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ABSTRACT Moths of the Argyrotaenia franciscana species group represent a challenging case of
evolutionary lability and taxonomic complexity in California. We studied their evolutionary rela-

tionships using mitochondrial DNA
A. franciscana group,
segment of the cytochrome oxidase subunit I
insulana Powell and A. citrana (Fernald)

(mtDNA) sequences from 49 specimens in 18 populations of the
as well as 2 outgroup species. Most specimens were sequenced over a 799-bp
(COI) gene. Single specimens each of A. franciscana
were sequenced over a 2.3-kb region including COI, tRNA
leucine (UUR), and cytochrome oxidase subunit 1T (comn).
Argyrotaenia citrana, A. franciscana (Walsingham), and A.

mtDNA variation within and among
franciscana insulana is most simply

interpreted as DNA polymorphism within a single species for which the oldest name is A. franciscana.

Maximal divergence among haplotypes was 3.8%,

which is on the high end of the range for

intraspecific mtDNA variation in Lepidoptera. Argyrotaenianiscana (Kearfott) is most closely related
to a new species, and this pair forms the closest outgroup to the A. Sfranciscana-citrana complex. The

status of A. isolatissima Powell remains uncertain,
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STUDIES OF MITOCHONDRIAL DNA variation have proven
helpful in understanding relationships among closely
related species of Lepidoptera (e.g., Bogdanowicz et
al. 1993, Sperling 1993, Brown et al. 1994, Brower 1994,
Sperling and Hickey 1994, Miller et al. 1997). Such
studies are more meaningful when other data are avail-
able for comparison, whether morphological, ecolog-
ical, allozymic, or from hybridization. We describe a
study where information on morphology, geographic
distribution over time, and hybridization trials was
abundant before analysis of mitochondrial DNA
(mtDNA) variation.

The Argyrotaenia franciscana species group com-
prises a series of morphologically variable populations
that occur along the Pacific Coast of North America
from southern British Columbia to northern Baja Cal-
ifornia. Taxonomic interpretations of species or races
have varied, not only with increased understanding of
named entities, but because some populations have
changed in phenotypic and, presumably, genetic
makeup during urbanization (Powell 1964, 1965).

The following species and subspecies names have
been applied (all with type localities [TL] in Califor-
nia). Argyrotaenia franciscana (Walsingham, 1879)
(TL: San Francisco); A. citrana (Fernald, 1889) (TL:
Los Angeles); A. niscana (Kearfott 1907) (TL: Car-
mel); A. kearfotti Obraztsov, 1961 (TL: Carmel); A.
Sranciscana insulana Powell, 1964 (TL: Anacapa Is-

! Current address: Agriculture Canada, ECORC, CEF, Neatby
Building, Ottawa, ON, Canada K1A 0C6. E-mail: blandry@sympatico.
ca

land); A. isolatissima Powell, 1964 (TL: Santa Barbara
Island); A. lignitaenia Powell, 1965 (TL: Pinyon Flat
Riverside County); and “Argyrotaenia n. sp.” Powell
1981 (Oso Flaco Lake, San Luis Obispo County).
Argyrotaenia kearfotti was considered a subjective
synonym because it is an individual phenotypic vari-
ant (Powell 1964), an assumption that has been con-
firmed by subsequent rearing from eggs (J.A.P., un-
published data). In addition, Tortrix purata Meyrick,
1932, was described from “California, Venice [Los

Angeles Co.]. and Costa Rica,” then transferred to |

Tortricidag) -

Argyrotaenia by Freeman (1958). It is omitted from' |

our discussion because Obraztsov (1961) selected a
lectotype from the Costa Rican specimens, and the
California examples (U.S. National
[USNM] ) were confirmed as A. citrana (Powell 1964).

Before 1920, the earliest names, franciscana, citrang,

Museum:

and niscana, seemed to refer to 3 distinct species hav- |

ing differing phenotypes and habitats. Beginning in
the 1920s, however, a larval pest of commercial apples
in coastal Santa Cruz County and inland in Sonoma
County was identified as franciscana. Meanwhile, ci-
tranain southern California, originally noticed feeding
on citrus and other plants, had become a widespread
pest of numerous field crops and ornamental plants. It
was recognized in central California (e.g., Lange
1936), and uncertainty developed concerning the tax-
onomic and biological distinctness of the 2 (Bartges
1951). In fact, circumstantial evidence based on mor-
phological and phenotypic characters indicated that
coastal franciscana populations of agricultural and ur-
ban areas had been modified by hybridization with
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citrana, which had been introduced from southern
California or had spread from more inland populations
(Powell 1964, 1965).

Based primarily on phenotypic differences and as-
sumptions of isolation, populations from the California
Channel Islands were described isolatissima from tiny
and remote Santa Barbara Island, and insulana from
Anacapa Island (Powell 1964). The latter name was
regarded as a subspecies of franciscana and applied to
populations of all the northern and westernmost is-
lands (Powell 1985, 1994). A. isolatissima is restricted
to Santa Barbara Island, although there is a pheno-
typically similar population on the mainland at Point
Conception, north of the Channel Islands.

Argyrotaenia niscana is broadly sympatric with
members of the franciscana-citrana complex and may
be in close contact in coastal southern California,
although we have not sampled populations in a zone
of contact, and there are no known hybrids. Larvae of
the franciscana-citrana complex are polyphagous,
whereas niscana and a presumably closely related spe-
cies, lignitaenia, are restricted to species of Californian
endemic shrubs in the genus Adenostoma (Rosaceae).

Finally, we discovered coastal populations of a

smaller Argyrotaenia, here referred to as Argyrotaenia
n. sp., that lacks the pronounced sexual dimorphism
typical of the franciscana-citrana complex and the
dark rust-red scaling that characterizes niscana. These
are closely sympatric with populations in San Luis
Obispo County interpreted to be franciscana s. str.
(Powell 1981) and hybrid franciscana-citrana (Powell
1965, 1981, and current data), and we have seen no
evidence of field hybridization. The larvae of this new
entity appear to be specialists on woody Asteraceae
{(based on 6 field collections of larvae from Ericameria
and Lessingia, J.A.P., unpublished data). Formal de-
scription of this new species is planned at a later date,
pending further morphological examinations and hy-
brid studies.

To aid in clarifying relationships, J.A.P. conducted
cross-population hybridization tests, using reared, vir-
gin females from widely distributed coastal and island
localities. These represent populations assigned to A.
Jranciscana s. str., A. f. insulana, A. citrana, A. niscana,

_ and Argyrotaenia n. sp. The methods and data will be
Presented elsewhere, but the results can be summa-

: fized as follows: During 1979-1997, ~150 trials were
g .?“Cm[‘)ted, including 60 that were intrapopulational,
‘s-"""-“llmes with siblings. Intrapopulation matings from

: i:'::."mcana (Monterey County), £ insulana, and “cit-

i unt‘(san Francisco Bay area and San Luis Obispo
tutics) Dl.”Oduced ~81% success (defined as pro-
: ls':’_'i'noi vigble eggs that developed fully to eclosion
# :-ecials)l:ﬁ)' By i::)ntrast, the rate of success was
fon trigls (i)nv:ell" .~62% (n = 79), among interpop-
g instanco vml% the same array of populations.
B it mo:s a& or nearly al.l eggs developed
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Preliminary results of the hybridizations suggest A.
niscana and A. n. sp. are incompatible with members
of the franciscana-citrana complex, as had been ex-
pected from observations of field sympatry. Two trials
with male niscana and female citrana and insulana
failed to produce mating; 9 trials with A. n. sp. and
citrana, insulana, and their hybrid resulted in 1 mating
between a male A. n. sp. and female insulana, but the
eggs developed only partially (J.A.P., unpublished
data).

The current study was undertaken to provide an
independent line of evidence for understanding rela-
tionships within this morphologically similar group of
moths. In particular, we focus on the genetic distinct-
ness of A. fransiscana and A. citrana.

Materials and Methods

Specimens. We selected 51 specimens for study, 49
from within the Argyrotaenia franciscana species
group and 2 representing outgroups, A. coloradana
(Fernald) and A. klotsi Obraztsov, both from Arizona
(Table 1). There has been no phylogenetic study nor
even a traditional classification of Argyrotaenia species
that defines species groups, so selection of outgroup
species was based on similarity of male genitalia and
biogeographic proximity. Samples represented fran-
ciscana s. str., franciscana insulana, citrana, several
populations known or believed to possess franciscana-
citrana hybrid characteristics, isolatissima, niscana,
and A. n. sp. (Table 1). No recent material of ligni-
taenia was obtained.

Specimens studied came from a selection of sites
representing a large portion of the range of the species
of the A. franciscana group (Table 1). Where possible,
we sampled 4 specimens from each site to determine
the extent of sequence divergence within populations.
The Washington laboratory colony originated from
the Willamette Valley, Oregon (Knight 1996).

Ten of the specimens sequenced were reared from
field collected larvae or on laboratory cultures fed
synthetic diet. Most of the remainder were collected
as adults in the field by B.L.. and J.A.P. in 1995-1996,
held in 15-dram plastic snap-top vials with a bit of
damp cotton, and transported in a camp cooler. Live
specimens were then frozen at —70°C. In addition, 17
of the samples were pinned specimens, the oldest
having been collected in 1978 (Table 1).

Specimens were identified initially by phenotype,
specifically the forewing pattern. The abdomen and
wings of each specimen were preserved in a gelatin
capsule for confirmation of identification. Vouchers
are deposited in the Essig Museum of Entomology,
University of California, Berkeley.

Molecular Methods. DNA was purified using a phe-
nol/ chloroform-based extraction. Heterologous prim-
ers were used with genomic DNA template for am-
plification of mitochondrial segments with the
polymerase chain reaction (PCR) (Saiki et al. 1988).
We mostly used general mtDNA insect primers (Liu
and Beckenbach 1992, Simon et al. 1994) or primers
designed previously for use with the spruce budworm
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Table 1. Number of Argyrotaenia speci q d, codes of haplotypes, and collection data 2
No. Taxon Code(s) Collecting locality” and year, coungg

4 A. citrana Acil, 4, 14, 31 Berkeley, Alameda, 1995,1996\ |
4 A. citrana Acib, 6, 15, 16 Montana de Oro S.P.,, San Lujs Obispg o .'
3 A citrana Acid8?, 49°, 50" NAS Miramar, San Diego, 1996 -
3 A. citrana Aci3, 228, 24® Brooks Island, Contra Costa, 1994, 1995

4 A. citrana Aci32, 33, 34, 35 Washington laboratory colony, 1996

1 A. citrana Aci29 Los Angeles, Los Angeles, 1996

4 A. franciscana Afl], 12,13, 25 UC Bodega Marine Res. Stn, Sonoma, 1996
4 A. franciscana Af18, 19, 20, 21 UC Big Creek Reserve, Monterey, 1996 1
3 A. franciscana Af39°, 407, 46° Dune Lakes, San Luis Obispo, 1999 :"
3 A. f insulana Afi2, 8,17 San Miguel Island, Santa Barbara, 1995, 1905
2 A. £ insulana Afi7, 30 Santa Rosa Island, Santa Barbara, 1995 I
1 A. f. insulana Afid4b Santa Cruz Island, Santa Barbara, 1984

1 A. f insulana Afig5? San Nicolas Island, Ventura, 1978

4 A n.sp. Ansp9, 10, 42, 43 Montana de Oro S.P., San Luis Obispo, 1006
1 A. isolatissima Aiso52> Santa Barbara I, Santa Barbara, 1986 !
2 A. niscana Anisc23b, 38 Santa Rosa Island, Santa Barbara, 1995

2 A. niscana Anisc37?, 47° Boulder Oaks Campground, San Diego, 199]
1 A. niscana Anisc981 UC Hastings Reserve, Monterey, 1998

1 A. coloradana Acolo26 Arizona, Little Spring, Coconino, 1995

1 A. klotsi Aklotsi27 Arizona, Little Spring, Coconino, 1995

“ Except otherwise indicated, localities are in California.
b Pinned museum specimens.

(Sperling and Hickey 1994), but we also designed 5
more specific primers. Double-stranded polymerase
chain reaction (PCR) product was cleaned with Mil-
lipore Ultrafree-MC filters and was sequenced di-
rectly, using Applied Biosystems automated sequenc-
ing with fluorescent dye terminators.

The mtDNA of 2 specimens, from Berkeley (Acil)
and San Miguel Island (Afi2), was sequenced over
2,295 bp beginning in the tRNA tyrosine gene and
ending in the tRNA lysine gene. This 2.3-kb region
corresponds to the region between bases 1,466 and
3,771 in Drosophila yakuba (Clary and Wolstenholme
1985) and includes the genes for COL tRNA leucine,
and COIL It was obtained by PCR amplification using
the end primers TY-J-1460 (K698) 5' TAC AAT TTA
TCG CCT AAA CTT CAG CC 3’ and TK-N-3782
(Eva) 5 GAG ACC ATT ACT TGC TTT CAG TCA
TCT &', in combination with various internal primers.
This fragment was chosen because of its proven utility
(e.g., Sperling and Hickey 1994, Sperling et al. 1996)
in other lepidopteran families at the taxonomic level
investigated here, and because we are building a da-
tabase of comparable sequences for future phyloge-
netic studies at higher taxonomic levels.

We chose a 799-bp segment in the COI gene to
compare specimens from 15 more populations of the
A. franciscana group and 1 specimen of each of the 2
outgroup species. This fragment corresponds to the
2nd half of COJ, between bp number 2201 and 2999.
The region was amplified using the primers CI-J-2183
(Jerry) 5 CAA CAT TTA TTT TGA TTT TTT GG 3’
and TL2-N-3013 (Pat2) 5’ TCC ATT ACA TAT AAT
CTG CCA TAT TAG 3'.

Phylogenetic Analysis. Phylogenetic analysis was
performed with PAUP 3.1 (Swofford 1993) using all
default parameters. Variable nucleotide positions
were treated as unordered characters with 1 state for
each nucleotide. Sequences from A. coloradana and A.
klotsi were used to root the tree. The bootstrap option

in PAUP was used to determine the extent of support
of internal nodes; 500 iterations were performed.

Results

Sequence Variation. The 2.3-kb mtDNA sequences
for Acil and Afi2 are shown in Fig. 1. There were 58
substitutions between these 2 sequences, or 2.5% di
vergence. Between these 2 sequences, COI had 3.0%
divergence (46 substitutions), tRNA leucine 3.0% (2
substitutions), and COII 1.5% (10 substitutions). No
insertions or deletions were observed. Among the
protein coding genes there were 4 amino-acid replace-
ments: leucine versus phenylalanine (bp 2500), aspar-

agine versus aspartic acid (bp 2956), valine versus |
isoleucine (bp 3136), and methionine versus valine |
(bp 3518 and 3520). Of the 58 nucleotide substitutions,

4 were transversions, and 52 were in the 3rd position, |
and 6 were in the 1st position. The complete 2.3-kb |
fragment is composed of 39.1% T, 33.9% A, 13.9% C.

and 13.0% G. |

We were able to obtain 799 bp of sequence for 48 |
of 51 specimens selected for study. One DNA template |
was apparently contaminated and for 1 specimen ofA. |
isolatissima the DNA template did not amplify, and for
the 2nd (Aiso52) we could not obtain a clean se
quence between bases 2350 and 2530.

Among the 49 sequences obtained there were 28
unique haplotypes, with nucleotide variation at 131
sites (Fig. 2). The distribution of haplotypes varied
among populations. For example, we found only ]
haplotype in the 4 specimens from Berkeley and in the
4 specimens from the Washington laboratory colony,
possibly reflecting a restricted gene pool in these pop:
ulations. A more diverse sample is represented by the
unique haplotype found in each of the 3 specimens o
A. franciscana from Dune Lakes, San Luis Obispo
County, and in the 3 haplotypes found among the 4
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------ TY-3-1460 (K6
1434 tacaatttatcgcctaaaci
1540 PGEGCAGGTATAGTAGGRAC
1640 TAACAGCTCATGCTTTTAT
1740  TATAGCTTTCCCCCGAATA!
1840  GGATGAACAGTTTACCCCCC
PTTTAGGTGCAGTAAATTT.
1940 o .
2040  AGCACTTTTATTATTATTAC
A . ,
GGGGGAGACCCTATTTTAT?

2140 3

2240  TTTCACARAGAGAGAGGAAA!

2340 TA’I‘A’I"I‘TACTGTAGGAA'(I:‘A(
T

2440  GCAACTTTACACGGARCTCI
2540 TAGCTA}STTéATcrATTGA'.:
2640  AGGTTTGTTCATIGATAC
2740 TTTTTTCCCCARCATTTTT
2840 CTTATATTTéATTAATI'I;Gcz
2940  TATTGAATGATATCAAGAT(
3043 AACCCCA’I‘T'i‘I-\TAAAGGAA;
3148  TTTICATGATCATACTTTAI
3248 CTAGARGGACAAATAATTGI
546 AACTTAATAACCCTTTAATC
3448 AATCCCTATARATGAAATA!
3548  GCTACAGATGTAATTCATT(
SRSl CAGGAMTTTITTATGERCH
3748 AATTAATAATTATTCATCA'
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Fig. 1.
Numbering corresponds to homologous sequence in D. yakuba (Clary and Wolstenholme 1985). Sites that differ on haplotype
AR2 (A. franciscana insulana, San Miguel Island) are indicated above corresponding bases. Primer locations are indicated
above sequence. The Acil sequence has been deposited in GenBank under Accession No. AF093681.

specimens of the new species collected at Montana de
Oro State Park, San Luis Obispo County.
For mtDNA within the franciscana clade (Aci +
Af+ Afi + Aiso), divergence was up to 3.8% (Acil5
versus Afi45). Between the new species and A. niscana,
divergence was 2.6-3.3%. Between the franciscana
clade and the new species or A. niscana, divergence
:lVﬂS 5.0-6.5%. The mtDNA of A. klotsi was 6.5-7.5%
J' -n::’e"ged from all of the above haplotypes. A. colorad-
exz was 8.3-9.3% diverged from all other haplotypes,
m;::)‘t 1.3% from A. klotsi. Patterns of nucleotide sub-
i rl%nsm the 799-bp fragment were similar to those
Ch led for the 2 sequences of 2.3 kb.
Aitylogenetic Analysis. In the 48 sequences of 799 bp

0:; “":]1 3were found at 2 localities each (Montana
' and Dune Lakes, Brooks Island and Washing-

iy
"OLYDES of the new species, The bootstrap con-
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—————— TY-J-1460 (K698) ~—-> . . . T . - .
tacaatttatcgcctaaac\:tcagccATTTTATTTAGCGAAAATGACTTTATTCAACAAATCATAAAGATA’I‘TGGCACATTATAT’I"I‘TATT’I‘T'I‘GGAAT’I‘
G

TGGGCAGGTATAGTAGGAACATCTCTAAGATTATTAATTCGAGCTGAA’I‘TAGGAAATCCAGGATCATTAATCGGTGATGATCAAATTTATAATACTATTG
TAACAGCTCATGCI""‘TTATTATAATTTT’I‘TTTATAGTTATACCCATTA'I‘I.%ATTGGEGGGTTTGGAAATTGATTAGT§CCATTAATATTAGGAGCCCCAGA
TA’I‘AGCTTTCCCCCGAATAAATAATATAAGATTTTGACTTCTTCCACCTTCAATTATAC’I‘TTTAATTTCAAGAAGAATTGTAGAAAATGGGGCAGGAACA
GGATGAACAGTTTACCCCCCTTTATCCT CAAACA’I‘TGCTCA'(I:‘AGAGGAAGT’I‘CAGTTGAT’I‘TAGCAATTTTTTCCCTgCATTTAGCTGGAATTTCTTCGA
TTTTAGGTGCAGTAAATTTTAT’I‘ACAACTATCATTAATATACGACCTAATAATATATCATTAGATCAAATACCTTTATTTGTATGATCTGZAGGAATCAC

C C
AGCACI‘TTTATTATTATTATCATTACCTGTATTAGCTGGAGCTATTACAATATTATTAACAGATCGAAATTTAAATACATCCTTTTTCGATCCAGCAGGA
A C

C --—~C-—-{Jerry)--——- >
GGGGGAGACCCTATT’I‘TATA’I‘CAACATTTAT’I"I"I‘GA’I'I‘T’I‘TTGGGCACCCAGAAGTTTACATTTTAATTTTACCAGGATT’I‘GGGATAATTTCCCATATTA
A T.

TTTCACAAGAGAGAGGAAAAAAAGAAAC’I"i‘TTGGGTGCTTAGGAATAATTTATGCTATAATAGCAATTGGTTTACTAGGATTTGTAGTTTGAGCTCATCA
TATA’I‘TTACTGTAGGAATAGATATTGATACACGAGC’I‘TA’I‘TTTACATCAGCAACAATAATTA’I‘TGCTGTACCAACAGGTATTAAAATT’I‘T’I‘AGTTGA’%TA
GCAACI‘T’I‘ACACGGAAC%CAAATTAATTATAGACC’I‘TCAATACTTTGAAGATTAGGATTTGTATTT’I‘TATTTACTGTAGGAGGA’I‘TAACAGGTGTAATTT
’I‘AGCTAATTCA’I‘C'I‘A'I‘TGATG'I'TACTTTACATGATACATATTATGTTGTTGCTCATTTTCATTATGTACTTTCTATGGGAGC’I‘GTATTTGCAATTA’I‘AGG
AGGAT’I‘TGTTCA'I‘TGATACCCAETATTTACAGGACTATCAA’I‘AAATCCATATTTA%’I‘AAAAATTCAATTTTTTACAATATTTATTGGGGTAAATTTAACA
T’I‘T’I"I‘TCCCCAACATTTTTTAGGTTTAGCGGGAATACCTCGACGATA?‘TC'(I;GATTACCCTGATACATATACTTCATGAAATATTATTTCATCATTAGGAT
CT'I‘ATATTTCATTAATTGCAACAATATTAATATTAATTATTGT’I‘TGAGAATCT'I‘TAATTAATAAACGAATTA’I‘T’I‘TATTCCCTT’I‘AAACATAAACTCI‘TC

T--T -(Pat2)--
TATTGAATGATATCAAGATCTTCCACCAGCAGAACA’I‘TCA’I‘A’I‘AATGAATTACCTATTTTTAGAAACTTCTAATATGGCAGACTACATGTAATGGATTTA
A.

AACCCCATTTATAAAGGAATATCCT’I‘TTT'I"I‘AGAAATGGCAACATGATCTAAT’I"I‘TAATCTTCAAAATAGAGC’I‘TCACCT’I‘TAA’I‘AGAGCAAATTA’I'I‘TT
TT’I‘TCATGATCATACI'TTAgTAATTTTAATTATAATTACTATTTTAGTAGGATACTTAA’I‘AATTAGTT’I‘ATT’I‘T’I‘TAACTCATATATTAATCGATTTTTA
CTAGAAGGACAAATAATTGAATTAATTTGAACAATTTTACCAGCTATTACATTAATTTTTATTGCA’I‘TACCTTCTTTACGACTACTTTA’I‘TTA’I‘TAGATG
AAC'I‘TAATAACCCT’I'I‘AATCACATTAAAATCI-\ATTGG’I‘CI-\TCAATGATATTGAAGTTA’I‘GAATA’I‘TCAGATTTTAATAATATTCAATTTGATTCATATAT
AA’I‘CCCTATAAATGAAATAAAAAATGATAAT'I"I‘TCGA’I‘TATTAGATG’I'I‘GATAATCGAATTATT'I"I‘ACCTngAATAAgCAAATTCGAATTATAGTTACA
GC'I‘ACAGATGTAATTCA’I‘TCTT GAACTATCCCCTCCTTAGG?GI‘AAAAGTAGATGCTAACCCTGGTCGATTAAACCAAACTAA’I‘TTTTTTA’I'I‘AA’I‘CGAC

CAGGAAT’I‘TTTTATGGGCAATGT’I‘CCGAAA’I"I‘TGTGGTGC’I‘AATCATAGTTTTATACCTATTGTAA’I‘I‘GAAAGAATTTCAATTAAAAAT’I"I‘TI-\TTAATTG
. <---TK-N-3782(Eva)
AATTAATAATTATTCATCATTagatgactgaaagcaagtaatggtctc

DNA sequence for A. citrana (Berkeley haplotype: Acil) across mitochondrial COI, tRNA leu, and COII genes.

sensus tree is shown in Fig. 3 and corresponds to the
consensus of the 2 most parsimonious trees.

The mtDNAs of specimens identified either as fran-
ciscana or citrana do not show any particular pattern
of relationships. The mtDNAs of the California Chan-
nel Island specimens tend to cluster together, but the
mtDNAs of specimens with obvious citrana phenotype
from Brooks Island, Los Angeles, and the Washington
laboratory colony also cluster with them. Bootstrap
support for the 2 larger franciscana subclades is weak
(53 and 60%). Thus, the distribution of citrana and
franciscana phenotypes is incongruent with that of
mtDNA sequences.

However, the mtDNAs of specimens identified as
niscana and Argyrotaenia n. sp. all clearly cluster to-
gether. Bootstrap values indicate maximal support
(99-100%) for the monophyly of the 4 main basal
clades: A. niscana, A. n. sp, A. n. sp. + A. niscana, and
A. citrana + franciscana + f. insulana + isolatissima.
This supports recognition of 3 separate species (A.
niscana, A. n. sp., and A. franciscana) and a sister group
relationship between A. niscana and A. n. sp.

6‘“‘;:91 sequence, 28 haplotypes were unique.
fthe unique haplotypes was found at >2 lo-

R‘;:‘:lt(;:{ colony, and San Miguel Island and
onio and). A heuristic parsimony search of
3 ttypes in PAUP resulted in 2 trees of 213
' € topological variability being restricted
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Discussion

The most commonly employed criterion for delin-
eating species is that they are reproductively isolated
populations (Mayr 1969). In the case of A. Jfranciscana
and A. citrana, laboratory hybridization has failed to

Aci = Argyrotaenia citrana
Af = A. franciscana

Afi = A. franciscana insulana A:IS;GS Montana
Aiso = A. isolatissima Az;1 g | deOro

Ansp = Argyrotaenia new species

que mtDNA haplotypes of Argyrotaenia. Dashes in Aiso52
sequence was obtained. Numbers above columns refer to nucleotide positions.
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show an appreciable amount of postzygotic isolation
(J.A.P., unpublished data). However, laboratory hy-
bridization may be relatively uninformative about
prezygotic isolating mechanisms that operate only un-
der natural conditions. An alternate means to deter-

T
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pecimens with identical haplotypes are shown separately, with zero
n them, when they are found at 2 localities (e.g., Aci5 and Aci6 versus Af46).
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mine whether populations are reproductively isolated
is to use molecular assays to survey for gene clusters
(Mallet 1995). Our examination of the mtDNA se-
quence variation is a genetic survey of these species.
Although our study focuses on a single locus with a
relatively unusual maternal inheritance pattern, it has
the advantage of being potentially quite sensitive to
genetic bottlenecks (Moore 1995) and is arguably the
best single indicator of species limits in Lepidoptera
(Sperling 1994). Furthermore, we found no evidence
of heteroplasmy, or mtDNA sequence variation,
within individuals, and the relatively low genetic di-
vergences between species are easily analyzed using
phylogenetic inference. The resulting mtDNA trees
lend themselves to interpretation under a phyloge-
netic species concept that views species as smallest
detectable monophyletic population units (Nixon and
Wheeler 1990).

Application of the phylogenetic species concept to
Argyrotaenia mtDNA suggests that populations of A.
citrana, franciscana, f. insulana, and probably also iso-
latissima, form 1 species. This species would be called
A. franciscana, because it is the oldest available name.

Sequence divergence within the main A. franciscana
mtDNA lineage is relatively high. The maximal se-
quence divergence within this lineage (3.8%) is 0.5%
higher than the maximal percent sequence divergence
between A. niscana and the new species. It is also
higher than results obtained in other similar studies on
Lepidoptera. In a study of the same 800-bp mtDNA
region in pheromone types in the dingy cutworm

{Noctuidae), maximal sequence divergence within
species was 2.3%, and 3.7% when specimens believed
to belong to a sibling species were considered (Sper-
ling et al. 1996). Among subspecies of the hemlock
looper (Geometridae), 2.2% maximal divergence oc-
curred in a larger segment homologous to the 2.3 kb
sequenced in single specimens of A. citrana and A.
Jranciscana, which had a divergence of 2.5% (Sperling
etal. 1999). Within the C. fumiferana species group (5
species, Tortricidae), 2.9% divergence occurred in a
16-kb fragment of COI and COII (Sperling and
Hickey 1994). Finally, among 3 species of ermine
“moths (Yponomeutidae) <1% divergence occurred

 teross t'he 2.3 kb COI+1I region (Sperling et al. 1995).
y Thus, simple percent sequence divergence between

f‘°§°|)' related sister species of Lepidoptera is highly
o able and is not necessarily a good predictor of
elhe_r 2unknown populations constitute reproduc-
T4 'l\s:;ilated species. However, it is clear that
A divergences within A. franciscana+citrana are
and presumably old.
mﬂt‘i:l‘ff support ‘for mqnophyletic subclades for
g ":a or A.‘cztrana is consistent with obser-
- %aeﬂ()t}’plc change through time in the San
: -”:'hybrid? mt‘iea and Santa Cruz Island, which sug-
14,1965 sa on in disturbed habitats (Powell,
»&nd unpublished data), and is supported by

hybridization trials (J.A.P., unpublished

i
m: D(l)‘u{) data, A franciscana insulana and A.
obably should also be synonymized with

LANDRY ET AL.. Argyrotaenia miUINA

Gt

A. franciscana, but more data from the Channel Islands
populations, especially from Anacapa and Santa Bar-
bara Islands, are required to establish this conclusion
more firmly. More mtDNA data on other populations,
as well as studies of other genetic markers, may also
help to give a better assessment of relationships within
A. franciscana. Our mtDNA analysis also supports the
suspected presence of a new species in San Luis
Obispo County and provides clear support for a sister
species relationship with A. niscana.
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