. Using spatial regression models, the study investigated the influencing factors of daytime 

and nighttime UHI across the five cities at a neighbourhood level and explored their spatial 

differences. 
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6.3 Suggestions 

According to the study, vegetation, water bodies and population density in these five cities have 

significant mitigating effects on daytime and nighttime UHI, but there is also spatial variability 

in each city. In Edmonton and Calgary, the EVI is significantly negatively correlated with UHI, 

so increasing vegetation cover can help to mitigate UHI in these two cities. Whereas in 

Vancouver, EVI is positively correlated with daytime UHI, which may be due to the fact that 

EVI characterizes all vegetation types, such as grass, shrubs, flooded vegetation, and trees. Based 

on the results of the study on the relationship between land use cover and LST, as indicated in 

Chapter 4, it is possible that a relative reduction in grass, shrub and flood vegetation cover or an 

increase in tree cover can help to mitigate the daytime UHI in Vancouver. However, in specific 

parts of northern and southern Montreal, as well as certain areas in the northern, southwestern, 

and southeastern parts of Toronto, EVI and daytime UHI showed a positive correlation. 

Therefore, these regions should be avoided when aiming to increase vegetation cover to alleviate 

daytime UHI. Conversely, in areas where EVI is negatively correlated with UHI, implementing 

measures such as constructing green roofs to augment vegetation cover can effectively mitigate 

UHI. 

 

Moreover, the NDWI is significantly negatively correlated with daytime UHI in parts of 

Edmonton and Vancouver. Therefore, increasing water bodies would help mitigate the daytime 

UHI effect in these two cities. However, in parts of Vancouver, the NDWI is positively 

correlated with the daytime UHI, so water bodies are not effective in reducing daytime UHI in 

these regions. The same situation also applies to Toronto. However, in Montreal, the NDWI is 

significantly negatively correlated with both daytime and nighttime UHI in most areas, so adding 

water bodies or increasing vegetation with higher water in parts of Montreal could help alleviate 

UHI. Due to the different impacts of water bodies on UHI during the day and night, it is 

important to consider this when formulating policies. 

 

Furthermore, in all cities except Calgary, population density is positively correlated with UHI. 

Therefore, within feasible limits, appropriately reducing population density, especially in areas 

where population density has a greater impact on UHI, can effectively mitigate UHI. 
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Therefore, this paper suggests that planners can target each neighborhood according to the 

different correlations between the UHI of different neighborhoods and the vegetation, water 

bodies and population density in order to improve the overall UHI of the whole city. 

Additionally, since the nighttime UHI effect is more pronounced in Edmonton and Calgary, and 

the daytime UHI effect is more evident in Vancouver, Toronto, and Montreal, it is recommended 

that more attention should be paid to factors affecting both daytime and nighttime UHI in 

Edmonton and Calgary, while in the other three cities, factors affecting daytime UHI should be 

given more consideration. 

 

6.4 Limitations 

In the process of completing this thesis, although efforts have been made to improve the relevant 

research, there are still some shortcomings. 

 

1. Due to the relatively low spatial resolution of MODIS data, there may be errors in the results. 

Therefore, for more accurate research on each city, higher-resolution remote sensing data, 

such as Landsat data, would be required. 

 

2. As these five cities are located in different spatial positions and have different climatic 

conditions, the study of factors influencing daytime and nighttime UHI needs further 

analyses. In future research, more influencing factors, such as humidity, elevation, PM 2.5 

density, length of highway, and car ownership per capita, should be considered to provide a 

more accurate understanding of the factors influencing daytime and nighttime UHI. 

 

With the ongoing urbanization process, the UHI effect remains a serious urban issue. The 

research on strategies to mitigate the UHI effect should continue, specifically considering the 

geographic location and environmental and socioeconomic factors. However, the implementation 

of new technologies and measures can offer assistance in alleviating the UHI situation. 
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