
Mint 709 Capstone Project - Final Report: 
Implementation of a Video-Conferencing Web-
Application using the WebRTC and WebSockets 

APIs within a Local Area Network 

ADEGBAMIGBE, ADEDUROTIMI 

UNIVERSITY OF ALBERTA 

DEPARTMENT OF COMPUTING SCIENCE,  

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

MASTER OF SCIENCE IN INTERNETWORKING 

 



1 

Introduction 

This is a report on the implementation of a video-conferencing web application (LAN-Communicator) 

that enables real-time video communication between a minimum of two and a maximum of four 

clients / peers (with each client / peer being a web-browser with access to a camera and microphone) 

within the same Local Area Network (LAN). The LAN-Communicator application leverages two 

relatively new web technologies, Web Real-Time Communications (WebRTC) and WebSocket. 

WebRTC natively supports video communication sessions between two peers (see Fig. 1 below). 

However, extra logic must be implemented in a WebRTC enabled application in order to allow real-

time video communication between more than two peers (see Fig. 2 below). This extra logic is what 

was implemented in the LAN-Communicator application described in this report. The complete source 

code with installation instructions for the LAN-Communicator application is located at the following 

bitbucket repository: https://bitbucket.org/rotexdegba/mint-709-webrtc-project.   

Figure 1: Basic RTCPeerConnection Topology for a WebRTC audio/video conference session between two peers. 

Figure 2: Mesh Topology for a WebRTC audio/video conference session between four peers. 

Each peer maintains an RTCPeerConnection to each of the other three peers. 

Motivation and Problem Definition 

The web-application described in this report aims to provide a cost-effective video-conferencing 

solution to individuals or organizations that are concerned about the privacy and confidentiality of 

their communication data and have the infrastructure (e.g. adequate network bandwidth, server 

hardware, etc.) to host and support the application within their home or corporate LAN. 

Video-conferencing traffic generated while using this application stays within the network where the 

application is hosted and all traffic is encrypted:  

1. all web-pages and JavaScript code are served over a secure Hypertext Transfer Protocol

(HTTPS) connection,

2. the WebSocket connection between each client and the application’s Signaling Server is also

secured via the use of the WebSocket Secure (WSS) protocol

3. finally, the RTCPeerConnection links used to transmit audio/video streams between peers are

each automatically secured by the WebRTC engine via the use of the Secure Real-time

Transport Protocol (SRTP). This is a feature built into WebRTC.

https://bitbucket.org/rotexdegba/mint-709-webrtc-project


2 

Though video-conferencing solutions like Skype, Google Hangouts, GoToMeeting, WebEx 

Meetings, etc. already exist, most of these solutions involve video-conferencing traffic traveling 

through external networks. Even if all traffic generated by these existing solutions is encrypted there 

is no guarantee that any of the external networks through which the traffic travels will never be 

compromised and these solutions are more susceptible to man-in-the-middle attacks. Hosting such 

an application within one’s own network is far better and helps in accomplishing the goal of having all 

communication data private and confidential as it greatly reduces the risk of malicious third party 

entities eavesdropping on or recording communication data via man-in-the-middle attacks. 

WebRTC is an open standard that is supported by many modern browsers (Google Chrome 23+, 

Google Chrome for Android 29+, Mozilla Firefox 22+, Mozilla Firefox for Android 24+, Opera 18+ and 

Opera Mobile 13+ and a host of others to come in the nearest future). The WebSocket technology is 

also an open standard supported in the earlier mentioned browsers and more. From a software 

developer’s or vendor’s perspective, there is no cost associated with using WebRTC and 

WebSockets to build a video-conferencing application, both technologies are implemented in 

supporting browsers by the browser makers, are free to use (making them very cost-effective options) 

and are constantly being improved upon by browser makers. They both support encryption of traffic 

which also helps in accomplishing the goal of having all communication data private and confidential. 

As at the time of writing this report, the other alternative solutions that exist at the browser level for 

building web-based video-conferencing applications are technologies like Adobe Flash, Microsoft 

Silverlight, Java Applets, etc. which all require the end user to have the appropriate plugin installed 

and enabled in their web-browser. Adobe Flash (which is not supported on most modern mobile 

devices like the iPhone, etc. because of its high CPU usage and battery draining tendencies) requires 

the Adobe Flash Player plugin to be installed in a user’s browser. The client portion of an Adobe 

Flash powered video-conferencing web application must be developed using the Adobe Flex SDK, 

with the code written in the ActionScript programming language. Adobe Flash Builder is Adobe’s 

official development environment that is recommended for building such applications and it is not 

free, it is a paid tool. A complementing server also has to be developed and by the time all these 

efforts are added up, it becomes apparent that developing such an application using an alternative 

technology like Adobe Flash is costlier both timewise and financially and clients using mobile devices 

would not be able to use such an application since Adobe Flash is not available for mobile web-

browsers. Browser plugins (Adobe Flash Player particularly) have also historically been a source of 

security vulnerabilities for web-browsers in which they are installed. In the nearest future, when the 

HyperText Markup Language (HTML5), Cascading Style Sheets (CSS3) and JavaScript browser 

APIs have matured well enough to provide most of the functionality that was previously only available 

via plugins, there will be little or no need for these plugins. Some browsers like Mozilla Firefox will 

soon start requiring click-to-activate approval from users before a website activates the Flash plugin 

for any content.  [1] 

A WebRTC powered application requires less development and deployment (no browser-plugin 

required) effort in comparison to an Adobe Flash based one and is also cheaper to develop (since the 

main cost incurred would be the software-developer’s fee for building the application or no cost if the 

organization already has a software developer on their payroll. An SSL certificate could optionally be 

purchased for a token fee, but a free self-signed SSL certificate would equally be sufficient to support 



3 

secure HTTP and WebSocket connections). The WebRTC based solution also has the advantage of 

being supported in some mobile web-browsers. There is also a growing potential client base as other 

mainstream web-browsers like Safari and Microsoft Edge plan to support WebRTC in the future.  

Commercial video conferencing application solutions that allow organizations to host within their own 

corporate LAN, like the Cisco WebEx Meetings Server and the Skype for Business Server 2015, 

would still involve paying an ongoing monthly / annual usage / license fee (technical support fee may 

be separate) to the application vendor and may even require the purchase of custom hardware for 

hosting such applications. Such solutions are usually based on proprietary technologies (rather than 

on an open standard like WebRTC) and may be difficult to integrate with other software systems a 

client has already invested in and such integration would most likely lead to the client having to pay 

the vendor of the solution in question for custom development. This a far more expensive solution for 

running a video-conferencing application within a LAN, compared to developing and hosting such an 

application with technologies like Adobe Flash or even better, WebRTC. 

The costs (i.e. payment of licensing fees in some cases, the need to purchase development tools and 

greater software development effort) associated with building a video-conferencing web-application 

with non-WebRTC based technologies (like Adobe Flash) and the higher recurring licensing and 

support fees for commercial on-premise hosted video conferencing application solutions (like Skype 

for Business Server 2015), makes WebRTC the most cost-effective and future-proof option for the 

task at hand. 

Background 

WebRTC is a collection of standards, protocols, and JavaScript APIs, the combination of which 

enables peer-to-peer audio, video, and data sharing between browsers (peers). Instead of relying on 

third-party plug-ins or proprietary software, WebRTC turns real-time communication into a standard 

feature that any web application can leverage via a simple JavaScript API. [2] 

WebRTC enabled browsers (peers) provide three major JavaScript APIs that can be used to develop 

web-applications with peer-to-peer audio, video and / or data sharing capabilities: 

● getUserMedia: for getting access to the audio / video stream(s) from the camera(s) and

microphone(s) attached to a client’s device.

● RTCPeerConnection: for establishing, maintaining, monitoring and closing connections between

peers. [3] Each established connection is used to transfer audio and video data between peers.

● RTCDataChannel: represents a network channel which can be used for bidirectional peer-to-peer

transfers of arbitrary data. Every data channel is associated with an RTCPeerConnection, and

each peer connection can have up to a theoretical maximum of 65,534 data channels (the actual

limit may vary from browser to browser). [4]

Fig. 3 is a diagram of how WebRTC is fits inside a web-browser. 

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection


4 
 

 

Figure 3: WebRTC inside a browser. [5] 

WebRTC was chosen for use in the LAN-Communicator application because of some of its benefits 

which are listed below: 

 It is an open standard currently backed by the Internet Engineering Task Force - Real-Time 

Communication in Web-browsers (IETF-RTCWEB) Active Working Group, the World Wide 

Web Consortium (W3C), Google, the Mozilla Foundation, Microsoft, and hopefully Apple in the 

nearest future [6] 

 It is free for developers to use (no need to pay royalties) [6] 

 It has a simple and easy to understand JavaScript API which enables quick application 

development in comparison to other APIs for other platforms / frameworks used to build Real-

Time-Communications (RTC) enabled applications [6] 

 All that is needed on the end-user’s side is a web-browser that supports the WebRTC standard 

(no plugins or extra software needs to be installed by the end-users). The Operating System 

the browser is running on is not relevant. [6] 

 Connection between peers using the RTCPeerConnection API is encrypted; consequently, 

resulting in secure audio / video streams [6] 

 Audio / Video / Data transmission between peers is direct no intermediate server needed most 

of the time (intermediate relay servers may be needed if Network Address Translation (NAT) 

and firewalls make it impossible to establish direct connection between peers; however, this 



5 
 

problem will not affect the LAN-Communicator application since LAN-Communicator is meant 

for use by peers within the same subnet in the same LAN) 

 The technology is constantly being improved upon (the audio and video quality keeps 

improving as supporting browsers are updated) 

 It automatically adapts the rate at which audio and video stream data is sent over the network 

based on the network conditions at each point in time during a WebRTC session [6] 

 It can also interoperate with existing audio and video communication systems like the Public 

Switched Telephone Network (PSTN), Extensible Messaging and Presence Protocol (XMPP) 

based applications, Session Initiation Protocol (SIP) based applications via the use of solutions 

like FreeSwitch (https://freeswitch.org) and the likes [6] 

With WebRTC being the technology of choice for transporting audio / video streams between peers in 

the LAN-Communicator application, there still remains the issue of how to get peers to discover each 

other. In order for two devices on the same or different network(s) to locate one another, some form 

of discovery and media format negotiation must take place. This process, called signaling, involves 

both devices connecting to a third, mutually agreed-upon server through which the two devices can 

locate one another and exchange the needed negotiation messages. [7] Signaling was deliberately 

left out of the WebRTC standard in order to give developers, leveraging WebRTC in their 

applications, more flexibility / freedom in how to implement signaling in their applications. WebSocket 

was chosen as the transport mechanism for signaling in the LAN-Communicator application since it 

allows bidirectional communication between a web-browser and a WebSocket enabled server (which 

is the Signaling Server in the LAN-Communicator application’s case). 

WebSocket enables bidirectional, message-oriented streaming of text and binary data between client 

and server. It is the closest API to a raw network socket in the browser. A WebSocket connection is 

also much more than a network socket, as the browser abstracts all the complexity behind a simple 

API and provides a number of additional services: [8] 

● Connection negotiation and same-origin policy enforcement [8] 

● Interoperability with existing HTTP infrastructure [8] 

● Message-oriented communication and efficient message framing [8] 

● Subprotocol negotiation and extensibility [8] 

Implementation Description 

The LAN-Communicator application is based on the concept of meeting rooms and participants. Each 

meeting room can have a maximum of four participants. A user creates a meeting room which can 

contain a minimum of one or a maximum of three other participant(s). The creator of the room is 

automatically the first participant in the room. Each user that joins a meeting room automatically 

sends RTCPeerConnection (peer connection) offers to each of the other participants in the meeting 

room in order to establish individual peer connections with each of the members of the meeting room. 

The joining participant will send his/her own video stream over each peer connection and will also 

simultaneously receive the video streams from each of the other meeting room members over each 

peer connection. When a participant leaves a meeting room, the peer connection(s) between the 

https://freeswitch.org/


6 
 

departing participant and other participants (still in the meeting room) is / are closed and the video for 

the departing participant is removed from each of the other participants’ screen(s). 

Architecture 

The LAN-Communicator application is made up of the following key components: 

 a web page (index.html) containing the user interface (UI) elements to be displayed on 

the screen of the user running the application via a web-browser,  

 two client-side JavaScript files associated with index.html: 

o adapter.js: a library developed by the official WebRTC organization that fixes 

inconsistencies in different browsers' WebRTC implementations, and  

o browser-client.js: all the client-side logic developed for this application.  

 It controls what gets displayed on screen based on user interactions with 

index.html’s UI elements and messages received from the Signaling 

Server (e.g. when a user clicks on the Create New Meeting Room button, 

this script causes the Create New Meeting Room form to be displayed. 

See Figs. 5 and 6).  

 It also sends messages to the Signaling Server based on user input or 

user interactions with index.html’s UI elements. User input is also validated 

when necessary (e.g. when a user tries to join a meeting room, the script 

ensures that the supplied participant name contains at least a character 

value and is not already in use by another participant in the room) 

 a Signaling Server (signaling-server.js) written in JavaScript meant to be run via 

Node.js (a JavaScript runtime built on Chrome's V8 JavaScript engine. [10]). This script 

contains all the server-side logic developed for this application. 

o this server exists to setup and keep track of meeting rooms and associated 

participants. It manages the creation of the meeting rooms and stores the data 

for each created meeting room. It also manages the addition and removal of 

participants to and from created meeting rooms. Peer connection setup messages 

(i.e. Offers, Answers and Candidates) are also forwarded between participants in 

a meeting room via this server. These peer connections, upon successful setup, 

are directly between the participants as indicated in Fig. 4. 

o browser-client.js connects to this server via the WebSocket Secure (WSS) 

protocol  

o the ws (https://github.com/websockets/ws) WebSocket library (a Node.js library 

that implements the WebSocket Protocol: RFC-6455) was used to implement all 

WebSocket related functionality in this server. No WebSocket library is needed 

on the client side since the WebSocket API is implemented in most browsers. 

https://github.com/websockets/ws


7 
 

 a web-server to serve the index.html and accompanying client-side JavaScript files to 

each client’s web-browser (any web-server that supports https can be used).  

Fig. 4 below is a high level overview of the LAN-Communicator application’s architecture. 



8 
 

  

Figure 4: Overall architecture of the LAN-Communicator application.



9 
 

In Fig. 4 above, Clients B, D and F are in video-conference session. Each client maintains 

one peer connection with each of the other clients in the video-conference session. For 

example, Client B maintains a peer connection with Client D and another peer connection 

with Client F. In a video-conference session containing N participants, each participant 

maintains N-1 peer connections to the other N-1 participants. From a programming 

perspective, each client will create N-1 instances of the RTCPeerConnection class (each 

instance represents a peer connection to another client). 

On the client side of this application, the Single-Page Application (SPA) architecture is employed. A 

single-page application is a web-application that fits on a single web page with the goal of providing a 

more fluid user experience similar to a desktop application. In a SPA, either all necessary code – 

HTML, JavaScript, and CSS – is retrieved with a single page load, or the appropriate resources are 

dynamically loaded and added to the page as necessary, usually in response to user actions. [9] In 

the case of this application the client only loads one html file (index.html) and two JavaScript files 

(i.e. adapter.js and browser-client.js) referenced in index.html. Once these files are loaded, a 

WebSocket connection is established with the Signaling Server via JavaScript code inside browser-

client.js and from then on messages are exchanged between the browser and the Signaling Server 

which lead to portions of the web- page displayed on the screen being updated. The WebSocket API 

makes it possible for a web-browser to connect to a WebSocket server and then send and receive 

messages to and from the WebSocket server over the established connection. The WebSocket 

connection gets closed when a user navigates to another site or closes the browser tab or window 

used to access the application. 

The maximum number of participants allowed in a meeting room can be easily increased to a higher 

value by increasing the value of the MAX_NUM_PARTICIPANTS_IN_ROOM constant in the 

Signaling Server script (signaling-server.js) and the same constant in the client side script (browser-

client.js). This value can be decremented or incremented to allow for optimal video-conferencing 

performance relative to the capacity of the LAN the LAN Communicator web-application is being 

deployed in. 

All messages exchanged between the clients and the Signaling Server are in JSON (JavaScript 

Object Notation) format. The _sendToClient (a function in signaling-server.js for sending messages 

via a WebSocket to a connected client) and _sendToServer (a function in browser-client.js for 

sending messages via a WebSocket to the Signaling Server) functions are used for sending 

messages at the server and client side respectively. These functions convert each message into 

JSON format before sending. Upon reception at either the client or the server side, the JSON 

encoded message is converted to a JavaScript object (via the _parseRecievedMsg present in both 

browser-client.js and signaling-server.js) that can be easily inspected to retrieve the actual data 

embedded inside the received message. 

Each message is encoded in the JSON format with the following three fields when either the 

_sendToClient or _sendToServer function is called: 

1. content: this field is where the data associated with the message is stored. 



10 
 

2. time_sent: it represents the exact time (in YYYY-Mmm-dd hh:mm:ss format) a message was 

sent by the client or server. It is set by _sendToClient or _sendToServer function.  

3. type: this field indicates the type of message being sent. It dictates how a message will be 

processed by the recipient (i.e. client or server). Below are the message types that were 

defined for the LAN-Communicator application in the LAN_COMMUNICATOR_MSG_TYPES 

object present in both signaling-server.js and browser-client.js: 

 INITIALIZE_M_ROOMS: this type of message is sent only once by the server to the 

client immediately after a WebSocket connection has been successfully established. Its 

corresponding content is an object representing all existing meeting rooms. When a 

client receives this type of message, it updates the screen with the meeting rooms (if 

any) or displays a No Meeting Rooms Exist message on the screen.  

 TAG_CLIENT_WEBSOCKCONN_WITH_ID_FROM_SVR: this type of message is also 

sent only once by the server to the client immediately after the establishment of a 

successful WebSocket connection. Its corresponding content is a unique integer value 

(which will be referred to as a sig_serv_conn_id in the rest of this report) assigned by 

the server to each connected client. When a client receives this type of message, it 

updates the WebSocket connection object on the client-side with the value. 

 CREATE_M_ROOM: this type of message is sent by a client to the server when the 

client wants the server to create a new room. Its corresponding content is an object 

containing the name of the room to be created and the name the client will be identified 

by in the room to be created. When the server receives this message, it creates a new 

room and adds the creator as the first participant. 

 ADD_NEW_ROOM_TO_CLIENT_UI: this type of message is sent by the server to all 

clients connected to it when a new meeting room has been successfully created by the 

server. Its corresponding content is an object containing information about the new 

room. Each client uses the content of this message to add the new room to its screen. 

 LEAVE_ROOM: this type of message is sent by a client to the server when the client 

wants to leave an existing meeting room. Its corresponding content is an object 

containing the identifier for the room to be departed from and the name the client that is 

departing. 

 UPDATE_LEFT_ROOM_ON_CLIENT_UI: this type of message is sent by the server to 

all clients connected to it when the server has successfully removed a participant from 

an existing meeting room in response to a previous LEAVE_ROOM message or 

disconnection of a client (that was a participant in a meeting room) from the server. Its 

corresponding content is an object containing information about the room a participant 

just departed from. Each client uses the content of this message to update the list of 

participants in the room that a participant just departed from on its screen. 

 DELETE_ROOM_FROM_UI: this type of message is sent by the server to all clients 

connected to it when the server has successfully removed the last participant from an 

existing meeting room in response to a previous LEAVE_ROOM message or 

disconnection of a client (that was the last participant in a meeting room) from the 



11 
 

server. When the last participant departs from a room, the server also deletes the room. 

Its corresponding content is an object containing information about the deleted room. 

Each client uses this message’s content to remove the deleted room from its screen. 

 JOIN_ROOM: this type of message is sent by a client to the server when the client 

wants to join an existing meeting room. Its corresponding content is an object containing 

the identifier for the room to be joined and the name the client has chosen to be 

identified by within the room.  

 UPDATE_JOINED_ROOM_ON_CLIENT_UI: this type of message is sent by the server 

to all clients connected to it when the server has successfully added a participant to an 

existing meeting room in response to a previous JOIN_ROOM message. Its 

corresponding content is an object containing information about the room a participant 

just joined. Each client uses the content of this message to update the list of participants 

in the room that the participant just joined on its screen. 

 WEBRTC_OFFER: this type of message is sent by a participant (that just joined a 

meeting room) to the server. Its content is a peer connection Offer and the identifier for 

another participant in the room that the offer is to be forwarded to. The client sends this 

message through the server to each of the participants in the room it just joined. It 

should be noted that a unique offer is sent to each participant. When the server receives 

this type of message, it locates the WebSocket connection object for the intended 

recipient and then forwards the message to the recipient via the located connection. 

This is the first phase of the signaling process that will eventually lead to the 

establishment of peer-to-peer connections between the participants in the meeting 

room. 

 WEBRTC_ANSWER: this type of message is sent by a participant in response to a 

WEBRTC_OFFER message (forwarded to it via the server) on behalf of another 

participant. Its content is a peer connection Answer and the identifier for another 

participant in the room that the answer is to be forwarded to. The client sends this 

message through the server back to the participant that previously sent a 

WEBRTC_OFFER message (forwarded via the server). When the server receives this 

type of message, it locates the WebSocket connection object for the intended recipient 

and then forwards the message to the recipient via the located connection. This is the 

second phase of the signaling process that will eventually lead to the establishment of 

peer-to-peer connections between participants in a meeting room. 

 WEBRTC_CANDIDATE: this type of message is sent by a participant to another 

participant (in the same room) that it had previously sent a WEBRTC_OFFER or 

WEBRTC_ANSWER message to. Its content is a peer connection Candidate (which 

contains connectivity information like the sender’s IP address, a User Datagram 

Protocol (UDP) port that the sender is willing to accept incoming connections on, etc.) 

and the identifier for the other participant in the room that the candidate message is to 

be forwarded to. When the server receives this type of message, it locates the 

WebSocket connection object for the intended recipient and then forwards the message 

to the recipient via the located connection. Participants continue to exchange these 



12 
 

candidate messages with each other (via the server) until peer connections are 

successfully established between the participants. Once the peer connections are 

established, the participants begin and continue to send and receive audio / video 

streams between one another (the video-conference is now in progress at this point and 

the signaling server is not involved in the movement of media traffic between peers. The 

WebSocket connection between each participant and the Signaling Server still exists 

and will be used to send LEAVE_ROOM messages to the server when participants are 

ready to leave the meeting-room). 

 GENERIC: this type of message has no meaning or special logic associated with it and 

could be used for debugging purposes (to test if clients can successfully send a 

message to the server or vice versa).  

More Signaling Server Logic 

When a client successfully makes a WebSocket connection to the Signaling Server, the server 

assigns a unique sig_serv_conn_id value to the connected client. The sig_serv_conn_id is used for 

retrieving each client's WebSocket connection object on the server-side. The server also sends the 

sig_serv_conn_id back to the client immediately after it is assigned. The browser-client.js script on 

the client-side stores the sig_serv_conn_id value in the client-side WebSocket connection object. As 

a result, both the server and each client are aware of the sig_serv_conn_id value associated with 

each ongoing WebSocket connection. For example, assuming the Signaling Server assigned Client F 

a sig_serv_conn_id value of 4, that value will be sent by the server to Client 4 and the browser-

client.js running on Client 4’s browser will update Client 4’s WebSocket connection object with the 

sig_serv_conn_id value of 4. 

Immediately after the successful establishment of a WebSocket connection to the server, the server 

sends a message containing information about existing meeting rooms to the client. When the client 

receives this message, it updates the screen with the list of existing meeting rooms and associated 

participants or displays a message on the screen to indicate that no meeting rooms exist if the 

message was empty (meaning that the server has not yet received any request from any client to 

create a meeting room or the previously existing meeting rooms no longer contain participants. The 

server gets rid of a meeting room the moment the last participant leaves the meeting room). It should 

be noted that meeting room data is stored in memory on the Signaling Server and once the server is 

restarted all previously existing rooms are gone and the server starts fresh with no meeting rooms. 

When a meeting room changes (i.e. a participant joins or leaves), the server broadcasts the updated 

room’s data is to all connected clients and each client updates its screen with the updated data. 

Meeting Room Object 

room_id server assigned unique integer value 

room_name client supplied string value 

participants an array of participant objects 

Table 1: The Meeting Room Object Schema (Signaling Server) 

 

 



13 
 

Participant Object 

sig_serv_conn_id server assigned unique integer value associated with the participant's WebSocket connection object 

participant_name client supplied string value 

is_creator a Boolean value that is set to true if the participant is the creator of its associated meeting room or 
false if not 

Table 2: The Participant Object Schema (Signaling Server) 

Figs. 5 to 17 show how the application works. There are initially no meeting rooms. A meeting room is 

then created and gradually filled up with participants until it becomes full and a fifth client is unable to 

join the full room. 

 

 

Figure 5: 1st client (with a Chrome Browser on a Windows PC with 2 Webcams) is the first to access the web-application 

after a fresh start-up of the signaling server (no meeting room exists at this point). 



14 
 

 

Figure 6: 1st client (with a Chrome Browser on a Windows PC with 2 Webcams) creates a meeting room named Room 1 

with a display name of Participant 1 (Room Creator) in Room 1. 

 

 
Figure 7: 1st client (with a Chrome Browser on a Windows PC with 2 Webcams) successfully created the meeting room 

named Room 1 and is waiting for other participant(s) to join the meeting room. 



15 
 

 
Figure 8: 2nd client (with a Firefox Browser on a Windows PC with 2 Webcams) accesses the web-application after the 

1st client has created Room 1. 

 

 



16 
 

 

Figure 9: 2nd client (with a Firefox Browser on a Windows PC with 2 Webcams) enters a display name of Participant 2 

for Room 1 and will join Room 1 after clicking the join button. 



17 
 

 

Figure 10: Clients 1 and 2 are in a video-conference session in Room 1 (from the perspectives of Clients 1 and 2). 

 

    

Figure 11: 3rd client (with a Chrome Browser on an Android Tablet - NVidia Shield) in the process of joining Room 1 with 

a display name of Participant 3. 

 

 



18 
 

   

Figure 12: 3rd client (with a Chrome Browser on an Android Tablet - Nvidia Shield) successfully joined Room 1 with a 

display name of Participant 3 and is now in a video-conference session with Clients 1 and 2. 

 

 

Figure 13: Clients 1, 2 & 3 are in a video-conference session in Room 1 (from the perspectives of Clients 1 and 2). 

 



19 
 

      

Figure 14: 4th client (with a Chrome Browser on an Android Phone - Blu-Life One X) in the process of joining Room 1 

with a display name of Participant 4. 

 

 

 



20 
 

    

Figure 15: 4th client (with a Chrome Browser on an Android Phone - Blu-Life One X) joined Room 1 with a display name 

of Participant 4. 

 

 

Figure 16: Clients 1, 2, 3 & 4 are in a video-conference session in Room 1 (from the perspectives of Clients 1 and 2). 

 



21 
 

     

Figure 17: 5th client (with a Chrome Browser on an Android Phone - Nexus 5) accesses the web-application while Clients 

1, 2, 3 & 4 are in a video-conference session and sees a FULL ROOM message in the Room 1 section of the screen. 

Concluding Remarks 

The LAN-Communicator application described in this report can be further enhanced via the addition 

of features like instant-messaging (which could be implemented via the use of the RTCDataChannel 

API), password protectable rooms, etc. The application can also be re-architected to work across two 

or more LANs across the internet (e.g. across multiple locations of an organization). To reduce and 

optimize bandwidth consumption a Multi-Point Conferencing Unit (MCU) like Licode [11] could be 

introduced into the application. This MCU will mix the audio/video streams and will lead to each client 

in a video-chat session maintain only one peer connection instead of N-1 connection(s) with all the 

other clients in a chat session (where N is the number of clients in a session). Fig. 18 below illustrates 

how an MCU will fit into the system: 



22 
 

 

Figure 18: Video-conference session managed by an MCU 

WebRTC is definitely a promising technology that has the potential of revolutionizing Internet-based 

communications. It has made it easier for developers to be able to build RTC enabled web-application 

via three simple JavaScript APIs, mentioned earlier in this report. As the technology matures and all 

the major browser vendors implement it in their various browsers, individuals and companies that 

were previously skeptical about its viability will hopefully be more confident to adopt it in their web-

applications. 

References 

[1] Smedberg, B. Reducing Adobe Flash Usage in Firefox, July 20 2016. Retrieved July 26 2016 from Mozilla 

Future Releases Blog: https://blog.mozilla.org/futurereleases/2016/07/20/reducing-adobe-flash-usage-in-

firefox/ 

[2] Grigorik,I. WebRTC Browser APIs and Protocols, Chapter 18. Retrieved July 26 2016, from High 

Performance Browser Networking (Copyright © 2013): https://hpbn.co/webrtc/  

[3] Mozilla Developer Network (MDN): RTCPeerConnection, last updated Jul 11, 2016. Retrieved July 27 2016, 

from Mozilla Developer Network (MDN): https://developer.mozilla.org/en-

US/docs/Web/API/RTCPeerConnection  

[4] Mozilla Developer Network (MDN): RTCDataChannel, last updated Jul 11, 2016. Retrieved July 27 2016, 

from Mozilla Developer Network (MDN): https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel 

[5] Official WebRTC Website: Architecture. Retrieved July 27 2016, from the Official WebRTC Website: 

https://webrtc.org/architecture/ 

[6] Audin, G. 9 Advantages Of WebRTC, last updated January 3 2014. Retrieved July 27 2016, from 

InformationWeek Network Computing: http://www.networkcomputing.com/unified-communications/9-

advantages-webrtc/1953259845 

[7] Mozilla Developer Network (MDN): Signaling and video calling, last updated Jul 5, 2016. Retrieved July 27 

2016, from Mozilla Developer Network (MDN): https://developer.mozilla.org/en-

US/docs/Web/API/WebRTC_API/Signaling_and_video_calling  

https://hpbn.co/webrtc/
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel
https://webrtc.org/architecture/
http://www.networkcomputing.com/unified-communications/9-advantages-webrtc/1953259845
http://www.networkcomputing.com/unified-communications/9-advantages-webrtc/1953259845
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling


23 
 

[8] Grigorik,I. WebSocket Browser APIs and Protocols, Chapter 17. Retrieved July 27 2016, from High 

Performance Browser Networking (Copyright © 2013): https://hpbn.co/websocket/ 

[9] Wikipedia: Single-page application, last updated Jul 4, 2016. Retrieved July 28 2016, from Wikipedia 

https://en.wikipedia.org/wiki/Single-page_application 

[10] Official Node.js Website. Retrieved July 27 2016, from the Official Node.js Website: https://nodejs.org/   

[11] Official Licode Website. Retrieved July 30 2016, from the Official Licode Website: http://lynckia.com/licode/ 

https://hpbn.co/websocket/
https://en.wikipedia.org/wiki/Single-page_application
https://nodejs.org/
http://lynckia.com/licode/

