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Novel Transmission Line Modeling Method for Nonlinear Permeance
Network Based Simulation of Induction Machines

Babak Asghari and Venkata Dinavahi

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada

This paper studies different iterative solution methods for nonlinear permeance network based machine models. A new transmission
line modeling (TLM) algorithm for efficient solution of permeance network models (PNM) of induction machines is proposed. In this
method, the TLM algorithm is used to decouple the nonlinear magnetic equations. The decoupled nonlinear equations are then solved
by a look-up table method owing to the repetitive nature of equations across the geometry of the machine. It is shown that the proposed
method offers significant speed-up compared to the conventional Newton-Raphson method. Simulation results for dynamic and steady-
state conditions of a closed rotor slot induction motor are compared with experimental test results as well as finite element analysis to

evaluate the performance of the proposed algorithm.

Index Terms—Induction machine, iterative methods, Newton-Raphson method, permeance network model, transmission line theory.

I. INTRODUCTION

HE permeance network model (PNM) is efficacious for

T studying steady-state and transient performance of elec-
trical machines. This method was originally developed in the
late 1980s by Ostovic [1] and has gained increasing popularity
due to its accuracy and computational efficiency. It has future
potential to be used as a standard method for the design of mag-
netic devices in automated computer-aided design tools [2]. In
a PNM, the major flux paths inside a machine are modeled as
a series of interconnected lumped permeance elements. Each
permeance element is a flux tube similar to an electric.resis-
tance representing a current tube. Gauss’ and Ampere’s laws of
electromagnetics are then applied to obtain permeance network
equations of the machine. These equations are solvable by con-
ventional electric circuit methods such as loop or nodal analysis.
The PNM formulations for different types of electrical ma-
chines have been developed and used in recent years [3]-[10].
In addition to their application in the design of electrical ma-
chines, PNMs can also be uséd to study fault conditions such as
stator winding inter-turn‘short-circuit [11], [12], broken rotor
bars and end rings [12]-[15], and air-gap eccentricity [15] in
induction machines. Despite the wide application of permeance
network models; a detailed study of nonlinear solution tech-
niques for these networks is not yet available. Fixed-point iter-
ation is commonly used in the literature to obtain the nonlinear
solution [7], [16]s [17]; however, this method usually suffers
from slow convergence rate and excessive computation time.
Newton-Raphson (N-R) formulation is also proposed in [18]
and [19] where convergence problem is reported during the sim-
ulation of a saturated synchronous machine. In this paper, var-
ious N-R and transmission line modeling (TLM) based iterative
techniques for solving nonlinear PNM equations of an induc-
tion machine are discussed and compared with each other. It is
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shown that permeance network structure lends itself to a novel
TLM algorithm which results in the fastest computation speed
among the different nonlinear solution algorithms.

The paper-is.organized as follows. Section II gives the back-
ground on the permeance network models. N-R and conven-
tional TLM methods to solve the PNM nonlinear equations are
described in Section I1I. Section IV presents the new TLM so-
lution technique. Results obtained from simulation and experi-
ment are presented and compared with each other in Section V,
followed by the conclusion in Section VI.

II. BACKGROUND

Analytically permeance values for different parts of an
electric machine can be obtained according to the following
formula:

1 1
P=g=7 (1)
I dl
0 pS(1)

where P, R, L, u, and S are permeance, reluctance, length,
permeability, and cross-section area of an element, respectively.
[ is the integration variable. In regions of the machine where the
magnetic characteristic is nonlinear (e.g., iron core) the value of
permeability is defined as a function of flux density. In a rotating
machine, air-gap permeance elements are time-dependent and
based on the position of the rotor with respect to the stator.

Fig. 1 shows the PNM for a portion of a squirrel cage induc-
tion motor (SCIM) in which the main flux paths are modeled
as permeance elements. Magnetomotive force (MMF) sources
are specified across the geometry of the machine where elec-
tric currents flow inside the stator windings or the rotor bars.
Stator MMF sources can be obtained by multiplying the cur-
rent in each phase by the number of turns in the corresponding
slot. For a SCIM, rotor MMF sources are equal to rotor bar cur-
rents. A similar approach as in [7] is used here to develop the
PNM equations for an induction machine. In this approach a
qdo transformation is applied to stator variables to remove the
mutual leakage inductance between the windings.

Nodal equations of the permeance network can be written as

AM + AT =0 2)
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Fig. 1. Permeance network model for a portion of a squirrel cage induction
machine.

where M and I are vectors of magnetic potentials, and stator
phase and rotor bar currents, respectively. A; is the nodal ma-
trix and A» includes coefficients of each current in the nodal
equations.

Flux linkage equations of stator windings and rotor loops are
given as

AsM+ A,I= ) 3)

where A is the vector of stator and rotor flux linkages. A3 and Ay
include the contribution of different flux paths©f the permeance
network into the total flux linkages of stator windings and rotor
loops.

Equations (2) and (3) can be combined into.a system of non-
linear algebraic equations as follows:

Alz)z =b “)

where z is the unknown vector ificluding magnetic potentials
and stator and rotor bar currents.

Finally, a set of differential equations describe the dynamic
behavior of the machine by relating flux linkages and currents
to the statot voltage as follows:

dA Vgdo

i { 0 } RI 5)
where A, V4., and 0 are stator and rotor flux linkages, stator
voltages (expressed in terms of gdo variables), and short circuit
rotor loop voltages, respectively. R is the matrix of stator wind-
ings and rotor bars and end rings resistances.

As shown in [20], a special type of sparse linear solver called
Naive results in the fastest computation time for the linear PNM
model. Therefore, the same linear solver is also implemented for
the nonlinear model. Different nonlinear solution techniques to
solve PNM equations are discussed in the following sections.

III. NONLINEAR SOLUTION OF THE PNM

The PNM model is used in this section for the transient sim-
ulation of a 230 V, 60 Hz, three-phase, four-pole, 5-hp SCIM
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Fig. 2. B-H curve of the core (Machinel).

(Machinel). The motor has 36 stator slots and 28 rotor bars. De-
tailed parameters of the machine can be found in [7]. The non-
linear B-H characteristic of the core isshown in Fig. 2. The sim-
ulation is carried out over a0.5 s period during the startup of the
SCIM under no-load-condition with a time-step of At = 120 us.
A step change in the load torque from 0 to 30 N.m occurs at 0.36
s. The system of nonlinear algebraic equations in (4) has a total
of 159 unknowns in this case. All simulations are carried out on
a Pentium 4 2.8 GHz processor.

A. N-R Solution

The N-R'method is the first algorithm used to solve the non-
linear PNM equations in (4). To apply the N-R algorithm, the
nonlinear system of algebraic equations in (4) is rewritten as

f(z)=0. (6)

Using the well-known N-R formula, the solution at each iter-
ation is given as

o1t
S R S k 7
S 7 P
where £%+1 and z* are the solutions at the (k + 1)-th and (k)-th
iteration respectively. Matrix [(0f" /dz)], which is reevaluated
at each iteration, is the Jacobian matrix of the system.

The above formula is tested on the PNM with a convergence
criteria of

<107* 8)

and maximum number of iterations limited to 1000. However,
convergence problems were observed in multiple time-steps be-
cause the knee point of the B-H curve is very close to the
B-axis. This is a well-known problem in finite element formu-
lation of magnetic scalar potential method [21], [24].

In order to improve convergence, the nonlinear iteration
was decelerated by applying an underrelaxation factor (), as
follows:

k+1
actual

T =zF 4+ a(z" — zF). )

In case of using a constant relaxation factor for all iterations, it
was found that the value of () must be equal to or less than 0.35
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Fig. 3. Optimum relaxation factor at each step of N-R iterations (Machinel).

to obtain convergent results. Table I shows the total simulation
time to model 0.5 s of real time for different values of constant
a. Results suggest that small values of relaxation factor need
more iterations and therefore increase the total simulation time
for the PNM.

A more efficient way in terms of cpu time and convergence
rate is to use an optimized relaxation factor instead of a con-
stant one. In this method, a search proceédure is performed within
each iteration to find the optimum value of .. Several search cri-
teria are proposed in the literature for finite element formulation
[21]-[24]. The one used here for the PNM was to choose op-
timum « in such a way toreduce the Ls norm of residual vector
f in each iteration:

LA < 117l

The value'of the relaxation factor is changed according to the
following pattern [23]:
L 1

af = —
2n

(10)

(n=0,1,...,10) (11)
until the condition in (10) is satisfied or n reaches its maximum
value.

Optimized relaxation factor for a portion of transient simu-
lation is depicted in Fig. 3. As can be seen, optimum « varies
constantly during the course of simulation. Although the search
procedure to obtain optimum « takes some time, it assures con-
vergent results and also reduces total number of N-R iterations.
This results in a sharp decline in the total simulation time to
931 s which is only 35% of the total simulation time required
for the constant o scheme. Therefore, similar to finite element
analysis, the use of an optimized relaxation factor for N-R so-
lution of permeance network models increases the efficiency of
simulation considerably.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 8, AUGUST 2011

| kviP .
klp <«— Lossless Line

r ZO Zo
kV P

kVP
Je
klp

(A) (B)

Fig. 4. (a) Nonlinear permeance TLM model. (b) Thévénin equivalent circuit.
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B. TLM Method

The analogy between a PNM. and an electrical network
allows us to use a different type of nonlinear solution technique
known as the transmission line modeling (TLM) method [25]
to solve the permeance network equations. In this method, each
nonlinear permeance element is connected to the rest of the
network through a‘two-port lossless transmission line, as shown
in Fig. 4(a). Substituting the nonlinear permeance elements by
their Thévénin equivalent [Fig. 4(b)] in the network, nodal and
flux linkage equations of the PNM (2 and 3) must be rewritten
based on the new topology and then combined together, as
follows:

Arimz = by (12)

As can be seen from (12), in the TLM method the coeffi-
cient matrix Ay is no longer dependent on the vector of un-
knowns & because the nonlinear permeances in the matrix are
replaced by surge impedances of the corresponding transmis-
sion lines. In this way, the nonlinearity of system is transferred
to the right-hand-side vector brr ). In a magnetostatic problem,
this means that Ay is constant and LU decomposition need
only be carried out once at the beginning of simulation [26].
In LU decomposition the coefficient matrix is decomposed into
the product of a lower triangular matrix (L) and an upper trian-
gular matrix (U) which makes the solution of the linear system
quite trivial as it only requires forward and backward substi-
tutions [27]. However, in a PNM of a rotating machine air-gap
permeances vary in each time-step based on the position of rotor
with respect to the stator. Therefore, At must be updated and
decomposed in each time-step. Nevertheless, as will be shown
later, this once per time-step decomposition is still more efficient
compared to multiple decompositions within each time-step re-
quired in the N-R method.

Considering the kth iteration during the nth time-step of the
transient simulation, the iterative procedure consists of first
solving (12) based on the current values of incident waves kVpi
in by, . Having the network solution (), magnetic potentials
(1V,) across sending ends of transmission line sections can be
obtained from the network topology. The next step is to obtain
the reflected wave values (V) based on transmission line
theory as follows:

kVp’" =iV —kVI}. (13)

Reflected waves travel toward the receiving end of transmis-
sion lines where the nonlinear equation of permeance elements
must be satisfied. In a PNM magnetic potential and flux are
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TABLE I
EXECUTION TIME FOR THE N-R AND CONVENTIONAL TLM METHODS (MACHINEI)

N-R TLM
Task Execution Execution Execution Execution
Time(s) Time(%) Time(s) Time(%)
LU Decomposition 578.1 62.1 6.0 5.6
of Ary
Forward/Backward 45.1 4.8 32.9 30.8
Substitution
N-R Solution for
Local Equations ) i >89 >3.1
Assembling the
Jacobian Matrix Rk 111 ) B
a Optimization 130.8 14.1 - -
Others 73.3 7.9 9.2 8.5
Total 931 100 107 100

equivalent to voltage and current in an electric circuit, respec-
tively. Therefore, using transmission line theory the nonlinear
equation of a permeance element is given as

i
k+1Vy

Vr—
EVp Za

= fp (V) +11Vy) - (14)
Equation (14) is an independent one-dimensional nonlinear
equation which can be solved by a scalar N-R method or other
methods to obtain the new incident wave ( k+1V;’") for each el-
ement separately. Having the new incident waves; the itera-
tive procedure proceeds to the next iteration and the same steps
are repeated until the desired global convergence criteria (8) is
achieved. Then the simulation continues to the next time-step.
To reduce the number of iterations in a nonlinear transient
simulation, it is common to use the information from the pre-
vious time-step (n) as an initial guess for the new time-step (n+
1). In the N-R method this can be done directly by using the final
solution from the previous time-step (,,£) as the initial guess in
(7). For the TLM method this is notiapplicable because the pre-
vious value of unknown vector () is not directly involved in the
iteration procedure. Two alternate approaches have been tested
here. In the first approach, the matrix Ay is kept constant
during the simulation (except for the change in air-gap perme-
ances) butincident waves-from the previous time-step are used
as the initial incident waves in the new time-step. In the second
approach, in addition to air-gap permeance values, the charac-
teristic impedances of transmission lines are also updated at the
beginning of each time-step. The new value of each impedance
equals the nonlinear permeance value calculated from the solu-
tion in the previous time-step. According to transmission line
theory, if the characteristic impedance of each line section is
close to the value of its corresponding nonlinear permeance,
then fewer global iterations are required to find the network so-
lution. Simulation results show that the first approach is conver-
gent for all time-steps but the results are not accurate. It can be
concluded that the incident waves from the previous time-step
do not carry valuable information to be used for the initializa-
tion in the new time-step. The second approach is also conver-
gent for all time-steps but generates results which match closely
with those of the N-R method. Furthermore, by using the TLM

method the total computation time to model 0.5 s of real time is
reduced to'107 s compared t0.931 s for the N-R method.

IV.. Look-Up TABLE BASED TLM (LUT-TLM) ALGORITHM

Detailed breakdowns of the total simulation time required in
the N-R and conventional TLM methods are shown in Table II.

As can be seen from Table II, more than half of the simulation
time in the TLIM method is spent to solve local one-dimensional
nonlinear equations (14) by the use of N-R method. This is due
to the large number of nonlinear elements in the PNM. For each
nonlinear element a separate N-R solution must be obtained.
Therefore, to further decrease the simulation time the solution
time for local equations should be shortened.

According to transmission line theory, in an electric circuit
(14) describes the relationship between the current (left-hand
side) and the voltage (V" 4441 V,) at the receiving-end of a
transmission line section. In the case of a PNM this is equivalent
to the relationship between the magnetic flux flowing through
and the magnetic scalar potential across a nonlinear permeance
element. Therefore, function f, can be written as the permeance
value times the magnetic scalar potential across an element, i.e.,

fo (V) + k+1VX) =PV, + k+1V;) WV + k+1Vpi)
(15)
where P is the nonlinear permeance value described as a func-
tion of the magnetic scalar potential.
Based on (15), the local nonlinear equation of (14) for a per-
meance element can be written as

r i
KV — k1V,

7 =PV, + k+1VZ) (WY + k+1Vpi) . (16)

According to (1) it can be observed that function P is depen-
dent on the geometry of a permeance element and the B-H char-
acteristic of the magnetic material. Thus, by assuming a similar
B-H curve for all parts of the machine core, (16) might be dif-
ferent for each nonlinear permeance element depending on its
geometry and the value of Z. Normally in an electrical machine
the shapes of stator teeth are identical. This means that for an in-
duction machine with n, stator slots (teeth) a single nonlinear
equation (16) must be solved n times with different values of
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Fig. 5. Look-up table data for stator tooth permeances (Machinel).

xV, and Zj to obtain the new incident waves (j1 VI}) arising
from the stator teeth element to be used in the next global iter-
ation. The same argument holds true for other parts of the core
such as rotor teeth, and stator and rotor yokes since in a PNM the
yoke is divided into identical permeance elements. Therefore,
by using the TLM method all decoupled equations of a PNM
can be divided into a smaller set of distinct nonlinear equations
equal to the number of different shapes available in the perme-
ance network.

The repetitive pattern of the decoupled nonlinear equations
in the TLM algorithm suggests that it might be possible to ob-
tain local solutions faster by using look-up tables (LUT-TLM
method). In this method for each group of similar-nonlinear
equations a single look-up table is generated by defining a refer-
ence characteristic impedance Z “/ and two agxiliary variables
(z;; and y;;) which are given as

zii = (KVy + V).

i = BV — ks1Vy) - 17)
The relationship between«;; and y;; 1S set to be
Yii 7 def - P(@;) - i (18)

Each look-up table includes several pairs of x;; and v;; ob-
tained from (18) to cover the whole range of changes in the
magnetic state of permeance elements with identical geome-
tries. These pairs of data.can be generated with any desired res-
olution and without the need to solve any nonlinear equation.
An arbitrary but constant value of Z;°/ is also used in order
to normalize the equations. For the SCIM used in this section
(Machinel) only permeances related to stator and rotor teeth
and stator yoke are considered nonlinear. Therefore only three
look-up tables are saved each including 100 pairs of data. Fig. 5
depicts the look-up table data points (z;; and y;;) for stator tooth
permeance elements of the induction machine. As can be seen
the general shape of the look-up data is similar to the B-H curve
of the core. Due to the symmetry of the B-H curve recording
of only positive values in the table is sufficient.

By calculating these look-up tables before the start of the sim-
ulation, finding local nonlinear solutions during the transient
simulation becomes easier and only includes a simple one-di-
mensional search algorithm. Suppose that for a sample non-
linear permeance element during a global iteration , V" and Z
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Solve the global system of
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Fig. 6. Flowchart of the LUT-TLM method for a single global iteration.

are known. To'obtain V;f, in the first step the corresponding
pair of (z;;,ys) should be identified from the proper look-up
table. For this purpose based on (16)—~(18) . V)" is compared with
each pair of (z;;,y;;) in the table to find a pair which satisfies
the following condition:

_ Zo
|kVZ,, | =0.5- <$u‘ + ﬁ%) .

Once this pair is identified, the value of k+1V1f is calculated

as follows:
Zy
— = Yii (20)
75! )

19)

k+1V;§i = sign (xV,) - 0.5 (Iii —

where the sign function is used to consider both positive and
negative values of kVpT.

Since each look-up table only contains a limited number of
data points, usually it is not possible to satisfy (19) exactly.
Therefore the pair which results in the closest value to | V|
in (19) should be selected. More accurate solutions can also be
obtained by using interpolation techniques between neighboring
points in the look-up table. However, as mentioned in [28] and
also verified for the PNM the tolerance for local equations in
the TLM method can be set considerably higher than that of
the global equations. Therefore a look-up table with moderate
resolution is able to provide accurate results without the need
for interpolation. The flowchart of the LUT-TLM method for a
single global iteration is given in Fig. 6.

One important advantage of this method is that it eliminates
the necessity of defining a monotonic differentiable analytical
function for the B-H characteristic of iron core similar to the
N-R method. Since the real-life measurements of B-H data are
at discrete points, different methods are proposed to derive such
functions [29]. In the look-up table method only discrete points
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TABLE III
EXECUTION TIME FOR THE LUT-TLM METHOD (MACHINE])
Task Execution | Execution
Time(s) Time(%)
LU Decomposition of Az y, 5.7 124
Forward/Backward Substitution 26.7 58.0
N-R Solution For Local Equations 7.9 2
Others S 12.4
Total 46 100

are required which can be obtained directly from measurements.
If the number of measurements are insufficient, more interme-
diate points can be generated by interpolation. Nevertheless,
once the look-up table is created with enough resolution, no def-
inition of an analytical function is necessary. The algorithm to
convert a B-H curve data point (By, Hy) to a look-up table data

point (x;;, y:;) proceeds as follows:
1) Calculate the permeability (u1) as

By

H1 = H,

2) Use the geometrical data of the permeance element and the
permeability obtained in Step 1 to calculate its permeance
value (Py) from (1).

3) Assuming a constant magnetic field intensity (H) in the
permeance element, magnetic scalar potential across the
element (x;;) is given as

21

Ty = Hl - L (22)
where L is the length of permeance element:

4) Finally, based on (18) calculate the corresponding (y;;) as
follows:

yi = 257+ Py g, (23)

The LUT-TLM method was used for the simulation of PNM
with the same global convergence criteria as in (8). It was ob-
served that the total simulation time to model 0.5 s of real time
decreased to 46 s which is more than 50% reduction in the com-
putation time compared to the conventional TLM method. This
is mainly due to the short solution time for the local nonlinear
equations‘in the new look-up table method. Table III shows
the breakdown of the total simulation time for the LUT-TLM
method.

In this paper a simple sequential search is used to find a data
pair in the look-up table since the number of elements in each
table is not very large. For tables with more elements it would
be more efficient in terms of computation time to use a faster
algorithm such as the binary search method.

The decoupling property of the TLM method and repetitive
pattern of nonlinearity in a PNM played an important role in the
development of the LUT-TLM algorithm. In fact, the proposed
method can be used for the solution of any nonlinear system
where many elements with similar nonlinear characteristic exist.
However, by saving look-up tables the memory efficiency of the
algorithm is sacrificed in favor of increasing the computation
speed. It is dependent on the specific application to contemplate
the overall efficiency of the LUT-TLM algorithm.

2105
200 . ; . . . . . ; ;
ﬂ —N-R
—===LUT-TLM
150 n ﬂ .
100
50

Current (A)
o

50}
-100—“ u U
-150} u 1
-200 L L L L i L L L L
0 005 01 015 02 025 03 085 04 045 05
Time (s)

Fig. 7. Simulation results for the stator current. LUT-TLM algorithm versus
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Fig. 8. Simulation results for the steady-state load current. LUT-TLM algo-
rithm versus the N-R method (Machinel).

A. Time-Domain Simulation Results

In order to examine the accuracy of the LUT-TLM method, its
time-domain simulation results are compared with those of the
N-R method for Machinel. Since a common time-step and con-
vergence criteria are used for both methods an objective com-
parison can be achieved. Fig. 7 shows the stator phase A current
during the transient and steady-state conditions. A cycle of the
same results during loaded condition is also depicted in Fig. 8.
Simulation results for the developed electromechanical torque
are also presented in Fig. 9. As can be seen the solutions agree
reasonably well for the whole period of simulation. Table IV
lists the main variables of the machinel obtained from the use
of each method. It was found that the maximum error between
the results of two methods is less than 2% for all variables.

V. EXPERIMENTAL RESULTS

To further evaluate the accuracy of the PNM and LUT-TLM
algorithm, several studies were conducted on a 230 V, 60 Hz,
three-phase, four-pole, 3-hp SCIM with closed rotor slots (Ma-
chine2). Motor data is shown in Table V. The induction motor
is mechanically coupled to a DC generator which can be used
to load the SCIM. The entire experimental setup is shown in
Fig. 10. In closed rotor slot machines, rotor slot bridges have
a small radial thickness and are prone to saturation due to the
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TABLE IV
SIMULATION RESULTS FOR THE LUT-TLM AND N-R METHODS (MACHINE])

Parameter N-R LUT-TLM
Loaded Speed (rpm) 1729.3 1729.3
Peak Inrush Current (A) 187.10 187.16
Maximum Developed Torque (N.m) 135.3 135.1
Peak No-Load Current (A) 12.93 12.80
Peak Load Current (A) 28.2 28.5
TABLE V
TEST MOTOR DATA (MACHINE2)
Parameter Value
Length (mm) 107.95
Stator Slots 36
Stator Outer Diameter (mm) 195.38
Stator Inner Diameter (mm) 115.54

Rotor Slots 28

Average Air-gap Liength (mm) 0.31
Shaft Diameter (mm) 36.5
Winding Connection Wye

currents flowing inside the rotor bars [30]. Thus, in the PNM, in
addition to stator and rotor teeth and stator yoke, rotor tooth tip
regions should also be modeled with nonlinear permeance ele-
ments. This can be easily implemented in the LUT-TLM method
by creating a look-up table for these elements as previously de-
scribed. Therefore, a total of 4 look-up tables are used to model
different shapes of nonlinear elements in the PNM of Machine2.

A. Transient Results

To verify the performance of the proposed method during the
transient operation of an induction machine, a simulation were
carried out to predict the inrush current when the test motor (Ma-
chine2) was started directly from a 208 V three-phase supply
under no-load conditions. During the test a current probe was
used to capture the inrush current waveform on the oscilloscope.
This waveform was then downloaded onto a PC and plotted as
shown in Fig. 11(a). The PNM simulation results obtained under
the same conditions by using the LUT-TLM algorithm are also

IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 8, AUGUST 2011

Fig. 10. ExperimentalSetup for Machine2.

depicted in Fig. 11(b). It can be seen that the simulated inrush
current is in good agreement with the measurement. The peak
current predicted by the PNM is 90.5 A while the measured peak
current is:102.2°A. Both currents decay over approximately 0.4
S. The total LUT-TLM simulation time required for modeling
0.5 s of real time was slightly higher for machine2 compared
to machinel (52 s). This is due to the fact that Machine2 has
more nonlinear permeance elements because of its closed rotor
slots. Nevertheless, the LUT-TLM method still results in a lower
simulation time compared to the conventional TLM and N-R
methods.

B. Steady-State Results

In this study Machine2 was simulated at steady-state oper-
ating points with different rotational speeds. The results ob-
tained from the PNM with LUT-TLM algorithm and a 2-D fi-
nite element analysis (FEA) using the JIMAG software are com-
pared with the actual measurements. Fig. 12 shows the simu-
lated and measured steady-state torque values for this machine.
It can be seen that both PNM and FEA predict the developed
torque with a good accuracy (within 10% error) except for the
speeds very close to the synchronous speed. The discrepancy of
the results can be attributed in part to neglecting the core loss in
both PNM and FEA. As the core loss is the main loss component
around the synchronous speed the lack of a detailed loss model
can deteriorate the simulation results. Also, since the developed
torque around the synchronous speed is small the accuracy of
measurements is slightly lower. Another observation from the
torque plot is that the PNM tends to overestimate the torque
value at larger speeds and underestimate it for smaller speeds
while the torque obtained from FEA is slightly larger than the
measurement for all speeds. This is mainly due to the fact that
the method of torque calculation in the PNM (average torque
value) is different than that of the FEA (nodal force method).
The results obtained from the simulation and measurements for
the steady-state stator current are shown in Fig. 13. In this case
the difference between the simulation results and measurements
is less than 10% for all operating points. The simulated stator
current is always slightly lower compared to the measured one
due to the lack of core loss modeling in the simulation. Other
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Fig. 13. Comparison of steady-state stator currents for Machine2.

reasons for the discrepancies observed in the results are approx-
imating the cylindrical structure of the induction machine by
cuboid permeance elements, neglecting the skew effect in rotor
bars, and using an ideal sinusoidal voltage source in the simu-
lation models while the voltage source in the experiment was
slightly distorted.

Overall, it was concluded that both PNM and FEA provide ac-
ceptable simulation results in comparison with the measurement
fora closed rotor slot machine. However, from a computational
perspective the PNM with LUT-TLM algorithm provides con-
siderable advantages over the FEA. It was found that the com-
putation time for simulation of a single steady-state cycle using
FEA is around 1800 s while the same simulation only takes 1.7
s to be completed for the PNM with the LUT-TLM algorithm.

VI. CONCLUSION

This paper provides a comprehensive study of two main non-
linear solution methods, namely N-R and TLM techniques for
the simulation of permeance network models (PNM) of induc-
tion machines. It has been shown that similar to finite element
analysis the use of an optimized relaxation factor in the iter-
ations can improve convergence and decrease the simulation
time for the N-R method. The simulation results also suggest
that the use of TLM method with updated characteristic imped-
ances at the beginning of each time-step can offer considerable
reduction in simulation time compared to the N-R method. In
order to speed up the simulation further, a new TLM algorithm
(LUT-TLM) is proposed based on the use of look-up tables
for the solution of the decoupled nonlinear equations. Compar-
ison between time-domain simulation results of the LUT-TLM
algorithm and the N-R method shows that the results are in
close agreement during steady-state and transient operations.
The LUT-TLM method is then used for the simulation of a
closed rotor slot induction machine and the results are verified
against FEA and measurements. The proposed LUT-TLM al-
gorithm is a good candidate for real-time simulation of electric
machines which places stringent constraints on model execution
time while demanding high accuracy. Such real-time models
can then be used in hardware-in-the-loop (HIL) simulations to
test new controllers and power electronics modules against ac-
curate virtual models of electric machines. The proposed algo-
rithm can also be used in the simulation of other nonlinear sys-
tems where multiple elements with similar nonlinear character-
istics are present.
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