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A B S T R A C T   

Enhanced hydrocarbon recovery from shale/tight reservoirs by CO2 injection has gained extensive attentions in 
recent years. However, the effect of CO2 on oil flow in shale/tight nanoporous media is still ambiguous. In this 
work, we used molecular dynamics simulations to study the structural and dynamic properties of CO2 and nC8 
mixtures in calcite nanopores. We found that CO2 is preferably adsorbed on the calcite surface, forming a thin 
CO2 film. When CO2 content is low, CO2 displaces nC8 molecules on the pore surface, while CO2-nC8 mixing does 
not occur in other regions. As the nC8 molecules on the pore surface are immobile, the effect of CO2 on nC8 total 
flow rate is negligible. As CO2 content further increases, only after the CO2 adsorption layer on the pore surface is 
fully saturated, CO2 can mix with nC8 in other regions to dramatically reduce the effective viscosity of CO2-nC8 
mixtures. As a result, nC8 total flow rate drastically increases. This work provided important insights into the 
effect of CO2 on oil flow in calcite nanopores in relation to the CO2-EOR in shale/tight reservoirs.   

1. Introduction 

Owing to the continuous depletion of conventional oil reservoirs, the 
oil extraction from shale/tight reservoirs have been attracting growing 
attentions among scientists and engineers in recent years [1,2]. Ac-
cording to the Energy Information Administration (EIA), the global 
technically recoverable shale/tight oil accounts for approximately 345 
billion barrels [3]. In spite of the enormous hydrocarbon reserves in 
shale/tight reservoirs, low efficiency and short production life have 
limited shale/tight oil recovery [4]. The omnipresent nanopores and the 
ultralow permeability of shale/tight reservoirs impose grand challenges 
during oil exploitation processes [5,6]. CO2 injection is one of the most 
commonly deployed techniques for enhanced oil recovery (EOR) in 
conventional reservoirs [7]. Recent field practices also proved its effi-
cacy in shale/tight reservoirs [8,9]. In addition, CO2 injection into 
shale/tight reservoirs is one of the potential means to alleviate carbon 
emissions through geological CO2 sequestration (CCS) [10,11]. During 
the CO2-EOR process, the effect of CO2 on oil flow in shale/tight 
nanoporous media plays a crucial role in the determination of produc-
tion rate and ultimate oil recovery. 

Viscosity reduction [12,13], volume expansion [14,15], extraction 
[16] and repressurization [17] have been proposed as the dominant 

CO2-EOR mechanisms in the conventional reservoirs in previous 
experimental and theoretical studies. On the other hand, many experi-
mental studies [18–21] examined the CO2-EOR in shale/tight core 
samples and reported up to 80% oil recovery rate by CO2 huff-and-puff. 
In addition, reservoir simulations [22–28] on CO2 flooding and huff- 
and-puff also predicted a greatly improved EOR efficiency. Experi-
mental studies hypothesized that oil swelling [29], viscosity reduction 
[29,30] and molecular diffusion [19] are responsible for the enhanced 
oil recovery in the unconventional reservoirs, while molecular diffusion 
[26,31,32] and extraction [33] were proposed in most numerical 
simulation works. Recent microfluidic experiments [34,35] also eluci-
dated the mechanisms of light-component extraction and volume 
expansion due to CO2 injection, and the efficiency of CO2 huff-and-puff 
depends on the solubility and miscibility of injected CO2 with oil. 
However, the nano-confinement effect in shale/tight media may lead to 
different CO2-EOR mechanisms than those proposed in the conventional 
reservoirs, which are far from being understood from experiments and 
numerical simulations. 

Molecular simulations have been widely used to investigate struc-
tural [36–39] and dynamic properties [40–42] of geofluids in shale/ 
tight reservoirs. Tuan et al. [43] reported a supercritical CO2-induced 
wettability alteration in kerogen nanopores by forming a thin CO2 film 
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on the surface, which significantly enhances water flow. Santos et al. 
[44] found that n-alkane in calcite nanopores can be displaced by CO2, 
which illustrates the applicability of CO2 injection into shale/tight for-
mations to enhance oil recovery. Recently, Zhu et al. [45] reported that 
CO2 can displace the adsorbed nC10 and nC17 on calcite surface forming 
a thin CO2 film. They concluded that CO2 injection can mitigate the 
hydrocarbon sieving effects to increase the oil flow rate and the surface 
property alteration plays an essential role on CO2-EOR. Fang et al. [46] 
studied the miscibility and displacement of CO2/C10 in various nano-
pores. They revealed that the stability of displacement front is important 
to oil migration. Although these studies enriched the understanding 
about CO2-EOR in various shale/tight nanopores, the fundamental un-
derstanding about the effect of CO2 on oil flow in shale/tight nanopores 
from molecular perspectives still remains unclear. 

In this work, we use molecular dynamics (MD) simulations to study 
the effect of CO2 on oil flow in calcite nanopores. Calcite is one of the 
major constituents in shale/tight reservoirs, which not only provides 
hydrocarbon storage space, but also affords the potential sites for 
geological CO2 sequestration [42,44]. We use nC8 to represent oil in this 
work. The simulations are conducted at a typical shale/tight reservoir 
condition (343 K and 30 MPa) [47,48]. Shale/tight reservoirs contain a 
large proportion of mesopores [6,37,49] with a slit-like geometry ac-
cording to scanning electron microscope (SEM) images [50–52]. Thus, 
5-nm calcite slit nanopores containing CO2-nC8 mixtures with varying 

compositions are constructed. We explicitly study the effect of CO2 on 
structural and flow behaviors of nC8 in calcite nanopores to provide 
important insights into CO2-EOR in shale/tight reservoirs. 

2. Simulation method 

2.1. Molecular model 

In this work, the calcite surface is constructed based on the {1014}
plane orthogonal to the z-direction, which is the most stable surface 
[53]. The thickness of each calcite sheet is 12.12 Å in the z-direction, 
with the x-y dimension as 74.85 Å × 48.58 Å. Two calcite sheets are used 
to form a slit-like calcite nanopore with a pore size H defined as the 
separation distance in the z-direction between the O atoms in the 
innermost planes. The force field proposed by Xiao et al. [54] is adopted 
to describe calcite, which has been used to study the calcite-alkane 
[42,44] and calcite-biomolecule systems [55]. nC8 is used to represent 
the shale/tight oil [56], which is described by the OPLS-UA model [57]. 
CO2 molecules are modeled by EPM2 force field [58], in which CO2 
molecules are kept rigid with a fixed C-O bond length of 1.149 Å and a 
fixed O-C-O bond angle of 180◦. The force field parameters are sum-
marized in Table 1. 

Initially, nC8 and CO2 molecules are randomly placed in calcite 
nanopores as shown in Fig. 1(a). The number of nC8 and CO2 molecules 
in the system depends on their compositions, which are determined by 
H, pressure and oil mass percentage (OMP) of CO2-nC8 mixtures. The 
number of nC8 and CO2 molecules with varying compositions is pre-
sented in Table 2. A two-dimensional periodic boundary condition is 
applied only in the x- and y-directions. A 20-nm vacuum slab is added in 
the z-direction to minimize the long-range electrostatic interaction [59]. 
Lorentz-Berthelot mixing rule [60] is adopted to calculate the in-
teractions between different molecules. The cutoff distance of the non- 
bonded interactions is set as 12 Å [59]. We calculate the long-range 
electrostatic interactions by the particle–particle–particle-mesh 
(PPPM) method [61]. 

2.2. Simulation details 

Molecular dynamics simulations are conducted by large-scale atomic 
massively parallel simulator (LAMMPS) package [62]. The system 
temperature is set as 343 K, which is controlled by the Nosé-Hoover 
thermostat [63] with a relaxation time of 0.1 ps. In this work, we use the 
normal pressure to the calcite surface in the z-direction Pz to dictate the 
pore pressure, which is set as 30 MPa. To control Pz, we fix the lower 
calcite sheet, while applying a uniform external force to each atom in the 
upper one as a piston in the z-direction. Both sheets are kept as rigid 
bodies. The external force f can be obtained by Pz and the number of 
atoms in the upper calcite sheet N, 

f =
pz × A

N
(1)  

where A is the area of the upper calcite sheet in the x-y plane. After a 3- 
ns pressure control, the resulting H is 5 ± 0.15 nm for all OMPs. Then, 

Table 1 
Force field parameters of nC8, CO2 and calcite [54,57,58].  

Species Type Molecular Weight, 
g/mol 

ε/kB,K  σ, Å q, e 

nC8 Methyl –CH3  15.035  88.063  3.905 0 
Methylene 
–CH2  

14.027  59.38  3.905 0 

CO2 C  12.011  28.129  2.757 0.6512 
O  15.999  80.507  3.033 − 0.3256 

Calcite Ca  40.078  240.58  2.370 1.668 
CM  12.011  44.38  3.823 0.999 
OM  15.999  70.0  3.091 − 0.889 

ε and σ are the Lennard-Jones energy and size parameters, respectively; q is the 
atomic charge. 

Fig. 1. (a) Schematic representation of the initial configurations of nC8 and 
CO2 molecules in calcite nanopores. (b) Side view of the calcite sheet. (c) 
Molecular structures of nC8 and CO2. Color scheme: cyan, methyl group (–CH3); 
pink, methylene group (–CH2); dark red, O in CO2; black, C in CO2; green, Ca; 
blue, O in calcite; gray, C in calcite. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The number of nC8 and CO2 molecules and the external force in each system.  

Oil mass 
percentage, % 

Number of nC8 

molecules 
Number of CO2 

molecules 
External force, 
Kcal/mol-Å 

100 700 0  0.002335 
92 650 150  0.002315 
83 600 300  0.002294 
81 580 350  0.002299 
76 550 450  0.002275 
71 520 530  0.002275 
68 500 600  0.002255 
50 380 950  0.00222  
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both calcite sheets are fixed and a 3-ns simulation is conducted in the 
NVT ensemble to reach the equilibrium. The atomic trajectories of 
another 3-ns simulation are collected to analyze equilibrium properties. 

Finally, a pressure-driven flow along the x-direction is conducted by 
using external field nonequilibrium molecular dynamics (EF-NEMD) 
simulation [64] by applying equal external force to each atom in the 

Fig. 2. Density and velocity profiles of CO2 and nC8 in calcite nanopores for (a) OMP = 92%; (b) OMP = 83%; (c) OMP = 81%; (d) OMP = 76%; (e) OMP = 68%; (f) 
OMP = 50%. The blue and red solid lines represent the CO2 and nC8 density distributions, respectively; the blue and red solid dots are the CO2 and nC8 velocity 
distributions, respectively; the green solid lines represent the parabolic fitting of nC8 velocity profile. When OMP ≥ 81%, the number of CO2 molecules in the middle 
of the pore is negligible, while the CO2 adsorption layer is immobile. Thus, we present CO2 velocity profiles in (d), (e), and (f) only. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (a) CO2 density distributions for different OMP cases. (b) CO2 molecular configurations in calcite nanopores for different OMP cases. For clarity, nC8 
molecules are omitted. 
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CO2-nC8 mixtures in calcite nanopores to investigate nC8 and CO2 flow 
behaviors. The thermostat in the EF-NEMD simulations is only coupled 
with molecular velocities in the y-direction. We apply the same pressure 
gradient dp/dLx for different OMP cases, which is given as, 

dp
dLx

=
fex × Nfluid

Ly × Lz
(2)  

where fex is the external force applied on each atom of fluids, Nfluid is the 
total number of fluid atoms, Lx, Ly, and Lz are the dimensional length in 
the x-, y-, z-directions. fex in different OMP cases are listed in Table 2, 
with a constant pressure gradient as 5 MPa/nm. Such high-pressure 
gradient is employed to minimize the thermal fluctuation and reduce 
the computational cost [65]. 15-ns EF-NEMD simulations are conducted, 
in which the last 10-ns trajectories are used for sampling dynamic 
properties. 

3. Results and discussion 

In this section, we first present the density distributions of CO2 and 
nC8 in calcite nanopores of varying OMPs. Then, we discuss their flow 
behaviors in calcite nanopores and explicitly study the effect of CO2 on 
oil flow. We note that z = 0 represents the middle of the pores 
throughout this section. 

3.1. Mass density profiles 

In Fig. 2, we present the density profiles of CO2 and nC8 in calcite 
nanopores of varying OMPs. We note that density profiles from the 
equilibrium MD and EF-NEMD simulations are literally the same [65]. It 
reveals that CO2 is preferably adsorbed on the pore surface, showing a 
stronger affinity to the calcite surface than nC8. Such phenomenon is 
also observed in Zhu et al. [45]. It is probably because CO2 has a strong 
quadruple moment [66], while nC8 only has a Van der Waals type 
interaction with the calcite substrate. The CO2 adsorption peak value 
increases as OMP decreases until reaching ~2.5 g/cm3, as shown in 
Fig. 2(c). Before the CO2 adsorption layer is completely formed on the 
pore surface, the CO2 density in the middle of the pore is approximately 
zero, while the nC8 density in the middle of the pore is close to 0.70 g/ 
cm3, consistent with its bulk density at the given temperature and 
pressure [68]. The variations in CO2 density distributions as OMP varies 
are presented in Fig. 3(a). Although there are two peaks near the pore 

surface, CO2 has a monolayer adsorption, while the O atoms in CO2 
molecules are preferentially attracted by Ca atoms in calcite, leading to a 
~60◦ orientation angle between CO2 atom and the pore surface. This 
phenomenon is confirmed by CO2 molecular configurations depicted in 
Fig. 3(b) and CO2 orientation parameters (see Supporting Information 
Figures S3–S5). The peak value of CO2 adsorption layer increases as 
OMP decreases until OMP = 81%. As OMP further decreases, the CO2 
adsorption layer is saturated, while its density in the middle of the pore 
increases. It indicates that when CO2 content is small, CO2 molecules are 
preferably adsorbed on the calcite surface; only after the CO2 adsorption 
layer is fully saturated forming a thin CO2 film, CO2 can mix with nC8 in 
the middle of the pores. The thickness of a fully formed CO2 film which is 
defined as the distance from the pore surface to the second saddle point 
in CO2 density profiles (note that the first saddle point is due to CO2 
orientation) as shown in Fig. 3(a), is approximately 3.25 Å and inde-
pendent of OMP. 

To better understand the effect of CO2 on the structural properties of 
nC8 in calcite nanopores, we present nC8 density distributions for 
varying OMPs in Fig. 4. It shows that without CO2, nC8 has a layering 
structure near the pore surface with the peak value of its first adsorption 
layer around 2.1 g/cm3, while its density in the middle of the pores 
approaches the bulk. As OMP decreases, nC8 molecules are continuously 
displaced from the pore surface, while changes in other adsorption 
layers and bulk regions are negligible until OMP decreases to 81%. 
When OMP < 81%, the first adsorption layer of nC8 is completely dis-
placed by CO2 and nC8 densities in other regions start decreasing. The 
changes in nC8 density distributions with OMP indicate that CO2 dis-
places the first adsorption layer of nC8 firstly, and then mix with nC8 in 
other regions. 

3.2. Velocity profiles and flow behaviors 

The velocity profiles of nC8 and CO2 for different OMP cases under a 
pressure gradient of 5 MPa/nm are presented in Fig. 2. We note that 
when OMP ≥ 81% (Fig. 2(a-c)), the number of CO2 molecules in the 
middle of the pores is negligible, while CO2 molecules on the pore sur-
face is immobile. Thus, we only present the CO2 velocity profiles when 
OMP < 81%. It shows that the velocity profiles of nC8 and CO2 are both 
parabolic-shaped. When OMP ≥ 81%, as nC8 molecules on the pore 
surface are immobile and CO2 does not mix with nC8 in the middle of the 
pores, the effect of CO2 on nC8 velocity distributions is negligible. 
However, when OMP < 81%, both CO2 and nC8 velocity distributions 
increase dramatically as OMP decreases as shown in Fig. 2(d-f). The 
enhanced nC8 velocity in the flow direction can be attributed to the 
viscosity reduction due to CO2 mixing in the middle of the pores. Due to 
the presence of CO2 film, the negative slip velocity that occurs in pure 
alkane flow [42] is not observed. On the other hand, it has been reported 
that fluid flow and velocity profiles can be also dependent on the relative 
magnitude of pressure gradients and resistance [67]. We fit the nC8 
velocity profiles with a 2nd-order polynomial equation as v(z) = az2 +

c. As shown in Fig. 2, the fitted curves match perfectly with nC8 velocity 
profiles obtained from EF-NEMD simulations. Therefore, nC8 velocity 
profiles can be described by the classical Poiseuille equation, 

v(z) = −
∇p
2η

(

z2 −
H2

4

)

(3)  

where η is the fluid viscosity. 
To better understand the effect of CO2 on nC8 flow, we separate the 

calcite nanopore space into three adsorption-layer regions (AL1, AL2, 
and AL3) and one bulk-like region (BL) as shown in Fig. 4, which are 
distinguished according to nC8 density profiles. We compute the local 
flow rate Qk and local reduced velocity vR,k in each region, 

Qk =

∫ zj,k

zi,k

ρn(z)v(z)dz (k = AL1, AL2, AL3, BL) (4) 

Fig. 4. nC8 density distributions for different OMP cases. The gray regions 
represent substrates, light yellow regions represent AL1, light green regions 
represent AL2, light blue region represents AL3, and white region represent BL. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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vR,k =

∫ zj,k
zi,k

ρn(z)v(z)dz
∫ zj,k

zi,k
ρn(z)dz

(k = AL1, AL2, AL3, BL) (5)  

where zi and zj are the lower and upper limits in z-direction of each 
region, ρn represents the number density of nC8. Qk and vR,k in each 
region for various OMPs are shown in Fig. 5. It shows that nC8 flow in 
AL1 is negligible. The fluids closer to the calcite pore surface have a 
smaller vR,k. When OMP ≥ 81%, Qk and vR,k in AL2, AL3, and BL remain 

largely unchanged. It is because CO2 molecules are preferably adsorbed 
on the pore surface, while they do not mix with nC8 in these regions. On 
the other hand, when OMP < 81%, as the CO2 content increases, Qk and 
vR,k in AL2, AL3, and BL increase, thanks to the CO2-nC8 mixing in these 
regions. In Fig. 6, we present the overall nC8 reduced velocities for 
various OMPs with/without considering AL1. With considering AL1, the 
overall nC8 reduced velocities monotonically increase as OMP de-
creases. For 100% ≥ OMP ≥ 81%, as OMP decreases, the fraction of nC8 
in AL1 continuously decreases; for OMP < 81%, CO2-nC8 mixing occurs 

Fig. 5. (a) Qk; (b) vR,k in AL1, AL2, AL3, and BL for various OMPs.  

Fig. 6. Overall nC8 reduced velocity (a) with AL1; (b) without AL1.  

Fig. 7. (a) ηeff ; (b) overall nC8 and CO2 flow rates for various OMP cases.  
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in AL2, AL3, and BL to lower viscosity. However, without considering 
AL1, the overall nC8 reduced velocity remains constant for 100% ≥
OMP ≥ 81%. 

The effective viscosity can be obtained from the parabolic fitting to 
nC8 velocity profiles. According to Eq. (3), the effective viscosity ηeff can 
be given as 

ηeff = − ∇p/2a (6) 

We present ηeff for various OMP cases in Fig. 7(a). The fitted pa-
rameters and ηeff are also listed in Table 3. For 100% ≥ OMP ≥ 81%, ηeff 

is rather constant and agrees well with the bulk nC8 viscosity (0.43234 
mPa⋅s) at the given temperature and pressure from NIST Chemistry 
Webbook [68], as CO2-nC8 does not occur in AL2, AL3, and BL where 
nC8 can flow. For OMP < 81%, ηeff drops dramatically as OMP decreases. 
In Fig. 7(b), we also present the overall nC8 and CO2 flow rates. It shows 
that both nC8 and CO2 flow rates remain constant for 100% ≥ OMP ≥
81%. On the other hand, as ηeff reduces due to the CO2-nC8 mixing in 
AL2, AL3, and BL, both flow rates dramatically increase as OMP de-
creases for OMP < 81%. 

4. Conclusion 

In this work, we studied the structural and dynamic properties of 
CO2-nC8 binary mixtures in 5-nm calcite nanopores at 343 K and 30 MPa 
by MD simulations. We find that CO2 is preferably adsorbed on the 
calcite pore surface with a monolayer adsorption. While CO2 can 
displace nC8 molecules in the first adsorption layer, CO2-nC8 mixing in 
AL2, AL3, and BL can only occur OMP drops below the critical OMP. As 
only nC8 in these regions can flow along the flow direction, the 
enhancement of nC8 flow due to the addition of CO2 is negligible when 
OMP is less than the critical OMP. Both CO2 and nC8 velocity distribu-
tions are parabolic shaped under a pressure gradient, suggesting the 
feasibility of the classical continuous hydrodynamics equation. There 
exists a critical OMP (81% in this work) beyond which CO2 can only 
displace adsorbed nC8 on the pore surface, while having a negligible 
impact on oil flow; below which CO2 can mix with nC8 and oil viscosity 
is greatly reduced. We should note that the critical OMP is strongly 
dependent on pore size, while system temperature and pressure may also 
play a role. 

Our study advances the understanding of CO2-nC8 structural and 
dynamic properties in calcite nanopores and provides some important 
insights into the CO2-EOR mechanisms in shale/tight reservoirs nano-
pores, which can serve as a theoretical foundation for the development 
of numerical simulations on CO2-EOR from the unconventional reser-
voirs. On the other hand, this work focuses on one particular pore size 
case at given temperature and pressure. However, calcite in shale/tight 
formations has pore size distributions ranging widely from nanometers 
to micrometers [69,70]. The effect of pore size on CO2-EOR mechanism 
should be investigated in the future works. 
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