This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

REVIEW OF POLLUTANT TRANSFORMATION PROCESSES

RELEVANT TO THE ALBERTA OIL SANDS AREA

Ъy

JAN W. BOTTENHEIM and OTTO P. STRAUSZ

Hydrocarbon Research Centre University of Alberta Edmonton, Alberta, Canada T6G 2G2

for

ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM

PROJECT ME 3.5.1

January 1977

TABLE OF CONTENTS

	Page
Declaration	ii
Letter of Transmittal	iii
Descriptive Summary	iv
List of Tables	×i
Abstract	xiii
1. INTRODUCTION	1
2. LITERATURE REVIEW OF ATMOSPHERIC TRANSFORMATION PROCESSES	5
 2.1 Chemistry of the clean atmosphere	5 5
unpolluted atmosphere	6 20
2.2Oxidant chemistry2.2.1Intermediate species and their sources2.2.2Chain oxidation of NO2.2.3Oxidation mechanisms of hydrocarbons2.2.4Simulations of oxidant chemistry2.2.5High oxidant concentrations in rural environments2.2.6Inhibition of photochemical smog	23 24 28 29 38 43 44
2.3 Sulphur dioxide transformation mechanisms in the atmosphere	45
 2.3.1 Homogeneous gas phase reactions of SO₂ in the atmosphere 2.3.2 Aqueous phase oxidation of SO₂ Heterogeneous oxidation of SO₂ by "dry" 	47 64
particulates	82 93
2.4Aerosols2.4.1Physical considerations2.4.2Primary aerosols2.4.3Secondary aerosols2.4.4Other chemical aspects related to aerosols	100 101 104 105 113
3. SURVEY OF AIR POLLUTION STUDIES UNDER CLIMATIC AND GEOGRAPHICAL CONDITIONS SIMILAR TO THE ALBERTA OIL SAND	
REGION	117
4. FURTHER RESEARCH REQUIREMENTS	127
4.1 Basic Research Basic Research 4.1.1 SO2 - Reactions Basic Research 4.1.2 Heterogeneous Reactions Basic Research	127 127 130

- ix -

Page TABLE OF CONTENTS (CONT.) 4.1.3 4.1.4 4.2 4.3 4.4 4.4.1 Solar Spectrum Measurements and Albedo Factors . . . 132 5. 6. APPENDIX: Reaction mechanism and rate constants of the reactions used for simulation of "standard" 7.

LIST OF FIGURES

1.	Location	of	AOSERP	Study	Area	•			٠			٠			•	•			xiv
----	----------	----	--------	-------	------	---	--	--	---	--	--	---	--	--	---	---	--	--	-----

LIST OF TABLES

1	Gaseous chemical composition of "clean" air	7
2	Concentrations of major reactive radicals in "clean" air	22
3	Possible reactions following HO addition to propylene	30
4	Criegee mechanism for ozonolysis of butene-2	34
5	O'Neal and Blumstein mechanism for ozonolysis of l-butene .	35
6	Comparison of theoretical rates of HO radical-forming	
	reactions in a simulated sunlight irradiated, auto exhaust-	
	polluted atmosphere	39
7	Theoretical rate of attack by various reactive intermediate	
	species on trans-2-butene in a simulated, sunlight irradiated,	
	auto exhaust-polluted atmosphere	40
8	Estimated theoretical maximum rates of direct photooxidation	
	of SO_2 in the atmosphere \ldots \ldots \ldots \ldots \ldots	50
9	Some $recent$ measurements of the SO, photooxidation rate	52
10	Estimated photooxidation rate of SO_2^2 in the atmosphere at	
	sea level	54
11	Interaction of SO, with alkanes	55
12	Evaluation of homógeneous oxidation routes of ground state	
	SO ₂	58
13	Próposed reactions following the reaction HO + SO ₂ (+M) \rightarrow	
	HOSO ₂ (+M) Calvert and McQuigg mechanism ²	61
1.4	Proposed reactions following the reaction HO + SO ₂ (+M) \rightarrow	
	HOSO, (+M) Davis and Klauber mechanism \ldots \ldots	62
15	Equifibria of dissolved SO,, NH, and CO, in water	66
16	Experimental values for first order raté constant of the	
	reaction SO ₂ = $+\frac{1}{2}$ O ₂ \rightarrow SO ₂ in the absence of a metal ion	
	catalyst	68
17	Colourated all malue of cloud langely of the first	
τ1	calculated privatue of cloud dropiets as function of their	71
10	Size \dots M_{2} and M_{2} and M_{2} and M_{2} and M_{2} in adjustice	/1
10	(Mattagen mechanicm)	
10	Machaniam of the metal in setal-set widthin of CO	14
19	nechanism of the metal ion-catalyzed oxidation of SU in	70
20	Boto of ovidation of SO is a lite 1 lite loss	79
20	Rate of oxidation of SU in solution by dissolved U as a function of $\frac{2}{3}$	0.1
01		01
21	Summary of major aqueous phase SU2 oxidation studies 83 -	07
44 00	Expected Oxidation rates in clouds, due to particulates	00
23	summary of studies on neterogeneous oxidation of SU on dry	0.0
97.	particites	92
24 25	Summary of SU2 oxidation in stack plumes	94
20 96	Summary of some SU ₂ oxidation rates, measured in plumes	95
20	Plume aerosol flow rates and calculated sulphur conversion	0.0
27	at the Labadie power plant near St. Louis	98
47 20	Aqueous reactions of nitrogen oxides	.07
20	Note constant for the reaction $SU_3 = \frac{1}{2}U_3 \rightarrow SU_4 = at$	20
20	Temperatures	20
27	remperature dependence of equilibrium constants for the	<u></u>
	2^{2} 2 2 2^{2}	23

ABSTRACT

Chemical transformation processes in polluted atmospheres are described, with particular reference to the oil sands area in northeastern Alberta. The relevant atmospheric chemistry is discussed under four headings: clean air chemistry, oxidant chemistry, SO2 chemistry, and aerosol chemistry. It is concluded that high ozone concentrations and the formation of PAN-type oxidants would probably take place, especially during the summer when the ambient concentrations of naturallyoccurring reactive hydrocarbons from the wooded surroundings and other evaporated hydrocarbons at the site of the oil sand extraction plants might be sufficient to fuel the oxidant chemistry. Since the major polluting species in the oil sands area is expected to be SO_2 , the atmospheric chemistry of SO2 is reviewed in detail. Homogeneous gas phase reactions via interaction with oxidative processes is indicated to be a probable prime transformation route for the conversion of SO_2 to sulphate during the summer, while aqueous phase reactions will be of importance all year round. Purely heterogeneous reaction routes are expected to be of minor importance. In reviewing the published literature, emphasis was given to recent studies, up to December, 1976, resulting in a list of 428 references.

Those studies having direct relevance to the climatic and geographic conditions of northeastern Alberta are described in a separate chapter. In this regard, the effects of low winter temperatures and the large difference in the amount and spectral distribution of available sunlight between summer and winter are indicated and compared with results from a few other unrelated studies which can be extrapolated to northeastern Alberta, in order to make a prognosis on how these factors might influence the chemical evolution of polluted atmospheres.

Atmospheric chemical transformation processes for which mechanistic or experimental data are lacking, are identified and some research projects which would lead to a better understanding and prediction of the chemistry of polluted air are outlined, with special emphasis on the particular problems which may arise in the vicinity of the oil sand extraction plants.

1. INTRODUCTION

This report will review the published literature on possible chemical pollutant transformation processes that might occur in the atmosphere as a result of the operation of the oil sand plants in the neighborhood of Fort McMurray, Alberta, and will indicate some major areas of research activities which will be required in order to improve our understanding in this regard. In writing this report the authors have concentrated on the chemical processes occurring and several aspects of atmospheric transformations related to meteorological parameters will only be briefly mentioned. It cannot be emphasized enough that the study of air pollution is a multidisciplinary subject, and cooperation between scientists educated in many different branches of the physical sciences is required in order to obtain at least a reasonable description of the phenomena which characterize air pollution. The air pollution problems that can be anticipated from the oil sand complex are in some ways unique, due to the geographical location of the site. Existing, and most likely future plants, are in a rural, heavily wooded area where essentially unpolluted, clean air was present. Major cities (the only town of any size in the neighborhood is Fort McMurray with a projected population of the order of 20,000) or other industrial complexes are several hundred miles away. Because the broad pollutant plume from the oil sand complex will mix with very clean air, this constitutes an ideal system to study the atmospheric chemistry of primary pollutants in situ. Most systems studied to date are probably influenced by background air which in itself cannot be considered clean (e.g., Husar et al., 1976).

Another facet of the uniqueness of the oil sand complex is its northerly inland location. Special effects on the chemical transformations should therefore be anticipated from the large difference in the wavelength distribution and duration of sunlight during summer and winter. The other parameter in this regard is the ambient temperature. Although summer temperatures are quite comparable to those experienced in most industrialized areas, winter temperatures are much lower.

There is nowadays a growing awareness that the local emission of pollutants in the atmosphere might have a profound effect on the air quality over a very large range. A prime example is the pollution

- 1 -

problem experienced in Sweden, which to a considerable extent can be ascribed to pollutant transport from the industrial complexes in central Europe and Britain (e.g., Brosset, 1976). It is not our intention here to suggest that serious air pollution problems from the oil sand operations will definitely occur in the more populated areas of southern and central Alberta, but merely to make the reader aware of the fact that transport of locally emitted pollutants undoubtedly will occur, and that their effects should be observed over a much larger area than in the direct vicinity of the plants. For instance, future emission standards will have to consider the (un)desirability of increased acidity of rain water over large areas. The simple law "what goes up has to come down" applies here as well. Recent studies have indicated that the amount of sulphate formed in the atmosphere does not depend on the concentration of SO2, but on the total amount emitted. Another facet of the long range transport of pollutants is the current belief that high ozone concentrations in essentially rural areas are due to transport from urban/industrial complexes.

The main part of this report is concerned with a review of the literature in order to delineate the chemical transformations that might be expected. In chapter 2 we shall review the current state of knowledge of air pollution caused by urban-industrial complexes. To be able to properly assess such problems we first describe the current theories on the gas phase chemistry of the clean air. Recent studies in this regard indicate that the clean atmosphere constitutes a much more reactive chemical system than was previously believed. The presence of small, highly reactive radical species is of special importance, in view of the crucial role that they are now believed to play in polluted atmospheres. We will discuss only briefly the aerosol component of the clean atmosphere, since this is not thought to play an important role in this respect (some recent cloud models suggesting the contrary will be discussed in a later chapter.

Next we review the basic concepts of the oxidant chemistry. This type of pollution has been intensively studied because of its wide occurrence in most urban areas due to automobile traffic. However the basic ingredients for this type of pollution, i.e. oxides of nitrogen

- 2 -

and hydrocarbons, should be expected to be emitted into the air from the oil sand operations as well.

Considerable attention is given to the possible transformation mechanisms of SO₂, in part because this gas is considered to be the prime component of the emitted pollution mixture. We have added a section to this chapter on actual plume measurement studies, since such studies are concerned with actual atmospheric measurements. It seems however that most studies in this field are of questionable validity for one reason or another.

The last part of chapter 2 describes the current status of aerosol chemistry. Although some major developments in the physical description of aerosols have taken place over the last few years, it appears that knowledge of the chemical composition and reaction mechanisms that lead to aerosols is still embryonic.

Chapter 3 of this report is devoted to a survey of studies that have a direct impact on the unique location of the oil sand plants. Not too surprisingly the amount of relevant studies published in the literature is very small indeed. Nevertheless, results from unrelated work are discussed insofar as they have a bearing on the oil sand area. It is remarkable that studies on air pollution in subarctic areas are found in nonchemical journals.

Finally in chapter 4 we will suggest some major areas of research that could help in obtaining a better oversight of the air pollution chemistry of the atmosphere of northeastern Alberta. We are of the opinion that immediate initiation of such projects is warranted. However a detailed cost/benefit analysis of such projects is outside the scope of this report. We suggest devoting a special report on some of the major projects we outline because of their long term aspects and the necessary increase in personnel and equipment.

Atmospheric measurements in the Fort McMurray area are slowly becoming available, but the amount of data is still limited. Most extensive to date are monitoring data on SO₂. We decided therefore to limit ourselves mainly to a general description of chemical transformations that might play a role in the Fort McMurray atmosphere. In this regard the assumption that the broad pollution plume from the oil sand

- 3 -

plants will contain SO_2 , hydrocarbons and oxides of nitrogen, appears valid.

It might be noticed that we have placed emphasis on the very recent literature rather than elaborate on early work which has been proven obsolete. We feel that this is important in view of the rapid progress that has been made during the last few years in the elucidation of the ongoing chemistry of a polluted atmosphere. In fact while this report was written, several new and significant publications appeared and we have as far as possible included such work in our review. It seems likely that some of the major general uncertainties will be brought to a clearer understanding in the next few years. It is our hope and intention to be able to make contributions to this matter.

2. LITERATURE REVIEW OF ATMOSPHERIC TRANSFORMATION PROCESSES

2.1 CHEMISTRY OF THE CLEAN ATMOSPHERE

One of the basic prerequisites for a proper estimation of the impact of future polluting emissions into the atmosphere is a sound knowledge of the chemistry and composition of the unpolluted atmosphere. The atmosphere of the earth is by no means chemically inert. Most of the substances that are injected into the "clean" air by so-called polluting processes (industrial activities, heating, traffic, etc.) are already present via the normal processes of nature. Although this fact seems rather obvious, its consequences do not always seem to have been taken into account. Thus, naturally-occurring 0, levels are very variable, seasonably dependent, and are now believed to range from 0.01 to 0.05 ppm. The higher limit makes a statutory limit on ozone concentrations of 0.08 ppm under certain conditions very difficult to realize. A more important factor, which only recently has received some attention, is the amount of photochemistry which takes place in unpolluted atmospheres, whereby some background levels for highly reactive radical species that play such a critical role in the chemistry of NO_v -hydrocarbons polluted atmospheres are established. In this section we will give a brief review of the chemistry of the unpolluted atmosphere, thereby setting the stage for a discussion of the effects of introduction of pollutants in this environment. An extensive review has recently appeared on this subject (Levy II, 1974).

2.1.1 Chemical Composition of the Atmosphere

We will not discuss the variation of concentration of chemical components with the height of the atmosphere, but merely focus our attention on the biosphere, i.e. the atmosphere directly above ground level where human activities take place, and only where necessary take altitude effects into account. In Table 1 we have listed the chemical molecules which are of interest to us, and their concentrations in the clean atmosphere. The ambient concentrations of the trace compounds are believed to be kept in more or less constant concentration through certain naturally occurring balancing mechanisms, i.e. nature provides self-balancing source and loss mechanisms so that the indicated concentrations are established. Some of the major mechanisms in this regard are: biological processes (e.g. CO_2 respiration, bacteriological formation of H_2S); diffusion to and from higher atmospheric layers (e.g. N_2O loss, freon-loss to, and O_3 diffusion from the stratosphere); rainout, washout and dry deposition of particulates and aerosols (e.g. deposition of $SO_4^{=}$ aerosols); and chemical transformation. The determination of these balancing mechanisms is still an active part of geophysical research, and the currently existing theories are by no means considered to be complete, nor proven to be correct.

An important aspect in the balancing mechanisms is the chemical transformations that can take place. As stated before, small radical species are believed to play a major role in this regard. However, almost no atmospheric measurements have been performed to establish the ambient concentrations of these radicals. The major source of most of this chemistry is believed to be the photochemical reaction of ozone to form $O(^{1}D)$ atoms, followed by reaction with water to produce HO radicals. The presence of HO radicals in quantities that had been predicted on basis of theoretical calculations in the atmosphere has very recently been established experimentally (Wang et al., 1975; Davis et al., 1976; Perner et al., 1976), thus giving a major boost to the credibility of large parts of the models. To better understand the importance of this observation, and at the same time get an idea of the complex chemical system in which pollutants will participate, the next section will describe the chemistry of the unpolluted atmosphere.

2.1.2 Summary of the Chemical Reactions in the Unpolluted Atmosphere

2.1.2.1 Sulphur chemistry

i. ^{SO}2

A complete description of the reactions in which SO_2 participates will be given later in this report. Suffice to say here that in an unpolluted atmosphere the major reactions will be oxidation to ultimately form SO_4^- , wherein the following reactions are deemed to be important:

(a) photooxidation:

 $SO_2 + O_2 + hv \rightarrow SO_3 + 0$

- 7 -

Gaseous Chemical composition of "clean" air*)

(from: Levy, 1974)

^N 2	:	78.1%							
° ₂	:	20.9%							
Ar	:	0.9%							
^н 2 ⁰	:	rel. humidity 50%, T = 15°C: 8410 ppm							
		rel. humidity 50%, T = -15°C: 945 ppm							
°3	:	0.01 - 0.05 ppm							
so ₂	:	0.2 ppb							
H ₂ S	:	0.2 ppb							
(CH ₃) ₂ S	:	?							
N ₂ O	:	0.25 ppm							
NO	:	2 ppb							
NO2	:	4 ppb							
HNO3	:	30 ppb							
NH 3	:	6 ppb							
со ₂	:	320 ppm							
CO	:	0.1 - 0.15 ppm							
сн ₄	:	1.4 ppm							
СН20	:	< l ppb							
terpenes	:	? (locally high, > 1 ppm)							
Н2	:	0.4 - 0.6 ppm							

*) All concentrations are in volume mixing ratios; ppm = part per million, ppb = part per billion.

(b) radical reactions:

$$SO_2 + RO \rightarrow ROSO_2 \rightarrow H_2SO_4$$

 $SO_2 + RO_2 \rightarrow SO_3 + RO$

where R = H, alkyl, acyl.

(c) cloud reactions:

$$SO_2 + H_2O \rightarrow SO_3 = \frac{O_2, O_3}{\text{Metal ion, NH}_4^+} SO_4^-$$

ii. H₂S

It is now believed that H_2S will be oxidized in the atmosphere to SO₂ almost entirely via the sequence:

$$H_2S + HO \rightarrow H_2O + HS$$

 $HS + O_2 \rightarrow SO_2$

The rate of the first reaction is fast (Perry et al., 1976). The exact mechanism of the ensuing reactions of HS to ultimately form SO_2 is not known, although it has been postulated to involve HSO and HSO₂ intermediates (Becker et al., 1975).

<u>iii.</u> (CH₃)₂S

Although no definite data have been reported, the ultimate fate of $(CH_3)_2S$ is probably similar to that of H_2S , i.e. rapid conversion into SO_2 via initial HO attack. The mechanistic route along which this will occur is probably different, however, since the reactivity of $(CH_3)_2S$ seems to parallel that of olefins undoubtedly becauase of the presence of the methyl-groups (Cox and Sandalls, 1974).

Any SO₃ formed from SO₂ oxidation will very rapidly form H_2SO_4 . The reaction might involve a heterogeneous dissolution of SO₃ into H_2O , although it has recently been shown that the homogeneous bimolecular reaction

$$SO_3 + H_2O \rightarrow H_2SO_4$$

is very fast as well (Castleman et al., 1975).

v.
$$H_2SO_4$$
 and sulphate aerosol

These chemicals are not expected to participate directly in chemical reactions, except for sulphate formation in solution between

- 8 --

 $\rm H_2SO_4$ and metal ions. They will be removed from the atmosphere by dry deposition, rainout or washout.

2.1.2.2 Oxygen chemistry

i.
$$0_2, 0_2({}^{1}\Sigma_g^{-}), 0_2({}^{1}\Lambda_g)$$

 0_2 will absorb sunlight to form metastable molecular oxygen species:

$$0_{2} + h\nu (\lambda_{2}7600 \text{ Å}) \qquad 0_{2}(^{1}\Sigma_{g}^{-}) + h\nu (\lambda_{2}11000 \text{ Å}) \qquad 0_{2}(^{1}\Delta_{g})$$

 $0_2({}^{1}\Sigma_{g})$ will probably be collisionally deactivated to the more metastable $0_2({}^{1}\Delta_{g})$ molecule, or to ground state $0_2({}^{3}\Sigma_{g})$. Since spin forbidden transitions are involved, only very low concentrations are to be expected of metastable 0_2 . In fact, the major reactions leading to the formation of $0_2({}^{1}\Delta_{g})$ seem to be the quenching of photoexcited N0₂ molecules (Frankicwicz and Berry, 1972):

$$\operatorname{NO}_2^* + \operatorname{O}_2^\to \operatorname{NO}_2^+ + \operatorname{O}_2^{(1)} (\operatorname{O}_g^+)$$

and the photolysis of 0_3 (Kummler and Bortner, 1970):

and

$$0_3 + h_{\upsilon}(\lambda < 3100) \rightarrow 0(^{1}D) + 0_2(^{1}\Delta_g)$$

However, $0_2({}^{1}\Delta_g)$ is not very reactive, and the only consequence of its presence seems its effect on biological processes. It does not participate in atmospheric chemistry.

ii.
$$(0^{3}P)$$

 $0(^{3}P)$ is formed photolytically:

$$0_{3} + h_{\nu}(_{3}100 < \lambda < 11800 \stackrel{\circ}{A}) \rightarrow 0(^{3}P) + 0_{2}*$$

$$NO_{2} + h_{\nu}(\lambda \lesssim 4000 \stackrel{\circ}{A}) \rightarrow 0(^{3}P) + NO$$

The only significant reaction of $O({}^{3}P)$ in the clean atmosphere is recombination with O_{2} to form O_{3} :

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$

If terpenes are present, a very small fraction of the $O({}^{3}P)$ atoms could react with the olefinic bond, leading to the very carcinogenic epoxides:

$$c = c + o(^{3}P) \rightarrow c - c$$

The sole mode of formation of $O(^{1}D)$ in the atmosphere is the photolysis of O_{2} :

$$0_3 + h_{\mathcal{V}}(\lambda \stackrel{<}{_{\sim}} 3150 \stackrel{0}{\text{A}}) \rightarrow 0(^1\text{D}) + 0_2(^1\Delta_g)$$

The reaction only occurs in the high energy region of the solar spectrum. The efficiency of $O(^{1}D)$ formation is therefore highly dependent on the solar altitude (the higher the sun rises from the horizon, the more high energy radiation reaches the biosphere). It should thus be expected that $O(^{1}D)$ formation is very seasonally dependent at higher latitudes, as in northeastern Alberta (Bottenheim et al., 1976c).

The major reactions occurring in the atmosphere are:

$$0(^{1}D) + M(N_{2}, 0_{2}) \rightarrow 0(^{3}P) + M$$

 $0(^{1}D) + H_{2}O \rightarrow 2HO$

Of these reactions, collisional deactivation is the major one. Reaction with H_2^0 , even though it occurs in only small amounts, is of crucial importance, since it is the only major primary source of HO radicals in the unpolluted atmosphere.

The presence of 0_3 in the lower atmosphere is of importance, since its photolysis yields $0(^{1}D)$ atoms, precursors of HO radicals. At present there are two conflicting theories as to the source of 0_3 : injection from the stratosphere, and chemical formation via HO and HO₂ chain reactions (Crutzen, 1974; Chameides and Walker, 1973, 1976). In the latter case the formation of 0_3 depends on the concentration of nitrogen oxides and can be visualized by the scheme:

HO + CO
$$\rightarrow$$
 H + CO₂
H + O₂ + M \rightarrow HO₂ + M
HO₂ + NO \rightarrow NO₂ + HO
NO₂ + hv(λ < 4000 Å) \rightarrow NO + O(³P)
O(³P) + O₂ + M \rightarrow O₃ + M

The main reactions of 0_3 in the unpolluted atmosphere are, in addition

to the often discussed photolysis (vide supra):

$$0_3 + NO \rightarrow NO_2 + 0_2$$

 $NO_2 + 0_3 \rightarrow NO_3 + 0_2$
 $0_3 + olefin \rightarrow radical species$

The first reaction will not lead immediately to 0_3 loss, because NO₂ photolyses to form $0({}^{3}P)$. The second and third reactions will lead to 0_3 loss, however.

2.1.2.3 Nitrogen chemistry

This molecule is most likely inert in the lower troposphere. Its major source is denitrification of nitrate in soils and natural waters. The only known reactions that could occur are:

$$N_2 0 + 0(^{\perp}D) \rightarrow N_2 + 0_2$$

 $\rightarrow 2N0$
 $N_2 0 + H0 \rightarrow H0_2 + N_2$

The first reaction is unimportant from concentration considerations, and the reaction with HO is very slow (Bierman et al., 1976; Atkinson et al., 1976b). Photolysis in the lower atmosphere does not occur (Stedman et al., 1976). It might be mentioned here that the apparent inertness of N_2^0 in the troposphere has recently led to concern that increasing use of fertilizers to aid food production might lead to detrimental effects on the ozone layer of the stratosphere similar to what has been predicted from supersonic transportation and the use of freons as aerosol propellants, since extensive fertilizer use could lead to increased release of N_2^0 in the atmosphere (Crutzen, 1976; Liu et al., 1976; McElroy et al., 1976; Pierotti and Rasmussen, 1976; Sze and Rice, 1976). However, very recently it was suggested that the soil itself might constitute a major sink for the evolved N_2^0 (Blackmer and Bremner, 1976).

<u>ii. NH</u><u>3</u>

NH₃ is not formed by atmospheric reactions. In the atmosphere it will react almost exclusively with HO radicals:

 $NH_3 + HO \rightarrow NH_2 + H_2O$

This is a fast reaction (Stuhl, 1973; Zellner and Smith, 1974; Kurylo, 1973; Cox et al., 1975a; Perry et al., 1976). However, there is a disagreement on the fate of the NH_2 radical. Gesser (1955) suggested that NH_2 would be a source and sink for NO molecules via the reaction scheme:

$$\begin{array}{rcl} \mathrm{NH}_{2} + \mathrm{O}_{2} & \rightarrow & \mathrm{NO} + \mathrm{H}_{2}\mathrm{O} \\ \\ \mathrm{NH}_{2} + \mathrm{NO} & \rightarrow & \mathrm{N}_{2} + \mathrm{H}_{2}\mathrm{O} \end{array}$$

thus leading to a steady state concentration of NO molecules. Recent tropospheric models (McConnel and McElroy, 1973; McConnel, 1973; Nicolet, 1974) have considered the first reaction as a probable source of NO_x in the unpolluted atmosphere. However, the experimental work of Cox et al., (1975a) and Lesclaux et al., (1975) has shown that the first reaction is several orders of magnitude slower than the second one, and Levine and Calvert (1977) have performed computer-simulation studies which indicate that only a very low steady state concentration of NO should be expected from these reactions. An entirely different and more elaborate reaction scheme as proposed by Jayanty et al., (1976) is considered unnecessary by Levine and Calvert. Other important reactions of NH₃ are its heterogeneous reactions with H₂SO₄ and HNO₃ to form salt particles. Moreover, NH₃ dissolves easily in water droplets, thus increasing the pH of the droplets and thereby increasing the rate of SO₂ oxidation in clouds.

iii. NO and NO $_2$ (NO $_x$)

These major nitrogen oxides are always coupled, since they reach a photostationary state very fast (Stedman and Jackson, 1975; Calvert, 1976a) the reactions:

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO + HO_2 \rightarrow NO_2 + HO$$

$$NO_2 + h_V (\lambda \lesssim 4000 \text{ Å}) \rightarrow NO + O(^3P)$$

During the night the NO_2 concentration will be relatively large, whereas as soon as the sun rises, the equilibrium will be reestablished.

At present, the origin of the NO_x in the unpolluted atmosphere is not known with certainty, especially since the oxidation of NH₃ does not seem to result in significant NO formation (vide supra).

- 12 -

A biological source proposed by Robinson and Robbins (1970), has never been substantiated. Some of the difficulties in this respect have recently been discussed by McConnel (1973). Soil aspiration (Rasmussen et. al., 1975) and decomposition of organic material seem to be likely possibilities.

A loss mechanism is known; however,

$$HO + NO_2 + M \rightarrow HNO_3 + M$$

since the reformation of NO_x from HNO_3 via the reactions:

$$NO + HNO_3 \rightarrow H_2O + NO_3$$

 $HNO_3 + h\nu \rightarrow HO + NO_2$

is very inefficient.

No NO_x molecules participate in many reactions that lead to other nitrogen-containing species which will be discussed below, and moreover are the source of high 0₃ concentrations in at least one of the existing theories on the 0₃ content in the troposphere (vide supra).

iv. NO_3 and N_2O_5

These two species play a minor role in the unpolluted atmosphere, since their formation rates are slow. They are usually taken into consideration, however since they influence the ambient NO_x concentrations. NO₃ will reform NO_x, through reaction with NO, and moreover it is the precursor of N₂O₅. NO₃ is potentially an oxidizing reagent but to date no major oxidation reactions have been found, certainly not in clean air.

 $\rm N_2O_5$ can react with $\rm H_2O$ to form HNO_3, thus leading to NO_x loss, but the reaction is very slow (Niki et al., 1973) and probably heterogeneous (Johnston and Graham, 1974). The pertinent reactions of NO_3 and N_2O_5 are:

$$NO_{2} + O_{3} \rightarrow NO_{3} + O_{2}$$

$$NO_{3} + NO \rightarrow 2NO_{2}$$

$$NO_{3} + NO_{2} \stackrel{M}{\rightarrow} N_{2}O_{5}$$

$$N_{2}O_{5} \stackrel{M}{\rightarrow} NO_{2} + NO_{3}$$

$$N_{2}O_{5} + H_{2}O \rightarrow 2HNO_{3}$$

The loss of NO₃ and N_2O_5 through photolysis, although frequently invoked in tropospheric models, is probably too slow to be of any importance, as has recently been discussed by Daubendieck and Calvert (1975).

v. HNO₂

Nitrous acid is a temporary storage mode for NO $_{\rm X}$ during daytime. Its formation reactions are:

 $\begin{array}{rcl} \mathrm{NO} + \mathrm{NO}_{2} + \mathrm{H}_{2}\mathrm{O} & \rightarrow & 2\mathrm{HNO}_{2}\\ \mathrm{NO} + \mathrm{HO}(+\mathrm{M}) & \rightarrow & \mathrm{HNO}_{2}(+\mathrm{M})\\ \mathrm{NO}_{2} + \mathrm{HO}_{2} & \rightarrow & \mathrm{HNO}_{2} + \mathrm{O}_{2} \end{array}$

of which the first reaction is slow (Chan et al., 1976a), but the others are relatively fast (Overend et al., 1976; Simonaitis and Heicklen, 1976; Atkinson et al., 1976a; Sie et al., 1976; Cox et al., 1976a; and references therein).

The only major reaction of HNO $_2$ is photolysis: $\frac{\rm HNO}{2} + h\nu \ \ \ \rightarrow \ \ \rm HO + \ NO$

Incorporation in water droplets leading to nitrite salts is possible. This reaction is more important during nighttime, when HNO_2 is fairly stable.

Nitric acid is essentially an end product of the atmospheric nitrogen cycle. It is formed in the reaction:

$$HO + NO_2 + M \rightarrow HNO_2 + M$$

Its chemical decomposition reactions,

$$HNO_3 + h\nu \rightarrow HO + NO_2$$
 (Johnston and Graham, 1973;
Johnston et al., 1974)
 $HNO_3 + HO \rightarrow NO_3 + H_2O$ (Johnston, 1974; Smith and
Zellner, 1975)

are very slow, and the major loss of HNO_3 is through rainout and particulate removal (formation of nitrate salts).

2.1.2.4 Carbon chemistry

i. co₂

An important atmospheric reaction leading to CO_2 formation in the unpolluted atmosphere is the reaction:

$$HO + CO \rightarrow CO_2 + H$$

Although this reaction seems to control the CO concentration, it is only minor as far as total CO_2 concentration is concerned. In the lower atmosphere CO_2 does not participate in gas phase reactions. It is, however, responsible for the always slightly acid nature of rainwater through dissolution:

$$\begin{array}{c} \text{CO}_2 + \text{H}_2\text{O} \stackrel{?}{\leftarrow} \text{H}_2^{\circ}\text{O.CO}_2 \stackrel{?}{\leftarrow} \text{H}^{-} + \text{HCO}_3^{-} \\ \text{(cf. Likens, 1976).} & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$$

1

There are no important chemical modes of formation for methane in the atmosphere. The very uniform presence of CH_4 in the atmosphere is a source of the CH_3O_2 radical through the reaction (Cox et al.,

1976b; Zellner and Steinert, 1976):

$$CH_4 + HO \rightarrow H_2O + CH_3 \xrightarrow{O_2,M} CH_3O_2$$

A host of other radical reactions will then lead to formaldehyde and eventually CO formation. We will discuss the radical reactions later.

$$\begin{array}{c} \text{iii. } \text{CH}_2\text{O} \\ \hline \text{CH}_2\text{O} \text{ is mainly formed from the reaction:} \\ \hline \text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2 \end{array}$$

The origin of the CH_3^0 radical will be discussed later. Other sources of CH_2^0 and higher analogue aldehydes are the destruction reactions of other hydrocarbons in the atmosphere, mainly through reaction with H0 radicals and 0_3 :

hydrocarbon + $HO/O_3 \rightarrow O_2 \rightarrow aldehyde + RO_2$ radicals + RO radicals However, possibly with the exception of the terpenes in areas of dense foliage, non-methane hydrocarbons are present in only very low concentration in the unpolluted atmosphere.

> The important reactions of CH_20 in the atmosphere are: $CH_20 + h\nu \rightarrow H_2 + CO$ $\rightarrow H + HCO$ $CH_20 + HO \rightarrow HO_2 + HCO$

and with exception of the first reaction are thus sources of HO_2 radicals, since H and HCO react almost exclusively as follows:

 $H + O_2 + M \rightarrow HO_2 + M$ (Davis, 1974a) HCO + $O_2 \rightarrow HO_2 + CO$ (Washida et al., 1974)

An alternative reaction path for the HCO + 0_2 interaction is as follows:

$$HCO + O_2 + M \rightarrow HCOO_2 + M$$

Recently Niki et al., (1976a) and Osif and Heicklen (1976) presented evidence to the effect that the efficiencies of these HCO + 0_2 interactions are almost equal.

iv. CO

The chemistry of CO has already been discussed above and

and can be summarized by the reactions:

 $H_{2}CO \xrightarrow{h_{\nu},HO} CO$ HO + CO $\xrightarrow{\rightarrow}$ CO₂ + H

v. Terpenes

The only non-methane hydrocarbons that probably are present in important concentrations are terpenes. Their destruction will initially take place via reactions with 0₃ and HO, at first with comparable overall rates. However, later on in the day, when HO concentrations have been built up under the influence of the sunlight, reactions with HO are probably dominant because of their very high rate constants (Westberg and Rasmussen, 1972; Grimsrud et al., 1975; Winer et al., 1976). These destruction reactions will involve several radical intermediates, the structures of which are not known. It is assumed that the blue haze in summer over wooded areas is due to aerosol formation from'radical reactions that originate from the intermediates formed in the destruction of terpenes (Went, 1960).

2.1.2.5 H₂, peroxides

 $\rm H_2$ is formed in the atmosphere by photolysis of formaldehyde. Its only mode of destruction, which is slow, seems to be

$$H_2 + HO \rightarrow H_2O + H$$

Peroxides H_2O_2 and CH_3O_2H are intermediates in the radical-radical termination reactions that will be discussed next. They react with HO and probably participate in the photochemical reformation of radicals. Little is known about the CH_3O_2H molecule. Heterogeneous decomposition is another possibility (Hanst and Calvert, 1959) and rainout might occur. The reactions, (of minor importance) are:

- 16 -

- 17 -

2.1.2.6 Radical chemistry

From the foregoing discussion of the reactions in which the different molecules in the atmosphere participate, we have already seen that most of the major reactions involve small radicals. Although their concentration in the atmosphere is usually low, their high reactivity makes them the driving forces behind most of the atmospheric transformation reactions. It seems therefore appropriate to treat their reactions in a separate section.

The initiating step for radical reactions occurring in the unpolluted atmosphere is the photolysis of 0_3 by high energy radiation of the sun, followed by interaction of the $0(^{1}D)$ atoms with water:

> $0_3 + h_{\nu}(\lambda \stackrel{<}{_{\sim}} 3150 \stackrel{0}{\text{A}}) \rightarrow 0(^1\text{D}) + 0_2(^1\Delta_g)$ $0(^{1}D) + H_{2}O \rightarrow 2HO$

Since this reaction depends on sunlight, we can anticipate that the radical reactions and consequently most of the other reactions discussed above will slow down considerably, and may even come to a complete standstill, during the night.

The major characteristic of the atmospheric radical chemistry is that as soon as some radicals are formed, they will start a host of other reactions wherein radicals are interconverted. This leads moreover to the formation of products that will regenerate radicals through interaction with sunlight. This is a characteristic of chain reactions, and thus the chemical transformation will continue until sunset when no photochemical reformation of radicals is possible, and eventually the radical concentrations drop to insignificant levels by mutual radical-radical termination reactions. Major photolytic sources of reformation of radicals are the photolysis of formaldehyde and nitrous acid,

$$\begin{array}{rcl} H_2 \text{CO} + h_{\mathcal{V}} & \rightarrow & \text{HCO} + \text{H} \\ \\ \text{followed by} & & \text{HCO} + \text{O}_2 & \rightarrow & \text{HO}_2 + \text{CO} \\ \\ H + \text{O}_2(+\text{M}) & \rightarrow & \text{HO}_2(+\text{M}) \\ \\ \text{and} & & \text{HNO}_2 + h_{\mathcal{V}} & \rightarrow & \text{HO} + \text{NO} \end{array}$$

Smaller contributions are to be expected from the reactions:

$$H_2O_2 + h_v \rightarrow 2HO$$

 $CH_3O_2H + h_v \rightarrow CH_3O + HO$

In the presence of terpenes we can expect higher analogue aldehydes and ketones as products of the olefin-radical and olefin-ozone interactions. These will photolyse as well, resulting in the formation of RO_2 radicals, where R = H, alkyl or acyl.

We turn next to radical interconversion reactions. Reactions of the HO radical leading to the formation of HO_2 and RO_2 are the following:

$$HO + CO \rightarrow CO_{2} + H \rightarrow 2^{O} + HO_{2}$$

$$HO + CH_{2}O \rightarrow H_{2}O + HCO \rightarrow 2^{O} + HO_{2} + CO$$

$$HO + RCHO \rightarrow H_{2}O + RCO \rightarrow 2^{O} RCO_{3}$$

$$HO + H_{2}O_{2} \rightarrow H_{2}O + HO_{2}$$

$$(HO + O_{3} \rightarrow O_{2} + HO_{2})$$

$$HO + H_{2} \rightarrow H_{2}O + H \rightarrow 2^{O} HO_{2}$$

$$HO + CH_{4} \rightarrow H_{2}O + CH_{3} \rightarrow 2^{O} CH_{3}O_{2}$$

$$HO + hydrocarbon \rightarrow H_{2}O + R. \rightarrow 2^{O} RO_{2}$$

 HO_2 and CH_3O_2 , the more important species produced, will react to regenerate new radicals through the following reactions:

 $HO_2/CH_3O_2 + NO \rightarrow NO_2 + HO/CH_3O$ $(HO_2 + O_3 \rightarrow 2O_2 + HO)$ $CH_3O_2 + CH_3O_2 \rightarrow 2CH_3O + O_2$

The CH_3^0 radicals thus formed will react almost exclusively with O_2 in an unpolluted atmosphere to regenerate an HO_2 radical and another radical source, i.e. CH_2^0 :

$$CH_3O + O_2 \rightarrow HO_2 + CH_2O$$

It might be mentioned here that this reaction is rather slow (Wiebe and Heicklen, 1973; Glasson, 1975) and therefore other, fast reactions of

 CH_3^0 may be occurring. Unfortunately the reactions of CH_3^0 have not been measured quantitatively, with the exception of the following:

$$CH_3O + NO_x \rightarrow CH_3ONO_x$$

(Wiebe et al., 1973; Glasson, 1975). Due to low NO concentrations, this reaction is of minor significance in the unpolluted atmosphere.

The next set of reactions seemingly lead to radical termination, but actually their products can regenerate radicals through photolysis:

$$HO + NO \rightarrow HNO_{2} \xrightarrow{h_{\nu}} HO + NO$$

$$HO_{2} + HO_{2} \rightarrow O_{2} + H_{2}O_{2} \xrightarrow{h_{\nu}} 2HO$$

$$CH_{3}O_{2} + CH_{3}O_{2} \rightarrow O_{2} + CH_{3}OH + CH_{2}O \xrightarrow{h_{\nu},O}{2} 2HO_{2} + CO$$

$$CH_{3}O_{2} + HO_{2} \rightarrow O_{2} + CH_{3}O_{2}H \xrightarrow{h_{\nu}} CH_{3}O + HO$$

It should be noted, though, that alternative reaction paths exist for H_2O_2 , CH_2O and CH_3O_2H , i.e. reaction with HO radicals:

in which case a net loss of radicals takes place.

The remaining radical destruction reactions are:

$$HO + HO_2 \rightarrow H_2O + O_2$$
$$HO + NO_2(+M) \rightarrow HNO_3(+M)$$

The second reaction is not a complete termination since some photolysis of HNO_3 will take place in the atmosphere; however, the photolysis rate is very small under solar radiation (Johnson and Graham, 1973; Johnson et al., 1974). The radical reactions following the initial reactions with terpenes should be essentially the same as described for CH_3O and CH_3O_2 , where now high analogue alkyl groups are involved. The alkyl groups will degrade in several steps during which higher analogue aldehydes are formed in conjunction with HO, HO₂ and CH_3O_2 radicals. These aldehydes will then again photolyze or react with HO radicals, resulting in the formation of HO_2 , and RO_2 and RCO_3 peroxy radicals. The only

additional reactions we have to consider in this case are those from the acylperoxy radicals, which can lead to organic (per) acid formation, cf:

$$\begin{array}{cccc} \operatorname{RCO}_{3} + \operatorname{HO}_{2} & \rightarrow & \operatorname{RCO}_{3} \operatorname{H}^{+} \operatorname{O}_{2} \\ \operatorname{RCO}_{3} + \operatorname{NO} & \rightarrow & \operatorname{RCO}_{2} + \operatorname{NO} \\ & & & & \\ & & & \\ &$$

2.1.3 Unpolluted Atmosphere Modelling

The chemical reactions, described in section B, form as a whole an exceedingly complex reaction system, which can be modelled through a set of differential equations to test its validity. The following input parameters have to be taken into account in such mathematical exercises: - ambient concentrations of some of the major molecular constituents that do not originate from chemical transformation in the atmosphere. - rate constants of all indicated chemical reactions.

The second set of input parameters is quite problematic, since many of the reactions involving free radicals are very difficult to determine in the laboratory. Since many rate constants are therefore not experimentally known, estimates have to be made. A list of all the known reactions thought to be of importance in the chemistry of a clean atmosphere, together with their measured or estimated rate constants, is compiled in the Appendix. The rates of photochemical reactions constituted a special class. The intensity-wavelength distribution of sunlight is dependent on several factors, such as solar altitude, molecular scattering, reflection from surfaces (albedo) and intricate models have been developed (Leighton, 1961; Peterson, 1976). An additional problem is the generally incomplete information on the specific photolysis rates of many compounds under different conditions of solar radiation. For the northeastern Alberta region this is especially important due to the large seasonal variation of effective solar radiation. The present authors have estimated average photolysis rates applicable to the northeastern Alberta region, and these are also shown in the Appendix.

From such calculations one hopes to be able to rationalize the ambient concentrations of atmospheric constituents that originate exclusively from chemical reactions in the atmosphere. We will now summarize the status of the major cycles discussed under part B.

The carbon cycle, comprising of the transformation

 $CH_4 \rightarrow CH_2O \rightarrow CO \rightarrow CO_2$

seems fairly well explained with the existing model. In particular, the model is in agreement with the ambient concentrations of CH_2^0 and CO and, more importantly, with the natural lifetime of CO.

The nitrogen cycle suffers from the problem that no source of NO_x is firmly established. Soil seems to be the likely origin of NO_x , but as stated before, this theory cannot be proven nor disproven (Rasmussen et al., 1975); the decomposition of organic matter will undoubtedly contribute as well (e.g. silo gas is largely NO_2). Nature is known to supply N_2O and NH_3 , for which there are no established chemical reactions to transform them into NO_x under lower tropospheric conditions.

The oxygen cycle, and more specifically, the source of 0_3 , is an area of active discussion. Photochemical models incorporated in the present scheme predict concentration levels of the correct order of magnitude, given enough NO_x. Another model, which suggests transport from the lower stratosphere into the troposphere, can explain the ozone levels just as well, although quantification seems very difficult, (for a recent discussion on this subject, see Chameides and Walker, (1976); Chatfield and Harrison, (1976)).

The sulphur cycle can be explained with the existing model, although the details of the $SO_2 \rightarrow SO_3$ oxidation are far from conclusively determined.

Another interesting aspect of such model calculations is that they predict radical concentration levels. As mentioned before, the HO radical has very recently been identified in the atmosphere. The other radicals have not been monitored owing to the lack of a suitable monitoring method, even under laboratory conditions. $(HO_2 \text{ and } CH_3O_2 \text{ can be}$ monitored by absorption in the UV (Hochanadl et al., 1972; Whitbeck et al., 1976), and IR (Huntziger, 1976) but the methods are still under

Ta)	bl	е	2
тa.	1	- C	- 6

Concentrations* of major reactive radicals in "clean" air

		HO 	HO 2	CH ₃ O	CH ₃ O ₂	
Levy, 1972	calculated at noon, 34°N latitide	1.7 x 10 ⁷	1.2 x 10 ⁹	6.1 x 10 ⁴	5.1 x 10 ⁸	
Crutzen, 1974	calculated for solar zenith angle of 45° (basic model)	2.6 x 10 ⁶	3.4 x 10 ⁸	1.2 x 10 ⁴	3.0 x 10 ⁸	1
	including HO ₂ removal by aerosols	2.3 x 10 ⁶	2.6×10^8	1.0×10^4	2.3 x 10 ⁸	
Chameides and Walker, 1976	calculated at noon, 30°N latitude					
	summer	1.5×10^{7}	1.1 x 10 ⁹			
	winter	2×10^{6}	3 x 10 ⁸			

- 22 -

* All concentrations in radicals/cc

development and for the moment do not look promising for atmospheric application). Table 2 shows the predicted levels of the major radicals under the specific conditions indicated. Such calculations have not been performed for northeastern Alberta conditions. However it has recently been shown that, during summertime latitude should have no major effect on the potential for photochemical smog formation (Nieboer et al., 1976). Since this depends on the potential for radical formation, it seems reasonable to conclude that the data in Table 2 are applicable to northeastern Alberta, at least during summertime.

2.2 OXIDANT CHEMISTRY

The general picture we have outlined for the "clean" atmosphere in fact forms a basis for the oxidant chemistry described here. Oxidant formation is generally associated with combustion processes, in particular automotive combustion, and is therefore considered to be an urban air pollution problem. The first insight into the chemical transformations that play a role in this regard dates from the early 1950s, when Haagen-Smit and coworkers (1951-1954) showed that irradiation of automobile exhaust leads to the formation of ozone and other obnoxious compounds that cause eye-irritation and reduce visibility on otherwise clear, sunny days in the Los Angeles area.

Since these early days a very large amount of work has been performed, leading to an understanding of at least the more fundamental processes which characterize these chemical transformations. In addition to sunlight, the basic ingredients for the formation of oxidants are the presence of higher than normal concentrations of nitrogen oxides, carbon monoxide, and hydrocarbons. Since we can expect that all these ingredients will be injected into the atmosphere in considerable amounts from the oil sand recovery plants it seems warranted to review this type of chemistry here, and point out some of the differences from the conditions most often studied, which pertain largely to Los Angeles type situations. The occurrence of this so-called photochemical smog problem in almost any major urban area in the world has led to extensive research and several review articles (recent review: Finlayson and Pitts, 1976). As was indicated in the last chapter on "clean" air chemistry, the formation of oxidants is now generally believed to involve homogeneous gas phase reactions, in which small, reactive radicals such as HO, HO_2 , RO, and RO_2 (R = alkyl, acyl), are the driving forces. We will first trace the origin of these radicals, and then indicate how they determine the chemical reactions that occur.

2.2.1 Intermediate Species and Their Sources

A general trademark of urban smog situations is the observation of high NO concentrations in the early morning (during morning rush hours mainly NO is emitted, by automobiles). This is followed by a peak in the NO₂ concentration after some two hours while at the same time the NO concentration decreases. The increase in ozone and oxidant concentration roughly starts from the time of the maximum NO₂ concentration. This pattern has been explained by the initial NO \rightarrow NO₂ conversion and subsequent photodissociation of NO₂ by sunlight to produce NO and ground state oxygen atoms, O(³P). Subsequently the O(³P) atoms react with oxygen molecules to form ozone. The three species, NO, NO₂ and O₃, are then interrelated via the basic photostationary state mechanism described in the last chapter:

The last reaction explains why no rise in 0_3 concentration is observed before the NO concentration has fallen to low values. The major oxidation routes of hydrocarbons emitted concurrently with NO were originally assumed to involve reactions with 0_3 , since the $0({}^{3}P)$ concentration is very low due to the abundance of 0_2 molecules. However, from the known rate constants for the 0_3 -hydrocarbon reactions it became clear that other reactions should occur as well, since the calculated rates of hydrocarbon loss fall far short of observed oxidation rates (Niki et al., 1972; and references therein). Moreover, an explanation had to be found for the initial oxidation of NO to NO₂, since the

- 24 -

- 25 -

background concentration of 0_3 would be far too low to accomplish this.

The reactive radicals mentioned earlier were suspected to be additional oxidizing species; however, only during the last ten years have rate constants for their reactions (mainly for the HO radical) become available, so that a reasonable quantitative estimate of the correctness of this theory can now be made.

2.2.1.1 Sources of HO radicals

As is the case of an unpolluted atmosphere, one source of HO radicals is the photolysis of 0_3 by solar radiation below approximately 320 nm, followed by interaction of $O(^1D)$ atoms with water molecules:

$$O_3 + h\nu(\lambda < 320 \text{ nm}) \rightarrow O(^1D) + O_2 (^1\Delta_g)$$

 $O(^1D) + H_2O \rightarrow 2HO$

Under NO_x-hydrocarbon polluted conditions, this source of HO radicals is only of minor importance once the chemical transformations are under way, especially under high NO concentration conditions, when the O_3 concentration is low. It appears that the major primary source of HO radicals in polluted air is from the photolysis of nitrous acid (Demerjian et al., 1974; Cox and Derwent, 1975).

HONO + $h_{\nu}(\lambda \lesssim 400 \text{ nm}) \rightarrow \text{HO} + \text{NO}$

Nitrous acid itself is formed via the following routes (Cox and Derwent, 1975; Simonaitis and Heicklen, 1974a)

HO + NO
$$\stackrel{M}{\rightarrow}$$
 HONO
HO₂ + NO₂ $\stackrel{\rightarrow}{\rightarrow}$ HONO + O₂
NO + NO₂ + H₂O $\stackrel{\rightarrow}{\leftarrow}$ 2HONO.

The third nitrous acid-forming reaction is very slow, and therefore is only important under very high NO_x conditions, e.g. in a power plant plume close to the stack (Chan et al., 1976a). The other two reactions do not really constitute primary sources for HO, but are very important as elementary reactions occurring in the ongoing chain of NO-NO₂-O₃ oxidation.

Similarly, an important source of HO radicals is the crucial NO oxidation step (Demerjian et al., 1974).

$$HO_2 + NO \rightarrow HO + NO_2$$
.

Finally, but of lesser importance, the photolysis of hydrogen peroxide, which is mainly formed in the atmosphere by recombination of HO_2 radicals, leads to HO radical formation (Calvert and Pitts, 1966).

$$HO_{2} + HO_{2} \rightarrow H_{2}O_{2} + O_{2}$$
$$H_{2}O_{2} + hv (\lambda \stackrel{<}{_{\sim}} 370 \text{ nm}) \rightarrow 2HO$$

It thus appears that the major sources for HO radicals under oxidant-forming conditions are reactions involving the HO $_2$ radical, and no important primary source exists.

2.2.1.2 Sources of HO₂ and RO₂ radicals

The three body recombination reaction of H atoms with molecular oxygen is a very important source of HO $_2$ radicals.

$$H + O_2 + M \rightarrow HO_2 + M$$

and it appears that the photolysis of formaldehyde is equally important in that it is a major source of H atoms (Calvert et al., 1972).

 $CH_2O + h\nu(\lambda \lesssim 370 \text{ nm}) \rightarrow H + HCO \text{ (in part)}$

Formaldehyde is directly emitted into the air from combustion processes and is also formed in atmospheric hydrocarbon oxidation reactions. The formyl radical HCO can undergo two competing reactions with oxygen in the atmosphere:

$$HCO + O_2 \rightarrow HO_2 + CO$$
$$HCO + O_2 \rightarrow H(CO)O_2$$

thus leading also to peroxy radicals. The extent to which both reactions occur under atmospheric conditions is uncertain. The rate constant for the first reaction is fast (Washida and Bayes, 1974), but that of the second is unknown. The $H(CO)O_2$ species conceivably could lead to the formation of peroxyformyl nitrate (PFN) in the presence of NO_2 , which has been postulated but never identified in smog mixtures. This might be due to the instability of PFN itself (Demerjian et al., 1974); it has been observed in photolysis of a $NO_2-CH_2O-Cl_2$ mixture (Niki et al., 1976a, Gay et al., 1976), but not in other spectroscopic work of the H-CO-O₂ system (Hunziker and Wendt, 1976). Osif and Heicklen (1976) indicated that 40% of the reactions of HCO with O₂ lead to HCOO₂ formation.

The formyl radical can also be formed by the Photolysis of higher analog aldehydes although the rate is slower due to a blue shift of the absorption spectrum (Calvert and Pitts, 1966):

RCHO +
$$h_{\nu}(\lambda \leq 340 \text{ nm}) \rightarrow \text{R.} + \text{HCO}$$

In addition to the formyl radical this reaction produces an alkyl radical which, in the atmosphere, exclusively reacts with 0_2 to form an alkyl-peroxy radical (cf. Basco et al., 1972):

$$R + O_2 + M \rightarrow RO_2 + M$$

Another major source for HO₂ radicals is the interaction of alkoxy radicals with oxygen (Heicklen, 1968; Mendenhall et al., 1975):

$$\text{RCH}_{2}\text{O} + \text{O}_{2} \rightarrow \text{RCHO} + \text{HO}_{2}$$

In this reaction an aldehyde molecule is also formed which in turn can photo-decompose to form more peroxy radicals. Alkoxy radicals in oxidant-forming atmospheres find their origin in the important NO oxidation reactions of the general type:

$$\text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2$$
.

Acylperoxy radicals are formed through the reactions of acyl radicals with 0_2 , as in the reaction between the formyl radical and 0_2 (cf. Weaver et al., 1975):

RCO. + $O_2 \rightarrow RCOO_2$.

The origin of the RCO. radicals is H-abstraction from an aldehyde by HO, (Morris and Niki, 1971a) and, to a small extent, by HO_2 radicals:

RCHO + HO \rightarrow RCO + H₂O RCHO + HO₂ \rightarrow RCO + H₂O₂

In general it can be said that H-abstraction from any hydrocarbon will lead to the formation of a peroxy radical:

 $RH + HO \rightarrow R' + H_2O \xrightarrow{O_2} RO_2.$

2.2.1.3 Sources of $O(^{3}P)$, $O(^{1}D)$, NO_{3}

The source of the oxygen atoms in the atmosphere is purely photochemical. Ground state oxygen atoms are formed by the photolysis of 0, and NO2:

$$O_3 + h_{\mathcal{V}} (\lambda > 320 \text{ nm}) \rightarrow O({}^3\text{P}) + O_2^*$$
$$NO_2 + h_{\mathcal{V}} (\lambda < 430 \text{ nm}) \rightarrow NO + O({}^3\text{P})$$

Ozone photolysis contributes only little compared to NO_2 since its extinction coefficient is very low in the available wavelength region (Calvert and Pitts, 1966). The photolysis of NO_2 on the other hand is the major source under smog conditions. Almost all $O(^3P)$ atoms thus formed will react with O_2 to form O_3 , and thus NO_2 is regarded as the photochemical precursor of O_3 .

 $O(^{1}D)$ atoms are only formed by the photolysis of O_{3} as discussed in the last chapter.

 NO_3 radicals are sometimes considered as important oxidizing species in smog mixtures (cf. Farrow et al., 1975). Very little is known about the rates of oxidation by this radical, although one report indicates that while its reactivity resembles that of the HO radical, the actual rate constants for the NO_3 + olefin interaction are smaller by a factor 10^5 , (Japar and Niki, 1975). The NO_3 . radical is formed by the interaction of NO_2 with $\mathrm{O(}^3\mathrm{P}\mathrm{)}$ or O_3 :

 $NO_2 + O(^{3}P) + M \rightarrow NO_3 + M$ $NO_2 + O_3 \rightarrow NO_3 + O_2$

However, the first reaction cannot compete with the $O({}^{3}P)$ + O_{2} reaction to form O_{3} (see above), and the second reaction is slow. Thus only low concentrations of NO₃ are expected in the atmosphere, which makes their role in oxidation reactions of doubtful importance.

2.2.2 Chain Oxidation of NO

As was indicated earlier an important question in the understanding of oxidant-forming chemistry is the way in which NO is oxidized to NO_2 . A major breakthrough in the elucidation of the mechanism happened when it was shown that the reaction between HO and CO

$$HO + CO \rightarrow H + CO_2$$

was much more efficient than was previously thought (Heicklen et al., 1969; Stedman et al., 1970). A chain oxidation is then possible for NO

- 29 -

oxidation:

 $HO + CO \rightarrow H + CO_{2}$ $H + O_{2} + M \rightarrow HO_{2} + M$ $HO_{2} + NO \rightarrow HO + NO_{2}$

Although CO concentrations due to combustion processes in polluted atmospheres are substantially higher than the background concentrations, it is believed that a much larger contribution to the NO oxidation is from oxidation by alkyl- and acyl-peroxy radicals, although few direct measurements of such reactions have been reported (Simonaitis and Heicklen, 1974b; Whitbeck, 1975).

From the foregoing discussion on radical sources we can visualize the following scheme:

 $RH + HO \rightarrow R + H_2O$ $R + O_2 + M \rightarrow RO_2 + M$ $RO_2 + NO \rightarrow RO + NO_2$ $RO + O_2 \rightarrow R'O + HO_2$ $HO_2 + NO \rightarrow HO + NO_2$

Hydrocarbon molecules are important because they are sources of several RO_2 radicals. For example, the oxidation/degradation of propylene, initiated by HO radicals, an olefin with 3 carbon atoms, can lead to the formation of at least 8 oxidizing species of general formula RO_2 , as theorized by Demerjian et al., (1974) (See Table 3).

2.2.3 Oxidation Mechanisms of Hydrocarbons

The oxidation of hydrocarbons in a smog mixture is very important since it creates the many radicals necessary for the chain oxidation of NO to NO_2 , as indicated in the last section. From current knowledge, it appears that the most important initial reaction is attack by HO radicals (Doyle et al., 1975; Lloyd et al., 1976) and in a later stage O_3 and HO₂ can become important as well. The mechanistic routes along which these oxidations take place are controversial. We will not discuss them in depth here, but indicate some of the complications that are encountered. On the other hand, rate constants for initial attack

Possible reactions following HO addition to propylene

by HO and 0_3 on hydrocarbons have become available during recent years. This is not true for the HO₂ radical attack, for which the data base is very poor indeed.

2.2.3.1 Reactions of HO with hydrocarbons

HO radicals react essentially with any hydrocarbon that has an abstractable H-atom available, creating a free radical which will probably exclusively react with 0_2 in the atmosphere to form a peroxy radical.

The reactions with olefins are very fast, approaching those of diffusion controlled processes (Morris and Niki, 1971b; Wilson, 1972; Atkinson and Pitts, 1975; Davis et al., 1975a; Pastrana and Carr, 1975; Lloyd et al., 1976; Meagher and Heicklen, 1976). There is considerable uncertainty, however, to what extent this reaction involves addition of HO to the double bond, or H-atom abstraction. There is evidence for both routes. Thus Pastrana and Carr (1975) and Slagle et al., (1975) have found evidence that a significant fraction of the reactions proceeds by abstraction of the alkyl hydrogen atom. These studies involved low reactant pressures, however, and Cvetanovic (1976) has indicated that at higher total pressures addition of HO to the double bond is probably the dominant route.

The reactions of HO with alkanes are an order of magnitude slower than with the alkenes (Wilson, 1972; Lloyd et al., 1976; Overend et al., 1976). The reaction involves the abstraction of an H-atom, and the alkyl radical will further react with molecular oxygen to form a peroxy radical. The important consequence of these reactions is that a control strategy based only on reducing the olefinic hydrocarbons levels will not necessarily result in decreasing smog problems, but merely delay the NO to NO₂ oxidation.

Aldehydes will react with HO by H-abstraction as well, and the acyl radicals react further with 0_2 to form acyl-peroxy radicals, RCOO₂, (Morris and Niki, 1971a; Weaver et al., 1975; Osif and Heicklen, 1976):

RCHO + HO \rightarrow H₂O + RCO \rightarrow RCOO₂

These radicals can not only oxidize NO to NO_2 , but also

These radicals can not only oxidize NO to $NO_2^{}$, but also can react with $NO_2^{}$ leading to the obnoxious peroxyacyl nitrates (PANs)

 $RCOO_2 + NO_2 \rightarrow RCOO_2NO_2$

The PAN compounds have been shown to be strong eye irritants, and moreover to be able to produce severe plant damage (Stephens, 1969).

Reactions of HO with aromatics have lately received some attention, partly because aromatics have been proposed as antiknock additives in gasolines instead of alkyl leads. The initial rates (Doyle et al., 1975; Davis et al., 1975b; Hansen et al., 1975) appear to be comparable to those with olefins. Again addition and abstraction can occur and the contributions from both modes of reaction are essentially unknown. The pressure dependence, however, indicates that even for toluene which has readily abstractable methyl group hydrogens, addition is the major route; however, the observation of benzaldehyde as a minor product in experiments on the toluene-NO_x-air system indicates that abstraction must take place as well (Pitts et al., 1975).

The ultimate fate of the HO-aromatic interaction has important implications in the light of the suggestion of Finlayson and Pitts (1976) that such reactions might lead to long-chain multifunctional compounds which could form nucleating species for organic aerosols.

The eventual products of HO-hydrocarbon interactions in the atmosphere are a matter of speculation. Some educated guesses in this regard have been made by Demerjian et al., (1974). We have shown an example of this in Table 3. Similar degradation routes can be constructed for other hydrocarbons. The gist of such schemes is the production of several peroxy radicals, and ultimately the formation of CO, CO₂ and one or two C-atom containing, less reactive, hydrocarbons like formic and acetic acid. The formation of ethylene could be a start for polymerization to organic aerosols, as discussed in Section 2.4,

2.2.3.2 Reactions of 0₃ with hydrocarbons

In the gas phase the reactions of 0_3 with alkanes are very slow, and considered to be of no importance for atmospheric chemistry. Reactions with olefins and aromatics are moderately fast, but

- 32 -

still are about a factor 10^6 slower than the HO-oxidation reactions. However, since the 0_3 concentration at low NO concentration is generally a factor 10^4 to 10^5 higher than that of HO, 0_3 can effectively compete with HO in reacting with olefins and aromatics under such circumstances.

As far as the 0_3 -olefin reactions are concerned, many of the important initial reaction rate constants are known with reasonable accuracy, largely from the work of Cvetanovic and coworkers (for recent determinations, see Huie and Herron, 1975; and references therein). The initial product of the reaction is believed to be the highly unstable ozonide. Despite extensive experimental (see Pitts and Finlayson, 1975) and theoretical (O'Neal and Blumstein, 1973; Wadt and Goddard, 1975) research, the ensuing reaction mechanism remains unclear. The well known Criegee mechanism which is able to explain the liquid phase reaction satisfactorily (Criegee, 1975), see Table 4, is not sufficient to explain all observations in the gas phase reactions, e.g. chemiluminescence, and the detection by photoionization mass spectroscopy of HO and HO, radicals in addition to a host of stable products (Finlayson et al., 1974; Atkinson et al., 1975). A much more elaborate mechanism, proposed by O'Neal and Blumstein (1973), see Table 5, seems promising in this regard, but more experimental work is warranted to establish the presence of the intermediates and products which this mechanism incorporates.

Generalized valence bond and configuration interaction calculations for the Criegee biradical HCHOO. (Wadt and Goddard, 1975) seem to be in agreement with the O'Neal and Blumstein mechanism. It might be mentioned here, that this biradical has been suggested as an important oxidant for SO_2 , as we will see in the next section , but this cannot be evaluated since its actual presence has not firmly been established. Niki et al., (1976a) have very recently found spectroscopic evidence for the presence of the secondary ozonide

in a study of the gas phase reaction between olefins and 0_3 in the presence of aldehydes, thus reinforcing the original Criegee biradical mechanism.

Criegee mechanism for ozonolysis of butene-2

(molozonide)

$$\longrightarrow CH_{3}\dot{C}HOO \cdot + CH_{3}CHO$$
(Criegee biradical)
$$CH_{3}\dot{C}HOO \cdot \longrightarrow H_{2}O + CH_{2} = C = C$$

$$\longrightarrow CH_{3}OH + CO$$

$$\longrightarrow CH_{4} + CO_{2}$$

In air, the Criegee biradical will preferentially decompose as follows, according to Demerjian et al. (1974)

 $\begin{array}{c} \operatorname{CH}_{3}^{\bullet}\operatorname{CHOO}^{\bullet} + \operatorname{O}_{2} & \longrightarrow & \operatorname{CH}_{3}^{H} & \longrightarrow & \left[\operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{2}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}^{H} & \bigoplus & \operatorname{CH}_{3}^{H} & \operatorname{CH}_{3}$

The original Criegee mechanism for liquid phase reactions suggests the following reaction for the biradical (in solution presumed to be in a "zwitterion" state).

- 34 -

O'Neal and Blumstein mechanism for ozonolysis of 1-butene

Exothermicity, as calculated by O'Neal and Blumstein:

Reaction	ΔH^{O} (kcal/mole)
(1)	-32.9
(2)	-74.3
(3)	-65
(4)	-80
(5)	≤ 4.4

The reaction between 0_3 and aromatics has been studied only briefly. It seems that α -dicarbonyl compounds are major products (Nojima et al., 1974). Thus the 0_3 -benzene reaction leads to glyoxal (CHO-CHO), p-xylene + 0_3 produces glyoxal and methyl glyoxal (CH₃COCHO), and o-xylene + 0_3 gives glyoxal, methylglyoxal and biacetyl (CH₃COCOCH₃). α -Di-carbonyl compounds have been identified as constituents in organic aerosols (O'Brien et al., 1975b), and thus the 0_3 -aromatic reaction is one possible route of formation of these aerosols.

2.2.3.3 Reactions of RO_2 with hydrocarbons

There is no known unique way of forming HO2 radicals (Lloyd, 1974), nor an easy method of monitoring these radicals. For this reason the amount of data on HO_2 reactions is very poor, as reviewed recently by Lloyd (1974). Rate constants for initial attack by HO2 are mainly known within orders of magnitude only, and estimated to be about 10^5 orders of magnitude slower than those of HO reactions with olefins. Consequently there is considerable uncertainty as to how important HO, attack on olefins is. It is needless to mention that the mechanism along which eventual degradation takes place, is only speculative. Ιt has been suggested that initial addition to the double bond is the more important reaction path (Lloyd, 1974; Avramenko et al., 1965), although Demerjian et al., (1974) assume that H-atom abstraction might occur as well. Avramenko et al., (1965) suggest that initial addition to ethylene might be followed by isomerization, leading to formation of formaldehyde in a chain reaction:

However, Lloyd has questions Avramenko et al.'s results since $O({}^{3}P)$ atoms, and possibly HO as well, were present in their reaction systems.

There is no information whatsoever about the possible reactions of HO_2 with aromatics. It seems reasonable to assume that the

- 36 -

mechanism of such reactions will be similar to the HO + aromatics case, i.e. addition, followed by ring opening. The rates of initial HO₂ attack are probably again several orders of magnitude slower. Reactions of HO₂ with alkanes and aldehydes proceed by H-atom abstraction, and are thought to be five and two orders of magnitude slower than those with olefins (Lloyd, 1974).

To the authors' knowledge there are no published studies on the reactions between alkyl peroxy radicals with olefins at atmospheric temperatures. Rate constants for some of these reactions have been estimated by Demerjian et al., (1974), which indicate that they are of minor importance; the alkyl peroxy radicals seem to be mainly involved in the oxidation of NO to NO₂. Acyl-peroxy radicals have recently received some attention as well (Ruiz Diaz et al., 1975; Selby and Waddington, 1975). Although studied at temperatures well above normal atmospheric conditions, the proposed interaction is of some importance in that it suggests the formation of highly carcinogenic epoxides (Van Duuren, 1969):

$$\operatorname{RCO}_{3}$$
 + $C = C$ \rightarrow $C-C$ + $R \cdot + CO_{2}$

2.2.3.4 Reactions of O(³P) with hydrocarbons

The reactions of $O({}^{3}P)$ with olefins have been studied extensively, mainly by Cvetanovic and coworkers (Cvetanovic, 1963). Such reactions are now considered of very minor importance, however, since in the atmosphere most of the $O({}^{3}P)$ atoms will react with O_{2} to form O_{3} leading to low steady state concentrations of $O({}^{3}P)$. The presence of O_{2} moreover, will probably mean that the resulting products of the $O({}^{3}P)$ + olefin reaction in the atmosphere are different. Demerjian et al., (1974) suggest that the initially formed biradical most likely will react with O_{2} , which then makes the products indistinguishable from the O_{3} + olefin reactions:

The chance remains, however, that some fraction of the biradical will undergo ring closure and stabilization to form epoxides:

It should be mentioned, however, that to date epoxides have not been identified in polluted atmospheres (Pitts and Finlayson, 1975). The rate of the $O({}^{3}P)$ + olefin interaction, which is 6 orders of magnitude slower than that of the HO + olefin interaction, is the main reason for the unimportance of these reactions. The same reasoning can be applied for the $O({}^{3}P)$ + aromatics interaction, which has recently been studied in depth by Gaffney et al., (1976).

2.2.4 <u>Simulations of Oxidant Chemistry</u>

In the foregoing sections we have treated the more important features of the mechanism of oxidant chemistry and indicated that important information is still missing. Nevertheless, several research groups have used existing data, complemented with estimations of necessary unknown data, to computer simulate the ongoing chemistry of this system. Such simulations can be of multi purpose. In some calculations researchers have tried to achieve a better understanding of the total chemistry involved, for example to establish the relative importance of various reactions. To do this the predicted temporal behaviour of a chemical model was compared with experimental data generally taken from "smog chamber" results. Chemical models as accurate as possible were considered. Such simulation studies have been performed by several groups since the early seventies (Westberg and Cohen, 1969; Niki et al., 1972; Demerjian et al., 1974; McQuigg and Calvert, 1975). Several interesting aspects came to light, such as the important sources for the major radicals (Table 6), and the rates of attack of various reactive intermediates on a hydrocarbon (Table 7). The data in Tables 6 and 7, from Demerjian et al., (1974), were based on the simulation of a model which was more or less validated by comparison with smog chamber data of other groups. Nevertheless, it should again be stressed that the predictions are only as good as the input data, i.e. reaction mechanisms and rate constants.

Table 6

Comparison of theoretical rates of HO radical-forming reactions in a simulated, sunlight irradiated, auto exhaust-polluted atmosphere¹⁾

(from Demerjian et al., 1974) A. HONO + hv \longrightarrow HO + NO B. $O(^{1}D) + H_{2}O \longrightarrow$ 2HO C. $HO_{2} + NO \longrightarrow$ HO + NO_{2} D. $H_{2}O_{2} + hv \longrightarrow$ 2HO E. $CH_{3}CHO_{2}H \longrightarrow$ $CH_{3}CHO + HO^{2}$

Rate of HO formation (ppm min⁻¹ x 10^4)

Time, min.	A	B	C	D	<u>E</u>
0.05	0.0088	0.0015	28.3	0.0003	1.5
0.5	0.0907	0.0108	29.3	0.0029	1.6
2.0	0.32	0.023	27.8	0.013	1.6
10.0	0.64	0.82	18.5	0.080	1.7
30.0	0.29	0.23	10.0	0.33	1.5
60.0	0.12	0.38	5.9	0.79	0.9
90.0	0.07	0.48	4.0	1.2	0.5
120.0	0.05	0.55	1.2	1.6	0.2

¹⁾ The simulated mixture had the following initial conditions: $[NO]^{\circ} = 0.075; [NO_2]^{\circ} = 0.025; [trans-2-butene]^{\circ} = 0.1; [CO]^{\circ} = 10;$ $[CH_2O]^{\circ} = 0.1; [CH_3CHO]^{\circ} = 0.06; [CH_4]^{\circ} = 1.5;$ relative humidity: 50%; temperature: 25°C; solar zenith angle: 40°. All concentrations in ppm. ²⁾ CH₃CHO₂H is an intermediate from the C₄H₈ + HO₂ interaction in the Demerjian et al. mechanism.

Theoretical rate of attack (ppm min⁻¹ x 10^4) by various reactive intermediate species on trans-2-butene in a simulated, sunlight irradiated, auto exhaust-polluted atmosphere.*)

(from Demerjian et al., 1974)

Reactive Species

Time, min	O(³ P)	0 <u>3</u>	HO2	HO	CH ₃ O	<u>NO</u> 3	$O_2(\Delta)$
2	0.13	0.26	1.69	18.1	0.026	0.00005	0.000029
10	0,20	0.83	1.84	12.5	0.018	0.00051	0.000027
30	0.17	1.58	1.49	5.9	0.008	0.0022	0.000020
60	0.08	1.43	0.88	2.6	0.004	0.0026	0.000012
90	0.03	1.00	0.49	1.2	0.002	0.0090	0.000007
120	0.01	0.65	0.28	0.7	0.001	0.0018	0.000004

*) Simulated mixture same as from Table 6;

Rate of attack = rate constant x concentration of reactive species.

The model of Demerjian et al., updated with more recent rate constant information, was used by the present authors to see what seasonal effects might be expected in the oil sands area (Bottenheim et al., 1976c). The reaction scheme and rate constants used in these calculations are given in the Appendix. Some of the results will be discussed in a later section.

Another approach is to construct a model which is directed to the simulation of actual atmospheric conditions. Not only the chemistry has to be taken into account in such models, but meteorological variables as well. Recently, chemically oriented models have been used to explain actual atmospheric observations (Calvert, 1976b; Graedel et al., 1976), but usually the chemical model is simplified to a limited number of equations, since the inclusion of meteorological variables would make the total model otherwise too complicated. A total airshed model would require as input: i) a detailed emission inventory, ii) meteorological and topographical variables (time of day, wind speed, atmospheric pressure conditions, etc.), and iii) a reliable description of chemical and physical processes that will take place (Eschenroeder and Martinez, 1972). A useful chemical mechanism consisting of approximately 40 reactions is the so called "lumped parameter" model of Hecht et al., (1974), which encompasses most of the chemical particularities determined by the more specific chemical models, such as the Demerjian et al., model.

Finally, a purely statistical approach to air pollution modelling has been developed. In such models monitoring data are collected and a purely statistical model is developed which can more or less predict the expected pollutant concentrations under specified meteorological and emission conditions (Hameed, 1974; Tiao et al., 1975; McCollister and Wilson, 1975). Only a very limited amount of chemical input is required for such models, and actual rate constants used are not from experiment but determined purely by parameter fitting. Of course, such models will only be able to approximate actual conditions, and moreover are only useful for the particular area from which the monitoring data originate.

It appears that modelling studies, which have as their ultimate goal to furnish public authorities with scientifically validated tools to

- 41 -

effectively control air pollution, have been almost exclusively directed to urban airsheds. Recently, however, the realization has grown that rural regions have to be considered as well, as we will see in the next section.

At this point we should discuss so-called "smog chamber" research. A smog chamber is in fact a reaction vessel of much larger dimensions than is commonly used in laboratory studies. Several smog chamber facilities exist nowadays, mainly in the United States. In such chambers one tries to study in a more controlled environment the chemical transformations that will take place in air mixed with small quantities of pollutant molecules such as ppm amounts of NO,, CO, hydrocarbons, and sometimes SO2. Black lights (Batelle smog chamber, cf. Miller et al., 1976), solar simulators (SAPRC, University of California, Riverside, cf. Pitts and Finlayson, 1975), or natural sunlight (University of North Carolina, cf. Jeffries et al., 1976a) have been utilized as irradiation sources. By "controlled environment" it is meant that the initial constituents of the reaction mixture are known and the rate of production of new chemical species, in particular oxidants like 0_3 and PANs are monitored while such environmental variables as irradiation, temperature and pressure are kept under tight control. Such experiments are very valuable for studying chemical transformations, but give no indication of the the effect of meteorological variables. A few studies have been undertaken in which the reaction mixture was diluted with air during the irradiation (Fox et al., 1975; Nieboer, 1975), and the interesting observation was made that dilution might actually increase the total amount of ozone formed (Fox et al., 1975). The latter group in their outdoor smog chamber experiments also noted some interesting enhancement of the chemical transformations due to intermittent irradiation from sunlight (clouds covering the sun) (Jeffries et al., 1976b). Such effects are difficult but not impossible to explain with existing theoretical models of air pollution mixtures. The present authors feel that smog chamber experiments under the conditions prevailing in northeastern Alberta are urgently needed, as will be discussed in some more detail in the last chapter of this report.

- 43 -

2.2.5 High Oxidant Concentrations in Rural Environments

Until the early 1970s, non-urban ozone concentrations were believed to be close to an average of 0.02 ppm. Since then, however, much higher ozone concentrations have been reported from several rural environments, and the question has arisen as to the origin of high rural ozone concentrations (Ripperton et al., 1975; Coffey and Stasiuk, 1975; Cox et al., 1975; Rubino et al., 1976; Lonneman et al., 1976). However, these high ozone concentrations appeared at irregular times, thus making it likely that no actual local increase in background concentrations was observed, but that long range transport mechanisms from originally polluted industrial and urban environments, was involved. Several explanations have been advanced for this phenomenon. Transport of 0_3 from the stratosphere, or synthesis from natural precursors, as discussed in the chapter on "clean air" chemistry, were discarded since a more continuous effect would be expected. More reasonable alternatives are 0_3 synthesis in polluted environments and subsequent transport to rural areas, or synthesis in transit to rural areas, possibly through additional injection of precursor material from natural sources en route (Ripperton et al., 1975).

At present the latter theory has the most credibility (Lonneman et al., 1976) for the following reasons: when the more reactive olefinic hydrocarbons are consumed, (a "spent" photochemical system), the air remains relatively rich in alkanes and possibly aromatics, which react slower with the active radicals. Under such conditions, even with comparatively low concentrations of nitrogen oxides, these less reactive hydrocarbons will be the sources of peroxy radicals that cause an unbal-anced NO to NO₂ ratio, i.e. NO₂ and O₃ will then predict high O₃ levels. These large O₃ levels, moreover, are now much more stable, since the concentrations of molecules with which it reacts fast (NO and olefins) are now very low.

A consequence of the outlined mechanism is that high 0_3 concentrations in rural environments will not necessarily be accompanied by high concentrations of other oxidants like PAN, since other precursors required for their formation (NO_x) are in low concentration. This has

indeed been observed in the study by Lonneman et al., (1976); it has therefore been suggested that high PAN levels are a better measure of real photochemical smog situations than high 0_3 levels (Nieboer and Van Ham, 1976).

Some other possible mechanisms have recently been suggested (Davis and Klauber, 1975; Chameides and Stedman, 1976). Davis et al., noticed high O_3 concentrations in power plant plumes far downwind, and proposed that a chain oxidation involving SO_2 might be responsible. We will discuss this interesting mechanism in the section on SO_2 oxidation mechanisms. Stedman et al., from computer calculations, proposed that high ozone levels might find their origin from interaction of naturally occurring CH_4 with a spent oxidant mixture. Their calculations have been criticized by Dimitriades et al., (1976) and Jeffries and Saeger (1976), who noted some problems with the mathematical methods used by Stedman et al.

The occurrence of such high ozone levels away from actual polluting sources could have an important bearing on the oil sands area situation. Winter temperature inversions will tend to suppress rapid dilution of emitted pollutants and thus oxidant formation if effective under winter conditions can be of considerable effect over prolonged time spans due to less reactive hydrocarbons. During summer, on the other hand, it can be expected that infusion of terpenes from the wooded surroundings into the original emitted mixtures will maintain a constant rate of oxidant formation even after the originally emitted hydrocarbons have reacted.

2.2.6 Inhibition of Photochemical Smog

Since many of the reactions that lead to oxidant and subsequent aerosol formation involve radical species, it has recently been suggested that addition of radical-trapping compounds to the atmosphere might delay the processes sufficiently so that extensive dilution can occur and smog formation be actually prevented (Heicklen, 1976a). This suggestion has been received with severe criticism among atmospheric chemists (see Science, (1976), <u>193</u>, 871). For example, some of the originally suggested radical scavengers like aniline have been shown to result in the formation

- 44 -

of large aerosols by themselves (Spicer et al., 1974; Nguyen and Phillips, 1975). Heicklen and coworkers showed that diethylhydroxylamine (DEHA) does not induce aerosol formation (Stockburger and Heicklen, 1976), and is effective as a radical-chain inhibitor (Gitchell et al., 1974a,b; Jayanty et al., 1974). Criticisms are not only that the atmospheric effect is uncertain - the observed delay in smog formation might merely result in transferring the problems downwind - but, moreover, the physiological effects of DEHA and its oxidation products on humans are unknown (Finlayson and Pitts, 1976). The latter authors note that DEHA is at least structurally very similar to the notorious carcinogen diethylnitrosamine. The most fundamental argument against the addition of radical scavengers to the atmosphere seems to be expressed in the indicated article from Science: one would use one technology to correct the unwanted side effects of a second one, and thereby introduce a completely new and potentially more serious set of side effects.

2.3 SULPHUR DIOXIDE TRANSFORMATION MECHANISMS IN THE ATMOSPHERE

The transformation chemistry of sulphur dioxide in the atmosphere has been extensively studied in the past few years. It is generally accepted that the atmospheric oxidation of SO₂ results in the formation of sulphates via the formation of SO₃ molecules, which are known to be very hygroscopic and to react very fast with water molecules to form H_2SO_4 (the rate of the homogeneous gas phase reaction $SO_3 + H_2O \rightarrow H_2SO_4$ has recently been measured to be 1.34×10^3 ppm min⁻¹, which leads to a half life of SO₃ at 50% relative humidity (25°C) of only 2 seconds; Castleman et al., 1975). Sulphates then may be present in the acid form $(H_2SO_4, H_2SO_5, H_2S_2O_8, \text{ etc.})$ or in the form of salts (especially as $(NH_4)_2SO_4$ due to the natural abundance of NH₃). There is also ample evidence that SO₂ oxidations in the presence of hydrocarbons will lead to the formation of sulphur-containing organic aerosols.

It has been established that moderate levels of SO_2 are hazardous to human health, but even worse effects can be anticipated from the oxidation products of SO_2 especially where the atmosphere has high humidity and particle levels (Amdur, 1971; CHESS, 1974; McJilton et al., 1973,

- 45 -

1976).

Another harmful aspect of SO_2 pollution is the effect on the rural environment ensuing from the acidification of rain water (Likens and Bormann, 1974, Likens, 1976). Existing theories on the global sulphur balance indicate that most of the sulphur compounds emitted into the atmosphere will eventually be deposited back to earth (Kellog et al., 1972), but the empirically determined lifetimes of SO_2 and of its oxidation products in the atmosphere (Eliassen and Saltbones, 1975) seem to be sufficiently long as to allow long range transport. Thus it has been estimated that more than 10% of the total sulphur deposition in Sweden originates from British industrial activity (Fisher, 1975). The acidified rainfall over Scandinavia, resulting from SO₂ emission in major industrial areas of west and central Europe has had very dramatic adverse effects on the aquatic ecosystems while equally serious changes in the forest environment are suspected (Oden, 1976).

Despite intense research efforts into the mechanistic routes along which the oxidation of SO_2 to H_2SO_4 and sulphates take place, no complete picture has emerged. We will now give an overview of the presently existing theories.

A first distinction can be made between homogeneous gas phase reactions, aqueous phase reactions, and heterogeneous processes. Until quite recently it was generally assumed that the major, if not the only, oxidation routes of SO_2 in the atmosphere was in the aqueous phase or heterogeneous reactions. This conclusion was based on the observed slow rates of photo-oxidation of SO, in air (Hall, 1953; Gerhard and Johnstone, 1955) as compared to the catalytic influence of certain solids and moisture on the oxidation rate of SO2 (Johnstone and Coughanowr, 1958, Junge and Ryan, 1958, Johnstone and Moll, 1960; Van den Heuval and Mason, 1963; Foster, 1969; Matteson et al., 1969). Under the conditions that prevailed during some of the major infamous polluting atmospheres such as the London fog of December, 1952, i.e., high humidity, large amount of particles, little wind - this seems to be reasonable. However, in recent years more precise studies into the homogeneous gas phase reaction paths of SO2 oxidation have lead to a reevaluation of its importance, especially under less severely polluted conditions (Sidebottom et

al., 1972; Calvert, 1973, 1974; Payne et al., 1973; Calvert and McQuigg, 1975; Davis and Klauber, 1975; Wood et al., 1975).

We will focus our attention first on these homogeneous gas phase oxidation mechanisms, next consider existing theories on aqueous phase reactions, and then consider heterogeneous oxidation routes. We conclude this section with a review of some plume-studies, in which the oxidation rate of SO_{2} has been monitored in the atmosphere.

2.3.1 Homogeneous Gas Phase Reactions of SO₂ in the Atmosphere

There are two types of homogeneous gas phase reactions that SO_2 molecules can undergo and they will be treated separately. Both depend on the presence of sunlight, and thus fall within the category of photochemistry but a distinction will be made between photoexcitation of the SO_2 molecule itself, and the reactions of ground state of SO_2 molecules with small radicals originating in photochemical reactions of other molecules. Finally we will briefly discuss the homogeneous gas phase reactions between SO_2 and NH_3 , which are occasionally suggested to be of atmospheric importance.

2.3.1.1 Reactions of electronically excited SO₂

Photodissociation of SO₂ into SO and O atoms requires 135 kcal/mole. Since the wavelength of the solar radiation which reaches the lower atmosphere is greater than 2900 Å (less than 98.6 kcal/mole), only molecular reactions of electronically excited states of SO₂ need to be considered. Recent spectroscopic studies on the absorption (Brand and Nanes, 1973; Hamada and Merer, 1974, 1975; Dixon and Halle, 1973; Brand et al., 1976) and fluorescence (Brus and McDonald, 1973, 1974; Levine and Kaufman, 1974; Bottenheim et al., 1976b) spectra of SO₂ have shown that two excited singlet states of SO₂ are directly accessible in the atmospheric solar region and theoretical calculations (Hillier and Saunders, 1971; Chung, 1974; Lindley, 1976) indicate that three triplet excited states can in principle be populated. Although only one triplet state leads to phosphorescence (Briggs et al., 1975; Bottenheim et al., 1976a), and high resolution triplet absorption spectra provide only indirect evidence for the presence of the other triplet levels (Brand

et al., 1973; Hamada and Merer, 1976), there is ample evidence that two (Cehelnik et al., 1971, 1973; Braslavsky and Heicklen, 1972; Luria and Heicklen, 1974; Penzhorn and Filby, 1975; Filby and Penzhorn, 1975) and possibly all three (Fatta et al., 1975; Heicklen, 1976b) triplet levels are photochemically active. At least one singlet excited state is, in principle, chemically active (Cehelnik et al., 1971; Stockburger et al., 1973; Demerjian and Calvert, 1975; Chung et al., 1975) but it has been indicated that photo-oxidation of SO2 to SO3 most likely occurs exclusively via triplet excited SO₂ molecules (Okuda et al., 1969). The suggestion by Hellner and Keller (1973) that long-living dimers of SO, might be formed in the atmosphere via the interaction of two singlet excited SO2 molecules has recently been disproven (Bottenheim and Calvert, 1976).

Thus absorption of sunlight can produce two singlet states of SO2, one or both of which can undergo intersystem crossing (of unknown efficiency) to three triplet states (Bottenheim et al., 1976a); one triplet state is populated by direct (spin forbidden) absorption (Sidebottom et al., 1972), and finally, in principle, at least one singlet state and three triplet states of SO, can participate in chemical reactions.

(a)

Photooxidation of SO₂ in clean air

As has been indicated, only triplet excited SO_2 is presumed to be active in the SO_2 to SO_3 conversion. Sidebottom et al., (1972) measured the decay kinetics of the ${}^{3}B_{1}$ excited state of SO₂ (i.e. the phosphorescing state) as a function of pressure of different atmospheric constituents. Assuming that each reactive encounter between 3 SO₂ and O₂ leads to oxidation of SO₂, they were able to estimate a B_1^{3} state under varying conditions maximum photooxidation rate of the of relative humidity and solar zenith angle. Their data are reproduced in table 8.

Recent developments however have made these data rather unreliable. Sidebottom et al. considered only one singlet state as absorbing in their calculations. Moreover, since their measurements were based on phosphorescence, only the 3B_1 state was considered as the active species in photooxidation. It is likely however that another triplet state is the actual reactive state since the quenching rate constant for ${}^{3}B_{1}$ deactivation by O_{2} is very similar to that by chemically inert molecules such as N_{2} and CO_{2} (Wampler et al., 1973).

As far as the actual oxidation mechanism is concerned, Sidebottom et al., favor a direct one step reaction,

$${}^{3}\text{SO}_{2} + \text{O}_{2} \rightarrow \text{SO}_{3} + \text{O}({}^{3}\text{P}) \quad (\Delta \text{H} = -37.6 \text{ kcal/mole})$$

over the old two step mechanism proposed by Blacet (1952) which invokes a hypothetical SO_4 intermediate. To date however the formation of ozone which would be formed from the reaction

$$O(^{3}P) + O_{2}(+M) \rightarrow O_{3}(+M)$$

during the photooxidation of SO_2 has never been proven. Another way to establish the efficiency of photooxidation of SO_2 is by measuring the quantum yield of the reaction. The rate of photooxidation can in principle be formulated as:

$$\frac{d(SO_2)}{dt} = K_a \cdot \phi \cdot (SO_2)$$

where K_a is the absorbed light intensity and ϕ is the quantum yield of SO_2 loss following light absorption. Some of the more recent data, shown in Table 9, (for a compilation of older data, see Allen et al., 1972) are widely discrepant. Most values are within an order of magnitude of 10^{-3} . Friend et al., (1973) and Bricard et al., (1972) reported no observable particle formation during the photolysis of SO_2 in clean air and Friend et al., estimated a lower limit of 10^{-9} for $\phi_{SO_3}^{-2}$ by direct photooxidation. The latter authors pointed out that other studies are performed at an unrealistically high SO_2 concentration as far as the atmosphere is concerned, where the reaction

$${}^{3}\mathrm{SO}_{2} + \mathrm{SO}_{2} \rightarrow \mathrm{SO}_{3} + \mathrm{SO}_{3}$$

is responsible for SO_2 loss and SO_3 formation, and not oxidation by O_2 . It has also been pointed out that in static systems, SO formed above can react further with SO_3 to reform SO_2 (Chung et al., 1975; Skotnicki et al., 1976): thus leading to a lower observed quantum yield

$$SO + SO_3 \rightarrow 2SO_2$$

Estimated Theoretical Maximum Rates of Direct Photooxidation of SO_2 in the Atmosphere, from Sidebottom et al. (1972).

Solar zenith	Theoretical Maximum rate of homogeneous, direct SO2
angle	photooxidation in sunlight, assuming all $SO_{2}({}^{3}B_{1})-0_{2}$
	collisions lead to photooxidation.

	rel. hum:	0%	50%	100%	
0		2.4	2.1	1.8	
20		2.3	1.9	1.7	
40		1.6	1.3	1.2	
60		0.61	0.50	0.43	
80		0.083	0.072	0.065	

^a Rates in $hr^{-1} \times 10^2$

More recent studies performed using ppm concentrations of SO_2 (Clark and Whitby, 1975; Kasahara and Takahashi, 1976) showed that the rate of photooxidation of SO_2 is comparable to that measured in earlier studies at higher concentrations. The low value of Friend et al., is difficult to explain, and photooxidation is now presumed to take place at rates of the order of a few tenth of a percent per hour. It is possible that in rigorously cleaned air, in which very few particles which can serve as nucleation centres are present, the reaction

$$SO_3 \rightarrow SO_2 + O$$

might compete with the reaction

$$\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4$$

decreasing the importance of homogeneous nucleation.

Penzhorn et al., (1974a) have used the calculations of Sidebottom et al., and incorporated an average quantum yield of oxidation of 10^{-3} to estimate the photooxidation rates in pure air for central Europe (50° N latitude). Using this value for the quantum yield essentially lowers the rates of photooxidation calculated by Sidebottom, Table 8, by an order of magnitude. Penzhorn et al.'s data are reproduced in Table 10. These authors observed that even though the average solar altitude decreases after June, this effect will initially be counterbalanced by a decrease in the ozone concentration of the upper atmosphere. The rate of photooxidation is therefore constant between May and October, after which it decreases rapidly. In December the estimated rate of photooxidation of SO₂ is only one tenth of its summer value. These calculations are of interest to us, since a similar if not greater effect should take place in northeastern Alberta ($_{\sim}58^{\circ}$ N latitude).

Summarizing, it can be concluded that photooxidation of SO_2 in clean air under optimum conditions will occur at a rate of approximately 0.1 to 1% hr⁻¹ (from Table 9). The maximum theoretical rate is somewhat higher (Sidebottom et al., 1972). The exact mechanistic route is as yet unclear; at least one study claims that direct photooxidation is unimportant.

Reactions of photoexcited SO₂ with other atmospheric species

The rate of the reaction

(b)

Table ⁹.

Some recent measurements of the SO_2 photooxidation rate $^{\star)}$

- 52 -

<u>Investigator</u>	<u>Conditions</u>	¢so ₃	Photooxidation rate	Measurement method
Cox (1972)	static system $\lambda^2 280-400 \text{ nm}$	3x10 ⁻⁴	0.02-0.04 % hr ⁻¹	Yield of SO ₃
Allen, McQuigg, Cadle (1972)	static system λ~280-400 nm [SO ₂]=19-100 Torr [O ₂]=50-400 Torr	~5.5x10 ⁻³	0.35% hr ^{-l} "solar photooxidation rate"	SO ₂ disappearance
Friend, Leifer, Trichon (1973)	flow system λ~240-400 nm [SO ₂]≃0.1-1 ppm in air	<1x10 ⁻⁹	-	condensation nuclei
Smith and Urone (1974)	static system fluorescent light [SO ₂]=2 ppm in air	-	initial rate:1.7x10 ⁻⁴ ppm/min overall rate:0.26% hr ⁻¹	SO ₂ disappearance
Clark and Whitby (1975)	static system fluorescent light [SO ₂]=0.0491-2.88 ppm in particle free air	-	0.379 to 0.992% hr ⁻¹ in noon-day sunlight	increase in H_2SO_4
Kasahara and Takahashi (1976)	flow system black lights [SO ₂]=0.05-10 ppm in air	8×10 ⁻³	0.7% hr ⁻¹ in noon-day sunlight	H ₂ SO ₄ -aerosol growth

*) in all cases, only the data at low rel. humidity are considered.

 $^{3}\text{so}_{2} + \text{co} \rightarrow \text{so} + \text{co}_{2}$

has been measured (Jackson et al., 1971, Wampler et al., 1972, Cehelnik et al., 1971) but is too slow to be important in the atmosphere.

The experiments of Sidebottom et al., (1972) indicate a very rapid rate of ${}^{3}SO_{2}$ deactivation by NO, and a chemical interaction has been proposed although the products of this reaction system have not been analyzed. In earlier studies (Renzetti and Doyle, 1960) where lppm NO was added to 0.5 ppm SO₂ in air at a relative humidity of 50% it was noted that aerosol production was suppressed. The reason for this is not clear.

Several studies (Badcock et al., 1971; Sidebottom et al., 1971; Wampler et al., 1973; Demerjian et al., 1974; Demerjian and Calvert, 1975; Wampler, 1976a, 1976b; Cox, 1973a; Penzhorn and Güsten, 1972; Penzhorn et al., 1973; Penzhorn et al., 1975; Jordan and Penzhorn, 1975; Penzhorn and Filby, 1975; Filby and Penzhorn, 1975; Smith and Spicer, 1975; Hirose et al., 1975) have been devoted since the Bufalini review of 1971 to the reactions between photoexcited SO_2 and hydrocarbons. The reactions are generally fast, and accompanied by the formation of copious amounts of aerosols. There is some doubt as to how important the reactions are in the atmosphere, since these later reac÷ tions were all performed at relatively high concentrations of hydrocarbons (Penzhorn et al., 1975) whereas in earlier experiments (Johnston and Dev Jain, 1960; Kopczynski and Altshuller, 1962) aerosol formation was not observed when the paraffin concentration was below 0.1 Torr (\approx 130 ppm).

As far as the reactions with alkanes are concerned, the most detailed studies have been performed by Penzhorn and co-workers (1973, 1975; Jordan and Penzhorn, 1975; Filby and Penzhorn, 1975) who explained aerosol formation by a mechanism invoking free radicals, as reproduced in Table 11. The first step in the mechanism is probably H-atom abstraction (Badcock et al., 1971; Penzhorn et al., 1973), and not direct SO₂ insertion into the C-H bond as had been suggested earlier (Dainton and Ivin, 1950; Timmons, 1970). There are strong indications that the reaction involves other triplet states in addition to the

- 53 -

Estimated photooxidation rate of SO_2 in the atmosphere at sea level, from Penzhorn et al. (1974a).

Solar zenith angle	SO ₂ photooxidation rate in $hr^{-1}x10^2$		SO ₂ photooxidation : in $hr^{-1}x10^2$	
	rel.hum.	0%	100%	
80		0.016	0.012	
70		0.058	0.044	
50		0.25	0.19	
30		0.52	0.39	

Interaction of SO₂ with Alkanes. (from Filby and Penzhorn, 1975)

$$SO_2 + h\nu \rightarrow {}^3SO_2$$
 (via several steps)
 ${}^3SO_2 + RH \rightarrow R + SO_2H$
 $SO_2 + RH$

a) radical reactions of major importance in product formation

į

.....

1

R + SO ₂	${\leftarrow}$	$RSO_2 (K_p \approx 10^{3.8} \text{ atm}^{-1})$
$2RSO_2$	\rightarrow	RSO + RSO ₃
	\rightarrow	RSO ₂ SO ₂ R
2rso	\rightarrow	RSOSOR → RSO ₂ SR
$RSO_2 + SO_2H$	\rightarrow	RSO ₂ H + SO ₂
RSO ₃ + SO ₂ H	\rightarrow	RSO ₃ H + SO ₂

b) radical reactions of minor importance in product formation

RSO + RH
RSO₂ + RH
RSO₃ + RH
$$\rightarrow$$
 sulphoxy acids + R

(R = tert-butyl or isobutyl)

phosphorescing ${}^{3}B_{1}$ state (Demerjian and Calvert, 1975; Filby and Penzhorn, 1975), but the contributions of the different triplet states to the reactions cannot be monitored. Jordan and Penzhorn (1975) have indicated that the actual aerosol formation will probably mainly involve heteronucleation, since they observed that the number of particles formed depends on the rate of RSO_XH- formation; as soon as nucleation has started no new nuclei are formed, but the existing nuclei grow to very large sizes (1.5 - 1.9 µm).

As far as the olefins are concerned, it appears that they are very efficient quenchers of the $SO_2({}^{3}B_1)$ emission, probably indicative of a chemical reaction (Wampler et al., 1973; Wampler, 1976a). Sidebottom et al., (1971) suggested an SO_2 -olefin π -complex as intermediate in this case. This suggestion was further corroborated by the studies of Demerjian and Calvert (1975), Cox (1973a) and Penzhorn and Filby (1975), on the cis-trans isomerization of 2-butenes. Aerosol formation was noted (Demerjian and Calvert, 1975; Penzhorn and Filby, 1975) but not when the olefin concentration was in an order of magnitude of 1 ppm or less (Renzetti and Doyle, 1960). No detailed product analysis has yet been performed. In the presence of 0, several oxygenated organic products have been observed (Hirose et al., 1975), again indicating a reaction mechanism involving organic radicals. The reaction between ${}^3\text{SO}_2$ and acetylene and allene has been studied by Luria et al., (1974a, 1974b; Luria and Heicklen, 1974). It was noted that no physical quenching of triplet excited SO2 occurred, but chemical reaction took place leading to the formation of aerosols of empirical formula C_5H_8SO . No mechanism was proposed for this reaction.

There is only scanty information on the interaction of photoexcited SO_2 with aromatic molecules. Quenching studies of $SO_2({}^3B_1)$ phosphorescence indicate very fast reaction rates (Wampler, 1976b). However, no product analyses, or even aerosol formation studies have appeared in the literature. The reaction between SO_2 and thiophene has been studied (Braslavsky and Heicklen, 1972), but this reaction probably involved photosensitization of thiophene via singlet excited SO_2 .

Conclusion

Homogeneous photooxidation of electronically excited SO₂ is in principle a viable route of SO₂ transformation in a clean atmosphere. The rate is too small, however, to explain commonly noted rapid oxidation rates in polluted atmospheres. Aerosol formation through interaction with hydrocarbons is possible, but probably insignificant under commonly noted hydrocarbon concentrations prevailing in the atmosphere.

2.3.1.2 Homogeneous gas phase reactions of ground state SO₂

There is an extensive list of publications in which the effect of addition of SO₂ to a mixture of NO_x and hydrocarbons in air has been studied, and conversely, the effect of such a mixture on the oxidation of SO₂, as reviewed by Bufalini (1971). However important mechanistic progress has only recently been achieved and to a large extent this is due to recent reliable measurements of the rates of reaction of SO₂ with the reactive radical species (RO and RO₂, where R = H, alkyl, acyl) present in such systems. We will focus our attention on these new developments in the understanding of the homogeneous oxidation of SO₂.

ł

Calvert (1973, 1974), and Calvert and McQuigg (1975), were among the first to quantitatively estimate the rate of homogeneous oxidation of SO₂ by the reactive species that are now presumed to be present in a NO_x-hydrocarbon reaction mixture. Their estimates, updated by recent rate determinations and based on assumptions for the average concentrations of the particular reactive species are shown in Table 12. Recent in situ determinations seem to bear out the correctness for the assumed HO concentration (Wang et al., 1975; Davis et al., 1976; Perner et al., 1976). The HO₂ concentration is based on one measurement of H_2O_2 in the atmosphere, which can only be due to the reaction

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$

(Gay and Bufalini, 1972). The assumed concentrations for CH_3^0 and $\text{CH}_3^0_2$ are those estimated to be present even in clean air on a sunny day (Levy II, 1973; Crutzen, 1974), although it has been suggested that these estimates could be too high since no loss into aerosols was

Evaluation of homogeneous oxidation routes of ground state SO_2

Reactant	Concentration ppm	Rate Constant l/mole-sec	Oxidation rate % hr ⁻¹	Reference
0 ₂ (¹ ∆ _g) (+M)	_	5.7 x 10^{-5}	0	Penzhorn et al. (1974)
O(³ P) (+M)	10 ⁻⁸	1.1 x 10 ⁸	.014	Atkinson & Pitts (1974) Westenberg & De Haas (1975a)
° ₃	-	$< 5 \times 10^{-3}$	0	Davis (1974)
NO2	-	5.3×10^{-9}	0	Daubendieck and Calvert (1975)
NO ₃	_	< 4.2	0	ibid.
N205	-	$< 2.5 \times 10^{-2}$	0	ibid.
or or	?	?	< 0.4 - 3.0	Cox and Penkett (1972)
RCHOO• HO ₂	10-4	1.8 x 10 ⁵	.22	Payne et al. (1973)
HO (+M)	10 ⁻⁷	3 x 10 ⁸	. 44	Davis (1974b) Cox(1974) Harris and Wayne (1975) Castleman et al.(1975) Atkinson et al. (1976a)
		[6 x 10 ⁸	.88	Chan et al.(1976b)]
CH ₃ 0 ₂	2×10^{-5}	< 2 x 10 ⁶	< .6	Whitbeck et al. (1976)
сн ³ о	10 ⁻⁶	~ 2 x 10 ⁶	< .1	Calvert and McQuigg(1975) estimate

assumed (Warneck, 1974).

There is some confusion as to whether the RCH00. radical, presumed to be an important intermediate in the 0_3 -olefin reaction (O'Neal and Blumstein, 1973; Criegee, 1975), is a reactive species in this regard, as originally proposed by Cox and Penkett (1972). Wilson et al., (1974) have invoked this radical in order to explain the smog chamber experiments involving 0_3 , olefin and SO₂ of McNelis et al., (1975). They noted that ketene was formed from an ozone + olefin reaction and they propose the following process:

$$RCHOO \cdot + R' - H \rightarrow R = C = O + R' \cdot + H_0O$$

In the presence of SO_2 , ketene production was suppressed. Sander and Seinfeld (1976) have also incorporated reactions of this radical intermediate in their model to explain some of the more recent smog chamber studies. However, Calvert and McQuigg (1975) argue that in the atmosphere the biradical will react exclusively with oxygen, leading to RO and RO₂ radicals.

Most other species in Table 12 probably play no role in SO_2 oxidation. Reactions with $O_2({}^{1}\Delta_g)$ Penzhorn et al., 1974b), O_3 (Davis, 1974a), NO_2 , NO_3 and N_2O_5 (Daubendieck and Calvert, 1975) are too slow to be of importance. The reaction with $O({}^{3}P)$ atoms will play a role in upper atmospheric chemistry, since it is reasonably fast (Westenberg and De Haas, 1975a), but in the lower troposphere the $O({}^{3}P)$ atoms will react almost exclusively with oxygen to form ozone. It was suggested that this reaction could explain the photochemical oxidation of SO_2 in clean air in the presence of NO_2 (Smith and Urone, 1974; Sander and Seinfeld, 1976) and Friend et al., (1973) suggested that this is the only oxidation reaction of SO_2 in truly clean air. However, Sander and Seinfeld note that the initial inhibition of SO_2 oxidation in the reaction system $SO_2 + NO_2 + air + light, as noted by Smith and Urone (1974) and Bradstreet (1973), cannot be explained by an initial competition between <math>SO_2$ and NO_2 for $O({}^{3}P)$ atoms. This effect cannot be due to the reaction

$$0 + SO_3 \rightarrow SO_2 + O_2$$

either, since its rate is too slow (Westenberg and De Haas, 1975b).

To date the products of the important SO_2 + HO reaction have not been examined. Calvert and McQuigg (1975) and Davis and Klauber (1975) have speculated on the mechanism, and their suggestions are shown in Tables 13 and 14 respectively. The salient features of the Calvert and McQuigg mechanism are the proposed formation of organic-sulphur aerosols, and the possiblity of formation of a sulphur acid analog of the notorious peroxy acyl nitrates.

The Davis and Klauber mechanism proposes a new chain-oxidation route for the NO to NO_2 conversion in order to explain the observation of increased ozone concentrations far downwind from a SO_2-NO_x - emitting power plant stack. Altshuller (1974) has argued that the latter effect should be due to other hydrocarbon sources, however, while Calvert (1975a) has questioned the thermodynamic feasibility of the crucial step

 $HSO_4 + O_2 \rightarrow HSO_6$

Only very little effort has been directed to date to the use of recent data on the homogeneous oxidation of ground state SO, in order to explain the varying results of smog chamber studies. Wilson et. al., (1974) computer-simulated the experiments of McNelis et al. (1975), incorporating the RCHOO' bi-radical as the main reactive species. Levine and Calvert (1976) were able to explain some of the Battelle smog chamber studies by invoking reactions of HO and HO2. Graedel (1976) used the Davis and Klauber mechanism to determine its influence on the ultimate ozone formation in polluted atmospheres, and concluded that only marginal effects could be expected. Very recently Sander and Seinfeld (1976) tried to explain some of the recent smog chamber experiments of Smith and Urone (1974), McNelis et al., (1975), Wilson and Levy (1970) and Bradstreet (1973). They concluded that the NO -hydrocarbon component of the scheme is adequately explained, but that some important SO_2 oxidation steps are still missing. These authors did not include reactions with CH_3O_2 and CH_3O , however because the relevant kinetic data were not then available. If the recent rate data for the reaction between CH_{302}^{0} (Whitbeck et al., 1976), shown in Table 12, are correct, then this reaction might actually be the missing link in their overall reaction mechanism. Moreover, it now appears that the rate of HO + SO₂ reaction at atmospheric pressures might be

Proposed reactions following the reaction HO + $SO_2(+M) \longrightarrow HOSO_2(+M)$ Calvert and McQuigg (1975)

i

ţ

Proposed reactions following the reaction HO + $SO_2(+M) \longrightarrow HOSO_2(+M)$ Davis and Klauber(1975)-mechanism

$$HOSO_{2} + O_{2} \longrightarrow HOSO_{2}O_{2}$$

$$HOSO_{2}O_{2} + NO \longrightarrow HOSO_{2}O + NO_{2}$$

$$HOSO_{2}O + O_{2} \longrightarrow HOSO_{2}O_{3} \qquad \left[\begin{array}{c} O & O \\ O &$$

larger by a factor 2 than the value commonly accepted. This follows from the fact that most of the rate determinations for this reaction were determined in competition with

$$HO + CO \rightarrow H + CO_{2}$$

Recent work (Sie et al., 1976; Cox et al., 1976; Chan et al., 1976b) has shown that the HO + CO reaction is pressure dependent and the newly determined high pressure rate is twice as fast as that in the low pressure region.

Conclusion

Recent work has shown that the homogeneous oxidation of ground state SO_2 is one of the major processes removing SO_2 from NO and hydrocarbon polluted atmospheres as well as from clean air. Important rate determinations are only now becoming available, and many potentially important reactions require kinetic and mechanistic analysis. The ultimate fate of the HOSO₂ radical is still a matter of speculation. Calvert and McQuigg (1975) claim that all the smog chamber studies to date can be explained by a proper choice of rate constants; however, this would be a sophisticated effort in curve-fitting only, since too many parameters are unknown.

The homogeneous oxidation of ground state SO_2 could potentially be of importance in the northeastern Alberta region. The oil sand plants are expected to emit large amounts of nitrogen oxides in addition to SO_2 , while any refinery installation is a source of hydrocarbons in the atmosphere. The importance of this reaction mechanism will probably increase with distance from the plants, since the large amount of particles and high humidity conditions prevailing immediately adjacent to the plants will favor other mechanisms, as will be discussed next.

2.3.1.3 Reactions between SO₂ and NH₃

Recently there has been speculation that the direct interaction between SO₂ and NH₃ might lead to atmospheric removal of SO₂. This reaction, first studied by Döbereiner (1826) results in very low vapor pressure products, and could thus lead to direct particle formation (Scott and Lamb, 1970; Kiang et al., 1973; McLaren et al., 1974; Scargill, 1971; Haber et al., 1974, Hartley and Matteson, 1975; Landreth et al., 1974, 1975; Birenzvige and Mohnen, 1975; Vance and Peters, 1976a, 1976b). In fact Kiang et al., (1973) reported that the initial product, presumed to be $\rm NH_3 \cdot SO_2$, has a vapor pressure of approximately 10^{-7} Torr at $-70^{\circ}\rm C$ in the presence of trace amounts of water, while $\rm NH_3$ and $\rm SO_2$ separately have vapor pressures of 80 and 20 Torr respectively under these conditions. Vance and Peters (1976a, 1976b) found the reaction to be significantly fast at concentrations of 1000 ppm "and much lower", even when traces of water vapor are present, and upon reconsideration of earlier estimates of thermodynamic variables for this reaction, suggest that it could occur under atmospheric conditions. However, their calculations are based on older estimates for thermodynamic constants by Scott and Lamb (1970), and using the two-stage mechanism proposed by Hartley and Matteson (1975):

$$\frac{M'_{3}(g) + SO_{2}(g)}{\underset{\leftarrow}{\overset{K_{1}}{\overset{}}} \qquad NH_{3} \cdot SO_{2}(g)}$$
$$NH_{3} \cdot SO_{2}(g) + NH_{3}(g) \qquad \underset{\leftarrow}{\overset{K_{2}}{\overset{}}} \qquad (NH_{3} \cdot)_{2} \cdot SO_{2}(g)$$

Using the more recent experimentally determined values by Landreth et al., (1975), it can be easily shown that under normal atmospheric concentrations of SO₂ (less than 1 ppm) and $\text{NH}_3(<<1\text{ppm})$, these reactions should be entirely unimportant. This conclusion was also reached by Birenzvige and Mohnen (1975), based on experimental work, and we therefore consider such reactions to be of no consequence for the northeastern Alberta situation. NH_3 does play a role in the atmospheric transformation reactions of SO₂ however, i.e., in the aqueous phase oxidation reactions, to be described next.

2.3.2 Aqueous Phase Oxidation of SO₂

As we have stated earlier, the oxidation of SO₂ in the liquid phase has always been considered to be an important atmospheric process. It appears, however, that kinetic and mechanistic studies of the reaction have not been carried out in detail, although the basic facts are known. There is a bewildering spread in the actual measured oxidation rates, undoubtedly due to the different experimental conditions under

which the observations were made. As far as the mechanism is concerned, there is strong evidence that only the sulfite form (SO_3) of dissolved SO, is involved. The oxidation probably involves a chain reaction, but it is not clear whether the reaction is possible in the absence of at least a trace of a metal ion catalyst. This is, of course, not surprising in view of the fact that it is practically impossible to eliminate the presence of trace amounts of metal ions in water (zero concentration is only true insofar as the accuracy of the analytical method will allow one to measure). Nevertheless, we will follow the existing convention and discuss the so-called non-catalyzed oxidation first, and then focus on work in which the catalytic effects of metal ions have been studied. We consider the oxidation in the presence of NH_{Q} as non-catalytic, since the role of NH_3 is different from that which is normally associated with a catalyst, i.e., NH_3 is only indirectly involved in the oxidation. Under normal atmospheric conditions aqueous phase oxidation will occur in clouds or fogs. Plumes of industrial or power plants form a special case, and we will devote a later section to this subject since actual atmospheric measurements have been made in such plumes.

2.3.2.1 Non-catalyzed aqueous phase oxidation

One of the first considerations in the aqueous phase has to be the form in which dissolved SO₂ exists. It appears from spectroscopic studies (Falk and Giguere, 1958) that very little undissociated sulphurous acid (H₂SO₃) exists and the most abundant species are (hydrated) SO₂, HSO₃ and SO₃⁻. The relative amounts of these species depend on the pH of the solution. Below pH = 2 mainly hydrated SO₂ is present, between pH = 2 and pH = 5 mainly HSO₃⁻, while above pH = 7 only SO₃⁻ is found. This is easily derived from the equilibria constants shown in Table 15. Not all these forms of dissolved SO₂ seem to be active in the oxidation itself. It is now generally assumed that most if not all the oxidation involves the sulfite ion (SO₃⁻). Thus Beilke et al., (1975) noted a decrease of two orders of magnitude in the apparent oxidation rate with a decrease of one pH unit below pH ~ 7.

It seems appropriate to give some attention here to some cloud model studies since this is where in the atmospheric aqueous phase
Equilibria of dissolved SO_2 , NH_3 and CO_2 in water (from Scott and Hobbs, 1967, except where noted).

Reaction		K equ.	<u>Units</u>	k forward
$so_2(g) + H_2O(\ell) < \xrightarrow{\longrightarrow}$	(S0 ₂ .H ₂ 0)	1.24	M/atm	
(SO ₂ .H ₂ O) <>	нзо ₃ + н ⁺	1.7 × 10 ⁻² (a	a) M	$(3.3 \times 10^{-2} \text{ sec}^{-1} \text{ (b)})$ $(3.4 \times 10^{6} \text{ sec}^{-1} \text{ (c)})$
$(SO_2.H_2O) + OH^{-1} <>$	HSO3	1.26 x 10 ¹²	м -1	$2.9 \times 10^5 \text{ M}^{-1} \text{ sec}^{-1} \text{ (d)}$
HSO ₃ <⇒	so ₃ ⁼⁼ + H ⁺	6.24 x 10 ⁻⁸	М	

$\operatorname{NH}_{3}(g) + \operatorname{H}_{2}O(\ell)$	<=>	(NH ₃ .H ₂ O)	57	M∕atm
(NH ₃ .H ₂ O)	$\stackrel{\scriptstyle <}{\longrightarrow}$	$NH_4^+ + OH^-$	1.77 x 10 ⁻⁵	М
CO ₂ (g) + H ₂ O(l)	< >	(CO ₂ .H ₂ O)	0.034	M/atm
(CO ₂ .H ₂ O)	$\langle {=} \rangle$	н ⁺ + нсо ₃	4.45 x 10^{-7}	М
HCO3	< 	H ⁺ + CO ₃ ⁼	4.68 x 10 ⁻¹¹	М
H ₂ O	< 	H ⁺ + OH ⁻	1.008×10^{-14}	М

(a): from Sillén (1964), Beilke and Lamb (1975)

(b): from Wang and Himmelblau (1964)

(c): from Eigen et al. (1961)

(d): from analogous reaction of CO_2 , from Himmelblau and Bobb (1958).

oxidation of SO_2 should take place (for the moment disregarding stack plumes). In their theoretical investigation Scott and Hobbs (1967) assumed that an equilibrium is maintained in atmospheric droplets between gaseous and dissolved SO_2 , NH₃ and CO_2 and their associated ions, as shown in Table 15. Based on this assumption one can easily calculate the SO_3^{-} concentration as a function of the gaseous pressures and pH only. One can then calculate the sulphate formation assuming a first order oxidation rate equation:

$$\frac{d(SO_4^{=})}{dt} = k(SO_3^{=})$$

Scott and Hobbs, using the experimentally determined rate constant of Van den Heuvel and Mason (1963), found that realistic atmospheric pressures of NH₃($_5 \ge 10^{-9}$ atm) would cause a 500 fold increase in the rate of sulphate formation. At reasonable atmospheric abundances of CO₂ ($_3 \ge 10^{-4}$ atm; Keeling, 1970) and NH₃ ($_5 \ge 10^{-9}$; Beilke and Georgii, 1968) the pH is about 7, while in the absence of NH₃ a pH $_5.6$ is established from the equilibria of Table 15 and thus Scott and Hobbs' calculations appear to agree with more recent qualitative experiments of Beilke et al., (1975).

Some modifications have been made on the Scott and Hobbs model by McKay (1971) and Miller and De Pena (1972). McKay, in addition to using slightly different values for the equilibria constants, questioned the use of the very qualitative rate constant reported by Van den Heuvel and Mason, and preferred the pH-dependent rate constant for the oxidation step determined by Fuller and Crist (1941), which in practice leads to a 100 fold increase. McKay also observed that the Scott and Hobbs model predicts higher oxidation rates at lower temperatures due to the temperature dependence of the equilibrium constants, even though the actual oxidation rate is slower (McKay assumed an activation energy of 18.3 kcal/mole for the rate constant of this reaction, following Barron and O'Hearn's (1966) value for the copper catalyzed oxidation of SO_2). Miller and De Pena (1972) redetermined the actual oxidation reaction and found a value somewhat comparable to that of Van den Heuvel and Mason (see Table 16). Miller and De Pena suggested that the first dissociation step would actually be rate-determining:

Experimental values for first order rate constant of the reaction $SO_3^{=} + 1/2 O_2 \longrightarrow SO_4^{=}$ in the absence of a metal ion catalyst

k,sec⁻¹

Fuller and Crist (1941), 0.013 + 59 [H⁺]^{0.5} amended by McKay (1971)

Van den Heuvel and Mason (1963), 0.00167 calculated by Scott and Hobbs (1967)

Miller and De Pena (1972)

Beilke et al. (1975)

$1.2 \times 10^{-4} [H^+]^{-0.16}$

0.003

This was based on the value of $3.2 \times 10^{-2} \text{ sec}^{-1}$ for the forward reaction, as determined by Wang and Himmelblau (1964). However, this determination is suspect. It is 8 orders of magnitude smaller than that determined earlier by Eigen et al., (1961), and Beilke and Lamb (1975) have reported qualitative evidence to the effect that the value of Wang and Himmelblau is too low by at least a factor 50. More definitive experiments are warranted, however, to unequivocally disregard Miller and De Pena's model, as was noted by Beilke and Lamb. From their semi-quantitative experiments Beilke et al., (1975) conclude that the correct model is that of Scott and Hobbs, using the equilibria constants suggested by McKay and the rate constant for the oxidation step measured by Miller and De Pena. They estimate a removal rate of SO2 via uncatalyzed oxidation of between ca 10^{-5} and 15% hr⁻¹ for pH values between 3 and 6. The important consequence of this estimate is that no oxidation in clouds should be expected, since the pH values in clouds appear to be low, between 3 and 5.6 (Barrie et al., 1975). The latter observation is of interest in itself, since it is not obvious why clouds are so acidic.

Easter and Hobbs (1974) used the basic Scott and Hobbs model in combination with a "wave-cloud" model to estimate if uncatalyzed oxidation is a feasible model to describe worldwide sulphate deposition. They concluded that a residence time of less than 10 minutes of an air parcel containing $SO_2(.1 \text{ ppb})$, $NH_3(.3 \text{ ppb})$ and $CO_2(.10^{-4})$ in a cloud is sufficient to result in the necessary sulphate formation. Their calculations also indicate at higher concentrations of SO_2 <u>less</u> sulphate production should be expected, due to the limited buffering capacity of NH_3 . The basic weakness of the model of Easter and Hobbs seems to be, however, that it assumes initially neutral clouds (pH_7), whereas actual cloud measurements indicate them to be rather acidic. Moreover, it seems unlikely that pH values of 3 to 5.6 can be attained in this mechanism since the oxidation should be suppressed when enough SO_2 has been oxidized to drop the pH value of the cloud droplets below approximately 6.

Barrie et al., (1975) have extended the Scott and Hobbs

model by taking background atmospheric aerosol into consideration, which is assumed to consist in a large part of H_2SO_4 . The authors then find that the major function of the SO_2 -NH₃ liquid water system is no longer the conversion of SO_2 to sulphate but the conversion of sulphuric acid aerosol and ammonia gas to ammonium sulphate, and thus conclude that uncatalyzed oxidation of SO_2 in clouds is an unimportant process.

The acidity of cloud droplets is explained in a slightly different way by Yue et al., (1976). These authors also used the Scott and Hobbs model, but included a contribution from the homogeneous gas phase oxidation of SO2. In principle, this is not too different from Barrie et al.'s model, since in practice it also adds an H_2SO_4 term to the set of dissociation equilibria of the Scott and Hobbs model. The difference lies in the fact that Barrie et al., assume all equilibria, including the background aerosol, to be established instantaneously, while in the model of Yue et al., the additional term due to the homogeneous gas phase oxidation of SO, is time dependent. Yue et al., assume that the amount of SO2 not dissolved into the droplets according to the Scott and Hobbs model undergoes homogeneous gas phase oxidation by reaction with HO radicals. Assuming an HO concentration of 10^7 molec/cc and using the rate constant for the HO + SO_2 + M reaction of Castleman et al., (1975) they calculate the amount of oxidized SO_2 in the gas phase and then calculate the rate with which the newly formed particles collide with the aqueous droplets. Of course, such a rate is dependent on the diameter of the aqueous droplets, and the model of Yue et al., therefore predicts that the pH value of the droplets will depend on their actual size: smaller droplets will be more acidic as the reaction proceeds (see Table 17). Considering only the uncatalyzed oxidation of SO2, the model of Yue et al., is able to explain the acidity of clouds, but in the opinion of the present authors, suffers from the same deficiency as the Easter and Hobbs model in that initially the cloud droplets are supposed to be neutral (and that apparently no H_2SO_4 , formed from gas phase oxidation of SO_2 , is present in the air parcel which enters a cloud).

It is the present authors' opinion that it is by no means proven that the actual oxidation can occur without the help of a metal

- 70 -

Calculated pH value of cloud droplets as function of their size from Yue et al., 1976

Size (cm)	$_{ m pH}$ a		
	A	В	
10 ⁻²	6.1	6.7	
10 ⁻³	5.5	6.3	
10 ⁻⁴	4.5	5.5	
10 ⁻⁵	3.5	4.5	
10 ⁻⁶	2.5	3.5	

÷

.

A: $[SO_2] = 10 \text{ ppbv}, [NH_3] = 3 \text{ ppbv}$ B: $[SO_2] = 1 \text{ ppbv}, [NH_3] = 3 \text{ ppbv}$

^a All values calculated assuming 10 minutes oxidation of SO₂ via aqueous and homogeneous gas phase reactions. The cloud is assumed to be at a level of 600 mb and the temperature is 0°C. ion catalyst. The work of Brimblecombe and Spedding (1974a) has to be mentioned in this regard. These authors argue that in the older studies in "pure" water, oxidation in fact occurs owing to contamination by trace amounts of metal ions. In their studies they calculate an impurity content of $\sim 5 \times 10^{-8}$ M Fe³⁺ which they consider not unlikely as a trace impurity in carefully deionized water. It might be added that even in very early studies on the catalytic oxidation of SO₂ in water (Titoff, 1903; Reinders and Vles, 1925) it was noted that extremely low concentrations of metal ions had a markedly rate-accelerating effect (in these cases Cu²⁺, as low as 10^{-12} to 10^{-13} M/1), although it is likely that in these studies trace contaminants in the water used are actually the cause of the observed effects.

With modern analytical methods it should be possible to establish the amount of trace contamination and resolve this question. Only Brimblecombe and Spedding have addressed themselves to this matter, but apparently could not determine a level of 5 x 10^{-8} M/1 Fe³⁺ with the analytical instruments at their disposal.

The mechanism of the actual oxidation step $SO_3^{-} + \frac{1}{2}O_2^{-} \leftrightarrow SO_4^{-}$

could be another indication in this regard, as we will see in a later section.

2.3.2.2 Metal ion catalysis of the aqueous phase oxidation of SO₂

Junge and Ryan (1958) were amongst the first to suggest that trace amounts of metal ions in the atmosphere might exert a strong catalytic influence on the SO₂ oxidation. They found that dilute chloride solutions of Mn^{2+} , Cu^{2+} and Fe^{2+} were the most effective catalysts in decreasing order. However, since their experiments involved bubbling SO₂ through dilute solutions, their results are not directly applicable to the atmospheric conditions of small, liquid droplets since other effects such as mass transfer and mixing, as well as the chemistry involved could influence the rate. Until quite recently most studies were performed at high SO₂ and/or high catalyst concentrations, and therefore are more applicable to plume conditions than to clouds in which case only small, dilute droplets should be expected. Johnstone

- 72 -

and Coughanowr (1958) used rather large (0.7 mm diameter) suspended droplets in an SO_2 -air mixture and suggested that at high catalyst concentrations the oxidation might occur within a spherical shell at the surface of the drop. This shell becomes thicker as the catalyst concentration decreases, or as the SO_2 concentration at the surface increases, until ultimately the entire drop is involved. The oxidation in such droplets of very high catalyst concentrations or, more properly, deliquescent metal ion-containing particles, has been treated in a detailed theoretical study by Foster (1969).

The essence of Foster's model is as follows. Under high humidity conditions (\geq 95%) catalyst particles are essentially covered by a water film in which absorbed SO_3 promotes dissolution of the catalyst. When SO_2 is absorbed in this layer oxidation occurs, resulting in $\mathrm{H_2SO}_4$ formation. The effect of this will be a slight lowering of the vaporliquid equilibrium around the droplet, which will result in condensation of more water molecules on the droplet, and therefore the formation of H_2SO_4 in the droplet does not initially have a strong acidifying effect. Under these high humidity conditions this process can continue for quite a while, resulting in droplet growth and SO2 oxidation at moderate rates. At lower relative humidity conditions however the rate of condensation of water is less, the droplets become more acid as H_2SO_4 builds up and the rate of oxidation will be slower due to the higher acidity of the droplets. Moreover, at high acid concentrations in the droplet, part of the catalyst could form stable complexes with $\mathrm{H_2SO}_4^{},$ thus decreasing its effectiveness. In quantifying this model Foster was able to calculate rates of SO_2 oxidation in plumes catalyzed by Mn^{2+} and Fe³⁺ and the values so obtained were qualitatively in agreement with those measured directly by Gartrell et al., (1963). However, since Gartrell et al.'s data are not considered to be very accurate, this result should not be construed as evidence for the soundness of the model.

Matteson et al., (1969) considered the kinetics of the oxidation mechanism using deliquescent $MnSO_4$ particles as catalysts. Their mechanism, shown in Table 18, suggests complex formation between Mn^{++} ions and dissolved SO_2 . From theoretical consideration they

Mechanism of Mn^{2+} catalyzed oxidation of SO₂ in solution from Matteson et al. (1969)

The second step should be rate-determing.

concluded that the rate of the reaction depends on the square of the initial aqueous Mn⁺⁺ concentration as assumed by Foster. This dependence is in agreement with the experimental observations of Johnstone and Coughanowr (1958), although extrapolation to lower concentrations of catalyst is necessary. Matteson et al., also found that almost no sulphate is formed when the relative humidity is less than 95% and assumed this to be due to insufficient hydration of the aerosol.

Cheng et al., (1971) found the following order of catalytic efficiency: $MnSO_4 > MnCl_2 > CuSO_4 > NaCl and also noted that NaCl$ aerosols at relative humidities of 36-60% would only very slowly oxidize $<math>SO_2$, whereas the rate rapidly increased at relative humidities above 80%. Following Matteson's suggestion, this is probably related to the fact that in the former case the NaCl particles can be considered to be dry, covered with adsorbed H₂O molecules, and thus true aqueous phase oxidation might be unimportant, while the latter case is a deliquescent salt particle, and thus a concentrated solution.

Barron and coworkers studied the reaction kinetics of the oxidation in dilute solution catalyzed by copper (Barron and O'Hearn, 1966) and cobalt (Chen and Barron, 1972) ions. They found the reaction to be zero order in oxygen, 3/2 order in $SO_3^{=}$ concentration, and 1/2 order with respect to catalyst concentration. For the actual oxidation they favor a chain mechanism adapted from Backstrom (1934) as we will see in the next section.

Brimblecombe and Spedding (1974a) studied the oxidation in solution using very low concentrations of SO₂ (10^{-5} M) and Fe³⁺ (10^{-6} M), and even under these conditions found the rate to be extremely sensitive to the presence of the catalyst.

Freiberg (1974, 1975) has deduced a rate expression for the iron catalyzed oxidation of SO₂ in aqueous droplets. Considering several equilibrium equations he determined an expression which explains the strong effect of relative humidity and pH on the rate. An increase in relative humidity only increases the pH of the solution according to this model which leads to the following dependence for the rate of oxidation:

$$\frac{d(SO_2)}{dt} \propto \frac{1}{(1-rel.hum)^3 (H^+)^3}$$

Freiberg's data indicate moreover that a substantial negative temperature effect on the rate constant of the reaction, is to be expected owing to the fact that at lower temperature increased dissolution of SO_2 and dissociation into SO_3^- (see Table 29) more than offsets the decrease in the rate of Fe³⁺ catalyzed oxidation rate of SO_3^- . Freiberg (1975) also notes that the Fe³⁺ ion is the actual catalyst, and that if Fe²⁺ is present it must be first oxidized to Fe³⁺ in order to initiate the SO₂ oxidation.

Very recently Barrie and Georgii (1976) studied the absorption of SO₂ in small water drops containing low concentrations of metal ions. Mn^{24} and Fe³⁺ ions exhibited markedly different reactivities and no rate enhancement was observed in the presence of Cu²⁺ ions in acidic water droplets (pH₂4). This observation agrees with the work of Bracewell and Gall (1967) who noted that 10^{-5} solutions of Cu²⁺ oxidized SO₂ 100 times slower than 10^{-5} M Mn²⁺ solutions at pH \approx 4.5, but not with that of Junge and Ryan (1958) who in effect found that Cu²⁺ ions enhanced the rate of oxidation of SO₂ by 50% compared to Mn²⁺ ions at pH < 4. The results of Barron and O'Hearn (1966) are not directly comparable since they worked with neutral, unbuffered Cu²⁺ solutions.

Some other interesting observations of Barrie and Georgii should be mentioned here:

a decrease in the Mm²⁺ catalyzed oxidation of SO₂ by a factor 5 to 10 by lowering the reaction temperature from 25° to 8°C was noted. If indeed Barrie and Georgii measured the actual oxidation rate as they claimed (in fact they determined the absorption rate of SO₂ by the droplets as function of time), then this catalyzed reaction must feature a very high activation energy since the equilibrium concentration of SO₃ should be larger at lower temperature (McKay, 1971).
a synergistic catalytic effect was noted upon mixing Mn²⁺ and Fe³⁺ ions, i.e., a larger oxidation rates by Mn²⁺ and Fe³⁺ only. In this case moreover, a much smaller temperature effect was observed. Barrie and Georgii suggest that Fe³⁺ ions promote the catalytic ability of Mn²⁺, and that the overall mechanism of the oxidation might be differ-

ent.

- 76 -

- the absorption of SO_2 in Mn^{2+} -containing droplets is found to take place in two distinct phases: initially the absorption is rapid, but after a few minutes the rate slows down, and becomes almost zero. The authors suggest that the initial rapid rate involves the formation and build-up of an $SO_3^{=}-Mn^{2+}$ complex as suggested by Schmittkunz (1963) and when the Mn^{2+} ions are depleted SO_2 oxidation takes place. The fact that in $10^{-4}M$ MnCl₂ solution the turning point occurs when approximately $3 \times 10^{-4}M$ SO_2 is absorbed, is taken as evidence for a 1:3 catalyzing complex. No explanation is given, however, for the fact that a rapid initial uptake of SO_2 still takes place over the same time interval even when the droplets do not contain a catalyst.

2.3.2.3 Mechanism of the aqueous phase oxidation of SO₂

The oxidation of SO_2 in the aqueous phase is basically thought to involve the following chain mechanism, adapted from Backstrom (1934):

so .	+ 0 ₂	\rightarrow	so ⁻ 5
so5	+ $so_{3}^{=}$	\rightarrow	$so_4^- + so_4^-$
so4	$+ SO_3$	\rightarrow	$so_{3}^{\overline{2}} + so_{4}^{\overline{2}}$

or alternatively,

so .	$+ so_3$	\rightarrow	so; +	so_5
so_5	+ $so_{3}^{=}$	÷	2S0_4	

The presence of these radical ions seems very well established from spectroscopic observations (Hayon et al., 1972; Schmittkunz, 1963(?)). Moreover, it appears that $SO_{\overline{5}}$ is much more abundant than $SO_{\overline{3}}$, and thus the reactions of this species are presumed to be rate limiting (Hayon et al., 1972; Chen and Barron, 1972) in this chain mechanism. However, since the rate of oxidation is dependent on the nature of the catalyst the actual initiation reaction to form the $SO_{\overline{3}}$ species is overall rate limiting.

There is less agreement in the literature concerning the nature of the initiation reaction of this chain mechanism. It should

be noted that all initiation reactions suggested involve metal ions. Indeed, it is not at all obvious how the radical ion could be formed otherwise; this fact might be construed as an argument for the nonoccurrence of the aqueous phase oxidation of SO_2 in the absence of a metal ion catalyst. The only reference to a mechanism for the uncatalyzed process the present authors are aware of is from Basset and coworkers (Basset and Henry, 1935; Basset and Parker, 1951) who conclude that the reaction should proceed via ionic complexes such as $(O_2 \cdot SO_3)^{2-}$ and $(O_2 \cdot S_2 O_5)^{2-}$. Similar types of complexes were suggested for the Mn²⁺ ion catalyzed reaction, as was later discussed by Matteson et al., (1969), (cf. Table 18). However, in these studies self oxidation and reduction of the complex was proposed and the SO_3^- chain mechanism was not invoked.

Several authors have suggested a direct redox reaction between the metal ion Me⁽ⁿ⁾⁺ and the SO⁼₃ species, following the original suggestion of Backstrom (1934):

$$SO_3^{=} + Me^{(n)+} \rightarrow SO_3^{-} + Me^{(n-1)+}$$

Thus Barron and O'Hearn (1966) proposed this initiation for the Cu²⁺ catalyzed reaction, Chen and Barron (1972) invoke $Co(H_2O)_6^{3+}$ as initiator, while Brimblecombe and Spedding (1974a) suggest the FeOOH species (these authors reason that hydroxylated Fe³⁺, FeOOH, appears to be a better oxidizing agent than Fe³⁺, since it has a higher redox potential (0.908 V) than Fe³⁺ itself (0.77 V), and moreover a pH in the range 4 to 5 tends to favor formation of the FeOOH species).

Brimblecombe and Spedding also note that part of the SO_3^- could be effective in regenerating Fe³⁺ from Fe²⁺. They visualize the following reactions:

 $SO_3^{=}$ + FeOOH + 3H⁺ \rightarrow Fe²⁺ + 2H₂O + SO₃⁻ SO₃⁻ + Fe²⁺ \rightarrow SO₃⁼ + Fe³⁺

Barrie and Georgii (1976) favor the somewhat more elaborate initiation mechanism proposed by Schmittkunz (1963) which is shown in Table 19. It may be seen that in this mechanism three $SO_3^=$ ions are required per metal ion to build up the catalyst-complex; Barrie and Georgii have

Mechanism of the metal ion-catalyzed oxidation of SO $_2$ in solution from Schmittkunz (1963)

a. Catalysis

$$(Me^{+x} Y)^{-(6-x)} (*) + o_{2} \longrightarrow (Me^{+x} Y)^{-(5-x)} + o_{2}^{-}$$
$$o_{2}^{-} + H^{+} \longrightarrow o_{2}^{H}$$
$$(Me^{+x} Y)^{-(5-x)} + so_{3}^{=} \longrightarrow (Me^{+x} Y)^{-(6-x)} + so_{3}^{-}$$

i

b. $\underline{so_3}^{-}$ chain $so_3^{-} + o_2^{-} \longrightarrow so_5^{-}$ $so_5^{-} + so_3^{-} \longrightarrow so_4^{-} + so_4^{-}$ $so_4^{-} + so_3^{-} \longrightarrow so_3^{-} + so_4^{-}$

c. O_2H chain $O_2H + SO_3^{\pm} \longrightarrow SO_4^{\pm} + OH$ $OH + SO_3^{\pm} \longrightarrow SO_4^{\pm} + H$ $H + O_2 \longrightarrow O_2H$ (*) Me^{+x}: metal ion of valence x

Y:
$$(SO_{3}^{-})_{3}$$
 or $(HSO_{3}^{-})_{3}$

found some evidence for the involvement of three $SO_{\overline{3}}^{\overline{5}}$ ions as discussed earlier.

Finally, it should be mentioned that the only termination of the SO_3^- chain that has been suggested to be important is the reaction:

$$SO_{5}^{-} + SO_{5}^{-} \rightarrow \text{inert products.}$$

(Chen and Barron, 1972). Chain termination involving the SO_{3}^{-} species is thought to be unimportant since it reacts much more efficiently with SO_{3}^{-} than does SO_{5}^{-} , and thus its concentration is very low compared to that of SO_{5}^{-} .

2.3.2.4 Aqueous oxidation of SO₂ by other oxidizing species

The effects of some other oxidizing species such as ozone on the oxidation of dissolved SO₂ have been reported. Penkett (1972) used ozone in the range of 3 to 5 x 10^{-6} M in solution and found the oxidation, which he ascribes to bisulfite (HSO₃), and not sulfite (SO₃), to be first order with respect to ozone, and rather fast. In fact, extrapolating his results to typical cloud conditions (10° C, pH = 5, _1 g/m³ liquid water content) he determines an oxidation rate of about 0.21%/minute, assuming 7 ppb SO₂ and 50 ppb O₃. The rates of oxidation of SO₂ by O₃ in a fog chamber reported by Penkett and Garland (1974) agree with Penkett's earlier calculations. These data are shown in Table 20.

Barrie (1975) has argued that the Penkett and Garland experiments could equally well be explained by invoking the SO_3^{-} ion instead of the HSO_3^{-} ion. This would, in fact, increase the pH dependence of the oxidation rate as shown in Table 20, thus decreasing the efficiency of this oxidation mechanism at lower pH values. Barrie also reported the interesting but not explained observation that the presence of O_3 increased the catalytic effect of Mn^{2+} ions in droplets, while NO_2 seemed to have an inhibiting effect in this regard.

There seem to be no further studies on the effect of other oxidizing reagents on the solution oxidation rate of SO_2 . Brimblecombe and Spedding (1974b) noted that traces of H_2O_2 remarkably increased the rate of SO_2 uptake in solution, but they did not indicate if this

Rate of Oxidation of SO_2 in solution by dissolved O_3 as function of pH from Penkett and Garland (1974)

$$\underline{PH}$$
 $\frac{R(O_3)^a}{ppm/min}$ $\frac{R(O_2)^b}{ppm/min}$ $\frac{R(O_3)measured}{ppm/min}$ 4 2.1×10^{-6} 7.3×10^{-8} 5 2.1×10^{-5} 2.5×10^{-7} 6 2.1×10^{-4} 9.1×10^{-5} 7 2.1×10^{-3} 4.2×10^{-3}

í

a: at
$$[O_3] = 0.05 \text{ ppm}$$

b: at $[O_2] = 2 \times 10^5 \text{ ppm}$

actually means an increase in the SO₂ oxidation rate. Lobova et al., (1973) noted that highly concentrated solutions of nitric acid rapidly oxidize SO₂, but it is highly unlikely that such a mechanism is important in the atmosphere since the high vapor pressure of nitric acid will prevent the formation of concentrated HNO₂ aerosol droplets.

Conclusion

It appears that aqueous phase oxidation of SO₂ is a viable atmospheric process. However, as stated earlier, we feel that the presence of metal ions or ozone as catalysts is a prerequisite for such reactions.

Some of the major experimental and theoretical studies discussed in this section are summarized in Table 21. In spite of the widely diverging results and theories it can be concluded that the reactions are highly sensitive to several parameters such as pH, relative humidity, temperature, type and concentration of catalyst. These factors would make the actual atmospheric oxidation of SO₂ highly dependent on existing ambient conditions. Some typical rates in clouds were estimated by Barrie (1975), using concentrations of Mn^{2+} of $\sim 10^{-6}$ M/1 and Fe³⁺ of $\sim 10^{-5}$ M/1, estimated from aerosol measurements by Jost (1974) in clean Swiss mountain air. Barrie's estimates are shown in Table 22. The present authors are not aware of data on the presence or abundance of such ions in Alberta air.

2.3.3 Heterogeneous Oxidation of SO₂ by "Dry" Particulates

Most of the studies considering dry catalysts in the oxidation of SO₂ have been concerned with the commercial production of sulphuric acid (Duecker and West, 1959) and are of little relevance here because SO_2 concentrations are generally orders of magnitude larger in such processes. In fact, the Fort McMurray stack plumes are expected to be rich in water vapor, and thus dry particulates will probably play a minor role in the overall transformation chemistry of atmospheric SO₂. For completeness however we will briefly discuss some of the facets of these reactions.

Judeikis and Siegel (1973) have estimated that in order for

adapted from Levy et al., 1976

Author	Type of Mechanism	Rate coefficient and/or equation	Comments
Fuller and Crist (1941)	Sulphite oxidation by O ₂ without catalyst	$-\frac{d[0_2]}{dt} = k[s0_3^{2-}]$ k = 0.013 + 6.6 [H ⁺] ^{0.5}	25°C; Rate coefficient later corrected by McKay (1971) suggests very long chain reaction.
Basset and Parker (1951)	Sulphurous acid oxidation by metal salts and O ₂	-	Uncatalyzed: formation of $[O_2 \cdot SO_3]^{2-}$, $\bigcup_{i=1}^{\infty}$ catalyzed: formation of $[O_2 \cdot Mn(SO_3)_2]^{2-}$
Junge and Ryan (1958)	SO ₂ oxidation with or without metal ions and with or with- out NH ₃	conversion rate ~1.8 x 10 ⁻⁴ % min ⁻¹	No oxidation in absence of Fe and NH_3 ; establishes catalyti- efficiency of metal chlorides $Mn^{2+} > Cu^{2+} > Fe^{2+}$
Van den Heuvel & Mason (1963)	SO_2 oxidation in presence of ^{NH} ₃	conversion rate ~2.5% min ⁻¹	Extrapolation to atmospheric conditions for conversion rat
Barron and O'Hern (1966)	Sulphite oxidation in presence of Cu ²⁺	$-\frac{d[O_2]}{dt} = k[Cu^{2+}]^{0.5}[SO_3^{2-}]^{1.5}$ k ~1200 1/mole-sec	Rapid mixing method. Noticed slight inhibiting effect of C Water purified to better than 10 ⁻⁷ M/l ions.

---- ---- ----- -

. ..

......

<u>Author</u>	Type of Mechanism	Rate coefficient and/or equation	Comments
Scott and Hobbs (1967)	SO ₂ oxidation in presence of NH ₃	$d[SO_4^{-}] = k [SO_3^{-}]$ k = 0.0017 sec ⁻¹	25°C; k estimated from Van den Heuvel and Mason. Theoretical model.
Matteson et al. (1969)	SO ₂ oxidation catalyzed by metal salts.	$-\frac{d[SO_2]}{dt} = k [Mn^{2+}]_0^2$ k = 2.4 x 10 ⁵ 1/mole sec	Negligible SO ⁼ formation at rel.hum. <95%. Suggested mechanism might be applicable for catalysis by other metal salts.
Foster (1969)	SO ₂ oxidation catalyzed by metal salts.	SO ₂ conversion rate: 0.09% min ⁻¹ for Mn^{2+} 0.15 to 1.5% min ⁻¹ for Fe ³⁺	Theoretical study; rates depend on many factors; Fe ³⁺ catalyzed oxidation is pH dependent.
McKay (1971)	SO ₂ oxidation in presence of NH ₃	$\frac{d[so_4^{-}]}{dt} = k [so_3^{-}]$ k = 0.013 + 59 [H ⁺] ^{0.5}	Theoretical study; k adapted I from Fuller and Crist. Suggests large negative temperature effect on overall reaction.
Cheng et al. (1971)	SO ₂ oxidation catalyzed by metal salts.	SO ₂ conversion rates: ~0.03% min ⁻¹ with Mn ²⁺ levels typical of urban industrial air ~•33% min ⁻¹ with Mn ²⁺ levels typical of coal fired power plant plume.	Oxidation rates estimated through extrapolation. Note strong difference if H ₂ O is ad- sorbed on salt particle, or the salt is deliquescent.
Miller and De Pena (1972)	SO ₂ oxidation in presence of NH ₃	$d[SO_{4}^{=}] = k [SO_{3}^{=}]$ k ~•003 sec ⁻¹ at 25°C	k estimated by fit of experimen- tal data to theoretical curves. Suggests SO ₂ dissolution might be rate limiting, based on rate

curves. on might on rate constants that are probably wrong. (Beilke and Lamb, 1975).

Author	Type of Mechanism	Rate co-efficient and/or equation	Comments
Penkett (1972)	Sulphite oxidation by O ₃	$-\frac{d[0_3]}{dt} = k [0_3] [HS0_3]$ k = 3.32 x 10 ⁵ 1/mole-sec	9.6°C; SO ₂ oxidation rate extrapolated to atmospheric conditions. Rate much larger than Scott and Hobbs.
Chen and Barron (1972)	Sulphite oxidation catalyzed by cobalt ions.	$-\frac{d[o_2]}{dt} = k[co(H_2 o)_6^{3+}]^{0.5}[so_3^{=}]^{1}.$	No specific value for k deter- 5mined. Suggests free radical mechanism; reduction of Co(III) is initiation reaction.
Brimblecome & Spedding (1974a)	SO ₂ oxidation catalyzed by Fe ³⁺ ions.	<pre>- d[S(IV)] dt = k[Fe(III)][S(IV)] k = 100 l/mole sec</pre>	FeOOH is actual catalyst. Suggests trace amounts of Fe might be responsible for un- catalyzed oxidation.
Easter and Hobbs (1974)	SO ₂ oxidation in presence of NH ₃	same as Scott and Hobbs (1967)	Wave-cloud model. Suggests that significant oxidation can occur. Assumes clouds to be initially neutral. Oxidation decreases if SO ₂ concentration rises above 10 ppb, due to limited buffering of 3 ppb NH ₃
Freiberg (1974)	SO ₂ oxidation catalyzed by Fe ³⁺ ions	$\frac{d[so_4^{\pm}]}{dt} = \frac{k_0 k_2^2 [H_2 SO_3]^2 [Fe^{3+}]}{[H^+]^3}$	Rate increases rapidly with rel. humidity and decreases by about one order of magnitude with 5°C increase in temperature.
		k_s : 1st dissociation constant of H_2SO_3	

Author	Type of Mechanism	Rate coefficient and/or equation	Comments
Penkett and Garland (1974)	SO_2 oxidation by O_3	$-\frac{d[SO_2]}{dt} = k[SO_3^{=}]$ k = 4.18 x 10 ⁻⁴ + 1.77[H ⁺] ^{0.5} sec ⁻¹	Fog chamber experiment. pH = 6 (5.6?) Compares rate with estimations of Penkett (1972) for actual atmosphere.
Beilke et al. (1975)	SO ₂ oxidation in presence of NH ₃	$\frac{d[so_4^{-1}]}{dt} = Q.P_{SO_2}$ Q: function of equilibria constants, pH, and k _o , with $\frac{d[so_4^{-1}]}{dt} = k_o[so_3^{-1}],$ k _o ~1.2 x 10 ⁻⁴ [H ⁺] ^{-0.16} or $\frac{d[so_4^{-1}]}{dt} = k_o[so_3^{-1}]^{1.08},$ k _o = 2 x 10 ⁻³	Experimental study. Suggests that model of Scott and Hobbs is correct with slight changes in equilibria constants from McKay and rate constant from Miller and De Pena. Removal rate strongly pH dependent, between 10 ⁻⁵ and 15% hr ⁻¹ for pH between 3 and 6.
Yue et al. (1976)	SO_2 oxidation in presence of NH ₃	$\frac{d[SO_4^{=}]}{dt} = k [SO_3^{=}]$ k from Scott and Hobbs, McKay or Miller and De Pena [SO_3^{=}]	Theoretical study; incorporates collision of H ₂ SO ₄ molecules, formed through homogeneous gas- phase oxidation of SO ₂ , with water droplets; suggests lower

depends on equilibria as in Scott and Hobbs + term related to homogeneous gasphase oxidation of SO, follow-ing Castleman et al. (1975).

tes aser pH values for the drops as function of their diameter.

- 87 -

this interaction to be competitive with solution phase oxidation, approximately 1 in 100 gas particle collisions have to lead to reaction. The possible importance of these reactions has been evaluated in a few studies, and it appears that physical processes play a dominant role.

In their study on the interaction of SO₂ with Fe_2O_3 Chun and Quon (1973) indicate that the overall reaction is limited by the amount of active sites on the particles. In the actual oxidation the authors propose the following 5 elementary steps:

- 1. chemisorption of oxygen on the surface of the particles;
- 2. diffusion of SO₂ to the surface;
- 3. reaction between adsorbed SO_2 and chemisorbed O_2 ;
- 4. hydration of the resulting SO_3 to form H_2SO_4 ;
- 5. partial dissolution of the oxide in H_2SO_4 .

The third step would be rate-controlling, in agreement with Corn and Cheng's (1972) suggestion that adsorption of SO₂ is fast, compared to actual oxidation. At relatively low SO₂ concentrations, SO₂ might actually chemisorb on the particle surface, and not be oxidized at all (Smith et al., 1969). Burke et al., (1973) also note that much of the SO₂ loss by interaction with solid particles actually does not lead to oxidation since at later stages SO₂ seems to be released from the particles. These authors moreover indicate that organic material on the particles promotes SO₂ uptake, but only the "cleanest" particles lead to oxidation.

Urone et al., (1968) reported that $CaCO_3$, V_2O_5 and Cr_2O_3 particles are inert with respect to SO_2 oxidation, while oxides of Pb, Fe, Mn, Ca and Al/Ca rapidly take up O_2 . As far as CaO is concerned, it might be mentioned that the equilibrium

 $CaO(s) + SO_2(g) + \frac{1}{2}O_2(g) \stackrel{\leftarrow}{\rightarrow} CaSO_4(s)$

which is used in flue gas emission control of SO₂ by dry injection of CaO at elevated temperatures is shifted strongly to the right at atmospheric temperatures (Reid, 1970). However, the reaction rate is extremely slow since a large activation energy is apparently involved and the temperature must be such that an optimum balance between a sufficiently high rate for the forward reaction and the desired

- 88 -

- 89 -

Expected oxidation rates in clouds, due to particulates

from Barrie (1975)

	т (°С)	SO ₂ (in ppb)	Mn ²⁺ (M/1)	Fe ²⁺ (M/1)	$\frac{SO_2}{(\% hr^{-1})}$
Urban cloud	25	500	10 ⁻⁵	10 ⁻⁵	1
	25	500	10 ⁻⁵		0.3
	8	500	10 ⁻⁵	10 ⁻⁵	1
	8	500	10 ⁻⁵	-	0.03
Country air cloud	25	10	10 ⁻⁶	10 ⁻⁵	.75
	8	10	10 ⁻⁶	10 ⁻⁵	.25

Cloud conditions: 0.1 g/m 3 H_2O, pH $\stackrel{\sim}{\sim}$ 3.5, no O_3 present.

í

equilibrium concentration of $CaSO_4$ can be obtained (Murthi et al., 1971).

The adsorption and conversion of SO_2 on CaO and MgO has also been studied by Low et al., (1971) and Goodsel et al., (1972). Infra red analysis of adsorbed SO_2 indicated that sulfites are initially produced on the surface and then can be oxidized to sulphates upon heating. Lin and Lunsford (1975) also studied the MgO-SO₂ system by spectroscopic means (ESR and IR) and found evidence for heterogeneous oxidation on the MgO particles. They identified SO_3^{-1} ions and nonodentate sulfite complexes on the particle surfaces, and suggest that water, absorbed with SO_2 , increases the concentration of these ions on the surface thus promoting the conversion rate.

As far as carbon (soot) particles are concerned, Novakov et al., (1974) have presented qualitative evidence to the effect that such particles might be strong catalysts for the oxidation of SO₂ in the atmosphere. High humidity was claimed to lead to more sulphate formation, but no rate data were presented. Corn and Cheng (1971) studied catalysis by activated charcoal. Some conversion rates are given, but it is not clear if the SO₂ oxidation in their experiments actually involved catalysis on the surface of the particles.

Conclusion

It appears from the available data that reactions between SO_2 and solid particles in the atmosphere most likely will not lead to appreciable SO_2 oxidation, but mainly to chemi- or adsorption of SO_2 on the particle surface. Equilibrium considerations as shown for the case of CaO are probably equally applicable for other metal oxides. Since a water film seems to be a prerequisite for catalyzed SO_2 oxidation, it appears not certain whether heterogeneous oxidation is actually occurring, or whether in fact one is dealing with aqueous phase oxidation in a highly concentrated solution of the catalyst. Table 23 summarizes pertinent information from some of the above studies.

Summary of studies on heterogeneous oxidation of SO_2 on dry particles

Study	Reaction system	Comments
Urone et al. (1968)	SO ₂ (8-14 ppm), particulates (16-30 mg)	Measured tentative conversion rates: CaCO ₃ , Cr ₂ O ₃ , V ₂ O ₅ , NaCl, Al ₂ O ₃ : $< 01\% \text{ min}^{-1}$ CaO, Al ₂ O ₃ /CaO, PbO, PbO ₂ , Fe ₃ O ₄ , Fe ₂ O ₃ : > 2% min ⁻¹
Smith et al. (1969)	SO ₂ sorption on Fe ₃ O ₄ , Al ₂ O ₃ , platinum, particle size 0.01 - 0.1 μ m	Develops sorption isotherms using the 35 SO ₂ technique.
Low et al. (1971), Goodsel et al. (1972)	Adsorption of SO $_2$ on CaO and MnO	IR study. Identifies sulphites on particle surfaces. Oxidation upon heating observed.
Corn and Cheng (1972)	Adsorption of SO ₂ by activated charcoal, Fe_2O_3 , MnO_2 (on Teflon beads), monitoring SO ₂ effluent flow	With activated charcoal: steady-state rate of conversion/adsorption: .013 μ g SO ₂ /min/mg charcoal (SO ₂ = 8 ppm) .021 μ g SO ₂ /min/mg charcoal (SO ₂ = 14.4 ppm) With oxides: physical adsorption; fast with Fe ₂ O ₃ ; CaCO ₃ , V ₂ O ₅ , flyash: inert
Chun and Quon (1973)	SO ₂ (4.7-18.8 ppm) through filter con- taining Fe ₂ O ₃ particles. Rel. hum. 50-94%	"Capacity limited heterogeneous reaction" oxidation capacity of Fe_2O_3 : 62.6 µg/mg Fe_2O_3 rate constant for heterogeneous reaction: 9.4 x 10 ⁻³ ppm ⁻¹ min ⁻¹
Burke et al. (1973)	SO ₂ through column of particles, collected from the atmosphere.	Reversible sorption is major process (30-40% recover- able). Organic contamination promotes sorption, but inhibits oxidation.

-

- 92

I

Study	Reaction system	Comments
Novakov et al. (1974)	SO_2 with soot particles (through mixing hydrocarbon flame with SO_2)	ESCA study of particles formed. Identifies sulphate and sulphide. Increase in SO ₂ or rel. hum. increases sulphate level.
Lin and Lunsford (1975)	SO_2 (25 torr) over MgO and Mg(OH) ₂	EPR and IR spectra obtained. Identifies sulphite and monodentate sulphite. Heterogeneous oxidation shown to occur.

2.3.4 Plume Studies

At first thought it would appear that a very straightforward way to obtain actual SO₂ oxidation rates would be by direct measurements in stack plumes. Several laboratories have been involved in such studies, but apparently with very little success mainly because several additional factors originating from meteorological variables and therefore essentially noncontrollable, come into play. Moreover, such studies are very difficult to carry out. In a recent critical review Wilson (1976) apparently concludes that all studies published to date should be considered as questionable for one reason or another. Nevertheless important general observations have been made. Some of the major studies of the last 15 years are summarized in Table 24 and Table 25 lists some observed oxidation rates. Very recently SO₂ oxidation in plumes, including many aspects that have been discussed in earlier sections of this chapter have been reviewed by Levy et al., (1976).

The original study by Gartrell et al., (1963) has been used by several authors as a test for proposed theoretical models of atmospheric oxidation of SO_2 . This is at least questionable in view of Gartrell et al.'s own observation that "these limited data do not provide a basis for an accurate estimate of the absolute rate of SO_2 oxidation after emission". The important qualitative observation from this study is the low oxidation rate at low relative humidity, (~1 to 3% hr⁻¹) compared to a very high rate at high relative humidity (~30% hr⁻¹).

Newman et al., (1975a,b) used a single-engine aircraft to fly through the plume and employed specially designed high volume samplers for collecting and measuring sulphate and absorption scrubbers to collect SO_2 which was then analyzed isotopically. This technique is based on measurement of the ratio of the two most abundant isotopes of sulphur, $^{32}S/^{34}S$ which "fingerprints" the origin of the sulphur. Newman et al., found that the oxidation rates in plumes of an oil-fired plant were larger than in those from a coal-fired plant. It is entirely possible, however, that this difference is due to different particulate control. In fact, Newman et al., suggest that the low particle content at the coal-fired plant is the major reason for the low oxidation rate. They also suggest that indigenous vanadium could be a potential catalyst at

- 93-

Summary of SO_2 oxidation in stack plumes

(from Levy et al., 1976)

Study	Species measured	Comments	
Gartrell, 1963	^{so} ₂ , ^{so} ₃	Highly variable oxidation rates, positive correlation with humidity.	
Dennis et al., 1969	SO_2 relative to SF_6	SO_2 half life from 1.0 to 2.8 hours.	
Coutant et al., 1972	so ₂	Laboratory simulation, various fuels, SO ₂ loss highly dependent on humidity.	
Stephens and McCaldin, 1971	SO ₂ relative to submicron aerosol	Oxidation rate dependent on humidity.	
Weber, 1970	SO_2 relative to CO_2	Increasing oxidation rate with increasing humidity.	
Newman et al. (1975,a, b)	³² s, ³⁴ s	No specific humidity dependence noted, higher oxidation rates in plumes from oil-fired than from coal-fired plants.	
Davis and Klauber (1975)	NO, NO ₂ , O ₃ , SO ₂	Ozone 'bulge' noted downwind.	
Lusis and Wiebe (1976)	SO ₂ , sulphate	No temperature or humidity effects noted.	
MISTT study (see text)	O ₃ , NO, NO ₂ , SO ₂ b- _{scat} , Aitken-nuclei, sulphate	Oxidation rate increases after 1 to 2 hours aging. Different stage of oxidation at edge of plume than at centre.	

_ 94 _

Summary of some SO_2 oxidation rates, measured in plumes.

Study	Location	Туре	Rate	$\frac{t_{1/2}}{(1-1)}$	<u>rel.hum.</u>
			(% hr)	(hrs)	5
Katz (1950)	Sudbury	smelter stack	2.1	-	-
Shirai (1962)	Tokyo	urban air	11.7	-	-
Gartrell et al. (1963)	TVA	power plant	0-4 8-55		45-70 73
Dennis et al. (1969)		coal fired power plant	-	1.0-2.8	36-53
Weber et al. (1970)	Frankfurt	ground level sampling downwind power plant	-	0.3-1	-
Stephens and McCaldin (1971)		power plant	_ 0	1.2-2.4 -	40-80 < 35
Coutant et al. (1972)	laboratory simulation	different fuel types	-	1-6	40-90
Granat and Rodhe (1972)	Stockholm	oil fired power plant	4.3	-	-
Newman (1975a)	New York State	oil fired power plant	-	10	-
Newman (1975b)	Pennsylvania	coal fired power plant	small	-	-
Roberts and Friedlander (1975)	Los Angeles	urban air	2-13	-	-
Lusis and Wiebe (1976)	Sudbury	smelter stack	1		-
Whitby et al. (1976)	St. Louis	coal fired power plant	1.5-5	-	~ 75

- 95

1

 the oil-fired plant but this seems unlikely in view of the apparent low catalytic efficiency of vanadium, as discussed in the last section. Finally, it should be mentioned that Newman et al., are of the opinion that homogeneous gas phase or aqueous phase oxidation mechanisms are inconsistent with their data.

Davis and Klauber (1975) did not measure oxidation rates but observed increased ozone levels some 50 km downwind of the plant. As indicated earlier their proposed mechanism is questionable.

Lusis and Wiebe (1976) studied the plume of the large INCO nickel smelter stack near Sudbury using sampling techniques similar to those designed by Newman et al., (1975a,b). Sulphate and SO₂ were determined using standard wet chemical methods but the large errors in their data could not allow assessments of significant temperature or humidity effects. The average value for the oxidation rate was of the order of 1% hr⁻¹ and a slight decrease in the oxidation rate with plume age was tentatively observed. The authors also noted that within the first 100 km of transport usually less than 10% of the sulphur in the plume is in the form of sulphate.

Roberts and Friedlander (1975) used total filter and cascade impactor aerosol samples from several sites in Los Angeles and performed calculations to estimate gas-to-particle conversion rates for SO₂ in urban polluted air. The oxidation rates obtained were rather large compared with other plume studies; these results may be artifacts, depending on the method of calculations, but are not entirely unreasonable when it is realized that under such circumstances all the possible oxidation mechanisms discussed in earlier sections will now be operative.

Finally, the most thorough and far-reaching study to date, on a power plant stack plume in the vicinity of St. Louis (the Midwest Interstate Sulphur Transport and Transformation (MISTT) study) is not yet completed, but promises to give major insights into the understanding of plume processes. Several research groups collaborate under the aegis of the U.S. Environmental Protection Agency (Charlson, University of Washington, Seattle; Whitby, University of Minnesota, Minneapolis; Husar, Washington University, St. Louis; Blumenthal, Meteorology Research Inc.; Wilson, Environmental Protection Agency). Some initial

- 96 -

results have been presented at several scientific meetings during 1976 (Whitby et al., 1976; Wilson et al., 1976; Husar et al., 1976) and it seems appropriate to devote some attention to them here.

The basic aims and modus operandi of the project were described by Wilson et al., (1976). The following improvements and extensions from earlier plume studies are noted. More gas and aerosol parameters were determined. The gas parameters 0_3 , NO, NO, and SO, were continuously monitored and aerosol parameters such as particulate sulphur samples were collected for each plume traversal, and analyzed by a specially developed highly sensitive method (flash vaporization-flame photometry; Husar et al., 1975). Continuous light scattering (bwas monitored and a combination of an optical counter and electrical aerosol analyzer provided in situ particle size distributions from grab samples. The monitoring aircraft made several traversals through the plume at different altitudes at discrete distances from the stack in order to measure horizontal and vertical profiles. The data are interpreted in terms of total mass flow instead of ratios and the background air mixing with the plume was characterized at each measuring location. Measurements were made in approximately the same air mass as it moved downwind.

The large amount of monitoring equipment made it possible to characterize the plume with much greater accuracy at each measuring location. In fact, on some occasions the plume could be followed over more than 24 hours, representing travelling distances of the order of a few hundred kilometers. Some of the major findings that have been reported so far are:

- the conversion rate of SO₂ to sulphate appears to be slow during the first two hours of travelling time, and then <u>increases</u> (see Table 26, from Whitby et al., 1976). All three aerosol parameters measured follow this trend (see Figure 2 in Whitby et al., 1976).
- there is strong evidence that at the edges of the plume the conversion chemistry is at a different stage than at the centre of the plume. This is easily observed from the Aitken-nuclei count for a transversal through the plume (cf. Figure 2 in Wilson et al., 1976). A probable explanation is that at the edges of the plume homogeneous

Plume aerosol flow rates and calculated sulphur conversion assuming the aerosol is H_2SO_4 in equilibrium with water vapor for one run at the Labadic power plant, near St. Louis. From Whitby et al., 1976.

Distance	Time	Aerosol volume flow	SO2 converted"	so ₂
km	hrs	above_background	<u></u>	conversion rate
	cm ³ /sec	7	%/hr	
0	0			
			• .	
10	0.7	185	1.1	
				1.5
21	1.49	388	2.3	
				1.8
30	2 20	640	37	
<i>94</i>	4.27	040	5.7	
				4.9
45	3.17	1378	8.0	

*) based on average SQ flow of 4.08 kg/sec and rel. humidity 75%.

power plant plumes), and thus comparatively little radical chemistry is expected initially;

- from the total sulphur balance it appears that the fraction of SO₂ converted does not depend on the SO₂ concentration, but on the total <u>amount</u> in the atmosphere and its time of residence;
- it seems that the total fraction of SO₂ converted is actually surprisingly small, i.e. of the order of 10%. This conclusion was also reached by Lusis and Wiebe (1976);
- most of the sulphate aerosol is formed in the accumulation mode (see the next section on aerosols). Particles in this size range have very long atmospheric lifetimes since their deposition velocity is definitely smaller than that for gaseous SO₂ (Sehmel, 1971, 1973; Whelpdale and Shaw, 1974). Long range transport of sulphates is thus predicted.

The last observations have a critical impact on the environmental consequences of the use of tall stacks. When SO_2 is emitted close to the ground, surface removal mechanisms will remove most of it before considerable oxidation occurs. Tall stacks, emitting SO_2 high in the air, will provide for increased dilution of SO_2 and sulphate, and thus reduce the impact of emissions in the vicinity of the source. However, the residence time of the total amount of SO_2 emitted will be much larger in the atmosphere and thus more conversion to sulphates will occur, leading to larger amounts of sulphates that can be traced over long distances. In this regard it is interesting to mention that abnormally high sulphate aerosol concentrations were once observed over Greenland. The history of the particular air mass indicated that the INCO stack at Sudbury was a possible origin (Flyger et al., 1973; Whitby, 1975).

The MISTT project has also studied the long range effects of the St. Louis urban plume (White et al., 1976a, 1976b) and the initial data seem to indicate the same effects.

In view of the uncertainties in comparing the published plume

data it seems somewhat premature to try to construct adequate theoretical models to explain all the observations. Certainly, the models by Foster (1969) and Matteson et al., (1969) described in the section on the aqueous phase oxidation of SO_2 have import but testing such models on actual measurements can not be always reliable. In this respect the very detailed modelling study by Freiberg (1976) should be noted. This model predicts strong effects from relative humidity and temperature, for which some evidence exists from plume measurements; not all of the emitted SO2 will be converted to H2SO4, in agreement with Lusis and Wiebe (1976) and the MISTT study; however it is predicted that most of the oxidation will take place during the first hour of plume travel. Freiberg's model is not directly applicable to the relatively clean plume which was studied in the MISTT project, however, since he considered Fe³⁺ catalyzed oxidation as the only conversion mechanism, and furthermore assumed rather high concentrations of Fe $^{3+}$ (0.12 x 10 $^{-3}$ M/1 Fe $^{3+}$ and up) and relative humidity (90%).

2.4 AEROSOLS

In earlier sections of this review we frequently indicated that the ultimate fate of many atmospheric transformation reactions is the formation of aerosols. Although most properties of aerosols are determined by physical parameters, it will be useful to devote some attention to these atmospheric constituents here. The revised version of the Handbook on Aerosols (Dennis, 1976) treats many of the physical aspects of these compounds, and the reader is referred to this treatise for a thorough review in this respect. Some of the major concerns about the presence of aerosols relate to their influence on the reduction of visibility and their detrimental effect on human health. It appears that so-called secondary aerosols, i.e. aerosols that result from chemical reactions in the atmosphere and that are not due to primary emission such as metal and soot particles from industrial operations or blowing dust, are the major culprits in this regard. This is due to the fact that secondary aerosols usually end up in the size range of 0.1 to 1 μ (1000 to 10,000 Å) diameter, which experimentally has been determined to be the most efficient light scattering range, and moreover falls

within the physical dimensions of particles which can reach the inner tracts of the human lung (Williamson, 1973).

The mechanism of aerosol formation, which is largely determined by physical parameters, is an area of active theoretical (cf. Chu and Seinfeld, 1975; Seinfeld and Ramabhadran, 1975; Takahashi et al., 1975; Hamill, 1975; Nair and Vohra, 1975) and experimental (cf. Clark and Whitby, 1975; Kasahara and Takahashi, 1976) research today. Kinetic rate data concerning the actual aerosol formation are almost nonexistent, although recently some experiments have been performed by Heicklen and coworkers (Luria et al., 1974a, 1974b; Heicklen and Luria, 1975; Miller et al., 1975; Olszyna et al., 1974, 1976).

-

2.4.1 Physical Considerations

Aerosols are defined as particles suspended in the atmosphere, of such a size that Brownian motion and other collisional processes prevent them from direct settling due to gravitational forces. The size of most aerosol particles ranges from $_0.001$ to 50 $_{\rm H}$ diameter. Some very important discoveries have been made during the last six years concerning the distribution of particles within this range. It now appears that the atmospheric size distribution is almost always bimodal in surface or volume, and frequently trimodal near sources of fresh combustion (Whitby et al., 1972; Willeke and Whitby, 1974; Whitby et al., 1975). This observation has led to the following distinction in the description of aerosol particle distributions (Whitby and Cantrell, 1975):

- coarse (giant) particle mode: this mode contains particles of diameter larger than 2 µ. Particles in this mode originate from direct emission into the atmosphere, by industrial operations or dust storms. Although they are generally responsible for 2/3 of the total aerosol mass, the coarse particles form only a small part of the total number of particles.
- <u>fine particle mode</u>: particles of diameter less than $_2 \mu$. This mode may show two distinct surface area modes (leading to the earlier mentioned trimodal distribution).
- <u>transient (Aitken) nuclei mode</u>: particles of diameter less than 0.1 μ (average diameter: $_0.02 \mu$). Particles in this mode result primarily from the direct emission of primary particles from

- 101 -
combustion processes. Moreover, if homogeneous nucleation (vide infra) takes place, then new nuclei will be found in this range as well.

- accumulation mode: particles with a diameter between 0.1 and 2 µ. Particles in this mode are not due to primary emission processes, but result from coagulation of primary particles or condensation of chemical reaction products with secondary aerosols.

The physical parameters which lead to particles in the accumulation mode seem to be responsible as well for the significant observation that there is very little exchange of mass between the accumulation and coarse modes. The important consequence of this observation is that the ratio of fine to coarse particles can be utilized to establish some of the history of an air mass.

Particles in the accumulation mode are by far the most important from an air pollution point of view. It appears that these particles account for most visibility phenomena and contain most of the chemical compounds having biological effects, a large fraction of liquid, most of the free acids, and practically all of the aerosol mass resulting from chemical reactions in the atmosphere.

It seems logical that analysis of aerosols with respect to air pollution studies should focus on particles in the accumulation mode. Unfortunately this appears to be a difficult task. Two of the more recent instruments that seem to be able to analyze particle distributions with reasonable accuracy are the optical particle counter (Liu et al., 1974a) and the electrical aerosol analyzer (Liu et al., 1974b). We will discuss some of the problems of aerosol analysis later in this section.

The formation of fine particle aerosols can generally take place along two routes:

- <u>homogeneous nucleation processes</u>: nucleation can occur spontaneously if the reagent vapor is supersaturated in the atmosphere, so that small clusters of molecules can condense out. In this process vapor pressure thus plays a deciding role, and two different routes can be distinguished in this regard. Homonucleation is a process where identical molecules combine to form the initial particles, while in heteronucleation different chemical species condense out. The latter process usually dominates in the atmosphere, where one of the species is H_2^{0} . Its importance is readily grasped from the fact that the vapor pressure of pure $H_2^{SO_4}$ is approximately two orders of magnitudes larger than 98% $H_2^{SO_4}$ in H_2^{0} . Another example of a powerful heteronucleating mixture is the combination of NH₃ and SO₂, as discussed in the last section.

Homogeneous nucleation will lead to particles in the transient nuclei mode. Their lifetime is usually very short since collisional processes will rapidly lead to particle growth into the accumulation mode. The fact that in atmospheric monitoring the transient mode is usually only observed in regions very close to combustion sources, had led to speculation that homogeneous nucleation is an altogether unimportant atmospheric process. However, such atmospheric measurements are not commonly performed <u>in situ</u> and it is conceivable that the short lifetime of particles in this mode is the reason for the lack of observation of the transient mode. By careful analysis of monitoring data Whitby (1977) has recently found evidence that this might indeed be so, thus reinforcing the probability that homogeneous nucleation is a viable atmospheric aerosol formation route.

It should be mentioned that due to the very low vapor pressures necessary for homogeneous nucleation, this process cannot be important for nitrate-containing and most organic aerosols.

- <u>heterogeneous nucleation processes</u>: condensation on existing particles, so-called heterogeneous nucleation, is the major route of formation of atmospheric aerosols. No supersaturated vapor is necessary for this process, and it can thus lead to the formation of HNO₃ and organic aerosols. The rates with which these processes take place depend on diffusion rates of particles and gases in the atmosphere, and rates of irreversible sorption processes (absorption, adsorption, chemisorption). During supersaturation conditions, which depend on the chemical formation rate of the nucleating species, diffusion limited growth can occur, and homogeneous nucleation can compete with heterogeneous nucleation.

Thermodynamic considerations have to be taken into account as well. According to Kelvin's relation, the vapor pressure of a

condensable species is larger for particles with very small radius. It appears that due to surface tension of a range of materials, condensation will not take place on particles with a diameter less than approximately 0.05 to 0.1 μ (Heisler et al., 1973; Hidy, 1973). Thus heterogeneous nucleation seems to be dependent on the presence of particles in the accumulation mode, and will, through further coagulation, lead to an increase in the volume of this mode.

2.4.2 Primary Aerosols

Of concern to us here are the particles that reach the atmosphere as a result of the oil sand plant activities. At the writing of this review few monitoring data were available. We will limit ourselves therefore to a short discussion of what might generally be expected.

Chemical analysis of fly ash from the stacks contains several metal oxide and soot particles in addition to a large quantity of water vapor. The amount and size distribution of the particle emission will of course depend in part on the particle control methods that will be incorporated. It seems reasonable to expect that sufficient submicronsize particles will be emitted, so that aqueous phase metal ion catalyzed oxidation mechanisms for the SO₂ transformation could be operative, but from the discussion of actual plume measurements in the last section it appears that one has to be careful not to overestimate the importance of these processes. It should be reiterated that Newman et al., (1975b) found very little evidence for SO₂ oxidation in a reasonably clear (low particle count) plume from coal fired power plant, whereas the MISTT-study, which also reported data from a well controlled power plant stack, points to the likelihood that the homogeneous gas phase oxidation of SO₂ might be an important mechanism.

The very fact that these emissions also contain large amounts of water vapor makes purely heterogeneous oxidation mechanisms probably of little importance, but homogeneous aqueous phase mechanisms should be expected to play a role. It would be mentioned though that carbonaceous particles (soot) have recently been suggested to be very efficient oxidation catalysts. The carbon particle-catalyzed oxidation of NO to NO_2 (Heicklen and Cohen, 1968; Chang and Novakov, 1975) and of SO_2 to SO_3 (Novakov et al., 1974) is supposed to be highly efficient and much faster than the homogeneous gas phase rates.

Even if no chemical reaction occurs, adsorption of gas molecules on particulate matter can be important since the adsorption spectrum of the adsorbed species can be markedly shifted, thereby altering the photochemistry. Thus Daubendieck and McMillan (1973) reported that 1,3 pentadiene adsorbed on pyrex glass could be photoisomerized with 3660 Å radiation, even though this compound does not absorb light above 2900 Å in the gas phase. This type of process has received no attention to date in atmospheric studies.

The importance of the above processes can only be assessed when actual monitoring data become available, however.

2.4.3 Secondary Aerosols

Although the distinction is not realistic, three types of secondary aerosols can be classified: sulfates, nitrates and organic. As far as the chemistry is involved, we are interested in the actual constituents of aerosols, and the chemical reactions that lead to these aerosols. We will describe the current status of knowledge for each of the three classes of aerosols. Many of the mechanistic details of the reactions have already been discussed in earlier chapters.

Nitrate-containing Aerosols

Such aerosols result from oxidant-type pollution chemistry. From modelling studies, Calvert (1973) has shown that the major formation path of HNO_3 in the atmosphere is the reaction

$$HO + NO_{2}(+M) \rightarrow HNO_{3}(+M)$$

Under conditions of low radical concentration, i.e. during night, the gas phase reaction

$$N_2O_5 + H_2O \rightarrow 2HNO_3$$

becomes important, although its rate is much slower. There are indications however, that a more rapid heterogeneous reaction can occur on surfaces (Morris and Niki, 1973). N_2O_5 would be formed via the scheme:

 $0_3 + N0_2 \rightarrow 0_2 + N0_3 \rightarrow 2 N_2^{0} N_5$

Nitric acid is fairly stable in the atmosphere and will not by itself lead to aerosols since its vapor pressure is fairly high, even over water solutions (Toon and Pollack, 1973). However, HNO_3 readily reacts in the gas phase with NH_3 , leading to the much less volatile ammonium nitrate. This reaction and the ensuing aerosol formation have been extensively studied by Heicklen and coworkers (De Pena et al., 1973; Olszyna et al., 1974, 1976). It was established that under atmospheric conditions the equilibrium

$$HNO_3 + NH_3 \leftrightarrow NH_4 NO_3$$

is shifted to the right side. The critical pressure needed to initiate nucleation is approximately 0.4 $ppb(_10^{10} \text{ molec/cc})$. In an atmosphere containing HNO₃ and NH₃, these authors established the following condensation mechanism:

$$HNO_{3} + C_{n} \leftrightarrow C_{n} HNO_{3}$$
$$C_{n} HNO_{3} + NH_{3} \rightarrow C_{n} HO_{3}$$

where C_n represents a particulate species consisting of nNH NO₃ molecules. The frequent identification of NH₄NO₃ in aerosols from oxidantforming pollution indicates the importance of those reactions, although the direct application of the results of Heicklen's group is somewhat difficult since they used much higher concentrations of NH₃ and HNO₃ than will be present in the atmosphere.

Another route to nitrate-containing aerosols is dissolution of nitrogen oxides in water droplets. With the exception of NO, which dissolves very little in water, the other nitrogen oxides (NO_2, NO_3, N_2O_5) are readily dissolved in water (Hidy and Burton, 1975). Nash (1970) and Borok (1960) for instance, showed that trace amounts of NO_2 are readily absorbed in water, leading to nitrite and nitrate ions. Nitrite ions will then probably be oxidized to nitrate ions via analogous routes to SO_3^{2-} oxidation, Table 27.

Another route for nitrate formation seems to be via interactions with H_2SO_4 . Bourbigot et al., (1973) noticed the formation of particles of empirical formulae HNSO₅ and $S_2O_7(NO)_2$ during photolysis of an SO_2-NO_2 -moist air mixture. Similar products have been observed by Urone et al., (1970) in the photolysis of SO_2 and NO_2 in dry air,

Table 27

Aqueous reactions of nitrogen oxides *)

N ₂ O ₅ + H ₂ O	$\langle \longrightarrow \rangle$	$2H^{+} + 2NO_{3}^{-}$
2NO ₂ + H ₂ O	<>	$H^+ + NO_3^- + HNO_2$
HNO ₂ + OH	\longrightarrow	$H_2^{0} + NO_2^{-}$
2N0 ⁻ + 0 ₂	>	2N0 ₃
NO ₂ + 0 ₃	>	$NO_3^{-} + O_2^{-}$
NO ₃ + H ₂ O	~>	$H^+ + NO_3^- + OH^-$
$NO + NO_2 + H$	1 ₂ 0 —	$\rightarrow 2H^+ + 2NO_2^-$

1

*) from Hidy and Burton, 1975.

Paul et al., (1972) from the reaction of N_2O_4 and SO_3 in liquid SO_2 , and Daubendieck and Calvert (1975) from the gas phase reaction between SO_3 and NO_2 . HNSO₅ could well be nitrosyl sulphuric acid formed by absorption of NO_2 into H_2SO_4 , while Daubendieck and Calvert postulate that $S_2O_6(NO)$ (NO_2) might be nitrosyl nitryl pyrosulphate, which has been synthesized by others (cf. Stopperka and Kilz, 1968). The presence of NH_3 seemed to suppress the formation of these products in the experiments of Bourbigot et al. No indication of the efficiencies of such reactions are known and more definite studies in this field should be performed.

Finally, organic nitrates can result from oxidant chemistry reactions of the type:

$$RO. + NO_2 \rightarrow RONO_2$$

 $RO. + NO_2 \rightarrow RO_2NO_2$

with R=H, alkyl, acyl. These compounds are volatile when low molecular weight alkyl/acyl groups are involved but longer carbon-carbon chains could result in the atmosphere, as we will see shortly. Moreover, these compounds seem to readily hydrolyze in an aqueous medium, leading to nitrite ions.

Organic Aerosols

Very little information exists pertaining to the mechanisms of chemical reactions that lead to such aerosols. Analysis of organic aerosols (the definition is usually implied to mean that part of an aerosol which is soluble in benzene) has shown an overwhelming array of compounds: organic nitrates, carboxylic acids and their esters, carboxyl compounds, alcohols and polymeric peroxides have been identified (Grosjean and Friedlander, 1975; O'Brien et al., 1975a, 1975b; Grosjean, 1975) as well as long chain alkanes, alkenes and dicarboxylic and fatty acids (Schuetzle et al., 1973, 1975).

O'Brien et al., (1975a) have performed some laboratory studies with the aim of identifying possible precursors for the carboxylic acids, and conclude that diolefins or cyclic olefins play a dominant role in this respect. Finlayson and Pitts (1976) have argued that an additional path for the formation of multifunctional compounds might be the oxidation of aromatic compounds, which would explain the presence of significant amounts of unsaturated organics in particulate matter, as observed by Grosjean and Friedlander (1975).

It has been observed that particle formation takes place concurrently with increasing ozone concentration (Hidy and Burton, 1975), thus prompting the suggestion that ozone might play an important role in the chemical reactions leading to organic aerosols. As noted elsewhere, the mechanism of ozonolysis of olefins in the gas phase, although being still a matter of wide controversy, has been suggested to include steps that lead to carboxylic acid formation. Moreover, the many radical intermediates that are present in such systems would constitute excellent initiators for polymer formation. Thus, Calvert (1975b) has suggested that in a "spent" oxidant mixture (i.e. when most of the NO \rightarrow NO₂ conversion has taken place, the ozone concentration increases, and higher analogue olefins are largely degradated to ethylene), the following polymer formation mechanism is quite conceivable:

$$\begin{split} & \text{HO} + \text{C}_{2}\text{H}_{4} \rightarrow \text{HOC}_{2}\text{H}_{4}. \quad (\text{initiation}) \\ & \text{HOC}_{2}\text{H}_{4} + \text{O}_{2} \rightarrow \text{HOC}_{2}\text{H}_{4}\text{O}_{2}. \quad) \\ & \text{HOC}_{2}\text{H}_{4}\text{O}_{2}. + \text{C}_{2}\text{H}_{4} \rightarrow \text{HOC}_{2}\text{H}_{4}\text{O}_{2}\text{C}_{2}\text{H}_{4} \quad) \text{(propagation)} \\ & \text{HO}(\text{C}_{2}\text{H}_{4}\text{O}_{2})_{n}. + \text{NO}_{2} \rightarrow \text{HO}(\text{C}_{2}\text{H}_{4}\text{O}_{2})_{n}\text{NO}_{2} \text{ (termination)} \end{split}$$

The aerosols over forested rural areas most likely originate from similar reactions. Thus, Lillian (1971) noticed the formation of large amounts of aerosols while studying the reaction between ozone and α -pinene. Schwartz (1974) found multifunctional compounds in the aerosol extracts from similar experiments, containing two or more of the carbonyl, alcohol, carboxylic acid, and nitrate functions. Interestingly, pinoic acid was subsequently found in atmospheric aerosols.

It appears from this short discussion that even from simple model systems (Schwartz, 1974; O'Brien et al., 1975a) enormous complex product mixtures are to be expected and a complete analysis of organic aerosols, let alone a description of mechanistic detail, will still need a large amount of further research.

Sulphur-containing Aerosols

These secondary aerosols have received the most attention. We

have already extensively discussed the possible mechanisms for atmospheric oxidation of SO_2 to SO_3 which, in the atmosphere, will react very fast with water molecules to form H_2SO_4 . The reaction may also take place in the liquid phase.

Formation of H_2SO_4 aerosols is possible by homogeneous nucleation, contrary to the cases of nitrate and organic aerosols since the vapor pressure of H_2SO_4 is very low, and in recent years several studies have been published that shed some light on the mechanisms of formation (Cox, 1973, 1974; Clark and Whitby, 1975; Smith et al., 1975; Kasahara and Takahashi, 1976; Shen and Springer, 1976). All these studies used the photooxidation of SO_2 as a route to particle formation. The following observations are made: initially there is a rapid increase in the total number of particles until a maximum concentration is reached, after which stage prolonged irradiation does not lead to an increase in the number of particles (in fact, a decrease is observed); however, the total <u>volume</u> of the aerosol increases, probably in a linear fashion (Clark and Whitby, 1975).

It is easily recognized that the initial increase in the number of particles can be identified with homogeneous nucleation due to supersaturation of the newly formed H_2SO_4 . The rate of particle formation is probably a complex function of the rate of H_2SO_4 formation (which will depend on light intensity, SO_2 concentration, and relative humidity) and of actual nucleation. The maximum number of particles formed is strongly dependent on the same parameters (Kasahara and Takahashi, 1976; Shen and Springer, 1976). The latter authors deduce the following empirical relation:

 $N_{\max} = A \times (SO_2)_{t=0} \times (rel.hum.)^2_{t=0}$

where A is presumably a function of the light intensity.

This relation however cannot be fitted to the data of Smith et al., (1975), and, according to these authors, not to the data of Cox (1973) as well. The latter results seem to indicate that N_{max} is independent of initial SO₂ concentration or of relative humidity. However, much higher concentrations of SO₂ were involved in these experiments, which makes a comparison rather doubtful, as discussed by Shen and

Springer (1976). It is quite conceivable that a species other than H_2SO_4 is the nucleating agent in the work of Smith et al., (1975), for example, the elusive SO₄ radical, as suggested by these authors. It might be significant that their constant N_{max} is considerably lower (~0.6 x 10⁵ particles/cm³) than that obtained in the other studies at lower SO₂ concentration (depending on $(SO_2)_{t=9}$ and relative humidity, of the order of magnitude of 10^6 particles/cm³).

After the maximum number of particles has been reached and when the total number of particles decreases, coagulation and condensation should be responsible for the increase in aerosol volume. Clark and Whitby (1975) suggest that this phenomenon is caused by a faster rate of condensation as compared to the rate of photochemically formed $\mathrm{H_2SO}_4$ molecules, thus leading to a drop in the $\mathrm{H_2SO}_4$ vapor pressure below the supersaturation level. The actual decrease in the total number of particles is then explained by coagulation of existing particles. The fact that at this stage the average diameter of the particles slowly increased with reaction time constitutes supporting evidence for this mechanism. It was also noted that the particle surface reaches an equilibrium value, which was correlated with the rate of increase of particle volume. This interesting relation seemed to be purely determined by an equilibrium between the physical processes of coagulation and condensation and is in agreement with the atmospheric observation that particles in the accumulation mode do not grow to the range of the coarse particle mode. No chemistry seems to play a role, since quite different aerosol formation processes, e.g. aerosol formation during irradiation of terpene vapors in initially particle-free air, follow exactly the same relationship. This effect was also found in the theoretical calculations by Takahashi et al., (1975) on the mechanism of sulphuric acid aerosol formation, and explains why sulphuric acid aerosols generally are limited in particle size to a diameter of the order of 0.1 µm to 1 µm.

It is interesting to note that these studies generally agree only within 2 orders of magnitude on the estimated partial pressure of H_2SO_4 vapor necessary before homogeneous nucleation will start. The values range from $_{-10}^{-9}$ Torr H_2SO_4 (Cox, 1973) to approximately 10^{-7} Torr H_2SO_4 (Clark and Whitby, 1975; Smith et al., 1975). Stauffer et al., 1973) estimate a theoretical value of 10^{-8} Torr H_2SO_4 , while Mirabel and Katz (1974) arrived at a slightly higher estimate ($_{-10}^{-7}$ Torr). This means that under polluted conditions, i.e. SO_2 concentrations of the order of 0.1 ppm, homogeneous nucleation of H_2SO_4 aerosols could indeed be important (H_2SO_4 formation rates of 1 - 10 ppb hr⁻¹, Cox (1973); 10^{-8} Torr H_2SO_4 corresponds to approximately 0.01 ppb in air), while under more "clean air" conditions ($_{-0.005}$ ppm SO_2) only heterogeneous nucleation on existing particles will be of importance.

The question might arise as to how concentrated sulphuric acid aerosol particles will be. As has been indicated before, from supersaturation considerations it is likely that homogeneous nucleation will actually involve heteronucleation between H_2SO_4 and H_2O molecules, whereby 90% H_2SO_4 constitutes the most favorable conditions. It was shown recently, however, that continued contact with water in the atmosphere will very rapidly lead to dilution of the original particles, since the establishment of a droplet-vapor equilibrium can take place in a matter of milliseconds (Carabine and Maddock, 1976) contrary to earlier suspicions that this process might be severely rate limited (Coutarel et al., 1967). This fact probably means that inhalation of highly concentrated H_2SO_4 aerosols is not as damaging for human health as suspected before, since considerable dilution will occur before the particles can reach the lung tissue.

Some aerosol formation routes other than via the $SO_2-SO_3-H_2SO_4$ route, but also involving SO_2 , have been mentioned in the section on oxidation mechanisms for SO_2 , and will be briefly summarized here.

The reaction between photochemically excited SO_2 and hydrocarbons has been shown to produce large amounts of aerosols consisting of sulphur-containing acids (sulfonic, sulfinic, sulfenic acids) that can grow to considerably large particles (Penzhorn and Jordan, 1975). In the presence of oxygen oxygenated organic compounds were also identified in accord with the involvement of organic radicals in the SO_2 -hydrocarbon-irradiation experiments (Hirose et al., 1975). However, the reactions are probably of little atmospheric consequence when other radical reactions are dominant. The homogeneous reactions of SO_2 with the RO and RO_2 radicals have been indicated to be major oxidation routes of SO_2 . It was suggested that RO radicals will mainly add to SO_2 and it is quite conceivable that a fraction of the $RO_2 + SO_2$ interaction will also lead to addition as well as oxygen transfer to SO_3 and RO. Although nothing is really known about the fate of such addition products, it has been speculated that aerosols ultimately consisting of SO_2 -organic molecules are formed. Thus, analysis of aerosols observed in the ozone-olefin- SO_2 system has shown the presence of organic sulphur compounds which might well have arisen from such addition reactions (Schulten and Schurath, 1975a).

The direct reaction between SO_2 and NH_3 is another potential route to homogeneous aerosol formation. However, as we have indicated earlier, thermodynamic considerations appear not to favor this reaction under normal atmospheric conditions. Very high concentrations of SO_2 and NH_3 seem to be necessary, and even though such concentrations might prevail within the stack exhaust (Claus-process exhaust?), other reactions should be dominant.

2.4.4 Other Chemical Aspects Related to Aerosols

Analysis

We have briefly indicated many of the perplexing problems which have thus far hindered orderly development in the understanding of the mechanism of formation and properties of aerosols. A further complication is encountered in the field of analytical techniques for determining particle samples. There is a large body of published analytical methods, mainly for the determination of sulphate particles. Ideally, information on particle size and number distribution, quantitative data on the different types of sulphates (H_2SO_4 , bisulphate, sulphate, sulphite, type of cation etc.), and their temporal behavior are required. The presently available methods have recently been reviewed (Dharmarajan et al., 1975; Tanner and Newman, 1976) and range from endless classical wet chemical methods to more elaborate techniques such as X-ray fluorescence (Gilfrich et al., 1973), Electron Spectroscopy (ESCA) (Novakov et al., 1972), Fourier Transform Infrared Spectroscopy (FTSIR) (Cunningham et al., 1974), field desorption mass spectroscopy (Schulten and Schurath, 1975b) and so on. Without going into detail it appears that no completely satisfactory methods which can distinguish between the different types of sulphates are available. A much worse problem is inherent to essentially all the methods, i.e. sample collection. In all the analytical methods devised to date the aerosols are collected on a filter. In addition to the engineering problems related to the sampling medium, as reviewed by Fuchs (1975), there are two important chemical considerations that have to be taken into account, as summarized by Tanner and Newman (1976):

- acidic sulphate can undergo neutralization reactions with the filtration medium, with basic material collected on the filter surface, and with basic gases (NH₃) in the sampled air during particle collection.
- gaseous SO₂ can undergo catalytic oxidation reactions initiated by the filter material or particles collected thereon.

As a measure of the importance of these processes it might be mentioned that Friend (1974) reported that measurable amounts of SO_4^{-} are formed when humid, particle-free air containing 1 ppm each of SO_2 and NH₃ is passed through a plug of clean glass wool. It seems, therefore, that any quantitative analysis of sulphate content will have an inherent large uncertainty. Quoting Tanner and Newman: "it is regretfully axiomatic that the only way to eliminate interaction of collected sulphate-containing particles with reactive gases (e.g. SO_2 , NH₃) or other particles in the sampled air would be to determine the particulate sulphate <u>in situ</u> without filter collection." However, no such methods seem to have been developed to the stage of practical application.

Another example of this filter effect concerns the measurements of nitrates. Spicer (1975) has suggested that reports of high particulate nitrate levels in polluted urban atmospheres are probably seriously in error due to trapping of gaseous nitric acid on the particle collection medium.

Effects of aerosols on atmospheric chemistry

Although aerosols can be considered as end stations in

atmospheric chemistry, they will influence the mechanisms of atmospheric reactions. We have already indicated the catalytic role which primary aerosols can play in the photochemical reactions, and oxidation routes for molecules like SO_2 and NO_2 .

The presence of aerosols will also influence photochemical reactions by scattering of the sunlight. The effect of aerosols on solar radiation has been studied quite extensively, but the main focus of these studies was the possibility of climatic changes (Liou and Sasamori, 1975; Cogley and Boruclei, 1976; and references therein). However, photochemical reactions will equally be influenced since they depend on the total amount of radiation available for absorption. This radiation, the so-called actinic irradiance, is a complex function of direct, scattered, and reflected solar light (Leighton, 1961; Peterson, 1976). Aerosols will reflect and possibly absorb this light, thereby altering the effective wavelength and intensity distribution of light available for photochemical reactions. The blue haze over wooded areas (Went, 1960) and brown color of Los Angeles smog (Husar and White, 1976) have been ascribed to scattering and absorption due to aerosol layers. A theoretical treatment of the aerosol effect on atmospheric photochemical reactions has not yet been performed. Peterson (1976) has reevaluated the solar irradiance, i.e. the amount of sunlight available for atmospheric photochemical reactions, incorporating new information on light scattering and absorption due to aerosols. This work was performed to establish reasonable estimates of solar irradiance for use in simulation studies, however, and does not focus primarily on the aerosol effect.

It was recently suggested that aerosols might also play a role in the typical radical reactions associated with polluted and unpolluted atmospheres. Warneck (1974) has argued that the average daily concentration of HO radicals, as calculated by Levy (1974) and others, ($_2 x$ 10^6 molec/cc) should be lower by a factor of 5 to 10 in order to explain the observed global CO mixing ratios and the rate of nitrate precipitation in the northern hemisphere. From theoretical calculations, Warneck concludes that HQ₂ radicals can be effectively scavenged by ambient aerosols, and that this would result in a lowering of the HO

concentrations by competition with HO-reformation reactions involving ${\rm HO}_2$ radicals.

If Warneck's arguments are correct, then aerosols should have an effect on the chemistry in polluted atmospheres as well. Indeed, modelling studies performed at Bell Laboratories (Farrow et al., 1975; Graedel et al., 1975; Graedel et al., 1976) support this conclusion. These authors have shown that diurnal variations of air pollution episodes in the New Jersey-New York region are much more satisfyingly explained when heterogeneous interaction between aerosols and some of the active radicals, in particular the peroxy radicals (HO₂, RO₂, R=alkyl, acyl) and the NO₃ radical, are included in the overall reaction scheme. To our knowledge no experimental data exist concerning the radical scavenging effect of aerosols, although such experiments are clearly warranted to confirm these suggestions. Certainly an added complication lies in the fact that specific interactions are suggested with the HO₂ and NO₃ radicals, for which no simple (and unique) formation routes nor monitoring methods are known.

- 116 -

3. SURVEY OF AIR POLLUTION STUDIES UNDER CLIMATIC AND GEOGRAPHICAL CONDITIONS SIMILAR TO THE ALBERTA OIL SANDS REGION

In this chapter we will indicate some of the air pollution studies that have direct relevance to the potential environmental problems of the Alberta oil sands region. As far as the chemistry is concerned there are two factors that will have to be considered here: temperature and solar altitude. The temperature affects the rates of the reactions that take place and the solar altitude, on the other hand, will determine the intensity and wavelength distribution of light available for photochemical reactions. In addition to these factors, which directly affect the chemical transformations, meteorological aspects specific to the almost arctic conditions during winter will be of consequence. Finally, the location of the plants in a nearly clean, rural environment might lead to peculiar chemical transformations.

We have computer-scanned the pollution abstracts data base for the literature on air pollution studies under comparable conditions. Using the combination of pollution key words like sulphur dioxide, sulfuric acid, aerosols, oxidants, with geographical key words like Arctic, Alaska, Fairbanks, northern Canada, N.W.T., Siberia, Norway, Sweden, etc., only a few reports were found. We also scanned the data base from the Boreal Institute for Northern Studies ("Northern titles"), with little more success. We were equally unsuccessful in finding reports in the Russian literature: it appears that whatever work has been done in Russia is not listed in the indicated data bases, or has not appeared in the open literature. As far as the western European work is concerned, this almost exclusively relates to urban air pollution studies and is of no relevance to the present problem. From the North American work, only some studies on air pollution in Alaska, more particularly Fairbanks, seem to have some bearing on the prevalent conditions around Fort McMurray. We will discuss this work shortly.

We can extrapolate some of the results from other studies to the northeastern Alberta conditions and make some rough predictions with regard to the possible polluting effects of the oil sand plants but it is obvious that a major interdisciplinary research effort must be

- 117 -

- 118 -

initiated in order to establish meaningful guidelines.

Effect of Temperature

It appears that no studies on the effect of temperature on the chemistry of air pollution have been performed except one modelling study by the present authors (Bottenheim et al., 1976c). In this work it was shown that on the basis of the known and estimated temperature dependence of chemical reactions that occur in an oxidant-forming reaction mixture, only small effects should be expected from a lowering of the ambient temperature from +25 to -15° C. The reason is that the reactions in such a mixture feature small activation energies (from almost zero to only a few kcal/mole), as in the case of most radical reactions. No smog chamber studies have been reported which corroborate or contradict these theoretical predictions. However, an indirect effect of temperature on the importance of homogeneous gas phase reactions can be expected. At the much lower winter temperatures, evaporation of hydrocarbons, e.g. from naturally-occurring terpenes, the oil sand formations, or storage tanks at the oil sand plants, will be unimportant as a source of hydrocarbons in the atmosphere. Since these hydrocarbons are essential for the radical-chain reactions which characterize the homogeneous reactions, they should be expected to play a much less important role in winter.

As far as SO₂ oxidation is concerned, we have already indicated that many reactions are temperature-dependent, although few investigations have specifically studied such effects. The photooxidation of SO_2 is probably slightly temperature dependent, considering the 3B_1 state as the precursor state in this regard, since Wampler et al., (1973) reported an activation energy of $_3$ kcal/mole for the collisional deactivation of this state by O_2 . The reactions of $SO_2({}^3B_1)$ with hydrocarbons have even lower activation energies (essentially zero in the case of olefins). The reaction of ground state SO_2 with HO radicals is pressure dependent (Davis, 1974b) and thus will probably show a negative temperature effect, i.e. the reaction will be faster at lower temperature. Since the average HO concentration is expected to be lower during winter (vide infra), a somewhat faster reaction rate due to low winter temperatures will probably be offset.

There is no information on the temperature dependence of the $HO_2 + SO_2$ reaction. It seems reasonable that the reaction features a small activation energy which, coupled with lower average HO_2 concentrations in winter, would indicate that this reaction is less important.

Turning to the aqueous phase oxidation of SO_2 , much stronger temperature effects should be expected. Estimates of the room temperature oxidation rate of SO_2 in aqueous solution, i.e.

$$\operatorname{so}_{3}^{=} + \frac{1}{2} \operatorname{o}_{2} \xrightarrow{} \operatorname{so}_{4}^{=}$$

vary widely, and McKay (1971) suggests that the activation energy is high, 18.3 kcal/mole. Yue et al., (1976) calculated the resulting rate constants, listed in Table 28. Moreover, all the equilibrium constants in the mechanism for dissolution of SO₂ in water to SO_3^{-} are highly temperature dependent (McKay, 1971; Yue et al., 1975) see Table 29. The effect of lower temperatures on the metal ion-catalyzed oxidation is not clear. Freiberg (1974, 1975), on the basis of theoretical considerations, has argued that an increase in the actual oxidation rate of the ion catalysed-oxidation should be expected at lower temperature. No experimental studies which could corroborate such temperature effects are known. However, the work of Barrie (1975) on the rate of SO₂ oxidation catalyzed by manganese ions in droplets indicates that the oxidation rate is considerably lower.

Finally, the rate of aerosol formation should be faster at lower temperatures, owing to the lower vapour pressures of aerosol precursors. However, it is doubtful whether such effects would be noticeable in the atmosphere, since the rate of formation of aerosol precursors is usually rate determining. The lower vapour pressures might cause homogeneous nucleation to become a more important route to aerosol formation since lower concentrations of precursors are now required.

In conclusion, although no experimental studies seem to have been focussed specifically on the role of temperature on the evolving chemistry of an air pollution mixture it is probable that a somewhat slower rate of oxidant formation, mainly due to lower concentrations of ambient hydrocarbons, and a possible shift in the mechanism of aerosol

TABLE 28

Rate constant in \sec^{-1} for the reaction

 $so_3^{=} + \frac{1}{2} o_2 \longrightarrow so_4^{=}$

at different temperatures.

From Yue et al., 1976.

Author	25°C	<u>15°C</u>	<u>10°C</u>	<u>0°C</u>	<u>-3°C</u>
Scott and Hobbs	0.0017	0.00058	0.00033	0.0001	0.000069
*) McKay	0.032	0.011	0.00628	0.00192	0.00133
Miller and De Pena	0.003	0.001	0.0059	0.00018	0.000124

^{*)}Calculated for pH = 7.

formation might result from a lowering of the ambient temperature. It is not possible at present to assess the effect on the oxidation of SO₂.

Effect of Solar Altitude

The solar spectrum does not seem to have been measured in Alberta. However, the amount of sunlight available for photochemical reactions in the atmosphere can be reasonably accurately estimated as outlined by Leighton (1961) and Peterson (1976). It then becomes apparent that during the winter not only less hours of sunshine can be expected but moreover, the ultraviolet cut-off is shifted to higher wavelength. An important result will be that the photolysis of O_3 to yield $O(^1D)$ atoms

 $0_3 + h\nu \ (\lambda \lesssim 320 \text{ nm}) \rightarrow 0(^1\text{D}) + 0_2$

is much less effective in winter (Bottenheim et al., 1976c). Since this reaction forms the basis of the clean air radical chemistry, and is an HO radical source in polluted air as well (although of less importance), some seasonal changes have to be expected.

During summer the amount of ultraviolet light is more comparable to that available at lower latitudes, and no major change in the chemical transformation routes should be expected. Thus, Nieboer et al., (1976) have shown that, in fact, comparable amounts of PAN under similar air pollution conditions can be expected in Los Angeles $(34^{\circ}N)$, Rotterdam $(51^{\circ}N)$ and Fairbanks $(65^{\circ}N)$. The seasonal variations in the photochemical oxidation rates of SO₂ have been estimated by Penzhorn et al., (1974a), as discussed earlier.

It appears that the effects of solar altitude, i.e. seasonal variations in the solar spectrum, on air pollution chemistry have been little investigated experimentally. Some studies have appeared in which natural sunlight is used as radiation source, and thus the solar altitude and resulting light intensity changes with time of day. Of particular interest in this regard are some of the smog chamber studies performed at the University of North Carolina by Jeffries and coworkers (Fox et al., 1975; Jeffries et al., 1976a, 1976b). An outdoor smog chamber was used in this work, in which certain air pollution mixtures were followed over the period of a day. Quite interesting effects were noted, such as an <u>increase</u> in the maximum 0_3 concentration when the reaction mixture was slowly diluted with ambient rural air, and an increase in the NO \rightarrow NO₂ conversion when sunlight was intermittently disrupted by cloud cover. Such effects are not easily quantified with purely chemical models, but point to the necessity of more studies on the effect of controlled light intensity variation. The effect of solar altitude is expected to be more pronounced than a lowering of the temperature as far as the oxidant chemistry is concerned. The present authors have shown (Bottenheim et al., 1976c) that taking average values for temperature and solar altitude, the so called photostationary state (Stedman and Jackson, 1975; Calvert, 1976a) predicts a lower 0₃ concentration in winter. Thus from the photostationary state mechanism:

$$(0_3) = \frac{k_1(NO_2)}{k_3(NO)}$$

 \boldsymbol{k}_1 is the rate constant for the reaction

$$NO_2 + hv \rightarrow NO + O$$

and is dependent on solar altitude, and ${\bf k}_{\mathbf{3}},$ the rate constant for the reaction

$$NO + O_3 \rightarrow NO_2 + O_2$$

is temperature dependent. Both rate constants will decrease under winter conditions, and have opposing effects on the steady state 0_3 concentration. Nevertheless, a decrease of 30% to 40% is calculated, assuming a drop of temperature from +25° to -15°C, combined with an average solar altitude decrease from 50° to 10°.

Air Pollution Studies in Fairbanks, Alaska

The only directly relevant studies concerning air pollution under comparably severe winter conditions have been performed in the Fairbanks region. Although Fairbanks is only a comparatively small urban community (less than 20,000 inhabitants), several recent studies have noted that very high CO concentrations (Holty, 1973; Gilmore and Hanna, 1974; Jenkins et al., 1975) and particulate matter (Holty; Jenkins et al.,) can be present for prolonged periods in winter. In fact, on several occasions the U.S. Ambient Air Quality standards are drastically exceeded. High CO and hydrocarbon levels comparable to

TABLE 29

Temperature dependence of equilibrium constants for the $\mathrm{SO}_2-\mathrm{H}_2\mathrm{O}$ system

From Yue et al., 1975

$$so_{2} + H_{2}O \stackrel{K_{1}}{\Longrightarrow} so_{2} \cdot H_{2}O$$

$$so_{2} \cdot H_{2}O \stackrel{K_{2}}{\Longrightarrow} Hso_{3} + H^{+}$$

$$Hso_{3} \stackrel{K_{3}}{\longleftarrow} so_{3}^{=} + H^{+}$$

Temperature(°C)	K ₁ (M/atm)	к ₂ (М)	к _з (м)
25	1.24	.0174	6.3×10^{-8}
15	1.83	.0219	7.9×10^{-8}
10	2.25	.0247	8.9 x 10 ⁻⁸
Ο	3.46	.0319	11.4×10^{-8}
-3	3.97	.0346	12.4×10^{-8}

Los Angeles have been correlated with automobile traffic, whereas the high particle count seems to be the result of necessary heating requirements. No data are available on oxidant concentrations, nor on the actual chemical composition of the particulates. These serious conditions occur when strong temperature inversions promoted by the low ground level temperatures are present, and can persist for several days. Another phenomenon, ice fog, is quite often present at the same time, and will be discussed briefly.

Benson (1970) defined ice fog as a form of air pollution which appears at temperatures below -35° C in populated regions where topography, combined with strong inversions, causes air to stagnate. In the Fairbanks area there are two types of sources for the formation of ice fog: automobile exhaust, which generally leads to much smaller ice particles than those from the other type of sources, power plants, cooling water ponds and furnaces. These sources could play a role in the oil sands area as well. It should be mentioned that -35° C as a limiting temperature is not as absolute as it might seem to be: pure water droplets would not generally freeze at temperatures above -40°C, while automobile exhaust compounds other than water seem to become effective as ice-forming nuclei at temperatures around -30°C, (Bowling, 1975). In addition to the strong reduction in visibility in ice fogs, another unpleasant side effect is that it traps other pollutants (Bowling mentions that the Fairbanks ice fog appears to have the same basic chemical ingredients as the Los Angeles smog, along with the accompanying eye irritation), and has a stabilizing effect on the unwanted temperature inversions.

These air pollution problems in Alaska are very relevant to winter conditions in the oil sands area, since the topographic (river valley) and climatologic (high frequency of light winds) conditions are favorable for temperature inversions and frequent occurrence of ice fogs, as has been noted by the Conservation and Utilization Committee, Oil Sands Climatological and Hydrological Research Task Force of the Alberta Government (OSCHRTF, 1974). Moreover, it is quite conceivable that the large amount of water vapor from the oil sand plants, together with high particle counts, will lead to ice fogs at temperatures even higher than than -30° C, since another prerequisite, supersaturation of the air with water vapor, is very easily established at low temperatures.

It has been suggested that the ice fogs which could possibly be formed in the oil sands region could be extremely dangerous due to the large amount of SO2 emission, and be similar in their effect to the infamous London-type killer fog of December 1952 (OSCHRTF, 1974; Smith, 1975). On the other hand, the recent report of AOSERP (Croft et al., 1977) concludes that significant fog-pollutant interaction will not occur in the oil sands area. In any case, this serious suggestion has not been substantiated by experimental data, and urgently needs to be studied. It has been claimed that the Fairbanks type ice fog contains lacrimators, the origins and types of which are by no means clear, however, since the author (Bowling) describes similarities with Los Angeles type smog, in which PAN-type compounds are thought to be responsible for eye irritation. However, PANs are considered to be formed via photochemical reations which during the ice fog season in Fairbanks are unimportant because of the very low solar altitudes in Alaskan winters. Holty (1973) noted much higher SO_2^- levels during ice fog episodes in Fairbanks, a fact which is compatible with the demonstrated efficiency of ice fogs in trapping pollutants. However, one could speculate that the accompanying low temperatures have an inhibiting effect on the rate of the aqueous phase oxidation of SO2, as indicated in an earlier section of this chapter, and thus the increase in the SO, concentration could, in principle, reflect the inefficiency of oxidation. Furthermore, it is not known whether SO2, trapped in ice particles (most likely together with air in that case) will be oxidized or not, and if so, at what efficiency.

Air Pollution in Rural Atmospheres

The oil sand plants are located in an essentially rural, wooded area, and will release pollutants into relatively clean air. The notion that a high enough stack will result in sufficient dilution of pollutant gases so that no major problems can be expected is too simplistic, as discussed earlier, and moreover could be exemplified by the barren areas around the Sudbury INCO stack. Plumes from industrial

- 125 -

complexes in mainly rural environments can be identified over very large distances, as shown in the St. Louis (Missouri) air pollution studies (MISTT-study, cf. Whitby et al., 1976; Wilson et al., 1976). Especially during summer, when higher temperatures will lead to increased rate of discharge of hydrocarbons from various sources in the rural air, homogeneous oxidation of SO2 and oxidant formation can be expected to occur. We have already mentioned that in the U.S. very high O_3 levels have been identified in rural areas, and seem to originate from the interaction of "spent" photochemical air pollution mixtures (i.e. low in industrial hydrocarbons and $NO_{\rm v}$) with local hydrocarbons. Not only has naturally occurring methane been suggested as a possibility in this regard (Chameides and Stedman, 1976), but more importantly the terpenes could be very effective in this regard, as has recently been shown (Boyle, 1975). It is noteworthy in this regard that recently determined values of rate constants for the HO + terpenes reactions are very high indeed (Winer et al., 1976). Several unknown but possibly very unpleasant aerosol products could be the result of such reactions.

Conclusions

The authors conclude that many air pollution problems peculiar to the oil sand plants might be expected, for which basic chemical information is essentially unknown.

During summer, photochemical type air pollution is likely and homogeneous oxidations will be important. Interactions with naturally occurring terpenes can also occur but no information exists as to the formation of harmful aerosols. In particular, the SO_2 + terpene + NO_x reactions have not been studied. Aqueous phase oxidation reactions will probably take place close to the stacks of the oil sand plants, but its importance can not be assessed at the present time.

During winter photochemical reactions are probably less important, and heterogeneous chemistry will be dominant. The likelihood of ice fogs in which pollutants are trapped and possibly react (presumably slowly) to form hazardous substances is quite unsettling, but before jumping to conclusions a detailed study on the chemical events that might occur in an ice fog should be made. 4.

FURTHER RESEARCH REQUIREMENTS

From the preceding literature review on the chemical transformation mechanisms in the atmosphere, the reader might have the impression that in almost all major areas of importance many unresolved problems exist, and that further research is needed. Although this is correct in principle, the actual situation is not so very disturbing and many of the basic mechanistic problems have been at least partly elucidated during the last decade. In the research outlines that we suggest, we have focussed on subjects that will probably be relevant with respect to the expected emissions from the oil sand recovery plants. In particular, emphasis will be given to the chemistry of SO, and the particular effects that might be expected from low temperatures and the large spread in solar irradiance in northern areas, as discussed in chapter 3 of this report or preceding chapter. The outlines are divided into four subheadings which reflect some differences in financial expenditures, time involved to complete the projects, the manpower involved and finally the degree of cooperation with other branches of physical sciences which will be required.

4.1 BASIC RESEARCH

There are many chemical reactions occurring in the atmosphere for which very little information is available. The required data may be the absolute reaction rates, the nature of the products formed, extinction coefficients, for example, and most of the projects can be immediately initiated in the authors' laboratories which are well equipped for such studies.

Many of the projects suggested as basic research projects ultimately involve the reactions of SO_2 . We feel that in view of the high concentrations of SO_2 that are expected in the oil sands region, a better understanding of its transformation chemistry is of the utmost importance.

4.1.1 SO₂ - Reactions

4.1.1.1 Radical reactions

From the outlines in the text it becomes clear that

homogeneous gas phase interactions between SO_2 and reactive radicals are probably very important steps in the oxidation chemistry of SO_2 . It is somewhat discouraging that the data base on which this prediction is based is rather limited. In particular the following problems merit immediate attention:

- the HOSO₂ radical: this radical is probably formed by the interaction of HO radicals with SO₂ (Section 2.2.1.2) although this has not yet been definitely proven. In fact there have not been any spectroscopic or chemical studies performed on this radical and in view of the importance of the HO + SO₂ reaction under certain atmospheric conditions, a kinetic-spectroscopic investigation of the formation and decay kinetics of HOSO₂ is warranted.
- the SO₂ and CH₃O reaction: estimates shown in Table 12 predict a possible rate of 0.1% hr^{-1} for this reaction in the atmosphere, even though the reaction

 $CH_3O + O_2 \rightarrow CH_2O + HO_2$

is considered to be dominant. The latter reaction is fairly slow, and therefore reactions of CH_3^0 with pollutants at the sub-ppm to ppm level are by no means impossible in the atmosphere, since they should be very rapid. A study of the $CH_3^0 + SO_2$ reaction therefore is very necessary and relevant.

- <u>the SO₂ + RO₂ reaction</u>: only one rate determination has been published for the reaction

$$HO_2 + SO_2$$

(Payne et al., 1973), while for the reaction

(Whitbeck et al., 1976) only a tentative upper limit has been reported. Referring to Table 12 it can be seen that these reactions might well constitute some of the most important oxidation steps of SO_2 in the atmosphere. Further studies into these reactions are therefore of the utmost importance for a clearer picture of the importance of homogeneous gas phase oxidation routes of SO_2 .

We have indicated the strong possibility that natural

- 128 -

terpenes evolved in the forested areas surrounding Fort McMurray might become involved in atmospheric transformation reactions, especially during summer when their concentrations are expected to be higher. It appears however that only the initial reaction rates of O_3 or HO with terpenes have been determined. We suggest a study of the products that are formed in such reactions, especially in the presence of SO_2 . Since aerosols will be formed during these reactions, auxiliary studies will have to be undertaken on the chemical composition of the aerosols, the number, volume and surface distribution of the aerosol particles, the chemical precursor reactions that lead to aerosol formation and the influence of light.

4.1.1.3 SO₂ oxidation in the aqueous phase

As we have noted earlier SO₂ oxidation in the aqueous phase will probably be of major importance during the winter, since relatively little sunlight will be available to produce reactive radicals for homogeneous gas phase oxidation reactions. It was noted that several important factors for a proper evaluation of the actual importance of such oxidation routes of SO₂ are still poorly understood, and we will suggest some areas where improvement is most warranted. We might add here that from reviewing the existing literature we have the impression that aqueous phase oxidations of SO₂ have mainly been studied by investigators having a rather poor background in pure chemistry.

- noncatalysed oxidation of SO₂ in water: we have expressed our doubts as to whether oxidation of SO₂ in water will take place at all without the presence of at least traces of metal ions, and in this regard given attention to the work by Brimblecombe and Spedding (1974a). Modern analytical tools should enable one to establish the amount of trace contamination in water to levels of better than 5 x 10^{-8} M/1, which was apparently below the detection limit of these authors.
- temperature dependence of SO₂ oxidation in water: we have indicated in chapter 3 that strong temperature effects on the aqueous phase oxidation of SO₂ should be expected. However the experimental basis for this expectation is very poor indeed. The suggested activation energy for the true overall oxidation step

$$\operatorname{SO}_{3}^{=} + \frac{1}{2} \operatorname{O}_{2} \rightarrow \operatorname{SO}_{4}^{=}$$

is based on one particular study only, i.e. the copper-ion catalyzed oxidation of SO₂ in water (Barron and O'Hearn, 1966). Its implications are far-reacting however, (see discussion Chapter 3, pp. 141-142), and we feel a more thorough study in this field to be of the utmost impor-tance.

- influence of other atmospheric pollutants on aqueous phase oxidation of SO₂: Barrie (1975) reported that O₃ increased the catalytic effect of Mn⁺² ions upon aqueous phase oxidation of SO₂, while NO₂ had an inhibiting effect in this regard. In view of our expectations that the emission from the oil sands complex will increase the NO_x concentration of the air well above background levels, and that sizeable amounts of O₃ will also be present, we suggest that this aspect of the catalyzed aqueous phase oxidation of SO₂ should be studied in more detail.

4.1.2 Heterogeneous Reactions

Heterogeneous chemistry is rather poorly understood, compounded as it is with factors other than chemical reactions. Two areas in this field which seem to merit attention with respect to the understanding of the atmospheric chemistry in the Fort McMurray area are photochemical reactions of gases on particle surfaces (p. 104), and the scavenging of radicals by aerosols (p. 106).

4.1.3 Reactions of Peroxy Radicals

Studies of reactions of peroxy radicals $(HO_2, CH_3O_2, etc.)$ with hydrocarbons are of high priority for a proper understanding of air pollution chemistry in general. This is also applicable to the oil sands area, in particular since calculations of the present authors (Bottenheim et al., 1976c) indicate that a substantial decrease in the rate of NO \rightarrow NO₂ \rightarrow O₃ conversion, and moreover the decrease in ultimate oxidant formation might be expected in this area during the winter. The main reason for this appears to be the fact that the peroxy radical chain reactions are not compensated for in winter, in contrast with the HO chain reactions. Studies on HO₂ reactions therefore should include the effect of temperature on the reaction rates.

4.1.4 Ice Fog Chemistry

We have discussed in Chapter 3 that in the oil sands area ice fogs might be formed during the winter. Although we indicated that it is very unlikely that large amounts of SO_2 will be trapped in these ice fogs, we feel that the chemistry of SO_2 , NO_x , hydrocarbons etc. in ice fogs warrants attention in order to assess its probable effects. The occurrence of Los Angeles type lacrimators in Fairbanks ice fogs is rather mysterious, to mention one aspect. To our knowledge no studies at all have been reported which shed some light on the chemical reactions that could occur when pollutants are trapped in an ice fog, and it is therefore impossible to predict whether Fort McMurray area ice fogs are merely an aesthetic nuisance, compounded by high concentrations of primary pollutants due to a concomittant persistant temperature inversion, or that other much more harmful components are formed as well.

4.2 SMOG CHAMBER RESEARCH

It appears to us that there is an urgent need for experimentation with a smog chamber in order to study, in a controlled fashion, the complicated overall transformations that might occur in the oil sands No smog chamber studies at low temperatures have been reported, area. nor studies of chemical reactions in ice fogs. There are two basic reasons why such studies should be done with a smog chamber: (a) wall reactions, which would introduce a large heterogeneous interfering component in the reactions under consideration, can be reduced to a great extent by the much smaller surface to volume ratio in a smog chamber as compared to a conventional laboratory apparatus and (b) a smog chamber would enable one to monitor, (e.g. through multiple pass FTSIR) reactants and products at lower, and thus more realistic concentrations. While stressing the need for such studies it should be stated that smog chamber research is very costly. Thus, we are of the opinion that before embarking on such a project, an extensive background analysis is warranted in order to prevent a waste of time and money through basic construction errors. Input from other disciplines (engineering, physics) will also be required in order to develop a smog chamber facility equipped with such instrumentation from which unequivocal answers can be obtained regarding

problems mentioned earlier. The building of a smog chamber facility has to be considered a long term project, involving several highly trained personnel. Such a project therefore requires a long term financial commitment from a sponsor and would only be initiated after a special report on a cost-benefit analysis of smog chamber research has been prepared.

4.3 MODELLING STUDIES

We have already initiated some modelling studies on the effects of low temperature and variations in solar irradiance on air pollution mixtures in northeastern Alberta (see Bottenheim et al., 1976c). We propose to continue and expand this work by considering contributions from molecules that were not included in our initial model, e.g. SO_2 , NH_3 and H_2S . Such studies are extremely valuable in order to establish the importance of key reactions in atmospheric transformation chemistry. Moreover they should be considered as guidelines for evaluation of smog chamber experiments and as such form a necessary component of these experiments. The required manpower for simulation experiments is small and the main cost factor is the required computer time. The computer facilities of the University of Alberta are adequate in order to carry out the proposed computations.

4.4 IN SITU MONITORING

Although it is trivial to state that direct monitoring of the atmosphere should provide the final answers as to which reaction mechanisms are prevailing in the transformation chemistry, this is a vital and intensive aspect of atmospheric research in terms of retrievable information, manpower and funding. In particular we feel the following projects need to be considered with high priority.

4.4.1 Solar Spectrum Measurements and Albedo Factors

For a proper evaluation of the importance of photochemical reactions it is necessary to know the amount of sunlight available for such reactions. Although this can be reasonably well estimated by standard calculation methods, it would be better to measure this quantity for the northeastern Alberta region directly. Commonly, calculated results are compared with measurements by Nader and White (Envir. Sci. Techn., <u>3</u>, 848 (1969)), which were performed at a much lower latitude (Cincinnati, Ohio, $_40^{\circ}$ N). Such measurements should preferably not only establish total sunlight energy, but also establish the wavelength-intensity distribution of the sunlight, especially in the important cut off region around 3000 Å. Surface reflection (the albedo factor) is another variable which is important in this respect. It has been shown that the albedo factor is wavelength dependent (Coulson and Reynolds, J. Appl. Meteorol., <u>10</u>, 1285 (1971)), being much lower at the shorter wavelength region of the solar spectrum around 3000-4000 Å, than at higher wavelengths. In this regard especially a good determination of the (wavelength dependence of) reflectance of snow is required.

4.4.2 Background Measurements

For a proper evaluation of the air pollution chemistry that will develop in the northeastern Alberta atmosphere we feel that it is extremely important to determine background levels of the atmosphere. The gaseous composition, in particular with respect to NO_x , O_3 , CO, and hydrocarbons as well as SO_2 , H_2S , and NH_3 should be known to be able to determine if future "air pollution episodes" are really due to the operation of the oil sand plants, and to which extent the natural background plays a synergistic role. Moreover, the particle content, and the occurrence of natural aerosols (summer time) should be measured. We have to stress again that such data should be collected during different seasons since meteorological conditions might have profound effects on the chemical constitution of the background atmosphere.

4.4.3 Plume Studies

In the introduction to this report we mentioned that the plume exhausted from an oil sand recovery plant would probably constitute an ideal system for the study of the developing chemical reactions from a pollution source in really clean air, and thus offer important advantages over other plumes that have been studied elsewhere so far. We suggest therefore that a major plume study project be undertaken. Such a study should comprise not only determination of meteorological data, so SO₂ and total sulphate, but also measurement of other gaseous constituents such as NO_x , O_3 , hydrocarbons, and a fairly complete set of aerosol parameters. This report is not the place to go into details of the methodology of such a study, nor to do a cost-benefit analysis. As in the case of smog chamber research, such a project is costly, involves long range planning, and input from many scientific disciplines.

5. REFERENCES

Allen E.R., McQuigg R.D. Cadle R.D. (1972), <u>Chemosphere</u>, 25.
Altshuller A.P.(1974), <u>Chem. Eng. News</u> 52 (49; Dec. 9), 3
Amdur M.O. (1971), <u>Arch. Envir. Health</u> 23, 459
Atkinson R. and Pitts J.N., Jr. (1974), <u>Chem. Phys. Lett.</u> 29, 28
Atkinson R. and Pitts J.N., Jr. (1975), <u>J. Chem. Phys.</u> 63, 3591
Atkinson R., Finlayson B.J., Pitts J.N., Jr. (1975), <u>J. Am. Chem. Soc.</u> 97, 7592
Atkinson R., Perry R.A., Pitts J.N., Jr. (1976a), <u>J. Chem. Phys.</u> 65, 306
Atkinson R., Perry R.A., Pitts J.N., Jr. (1976b) <u>Chem. Phys. Lett.</u> 44, 204
Avramenko L.I., Evlashkina L.M., Kolesnikova R.V. (1965), <u>Izv</u>.

Akad. Nauk. SSSR 8, 1336

Backström H.L.J. (1934), Z. Phys. Chem. B25, 122

Badcock C.C., Sidebottom H.W., Calvert J.G., Reinhardt G.W., Damon E.K.

(1971), J. Am. Chem. Soc. 93, 3115

Barrie L., Beilke S., Georgii H.W. (1975), paper presented at the

Precipitation Scavenging Symposium, Champaign, Ill. Barrie L.A. (1975), Ph.D. Thesis, University of Frankfurt/Main Barrie L.A. and Georgii H.W. (1976), <u>Atm. Envir., 10</u>, 743 Barron C.H. and O'Hern H.A. (1966), <u>Chem. Engin. Sci. 21</u>, 397 Basco N., James D.G.L., James F.C., (1972), <u>Int. J. Chem. Kinet. 4</u>, 129 Basset H. and Henry A.J. (1935), <u>J. Chem. Soc</u>., 914 Basset H. and Parker W.G. (1951), <u>J. Chem. Soc</u>., 1540 Becker K.H., Inocencio M., Schurath U. (1975), <u>Int. J. Chem. Kinet</u>.

Symp. 1, 205

Beilke S. and Georgii H.W. (1968), <u>Tellus 20</u>, 435 Beilke S. and Lamb D. (1975), <u>J. Am. Inst. Chem. Engin.</u> 21, 402 Beilke S., Lamb D., Muller J. (1975), Atm. Envir. 9, 1083

REFERENCES (CONTINUED)

Benson C.S. (1970), U.S. Army Cold Regions Research and Engineering Laboratory, Research Report # 121

Bierman H.W., Zetsch C., Stuhl F. (1976), Ber. Bunsenges. 80, 909

Birenzvige A. and Mohnen V.A. (1975), "Gas to particle conversion of

SO₂ reaction products at low relative humidities", Atmospheric

Sciences Research Center, State University of New York, Albany, N.Y.

Blacet F.E. (1952), Ind. Eng. Chem. 44, 1339

Blackmer A.M. and Bremner J.M. (1976), Geophys. Res. Lett. 3, 739

Borok M.T. (1960), Zh. Prikl. Khim. 33, 1761

Bottenheim, J.W. and Calvert J.G. (1976), J. Phys. Chem. 80, 782

Bottenheim, J.W., Fu Su, Thorsell D.L., Calvert J.G., Damon E.K. (1976a),

"On the Triplet State(s) of Sulphur Dioxide", paper K3 at the

12th Informal Conference on Photochemistry, Washington, D.C.

Bottenheim, J.W., Sidebottom H.W., Thorsell D.L., Calvert, J.G.

Damon E.K. (1976b), to be submitted.

Bottenheim J.W., Braslavsky S.E., Strausz O.P. (1976c), submitted to Envir. Sci. Techn.

Bourbigot Y., Bricard J., Madelaine G., Vigla D. (1973),

C.R. Acad. Sci. Paris 276C, 547

Bowling S.A. (1975), The Northern Engineer 7(4), 32

Boyle J.M. (1975), M.S. Thesis, University of Calgary, Calgary, Alberta Bracewell J.M. and Gall D. (1967), in "Proceedings of the Symposium on Physico-chemical Transformation of Sulphur Dioxide Compounds in the Atmosphere and the Formation of Acid Smogs." Mainz

REFERENCES (CONTINUED)

Bradstreet J.W. (1973), paper 73-113 at the 66th Annual Meeting of the Air Pollution Control Association, Chicago, Illinois.

Brand J.C.D., Jones V.T., di Lauro C. (1973), <u>J. Molec. Spectr.</u> <u>45</u>, 404 Brand J.C.D. and Nanes R. (1973), <u>J. Molec. Spectr.</u> <u>46</u>, 194 Brand J.C.D., Hardwick J.L., Humphrey D.R., Hamada Y., Merer A.J. (1976),

Can. J. Phys. 54, 186

Braslavsky S.E. and Heicklen J. (1972), <u>J. Am. Chem. Soc</u>. <u>94</u>, 4864 Bricard J., Cabane M., Madalaine G., Vigla D. (1972) <u>J. Colloid Interf</u>.

Sci. 39, 42

Briggs J.R., Caton R.B., Smith M.J. (1975), <u>Can. J. Chem. 53</u>, 2133 Brimblecombe P. and Spedding D.J. (1974a), <u>Atm. Envir. 8</u>, 937 Brimblecombe P. and Spedding D.J. (1974b), <u>Tellus 26</u>, 272 Brosset C. (1976), Ambio 5, 157

Brus L.E. and McDonald J.R. (1973), Chem. Phys. Lett. 21, 283

Brus L.E. and McDonald J.R. (1974), J. Chem. Phys. 61, 97

Bufalini M. (1971), Envir. Sci. Techn. 5, 685

Burke M.F., Baker R.K., Moyers J.L. (1973), J. Chromat. Sci. 11, 575
Calvert J.G. and Pitts J.N., Jr. (1966), "Photochemistry", Wiley, New York
Calvert J.G., Kerr J.A., Demerjian K.L., McQuigg R.D. (1972), <u>Science 175</u>, 751
Calvert J.G. (1973), in "Proceedings of the Conference on Health Effects
of Air Pollutants", Assembly of Life Sciences, National Academy of

Sciences - National Research Council, Serial No. 93-15, Stock No. 5270-

02105, U.S. Government Printing Office, Washington D.C. p.19

Calvert, J.G. (1974), paper at Conference of Atmospheric Salts and Gases of Sulphur and Nitrogen in Association with Photochemical Oxidant, Univ. of California, Irvine, State of California Air Resources Board Report, ARB Contract 3-197, T.T. Crocker Ed.
Calvert J.G. and McQuigg R.D. (1975), <u>Int. J. Chem. Kin. Symp. 1</u>, 113 Calvert J.G. (1975a), <u>Int. J. Chem. Kinet. Symp. 1</u>, 644 Calvert J.G. (1975b), private communcation to J.W.Bottenheim Calvert J.G. (1976a), <u>Envir. Sci. Techn. 10</u>, 248 Calvert J.G. (1976b), <u>Envir. Sci. Techn. 10</u>, 256 Carabine M.D. and Maddock J.E.L. (1976), <u>Atm. Envir. 10</u>, 735 Castleman A.W., Davis R.E., Munkelwitz H.R., Tang I.N., Wood W.P. (1975),

Int. J. Chem. Kinet. Symp. 1, 629

Cehelnik E., Spicer C.W., Heicklen J. (1971), <u>J. Am. Chem. Soc</u>. <u>93</u>, 5371 Cehelnik E., Heicklen J. Braslavsky S.E., Stockburger III L.,

Mathias E. (1973), J. Photochem. 2, 31

Chameides W.L. and Walker J.C.G. (1973), <u>J. Geophys. Res.</u> <u>78</u>, 8751 Chameidis W.L. and Walker J.C.G. (1976), <u>J. Geophys. Res.</u> <u>81</u>, 413, 424 Chameides W.L. and Stedman D.H. (1976), <u>Envir. Sci. Techn.</u> <u>10</u>, 150 Chan W.H., Nordstrom R.J., Calvert J.G., Shaw J.H. (1976a), <u>Envir. Sci</u>.

<u>Techn. 10, 674</u>

Chan W.H., Uselman W.M., Calvert J.G., Shaw J.H. (1976b), Chem. Phys. Lett. in press

Chang S.G. and Novakov T. (1975), <u>Atm. Envir. 9</u>, 495 Chatfield R. and Harrison H. (1976), <u>J. Geophys. Res. 81</u>, 421 Chen T.-I and Barron C.H. (1972), <u>Ind. Eng. Chem. Fundam. 11</u>, 466 Cheng R.T., Corn M., Frohlinger J.O. (1971), <u>Atm. Envir. 5</u>, 987 CHESS (1974), "Health Consequences of Sulfur Oxides: A Report from CHESS, 1970-1971", U.S. Environmental Protection Agency, Office of Research and Development, National Environmental Research Center, Research Triangle Park, North Carolina.

- 139 -

REFERENCES (CONTINUED)

Chu, K.J. and Seinfeld J.H. (1975), <u>Atm. Envir.</u> 9, 375 Chung K.C. and Quon J.E. (1973), <u>Envir. Sci. Techn.</u> 7, 532 Chung K.J. (1974), "Experimental and Theoretical Study of Sulfur

Dioxide", Ph.D. Thesis, The Ohio State University, Columbus, Ohio Chung K.J., Calvert J.G., Bottenheim, J.W. (1975), <u>Int. J. Chem. Kin. 7</u>, 161 Clark W.E. and Whitby K.T. (1975), <u>J. Colloid Interf. Sci. 51</u>, 477 Coffey P.E. and Stasiuk W.N. (1975), <u>Envir. Sci. Techn. 9</u>, 59 Cogley A.C. and Borucki W.J. (1976) <u>J. Atm. Sci. 33</u>, 1347 Corn M. and Cheng R.T., <u>J. Air Poll. Contr. Ass. 22</u>, 871 Coutant R.W., Merryman E.L., Barret R.E., Giammar R.D., Levy A. (1972),

Battelle Columbus Laboratory Final Report to EPA/API/BCR, Inc./EEI.

cited in Levy et al. (1976)

Coutarel L., Matijevic E., Kerker M., Chao-Ming Huang (1967),

J. Colloid Interf. Sci. 24, 338

Cox R.A. (1972), J. Phys. Chem. 76, 814

Cox R.A. and Penkett S.A. (1972), J. Chem. Soc. Faraday Trans. I. 68, 1735

- Cox R.A. (1973b), J. Aerosol Sci. 4, 473
- Cox R.A. (1973-4), J. Photochem. 2, 1

Cox R.A. (1974a), J. Photochem. 3, 291

- Cox R.A. (1974b), Tellus 26, 235
- Cox R.A. and Sandalls F.J. (1974), Atm. Envir. 8, 1269

Cox R.A. and Derwent R.G. (1975), J. Photochem. 4, 139

Cox R.A., Eggleton A.E.J., Derwent R.G., Lovelock J.E., Pack D.H. (1975b), Nature 255, 118

Cox R.A., Derwent R.G., Holt P.M., Kerr J.A. (1976b), J. Chem. Soc.

Faraday I, 72, 2044

Cox R.A. (1973a), J. Photochem. 1, 1

- 140 -

REFERENCES (CONTINUED)

Cox R.A., Derwent R.G., Holt P.M. (1975a), <u>Chemosphere</u>, 201 Cox R.A., Derwent R.G., Holt P.M. (1976a), <u>J. Chem. Soc. Faraday I</u> 72, 2031 Criegee R. (1975), <u>Ang. Chem. Int. Ed. 14</u>, 745

Croft B.R., Lamb A., Dawson R.N. (1977), "A preliminary investigation into the magnitude of fog occurrence and associated problems in the oil sands area", AOSERP Sub-Project ME 3.3.

Crutzen P. (1974), Tellus 26, 47

Crutzen P. (1976), Geophys. Res. Lett. 3, 169

Cunningham P.T., Johnson S.A., Yang R.T. (1974), <u>Envir. Sci. Techn.</u> 8, 131 Cvetanovic R.J. (1976), paper presented at the 12th International

Symposium on Free Radicals, Laguna Beach, Cal.

Dainton F.S. and Ivin K.J. (1950), <u>Trans. Faraday Soc. 46</u>, 374, 382 Daubendieck R.L. and McMillan G.R. (1973), <u>J. Am. Chem. Soc. 95</u>, 1374 Daubendieck R.L. and Calvert J.G. (1975), <u>Envir. Lett. 8</u>, 103 Davis D.D. (1974a), <u>Can. J. Chem. 52</u>, 1405

Davis D.D. (1974b), referenced in Hampson R.F., Jr. and Garvin D.,

Natl. Bur. Stand. Techn. Note 866 (1975)

Davis D.D. and Klauber G. (1975), <u>Int. J. Chem. Kin. Symp. 1</u>, 543 Davis D.D., Fisher S., Schiff R., Watson R.T., Bollinger W. (1975a),

J. Chem. Phys. 63, 1707

Davis D.D., Bollinger W., Fisher S. (1975b), <u>J. Phys. Chem</u>. <u>79</u>, 293 Davis D.D., Heaps W., McGee T. (1976), <u>Geophys. Res. Lett</u>. <u>3</u>, 331 Demerjian K.L., Kerr J.A., Calvert J.G. (1974a), <u>Adv. Envir. Sci. Techn</u>. <u>4</u>, 1 Demerjian K.L., Calvert J.G., Thorsell D.L. (1974b), <u>Int. J. Chem</u>.

Kinet. 6, 829

Demerjian K.L. and Calvert J.G. (1975), <u>Int. J. Chem. Kinet</u>. <u>7</u>, 45 Dennis R., Billings C.E., Record F.A., Warneck P., Arin M.L. (1969), paper presented at the 69th annual meeting of the APCA, New York City, N.Y.

*

Dennis R.D. (1976), "Handbook on Aerosols", National Technical Information Service, U.S. Department of Commerce, no. TID-26608

DePena R.G., Olszyna K., Heicklen J. (1973), J. Phys. Chem. 77, 438

Dharmarajan V., Thomas R.L., Maddalone R.F., West P.W., (1975),

Sci. Total Envir. 4, 279

Dimitriades B., Dodge M.C., Bufalini J.J., Demerjian K.L., Altshuller A.P. (1976), Envir. Sci. Techn. 10, 935

Dixon R.N. and Halle M. (1973), Chem. Phys. Lett. 22, 450

Dobereiner M. (1826), Schw. J. 47, 119

- Doyle G.J., Lloyd A.C., Darnall K.R., Winer A.M., Pitts J.N., Jr., (1975), Envir. Sci. Techn. 9, 237
- Duecker W.W. and West J.R. (1959), "The Manufacture of Sulphuric Acid",

ACS Monograph No. 144, Reinhold

Easter R.C. and Hobbs P.V. (1974), J. Atm. Sci. 31, 1586

Eigen M., Kustin K., Maass G. (1961), <u>Z. Physik, Chem. Neue Folge</u> <u>30</u>, 130 Eliassen A. and Saltbones J. (1975), Atm. Envir. 9, 425

Eschenroeder A.Q. and Martinez J.R. (1972), Adv. Chem. Ser. 113, 101

Falk M. and Giguere P.A. (1958), Can. J. Chem. 36, 1121

Farrow L.A., Graedel T.E., Weber T.A. (1975), in "Removal of Trace

Contaminants from the Air", ACS Symposium Series 17, 17

Fatta A.M., Mathias E., Heicklen J., Stockburger III L., Braslavsky S.E.,

(1974), J. Photochem. 2, 119

Filby W.G. and Penzhorn R.D. (1975), "Photochemical and Free Radical Processes in the System Sulphur Dioxide-Methane and Sulphur Dioxide-Isobutane", paper Z2 at the 8th International Conference on Photochemistry, Edmonton, Alberta.

Finlayson B.J., Pitts J.N., Jr., Atkinson R. (1974), J. Am. Chem. Soc. 96, 5356 Finlayson B.J. and Pitts J.N., Jr. (1976), Science 192, 111 Fisher B.E.A. (1975), Atm. Envir. 9, 1063 Flyger H., Hansen K., Megaw W.J., Cox L.C. (1973), J. Appl. Meteor. 12, 161 Foster P.M. (1969), Atm. Envir. 3, 157 Fox D.L., Kamens R., Jeffries H.E. (1975), Science 188, 1113 Frankiewicz T. and Berry R.S. (1972), Envir. Sci. Techn. 6, 365 Freiberg J. (1974), Envir. Sci. Techn. 8, 731 Freiberg J. (1975), Atm. Envir. 9, 661 Freiberg J. (1976), Atm. Envir. 10, 121 Friend J.P., Leifer R., Trichon M. (1973), J. Atm. Sci. 30, 465 Friend J.P. (1974), Am. Inst. Chem. Eng. Symp. Series 70, 267 Fuchs N.A. (1975), Atm. Envir. 9, 697 Fuller E.C. and Crist R.H. (1941), J. Am. Chem. Soc. 63, 644 Gaffney J.S., Atkinson R., Pitts J.N., Jr. (1976), J. Am. Chem. Soc. 98, 1828 Gartrell F.E., Thomas F.W., Carpenter S.B. (1963), J. Am. Instr. Hygiene 24, 113 Gay B.W., Jr., and Bufalini J.J. (1972), Adv. Chem. Series 113, 255 Gay B.W., Jr., Noonan R.C., Bufalini J.J., Hanst P.L. (1976), Envir. Sci. Techn. 10, 82 Gerhard E.R. and Johnstone H.F. (1955), Ind. Eng. Chem. 47, 972 Gesser H. (1955), J. Am. Chem. Soc. 77, 2626 Gilfrich J.V., Burkhalter P.G., Birks L.S. (1973), Anal. Chem. 45, 2002 Gilmore T.M. and Hanna T.R. (1974), J. Air Poll. Contr. Ass. 24, 1077 Gitchell A., Simonaitis R., Heicklen J. (1974a), J. Air Poll. Contr. Ass. 24, 357 Gitchell A., Simonaitis R., Heicklen J. (1974b), J. Air Poll. Contr. Ass. 24, 772 Glasson W.A. (1975), Envir. Sci. Techn. 9, 1048

Goodsel A.J., Low M.J.D., Takezawa N. (1972), Envir. Sci. Techn. 6, 268 Graedel T.E., Farrow L.A., Weber T.A. (1975), Int. J. Chem. Kinet. Symp. 1, 581 Graedel T.E. (1976), Geophys. Res. Lett. 3, 181 Graedel T.E., Farrow L.A., Weber T.A. (1976), Atm. Envir., in press Granat and Rodhe (1972), report AC-22, University of Stockholm; through private communication by K.T. Whitby to J.W. Bottenheim Grimsrud E.P., Westberg H.H., Rasmussen R.A. (1975), Int. J. Chem. Kinet. Symp. 1, 183 Grosjean D. (1975), Anal. Chem. 47, 797 Grosjean D. and Friedlander S.K. (1975), J. Air Poll. Contr. Ass. 25, 1038 Haagen-Smit A.J., Darley E.F. Zaitlin M., Hull H., Noble W. (1951), Plant Physiol. 27, 18 Haagen-Smit A.J. (1952), Ind. Eng. Chem. 44, 1342 Haagen-Smit A.J., Bradley C.E., Fox M.M. (1953) Ind. Eng. Chem. 45, 2086 Haagen-Smit A.J. and Fox M.M. (1954), J. Air Poll. Contr. Ass. 4, 105 Haber J., Pawlikowska-Czubak J., Pomianowski A., Najbar J. (1974), Z. Anor. Allg. Chem. 404, 284 Hall, T.C., Jr., (1953) Ph.D. Dissertation, Univ. of California, Los Angeles, California Hamada Y. and Merer A.J. (1974), Can. J. Phys. 52, 1443 Hamada Y. and Merer A.J. (1975), Can. J. Phys. 53, 2555

Hamada Y., Merer A.J. (1976), paper presented at the 31st symposium on Molecular Spectroscopy, Columbus, Ohio

Hameed S. (1974), Atm. Envir. 8, 555

Hamill P. (1975), J. Aerosol Sci. 6, 475

Hansen D.A., Atkinson R., Pitts J.N., Jr., (1975) J. Phys. Chem. 79, 1763
Hanst P.L. and Calvert J.G. (1959), J. Phys. Chem. 63, 71
Harris G.W. and Wayne R.P. (1975), J. Chem. Soc. Faraday I, 71, 610
Hartley E.M. and Matteson M.J. (1975), Ind. Eng. Chem., Fund. 14, 67
Hayon E., Treinin A., Wilf J. (1972), J. Am. Chem. Soc. 94, 47
Hecht T.A., Seinfeld J.H., Dodge M.C. (1974), Envir. Sci. Techn. 8, 327
Heicklen J. (1968), Adv. Chem. Ser. 76, 23
Heicklen J. and Cohen N. (1968), Adv. Photochem. 5, 157
Heicklen J., Westberg K., Cohen N. (1969), Cent. Air. Envir. Stud.

Penn State Univ. Rep. 115-69

Heicklen J. and Luria M. (1975), Int. J. Chem. Kin. Symp. 1, 567

Heicklen J. (1976a), paper presented at the 12th Informal Conference on Photochemistry, Washington, D.C.; for a more elaborate description of this proposal see Heicklen J. (1976b)

Heicklen J. (1976b), "Atmospheric Chemistry", Academic Press, New York Heisler S., Friedlander S.K., Husar R.B. (1973), <u>Atm. Envir. 7</u>, 633 Hellner C. and Keller R.A. (1972), <u>J. Air Poll. Contr. Assoc. 22</u>, 959 Hidy G.M. (1973), paper presented at the Symposium on Fundamental

Chemical Basis of Reactions in the Atmosphere, Battelle Summer Inst., Seattle, Wash.

Hidy, G.M. and Burton C.S. (1975), Int. J. Chem. Kinet. Symp. 1, 509
Hillier I.H. and Saunders V.R. (1971), Mol. Phys. 22, 193
Himmelblau D.M. and Bobb A.L. (1958), J. Am. Inst. Chem. Eng. 4, 143
Hirose H., Yamanaka S., Kawai S. (1975), Chemosphere, 47
Hochanadl C.J., Ghormley J.A., Ogren P.J. (1972), J. Chem. Phys. 56, 4426
Holty J.G. (1973), Arctic 26, 292

Huie R.E. and Herron J.T. (1975), Int. J. Chem. Kin. Symp. 1, 165 Huntziker H.E. and Wendt H.R. (1976), J. Chem. Phys. 64, 3488 Huntziker H.E. (1976), paper presented at the 12th Informal Conference on Photochemistry, Washington, D.C. Husar J.D., Husar R.B., Stubits P.K. (1975), Anal. Chem. 47, 2062 Husar R.B. and White W.H. (1976), Atm. Envir. 10, 199 Husar R.B., Gillani N.V., Husar J.D. (1976), paper presented at the Symposium on Aerosol Science and Technology at the 82nd National Meeting of AlChE, Atlantic City, N.J. Jackson G.E. and Calvert J.G. (1971), J. Am. Chem. Soc. 93, 2593 Japar S.M. and Niki H. (1975), J. Phys. Chem. 79, 1629 Jayanty R.K.M., Simonaitis R., Heicklen J. (1974), Atm. Envir. 8, 1288 Jayanty R.K.M., Simonaitis R., Heicklen J. (1976), J. Phys. Chem. 80, 433 Jeffries H.E. and Saeger M. (1976), Envir. Sci. Techn. 10, 936 Jeffries H., Fox D., Kamens R. (1976a), Envir. Sci. Techn. 10, 1006 Jeffries H., Fox D., Kamens R. (1976 b), J. Air Poll. Contr. Ass. 26, 480 Jenkins T.F., Murmann R.P., Brockett B.E. (1975), U.S. Army Cold Regions Research and Engineering Laboratory, Special Report # 225 Johnston H.S. and Dev Jain K. (1960), Science 131, 1523 Johnston H.S. and Graham R. (1973), J. Phys. Chem. 77, 62 Johnston H.S. and Graham R. (1974), Can. J. Chem. 52, 1415 Johnston H.S., Chang S.-G., Whitten G. (1974), J. Phys. Chem. 78, 1 Johnston H.S. (1974), Adv. Envir. Sci. Technol. 4, 263 Johnstone H.F. and Coughanowr D.R. (1958), Ind. Eng. Chem. 50, 1169 Johnstone H.F. and Moll A.J. (1960), Ind. Eng. Chem. 52, 861 Jordan H. and Penzhorn R.-D. (1975), Ber. Bunsenges. 79, 266

Jost D. (1974), Tellus 26, 206

Judeikis H.S. and Siegel S. (1973), Atm. Envir. 7, 619
Junge C.E. and Ryan T.G. (1958), Quart. J. Roy. Meteorol. Soc. 84, 46
Kasahara M. and Takahashi K. (1976), Atm. Envir. 10, 475
Katz M. (1950), Anal. Chem. 22, 1040
Keeling C.D. (1970), Proc. Am. Phil. Soc. 114, 10
Kellog W.W., Cadle R.D., Allen E.R., Lazrus A.L., Martell E.A. (1972)

Science 175, 587

Kiang C.S., Stauffer D., Mohnen V.A. (1973), <u>Nature, Phys. Sci.</u> 244, 53
Kopczynski S.L. and Altshuller A.P. (1962), <u>Int. J. Air Wat. Poll.</u> 6, 133
Kummler R.H. and Bortner M.H. (1970), <u>J. Geophys. Res.</u> 75, 3115
Kurylo M.J. (1973), <u>Chem. Phys. Lett.</u> 23, 467
Landreth R., De Pena R.G., Heicklen J. (1974), <u>J. Phys. Chem.</u> 78, 1378

- Landreth R., De Pena R.G., Heicklen J. (1975) Center for Air Environment Studies, Penn State University, CAES Publication No. 391-75
- Leighton P.A. (1961), "Photochemistry of Air Pollution", Academic Press, New York
- Lesclaux R., Van Khe P., Soulignac J.C., Joussot-Dubien J. (1975), paper presented at the VIII International Conference on Photochemistry, Edmonton, Alberta
- Levine S.Z and Kaufman F. (1974), "Radiative Lifetimes of NO₂ and SO₂", paper presented at the 57th Canadian Chemistry Conference, Chem. Inst. of Canada, Regina, Saskatchewan.
- Levine S.Z. and Calvert J.G. (1976), private communication to J.W. Bottenheim.

Levine S.Z. and Calvert J.G. (1977), to be submitted.

Levy A., Drewes D.R., Hales J.M. (1976), "SO₂ oxidation in plumes: a review and assessment of relevant mechanistic and rate studies",

U.S. Environmental Protection Agency, Report EPA-450/3-76-022 Levy II H. (1972), <u>Planet Space Sci.</u> 20, 919 Levy II H. (1974), <u>Adv. Photochem.</u> 9, 349 Likens G.E. and Bormann F.H. (1974), <u>Science 184</u>, 1176 Likens G.E. (1976), <u>Chem. Eng. News 54(48-Nov.</u> 22), 29 Lillian D. (1972), <u>Adv. Chem. Series 113</u>, 211 Lin M.J. and Lunsford J.H. (1975), <u>J. Phys. Chem.</u> 79, 892 Lindley D.D. (1976), "Ab-initio Calculations on Sulfur Dioxide",

M.S. Thesis, the Ohio State University, Columbus, Ohio Liou K.-N and Sasamori T. (1975), <u>J. Atm. Sci. 32</u>, 2166 Liu B.Y.H., Berglund R.N., Agarwal J.K. (1974a), <u>Atm. Envir. 8</u>, 717 Liu B.Y.H., Whitby K.T., Pui D.Y.H. (1974b), <u>J. Air Poll. Contr. Ass. 24</u>, 1067 Liu S.C., Cicerone R.J., Donahue T.M., Chameides W.L. (1976), <u>Geophys</u>.

Res. Lett. 3, 157

Lloyd A.C. (1974), Int. J. Chem. Kinet. 6, 169

Lloyd A.C., Darnall K.R., Winer A.N., Pitts J.N., Jr. (1976),

J. Phys. Chem. 80, 789

Lobova M.V., Epifanov V.S., Smyslov N.I. (1973), <u>Z. Prikl. Khim.</u> <u>46</u>, 1334 Lonneman W.A., Bufalini J.J., Seila R.L. (1976), <u>Envir. Sci. Techn.</u> <u>10</u>, 374 Low M.J.D., Goodsel A.J., Takezawa N. (1971), <u>Envir. Sci. Techn.</u> <u>5</u>, 1191 Luria M. and Heicklen J. (1974), <u>Can. J. Chem.</u> <u>52</u>, 3451 Luria M., De Pena R.G. Olszyna K.J., Heicklen J. (1974a), <u>J. Phys. Chem.</u> <u>78</u>, 325 Luria M., Olszyna K.J., DePena R. G., Heicklen J. (1974b), <u>J. Aerosol Sci</u>.

Lusis M.A. and Wiebe H.A. (1976), Atm. Envir. 10, 793

Matteson M.J., Stöber W., Luther H. (1969), Ind. Eng. Chem. Fundam. 8, 677

McCollister G.M. and Wilson K.R. (1975), Atm. Envir. 9, 417

McConnel J.C. and McElroy M.B. (1973), J. Atm. Sci. 30, 1465

McConnel J.C. (1973), J. Geophys. Res. 78, 7812

McElroy M.B., Elkins J.W., Wofsy S.C., Yung Y.L. (1976), Rev. Geophys.

Space Phys. 14, 143

McJilton C., Frank R., Charlson R. (1973), Science 182, 503

McJilton C., Frank R., Charlson R. (1976), <u>Am. Rev. Respir. Dis. 113</u>, 163 McKay H.A.C. (1971), Atm. Envir. 5, 7

McLaren E., Yencha A.J., Kushnir J.M., Mohnen V.A. (1974) Tellus 26, 291

McNelis D.N., Ripperton L.A., Wilson W.E., Jr., Hanst P.L., Gay B.W., Jr. (1975),

in "Removal of Trace Contaminants from the Air", ACS Symposium Series

17, 187

Meagher J.F. and Heicklen J. (1976), <u>J. Phys. Chem.</u> <u>80</u>, 1645 Mendenhall D., Golden D.M., Benson S.W. (1975), <u>Int. J. Chem. Kinet.</u> <u>7</u>, 725 Miller D.F. Levy A., Pui D.Y.H., Whitby K.T., Wilson W.M., Jr. (1976),

J. Air Poll. Contr. Ass. 26, 576

Miller J.M. and De Pena R.G. (1972), J. Geophys. Res. 77, 5905
Mirabel P. and Katz J.L. (1974), J. Chem. Phys. 60, 1138
Morris E.D., Jr., and Niki H. (1971a), J. Chem. Phys. 55, 1992
Morris E.D., Jr., and Niki H. (1971b), J. Phys. Chem. 75, 3640
Murthi K.S., Harrison D., Chan R.K. (1971), Envir. Sci. Techn. 5, 776
Nair P.V.N. and Vohra K.G. (1975), J. Aerosol Sci. 6, 265
Nash T. (1970), J. Chem. Soc. (A), 3023

Newman L., Forrest J., Manowitz B. (1975a), Atm. Envir. 9, 959 Newman L., Forrest J., Manowitz B. (1975b), Atm. Envir. 9, 969 Nguyen Y.V. and Phillips C.R. (1975), Chemosphere, 125 Nicolet M. (1974), Can. J. Chem. 52, 1381 Nieboer H. (1975), private communication to J.W. Bottenheim. Nieboer H. and Van Ham J. (1976), Atm. Envir. 10, 115 Nieboer H., Carler W.P.L., Lloyd A.C., Pitts J.N., Jr. (1976), Atm. Envir. 10, 731 Niki H., Daby E.E., Weinstock B. (1972), Adv. Chem. Ser. 113, 16 Niki H., Wu C.H., Morris E.D., Jr. (1973), J.Phys. Chem. 77, 2507 Niki H., Maker P., Savage C., Breitenbach L. (1976a), paper presented at the 12th Informal Conference on Photochemistry, Washington, D.C. Niki H., Maker P., Savage C., Breitenbach L. (1976b) paper ENVT 84, presented at the Centennial Meeting of the ACS, New York City, N.Y. Nojima K., Eukaya K., Fukui S., Kanno S. (1974), Chemosphere, 247 Novakov T., Mueller P.K., Alcocer A.E., Otvos J.W. (1972), J. Colloid

Interf. Sci. <u>39</u>, 225

Novakov T., Chang S.G., Harker A.B. (1974), Science 186, 259

O'Brien R.J., Holmes J.R., Bockian A.H. (1975a), <u>Envir. Sci. Techn. 9</u>, 568 O'Brien R.J., Crabtree J.H., Holmes J.R., Hoggan M.C., Backian A.H. (1975b), <u>Envir. Sci. Techn. 9</u>, 577

Oden S. (1976), in Proceedings of the First International Symposium on Acid Precipitation and the Forst Ecosystem, Columbus, Ohio; USDA Forest Service, General Technical Report NE-23

Okuda S., Rao T.N., Slater D.H., Calvert J.G. (1969), J. Phys. Chem. 73, 4412

Olszyna K.J., De Pena R.G., Luria M., Heicklen J. (1974),

J. Aerosol Sci. 5, 421

Olszyna K.J., De Pena R.G., Heicklen J. (1976), Int. J. Chem. Kinet. 8, 357

O'Neal H.E. and Blumstein C. (1973), Int. J. Chem. Kinet. 5, 397

OSCHRTF (1974), "Alberta Oil Sands Climatological and Meteorological

Research", Conservation and Utilization Committee, Oil Sands Climatological

and Hydrological Research Task Force.

Osif T.L. and Heicklen J. (1976), J. Phys. Chem. 80, 1526

Overend R.P., Paraskevopoulos G., Cvetanovic R.J. (1975), Can. J. Chem. 53, 3374 Overend R.P., Paraskevopoulos G., Black C. (1976), J. Chem. Phys. 64, 4149

Pastrana A.V. and Carr R.W. (1975), J. Phys. Chem. 79, 765

Paul R.C., Arora C.L., Malhotra K.C. (1972), Indian J. Chem. 10, 94

Payne W.A., Stief L.J., Davis D.D. (1973), J. Am. Chem. Soc. 95, 7615

Penkett S.A., Jr. (1972), Nature, Phys. Sci. 240, 105

Penkett S.A., Jr., and Garland J.A. (1974), Tellus 26, 284

Penzhorn R.-D. and Güsten H. (1972), Z. Naturforsch. 27a, 1401

Penzhorn R.-D., Stieglitz L., Filby W.G., Günther K. (1973), <u>Chemosphere</u>, 111
Penzhorn R.-D., Filby W.G., Güsten H. (1974a), <u>Z. Naturforsch. A29</u> 1449
Penzhorn R.-D., Güsten H., Schurath U., Becker K.H. (1974b), <u>Envir. Sci.</u>
Techn. 8, 907

Penzhorn R.-D. and Filby, W.G. (1975), <u>J. Photochem</u>. <u>4</u>, 91 Penzhorn R.-D., Filby W.G., Gunther K., Stieglitz L. (1975), <u>Int. J. Chem</u>. <u>Kinet. Symp. 1</u>, 611

Perner D., Ehhalt D.H., Pätz H.W., Platt U., Röth E.P., Volz A. (1976),

Geophys. Res. Lett. 3, 466

Perry R.A., Atkinson R., Pitts J.N., Jr. (1976), <u>J. Chem. Phys. 64</u>, 3237
Peterson J.T. (1976), "Calculated Actinic Flukes (290-700 nm) for air
pollution photochemistry applications", U.S. Environmental Protection
Agency, Publication EPA - 600/4-76-025

Pierotti D. and Rasmussen R.A. (1976), Geophys. Res. Lett. 3, 265
Pitts J.N., Jr. and Finlayson B.J. (1975), Angew. Chem. Int. Ed. 14, 1
Pitts J.N., Jr., Winer A.M., Darnall K.R., McAfee J.M., Carter W.P.,
Lloyd A.C., Atkinson R., Breuer G.M., Hansen D.A. (1975), paper
presented at the 8th International Conference on Photochemistry,
Edmonton, Alberta

Rasmussen K.H., Taheri M., Kabel R.L. (1975), <u>Water, Air, Soil Poll. 4</u>, 33 Reid W.T. (1970), <u>J. Eng. Power Trans. ASME, A92</u>, 11 Reinders W. and Vles S.I. (1925), <u>Rec. Trav. Chim., 44</u>, 16 Renzetti N.A. and Doyle D.J. (1960), <u>Int. J. Air Poll. 2</u>, 327 Richards J.R., Fox D.L., Reist P.C. (1976), <u>Atm. Envir. 10</u>, 211 Ripperton L.A., Sickles J.E., Eaton W.C., Decker C.E., Bach W.D. (1975),

in "Removal of Trace Contaminants from the Air", <u>ACS Symposium Series 17</u>,174 Roberts P.T. and Friedlander S.K. (1975), <u>Envir. Health Persp. 10</u>, 103 Robinson E. and Robbins R.C. (1970), <u>J. Air Poll. Contr. Assn. 5</u>, 303 Rubino R.A., Bruckman L., Magyar J. (1976), <u>J. Air Poll. Contr. Ass. 26</u>, 972 Ruiz Diaz R., Selby K., Waddington D.J. (1975), <u>J. Chem. Soc. Perkin II</u>, 758 Sander S.P. and Seinfeld J.H. (1976), <u>Envir. Sci. Techn. 10</u>, 1114 Scargill D. (1971), <u>J. Chem. Soc. A</u>, 2461

Schmittkunz H. (1963), Dissertation of the Naturwissen schaftlichen

Fakultät, University of Frankfurt/Main, cited by Barrie and Georgii (1976) Schuetzle D., Crittenden A.L., Charlson R.J. (1973), J. Air Poll. Contr.

Ass. 23, 704

Schuetzle D., Cronn D., Crittenden A.L., Charlson R.J. (1975),

Envir. Sci. Techn. 9, 838

Schulten H.-R and Schurath U. (1975a), J. Phys. Chem. 79, 51

Schulten H.-R and Schurath U. (1975b), Atm. Envir. 9, 1107

Schwartz W. (1974), U.S. Environmental Protection Agency Report EPA-650/3-74-011

Scott W.D. and Hobbs P.V. (1967), J. Atm. Sci. 24, 54

Scott W.D. and Lamb D. (1970), J. Am. Chem. Soc. 92, 3943

Sehmel G.A. (1971), J. Colloid Interf. Sci. 37, 891

Sehmel G.A. (1973), J. Aerosol Sci. 4, 125

Seinfeld J.H. and Ramabhadran T.E. (1975), Atm. Envir. 9, 1091

Selby K. ani Waddington D.J. (1975), J. Chem. Soc. Perkin II, 1715

Shen C.-H. and Springer G.S. (1976), Atm. Envir. 10, 235

snirai T., Hamada S., Takahashi H., Ozawa T. (1962), <u>Kogyo-Kagaku Zasshi 65</u>, 1906 Sidebottom H.W., Badcock C.C., Calvert J.G., Rabe B.R., Damon E.K. (1971),

J. Am. Chem. Soc. 93, 3121

Sidebottom H.W., Badcock C.C., Jackson G.E., Calvert J.G., Reinhardt G.W.,

Damon E.K. (1972), Envir. Sci. Techn. 6, 72

Sie B.K.T., Simonaitis R., Heicklen J. (1976), Int. J. Chem. Kinet. 8, 99

Sillen L.G. (1964), "Stability Constants of Metal-Ion Complexes,

Section I - Inorganic Ligands", 2nd Edn., Chem. Soc. (London),

Special Publications No. 17

Simonaitis R. and Heicklen J. (1974a), <u>J. Phys. Chem</u>. <u>78</u>, 653 Simonaitis R. and Heicklen J. (1974b), <u>J. Phys. Chem</u>. <u>78</u>, 2417 Simonaitis R. and Heicklen J. (1976), J. Phys. Chem. <u>80</u>, 1

Singleton D.L. and Cvetanovic R.J. (1976). <u>J. Am. Chem. Soc</u>. <u>98</u>, 6812 Skotnicki P.A., Hopkins A.G., Brown C.W. (1976), <u>J. Phys. Chem</u>. <u>79</u>, 2450 Slagle I.R., Gilbert J.R., Graham R.E., Gutman D. (1975), <u>Int. J. Chem</u>.

Kinet. Symp. 1, 317

Smith B.M., Wagman J., Fish B.R. (1969), Envir. Sci. Techn. 3, 558
Smith I.W.M. and Zellner R. (1975), Int. J. Chem. Kinet. Symp. 1, 341
Smith J.P. and Urone P. (1974), Envir. Sci. Techn. 8, 742
Smith P.P. and Spicer L.D. (1975), Chemosphere, 131
Smith R., De Pena R.G., Heicklen J. (1975), J. Colloid Interf. Sci. 53, 202
Smith R.A. (1975), "Comments and Observations upon the Major Deficiencies
in Syncrude Canada Ltd. Environmental Impact Assessment, Volumes 1-4",
report to the Official Opposition, Alberta Legislature, by Northern
Environmental Consultants, Edmonton, Alberta

Spicer C.W., Miller D.F., Levy A. (1974), Envir. Sci. Techn. 8, 1028

Spicer C.W. (1975), paper ENVI 037, presented at the First Chemical Congress of the North American Congress, Mexico City

Stauffer D., Mohnen V.A., Kiang C.S. (1973), <u>J. Aerosol Sci</u>. <u>4</u>, 461 Stedman D.H., Morris E.D., Jr., Daby E.E., Niki H., Weinstock B. (1970),

paper presented at 160th National Meeting of the ACS, Chicago, Ill. Stedman D.H. and Jackson J.O. (1975), <u>Int. J. Chem. Kinet, Symp. 1</u>, 493 Stedman D.H., Cicerone R.J., Chameides W.L., Harvey R.B. (1976),

J. Geophys. Res. 81, 2003

Stephens E.R. (1969), Adv. Envir. Sci. Techn. 1, 119
Stephens N.T. and McCaldin R.O. (1971), Envir. Sci. Techn. 5, 615
Stockburger III L., Braslavsky S., Heicklen J. (1973), J. Photochem. 2, 15
Stockburger III L. and Heicklen J. (1976), Atm. Envir. 10, 51

Stopperka K. and Kilz F. (1968), <u>Z. Chemie 8</u>, 435
Stuhl F. (1973), <u>J. Chem. Phys. 59</u>, 635
Sze N.D. and Rice H. (1976), <u>Geophys. Res. Lett. 3</u>, 343
Takahashi K., Kasahara M., Itoh M. (1975), <u>J. Aerosol Sci. 6</u>, 45
Tanner R.L. and Newman L. (1976), <u>J. Air Poll. Contr. Ass. 26</u>, 737
Tiao G.C., Box G.E.P., Hamming W.J. (1975), <u>J. Air Poll. Contr. Ass. 25</u>, 260
Timmons R.B. (1970), <u>Photochem. Photobiol</u>. 12, 219
Titoff A. (1903), <u>Z.Phys. Chem. 45</u>, 641
Toon O.B. and Pollack J.B. (1973), <u>J. Aeroker J.F. (1968)</u>, <u>Envir. Sci. Techn. 2</u>, 611
Urone P., Lutsep H., Noyer C.M., Parcher J.F. (1968), <u>Envir. Sci. Techn. 2</u>, 611
Urone P., Schroeder W.H., Miller S.R. (1970), in "Proceedings of the 2nd
Clean Air Conference", Washington, D.C.
Vance J.L. and Peters L.K. (1976a), <u>J. Atm. Sci. 33</u>, 1824
Vance J.L. and Peters L.K. (1976b), <u>Ind. Eng. Chem., Fund. 15</u>, 202

Van den Heuvel A.P. and Mason B.J. (1963), Quart. J. Roy. Meteorol. Soc.

<u>89</u>, 271

Van Duuren B.L. (1969), Ann. N.Y. Acad. Sci. 163, 633

Wadt W.R. and Goddard III W.A., (1975), <u>J. Am. Chem. Soc</u>. <u>97</u>, 3004 Wampler F.B., Horowitz A., Calvert J.G. (1972), <u>J. Am. Chem. Soc</u>. <u>94</u>, 5523 Wampler F.B., Otsuka K., Calvert J.G., Damon E.K. (1973), Int. J. Chem.

Kinet. 5, 669

Wampler F.B. (1976a), Int. J. Chem. Kinet. 8, 935, 945

Wamper F.B. (1976b), Envir. Lett., in press

Wang C.C., Davis L.T., Jr., Wu C.H., Japar S.M., Niki H., Weinstock B.

(1975), <u>Science</u> 189, 797

Wang J.C and Himmelblau D.M. (1964), J. Am. Inst. Chem. Eng. 10, 574
Warneck P. (1974), Tellus 26, 39
Washida N., Martinez R.I., Bayes K. (1974), Z. Naturforsch. A29, 251
Weaver J., Meagher J., Shortridge R., Heicklen J. (1975), J. Photochem. 4, 341
Weber E. (1970), J. Geoph. Res. 75, 2909
Went F.W. (1960), Proc. Nat. Acad. Sci. 46, 212
Westberg K. and Cohen N. (1969), "The Chemical Kinetics of Photochemical Smog as Analyzed by Computer", Report No. ATR-70(8107)-1, Aerospace Corporation, El Secundo, Cal.
Westberg H.H. and Rasmussen R.A. (1972), Chemosphere, 163
Westenberg A.A. and De Haas N. (1975a), J. Chem. Phys. 63, 5411
Westenberg A.A. and De Haas N. (1975b), J. Chem. Phys. 62, 725
Whelpdale D.M. and Shaw R.W. (1974), Tellus 26, 196

Whitbeck M.R. (1975), private communication to J.W. Bottenheim.

Whitbeck M.R., Bottenheim J.W., Levine S.Z., Calvert J.G. (1976),

paper presented at the 12th Informal Conference on Photochemistry, Washington, D.C.

Whitby K.T., Husar R.B., Liu B.Y.H. (1972), <u>J. Colloid Interf. Sci. 39</u>, 211 Whitby K.T., Clark W.E., Marple V.A., Sverdrup G.M., Sem G.M., Willeke K.,

Liu B.Y.H., Pui D.Y.H. (1975), Atm. Envir. 9, 463

Whitby K.T. (1975) private communication to J.W. Bottenheim.

Whitby K.T. and Cantrell B. (1975), in "Proceedings of the International Conference on Environmental Sensing and Assessment (ICESA), Las Vegas, Nev. (IEE Catalogue No. 75-CH 1004-1 ICESA 2 pp.29-1)

Whitby K.T., Cantrell B.C., Husar R.B., Gillani N.V., Anderson J.A., Blumenthal D.L., Wilson W.E., Jr., (1976) paper presented at the Centennial Meeting of the ACS, New York City, N.Y.

Whitby K.T. (1977) private communication to J.W. Bottenheim.

- White W. H., Blumenthal D.L., Anderson J.A., Husar R.B., Wilson W.E., Jr. (1976), paper presented at the International Conference on Photochemical Oxidant Pollution and Its Control, Raleigh, N.C.
- White W.H., Anderson J.A., Blumenthal D.L., Husar R.B., Gillani N.V.,

Husar J.D., Wilson W.E., Jr. (1976), <u>Science</u> 194, 187

Wiebe H.A. and Heicklen J. (1973), J. Am. Chem. Soc. 95, 1

Wiebe H.A., Villa A., Hellman T.M., Heicklen J. (1973), <u>J. Am. Chem. Soc</u>. 95, 7

Willeke K. and Whitby K.T. (1975), <u>J. Air Poll. Contr. Ass</u>. <u>25</u>, 529 Williamson S.J. (1973), "Fundamentals of Air Pollution", Addison-

Wesley Publ. Co., Reading, Mass.

Wilson W.E., Jr. and Levy A. (1970), <u>J. Air Poll. Contr. Assoc.</u> 20, 385 Wilson W.E., Jr. (1972), <u>J. Phys. Chem. Ref. Data</u> 1, 535

Wilson W.E., Jr. Dodge M.C., McNelis D.N. (1974), paper presented at

the Div. of Environmental Chemistry, ACS Meeting, Los Angeles, Cal.

Wilson W.E., Jr., Charlson R.J., Husar R.B., Whitby K.T., Blumenthal D.L.

(1976), paper 76-30-06 presented at the 69th Annual Meeting of the

Air Poll. Contr. Ass., Portland, Ore.

Wilson W.E., Jr. (1976) cited in Wilson et al (1976)

Winer A.M., Lloyd A.C., Darnell K.R., Pitts J.N., Jr. (1976),

- 157 -

J. Phys. Chem. 80, 1635

Wood W.P., Castleman A.W., Jr., Tang I.N. (1975), J. Aerosol Sci. 6, 367

Yue G.K., Kiang C.S., Mohnen V.A., Danielsen E. (1975), Interim

report to National Science Foundation from State University of New York, cited in Levy et al (1976)

Yue G.K., Mohnen V.A., Kiang C.S. (1976), in Proceedings of the first International Symposium on Acid Precipitation and the Forest Ecosystem, Columbus, Ohio; USDA Forest Service General Technical Report NE-23
Zellner R. and Smith, I.W.M., (1974), <u>Chem. Phys. Lett.</u> <u>26</u>, 72
Zellner R. and Steinert W. (1976), <u>Int. J. Chem. Kinet.</u> <u>8</u>, 397

6. APPENDIX

In this appendix are reproduced two tables showing the reactions and rate constants that have been used by us (Bottenheim et al. 1976c) to estimate the effect of solar altitudes and temperature on a general oxidant forming air pollution mixture. Table I shows average specific absorption rates for photochemical reactions as a function of the season. Table II shows the non photochemical reactions, where applicable as functions of temperature. Many of the rate constants in Table II were estimated, as described in detail in the original paper. Table I. Specific Absorption Rates a of Photochemical Reactions.

		Winter	Spring	Summer	Autumn
Pl.	$NO_2 + hv \rightarrow NO + Q$.098	, 33	.48	,33
P2.	$HNO_2 + hv \rightarrow OH + NO$.0057	.019	.028	.020
P3.	$HNO_3 + hv \rightarrow OH + NO_2$	2×10^{-7}	9x10 ⁻⁶	3x10 ⁻⁵	1x10 ⁻⁵
P4.	$H_2 co + hv \rightarrow H_2 + co$	7.7x10 ⁻⁴	3x10 ⁻³	4.9×10^{-3}	3.1x10 ⁻³
₽5.	→ H + HCO	2×10^{-4}	9,4x10 ⁻⁴	1.7×10^{-3}	1.0x10 ⁻³
P6.	$CH_3CHO + hv \rightarrow CH_4 + CO$	2x10 ⁻⁶	1.2x10 ⁻⁵	2.4×10^{-5}	1.3x10 ⁻⁵
P7.	→ CH ₃ + HCO	3.4x10 ⁻⁵	2.4×10^{-4}	4.8×10^{-4}	2.7x10 ⁻⁴
P8.	$O_3 + hv \rightarrow O(^1D) + O_2$	1.1x10 ⁻⁶	1.1x10 ⁻⁴	6.3 _{x10} -4	2x10 ⁻⁴
P9.	$\rightarrow O(^{3}P) + O_{2}$	2.6x10 ⁻³	7.3×10^{-3}	1 ×10 ⁻²	7.7x10 ⁻³
P10.	$CH_3ONO + hv \rightarrow CH_3O + NO$	1.8x10 ⁻²	6.2×10^{-2}	9.2×10^{-2}	6. ³ x10 ⁻²
P11.	$H_2O_2 + hv \rightarrow 20H$	2.1x10 ⁻⁴	8.4x10 ⁻⁴	1.4×10^{-3}	8.8x10 ⁻⁴

a. in min⁻¹

No,	Reaction	. Rate constant
1	$0_3 + 0 \longrightarrow 20_2$	$2.8 \times 10^4 \exp(-2300/T)$
2	$o_3 + HO \longrightarrow o_2 + HO_2$	\therefore 2.4 x 10 ³ exp(-1000/T)
3	$0_3 + HO_2 \longrightarrow 2O_2 + HO$	$1.5 \times 10^2 \exp(-1250/T)$
4	$o_3 + NO \longrightarrow o_2 + NO_2$	5.1 x $10^3 \exp(-1533/T)$
5	$O_3 + NO_2 \longrightarrow O_2 + NO_3$	$1.8 \times 10^2 \exp(-2450/T)$
6	$o_3 + c_4 H_8 \longrightarrow c_4 H_8 O_3$	l.l x 10 ² exp(-1100/T)
7	$0 + 0_2 + M \longrightarrow 0_3 + M$	2.4 x $10^{-6} \exp(510/T)$
8	$0 + NO + M \longrightarrow NO_2 + M$	$1.1 \times 10^{-4} \exp(940/T)$
9	$0 + NO_2 \longrightarrow O_2 + NO$	2.5 x $10^4 \exp(-300/T)$
10	$0 + NO_2 \xrightarrow{M} NO_3$	2.9 x 10^4 (2nd order limit)
11	$0 + CH_2 0 \longrightarrow HCO + HO$	2.5 x $10^4 \exp(-1400/T)$
12	$0 + CH_3CHO \xrightarrow{0}{2} CH_3COO_2 + HO$	4.9 x10 ⁴ exp(-1400/T)
13	$O + C_4 H_8 \longrightarrow C_4 H_8 O$ (epoxide)	6.8 x 10 ³
14	$0 + C_4 H_8 \xrightarrow{2} C_4 H_8 O_3$	2.7×10^4
15	$O(^{1}D) + H_{2}O \longrightarrow 2HO$	5.1 x 10 ⁵
16	0(¹ D) + M → 0 + M	8.5×10^4

Table II Nonphotochemical Reactions and their Rate Constants^a

. -

Table II (continued)

17 2NO + O₂ → 2NO₂ 1.2 × 10⁻¹⁰ exp (530/T)
18 NO + NO₂ + H₂O → 2HONO 2.2 × 10⁻⁹
19 NO + NO₃ → 2NO₂ 1.3 × 10⁴
20 NO + HO
$$\stackrel{M}{\rightarrow}$$
 HONO 8.2 × 10³ (2nd order limit)
21 NO + HO₂ → NO₂ + HO 7.3 × 10⁴ exp (-1200/T)
22 NO + CH₃O₂ → NO₂ + CH₃O 4.9 × 10³ exp (-500/T)
23 NO + CH₃O → CH₃ONO 1 × 10²
24 NO + CH₃O $\stackrel{O}{\rightarrow}$ NO + CH₂O + HO₂ 1.7 × 10¹
25 NO + HCOO₂ → NO₂ + HCO₂ 4.9 × 10³ exp (-500/T)
26 NO + HCOO₂ → NO₂ + CH₃CO₂ 4.9 × 10³ exp (-500/T)
27 NO + CH₃COO₂ → NO₂ + CH₃CO₂ 4.9 × 10³ exp (-500/T)
28 NO + CH₃COO₂ → NO₂ + CH₃CO₂ 4.9 × 10³ exp (-3000/T)
29 NO + CH₃COO₂ → NO₂ + CH₃CO 4.9 × 10³ exp (-3000/T)
20 NO + CH₃CHO³ → NO₂ + CH₃CHO 4.9 × 10³
31 NO + CH₃CHO³ → NO₂ + CH₃CHO 4.9 × 10³
31 NO + C₄H₈ (OH) (O₂) → NO₂ + HCOOH
+ CH₃CHO 2.4 × 10³ exp (-500/T)

- 161 -

Table	II (continued)	
33	$NO + C_4H_8(HO_2)(O_2) \longrightarrow NO_2 + C_4H_8(HO_2)$	(0) 2.4 x $10^3 \exp(-500/T)$
34	$NO + C_4 H_8 (CH_3 O)(O_2) \xrightarrow{O_2} NO_2$	
	+ C ₂ H ₄ (CH ₃ O) (O ₂)+CH ₃ CHO	$2.4 \times 10^3 \exp(-500/T)$
35	$NO + C_2H_4(CH_3O)(O_2) \longrightarrow NO_2 + CH_3O +$	
	сн _з сно	4.9×10^3
36	$NO + C_4^{H_8}(CH_3O_2)(O_2) \longrightarrow NO_2$	
	+ CH ₄ H ₈ (CH ₃ O ₂) (O)	2.4 x 10 ³ exp (-500/T)
37	$NO + C_4 H_7(O_2)(O_2) \longrightarrow NO_2 + C_4 H_7(O_2)(O)$	2.4 x $10^3 \exp(-500/T)$
38	$NO_2 + NO_3 \longrightarrow N_2O_5$	5.6 x 10^3 (2nd order limit)
39	$NO_2 + NO_3 \longrightarrow NO + NO_2 + O_2$.	3.4 x 10 ² exp (-1000/T)
40	$NO_2 + HO \longrightarrow HONO_2$	1.2×10^4 (2nd order limit)
41	$NO_2 + HO_2 \longrightarrow HONC + O_2$	4.4×10^{1}
42	$NO_2 + CH_3O \longrightarrow CH_3ONO_2$	4.8×10^2
43	$NO_2 + CH_3 O \longrightarrow HONO + CH_2 O$	4.8×10^{1}
4 <u>4</u>	$NO_2 + HCOO_2 \longrightarrow HCOO_2 NO_2$	4.8×10^2
45	$NO_2 + CH_3COO_2 \longrightarrow CH_3COO_2NO_2$	4.8×10^2
46	$NO_3 + HO_2 \longrightarrow HONO_2 + O_2$	2.5×10^3
47	$NO_3 + CH_2O \longrightarrow HONO_2 + HCO$	$2.4 \times 10^3 \exp(-2250/T)$
48	$NO_3 + CH_3CHO \xrightarrow{2} H \cap NO_2 + CH_3COO_2$	1.2 x 10 ³ exp(-2250/T)

- 162 -

.

٠

49	$NO_3 + C_4H_8 \longrightarrow HONO_2 + C_4H_7$
50 î	$N_2O_5 \longrightarrow NO_2 + NO_3$
51	$N_2O_5 + H_2O \longrightarrow 2HONO_2$
52	$HONO_2 + HO \longrightarrow NO_3 + H_2O$
53	HONO + HO \longrightarrow NO ₂ + H ₂ O
54	$2HONO \longrightarrow NO + NO_2 + H_2O$
55	$CH_4 + HO \xrightarrow{O_2} CH_3O_2 + H_2O$
56	$CH_2O + HO \longrightarrow HCO + H_2O$
57	$CH_2O + HO_2 \longrightarrow HCO + H_2O_2$
58	$CH_3CHO + HO \xrightarrow{O_2} CH_3COO_2 + H_2O$
59	$CH_3CHO + HO_2 \xrightarrow{O_2} CH_3COO_2 + H_2O_2$
60	$H_2O_2 + HO \longrightarrow HO_2 + H_2O$
61	$HO + HO + M \longrightarrow H_2O_2 + M$
62	$HO + HO \longrightarrow H_2O + O$
63	$HO + HO_2 \longrightarrow H_2O + O_2$
64	$HO + CO \xrightarrow{2} CO_2 + HO_2$
65	HO + $C_4H_8 \xrightarrow{2} C_4H_8$ (OH) (O ₂)
66	$HO + C_4H_8 \longrightarrow C_4H_7 + H_2O$
67	HO ₂ + CH ₃ O ₂ > CH ₃ O ₂ H + O ₂

(continued)

Table II

 $7.3 \times 10^3 \exp(-2250/T)$ 3.4 x 10¹⁶ exp(-10600/T)(lst order limit) 2.5×10^{-3} 8.8 x 10² exp(-400/T) 3.1×10^{3} 3.5 x 10³ exp(-4365/T) $3.5 \times 10^3 \exp(-1710/T)$ 2.1×10^4 $1.2 \times 10^3 \exp(-3250/T)$ 2.2×10^4 6.1 x 10² exp(-3250/T) 2.5 x 10⁴ exp(-910/T) 9.1×10^{-3} $1.5 \times 10^4 \exp(-550/T)$ $1.2 \times 10^5 \exp(-500/T)$ 2.1×10^{2} 9.8 x 10⁴ 1.2×10^4 1×10^2

- 163

Table II (montinued)

$$\begin{array}{rcl} 68 & H0_2 + H0_2 \longrightarrow H_20_2 + 0_2 & 4.4 \times 10^4 \exp{(-500/T)} \\ 69 & H0_2 + HC00_2 \longrightarrow HC00_2 H + 0_2 & 2.1 \times 10^2 \exp{(-500/T)} \\ 70 & H0_2 + CH_3C00_2 \longrightarrow CH_3C00_2 H + 0_2 & 2.1 \times 10^2 \exp{(-500/T)} \\ 71 & H0_2 + C_4H_8 \longrightarrow C_4H_7 \cdot H_20_2 & 3.8 \times 10^3 \exp{(-1100/T)} \\ 72 & H0_2 + C_4H_8 \longrightarrow C_4H_7 \cdot H_20_2 & 3.8 \times 10^3 \exp{(-2810/T)} \\ 73 & CH_30_2 + CH_30_2 \longrightarrow CH_30_2 H + \cdot CH_20_2 \cdot & 1 \times 10^2 \\ 74 & CH_30_2 + CH_30_2 \longrightarrow CH_30_2 H + \cdot CH_20_2 \cdot & 1 \times 10^2 \\ 75 & CH_30_2 + HC00_2 \longrightarrow CH_30_2 + HC0_2 + 0_2 & 3.9 \times 10^1 \\ 76 & CH_30_2 + CH_3C0_2 \longrightarrow CH_30_2 + CH_30_2 H & 7.8 \times 10^2 \exp{(-1050/T)} \\ 78 & CH_30_2 + C_4H_8 \longrightarrow C_4H_7 \cdot + CH_30_2 H & 7.8 \times 10^2 \exp{(-3000/T)} \\ 79 & CH_30_2 + C_4H_8 \longrightarrow C_4H_7 \cdot + CH_30_2 H & 7.8 \times 10^2 \exp{(-3000/T)} \\ 80 & CH_30_2 + C_4H_8 \longrightarrow C_4H_7 \cdot + CH_30H & 7.6 \times 10^2 \exp{(-3300/T)} \\ 81 & CH_30_2 + C_4H_8 \longrightarrow C_4H_7 \cdot + CH_30H & 7.6 \times 10^2 \exp{(-2430/T)} \\ 81 & HC0_2 + 0_2 \longrightarrow HC0_2 + H0_2 & 6.1 \times 10^2 \exp{(-2040/T)} \\ 82 & HC0_2 \longrightarrow HC0_2 + H0_2 & 6.1 \times 10^2 \exp{(-2040/T)} \\ 84 & CH_266 + 0_2 \longrightarrow HC0_2 + H0_2 & 6.1 \times 10^2 \exp{(-2040/T)} \\ 85 & CH_3CHO0_4 + 0_2 \longrightarrow CH_3C0_2 + H0_2 & 3.8 \\ 87 & CH_2C00_2 + CH_2C00_2 - \cdot 2CH_2C0_2 + 0_2 & 3.8 \\ 87 & CH_2C00_2 + CH_2C00_2 - \cdot 2CH_2C0_2 + 0_2 & 3.8 \\ 87 & CH_2C00_2 + CH_2C00_2 - \cdot 2CH_2C0_2 + 0_2 & 3.8 \\ \end{array}$$

- 164 -

88	$HCOO_2 + CH_3COO_2 \longrightarrow HCO_2 + CH_3CO_2 + O_2$	3.8
89	$HCO_2 \xrightarrow{O_2} HO_2 + CO_2$	1.9 x 10 ¹⁵ exp(-3500/T)
90	$HCOO_2NO_2 \longrightarrow HONO_2 + CO_2$	1.9 x 10 ¹³ exp(-2500/T)
91	$\operatorname{CH}_3\operatorname{CO}_2 \xrightarrow{\circ} \operatorname{CH}_3\operatorname{O}_2 + \operatorname{CO}_2$:	6 x 10 ¹⁵ exp(-2500/T)
92	$C_4 H_8 O_3 \longrightarrow CH_3 CHO + CH_3 CH(O_2)$.	1.9 x 10 ¹⁶ exp(-7500/T)
93	$\operatorname{CH}_{3}^{\circ}\operatorname{CH}(O_{2}) \cdot + O_{2} \longrightarrow \operatorname{CH}_{3}^{\circ}\operatorname{CHOO} + O_{2}^{\circ}$	1×10^{4}
94	$CH_3CH(O_2) + O_2 \rightarrow O_3 + CH_3CHO$	2.4 x $10^3 \exp(-500/T)$
95	$\cdot \operatorname{CH}_2 \circ_2^{+} + \circ_2^{-} \rightarrow \operatorname{CH}_2 \circ \circ \circ + \circ_2^{-}$	1×10^{4}
96.	$\cdot CH_2O_2^{+}+O_2^{-} \rightarrow O_3^{-} + CH_2O_2^{-}$	2.4 x 10 ³ exp(-500/T)
97.	$C_4^{H_8}(HO_2)(O) \rightarrow HO + 2CH_3^{CHO}$	1.9 x 10 ¹⁶ exp(-7500/T)
98.	$C_4^{H_8}(CH_3^{O_2})(0) \rightarrow CH_3^{O_2} + 2CH_3^{CHO_2}$	1.9 x 10 ¹⁶ exp(-7500/T)
99.	$C_4^{H_7} \xrightarrow{20_2} C_4^{H_7} [0_2] [0_2]$	3.2 x 10 ¹¹ exp(-5500/T)
100.	$C_4H_7[0_2][0] \rightarrow HCO + CH_2O + CH_3CHO$	$1.9 \times 10^{14} \exp(-2500/T)$

a in units min⁻¹ (1st order), ppm⁻¹ min⁻¹ (2nd order), ppm⁻² min⁻¹ (3rd order); preexponential factors tabulated at 25°C.

7. LIST OF AOSERP REPORTS

1			AOSERP First Annual Report, 1975
2	AF	4.1.1	Walleye and Goldeye Fisheries Investigations in the
			Peace-Athabasca Delta- 1975
3	HE	1.1.1	Structure of a Traditional Baseline Data System
4	VE	2.2	Preliminary Vegetation Survey of the AOSERP Study Area
5	ΗY	3.1	Evaluation of Wastewaters from an Oil Sands Extraction
			Plant
6			Housing for the North - Stackwall System Construction
			Report
7	AF	3.1.1	Synopsis of the Physical and Biological Limnology and
			Fishery Programs within the Alberta Oil Sands Area
8	AF	1.2.1	Impact of Saline Waters upon Freshwater Biota
0	101	2 2	(A Literature Review and Bibliography)
9	ME	3.3	Preliminary Investigation into the Magnitude of Fog
10	π	0.1	Occurrence and Associated Problems in the Uil Sands Area
10	пь	2 I	Studios in the Athebases Oil Sanda Area
1 1	ለፑ	2 2 1	Life Cuales of Same Common Aquatic Incoata of the Athehacae
ΕT	Ar	2	River
12	ME	1.7	Very High Resolution Meteorological Satellite Study of
~~~			Oil Sands Weathen, a Feasibility Study
13	ME	2.3.1	Plume Dispersion Measurements from an Oil Sands Extraction
			Plant
14	HE	2.4	Athabasca Oil Sands Historical Research Project (3 volumes)
			(in preparation)
15	ΗE	3.4	Climatology of Low Level Air Trajectories in the Alberta
			Oil Sands Area
16	ME	1.6	The Feasibility of a Weather Radar near Fort McMurray,
1 -			Alberta
17	AF	2.1.1	A survey of Baseline Levels of Contaminants in Aquatic
10	1757	1 1	Biota of the AUSERP Study Area
18	II X MEZ		Alberta Ull Sands Region Stream Gauging Data(in preparation)
7.2	ME.	4.1	Sulphur Dioxide Concentrations at Ground Level (in preparation)
20	нı	3.1.1	AOSTER Second Annual Benerit 1076 77
22	ਸ਼ੁਸ਼	2 3	Mostri Second Annual Report, 1970-77
~~	L L L L	2.5	Maximization of recurrent inarning and involvement of Area
23	AF	1.1.2	Acute Lethality of Mine Depressurization Water on Trout.
			Perch and Rainbow Trout (in preparation)
24	ME	4.2	Review of Dispersion Models Possible Applications in the
			Alberta Oil Sands Area (in preparation)
25	ME	3.5.1	Review of Pollutant Transformation Processes Relevant to
			the Alberta Oil Sands Area
26	AF	4.5.1	An Interim Report on an Intensive Study of the Fish
			Fauna of the Muskeg River Watershed of Northeastern Alberta
			(in preparation)
	म	'or inform	nation regarding any of these publications of the Alberta
0 <b>i</b> 1	San	ds Enviro	pomental Research Program, please contact the Program Office.
~	A	lberta Oi	11 Sands Environmental Research Program

15th Floor, Oxbridge Place, 9820 - 106 Street,

Edmonton, Alberta, Canada T5K 2J6

Telephone: (403) 427- 3943

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at <a href="http://www.environment.alberta.ca/copyright.html">http://www.environment.alberta.ca/copyright.html</a>. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.