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ABSTRACT

Let G be a locally compact group, G∗ be the set of all extreme points of

the set of normalized continuous positive definite functions of G and a(G) be

the closed subalgebra generated by G∗ in B(G). When G is abelian, G∗ is the

set of dirac measures of the dual group of G. The general properties of G∗ are

investigated in this thesis. We study the properties of a(G), particularly on

its spectrum.

We also define translation operators on V N(G) via G∗ and investigate

the problem of the existence of translation means on V N(G) which are not

topological invariant.

Lastly, we define reflexivity of subgroups of G by using G∗, and show that

a subgroup H is reflexive if and only if G had H-separation property. If G

is abelian, there is correspondence between closed subgroups of G and closed

subgroups of the dual group Ĝ. We generalize this result to the class of groups

having separation property.
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Chapter 1

Introduction

Let G be a locally compact group, and let A(G), B(G) and V N(G) be the

Fourier algebra, Fourier-Stieltjes algebra and group von Neumann algebra ofG,

respectively, as defined by Eymard[11]. If G is abelian, A(G) can be identified

as L1(Ĝ) via the Fourier transform, V N(G) can be identified as L∞(Ĝ) via

the adjoint of Fourier transform and B(G) can be identified as M(Ĝ) via the

Fourier-Stieltjes transform, where Ĝ is the dual group of G.

Akemann and Walter first studied G∗ in [2], the set consisting of all extreme

points in the set of all continuous positive definite functions(see [7], [8] for

reference) of G with norm one. This object is also studied by A. T.-M. Lau in

[22]. If G is amenable, it is proved that the convex hull of G∗ is weak*-dense

in the set of means on UCB(Ĝ)(=norm closure of A(G) · V N(G)). In [29],

P. F. Mah and T. Miao showed that for a [SIN]-group G, G∗ and A(G) are

disjoint if and only if G is non-compact.

The main purpose of this thesis is to study G∗ from other points of view.

For a locally compact abelian group G, G∗ can be viewed as the set of all

dirac measures of Ĝ. We define a(G), the algebra generated by G∗ in B(G), as

a non-commutative analogue of l1(Ĝ) and proved that σ(a(G)) has a natural
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semigroup structure. The main results are as follows:

We show that if G1, G2 are locally compact groups and a(G1), a(G2) are

isometrically isomorphic, then the unitary parts of their spectrums are either

topologically isomorphic or anti-isomorphic. It is a natural question to ask

when σ(a(G)) is a group. If G is a [Moore]-group, then a(G) is the Fourier

algebra of Gap, where Gap is the almost periodic compactification of G. In this

case, σ(a(G)) is just Gap. We show in this thesis is that σ(a(G)) is a group

only when G is a [Moore]-group. Finally, we observe that if G is a discrete

group, then l1(Ĝ) characterizes G. We prove the non-commutative analogue

of this phenomenon: if G is an [AR]-group, then a(G) characterizes G.

The translation operators are fundamental notions in the classical theory of

L1(G) and L∞(G). Thus, it is natural for us to search for a non-commutative

version of translation operators in A(G) and V N(G). We find that ”gener-

alized” translation operators of A(G) and V N(G) can be defined by using

G∗. Note that if G is abelian, the generalized translation operators of A(G)

and V N(G) are precisely the usual translation operators of L1(Ĝ) and L∞(Ĝ)

under certain identifications.

The notion of amenability of a group was formulated by von Neumann.

Later, Day defined amenability of a locally compact group G by using transla-

tion invariant means on L∞(G). As mentioned above, V N(G) can be viewed

as the dual object of L∞(G). Since we have a non-commutative analogue

of translation invariant means on V N(G), it allows us to define translation

invariant means on V N(G).

Granirer[14] and Rudin[34] proved independently that if G is amenable as

discrete, then G is discrete if and only if all the translation invariant means

on L∞(G) are topological invariant. However, this is no longer true in general
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even when G is a compact group(See [6]). As a direct consequence of Granirer-

Rudin’s theorem, we have the following observation: if G is abelian, then G

is compact if and only if all the translation invariant means on V N(G) are

topological invariant. We prove that the result is not true for general locally

compact groups. One of the main purposes of this thesis is to generalize this

result for non-abelian groups under certain assumptions.

Let H be a closed subgroup of G, and let π be a unitary representation

of G. It is natural to ask if the restriction of π to H is a direct sum of

irreducible representation of H in general. Surprisingly, by making use of a

result concerning translation invariant means on V N(G) and Granirer-Rudin’s

result that mentioned above, we give a negative answer to this question.

Many classical results can be generalized in the non-commutative setting

via G∗ and the proofs of them need only slight modifications. The closed con-

vex translation invariant subsets in L1(G) and L∞(G) were studied in [21]. Un-

der the assumption that A(G) has approximate identity, we generalize most of

the results in [21] in the our setting. It was proved in [26] that G is amenable if

and only if every completely complemented weak*-closed translation invariant

subspace of L∞(G) is invariantly complemented.. We generalize the forward

implication in our setting.

If G is abelian, by using the Pontryagin duality theorem, it is shown that

there is a one-to-one correspondence between the set of all closed subgroups of

G and the set of all closed subgroups of the dual group Ĝ. It maps a subgroup

H of G to H⊥, a subgroup of Ĝ, which is defined by the following:

H⊥ = {χ ∈ Ĝ : χ(x) = 1 for any x ∈ H}.

In the non-abelian case, there is no such an correspondence since we do not

have the notion of dual group defined in a natural way.
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If H is a closed subgroup of G and A is a subset of G∗, we put

H⊥ = {g∗ ∈ G∗ : g∗(x) = 1 for any x ∈ H}

and

A⊥ = {x ∈ G : g∗(x) = 1 for any g∗ ∈ A}.

A subgroup H of G is called reflexive if (H⊥)⊥ = H and a subset A in G∗

is called reflexive if (A⊥)⊥ = A. Some main results are as follows: We first

prove that H is reflexive if H is separating in G(see [19]). We also prove that

there is a one-to-one correspondence between reflexive subgroups of G and

reflexive subsets of G∗. As a consequence, we generalize the correspondence

of subgroups in the abelian case under the assumption that G has separation

property(see [19]). We also show that the dual space of G/N can be identified

with N⊥ if N is a closed normal subgroup of G. We also give a characterization

of the dual space of a product of two groups if one of them is of abelian.

This thesis is organized as follows: in Chapter 3, we define a(G) and its

semigroup structure. Then, we prove the main results about a(G) mentioned

above; in Chapter 4, we define the translation invariant operators and means

on V N(G), and prove the main results about translation invariant means on

V N(G) which are topological invariant. We also show as an application that

the infinite dimensional irreducible representations of ”ax+b”-group are not

completely irreducible; in Chapter 5, we characterizes all the closed subalge-

bras of A(G) which are ideals of A(G). This result actually motivated the

author to study of ”generalized” translation operators of A(G). A couple

of classical results about translation operators have been generalized in our

setting in this chpater; in Chapter 6, we characterize the commutativity, com-

pactness or discreteness of G by using properties of G∗. We also give charac-

terizations of translation invariant elements in V N(G) and W ∗(G) at the end
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of this chapter; in Chapter 7, we study the closed convex G∗-invariant subsets

of A(G) and V N(G) and give the characterization of WAP (Ĝ) and AP (Ĝ).

We also show that every completely complemented weak*-closed G∗-invariant

subspace of V N(G) is invariantly complemented whenever G is amenable; in

chapter 8, we discuss the reflexivity of subsets of G and G∗. We also prove

that G is abelian if and only if G∗ is a semigroup under certain assumptions.
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Chapter 2

Some Preliminaries

Let (X, τ) be a topological space, and let Y be a subset of X. Denote by Y
τ

and Y o the closure of Y and the interior of Y , respectively.

Let E be a Banach space. Throughout this thesis, E1 and SE will denote

the unit ball and unit sphere of E respectively. Let K be a subset of E. We

denote by E(K) the set of all extreme points of K, and denote by co(K) the

algebraic convex hull of K. Let E ′ be the dual space of E, which contains all

bounded linear functional of E.

In this thesis, all groups will be assumed to be locally compact, and G will

denote a locally compact group. A left(right) Haar measure on G is a non-zero

positive Borel regular measure μG on G such that μG is left(right) translation

invariant. Every locally compact group possesses a left(right) Haar measures,

which is unique up to multiplication by a positive constant. If λ is a Haar

measure of G, then there is a continuous homomorphism Δ : G → [0,∞),

called the modular function of G, such that λ(Ex) = Δ(x)λ(E) for any x ∈ G

and Borel set E ⊆ G. Let mG be a fixed left Haar measure on G. Let

1 ≤ p < ∞ and let Lp(G) be the set of all p-integrable functions on G with

respect to mG. Let f1, f2 ∈ Lp(G). f1 and f2 are said to be equivalent if
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‖f1 − f2‖p = 0. Denote by Lp(G) the set of all equivalent classes in Lp(G).

Define L∞(G) to be the set of all locally (Haar-)measurable functions that are

bounded except on a locally null set, modulo functions that are zero locally

a.e. It is known that L∞(G) is a Banach space with norm

‖f‖∞ := inf{c : |f | ≤ c locally a.e.}

From now on, we use the following notation without further specification.

Denote by CB(G) the space of bounded continuous functions on G, and by

C0(G) the space of continuous functions vanishing at infinity on G.

Let M(G) be the set of all complex Radon measures on G. Define a norm

‖ · ‖M(G) by

‖μ‖M(G) := |μ|(G) (μ ∈ M(G))

Also, define the convolution operation ∗ on M(G) by

∫
G

f(x)d(μ ∗ ν)(x) :=
∫
G

(

∫
G

f(xy)dμ(x))dν(x) (f ∈ Cc(G), μ, ν ∈ M(G))

and the involution μ 	→ μ∗ on M(G) by

∫
G

f(x)dμ∗(x) :=
∫
G

f(x−1)dμ(x) (f ∈ Cc(G), μ ∈ M(G))

Then (M(G), ‖·‖M(G), ∗) is a unital Banach *-algebra and the unit is given

by the point mass measure at the identity, δe. The set Ma(G) of measures in

M(G) which are absolutely continuous with respect to the Haar measure is a

closed *-ideal in M(G) identified with L1(G) via

μf (E) :=

∫
E

f(x)dmG(x)

The convolution operation ∗ on L1(G) inherited from M(G) is given by

f ∗ g(y) =
∫
G

f(yx)g(x−1)dmG(x) a.e.
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The *-operation on L1(G) inherited from M(G) is given by

f ∗(x) = Δ(x−1)f(x−1) a.e.

We will call L1(G), with the above convolution product, the group algebra of

G. Write δG = {δx : x ∈ G}.
Let f be a function on G and y ∈ G. We define the left and right translates

of f through y by

Lyf(x) = f(y−1x), Ryf(x) = f(xy).

We also write xf and fx for the functions f(x·) and f(·x), respectively.
A bounded continuous function f is said to be left(right) uniformly contin-

uous if ‖Lyf − f‖∞ → 0(resp. ‖Ryf − f‖∞ → 0) as y → eG. If f is both left

and right uniformly continuous, then f is called uniformly continuous. Denote

by UCB(G) the space of uniformly continuous functions on G.

A unitary representation of G is a homomorphism π from G into the group

U(Hπ) of unitary operators on some non-zero Hilbert space Hπ that is con-

tinuous with respect to the strong operator topology. Let ΣG be the class of

unitary representations of G, and let λ2 : G −→ B(L2(G)), [λ2(x)(f)](y) :=

f(x−1y) (x, y ∈ G, f ∈ L2(G)) be the left regular representation of G. We will

also denote by Ĝ the class of all irreducible unitary representations of G. If G

is abelian, we also denote the dual group of G by Ĝ.

Let G be a locally compact group. For any f ∈ L1(G), define

‖f‖C∗(G) := supπ∈ΣG
‖π(f)‖

It is easily seen that ‖ · ‖C∗(G) is a C*-norm on L1(G). Let C∗(G) be the

completion of L1(G) under ‖ · ‖C∗(G). Then C∗(G) is called the full group C*-

algebra or simply the group C*-algebra of G. Let B(G) := {x 	→ 〈π(x)ξ, η〉 :
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π ∈ ΣG, ξ, η ∈ Hπ} be the Fourier-Stieltjes algebra of G. B(G) is a commu-

tative Banach algebra with the pointwise multiplication and its norm is given

by

‖u‖B(G) = sup{‖ξ‖‖η‖ : u(x) = 〈π(x)ξ, η〉, π ∈ ΣG, ξ, η ∈ Hπ}

Let A(G) := {x 	→ 〈λ2(x)ξ, η〉 : ξ, η ∈ L2(G)} be the Fourier algebra of G. It

is well-known that A(G) is a closed ideal of B(G).

Let P (G) be the set of all continuous positive definite functions on G. (i.e.)

P (G) := {φ ∈ B(G) :

∫
(f ∗ ∗ f)φ ≥ 0 for any f ∈ L1(G)}

It can be shown that P (G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ} and φ(e) =

‖φ‖B(G). See [7] for reference.

Let V N(G) be the von Neumann algebra generated by the image of λ2

in B(L2(G)). It is called the group von Neumann algebra of G. For any

f ∈ L1(G), define

‖f‖C∗
r
:= ‖λ2(f)‖

It is easily seen that ‖ · ‖C∗
λ2

(G) is a C*-norm on L1(G). Let C∗
r (G) be the

completion of L1(G) under ‖ · ‖C∗
r (G) Then C∗

r (G) is called the reduced group

C*-algebra of G. It is proved by Eymard[11] that A(G)′ = V N(G). For

u ∈ A(G) and T ∈ V N(G), define u · T ∈ V N(G) by 〈u · T, v〉 = 〈T, uv〉,
v ∈ A(G). Let UCB(Ĝ) be the closed linear span of A(G) ·V N(G) in V N(G).

The set of all T in V N(G) for which the operator from A(G) to V N(G)

given by u 	→ u · T is weakly compact (compact) is denoted by WAP (Ĝ)

(resp. AP (Ĝ)), the weakly almost periodic(resp. almost periodic) functionals

in V N(G).

Suppose that π is a unitary representation of G. Let Fπ(G) = span {x 	→
〈π(x)ξ, η〉 : ξ, η ∈ Hπ}. Aπ(G), the Fourier spaces associated to π, is defined to
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be the closure of Fπ(G) in the Banach space B(G). For any representation π of

G, define V Nπ(G) the von Neumann algebra generated by π(G)(or π(L1(G)))

in L(Hπ). If π = λ2, then Aπ(G) = A(G) = Fπ(G) and V Nπ(G) = V N(G).

For each u ∈ Aπ(G), there exist some nets (ξn) and (ηn) in Hπ such that

u(x) =
∞∑
n=1

〈π(x)ξn, ηn〉 and ‖u‖ =
∞∑
n=1

‖ξn‖‖ηn‖.

See [1] and [11] for more details.
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Chapter 3

Semigroup structure of the

spectrum of a(G)

In this chapter, we will study the semigroup structure of the spectrum of

a(G). We start with the definition of G∗, which will play an important role

throughout this thesis. Let P1(G) = SB(G) ∩ P (G). In the other words,

P1(G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ, ‖ξ‖ = 1}

Let G∗ = E(P1(G)), and let G̃ be the semigroup generated by G∗ in B(G). The

sets G∗ and G̃ are equipped with the relative weak* topology inherited from

B(G). G∗ will be called the dual space of G. We shall denote the elements in

G∗ by g∗, h∗ or k∗.

Remarks.

(a) If G is abelian, then G∗ = G̃ = Ĝ.

(b) G∗ = {x 	→ 〈π(x)ξ, ξ〉 : π ∈ Ĝ, ξ ∈ Hπ, ‖ξ‖ = 1}

(c) G∗ separates points on G. That is, if x and y are distinct points of G,
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there is an element g∗ ∈ G∗ such that g∗(x) �= g∗(y).(See [12, Theorem

3.34])

(d) Actually, it is proved in [2] that the following statements are equivalent:

(a) G is abelian.

(b) For every g∗ ∈ G∗, we have (g∗)−1 ∈ P1(G).

(c) G∗, equipped with the pointwise multiplication, is a group.

3.1 Isomorphisms between generalized Fourier

algebras

Let a0(G) be the closure of the span of G∗ in B(G), and let a(G) be the

closed subalgebra generated by a0(G) in B(G). We call a(G) the little Fourier

algebra of G. Denote by vn0(G) and vn(G) the dual Banach spaces of a0(G)

and a(G), respectively. We call vn(G) the the little von Neumann algebra of

G. Then the norm-closure of the span of G̃ in B(G) is a(G). Recall that

π̄ is the contragredient of π(for details, see [12, Chapter 3]). Note that π̄ is

irreducible for any irreducible representation π of G. It follows that a(G) is

a Banach *-algebra where the involution is given by the complex conjugation.

Furthermore, we can show that a(G) is semisimple as G∗ separates points of

G.

For the definitions of direct sums and internal tensor products of unitary

representations of G, we refer the reader to [12, Chapter 3 and 7].

Proposition 3.1.1. Let πa =
⊕

π∈Ĝ π. Then a0(G) = Aπa(G). Hence,

vn0(G) = V Nπa(G). In particular, vn0(G) is a von Neumann algebra.
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Proof. Let F be the set of all unitary equivalence classes of finite direct sums of

irreducible representations in G. It is clear that span(G∗) = {x 	→ 〈π(x)ξ, η〉 :
π ∈ F, ξ, η ∈ Hπ}. Suppose that φ ∈ Aπa(G) such that φ(x) = 〈πa(x)ξ, ξ〉
for some ξ ∈ Hπa}. For any ε > 0, there exists ξ0 ∈ Hπ for some π ∈ F and

‖ξ − ξ0‖ < ε. For any f ∈ C∗(G),

|〈πa(f)ξ, ξ〉 − 〈π(f)ξ0, ξ0〉| = |〈πa(f)ξ, ξ〉 − 〈πa(f)ξ0, ξ0〉|

≤ |〈πa(f)ξ, (ξ − ξ0)〉|+ |〈πa(f)(ξ − ξ0), ξ0〉| ≤ 2‖f‖C∗‖ξ‖ε

Therefore, ‖〈πa(·)ξ, ξ〉 − 〈π(·)ξ0, ξ0〉‖B(G) ≤ ε. The results thus follows.

Let π
(n)
a = ⊗n

i=1πa and σ = ⊕∞
n=1π

(n)
a . It is straight forward to show that

a(G) = Aσ(G) and vn(G) = V Nσ(G). Hence, vn(G) is a von Neumann

algebra.

A Banach space X has the Radon-Nikodym property(RNP) if for every

bounded subset C of X and ε > 0, there is some x ∈ C such that x does not

lie in the norm closure of co[C \ (x+ {y ∈ X : ‖y‖ ≤ ε})].

Remark. If G is a compact group, then B(G) has RNP. In fact, we have B(G)

has RNP if and only if B(G) = a0(G)(See [5, Theorem 5], [36, Theorem 4.2],

[25, Theorem 4.5] and [27]).

Let AF(G) be the ‖ · ‖B(G) closure of {x 	→ 〈π(x)ξ, η〉 : π is a finite

dimensional representation of G, ξ, η ∈ Hπ}. Let ĜF be the set of all fi-

nite dimensional irreducible representations of G, and πF = ⊕π∈ĜFπ. Then

AF(G) = AπF
(G) ⊆ a0(G).

A [Moore]-group is a locally compact group such that all its irreducible

unitary representations are finite dimensional.

Remarks.
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(a) If G is abelian, a0(G) = a(G) ∼= l1(Ĝ) and vn0(G) = vn(G) ∼= l∞(Ĝ).

(b) If G is compact, then every representation of G is a direct sum of copies

of irreducible representations, hence a0(G) = B(G) = a(G).

(c) If G is [Moore]-group, it is clear that a0(G) = a(G) = AF(G).

(d) More generally, if B(G) has a RNP, then a0(G) = B(G) = a(G).

(e) If G is the ”ax+b”-group, then a0(G) = AF(G) ⊕ A(G), which is an

algebra since A(G) is an ideal in a0(G). Thus a0(G) = a(G).

Let A be a commutative Banach algebra. The spectrum of A, written as

σ(A), is the set of all non-zero multiplicative linear functional of A.

From now on, π will be a unitary representation of G such that Aπ(G) is

an algebra.

If Aπ(G) is a unital algebra, then it is easy to see that

Aπ(G) = Aπ(G) · Aπ(G) = norm-cl(span(Aπ(G) · Aπ(G)))

Therefore, it follows that Aπ(G) = Aπ⊗π(G), and hence π and π⊗π are quasi-

equivalent(see [1]). By a result in [9, Chapter], it follows that there is an

isomorphism

Φ : V Nπ(G) → V Nπ⊗π(G) such that Φ(π(g)) = (π ⊗ π)(g) for any g ∈ G.

Moreover, we have

〈u, x〉Aπ(G),V Nπ(G) = 〈u,Φ(x)〉Aπ⊗π(G),V Nπ⊗π(G) for any u ∈ Aπ(G), x ∈ V Nπ(G)

(See [1]). It is easy to see that the isomorphism with above properties is unique.
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For any x ∈ V Nπ(G), π⊗ π(x) is defined to be the Φ(x). It is an operator

of Hπ⊗Hπ since it is an element of V Nπ⊗π(G). Since π⊗π(x) and π(x)⊗π(x)

are operators of Hπ ⊗Hπ, it makes sense to ask if they are equal.

The following lemma is a generalization of [37, Theorem 1(ii)].

Lemma 3.1.2. If Aπ(G) is unital, then σ(Aπ(G)) := {x ∈ V Nπ(G) \ {0} :

π ⊗ π(x) = π(x)⊗ π(x)}

Proof. Let ui = 〈π(·)ξi, ηi〉 ∈ Aπ(G) where i = 1, 2 and let f = u1u2. Then

f(x) = 〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉 for any x ∈ G. Then we have

〈f, x〉 = 〈f,Φ(x)〉 = 〈f, π ⊗ π(x)〉 = 〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉.

If x ∈ σ(Aπ(G)), then

〈f, x〉 = 〈u1, x〉〈u2, x〉 = 〈π(x)ξ1, η1〉〈π(x)ξ2, η2〉 = 〈π(x)⊗π(x)ξ1⊗ξ2, η1⊗η2〉.

Therefore,

〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈π(x)⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉

Conversely, suppose that x ∈ V Nπ(G)\{0} and π(x)⊗π(x) = π⊗π(x). Then

we have

〈u1, x〉〈u2, x〉 = 〈π(x)ξ1, η1〉〈π(x)ξ2, η2〉 = 〈π(x)⊗π(x)ξ1⊗ξ2, η1⊗η2〉 = 〈f, x〉.

So, x ∈ σ(Aπ(G)).

For any u ∈ Aπ(G), T ∈ V Nπ(G), define Tl(u)(x) = 〈π(x) · T, u〉.

Lemma 3.1.3. We have Tl(u)(x) = 〈T, xu〉. IfAπ(G) is unital, then Tl(1)(x) ≡
〈T, 1〉.
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Proof. If u ∈ Aπ(G) and u(x) =
∑∞

n=1〈π(x)ξn, ηn〉 for some ξn, ηn ∈ Hπ, then

(u · π(x))(y) = ∑∞
n=1〈π(y)ξn, π(x)∗ηn〉 =

∑∞
n=1〈π(xy)ξn, ηn〉 = xu(y) for any

x, y ∈ G.

Lemma 3.1.4. Tl(u) ∈ Aπ(G) for each u ∈ Aπ(G) and T ∈ V Nπ(G).

Proof. Tl(u)(x) = 〈π(x) · T, u〉 = 〈π(x), T · u〉 = (T · u)(x).

Lemma 3.1.5. If T ∈ σ(Aπ(G)), then Tl : Aπ(G) → Aπ(G) is a homomor-

phism.

Proof. If u, v ∈ Aπ(G), then

Tl(u · v)(x) = 〈T, x(uv)〉 = 〈T, xuxv〉 = 〈T, xu〉〈T, xv〉 = Tl(u)(x)Tl(v)(x)

.

For any S, T ∈ V Nπ(G), define S ◦ T ∈ V Nπ(G) by 〈S ◦ T, u〉 = 〈S, Tl(u)〉
for all u ∈ Aπ(G).

Proposition 3.1.6. If S, T ∈ V Nπ(G), then S ◦ T = S · T and (S · T )l(u) =
Tl(Sl(u)) for all u ∈ Aπ(G).

Proof. By definition, the first equality holds clearly if S = π(x) for some

x ∈ G. The rest follows form the weak* density of span(π(G)) in V Nπ(G).

The second equality is straightforward.

Given a function u : G → C, let ũ : G → C be the function defined by

ũ(x) = u(x−1).

Proposition 3.1.7. If σ(Aπ(G)) ∪ {0} is equipped with the multiplication

product inherited from V Nπ(G), then it is a *-semitopological semigroup. In

addition, if Aπ(G) is unital and σ(Aπ(G)) is equipped with the multiplica-

tion product inherited from V Nπ(G), then it is a compact *-semitopological

semigroup.
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Proof. If T, S ∈ σ(Aπ(G)) and u, v ∈ Aπ(G), then

〈T · S, uv〉 = 〈T, Sl(uv)〉 = 〈T, Sl(u)Sl(v)〉

= 〈T, Sl(u)〉〈T, Sl(v)〉 = 〈T · S, u〉〈T · S, v〉.

On the other hand, we have 〈T ∗, uv〉 = 〈T, ũv〉 = 〈T, ũṽ〉 = 〈T ∗, u〉〈T ∗, v〉, so
T ∗ ∈ σ(Aπ(G)). Suppose that Aπ(G) is unital. Now 〈T, 1〉 = 1 = 〈S, 1〉, so
〈T · S, 1〉 = 〈T, Sl(1)〉 = 〈T, 1〉 = 1. It follows that T · S �= 0. Hence, T · S ∈
σ(Aπ(G)). Since the multiplication of a von Neumann algebra is separately

weak*-continuous, we conclude that they are semitopological semigroups.

Corollary 3.1.8. σ(a(G)) is a compact *-semitopological semigroup if it is

equipped with the multiplication product inherited from vn(G).

Suppose that φ ∈ l∞(G) satisfying that

φf = f for any f ∈ l1(G).

Then, obviously, φ is the constant one function. We now have the following

proposition which is a non-commutative analogue of this observation:

Proposition 3.1.9. Let T be a non-zero element in vn(G). Then the following

statements are equivalent:

(a) Tu = u for all u ∈ a(G)

(b) T = σ(e).

Proof. (b) ⇒ (a) is clear. Suppose that (a) holds. We have [Tl(u)](x) =

(Tu)(x) = u(x). For any S ∈ vn(G), we obtain 〈S ·T, u〉 = 〈S, Tl(u)〉 = 〈S, u〉.
Hence, S · T = S for all S ∈ vn(G). Therefore, T = σ(e).
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Write σu(Aπ(G))(σinv(Aπ(G))) the set of all unitary(resp. invertible) ele-

ments in σ(Aπ(G)). Clearly, σu(Aπ(G)) and σinv(Aπ(G)) are semi-topological

groups if equipped with the relative weak*-topology of V Nπ(G).

Theorem 3.1.10. Let π1 and π2 be unitary representations of G1 and G2,

respectively. If Aπ1(G1) and Aπ2(G2) are isometrically isomorphic, then there

is a homeomorphism φ : σ(Aπ1(G1)) → σ(Aπ2(G2)) such that:

(a) φ(T ∗) = φ(T )∗ for any T ∈ σ(Aπ1(G1));

(b) for each T, S ∈ σ(Aπ1(G1)), either φ(T · S) = φ(T )φ(S) or φ(T · S) =

φ(S)φ(T );

(c) φ is either a *-isomorphism or a *-anti-isomorphism from σu(Aπ1(G1))

onto σu(Aπ2(G2)).

Proof.

Step 1:

We construct a Jordan *-isomorphism Φ between V Nπ1(G1) and V Nπ2(G2).

Let ψ : Aπ2(G2) → Aπ1(G1) be an isometric isomorphism. It is straight

forward to show that U = ψ∗(π2(e)) ∈ σ(Aπ2(G2)). We have V = U∗ ∈
σ(Aπ2(G2)) by proposition 3.1.7. By lemma 3.1.6, Vl : Aπ2(G2) → Aπ2(G2)

is a homomorphism. Since V is unitary, it is easy to see that Vl is in fact

an isometric isomorphism. It follows that ψ ◦ Vl : Aπ2(G2) → Aπ1(G1) is

an isometric isomorphism. Let Φ = (ψ ◦ Vl)
∗. Then Φ is an isometry from

V Nπ1(G1) onto V Nπ2(G2). Note that

〈Φ(π1(e1)), f〉 = 〈ψ∗(π(e1)), Vl(f)〉 = 〈U, Vl(f)〉 = 〈π2(e), f〉

for any f ∈ Aπ1(G1). Therefore, Φ preserves units and hence is a Jordan *-

isomorphism by [18, Theorem 7].
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Step 2: Let φ be the restriction of Φ to σ(Aπ1(G1)). Then φ is a home-

omorphism from σ(Aπ1(G1)) onto σ(Aπ2(G2)). We show that φ satisfies (a)

and (b):

If TS = ST , then (b) holds as Jordan *-isomorphisms preserve commutativity.

Otherwise, we have

φ(T )φ(S) + φ(S)φ(T ) = φ(ST ) + φ(TS)

Suppose that (b) does not holds. Then φ(T )φ(S), φ(S)φ(T ), φ(ST ) and φ(TS)

are pairwise distinct, hence linearly independent, in σ(Aπ2(G2)), which leads

a contradiction.

By theorem 10 in [18], there exists a central projections zi ∈ V Nπi
(Gi)

(i = 1, 2), such that Φ = ΦI + ΦA and ΦI : V N(G1)z1 → V N(G2)z2 is a

*-isomorphism and ΦA : V N(G1)(π1(e) − z1) → V N(G2)(π2(e) − z2) is a *-

anti-isomorphism. For each T ∈ σu(Aπ1(G1)), defineHT = {S ∈ σu(Aπ1(G1)) :

(ST − TS)z1 = 0}; KT = {S ∈ σu(Aπ1(G1)) : (ST − TS)(π2(e)− z1) = 0}.

Step 3: We show that HT and KT are subgroups of σu(Aπ1(G1)) and

HT ∪KT = σu(Aπ1(G1)).

If S1, S2 ∈ HT and S ∈ σu(Aπ1(G1)), then SS1S2z1 = S1(SS2)z2 = S1(S2Sz2) =

S1S2Sz2 and (S−1
1 S − SS−1

1 )z2 = S−1
1 (S1S − SS1)S

−1
1 = 0. It follows that HT

is a subgroup of σu(Aπ1(G1)). Similarly, KT is a subgroup of σu(Aπ1(G1)).

Finally, if φ(ST ) = φ(T )φ(S), then φ(ST − TS)z2 = 0(since ΦI is a *-

isomorphism) which implies that (ST − TS)z1 = 0. So, S ∈ HT . Otherwise,

we have φ(ST ) = φ(S)φ(T ). It follows similarly that S ∈ KT .

Step 4: Define H = ∩{T ∈ σu(Aπ1(G1)) : HT = σu(Aπ1(G1))}; K =
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∩{T ∈ σu(Aπ1(G1)) : KT = σu(Aπ1(G1))}. Then either H = σu(Aπ1(G1)) or

K = σu(Aπ1(G1)).

If S1, S2 ∈ H, then, for any S ∈ σu(Aπ1(G1)), we have S1S2Sz = S1(SS2z) =

(SS1)S2z = S(S1S2)z. Thus, HS1S2 = σu(Aπ1(G1)). Also, we have (S−1
1 S −

SS−1
1 )z = S−1

1 (S1S − SS1)S
−1
1 = 0. Consequently, HS−1

1
= σu(Aπ1(G1)). The

final assertion is clear since HT = σu(Aπ1(G1)) or KT = σu(Aπ1(G1)) for any

T ∈ σu(Aπ1(G1) (as HT and KT are subgroups of σu(Aπ1(G1))).

Step 5:

If H = σu(Aπ1(G1))(K = σu(Aπ1(G1))), then φ is a *-anti-isomorphism

( a *-isomorphism).

Suppose that H = σu(Aπ1(G1)). We claim that φ(S1S2) = φ(S2)φ(S1) for

all S1, S2 ∈ σu(Aπ1(G1)). If not so, then φ(S1S2) = φ(S1)φ(S2). It follows

that (φ(S1)φ(S2) − φ(S2)φ(S1))(π2(e) − φ(z1)) = 0. But S1, S2 ∈ H implies

that (S1S2 − S2S1)z = 0. So, S1S2 = S2S1. Hence, φ(S1S2) = φ(S2)φ(S1).

Therefore, φ is a *-anti-isomorphism. The other case is similar.

Corollary 3.1.11. If a(G1) and a(G2) are isometrically isomorphic, then

σu(a(G1)) and σu(a(G2)) are topologically isomorphic.

3.2 When is the spectrum of a(G) a group?

In this section, we investigate when the spectrum of a(G) is a group.

Let G be a non-[Moore]-group. Let ĜI be the set of all infinite dimensional

irreducible representations of G, and πI = ⊕π∈ĜIπ. Then πa = πF ⊕ πI . Let

σI =
⊕

n∈N πF ⊗π⊗n
I where π⊗n

I =
⊗n

i=1 πI . It is easy to see that σ = πF ⊕σI .

Lemma 3.2.1. Let zF ∈ vn(G) be the central projection such that AF(G) =
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zF · a(G). Write a(G) = AF(G) ⊕ AI(G), where AI(G) = (σ(e) − zF )a(G).

Then AI(G) is the ideal generated by AπI
(G) in a(G) and AI(G) = AσI

(G).

Proof. Note that B(G) = AF(G) ⊕ APIF(G)(see [33, Section 2]). Thus,

a(G) = AF(G) ⊕ (a(G) ∩ APIF(G)). By uniqueness of the translation in-

variant complement of AF(G) in a(G), we have a(G) ∩ APIF(G) = AI(G).

Since APIF(G) is an ideal of B(G)(see [33, Theorem 2.3]), it follows that

AI(G) is an ideal of a(G).

We have the following proposition that gives some criteria for the equality

of a(G) and a0(G), which is of independent interest:

Proposition 3.2.2. The following statements are equivalent:

(a) a0(G) = a(G).

(b) a0(G) = Aπa⊗πa(G).

(c) a(G) has RNP.

(d) Aπa⊗πa(G) has RNP.

(e) AI(G) has RNP.

(f) πa ⊗ πa is completely reducible.

(g) π ⊗ ρ is completely reducible for any π, ρ ∈ Ĝ.

(h) AπI
(G) is an algebra and a0(G)AπI

(G) = AπI
(G).

Proof. Note that a0(G) ⊆ Aπa⊗πa(G) ⊆ a(G) and a(G) = AF(G) ⊕ AI(G).

The result follows from [5, Theorem 3].
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Remark. It follows that [27] that if a0(G) = a(G), then a(G) has the weak

fixed point property for non-expansive mappings. We do not know if the

converse is true(see also [25]).

Note that σ(AF(G)) = σ(A(Gap)) ∼= Gap where Gap is the almost peri-

odic compactification of G. If G is a [Moore]-group, then a(G) = AF(G) =

B(Gap) = A(Gap). Therefore, σ(a(G)) = Gap is a group. We will prove below

that the converse of it is also true:

The following lemma is a generalization of [38, Proposition 1], and the

proof of it is left to the reader.

Lemma 3.2.3. Let s ∈ V Nπ(G) be such that s2 = s. Then the following are

equivalent:

(a) s ∈ σ(Aπ(G)).

(b) s · Aπ(G) is an algebra and (π(e)− s)Aπ(G) is an ideal of Aπ(G).

(c) The map Aπ(G) → s · Aπ(G), f 	→ s · f is an endomorphism.

Lemma 3.2.4. If Aπ(G) = Aπ1(G)⊕Aπ2(G) and m ∈ σ(Aπ(G)) is invertible,

then m(Aπ1(G)) �= 0 and m(Aπ2(G)) �= 0.

Proof. Let z[π1] be the support projection of π1 in V Nπ(G). Assume that

m(Aπ1(G)) = 0. Then m ∈ Aπ1(G)⊥ = (π(e) − z[π1])V Nπ(G). So, m =

(π(e) − z[π1])m. Hence, π(e) = z[π1]. Consequently, Aπ2(G) = 0 which leads

a contradiction.

Lemma 3.2.5. Let zF ∈ vn(G) be the central projection such that AF(G) =

zF · a(G). Then zF ∈ σ(a(G)).

Proof. Since AI(G) is an ideal of a(G), by lemma 3.2.3, we have zF ∈ σ(a(G)).
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Note that a0(G) = ⊕1{Aπ(G) : π ∈ Ĝ} = ⊕1{L1(Hπ) : π ∈ Ĝ}(See [1])

where L1(Hπ) is the space of all trace-class operators on Hπ. Let c0(Ĝ) :=

⊕0{K(Hπ) : π ∈ Ĝ}. Then it is easy to see that the dual space of c0(Ĝ) is

a0(G).

Lemma 3.2.6. The following assertions are equivalent:

(a) G is a [Moore]-group.

(b) a0(G) is a l1-sum of finite-dimensional Banach spaces.

(c) c0(Ĝ) is a c0-sum of finite-dimensional C*-algebras.

(d) Every bounded linear operator T : c0(Ĝ) → a0(G) is compact.

(e) Every irreducible representation of c0(Ĝ) is finite-dimensional.

Proof. By using [24, Theorem 3.6 and Theorem 4.1], we see the equivalence

of (b)-(e). It suffices to proof that (e) implies that (a). Define π̂0 : c0(Ĝ) →
B(Hπ0), (Tπ)π∈Ĝ 	→ Tπ0 . Let ξ, η ∈ Hπ0 \ {0}. There exists Sπ0 ∈ F(Hπ0)

such that Sπ0(ξ) = η. Now, define Tπ = Sπ0 if π = π0 and Tπ = 0 if π �= π0.

Then π̂0((Tπ)π∈Ĝ)ξ = η, and hence π̂0 is irreducible. Therefore, Hπ0 is finite-

dimensional.

Remark. A Banach space is said to have Schur’s property if all weakly con-

vergent sequences are norm convergent. The Banach space X is said to have

the DPP if, for any Banach space Y , every weakly compact linear operator

u : X → Y sends weakly Cauchy sequences into norm convergent sequences.

Actually, by using [24, Theorem 3.6 and Theorem 4.1], we can prove that the

following assertions are equivalent:

(a) G is a [Moore]-group.
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(b) a0(G) has Schur’s property.

(c) a0(G) has DPP.

(d) c0(Ĝ) has DPP.

(e) ap(c0(G)) = a0(G).

Theorem 3.2.7. Let G be a locally compact group. The following statements

are equivalent:

(a) G is a [Moore]-group.

(b) σ(a(G)) is a group.

(c) The only idempotent of σ(a(G)) is σ(e).

(d) zF ∈ σ(a(G)) is invertible.

(e) a(G) = AF(G)

(f) a0(G) = AF(G)

Proof. ”(a) ⇒ (b) ⇒ (c)” and ”(b) ⇒ (d)” are clear. Suppose that (b) holds.

Then zF = σ(e). So, a(G) = zF · a(G) = AF(G). On the other hand, suppose

that (d) holds. Then zF (AI(G)) �= 0 by lemma 8.1.4. It contradicts that

AI(G) = (σ(e) − zF )a(G). We thus get AI(G) = 0, ie. a(G) = AF(G). If

a(G) = AF(G), then we have a0(G) = AF(G) as AF(G) ⊆ a0(G). Finally,

assume that (f) is true. Then G is a [Moore]-group by lemma 3.2.6.
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3.3 A non-commutative analogue of Wendel’s

theorem for discrete groups

By the last result in the previous section, we see that σ(a(G)) is not always a

group. We will now study the unitary(invertible) part of σ(a(G)). Recall that

the following definitions:

A unitary representation of G is completely reducible if it can be written as a

direct sum of irreducibles. A locally compact group G is called a [AR]-group

if A(G) has RNP. It is proved that G is an [AR]-group if and only if its left

regular representation is completely reducible. (See [36] for more details.)

Theorem 3.3.1. Let G be an [AR]-group. Then σu(a(G)) and σinv(a(G)) are

topologically isomorphic to G.

Proof. We prove this proposition for σu(a(G)). The case for σinv(a(G)) is

similar. Define φ : G → σu(a(G)) by x 	→ mx where mx(u) = u(x). Clearly, φ

is continuous. Since G∗ separates points of G(see remark 3.2.3), the map φ is

injective. By assumption, A(G) ⊆ a(G). Let m ∈ σu(a(G)). Then m|A(G) �= 0

by lemma 8.1.4. Therefore, m|A(G) ∈ σ(A(G)). Let u ∈ A(G) and v ∈ a(G).

Note that A(G) is an ideal of a(G). There exists x0 ∈ G such that

m(u)m(v) = m(uv) = u(x0)v(x0).

Pick u0 ∈ A(G) such that u0(x0) �= 0. We conclude that m(v) = v(x0). Hence,

φ is surjective. The continuity of the inverse of φ follows from the facts that

A(G) ⊆ a(G) and σ(A(G)) is topologically isomorphic to G.

If G is a discrete group, then l1(G) = L1(G) is a total invariant of G by

Wendel’s theorem(See [39]). We have the following non-commutative analogue

of this observation.
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Corollary 3.3.2. Let G1 and G2 be locally compact groups such that A(G1)

and A(G2) has RNP(i.e. G1, G2 are [AR]-groups). The following conditions

are equivalent:

(a) G1 and G2 are topologically isomorphic.

(b) a(G1) and a(G2) are isometrically isomorphic.

(c) σu(G1) and σu(G2) are topologically isomorphic.

(d) σinv(G1) and σinv(G2) are topologically isomorphic.

Proof. It follows form corollary 3.1.11 and theorem 3.3.1.

Remark.

(a) The product discussed in proposition 3.1.6 is motivated by [23, Section

5].

(b) The proof of theorem 3.1.10 is a generalization of [37, Theorem 2] and

the proof of it is inspired by [23] [Theorem 5.8] and [37, Theorem 2].

(c) Part of the proof of theorem 3.2.7 is inspired by the proof of [37, Lemma

of Theorem 2, p. 27].

(d) The proof of theorem 3.3.1 follows an idea in [38, Theorem 2].
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Chapter 4

Translation invariant means in

V N(G) which are not topological

invariant

In this chapter, we will study translation invariant means in V N(G) which are

not topological invariant. We begin with the definition of translation operators

on V N(G). For any g∗ ∈ G∗, the operator Lg∗ : A(G) → A(G), f 	→ g∗f is

called the translation operator of A(G) by g∗. The Banach adjoint of Lg∗ ,

Lt
g∗ : V N(G) → V N(G), is called the translation operator of V N(G) by g∗.

In this case, we write g∗ · T = Lt
g∗(T ) for any T ∈ V N(G). Moreover, a

subset E ⊆ A(G)(F ⊆ V N(G)) is said to be G*-invariant if g∗E ⊆ E for any

g∗ ∈ G∗(resp. g∗ · F ⊆ F for any g∗ ∈ G∗).

Let E be a subspace of V N(G). E is said to be invariant if E is topological

invariant and G∗-invariant.

Note that C∗
r (G), AP (Ĝ), WAP (Ĝ) and UCB(Ĝ) are invariant subspace

of V N(G).
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Write G∗
F = {x 	→ 〈π(x)ξ, ξ〉 : π ∈ ĜF , ξ ∈ Hπ, ‖ξ‖ = 1}.

Let E be an invariant subspace of V N(G) such that it is closed under

involution and contains λ2(e). Let m be a linear functional of E such that

m(λ2(e)) = 1. Then

(a) m is said to be a topological invariant mean if m(φ · T ) = m(T ) for any

φ ∈ A(G) ∩ P1(G), T ∈ E.

(b) m is said to be a translation invariant mean if m(g∗ ·T ) = m(T ) for any

g∗ ∈ G∗, T ∈ E.

(c) m is said to be a F-translation invariant mean if m(g∗ · T ) = m(T ) for

any g∗ ∈ G∗
F , T ∈ E.

4.1 Main results

Let IM(Ĝ), FIM(Ĝ) and TIM(Ĝ) be the sets of all translation invariant

means, the sets of all F -translation invariant means and the set of all topo-

logical invariant means on V N(G), respectively. If G is abelian, it is proved

by Rudin that G is compact if and only if FIM(Ĝ) = IM(Ĝ) = TIM(Ĝ). In

fact, if G is an locally compact group, then FIM(Ĝ) ⊇ IM(Ĝ) ⊇ TIM(Ĝ).

For any m ∈ IM(Ĝ), define

Bm(G) = {u ∈ B(G) : m(u · T ) = u(e)m(T ) for any T ∈ V N(G)}

Then it is easy to see that Bm(G) is a closed subalgebra of B(G) containing

AF(G), m ∈ IM(Ĝ) if and only if a(G) ⊆ Bm(G) and m ∈ TIM(Ĝ) if and

only if A(G) ⊆ Bm(G). Put BIM(G) =
⋂

m∈IM(Ĝ) Bm(G). Then BIM(G) is

a closed subalgebra of B(G) containing a(G) and IM(Ĝ) = TIM(Ĝ) if and

only if A(G) ⊆ BIM(G).
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Proposition 4.1.1. Let G be a locally compact group. Then the following

statements hold:

(a) If G ∈ [AR](i.e. A(G) has RNP.), then IM(Ĝ) = TIM(Ĝ).

(b) If G is compact, then FIM(Ĝ) = TIM(Ĝ).

(c) If G ∈ [Moore], then IM(Ĝ) = FIM(Ĝ).

Proof. By [5, Theorem 3], we haveA(G) ⊆ a0(G) ⊆ BIM(G). Hence, IM(Ĝ) =

TIM(Ĝ). The rest is clear.

Example. If G is the ”ax+b” group or Fell’s group, then IM(Ĝ) = TIM(Ĝ).

Therefore, unlike the abelian case, there is a non-compact group G such that

IM(Ĝ) = TIM(Ĝ).

If H is closed subgroup of G, then AF(G)|H ⊆ AF(H).

Let G be a locally compact group. Suppose that H is a closed subgroup of

G. Let Ψ : A(G) → A(H) be the restriction map, that is, u 	→ u|H .

Lemma 4.1.2. Let φ ∈ B(H), T ∈ V N(H) and ψ ∈ B(G) such that ψ|H = φ.

Then we have Ψ∗(φ · T ) = ψ ·Ψ∗(T ).

Proof. Let φ ∈ B(H), T ∈ V N(H) and ψ ∈ B(G) such that ψ|H = φ. Then,

for each u ∈ A(G), we have

〈Ψ∗(φ · T ), u〉 = 〈φ · T,Ψ(u)〉 = 〈φ · T, u|H〉

= 〈T, φu|H〉 = 〈T, (ψu)|H〉 = 〈T,Ψ(ψu)〉 = 〈Ψ∗(T ), ψu〉 = 〈ψ ·Ψ∗(T ), u〉

Therefore,

Ψ∗(φ · T ) = ψ ·Ψ∗(T ).
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Theorem 4.1.3. We have Ψ∗∗(FIM(Ĝ)) ⊇ FIM(Ĥ) and Ψ∗∗(TIM(Ĝ)) =

TIM(Ĥ).

Proof. Let m ∈ FIM(Ĥ). Put K = {M ∈ V N(G)∗+ : Ψ∗∗(M) = m}. Since

A(H)∩P (H) is weak*-dense in V N(H)∗+, there is a net (mα) ⊆ A(H)∩P (H)

such that mα →w∗ m. Also, note that Ψ(A(G) ∩ P (G)) = A(H) ∩ P (H).

For each α, there exists Mα ∈ A(G) ∩ P (G) such that Ψ(Mα) = mα. By

passing to a subnet, we may assume that Mα →w∗ M where M ∈ V N(G)∗+.

Then mα = Ψ(Mα) →w∗ Ψ∗∗(M). Therefore, Ψ∗∗(M) = m, whence K is

non-empty. It is easy to check that K is a weak* compact convex subset of

V N(G)∗. For any g∗ ∈ G∗
F , define Tg∗ : K → K by Tg∗(M) = g∗ · M where

〈g∗ ·M,T 〉 = 〈M, g∗ · T 〉. We need to show that Tg∗ is well-defined. In fact,

for any T ∈ V N(H), we have, by using lemma 4.1.2,

〈Ψ∗∗(g∗ ·M), T 〉 = 〈g∗ ·M,Ψ∗(T )〉 = 〈M, g∗ ·Ψ∗(T )〉

= 〈M,Ψ∗(g∗|H · T )〉 = 〈Ψ∗∗(M), g∗|H · T 〉 = g∗(e)〈Ψ∗∗(M), T 〉 = 〈m,T 〉.

where the second last equality follows from the fact that AF(G)|H ⊆ AF(H).

Thus, {Tg∗ : g
∗ ∈ G∗

F} is a commuting family of weak*-weak*-continuous affine

maps fromK toK. Therefore, by Markov-Kakutani fixed point theorem, there

is a element M0 ∈ K such that M0 = g∗ ·M0. Hence, Ψ
∗∗(IM(Ĝ)) ⊇ IM(Ĥ).

The last equality can be proved similarly.

Put BFIM(G) =
⋂

m∈FIM(Ĝ) Bm(G). Then BFIM(G) is a closed subalgebra

of B(G) containing AF(G) and FIM(Ĝ) = TIM(Ĝ) if and only if A(G) ⊆
BFIM(G).

Corollary 4.1.4. Let G be a locally compact group and H a closed subgroup

of G.
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(a) BFIM(G)|H ⊆ BFIM(H).

(b) If FIM(Ĝ) = TIM(Ĝ), then FIM(Ĥ) = TIM(Ĥ).

(c) Card(FIM(Ĝ) \ TIM(Ĝ)) ≥ Card(FIM(Ĥ) \ TIM(Ĥ)).

Corollary 4.1.5. If G has a non-compact closed abelian subgroup, then

FIM(Ĝ) �= TIM(Ĝ).

Proof. If H is a closed non-compact abelian subgroup of G, then FIM(Ĥ) �=
TIM(Ĥ).

Let G be a locally compact group. Then G is called a [SIN]-group if it has

a base for the neighborhood system at the identity of G consisting of compact

neighborhoods which are invariant under all inner automorphisms of G.

A C*-algebra A is said to be CCR if π(f) is a compact operator for every

f ∈ A and irreducible *-representation π of A. G is called a [CCR]-group if

C∗(G) is CCR.

A unitary *-representation π of G is primary if the center of C(π) = {T ∈
B(Hπ) : Tπ(x) = π(x)T for any x ∈ G} consists of scalar multiples of I. G

is said to be a [Type I]-group if every primary representation of G is a direct

sum of copies of some irreducible representations.

For more results of [SIN], [CCR] and [Type I]-groups, we refer the readers

to [30].

Corollary 4.1.6. Let G be a [SIN]-group and FIM(Ĝ) = TIM(Ĝ). Then

every closed connected subgroup of G is compact.

Proof. Let H be a connected [Moore]-group. We have H = V × K where

V is a vector group and K is a compact group(See [30, 12.6.6]). By the

first statement, it follows that IM(Ĥ) = TIM(Ĥ) and V is therefore trivial.

Hence, H is compact.
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If G has extension property and H is closed subgroup of G, then H∗ ⊆
G∗|H(See [17, Proposition 2, p. 275]). Therefore, a0(H) ⊆ a0(G)|H .

Lemma 4.1.7. Let G be a [Moore]-group and H a closed subgroup of G. Then

a0(H) = a0(G)|H .

Proof. Every [Moore]-group is a [SIN]-group, so it has extension property. If

g∗ ∈ G∗, then g∗(x) = 〈π(x)ε, ε〉 where π ∈ Ĝ and ε ∈ Hπ, ‖ε‖ = 1. Since

G is a [Moore]-group, it follows that dim(π|H) = dim(π) < ∞. Therefore,

g∗|H ∈ AF(H) ⊆ a0(H).

Lemma 4.1.8. Let G be a locally compact group and H an open subgroup.

Let π be a unitary representation of G. For any f ∈ L1(H), define ḟ ∈ L1(G)

by ḟ(x) = f(x) if x ∈ G and ḟ(x) = 0 if x �= G. Then π(ḟ) = π|H(f)
for any f ∈ L1(H) and ‖ḟ‖C∗(G) = ‖f‖C∗(H) for any f ∈ L1(H). Hence,

the map L1(H) → L1(G), f 	→ ḟ extends to a C*-algebra monomorphism

Φ : C∗(H) → C∗(G).

Proof. Let ξ, η ∈ Hπ. Then we have

〈π(ḟ)ξ, η〉 =
∫
G

ḟ(x)〈π(x)ξ, η〉dx =

∫
H

f(x)〈π|H(x)ξ, η〉dx = 〈π|H(f)ξ, η〉

Therefore, π(ḟ) = π|H(f) for any f ∈ L1(H). For the last statement, note that

every unitary representation of H can be induced to a unitary representation

of G. Hence,

‖ḟ‖C∗(G) = sup{‖π(ḟ)‖ : π ∈ ΣG}

= sup{‖π|H(f)‖ : π ∈ ΣG} = sup{‖π(f)‖ : π ∈ ΣH} = ‖f‖C∗(H)

Proposition 4.1.9. Let G be a [CCR]-group and H an open subgroup of G.

Then a0(H) = a0(G)|H .
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Proof. Since G ∈ [CCR], we have π(C∗(G)) ⊆ K(Hπ) for any irreducible

representation π. Thus, π|H(C∗(H)) = Φ(C∗(H)) ⊆ K(Hπ) where Φ is defined

as in lemma 4.1.8. By [9, Proposition 5.4.13], π|H is a direct sum of irreducible

representations of H. Hence, a0(H) ⊇ a0(G)|H .

Theorem 4.1.10. Let G be a locally compact group. Suppose that H is a

closed subgroup of G. Then the following holds:

(a) If a0(H) ⊆ a0(G)|H , then Ψ∗∗(IM(Ĝ)) ⊆ IM(Ĥ).

(b) If a0(G)|H ⊆ a0(H), then Ψ∗∗(IM(Ĝ)) ⊇ IM(Ĥ).

Proof. Let M ∈ IM(Ĝ), φ ∈ a0(H), T ∈ V N(H) and ψ ∈ a0(G) such that

ψ|H = φ. Then

〈Ψ∗∗(M), φ · T 〉 = 〈M,Ψ∗(φ · T )〉

= 〈M,ψ ·Ψ∗(T )〉 = ψ(e)〈M,Ψ∗(T )〉 = φ(e)〈Ψ∗∗(M), T 〉.

Therefore, Ψ∗∗(M) is translation invariant. Note that Ψ∗(λH(e)) = λG(e). It

follows that 〈Ψ∗∗(M), λH(e)〉 = 〈M,λG(e)〉 = 1. The positivity of Ψ∗∗(M) is

clear. Hence, Ψ∗∗(M) ∈ IM(Ĥ). Conversely, let m ∈ IM(Ĥ). Put K =

{M ∈ V N(G)∗+ : Ψ∗∗(M) = m}. Since A(H) ∩ P (H) is weak*-dense in

V N(H)∗+, there is a net (mα) ⊆ A(H) ∩ P (H) such that mα →w∗ m. Also,

note that Ψ(A(G) ∩ P (G)) = A(H) ∩ P (H). For each α, there exists Mα ∈
A(G)∩P (G) such that Ψ(Mα) = mα. By passing to a subnet, we may assume

that Mα →w∗ M where M ∈ V N(G)∗+. Then mα = Ψ(Mα) →w∗ Ψ∗∗(M).

Therefore, Ψ∗∗(M) = m, whence K is non-empty. It is easy to check that

K is a weak* compact convex subset of V N(G)∗. For any g∗ ∈ G∗, define

Tg∗ : K → K by Tg∗(M) = g∗ ·M where 〈g∗ ·M,T 〉 = 〈M, g∗ · T 〉. We need to

show that Tg∗ is well-defined. In fact, for any T ∈ V N(H), we have, by using

33



lemma 4.1.2,

〈Ψ∗∗(g∗ ·M), T 〉 = 〈g∗ ·M,Ψ∗(T )〉 = 〈M, g∗ ·Ψ∗(T )〉

= 〈M,Ψ∗(g∗|H · T )〉 = 〈Ψ∗∗(M), g∗|H · T 〉 = g∗(e)〈Ψ∗∗(M), T 〉 = 〈m,T 〉

where the second last equality follows from the assumption that a0(H) =

a0(G)|H . Thus, {Tg∗ : g∗ ∈ G∗} is a commuting family of weak*-weak*-

continuous affine maps from K to K. Therefore, by Markov-Kakutani fixed

point theorem, there is a element M0 ∈ K such that M0 = g∗ · M0. Hence,

Ψ∗∗(IM(Ĝ)) ⊇ IM(Ĥ).

Theorem 4.1.11. Let G be a locally compact group. Suppose that H is a

closed subgroup of G such that a0(G)|H ⊆ a0(H).

(a) BIM(G)|H ⊆ BIM(H).

(b) If IM(Ĝ) = TIM(Ĝ), then IM(Ĥ) = TIM(Ĥ).

(c) If IM(Ĝ) = FIM(Ĝ), then IM(Ĥ) = FIM(Ĥ).

(d) Card(IM(Ĝ) \ TIM(Ĝ)) ≥ Card(IM(Ĥ) \ TIM(Ĥ)).

Proof. (a): Let u ∈ BIM(G). Then u|H ∈ B(H). For any m ∈ IM(Ĥ) and

S ∈ V N(H), we have

〈Ψ∗∗(m), u|H · S〉 = 〈m,Ψ∗(u|H · S)〉

= 〈m,u ·Ψ∗(S)〉 = u(e)〈m,Ψ∗(S)〉 = u|H(e)〈Ψ∗∗(m), S〉

Therefore, BIM(G)|H ⊆ BIM(H).

(b): If IM(Ĝ) = TIM(Ĝ), then A(G) ⊆ BIM(G). Consequently, A(H) =

A(G)|H ⊆ BIM(G)|H . This implies A(H) ⊆ BIM(H). Hence, IM(Ĥ) =

TIM(Ĥ).

(c),(d): Straightforward.
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Clearly, if TIM(Ĝ) = FIM(Ĝ), then TIM(Ĝ) = IM(Ĝ).

Corollary 4.1.12. Let G be a [Moore]-group and IM(Ĝ) = TIM(Ĝ). Then

IM(Ĥ) = TIM(Ĥ) for any closed subgroup H of G. Consequently, every

connected subgroup H of G is compact. Furthermore, if G has a non-compact

abelian closed subgroup, then IM(Ĝ) �= TIM(Ĝ).

Proof. The first statement follows from lemma 4.1.7 and theorem 4.1.11. Since

H is a connected [Moore]-group, we have H = V ×K where V is a vector group

and K is a compact group(See [30, 12.6.6]). By the first statement, it follows

that IM(Ĥ) = TIM(Ĥ) and V therefore is trivial. Hence, H is compact. The

last statement follows clear from the first statement.

Corollary 4.1.13. Let G be a [CCR]-group and IM(Ĝ) = TIM(Ĝ). Then

IM(Ĥ) = TIM(Ĥ) for any open subgroup H of G. Furthermore, if G has a

non-compact abelian open subgroup, then IM(Ĝ) �= TIM(Ĝ).

G is called a central group if the quotient group G/Z is compact where Z

is the center of G. G is called an almost connected group if the quotient group

G/Ge is compact where Ge is the connected component of e in G. For more

details, see [30, Chapter 12] for reference.

Theorem 4.1.14. Let G be a locally compact group. Suppose one of the

following conditions holds:

(a) G is an almost connected [Moore]-group.

(b) G has an abelian closed subgroup of finite index.

(c) G is a central group.

(d) G = A×K where A is a locally compact abelian group andK is compact

group.
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Then G is compact if and only if IM(Ĝ) = TIM(Ĝ)(which is equivalent

to say that FIM(Ĝ) = TIM(Ĝ)). Moreover, if G is non-compact, then

Card(IM(Ĝ) \ TIM(Ĝ)) ≥ 2c.

Proof. If G is an almost connected [Moore]-group, then G = V ×η K where

K is compact, V is a vector group and η(K) is finite(See [30, 12.6.6]). If

IM(Ĝ) = TIM(Ĝ), then IM(V̂ ) = TIM(V̂ ) by theorem 4.1.11, which implies

that V is trivial. Consequently, G is compact. Suppose that (b) holds. Then

G is a [Moore]-group. Let H be such an abelian subgroup of G. If IM(Ĝ) =

TIM(Ĝ), then IM(Ĥ) = TIM(Ĥ) by theorem 4.1.11. Consequently, H is

compact. Therefore, G is compact since H is of finite index. Now, assume that

G is central(i.e. G/Z(G) is compact). But Z(G) is compact by theorem 4.1.11.

Hence, G is compact. Finally, note that if G satisfies (d), then G is central.

Corollary 4.1.15. Let G be a connected [SIN]-group. Then G is compact if

and only if IM(Ĝ) = TIM(Ĝ).

Let u : G1 → C and v : G2 → C be functions. Define u⊗ v : G1 ×G2 → C

by u⊗ v(x, y) = u(x)v(y).

Lemma 4.1.16. Let G1 be a [Type 1]-group and G2 any locally compact

group. Let G = G1×G2. Identity G1 as G1×{e2} and G1 as {e1}×G2. Then

a0(G1) = a0(G)|G1 and a0(G2) = a0(G)|G2 .

Proof. Note that Ĝ −→ Ĝ1 × Ĝ2, π 	→ π1 ⊗ π2 is a bijection. We have

a0(G) = {(x, y) 	→ 〈π1 ⊗ π2(x, y)ξ, η〉 : ξ, η ∈ Hπ1⊗π2 , π1 ∈ Ĝ1, π2 ∈ Ĝ2}

It follows that

a0(G) = span(a0(G1)⊗ a0(G2))
‖·‖B(G)
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Proposition 4.1.17. Let G1 be a [Type 1]-group and G2 any locally com-

pact group. Suppose that IM(Ĝ1 ×G2) = TIM(Ĝ1 ×G2). Then we have

IM(Ĝi) = TIM(Ĝi) for all i = 1, 2.

Corollary 4.1.18. Let G1 be a non-compact locally compact abelian group

and G2 any locally compact group. Then IM(Ĝ1 ×G2) �= TIM(Ĝ1 ×G2).

4.2 Some applications

Remarks. Let G be the ”ax+b”-group, H = {
⎛
⎝ a 0

0 1

⎞
⎠ : a > 0} and N =

{
⎛
⎝ 1 b

0 1

⎞
⎠ : b ∈ R}

(a) SinceA(G) has RNP(i.e. G is an [AR]-group.) and FIM(Ĥ) = IM(Ĥ) �=
TIM(Ĥ), we have FIM(Ĝ) �= IM(Ĝ) = TIM(Ĝ)

(b) Note that FIM(Ĥ) = IM(Ĥ) �= TIM(Ĥ) and G/N ∼= H. We have

FIM(Ĝ/N) = IM(Ĝ/N) �= TIM(Ĝ/N).

Question: Let H be a closed subgroup of G, and let π ∈ Ĝ. Is π|H
completely reducible in general?

We have the following observation:

Let G be a locally compact group such that TIM(Ĝ) = IM(Ĝ). If H is

closed subgroup of G such that TIM(Ĥ) �= IM(Ĥ), then a0(G)|H � a0(H).

Hence, there exists a irreducible representation π of G such that π|H is not

completely reducible.

Recall that the infinite dimensional representations of the ”ax+b”-group

are given by:

[π+(a, b)g](s) = a
1
2 e2πibsg(as) (a > 0, b ∈ R, g ∈ L2((0,∞)), ds));
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[π−(a, b)g](s) = a
1
2 e2πibsg(as) (a > 0, b ∈ R, g ∈ L2((−∞, 0)), ds)).

The following gives a negative answer to our question. In its proof we will

use theorem 4.1.11 and Granirer-Rudin’s result.

Proposition 4.2.1. Let G be the ”ax+b”-group, and H be the subgroup of

G defined in the remarks. Then a0(G)|H � a0(H). Moreover, π+|H and π−|H
are not completely reducible.

Proof. Since Ĝ consists of all characters, π+ and π−, we conclude that π+|H
and π−|H cannot be both written as direct sums of irreducible representations

of H. Let U : L2((0,∞), ds) → L2((−∞, 0), ds), Ug = g̃ where g̃(x) = g(−x).

By direct calculation, we may prove that Uπ+(a, b) = π−(a,−b)U for any

a > 0, b ∈ R. Thus Uπ+|H = π−|HU , whence they are equivalent. Therefore,

both of them cannot be written as direct sums of irreducible representations

of H.

Proposition 4.2.2. Let G be a locally compact group, and Z be the center

of G. Then a0(G)|Z ⊆ a0(Z).

Proof. If π is an irreducible representation of G, then π|Z is a multiple of ρ

where ρ is an irreducible representation of Z. In particular, ρ is completely

irreducible.

Corollary 4.2.3. Let G be a locally compact group. If the center of G is

non-compact, then TIM(Ĝ) �= IM(Ĝ).

Proof. Suppose that TIM(Ĝ) = IM(Ĝ). Then by proposition 4.2.2 and the-

orem 4.1.11, TIM(Ẑ) = IM(Ẑ) where Z is the center of G. Therefore,

by Granirer-Rudin’s theorem(See [14] and [23]), we conclude that Z is com-

pact.
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We obtain a lot of examples by using the above corollary. Say, if G is

GLn(R) or the Heisenberg group, then TIM(Ĝ) �= IM(Ĝ).

The following corollary should be well known. However, we can also prove

it independently by just using the results proved in this section.

Corollary 4.2.4. The center of an [AR]-group is always compact. In partic-

ular, if A(G) has RNP, then A(Z) has RNP where Z is the center of G.
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Chapter 5

General properties of

translation invariant means in

V N(G)

In this chapter we will study the non-commutative analogues of classical re-

sults about translation invariant means on L∞(G). We start by recalling the

following definition. Recall that a net (μα) in M(G) is said to converge strictly

to μ if

‖g ∗ (μα − μ)‖+ ‖(μα − μ) ∗ g‖ → 0 for any g ∈ L1(G)

Remark. co(δG) is strictly dense in M(G)+1 , and hence l1(G) is also strictly

dense in M(G).

Inspired by above classical definition for M(G), we may define the strict

topology of B(G) analogously: A net (fα) in B(G) is said to converge strictly

to f if

‖(fα − f) · g‖ → 0 for any g ∈ A(G)
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5.1 Strict topology on B(G)

The following lemma is an analogue of the remark above, which will be par-

ticularly useful in sequel.

Lemma 5.1.1. co(G∗) is strictly dense in P1(G), and hence span(G∗) is strictly

dense in B(G).

Proof. Note that co(G∗) = co(E(P1(G))) is w*-dense in P1(G) and the strict

topology coincides with the w*-topology inB(G)1 by [16, Theorem B2]. There-

fore, co(G∗) is strictly dense in P1(G). The rest is now trivial.

Here is an application of the previous lemma. This is an analogue of [12,

Proposition 2.43], which also motivates the author to study G∗.

Proposition 5.1.2. Let I be a closed subalgebra of A(G). If I is G∗-invariant,

then I is an ideal of A(G). Suppose, in addition, that u ∈ uA(G) for any

u ∈ A(G). Then I is G∗-invariant if and only if I is an ideal of A(G).

Proof. Let φ ∈ A(G)∩P1(G), f ∈ I, and let (φα) be a net in co(G∗) such that

φα −→ φ in the strict topology of B(G). Note that φα ·f ∈ I for each α. Since

I is norm-closed, it follows that φ · f ∈ I. Conversely, let f ∈ I and g∗ ∈ G∗.

Then g∗f ∈ A(G). By assumption, there exists a net (eα) ⊆ A(G) such

that (g∗f)eα → g∗f . However, (g∗f)eα = (g∗eα)f ∈ A(G)I ⊆ I. Therefore,

g∗f ∈ I.

The following lemma should be well-known, and we give the proof of it

below for the sake of completeness.

Lemma 5.1.3. Let X be a locally compact Hausdorff space. Then C0(X), the

space consisting of all continuous functions on X which vanish at infinity, has
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an n-dimensional ideal if and only if X has exactly n distinct discrete points.

Moreover, if such an n-dimensional ideal exists, then it is the linear span of

δx1 , δx2 , ..., δxn where x1, x2, ..., xn ∈ X.

Proof. Let x1, ..., xn be n distinct discrete points in X. Let I := {f ∈ C0(X) :

f(xi) �= 0 for some i ∈ {1, 2, ..., n}}. Clearly I is a closed ideal in A. Since

x1, ..., xn are discrete, χx1 , ..., χxn are continuous functions on X and form a

basis for I. Conversely, let I be an n-dimensional ideal in C0(X). Define

Ω := {x ∈ G : f(x) �= 0 for some f ∈ I}. Clearly, |Ω| ≥ n. It is left to

show that |Ω| ≤ n. Suppose that x1, ..., xn, xn+1 ∈ Ω are distinct. For each

i ∈ {1, ..., n, n + 1}, by Urysohn’s lemma, there exist fi ∈ I and gi ∈ C0(G)

such that

fi(xi) �= 0 and gi(xj) = δij 1 ≤ i, j ≤ n+ 1

Let ci ∈ C such that
∑n+1

i=1 cigifi = 0. Then for each j ∈ {1, ..., n, n+ 1},
n+1∑
i=1

cigifi(xj) = cjfj(xj) = 0 ⇒ cj = 0

Therefore, {gifi}n+1
i=1 is linear independent subset of I. This leads a contradic-

tion.

The proof of the latter part of this lemma is clear.

The following proposition is about translation-invariant elements of A(G)

and B(G), which will be useful in next chpater.

Proposition 5.1.4. Let G be a locally compact group. Then the following

statements are equivalent:

(a) G is discrete.

(b) there exists a non-zero f ∈ A(G) such that f is G∗-invariant.
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(c) there exists a non-zero f ∈ B(G) such that f is G∗-invariant.

Moreover, if such f exists, then f = cδe for some c ∈ C.

Proof. ”(a) ⇒ (c)” is clear. If (c) holds, choose u ∈ A(G) such that uf �= 0.

Then {uf} is a G∗-invariant subset in A(G). Now, suppose that (b) holds. Let

I = Cf ⊆ A(G). Let h ∈ A(G) and let {∑ cαg
∗
α} be a net in span(G∗) which

is converging to h strictly. Then

h · f = limα

∑
cα(g

∗
α · f) = (limα

∑
cα)f

so, I is a one dimensional ideal in A(G), which implies that G is discrete.

For the last statement, without loss of generality, we may assume that f ∈
A(G). Now, I is also an ideal in C0(G). So, I = 〈δx〉 for some x ∈ G

by lemma 5.1.3. It follows that f = cδx for some c ∈ C. Without loss of

generality, assume that c = 1. For any y ∈ G, π ∈ Ĝ, ξ ∈ Hπ, ‖ξ‖ = 1,

we have 〈π(y)ξ, ξ〉δx(y) = δx(y). Suppose that x �= e. Pick π0 ∈ Ĝ such

that π0(x) �= π0(e). Thus, we have 〈π0(x)ξ, ξ〉 = 1. By Cauchy-Schwarz’s

inequality, it follows that π0(x)ξ = ξ. Hence, π0(x) is the identity map, which

leads a contradiction.

Remark. By lemma 5.1.3, it is not hard to see that the following statements

are equivalent:

(a) G is discrete.

(b) A(G) has a non-zero finite dimensional ideal.

(c) C0(G) has a non-zero finite dimensional ideal.
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5.2 General properties of translation invariant

means

In this section, we discuss the general properties of translation invariant means

and F -translation invariant means. These notions were defined in the begin-

ning of chpater 4.

Remark. In fact, V N(G) always has a topological invariant mean(See [32,

Theorem 4]). We also notice that the set of all translation invariant means on

V N(G) is a w*-compact convex subset in V N(G)∗ and A(G)∩P1(G) is weak*

dense in the set of all means in V N(G)(Refer to [15]).

Recall that in chapter 4, we have the following definition: a subspace of

V N(G) is said to be invariant if it is topological invariant and G∗-invariant.

Proposition 5.2.1. Let E be an invariant closed subspace of V N(G) which is

closed under involution and contains λ2(e). Then every topological invariant

mean on E is (F -)translation invariant. Hence, for any locally compact group,

E has an (F -)translation invariant mean. Furthermore, if G is non-discrete,

then V N(G) has uncountably many (F -)translation invariant means.

Proof. Let m be a topological invariant mean on E. For any g∗ ∈ G∗, T ∈ E,

φ ∈ A(G) ∩ P1(G), we have

m(g∗ · T ) = m(φ · (g∗ · T )) = m((φ · g∗) · T ) = m(T )

Therefore, m is translation invariant. Note that G∗
F ⊆ G∗. The rest follows

from the remark above.

Lemma 5.2.2. The following statements are equivalent:

(a) G is discrete.
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(b) There is a bounded linear functional on C∗
r (G) which is translation in-

variant.

(c) There is a bounded linear functional on C∗
r (G) which is topological in-

variant.

Proof. ”(a) ⇒ (c) ⇒ (b)” is clear. Let φ ∈ Br(G) such that 〈φ, T 〉 = 〈φ, g∗ ·
T 〉 = 〈g∗ · φ, T 〉 for any g∗ ∈ G∗, T ∈ C∗

r (G). Then g∗ · φ = φ. Note that

φ ∈ Br(G) ⊆ B(G). So, G is discrete by proposition 8.2.1.

Proposition 5.2.3. Let G be a non-discrete locally compact group, and let

M be a translation invariant mean on V N(G). Then the restriction of M on

C∗
r (G) is always zero.

Proof. Let m = M |C∗
r (G). Assume that m �= 0. Clearly, m is positive and

translation invariant on C∗
r (G). Therefore, n = m/‖m‖ is a translation invari-

ant mean on C∗
r (G), which contradicts to lemma 5.2.2.

Since all topological means are translation invariant(Proposition 5.2.1), we

thus provide another proof of [32, Theorem 12].

Corollary 5.2.4. Let G be a locally compact group. Then G is discrete

if and only if there is a translation invariant mean on V N(G) belonging to

A(G) ∩ P1(G)(or A(G)).

Proof. If G is discrete, then δe ∈ A(G) ∩ P1(G). Hence, m(T ) := 〈δe, T 〉
defines a translation invariant mean on V N(G). Conversely, if there is f ∈
A(G) ∩ P1(G) such that 〈f, T 〉 = 〈f, g∗ · T 〉 for any g∗ ∈ G∗, T ∈ V N(G).

Then f = g∗ · f . So, G is discrete.

Theorem 5.2.5. If A(G) has an approximate identity, then every translation

invariant mean on UCB(Ĝ) is topological invariant.
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Proof. Let m be a translation invariant mean on UCB(Ĝ), and let S = u ·T ∈
UCB(Ĝ) where T ∈ V N(G), u ∈ A(G). As the functional A(G) −→ C, f 	→
m(f · S) is continuous, there exists T0 ∈ V N(G) such that m(f · S) = 〈T0, f〉.
Since m is translation invariant, for any g∗ ∈ G∗, we have

〈g∗ · T0, f〉 = 〈T0, g
∗ · f〉 = m(g∗ · (f · S)) = m(f · S) = 〈T, f〉

That is, g∗ · T0 = T0. By lemma 8.2.1, T0 = cλ2(e) for some constant c �= 0. It

follows that m(f · S) = c for any f ∈ A(G) ∩ P1(G), S ∈ A(G) · V N(G). By

assumption, A(G) has an approximate identity {eα}. So, we have

m(f · S) = limαm((f · eα) · S) = limαm(eα · S) = m(S)

However, A(G) · V N(G) is a norm-dense subset of UCB(Ĝ). We hence con-

clude that m is topological invariant.

Corollary 5.2.6. If G is a compact group, then every (F -)translation invari-

ant mean on V N(G) is topological invariant.

Proof. Note that G is amenable, G∗
F = G∗ and V N(G) = UCB(Ĝ) under the

assumption.

Recall that WAP (Ĝ) is the set of all T in V N(G) for which the operator

from A(G) to V N(G) given by u 	→ u · T is weakly compact is denoted by

WAP (Ĝ), the weakly almost periodic functionals in V N(G). It is proved by

Granrier[15] that WAP (Ĝ) has a unique topological invariant mean.

Proposition 5.2.7. WAP (Ĝ) has a unique translation invariant mean.

Proof. The proof is the same as that of [32, Theorem 1].

Lemma 5.2.8. Let φ ∈ A(G) ∩ P1(G). If m is a topological invariant mean

on UCB(Ĝ), then m′ is a topological invariant mean on V N(G), where m′ is
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given by m′(T ) = m(φ · T ). Furthermore, m′ is independent of the choice of

φ.

Proof. Let T0 ∈ V N(G). Define F ∈ A(G)∗ by F (ψ) = m(ψ·T0). Now, for any

ψ ∈ A(G), ϕ ∈ A(G)∩ P1(G), we have F (ϕ · ψ) = m(ϕ · ψ · T0) = m(ψ · T0) =

F (ψ). So, by proposition 6.3.4, F (ψ) = m(ψ · T0) = 〈cλ2(e), ψ〉 = cψ(e). In

particular, m(ϕ · T0) = c for any ϕ ∈ A(G) ∩ P1(G). Thus, m′ is independent

of the choice of φ. It is routine to check that m′ is a topological invariant mean

on V N(G).

Proposition 5.2.9. There is a bijection between the set of topological invari-

ant means on UCB(Ĝ) and the set of topological invariant means on V N(G).

Proof. If m is a topological invariant means on UCB(Ĝ), then for any T ∈
UCB(Ĝ), m′|UCB(Ĝ)(T ) = m(φ · T ) = m(T ) where φ ∈ A(G) ∩ P1(G). On

the other hand, if m is a topological invariant means on V N(G), then for

any T ∈ V N(G), (M |UCB(Ĝ))
′(T ) = M |UCB(Ĝ)(φ · T ) = M(T ) where φ ∈

A(G) ∩ P1(G).

Corollary 5.2.10. Suppose that A(G) has an approximate identity. Then G

is discrete if and only if there exists a unique (topological)translation invariant

mean on UCB(Ĝ).

Proof. Note that G is discrete if and only if V N(G) has a unique topological

invariant mean. (See [29, Theorem 11] and [32, Corollary 4.11]). The result

thus follows from the last proposition and theorem 5.2.5.
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Chapter 6

Some general properties on

translation operators

The purpose of this chapter is to discuss how the properties of G are related

to those of G∗. We will characterize abelian, compact and discrete groups via

properties of G∗.

6.1 Characterization of abelian groups

We begin with the following lemma:

Lemma 6.1.1. Let A be a C*-algebra. Then A is commutative if and only if,

for any a ∈ A,

‖a‖ = sup{|〈a, f〉| : f ∈ (A∗)1+}

Proof. Suppose that A is non-abelian, there exists a ∈ A such that ‖a‖ =

1 and a2 = 0. Then for any state f on A, |f(a)|2 ≤ √
f(a∗a)f(aa∗) ≤

f(a∗a+aa∗)/2 ≤ ‖a∗a+aa∗‖/2 = max(‖a∗a‖, ‖aa∗‖)/2 (since a∗a and aa∗ are

orthogonal)= 1/2. Thus, |f(a)| ≤ 1/
√
2 for any state f on A.
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In fact, G is abelian only when G∗ has the following extraordinary proper-

ties in the non-commutative point of view:

Theorem 6.1.2. Let G be a locally compact group. The following are equiv-

alent:

(a) G is abelian.

(b) Given any g∗ ∈ G∗, ‖g∗ · φ‖ = ‖φ‖ for all φ ∈ B(G).

(c) Given any g∗ ∈ G∗, ‖g∗ · φ‖ = ‖φ‖ for all φ ∈ A(G).

(d) For any g∗ ∈ G∗, we have g∗ · (T1T2) = (g∗ · T1)(g
∗ · T2) for any T1, T2 ∈

V N(G).

(e) For any g∗ ∈ G∗, we have ‖g∗ · T‖ = ‖T‖ for any T ∈ V N(G).

(f) The relative topology of G∗ inherited from the norm-topology of B(G)

is discrete.

(g) The set of all extreme points of B(G)1 is TG∗ = {λg∗ : λ ∈ T, g∗ ∈ G∗}.

(h) The weak*-closed convex hull of TG∗ is B(G)1.

(i) |〈TT ∗, g∗〉| = |〈T, g∗〉|2 for any T ∈ C∗(G), g∗ ∈ G∗.

(j) ‖T‖ = sup{|〈T, g∗〉| : g∗ ∈ G∗} for any T ∈ C∗(G).

Proof. If G is abelian, then ”(a) ⇒ (b) ⇒ (c)” is obvious. If (c) holds,

for each g∗ ∈ G∗, let Lg∗ : A(G) −→ A(G), Lg∗(f) = g∗ · f . Then Lg∗ is

clearly a bounded multiplier on A(G). By using a similar idea in the proofs

of [31, Lemma 1,2], Lg∗ is an isometric linear isomorphism(onto). Therefore,

Lg∗(SA(G)) = SA(G). It follows that ‖g∗ · T‖ = ‖T‖ for any T ∈ V N(G).

Suppose that (e) holds. Since g∗ · λ2(x) = g∗(x)λ2(x) for each x ∈ G, we have
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|g∗(x)| = ‖g∗ · λ2(x)‖ = ‖λ2(x)‖ = 1. It follows that g∗ · ḡ∗ = |(g∗)2| = 1. So,

G is abelian by the remark above this proposition. Finally, Suppose that (d)

holds. For any f1, f2 ∈ Cc(G), we have

λ2(g
∗(f1 ∗ f2)) = g∗ · λ2(f1 ∗ f2) = g∗ · λ2(f1) ◦ g∗ · λ2(f2) = λ2(g

∗f1 ∗ g∗f2).

However, for any x ∈ G,

g∗(x)f1 ∗ f2(x) =
∫
G

g∗(x)f1(y)f2(y−1x)dy

and

(g∗f1) ∗ (g∗f2)(x) =
∫
G

g∗(y)f1(y)g∗(y−1x)f2(y
−1x)dy.

Since λ2 is a faithful representation, it follows that

〈g∗(x), f1Lxf̆2〉 = 〈g∗Lxḡ∗, f1Lxf̆2〉

for each x ∈ G where 〈·, ·〉 denote the dual pair of L∞(G) and L1(G). Since g∗

is continuous, g∗(x) = g∗(y)g∗(y−1x) for any x, y ∈ G. In particular, g∗ ·ḡ∗ = 1.

Hence, by the remark again, G is abelian. Finally, if G is abelian, then G∗ = δĜ

and B(G) = M(Ĝ). Since ‖δx − δy‖ = 2 whenever x, y ∈ Ĝ and x �= y, the

forward direction follows. Conversely, suppose that G is not abelian. Then

there exists π ∈ Ĝ such that dim Hπ > 1. Let η1, η2 ∈ Hπ, ‖η1‖ = ‖η2‖ = 1

such that η1, η2 are linear independent. Put εn = (η1 + η2/n)/‖η1 + η2/n‖.
Then εn and η1 are linearly independent and εn → η1. Hence, 〈π(x)η1, η1〉 �=
〈π(x)εn, εn〉 for each n ∈ N and x ∈ G. However, for each f ∈ C∗(G),

‖〈π(f)η1, η1〉 − 〈π(f)εn, εn〉‖

≤ ‖〈π(f)(η1 − εn), η1〉+ 〈π(f)(εn − η1), εn〉‖ ≤ 2‖f‖C∗(G)‖η1 − εn‖ → 0

Consequently, the relative topology of G∗ inherited from the norm-topology

of B(G) is non-discrete. By Krein-Milman theorem, it is easy to see that
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(a)⇒(g)⇒(h)⇒(j). (a)⇒(i) is also clear. Note that ‖T‖ = sup{|〈T, g∗〉| : g∗ ∈
G∗} for any T ∈ C∗(G)sa(See lemma 5.1.1 and [35, 1.5.4]). If (i) holds, then

‖T‖ = ‖TT ∗‖1/2 = sup{|〈TT ∗, g∗〉|1/2 : g∗ ∈ G∗} = sup{|〈T, g∗〉| : g∗ ∈ G∗}.

Finally, suppose that (j) holds. Then ‖T‖ = sup{|〈T, h〉| : h ∈ co(G∗)} for any

T ∈ C∗(G). Note that co(G∗) = co(E(P1(G))) is w*-dense in P1(G). It follows

that ‖T‖ = sup{|〈T, h〉| : h ∈ P1(G)} for any T ∈ C∗(G). Consequently,

C∗(G) is commutative(by lemma 6.1.1), hence G is abelian.

6.2 Characterization of compact groups

For any π ∈ Ĝ, write G∗
π = {〈π(·)ξ, ξ〉 : ξ ∈ Hπ, ‖ξ‖ = 1}.

The following proposition gives a characterization of compact groups by

properties of G∗:

Proposition 6.2.1. Let G be a separable group. The following statements

are equivalent:

(a) G is compact.

(b) The identity map id : (G∗, w∗) 	→ (G∗, ‖ · ‖) is continuous(a homeomor-

phism).

(c) The interior of G∗
π is non-empty for each π ∈ Ĝ.

Proof. ”(a) ⇒ (b)”: If G is compact, then the w*-topology and the norm-

topology coincides on SB(G)([16, Corollary 2, p.463]).

”(b) ⇒ (c)”: Let g∗0 ∈ G∗
π. By assumption, there exists a w*-open set U

containing g∗0 such that

U ⊆ {g∗ ∈ G∗ : ‖g∗ − g∗0‖ < 2}
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However, we have {g∗ ∈ G∗ : ‖g∗−g∗0‖ < 2} ⊆ G∗
π(See [10, 2.12.1]). Therefore,

(G∗
π)

o is non-empty.

”(c) ⇒ (a)”: Note that the natural map q : G∗ → Ĝ is open([10, Theorem

3.4.11]) and {π} = q((G∗
π)

o) by the definition of q and the assumption that

G∗
π)

o is non-empty. It follows that the hull-kernel topology on Ĝ is discrete,

hence G is compact.

6.3 Characterization of discrete groups

The following proposition is a consequence of theorem 8.2.1, which gives some

characterizations of discrete groups.

Proposition 6.3.1. Let G be a locally compact group. Then the following

statements are equivalent:

(a) G is discrete.

(b) P1(G) is weak* compact.

(c) Br(G) ∩ P1(G) is weak* compact.

Hence, if G∗ is weak* compact, then G is discrete.

Proof. If G is discrete, then P1(G) = {φ ∈ B(G) : φ(e) = 〈φ, δe〉 = 1 = ‖φ‖}
is clearly weak* compact. Suppose that (b) holds. For each g∗ ∈ G∗, define

Tg∗ : P1(G) → P1(G) by Tg∗(φ) = g∗·φ. Then {Tg∗ : g
∗ ∈ G∗} is a commutating

family of continuous affine maps on P1(G). By the Markov-Kakutani fixed

point theorem, there exists φ0 ∈ P1(G) such that g∗ · φ0 = φ0. Thus, G

is discrete by theorem 8.2.1. The proof of the equivalence of (a) and (c) is

similar.
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It gives another proof of the following theorem which appears in [28].

Corollary 6.3.2. Let G be a locally compact group. Then the following

statements are equivalent:

(a) G is discrete.

(b) C∗(G) is unital.

(c) C∗
r (G) is unital.

Proof. Note that if A is a unital C*-algebra, then (A∗)+1 is w*-compact.

The following theorem characterizes all the translation-invariant elements

of W ∗(G).

Theorem 6.3.3. Let T be a non-zero element in W ∗(G). Then the following

statements are equivalent:

(a) g∗ · T = T for all g∗ ∈ G∗

(b) T = cω(e) for some non-zero c ∈ C.

Proof. (b)⇒ (a) is clear. Suppose that (a) holds. Let g∗ ∈ G∗. Then 〈T, g∗〉 =
〈g∗ · T, 1〉 = 〈T, 1〉. If 〈T, 1〉 = 0, then 〈T, g∗〉 = 0 for each g∗ ∈ G∗. Hence,

T = 0, which leads a contradiction. Therefore, we may assume that 〈T, 1〉 = 1.

By the above observation, 〈T, g∗〉 = 1 for all g∗ ∈ G∗. Thus, 〈T, f〉 = 1 for

all f ∈ P1(G) by lemma 5.1.1. For any non-degenerate representation π of

C∗(G), we have 〈π(T )ε, ε〉 = 1 for all ε ∈ Hπ,1. It follows by Cauchy-Schwarz’s

inequality that π(T ) = idπ. Therefore, T is the identity in W ∗(G).

The following theorem gives a characterization of translation-invariant el-

ements of V N(G). For the definition of the support of an element of V N(G),

the basic reference is [11, Chapter 4].
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Theorem 6.3.4. Let T be a non-zero element in V N(G). Then the following

statements are equivalent:

(a) g∗ · T = T for all g∗ ∈ G∗

(b) φ · T = T for all φ ∈ B(G)+1

(c) φ · T = T for all φ ∈ A(G) ∩ P1(G)

(d) T = cλ2(e) for some non-zero constant c ∈ C.

Proof. ”(a) ⇒ (b):” For any φ ∈ P1(G), there exists a net {eα} in co(G∗)

such that eα −→ φ strictly. Observe that eα · T = T . So, for any u ∈ A(G),

〈T, u〉 = 〈eα · T, u〉 = 〈T, eα · u〉 → 〈T, φ · u〉. Thus, T = φ · T . ”(b) ⇒
(c)” is clear. Suppose that (c) holds. By [11, Proposition 4.4.8], supp(T ) =

supp(φ · T ) ⊆ supp(φ) ∩ supp(T ). It follows that supp(T ) ⊆ supp(φ) for any

φ ∈ A(G)∩P1(G). However, for any x �= e ∈ G, there exists f ∈ A(G)∩P1(G)

such that x lies outside supp(f). Therefore, we have supp(T ) = {e}. Hence,

the result follows by [11, Theorem 4.4.9].

Note that C∗(G) and C∗
r (G) are B(G)-bimodules, and hence they are G∗-

invariant.

Corollary 6.3.5. Let G be a locally compact group. Then the following

statements are equivalent:

(a) G is discrete.

(b) There exists a non-zero T ∈ C∗(G) such that T is G∗-invariant.

(c) There exists a non-zero T ∈ C∗
r (G) such that T is G∗-invariant.

Moreover, if such T exists, then T = cδe for some c ∈ C.
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Proof. It follows from corollary 6.3.2, theorem 6.3.3 and theorem 6.3.4.

We may characterize translation-invariant elements of vn(G):

Proposition 6.3.6. Let T be a non-zero element in vn(G). Then the following

statements are equivalent:

(a) g∗ · T = T for all g∗ ∈ G∗

(b) T = cσ(e) for some non-zero c ∈ C.

Proof. (b)⇒ (a) is clear. Suppose that (a) holds. Let g∗ ∈ G∗. Then 〈T, g∗〉 =
〈g∗ · T, 1〉 = 〈T, 1〉. If 〈T, 1〉 = 0, then 〈T, g∗〉 = 0 for each g∗ ∈ G∗. Hence,

T = 0, which leads a contradiction. Therefore, we may assume that 〈T, 1〉 = 1.

By the above observation, 〈T, g∗〉 = 1 for all g∗ ∈ G∗. Since g∗ = 〈π(·)ε, ε〉 for
some irreducible representation π and ε ∈ Hπ, ‖ε‖ = 1, we obtain T |Hπ = idHπ .

Consequently, T |Hπa
= πa(e). Note that (g

∗
1...g

∗
n)·T = T for any g∗1, ..., g

∗
n ∈ G∗.

By the similar argument, T |H
π
(n)
a

= π
(n)
a (e). Hence, T = σ(e).
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Chapter 7

Closed convex G∗-invariant

subsets in A(G) and V N(G)

In this chapter, we will study the closed convex G∗-invariant subsets in A(G)

and V N(G), and also the operators on A(G) and V N(G) which commute with

the actions of G∗.

7.1 Some general results

Let τ denote the locally convex topology onB(G) determined by the separating

family of semi-norms {pf,T : f ∈ A(G), T ∈ V N(G)} where pf,T (φ) = 〈T, f ·φ〉
for each φ ∈ B(G).

It is easy to see that the strict topology is stronger than the τ -topology on

B(G).

Lemma 7.1.1. For any locally compact group G, we have P1(G) ⊆ co(G∗)
(τ)
.

Moreover, G is amenable if and only if P1(G) ⊆ A(G) ∩ P1(G)
(τ)
.

Proof. Since co(G∗) is strictly dense in P1(G), the first part of this lemma
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is straightforward. Let (eα) ⊆ A(G) ∩ P1(G) be a BAI in A(G). For any

f ∈ P1(G), we have (feα)α ⊆ A(G) ∩ P1(G) and

〈T, (feα)g − fg〉 ≤ ‖T‖‖f‖‖eαg − g‖ → 0 for all T ∈ V N(G), g ∈ A(G)

The converse follows from [16, Theorem B2].

Lemma 7.1.2. Let G be a locally compact group.

(a) For any u ∈ A(G), the function B(G) → A(G), φ 	→ φ · u is continuous

when B(G) has τ -topology and when A(G) has the weak topology.

(b) For any T ∈ V N(G), the function B(G) → V N(G), φ 	→ φ · T is

continuous when B(G) has τ -topology and when V N(G) has the weak*

topology.

(c) For any ψ ∈ B(G), the function B(G) → B(G), φ 	→ φ · ψ is weak*-

weak*-continuous.

Proof. (a) Let {φα} be a net in B(G) converging to some φ in B(G) in the

τ -topology. By definition,

〈T, φα · u〉 → 〈T, φ · u〉 for all T ∈ V N(G).u ∈ A(G)

In particular, φα · f → φ · f weakly.

(b) Let {φα} be a net in B(G) converging to some φ in B(G) in the τ -

topology. By definition,

〈φα·T, u〉 = 〈T, φα·u〉 → 〈T, φ·u〉 = 〈φ·T, u〉 for all T ∈ V N(G).u ∈ A(G)

In particular, φα · T → φ · T in the weak* topology.

(c) Clear. Note that C∗(G) is a B(G)-bimodule.
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Theorem 7.1.3. Let G be a locally compact group and let K be a closed

convex subset of A(G).

(a) If g∗ ·K ⊆ K for each g∗ ∈ G∗, then φ·K ⊆ K for each φ ∈ A(G)∩P1(G).

(b) Suppose, in addition, that G is amenable. Then g∗ · K ⊆ K for each

g∗ ∈ G∗ if and only if φ ·K ⊆ K for each φ ∈ A(G) ∩ P1(G).

Proof. (a) Let φ ∈ A(G) ∩ P1(G), f ∈ K, and let (φα) be a net in co(G∗)

such that φα −→τ φ. Note that φα ·f ∈ K for each α. Since K is weakly

closed, it follows from lemma 7.1.2 that φ · f ∈ K.

(b) Since G is amenable, P1(G) ⊆ A(G) ∩ P1(G)
(τ)

by lemma 7.1.1. For

any g∗ ∈ G∗, let (φα) be a net in A(G) ∩ P1(G) such that φα −→τ g∗.

Since φα · f ∈ K for each α and f ∈ K, by lemma 7.1.2 again, we have

g∗ ·K ⊆ K.

Theorem 7.1.4. Suppose that G is amenable. Let v0 ∈ A(G), then co{g∗ ·v0 :
g∗ ∈ G∗} = {φ · v0 : φ ∈ A(G) ∩ P1(G)}−.

Proof. Let K1 = co{g∗ ·v0 : g∗ ∈ G∗} and K2 = {φ ·v0 : φ ∈ (A(G)∩P1(G))}−.
Then g∗ · K1 ⊆ K1 for each g∗ ∈ G∗. So, by theorem 7.1.3, φ · K1 ⊆ K1

for each φ ∈ A(G) ∩ P1(G). Therefore, K2 ⊆ K1. Conversely, let φα be a

net in A(G) ∩ P1(G) converging to 1. By lemma 7.1.2, φα · v0 −→ v0 in the

weak-topology of A(G). It follows that v0 ∈ K2. By the same argument,

g∗ ·K2 ⊆ K2 for each g∗ ∈ G∗. In particular, g∗ · v0 ∈ K2 for each g∗ ∈ G∗.

Theorem 7.1.5. Let A,B be a closed G∗-invariant convex subsets of A(G).

Suppose that Φ is an affine norm-continuous map from A into B, then the

following are equivalent:
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(a) Φ(g∗ · f) = g∗ · Φ(f) for each g∗ ∈ G∗, f ∈ A

(b) Φ(φ · f) = φ · Φ(f) for each φ ∈ A(G) ∩ P1(G), f ∈ A

Proof. Suppose that (a) holds. Let φ ∈ A(G)∩P1(G), and (φα) ∈ co(G∗) such

that φα −→τ φ. By lemma 7.1.2, φα · f −→ φ · f weakly for each f ∈ A.

Since A is closed and convex, and T is affine, Φ is also continuous when A,

B have the respective weak topology. Thus, Φ(φ · f) = lim Φ(φα · f) =

lim φα · Φ(f) = φ · Φ(f). Conversely, let g∗ ∈ G∗, and (φα) ∈ A(G) ∩ P1(G)

such that φα −→τ g∗. By lemma 7.1.2, φα · f −→ g∗ · f weakly for each f ∈ A.

Then, Φ(g∗ · f) = lim Φ(φα · f) = lim φα · Φ(f) = g∗ · Φ(f).

Theorem 7.1.6. G is discrete if and only if there exists a weakly compact,

convex, G∗-invariant, non-zero subset in A(G).

Proof. If G is discrete, then K = {δe} is such a subset. Conversely, suppose

that G is non-discrete. Let v0 �= 0 be an element in K. Define T : A(G) →
A(G), T (u) = v0u. Then T is weakly compact. In fact, let K1 = coweak{g∗ ·v0 :
g∗ ∈ G∗}. By theorem 7.1.4, we have K1 = {φ · v0 : φ ∈ (A(G) ∩ P1(G))}−.
Consider the weakly compact set K2 = {λk : λ ∈ [0, 1], k ∈ K1}. For each

u ∈ A(G)1, we have v0u ∈ K2 −K2 + i(K2 −K2). So, T (A(G)1) is relatively

weakly compact. It follows that v0u = T (u) = 0 for all u ∈ A(G)(See [22,

Proposition 6.9]). Therefore, u = 0.

Theorem 7.1.7. G is non-discrete if and only if every norm-compact, convex,

G∗-invariant, non-zero subset of C∗(G) contains zero.

Proof. If G is discrete, then K = {δe} is such a subset which does not contain

zero. Conversely, for any g∗ ∈ G∗, define Tg∗ : K → K, f 	→ g∗ · f . Then each

Tg∗ is a norm-continuous affine map from K to K. Also, {Tg∗ : g∗ ∈ G∗} is
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a commuting family. By Markov-Kakutani fixed point theorem, there exists

f0 ∈ C∗(G) such that f0 is G∗-invariant. If follows from corollary 6.3.5 that

f0 = 0 as G is not discrete.

Theorem 7.1.8. Let B be a closed G∗-invariant subset of A(G), and let Γ be a

continuous affine mapping from A(G)∩P1(G) into B. Then Γ(g∗ ·ψ) = g∗ ·Γ(ψ)
for any g∗ ∈ G∗, ψ ∈ A(G) ∩ P1(G) if and only if there exists φ ∈ B(G) such

that Γ(ψ) = φ · ψ for any ψ ∈ A(G) ∩ P1(G).

Proof. Assume that Γ(g∗ · ψ) = g∗ · Γ(f) for any g∗ ∈ G∗, ψ ∈ A(G) ∩ P1(G).

Let (φα) be a net in A(G) ∩ P1(G) such that φα −→τ 1. By lemma 7.1.2,

φα·ψ −→ ψ in the weak topology of A(G). Thus, Γ(φα)·ψ = Γ(φα·ψ) −→ Γ(ψ)

weakly. On the other hand, since {Γ(φα)} is bounded, we may assume that

Γ(φα) −→w∗
φ for some φ ∈ B(G). By lemma 7.1.2 again, Γ(φα)·ψ −→ φ·ψ in

the weak* topology of B(G). Hence, Γ(ψ) = φ ·ψ for each ψ ∈ A(G)∩P1(G).

The converse is trivial.

Theorem 7.1.9. Let G be a locally compact group and let K be a weak*-

closed convex subset of V N(G).

(a) If g∗ ·K ⊆ K for each g∗ ∈ G∗, then φ·K ⊆ K for each φ ∈ A(G)∩P1(G).

(b) Suppose, in addition, that G is amenable. Then g∗ · K ⊆ K for each

g∗ ∈ G∗ if and only if φ ·K ⊆ K for each φ ∈ A(G) ∩ P1(G).

Proof. By using lemma 7.1.1 and lemma 7.1.2, the proof of it is similar to that

of theorem 7.1.3.

Theorem 7.1.10. Suppose that G is amenable. If T ∈ V N(G), then cow*{g∗·
T : g∗ ∈ G∗} = {φ · T : φ ∈ A(G) ∩ P1(G)}−w*.

Proof. The proof is similar to the proof of theorem 7.1.4.
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Theorem 7.1.11. Let A be a closed G∗-invariant convex subset of A(G), and

B be w*-closed G∗-invariant convex subset of V N(G). Suppose that Φ is an

affine norm-continuous map from A into B, then the following are equivalent:

(a) Φ(g∗ · f) = g∗ · Φ(f) for each g∗ ∈ G∗, f ∈ A

(b) Φ(φ · f) = φ · Φ(f) for each φ ∈ A(G) ∩ P1(G), f ∈ A

Proof. The proof is just a slight modification of the proof of theorem 7.1.5.

Theorem 7.1.12. Let A, B be w*-closed G∗-invariant convex subsets of

V N(G). Suppose that Ψ is an affine w*-w*-continuous map from A into

B, then the following are equivalent:

(a) Ψ(g∗ · T ) = g∗ ·Ψ(T ) for each g∗ ∈ G∗, T ∈ A

(b) Ψ(φ · T ) = φ ·Ψ(T ) for each φ ∈ A(G) ∩ P1(G), T ∈ A

Proof. The proof is just a slight modification of the proof of theorem 7.1.5.

7.2 Characterizations of generalized function

spaces in amenable groups

Let us recall the definition of AP (G) and WAP (G):

For any f ∈ L∞(G), write o(f) = {Lxf : x ∈ G}. Then

AP (G) := {o(f) is compact in L∞(G)} ;

WAP (G) := {o(f) is weakly compact in L∞(G)}

Notice that these definitions depend on the concept of translations of functions

in L∞(G). In defining the non-commutative analogue of them, namely, AP (Ĝ)

61



and WAP (Ĝ), we use the notion of (weakly)compact operators instead. How-

ever, if G is amenable, we are able to characterize AP (Ĝ) and WAP (Ĝ) by

using the concept of generalized translation operators.

For any T ∈ V N(G), write O(T ) = {g∗ · T : g∗ ∈ G∗}.

Theorem 7.2.1. If G is amenable, then

WAP (Ĝ) = {T ∈ V N(G) : O(T ) is relatively weakly compact in V N(G)}.

Proof. The set K := {u · T : u ∈ A(G)1} is relatively weakly compact. Since

the weak*-topology on K
weak

is Hausdorff, the weak topology and the weak*-

topology coincide on K. By using this observation and lemma 7.1.10, we have

O(T ) ⊆ cow∗(O(T )) = {φ · T : φ ∈ A(G) ∩ P1(G)}−w∗ ⊂ K
w∗

= K
weak

Therefore, O(T ) is relatively weakly compact. Conversely, suppose that O(T )

is relatively weakly compact. Therefore, co(O(T )) is also relatively weakly

compact. By the same argument, the weak topology and the weak*-topology

coincide on K ′ = co(O(T ))
weak

. So, K ′ = cow∗(O(T )) = {φ · T : φ ∈ A(G) ∩
P1(G)}−w∗

= {φ · T : φ ∈ A(G) ∩ P1(G)}−. Consequently, for any u ∈ A(G)1,

we have u · T ∈ K ′ −K ′ + i(K ′ −K ′).

By replacing “weak topology” by “norm topology” everywhere in the proof

of theorem 7.2.1, one can show that:

Theorem 7.2.2. If G is amenable, then

AP (Ĝ) = {T ∈ V N(G) : O(T ) is relatively compact in V N(G)}.

7.3 Invariantly complemented subspace of V N(G)

Throughout this section, we will assume that A(G) has an approximate iden-

tity.

62



Lemma 7.3.1. For any locally compact group G, we have span(G∗)
τ
= B(G)

and A(G)
τ
= B(G).

Proof. The first assertion follows from lemma 7.1.1. To prove the second

assertion, let f ∈ B(G), there exists a net (fα) ⊆ A(G) such that fα →
f strictly, i.e. fαg → fg for any g ∈ A(G). But, it follows clearly that

〈T, (fα − f), g〉 → 0 for any g ∈ A(G).

Lemma 7.3.2. Let X be a weak*-closed subspace of V N(G). Then X is

G∗-invariant if and only if X is a A(G)-submodule of V N(G).

Proof. Let f ∈ A(G). By lemma 7.3.1, there exists a net fα ∈ span(G∗) such

that fα →τ f . For all g ∈ X, we have fαg ∈ X Since X is weak*-closed, it

follows that fg ∈ X. Conversely, let g∗ ∈ G∗. By lemma 7.3.1, there exists a

net fα ∈ A(G) such that fα →τ g∗. Then we use the same argument.

Definition 7.3.3. Let X be a weak*-closed G∗-invariant subspace of V N(G).

(a) X is said to be invariantly complemented in V N(G) such that P (g∗ ·T ) =
g∗ · T (g∗ ∈ G∗, T ∈ V N(G)).

(b) X is said to be topologically invariantly complemented in V N(G) such

that P (f · T ) = f · T (f ∈ A(G), T ∈ V N(G)).

The notion of (topologically)invariantly complemented subspaces of UCB(Ĝ)

is defined similarly.

Theorem 7.3.4. Let X be a weak*-closed G∗-invariant subspace of V N(G).

Consider the following conditions:

(a) X⊥ has a BAI.

(b) X is topologically invariantly complemented in V N(G).
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(c) X is invariantly complemented in V N(G).

(d) X ∩ UCB(Ĝ) is invariantly complemented in UCB(Ĝ).

(e) X ∩ UCB(Ĝ) is topologically invariantly complemented in UCB(Ĝ).

Then we have (a)⇒(b)⇒(c)⇒(d)⇒(e). If G is amenable, then the above

conditions are equivalent to each other. Moreover, G is amenable if and only

if (a) is equivalent to any of (b)-(e).

Proof. (a)⇒(b): Let (vα) be a BAI in X⊥ and let N be a weak*-limit point of

(vα) in V N(G)∗. Without loss of generality, assume that vα −→w∗
N . Define

P : V N(G) → V N(G) by

〈PT, f〉 = 〈T, f〉 − limα〈T, vαf〉(or 〈T, f〉 − 〈f · T,N〉)

Then

〈P 2T, f〉
= 〈PT, f〉 − limα〈PT, vαf〉
= 〈T, f〉 − limα〈T, vαf〉 − limα(〈T, vαf〉 − limβ〈T, vβvαf〉)
= 〈T, f〉 − 〈f · T,N〉 − 〈f · T,N〉+ 〈f · T,N2〉
= 〈T, f〉 − 〈f · T,N〉 − 〈f · T,N〉+ 〈f · T,N〉
= 〈T, f〉 − 〈f · T,N〉
= 〈PT, f〉 for any f ∈ A(G) and T ∈ V N(G).

So, P is a projection. Let T ∈ X and f ∈ X⊥, then 〈PT, f〉 = 〈T, f〉 −
limα〈T, vαf〉 = 0− 0 = 0. Therefore, PT ∈ (X⊥)⊥ = X.

(b)⇒(c): Let P : V N(G) → X be a projection such that P (f · T ) = f · T
(f ∈ A(G), T ∈ V N(G)), and let (uα) be an approximate identity for A(G).

If g∗ ∈ G∗, f ∈ A(G) and T ∈ V N(G), then we have
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〈P (g∗ · T ), f〉
= limα〈P (g∗ · T ), uαf〉 = limα〈uα · P (g∗ · T ), f〉 = limα〈P ((uαg

∗) · T ), f〉
= limα〈(uαg

∗) · P (T ), f〉 = limα〈g∗ · P (T ), uαf〉 = 〈g∗ · P (T ), f〉

Hence, P (g∗ · T ) = g∗ · P (T ).

(c)⇒(d): Let P : V N(G) → X be a projection such that P (g∗ · T ) = g∗ · T
(g∗ ∈ G∗, T ∈ V N(G)). If f ∈ A(G), then there exists a net of functions

(fα) ⊆ span(G∗) such that fα → f strictly by proposition 5.1.1. So, we get

〈P (f · (u · T )), v〉
= 〈P ((f · u) · T ), v〉 = limα〈P ((fα · u) · T ), v〉
= limα〈fα · P (u · T ), v〉 = limα〈P (u · T ), fαv〉
= 〈P (u · T ), fv〉 = 〈f · P (u · T ), v〉 for any u, v ∈ A(G) and T ∈ V N(G).

Since A(G) · V N(G) is dense in UCB(Ĝ), we have

P (f · S) = f · P (S) for all f ∈ A(G) and S ∈ UCB(Ĝ) (∗)

By the same argument in proving (b)⇒(c), we have P (g∗ · S) = g∗ · P (S) for

all g∗ ∈ G∗ and S ∈ UCB(Ĝ).

(d)⇒(e): Using the same argument in proofing (*) above.

For the last statement, we only need to show that G is amenable if and only

if (a) is equivalent to (e). Suppose that (a) and (e) are equivalent. Let X =

{0}, then X ∩ UCB(Ĝ) = {0} is topologically invariantly complemented in

UCB(Ĝ). Therefore, A(G) = X⊥ has a BAI, and hence G is amenable by

Leptin’s theorem. The converse follows by [Proposition 6.4] and [Proposition

7.5] of [13].

Remark. The above proof is inspired by the proof of [4, Theorem 1].

65



A subspace X of V N(G) is said to be completely complemented in V N(G)

if there exists a completely bounded projection from V N(G) onto X (see [40]

for more details).

Theorem 7.3.5. Consider the following conditions:

(a) G is amenable.

(b) A closed ideal I of A(G) has a BAI if and only if I⊥ is completely

complemented in V N(G).

(c) Every completely complemented weak*-closed G∗-invariant subspace of

V N(G) is topologically invariantly complemented.

(d) Every completely complemented weak*-closed G∗-invariant subspace of

V N(G) is invariantly complemented.

Then we have (a)⇔(b)⇒(c)⇒(d).

Proof. (a)⇒(b) follows by [40, Theorem 3] and (b)⇒(c)⇒(d) follows by the-

orem 7.3.4. Suppose that (b) holds. Let I = A(G). Then I⊥ = {0} is com-

pletely complemented in V N(G). Thus, A(G) = X⊥ has a BAI, and hence G

is amenable by Leptin’s theorem.
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Chapter 8

Reflexivity and duality of

subgroups

We will use the following notations throughout this chapter:

P0(G) := {φ ∈ P (G) : 0 ≤ φ(e) ≤ 1} and P1(G) := {φ ∈ P (G) : φ(e) = 1}.

Let G∗ be the the set of all extreme points of P1(G). (i.e. G∗ = E(P1(G))),

equipped with the relative weak*-topology inherited from B(G). It is called

the dual space of G. Given a non-empty subset X in G, let

X	 := {φ ∈ P0(G) : φ(x) = φ(y) for any x, y ∈ X},

X◦ := {φ ∈ P1(G) : φ(x) = 1 for any x ∈ X},

X⊥ := {g∗ ∈ G∗ : g∗(x) = 1 for any x ∈ X}.

It is easy to see that X◦ = P1(G) ∩X	 and X⊥ = G∗ ∩X	.
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8.1 Extreme points of subsets of Fourier Stieljies

algebras

We quote the following classical results about positive definite functions, which

is useful in the sequel.

Proposition 8.1.1. Let φ ∈ P (G). Then |φ(e)φ(yz)− φ(y)φ(z)|2 ≤ (φ(e)2 −
|φ(y)|2)(φ(e)2 − |φ(z)|2) for any y, z ∈ G.

The closed subgroup generated by X in G is denoted by 〈X〉.

Lemma 8.1.2. For any non-empty subset X in G, we have

X◦ = 〈X〉◦ and X⊥ = 〈X〉⊥.

If X contains identity, then

X	 = 〈X〉	

The following lemma generalizes [12, Lemma 3.26] where the proof follows

from a slight modification of the proof of [12, Lemma 3.26].

Lemma 8.1.3. Let X be a closed non-empty subset of G. Then E(X◦) = X⊥.

If X contains identity, then E(X	) = X⊥ ∪ {0}.

Proof. For the first equality, by lemma 8.4.1, it suffices to assume that X

is a closed subgroup of G. Suppose that g∗ ∈ X⊥. Let g∗ = 1/2(φ1 + φ2)

for some φ1, φ2 ∈ X◦. Then, we have g∗ = φ1 = φ2 since g∗ is extreme in

P 1(G). It follows that g∗ ∈ E(X◦). Conversely, assume that φ ∈ E(X◦). Let

φ = 1/2(φ1+φ2) for some φ1, φ2 ∈ P1(G). Then 1 = φ(x) = 1/2(φ1(x)+φ2(x))

for any x ∈ X. Since 1 is an extreme point of T and φ1(x), φ2(x) ∈ T, we

get φ1(x) = φ2(x) = 1 for all x ∈ X. Therefore, φ1, φ2 ∈ X◦. Consequently,
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φ = φ1 = φ2. Hence, φ ∈ G∗. For the second equality, let φ1, φ2 ∈ X	.

Suppose that 0 = 1/2(φ1 + φ2). Then, we have 0 = 1/2(φ1(e) + φ2(e)). It

follows that φ1 = φ2 = 0 since φ1(e), φ2(e) ≥ 0. Therefore, 0 is an extreme

point. Let g∗ ∈ X⊥. If g∗ = 1/2(φ1 + φ2) for some φ1, φ2 ∈ X	, then 1 =

g∗(e) = 1/2(φ1(e) + φ2(e)). Consequently, φ1(e) = 1 = φ2(e), ie. φ1, φ2 ∈ X◦.

Therefore, g∗ is extreme by the first assertion. Conversely, if φ ∈ X	 \ (X◦ ∪
{0}), then φ = ‖φ‖(φ/‖φ‖) + (1− ‖φ‖)0. So, φ is not an extreme point.

Proposition 8.1.4. Let G be a locally compact group, and let X be a

non-empty subset of G. Then X	 is weak*-compact, and hence co(X⊥) is

weak*(strictly) dense in X◦.

Proof. Let x ∈ X, (φα) ⊆ X	 and φ ∈ B(G) such that φα → φ in the weak*-

topology. Since the weak*-topology and the topology of uniform convergence

on compacta coincide on the unit ball of B(G)(see [16]), we have φα(x) → φ(x)

for any x ∈ X. If x, y ∈ X such that φα(x) = φα(y), then φ(x) = φ(y). Also,

we have

‖φα‖ = φα(e) → φ(e) = ‖φ‖.

Hence, φ ∈ X	 and therefore X	 is weak*-compact. With lemma 8.1.3, the

rest is basically the same as that of [12, Theorem 3.27]. We will prove it here

for the sake of completeness. By Krein-Milman theorem and lemma 8.1.3,

for any φ ∈ X◦, φ is the weak*-limit of a net of functions φα of the form

c1g
∗
1+...+cng

∗
n+cn+10, where g

∗
1, ...g

∗
n ∈ X⊥, c1, ..., cn, cn+1 ≥ 0, and

∑
j cj = 1.

Since ‖φ‖∞ = 1 and ‖φα‖∞ ≤ 1, we have

1 = ‖φ‖∞ ≤ lim‖φα‖∞ ≤ lim‖φα‖∞ ≤ 1.

Put φ′
α = φα/φα(e). We have φ′

α =
∑n

i=1(ci/φα(e))g
∗
i and

∑n
i=1 ci/φα(e) =

φα(e)/φα(e) = 1. Thus, φ′
α ∈ co(X⊥) and φ = limw∗φα.
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8.2 Reflexivity on subgroups

Let A be a subset of G∗. Write A⊥ := {x ∈ G : g∗(x) = 1 for all g∗ ∈ A}.
The proof of the following lemma is easy and left to the reader.

Lemma 8.2.1. Let X, Y be non-empty subsets of G, A, B be non-empty

subsets of G∗ and P , Q be non-empty subsets of P1(G). Then we have the

following inclusions:

(a) X ⊆ (X⊥)⊥ and Y ⊥ ⊆ X⊥ if X ⊆ Y .

(b) X ⊆ (X◦)⊥ and Y ◦ ⊆ X◦ if X ⊆ Y .

(c) A ⊆ (A⊥)⊥ and B⊥ ⊆ A⊥ if A ⊆ B.

(d) P ⊆ (P⊥)◦ and Q⊥ ⊆ P⊥ if P ⊆ Q.

Let X and A be subsets of G and G∗. respectively.

(a) X is said to be reflexive inG if (X⊥)⊥ = X(or equivalently, (X⊥)⊥ ⊆ X).

(b) A is said to be reflexive in G∗ if (A⊥)⊥ = A(or equivalently, (A⊥)⊥ ⊆ A).

Lemma 8.2.2. LetA be a subset ofG∗. Then A⊥ is a closed reflexive subgroup

in G.

Proof. Since g∗ is continuous, the set {x ∈ G : g∗(x) = 1} is closed in G.

Therefore,

A⊥ =
⋂
g∗∈A

{x ∈ G : g∗(x) = 1}

is closed in G. Let x, y ∈ A⊥ and g∗ ∈ A. By lemma 8.1.1, we have g∗(xy) =

g∗(x)g∗(y) = 1 and g∗(x−1) = g∗(x) = 1. Let H = A⊥. Then we have

H ⊆ (H⊥)⊥ by lemma 8.2.1(a). On the other hand, since A ⊆ (A⊥)⊥, we have

(H⊥)⊥ = ((A⊥)⊥)⊥ ⊆ A⊥ = H
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by lemma 8.2.1(c).

Therefore, only closed subgroups can be reflexive.

Similarly, we have the following lemma:

Lemma 8.2.3. Let X be a subset of G. Then X⊥ is a closed reflexive subset

in G∗.

Corollary 8.2.4. Let H be a closed subgroup of G and N = (H⊥)⊥. Then

N⊥ = H⊥ and N is the smallest closed subgroup in G containing H such that

N is reflexive in G.

Proof. The equality that N⊥ = H⊥ follows from lemma 8.2.3. Let K be a

subset of G such that H ⊆ K and K is reflexive. Then we have

N = (H⊥)⊥ ⊆ (K⊥)⊥ = K

Notation. Write

G = {X ⊆ G : X is reflexive.}

and

G∗ = {B ⊆ G∗ : B is reflexive.}

Remark. It is not hard to see that

G = {A⊥ : A ⊆ G∗} = {(X⊥)⊥ : X ⊆ G} = {(H⊥)⊥ : H is a subgroup of G}

and

G∗ = {X⊥ : X ⊆ G} = {(A⊥)⊥ : A ⊆ G∗} = {H⊥ : H is a subgroup of G}
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In conclusion, we have the following theorem:

Theorem 8.2.5. Φ : G → G∗, Φ(H) = H⊥ is a bijection, and its inverse is

given by Ψ : G∗ → G, Ψ(B) = B⊥.

Proof. Write B = H⊥ for some closed subgroup H of G. We have

Φ(Ψ(B)) = Φ(B⊥) = Φ((H⊥)⊥) = ((H⊥)⊥)⊥ = H⊥ = B

(the second last equality follows by lemma 8.2.3). On the other hand, for any

closed subgroup H of G, we have

Ψ(Φ((H⊥)⊥)) = Ψ(((H⊥)⊥)⊥) = Ψ(H⊥) = (H⊥)⊥

(the second last equality follows again by lemma 8.2.3).

Lemma 8.2.6. Let H be a closed subgroup of G. Then the following condi-

tions are equivalent:

(a) H is reflexive.

(b) for any x ∈ G \H, there exists an element g∗ ∈ H⊥ such that g∗(x) �= 1.

Proof. If x ∈ (H⊥)⊥, then g∗(x) = 1 for any g∗ ∈ H⊥. By assumption, x ∈ H.

Conversely, let x ∈ G \H = G \ (H⊥)⊥. By assumption, g∗(x) �= 1 for some

g∗ ∈ H⊥. Therefore, H is reflexive in G.

Remark. Let G be a locally compact group. Lau and Kanuith defined in [19]

the following separation property: H is said to be separating in G if for any

x ∈ G \H, there exists φ ∈ H◦ such that φ(x) �= 1. In our notation, it is just

equivalent to say that (H◦)⊥ = H. It follows that if H is reflexive, then H is

separating in G.
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We are going to prove that the converse is also true.

Let τ be the topology on B(G) defined as the following:

A net (uα) in B(G) is said to converge to u ∈ B(G) in the τ -topology if

〈uα · T, v〉 → 〈u · T, v〉 for any v ∈ A(G), T ∈ V N(G)

Lemma 8.2.7. Let G be a locally compact group and let X be a subset of G.

Then we have X◦ ⊆ co(X⊥)
(τ)
.

Proof. It follows from the fact that co(X⊥) is strictly dense inX◦(Lemma 8.1.4).

For any closed subgroup H of G, let V NH(G) be the von Neumann subal-

gebra of V N(G) generated by λ2(H).

Theorem 8.2.8. Let H be a closed subgroup of G. Then the following con-

ditions are equivalent:

(a) H is separating in G.

(b) H is reflexive in G.

(c) V NH(G) = {T ∈ V N(G) : g∗ · T = T for all g∗ ∈ H⊥}.

(d) V NH(G) = {T ∈ V N(G) : φ · T = T for all φ ∈ H◦}.

Proof. The equivalence of (a) and (c) was shown in [19, Proposition 3.1]. (b)

⇒ (a) is clear.

(c) ⇒ (d). If g∗ · T = T for all g∗ ∈ H⊥, then clearly φ · T = T for all

φ ∈ co(H⊥). Let ψ ∈ H◦ and (φα) be a net in co(H⊥) converging to ψ in the

strict topology. For any u ∈ A(G), by lemma 8.2.7, we have

〈T, u〉 = 〈φα · T, u〉 → 〈ψ · T, u〉.
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Therefore, ψ · T = T for all φ ∈ H◦.

(d) ⇒ (b). It follows in the same way as [19, Proposition 3.1]((iii) ⇒ (i)).

We will give a proof for the sake of completeness. Let x ∈ (H⊥)⊥. Then for

u ∈ A(G) and g∗ ∈ H⊥,

〈g∗ · λ2(x), u〉 = (g∗u)(x) = u(x) = 〈λ2(x), u〉.

We conclude that λ2(x) ∈ V NH(G) since g∗ · λ2(x) = λ2(x). Hence, x ∈ H by

the definition of V NH(G).

Examples.

(a) Let G be the ”ax+b”-group, and H = {
⎛
⎝ a 0

0 1

⎞
⎠ : a > 0}. From the

calculation in Example 3(i) of [19], we see that H⊥ = {1}, and hence

(H⊥)⊥ = G.

(b) Let G be the Heisenberg group, and H = {

⎛
⎜⎜⎜⎝

1 a 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ : a ∈ R},

and let K = {

⎛
⎜⎜⎜⎝

1 a b

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ : a, b ∈ R}. It is known(see [20]) that

if G is a connected nilpotent group and H is a closed subgroup of G,

then H is reflexive if and only if G is a normal of subgroup of G. It is

straightforward to check that K is the smallest normal subgroup of G

which contains H as a subgroup. Therefore, by corollary 8.2.4, we have

(H⊥)⊥ = K.

(c) Let G = G3,4(α), α ∈ R, H = {(0, x, 0) : x ∈ R} and K = {(0, x, y) :

x, y ∈ R}. Then (H⊥)⊥ = K(see Example 3(iii) of [19] ).
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8.3 Dual spaces of quotient and product groups

Let N be a closed normal subgroup of G, and let σ : G −→ G/N be the

canonical homomorphism. Define j : B(G/N) −→ B(G)N , j(f) = f ◦σ. Then
j is an isometric isomorphism. Furthermore, we have j(P1(G/N)) = N◦(See

[11, Corollary 2.26]).

Proposition 8.3.1. The restriction of j on (G/N)∗ maps (G/N)∗ onto N⊥.

Proof. If φ(σ(x)) = 〈π(σ(x))ξ, ξ〉 for some π ∈ (G/N)∧, then π ◦ σ ∈ Ĝ.

Therefore, we have j(φ) = φ◦σ ∈ G∗. It follows that j maps (G/N)∗ into N⊥.

Now, let ψ ∈ N⊥ ⊆ P1(G). Then j−1(ψ) ∈ P1(G/N). If j−1(ψ) = (ψ̄1 + ψ̄2)/2

for some ψ̄1, ψ̄2 ∈ P1(G/N), then ψ = ( ¯j(ψ1) + ¯j(ψ2))/2 where j(ψ̄1), j(ψ̄2) ∈
P1(G). But ψ ∈ G∗ , so ψ = ¯j(ψ1). Therefore, j−1(ψ) = ψ̄1 is an extreme

point of P1(G/N).

Corollary 8.3.2. If N is a closed normal subgroup of G such that N⊥ = {1},
then G = N .

Proof. Note that (G/N)∗ consists of the constant function 1 only and separates

points in G/N(see the proof of [12, Theorem 3.34]). It follows that G/N =

{eG/N}.

Suppose that G1, G2 are locally compact groups, and π1 and π2 are rep-

resentations of G1 and G2 on H1 and H2, respectively. We recall that the

definition of the outer tensor product of π1 and π2 of G1 ×G2 on H1 ⊗H2 is

given by

(π1 ⊗ π2)(x, y) = π1(x)⊗ π2(y)

Remark.
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(a) The map Ĝ1 × Ĝ2 −→ (G1 × G2)
∧, (π1, π2) 	→ π1 ⊗ π2 is a bijection if

either G1 or G2 is type 1([12, Theorem 7.25]).

(b) π1 ⊗ π2 and ρ1 ⊗ ρ2 are unitary equivalent if and only if π1 is unitary

equivalent to ρ1 and π2 is unitary equivalent to ρ2([12, Corollary 7.22]).

Proposition 8.3.3. Let G1 be an abelian locally compact group, and G2 a

locally compact group. Then G∗
1 ×G∗

2 −→ (G1 ×G2)
∗, (g∗1, g

∗
2) 	→ g∗1 ⊗ g∗2 is a

bijection where g∗1 ⊗ g∗2 is given by g∗1 ⊗ g∗2(x, y) = g∗1(x)g
∗
2(y).

Proof. The map is well-defined as π1⊗π2 is irreducible if and only if π1 and π2

are irreducible, see [12, Corollary 7.20]. Given any h∗ ∈ (G1 ×G2)
∗, h(x, y) =

〈Π(x, y)ε, ε〉 for some Π ∈ (G1 × G2)
∧, ε ∈ HΠ. Since Π is unitary equivalent

to π1 ⊗ π2 for some π1 ∈ Ĝ1, π2 ∈ Ĝ2, we have h(x, y) = 〈π1 ⊗ π2(x, y)ξ, ξ〉
for some ξ ∈ Hπ1 ⊗ Hπ2 . Since Hπ1 is one-dimensional, we may assume that

ξ = 1 ⊗ η for some η ∈ Hπ2 . Thus, h(x, y) = 〈π1 ⊗ π2(x, y)(1 ⊗ η), 1 ⊗ η〉 =
〈π1(x)(1), 1〉〈π2(y)η, η〉. So, the map is onto. The injectivity of it follows from

the fact that Ĝ1 is a group and the last remark.

8.4 Some results on the algebraic structure of

G∗

A locally compact group G is a [MAP]-group if ĜF separates points in G.

Proposition 8.4.1. Let G be a locally compact group. Then G is a [MAP]-

group if and only if (G∗
F)⊥ = {e} where e is the identity element of G.

Proof. Suppose that G is a [MAP]-group. Let x be an element of (G∗
F)⊥. For

any g∗ ∈ G∗
F , we have g∗(x) = 1. Therefore, 〈π(x)ξ, ξ〉 = 1 for any π ∈ ĜF
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and ξ ∈ Hπ. Consequently, π(x) = π(e) and hence x = e. Conversely, let x

and y be elements in G such that π(x) = π(y) for any π ∈ ĜF . Now, we have

π(xy−1) = 1. Therefore, for any g∗ ∈ G∗
F , we have g∗(xy−1) = 1. It follows

that xy−1 = e.

For the definition of amenable representations, we refer readers to [3]. Let

Ĝam be the set of all amenable irreducible representations of G. Let G∗
am

be the set {x 	→ 〈π(x)ξ, ξ〉 : π ∈ Ĝam, ξ ∈ Hπ, ‖ξ‖ = 1}. Since every finite

dimensional representation is amenable(see [3, Theorem 1.3(i)]), it follows that

G∗
F is a subset of G∗

am.

Proposition 8.4.2. Let G be a locally compact group. Then Ĝam separates

points in G if and only if (G∗
am)⊥ = {e} where e is the identity element of G.

Proof. The proof is similar to proposition 8.4.1 and is left to readers.

Theorem 8.4.3. Let G be a locally compact group. Consider the following

conditions:

(a) G is abelian.

(b) G∗ is a group.

(c) G∗ is a semigroup.

(d) G∗
am is a semigroup.

(e) G∗
F is a semigroup.

(f) Every finite-dimensional irreducible unitary representation of G is one-

dimensional.

Then we have (a)⇔(b)⇒(c)⇒(d)⇒(e)⇒(f).
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Proof. It is trivial to see that ”(a) ⇒ (b) ⇒ (c)”. The implication ”(c) ⇒ (d)”

follows from [3, Corollary 5.4(ii)]. Since tensor products of finite dimensional

representations is finite dimensional, ”(d) ⇒ (e)” is also clear. Suppose that

G∗
F is a semigroup. Let g∗ ∈ G∗

F . Then g∗(·) = 〈π(·)ε, ε〉 for some π ∈ ĜF and

ε ∈ Hπ. Since g∗ · ḡ∗ ∈ G∗
F , we conclude that π ⊗ π̄ is irreducible. However,

the trivial representation 1 is a subrepresentation of π⊗ π̄. We hence conclude

that 1 is unitarily equivalent to π ⊗ π̄. It follows that g∗ is invertible, and

hence π is 1-dimensional(See [2]).

Corollary 8.4.4. If G is a [MAP]-group, then all of below conditions are

equivalent to each other:

(a) G is abelian.

(b) G∗ is a group.

(c) G∗ is a semigroup.

(d) G∗
am is a semigroup.

(e) G∗
F is a semigroup.

(f) Every finite-dimensional irreducible unitary representation of G is one-

dimensional.

Proof. Assume that (f) holds. Let χ ∈ G∗
F , x, y ∈ G. We have

χ(xyx−1y−1) = χ(x)χ(x)χ(y)χ(x) = 1.

By proposition 8.4.1, it follows that xyx−1y−1 = e for any x, y ∈ G.

Corollary 8.4.5. Suppose that G is a [CCR]-group such that Ĝam separates

points in G. Then all of below conditions are actually equivalent to each

other:
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(a) G is abelian.

(b) G∗ is a group.

(c) G∗ is a semigroup.

(d) G∗
am is a semigroup.

(e) Every amenable irreducible unitary representation ofG is one-dimensional.

Proof. Suppose thatG∗
am is a semigroup. Let g∗ ∈ G∗

am. Then g∗(·) = 〈π(·)ε, ε〉
for some π ∈ Ĝam and ε ∈ Hπ. Since g∗ · ḡ∗ ∈ G∗

am, we conclude that

π ⊗ π̄ is irreducible. However, the trivial representation 1 is always weakly

contained in π ⊗ π̄. Since G is a [CCR]-group, we may easily conclude that 1

is unitarily equivalent to π⊗ π̄. It follows that g∗ is invertible, and hence π is

1-dimensional(See [2]).

Remarks.

(a) Suppose that G has the property that Ĝam separates points in G. Then

G is not necessarily amenable. In fact, if G is a [MAP] group, then Ĝam

separates points in G since ĜF does. Therefore, F2, the free group on

two generators, is a [MAP]-group which is not amenable.

(b) An amenable [CCR] group is not necessarily a [MAP] group(see [30]).
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Chapter 9

Open Questions

Problem 1. Is it true in general that G∗ is a semigroup if and only if G is

abelian?

Problem 2. Does G∗, with some extra structures on it, characterize G?

Problem 3. Is a0(G) an algebra in general?

Problem 4. Are σu(a(G)) and σinv(a(G)) equal in general?

Problem 5. If the embedding φ : G → σu(a(G)) defined in the proof of

theorem 3.3.1 is surjective, is it necessarily true that A(G) has RNP?

Problem 6. Let G be a locally compact group. Does any one of the following

statements hold in general?

(a) G ∈ [AR] if and only if IM(Ĝ) = TIM(Ĝ).

(b) G is compact if and only if FIM(Ĝ) = TIM(Ĝ).

(c) G ∈ [Moore] if and only if IM(Ĝ) = FIM(Ĝ).

Problem 8. Is it possible to embed UCB(Ĝ) as subspaces of vn(G)?

Problem 9. Could we characterize UCB(Ĝ) as a closed subspace of V N(G)

via G∗?
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Problem 10. Is is true that G is amenable if and only if every completely

complemented weak*-closed G∗-invariant subspace of V N(G) is invariantly

complemented.?

Problem 11. Could we characterize closed G∗-invariant subalgebras of C∗
r (G)

or C∗(G)?

Problem 12. Is there any non-commutative analogue of ”Ĝ/H⊥ ∼= Ĥ” by

using G∗?

Problem 13. If G is non-abelian, is it possible to find a non-zero element f

in A(G) such that g∗f = 0 for some g∗ ∈ G∗?

Problem 14. Is it true that G is abelian if and only if G = {x ∈ G : g∗(x) �=
0} for all g∗ ∈ G∗?
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Appendix A

Classical objects or notions and

their ”dual” versions

OBJECTS AND NOTIONS ”DUAL” OBJECTS OR NOTIONS

G Ĝ or G∗

L1(G) A(G)

M(G) B(G)

C0(G) C∗(G)

L∞(G) V N(G)

UCB(G) UCB(Ĝ)

‖ · ‖∞ ‖ · ‖C∗

‖ · ‖C∗ ‖ · ‖∞
Discrete group Compact group

Compact group Discrete group
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Appendix B

New objects or notions and

their ”dual” versions

Objects or notions When G is abelian Definition

G∗ δĜ E(P1(G))

G∗
F δĜ {π(·)ξ, ξ〉 : π ∈ ĜF , ξ ∈ Hπ, ‖ξ‖ = 1}

a0(G) l1(Ĝ) Norm closure of span(G∗)

a(G) l1(Ĝ) Norm closure of 〈G∗〉
AF(G) l1(Ĝ) Norm closure of span(G∗

F)

vn0(G) l∞(Ĝ) Dual space of a0(G)

vn(G) l∞(Ĝ) Dual space of a(G)

( ĜF is the class of all finite dimensional irreducible representations and 〈G∗〉
denotes the algebra generated by G∗ in B(G). )
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