INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






University of Alberta

Multivariate Statistical Methods For Control Loop
Performance Assessment

by

Biao Huang @

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Process Control

Department of Chemical Engineering

Edmonton, Alberta
Spring 1997



i~l

sonal L Biblothe onal
of Canada du Canada
Acquisitions and Acquisitions et )
Bibliographic Services .  services bibliographiques
5 W Street 365, rve Wi
Otawa ON K1A ON4 Oumawa ON K1A ON4
Canada Canada
Your @ Vare riderence
Qur fip Nowre reference
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and 1n any form or format, making quelque maniére et sous quelque

this thesis available to interested
persons.

The author retains ownership of the
copyright in his/her thesis. Neither
the thesis nor substantial extracts
from it may be printed or otherwise
reproduced with the author’s
permission.

forme que ce soit pour mettre des
exemplaires de cette thése a la
disposition des personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa thése. Ni
la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou
autrement reproduits sans son
autorisation.

0-612-21580-6

Canadi



University of Alberta
Library Release Form

Name of Author: Biao Huang

Title of Thesis: Multivariate Statistical Methods For Control Loop
Performance Assessment

Degree: Doctor of Philosophy

Year this degree granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

(Student’s signature)

Biao Huang

Department of Chemical Engineering
University of Alberta

Edmonton, Alberta

Canada T6G 2G6



University of Alberta
Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Multivariate Statistical Methods
For Control Loop Performance Assessment submitted by Biao Huang in partial

fulfiliment of the requirements for the degree of Doctor of Philesophy in Process Control.

F. Forbes

T. Harris (External examiner)

Date : %0 ‘Tamlafj 13 F

.....................



To Yali and Linda



Abstract

Performance assessment of univariate control loops is carried out by comparing the
actual output variance with the minimum variance. The latter term is estimated by
simple time series analysis of routine closed-loop operating data. This thesis extends
these univariate performance assessment concepts to the multivariate case and develop

new multivariate performance assessment techniques.

A key to performance assessment of multivariate processes using minimum variance
control as a benchmark, is to estimate the benchmark performance from routine operating
data with a priori knowledge of time-delays/interactor-matrices. An algorithm for
stimatic;n of the interactor matrix from closed-loop data is developed in this thesis.
The expression for the feedback controller-invariant (minimum variance) term is then
derived by using the unitary, weighted unitary and generalized unitary interactor matrices.
It is shown that this term can be estimated from routine operating data. The same
idea is extended to performance assessment of systems with non-invertible zeros and to
performance assessment of multivariate feedback plus feedforward controllers. Although
these methods are originally developed for stochastic systems, it is shown that the same

methods can also be applied to deterministic systems by appropriate re-formulation of



the initial problem. Thus, a unified approach for control loop performance assessment is
proposed. Efficient algorithms for performance assessment are developed and evaluated

by simulations as well as applications on real industrial processes.

Minimum variance characterizes the most fundamental performance limitation of
a system due to existence of time-delays/infinite-zeros. Practically there are many
limitations on the achievable control loop performance. For example, a feedback controller
that indicates poor performance relative to minimum variance control is not necessarily
a poor controller. Further analysis of other performance limitations with more realistic
benchmarks is usually required. Performance assessment in a more practical context
such as a user-defined benchmark or control action constraints is therefore proposed
and evaluated by applications in this thesis. Practical performance assessment generally
requires complete knowledge of a plant model. An identification effort is usually required.
As a complement to existing identification methods, a two-step closed-loop identification
method is proposed and tested by simulated and experimental data from a computer-

interfaced pilot-scale processes.
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Chapter 1

Introduction

1.1 An overview of control loop performance assessment

with objectives for this thesis

The design of advanced control algorithms has largely preoccupied the control
practioners’ efforts. The rationale has been that systems which are difficult to control need
advanced optimal, non-linear, adaptive or like control algorithms for better regulation.
Although there are a variety of control design techniques such as ;, Hp, Ho, elc, few
techniques exist for objective measures of control loop performance or conversely measures
of the level of difficulty in controlling a process variable from routine operating industrial
process data. The control literature is relatively sparse on studies concerned with such

praper or formal measures of control loop performance.

Astrom(1970), Harris(1989), and Stanfelj et al.(1993) have reported the use of
minimum variance control as a benchmark standard against which to assess control loop
performance. DeVries and Wu(1978) have applied the analysis of dispersion and spectral
methods to multivariate performance assessment. The most notable work is that by Harris,
who in a 1989 study showed how simple time series analysis techniques can be used to find
a suitable expression for the feedback controller-invariant term from routine operating data
of the SISO process and the subsequent use of this as a benchmark to assess control loop



performance. This contribution of Harris was significant in the sense that it marked a new
direction and framework for the control loop performance monitoring area. More recently
another related performance assessment statistic defined as the normalized performance
index has been proposed by Desborough and Harris(1992). Kozub and Garcia(1993)
have also reported yet another, but similar, measure of performance which they define as
closed loop potential (or CLP). Lynch and Dumont(1993) have applied a similar idea to
the monitoring of a pulp mill process. Tyler and Morari(1995) have extended the same
idea to SISO processes with non-minimum phase and/or unstable poles. Eriksson and
Isaksson(1994), Rhinehart(1995), Miao and Seborg(1995) , and Tyler and Morari(1995)
have suggested alternative performance assessment and monitoring schemes for practical
consideration. Huang et al.(1995a,1996a) and Harris et al.(1995,1996) have extended
Harris’ performance assessment concepts to performance assessment of MIMO feedback

controllers.

The concept of a delay term is important in minimum variance control. This idea
obviously carries over to the MIMO minimum variance control case as well. What is
difficult to handle in the MIMO case is the concept of a time-delay matrix (defined
elsewhere as the interactor matrix (Wolovich and Falb, 1976; Goodwin and Sin, 1984;
Shah et al, 1987; Tsiligiannis and Svoronos, 1988)) as an entity in itself, i.e., one
that can be factored out to design a MIMO minimum variance controller, if that is the
objective. The interactor matrix, as originally proposed by Wolovich and Falb(1976), had
a lower triangular form. With this form of the interactor matrix, the minimum variance
control law(Goodwin and Sin, 1984; Dugard et al., 1984) and minimum ISE control
law(Tsiligiannis and Svoronos, 1988) are not unique and furthermore are output-order
dependent, i.e. under minimum variance control, Var(y,(t)] is minimized, Var[ya(t)] is
minimized subject to the constraint that Var{y,(t)] is minimized, and so on. Therefore the
importance of each output depends on the order it is stacked in the output vector, t.e. the
first output variable is the most important for the design of minimum variance control, the
last output variable is the least important. Re-arrangement of the output variables results
in different optimal control law. Nevertheless, the lower triangular interactor matrix has
played an important role in classic multivariable control design. Readers are referred to



Walgama (1986) and Sripada (1988) for interesting discussions on this issue. Shah et
al.(1987) pointed out that selection of the form of an interactor matrix is application-
dependent, i.e. it may take an upper triangular form or a full matrix form, and yet in
LRPC schemes for a specific choice of tuning parameters, this requirement can be avoided.
Rogozinski et al.(1987) proposed an algorithm for factorization of the nilpotent interactor
matrix which has the full-matrix form. Peng and Kinnaert(1992) found the existence of
the unitary interactor matrix, which is a special form of the nilpotent interactor matrix.
Since the unitary interactor is an all-pass term, factorization of such unitary interactor
matrix does not change the spectral property of the underlying system. This property of
the unitary interactor matrix is desirable for minimum variance control or singular LQ
control and multivariate control loop performance assessment using minimum variance
control as the benchmark (Huang et al., 1996b; Harris et al., 1996). Here the term
“singular LQ control” denotes LQ design without penalty on control action. The minimum
variance control law as developed by Goodwin and Sin (1984) requires a simple design
procedure, and is suitable for derivation of the feedback controller-invariant term which
is the benchmark of multivariate performance assessment. The downside of this control
law is that it is not unique and is input-output order dependent. By introducing the
unitary and the weighted unitary interactor matrix into this design procedure, it can be
shown that the minimum variance control law is unique, and is identical to the singular

LQ control law as developed by Harris and MacGregor (1987) .

The algorithm for factoring the lower triangular interactor matrix as suggested by
Wolovich and Falb (1976) and Goodwin and Sin (1984) generally requires a complete
knowledge of the transfer function matrix. Shah et al. (1987) and Mutoh and Ortega
(1993), however, have suggested a solution of the interactor matrix by solving a set
of linear, algebraic equations of certain Markov parameter matrices (impulse response
coefficient matrices). This latter approach directly connects the Markov parameter
matrices to the interactor matrix without going through the transfer function and is
numerically convenient and attractive for estimation of the interactor matrix of a MIMO
process. For closed-loop control performance assessment, estimation of the interactor
matrix under closed-loop conditions is desired. In this thesis, an algorithm for estimation
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of the unitary interactor matrix is proposed. Using the proposed method, the interactor
matrix can be estimated from closed-loop data without estimation of the open-loop transfer
function matrix. With complete knowledge of process dynamics, many possible limitations
on the achievable performance may be calculated via optimization procedures suggested
by Boyd and Barratt (1991) and Dahleh and Diaz-Bobillo (1995) .

However, having to know the complete model of a process is not a very attractive
approach to process performance monitoring, since a typical plant can have hundreds
and even thousands of control loops, and identification of all loops is a very demanding
requirement. Performance monitoring should be carried out in such a way that the normal
production of a process is affected as less as possible. In addition, process dynamics and
disturbances may drift from time to time, and the initially identified model may not

represent the true dynamics. Thus on-line performance monitoring is necessary.

Different levels of constraints require different level of process knowledge. Some
constraints require less a priori knowledge of processes than others. If one can break the
constraints into different levels, then control loop performance may be assessed from the
easiest to the hardest. Only those loops which indicate poor performance at the previous
level need be examined at the next level performance assessment. Time-delays pose the
most fundamental limitations but typically are relatively easy to obtain or estimate.
Therefore, the performance limitation due to time-delays is assessed at the first level.
The second level of performance limitation would be due to non-invertible zeros. Thus
performance assessment of MIMO processes with non-invertible zeros is also discussed in
this thesis.

Minimum variance control is the best possible control in the sense that no other
controller can provide a lower output variance. However, its implementation is not
recommended in practice due to its poor robustness and excessive control action.
Nevertheless as a benchmark it does provide useful information. For example, if a process
indicates poor performance relative to minimum variance control, then alternate controller
tuning or redesigning of the control algorithm can be considered to improve control loop

performance. However, if a process indicates good performance and yet its variance is not



within the desired limits, then alternate tuning or redesigning of the control algorithm will
not be useful. In this case alternate control strategies such as feedforward control may
be necessary in order to reduce the process variance. Desborough and Harris(1993) have
discussed feedforward controller performance assessment of SISO processes. This idea is

extended to the MIMO processes in this thesis.

Eriksson and Isaksson (1994) have shown that performance assessment using minimum
variance control as a benchmark gives an inadequate measure of the performance if the aim
is not stochastic control, but, for example, deterministic type step disturbance rejection
or setpoint tracking. Tyler and Morari(1995) have a similar claim on this issue. These
issues are also considered in this thesis. It is shown that many practical problems such
as those posed by Eriksson and Isaksson and others can be readily solved under the same
framework as proposed by Harris (1989) via appropriate formulation of the initial problem.
It is also shown that performance assessment of both stochastic and deterministic systems

can be unified under the H, framework.

Minimum variance characterizes the most fundamental performance limitation of a
system due to existence of time-delays. Practically there are many limitations on the
achievable control loop performance. Minimum variance control performance requires
minimum effort to estimate (routine operating data plus a priori knowledge of time-
delays), and therefore serves as the most convenient first-level performance assessment
benchmark. Only those loops that indicate poor first-level performance then need to be re-
evaluated by higher-level performance assessment. A higher-level performance test usually
requires more a priori knowledge than the knowledge of time-delays. This thesis also
considers other practical benchmarks which are considered for the higher-level performance

assessment.

However, all of the aforementioned methods are concerned with performance
assessment which does not explicitly take into account the control effort. In general,
tighter quality specifications result in smaller variation in the process output but typically
require more control effort. One may therefore be more interested in knowing how far

away is the control performance from the “best” achievable performance with_the same
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control effort. For example, the problem may be cast as follows: Given Efu?] < a, what
is min{ E[y?]}? The solution to this problem is discussed by investigating the LQG design
method and considering the classic LQG tradeoff curve.

A prerequisite for control loop performance assessment at a higher level is generally
a model of the process. Ideally this model should be estimated under closed-loop
conditions so that it does not upset normal process operation. A new two-step closed-
loop identification algorithm is developed in this thesis. The estimated model is shown
to have asymptotically identical expressions for the bias and variance terms regardless
of how the identification run is conducted, i.e. irrespective of open-loop or closed-loop
conditions. The estimated model can then be subsequently used for improving existing
controller design, or controller re-design or for control-loop performance assessment or

general analysis.

1.2 Contributions of this thesis

1.2.1 Contributions to the theory

The main thearetical contributions include:

L. Extension of the unitary interactor matrix to the weighted unitary interactor matrix
and the generalized unitary interactor matrix.

2. Proof of equivalence between the minimum variance control law (Goodwin and
Sin, 1984) and the singular LQ control law (a special solution in Harris and
MacGregor(1987)), if a weighted unitary interactor matrix is used.

3. Factorization and estimation of the interactor matrix under both open and closed-
loop conditions, which is a necessary prerequisite step for control loop performance

assessment.

4. Proof of the feedback controller invariance of the output minimum variance
performance for MIMO systems by using the unitary, weighted unitary or generalized
unitary interactor matrices. This is the key to control loop performance assessment.



5. Development of an efficient algorithm for control loop performance assessment
involving filtering and correlation analysis (the FCOR algorithm), which simplifies
the calculations and allows the new technique to be easily applied to industrial
processes.

6. Development of a performance assessment algorithm for MIMO processes with non-
invertible zeros.

7. Development of a performance assessment algorithm for feedforward plus feedback
control.

8. Proposal of a unified approach for control performance assessment under bath
stochastic and deterministic framework, and under regulatory and setpoint tracking
framework.

9. Extension of performance assessment methodology to cover practical situations such
as performance assessment with user-defined benchmarks.

10. Proposal of an LQG benchmark which can take control action constraints into
account for performance assessment.
1. Development of an algorithm for closed-loop identification of SISO/MIMO systems.

This is a spin-off from the work on control loop performance assessment and has

strong industrial appeal.

1.2.2 Contributions via industrial applications and evaluations

The methods and algorithms developed in this thesis have been applied and evaluated

at several industrial complexes in the Alberta area and internationally:

1. Multivariable control system validation for distillation columns at two Mitsubishi
Chemical Corporation locations: 1) Kurosaki Plant and 2) Mizushima Plant, Japan.

2. Multivariable control system validation for a heat exchanger, a reactor and a
distillation column at Agrium Inc’s (Sherritt Inc.) Redwater Fertilizer complex in

Alberta.



3. Benefit analysis for upgrading the existing headbox control of a paper machine at
Weyerhauser Canada’s Grande Prairie operations in Alberta.

1.2.3 Computational platform

Script and function (“.m’ files) written using Matlab, Matlab/Simulink, Real-time
Matlab/Simulink, and the associated toolboxes running under the Unix/PC platforms
formed the main computational engine for all the calculations, demonstrations and

applications performed in this thesis.

1.3 Organization of the thesis

The thesis is organized as follows. In Chapter 2, the performance assessment algorithm
is first introduced for SISO systems. The key to extend the SISO results to the MIMO
system is the understanding of the concept of the time delay matrix or the interactor
matrix. This concept in introduced in Chapter 3. In Chapter 4, the role of the unitary
interactor matrix in minimum variance or singular LQ control design is discussed. The
algorithm for estimation of the interactor matrix is established in Chapter 5. The methods
for feedback controller performance assessment of MIMO systems are developed in
Chapters 6, 7 and 8. This treatment is in an ascending degree of difficulty from the simple
interactor, the diagonal interactor to the general interactor. When the feedback controller
indicates good performance relative to minimum variance control, further improvement
of performance may require a different control strategy such as feedforward plus feedback
control. The benchmark of feedforward plus feedback control is therefore discussed in
Chapter 9. Existence of non-invertible zeros affects the achievable performance of the
feedback controller. This issue is addressed in Chapter 10. In Chapter 11, the methodology
developed in the previous chapters is extended to performance assessment of deterministic
disturbance and/or setpoint tracking. A practical performance assessment for a user-
defined benchmark is proposed in Chapter 12. Performance assessment with control action
taken into account is a relatively unexplored research area and one passible selution to



this problem is discussed in Chapter 13. Performance assessment with a benchmark other
than minimum variance control usually requires an identification effort. A new approach
to closed-loop identification is developed in Chapter 14.

This thesis has been written in a paper-format in accordance with the rules and
regulations of the Faculty of Graduate Studies and Research, University of Alberta.
Many of the chapters have appeared or are to appear in archival journals or conference
proceedings. In order to link the different chapters, there is some overlap and redundancy
of material. This has been done to ensure completeness and cohesiveness of the thesis

material and help the reader understand the material easily.



Chapter 2

Feedback Controller Performance

Assessment of SISO Processes

2.1 Introduction

A typical industrial process includes thousands of control loops. Instrumentation
technicians generally maintain and service these loops, but rather infrequently. It is
important for control engineers to have an efficient tool to monitor and assess control
loop performance. Monitoring and assessment of control loop performance should not
disturb routine operation of the processes or at least should be carried out under closed-
loop conditions. As pointed by Eriksson and Isaksson (1994), “in the short term, such
a tool probably has to be a stand-alone unit with its oun software that hooks on to and
collects data straight from the input of the process computer; in the long term, such a

function will be an integral part of any commercial control system”.

The control literature has been relatively sparse on studies concerned with such praoper
or formal measures of control loop performance. Harris (1989) has developed an efficient
technique for control loop performance assessment using only routine closed-loop operating
data. The control objective is to minimize process variance, and minimum variance
control is used as the benchmark standard against which to assess current control loop
performance. It has been shown (Harris, 1989) that for a system with time delay d, a

10
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portion of the output variance is feedback control invariant and can be estimated from
routine operating data. This is the minimum variance portion. To separate this invariant
term, one needs to model the closed-loop output data y; by a moving average process such
as

ve = foat + frae1 +--- + Ja-18e_(a—1) +fie-a + far18e-(ap1) +---

ee

where q, is a white noise sequence. Then e, is the portion of the minimum variance control

output. It is independent of feedback control (Harris, 1989). This portion of minimum
variance can be estimated by time series analysis of routine closed-loop operating data,
and can be subsequently used as a benchmark measure of theoretically achievable absolute
lower bound of output variance to assess control loop performance. Using minimum
variance control as the benchmark does not mean that one has to implement such a
controller on the actual process. This benchmark control may or may not be achievable in
practice depending on process invertibility and other physical constraints of the processes.
However as a benchmark, it provides useful information such as how good the current
controller performance is compared to the minimum variance controller and how much
“potential” there is to further improve controller performance. If the controller indicates
good performance measure relative to minimum variance control, further tuning or re-
designing of the control algorithm is neither necessary nor helpful. In this case, if further
reduction of process variation is desired, implementation of feedforward control or re-
engineering of the process itself may be necessary. On the other hand, if the controller
indicates a poor performance measure, further analysis such as process identification and
controller re-design may be necessary since the poor performance measure may be due to

constraints such as unstable or poorly damped zeros or control action limits.

As a general introduction to feedback control performance assessment of MIMO
processes in this thesis, performance assessment of SISO processes is discussed in this
chapter. This chapter is organized as follows. In Section 2.2 the feedback control
invariant term is re-derived. The FCOR (Filtering and CORrelation analysis) algorithm
for performance assessment of SISO processes is developed in Section 2.3. The proposed
algorithm is then evaluated by simulation and actual processes in Section 2.4, followed by
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concluding remarks in Section 2.5.

2.2 Feedback controller-invariance of minimum variance

term and its separation from routine operating data

Consider a SISO process under regulatory control as shown in Figure 2.1, where d is
the time-delay, T is the delay-free plant transfer function, N is the disturbance transfer

function, a, is a white noise sequence with zero mean, and Q is the controller transfer

function.

It follows from Figure 2.1 that

N

= — 2.1
1+¢9TQ o @D

Ye

where using the Diophantine identity:

N=fo+fig7' +---+ fr1g7*" +Rq™*
F

where f; (fori =1,.--,d — 1) are constant coefficients, and R is the remaining rational,
proper transfer function, equation 2.1 can be written as

F+q7 %R
14+ ¢79TQ
R~ FTQ
F +
[ 1 +¢9TQ
= F a; + Lag_d (2.2)

Ye

g Ya;

where L = %;—% is a proper transfer function. Since Fa; = foa: + --- + Jd—16¢—d41,
the two terms on the left hand side of equation (2.2) are independent, and as a result,

Var(y,) = Var(Fa;) + Var(La;—q)

Therefore
Var(y,) > Var(Fa,)

The equality holds when L = 0, i.e.

R~FTQ=0
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This yields the minimum variance control law:

R
e=FF

Since F is independent of the controller transfer function Q, the term Fa,, which is
the process output under minimum variance control, is feedback controller-invariant.
Therefore, if a stable process output y; is modelled by a infinite moving-average model,

then its first d terms constitute an estimate of the minimum variance term Fa;.

2.3 The FCOR algorithm for SISO processes

A stable closed-loop process can be written as an infinite-order moving-average (MA)
process:

ve={fo+fig7" +foq7 2+ + fu1a7O V& fig7 4 +-- )a; (2.3)

Multiplying equation (2.3) by a¢,a¢—1,---,ai—ay1 respectively and then taking the
expectation of both sides of the equation yields

r5(0) = Elgar] = foo?

rya(l) = Elwae1] = fro?
ra(2) = Efyaio] = foo?
(2.4)
r(d—1) = E[yeigi1] = fa-10>
Therefore the minimum variance or the invariant portion of output variance is
Ome = B+R+f++f1))a2
rya(0)\o .  rya(l) 2 ya(2) 2 Tyald—1)
(57 + 5 P+ e+ ()
= [r2, (0)+ (1) + 2.(2) +-- + r2,(d-1))/a? (2.5)

Let the controller performance index be defined as

n(d) & 62, /a2  (@26)
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This has been referred to as the closed-loop potential(CLP) by Kozub and Garcia (1993),
and the inequality 0 < n(d) <1 is held.

Substituting equation (2.5) into equation (2.6) yields

n(d) = [rga(0) +ris(1) +12,(2) +--- +r2,(d - 1)] /0252 (2.7)
= pgzla(o) + pgzln(l) + psa(z) +---+ p?[a(d - 1) (28)
£ zgT (2.9)

where Z is the cross-correlation coefficient vector between Yt and a; for lags 0 to d—~1 and

is denoted as
Z 2 [pya(0), 8ya(1), - » pya(d — 1)] (2.10)

The corresponding sampled version of the performance index is therefore written as

(d) = 554(0) + pya(1) + p2a(2) + -+ + p2(d — 1) = 22T (2.11)
where M
1
Qp_—
pralk) = I I (212)
\/x{ Y1 Vi L1 68

Although a; is unknown, it can be replaced by the estimated innovations sequence &;.
The estimate @; is obtained by pre-whitening the process output variable y; via time
series analysis.This pre-whitening procedure will be further discussed in Chapter 6. This
algorithm is denoted as the FCOR algorithm for Filtering and CORrelation analysis, and
is schematically shown in Figure 2.2.

2.4 Evaluation via simulation and industrial application

Example 1 In order to compare the FCOR algorithm with other available SISO
performance assessment algorithms, consider the Jollowing SISO process, as used by
Desborough and Harris(1992), with time delay d = 2:

1-02¢~!

Ye=tU-2+
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For a simple integral controller Au, = — Ky, it can be shown that the closed-loop response
is given by
08(1 - K/08 — Kq™!)

e (2:14)

ye = a¢ +0.8a,; +

Note that the first two terms are independent of K and represent the process output under

minimum variance control.

The simulation results shown in Figure 2.3 show a comparison of the estimated control
performance versus the theoretical performance as a function of K, and comparison with
1) the general approach proposed by Harris(1989) (denoted as the ARMA approach here),
2) normalized performance index or R? approach (Desborough and Harris, 1992) and
3) the FCOR algorithm. Desborough and Harris(1992) have used the adjusted multiple
coefficient of determination, R?, as the performance index. This value is converted to the

performance index used in this thesis via the relation, 1 — R2.

Example 2 The proposed performance assessment method was used to assess the
performance of an important cascade control loop on a nitric acid (HNO3) production

Jacility at a world-scale chemical plant in central Alberta, Canada.

The schematic of the process is shown in Figure 24. The feed stocks are anhydrous
ammonia (N H3) and air. The ammonia goes through a two-stage heating process before
entering the catalytic reaction which contains a (gauze type) platinum-rhodium catalyst.
Process air at over 400°F and 150 psig enters the reactor. The ammonia-air mixture
reacts on the catalyst at over 1600°F and forms nitrogen dioxide with other by-products
(NO:). In order to maximize the production of NO> and minimize the by-products which
are harmful to the environment, the gauze temperature is required to be kept as steady
as possible even in the presence of disturbances in the ambient temperature air quality,
ammonia feed temperature, and ammonia flow rate. The present control configuration is
that the gauze temperature controller (outer loop) adjusts the setpoint of the ammonia
flow rate (inner loop). In general, the inner loop is tightly tuned and is expected to have
a good performance. The time delay of the outer loop from a priori analysis is known to

be 15 seconds including the delay due to the zero-order-hold device. The sampiing period
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is 5 seconds; so the time delay is 3 sampling periods, i.e., d = 3. The time delay of the
inner loop is considered to be only one sampling interval caused by the zero order hold.
A sample size of 35000 points taken over a two-day period is considered. Both loops use
PID controllers. The available process data are the gauze temperature, y,, the outer-loop
controller output which is the setpoint of the inner loop, and the NHj3 flow rate, y5.

The performance measure of the inner loop by using the FCOR approach is shown
in Figure 2.5. On the left part of this Figure, each point on the left graph represents
the estimated minimum variance or the best achievable output variance based on the
calculation of a window of 2000 data points. The right part of Figure 2.5 represents
the corresponding performance index estimated using the FCOR approach. The 24 hour
periodic trend of the disturbance magnitude is clearly seen from Figure 2.5. Despite this
trend, the performance index is close to a constant value of 0.95, which is an indication of
excellent performance or loop tuning, and further improvement in this loop by adjusting

controller parameters may not be possible.

The estimated minimum variance of the outer loop is shown on the left part of
Figure 2.6, and the corresponding performance measure is shown on the right part of
this figure. Contrary to what would be expected, the performance index for this loop
is not a constant. The trend of the index clearly shows a 24-hour cycling of the loop
performance which is possibly due to the ambient temperature and air quality change
over a 24-hour period. The average performance index of the outer loop is approximately
0.15, indicating relatively poor control. Clearly this loop performance may be improved
significantly by re-tuning the existing controller or and/or providing feedforward control

of ambient conditions.

2.5 Conclusions

A simple technique for evaluating univariate control loop performance has been
proposed. This technique is based on filtering and correlation (FCOR) analysis of
routine closed-loop operating data. Use of the proposed method is demonstrated by a
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simulated and industrial application, and is shown to provide useful insight into control-

loop performance analysis of univariate processes.



Figure 2.1: Schematic diagram of SISO process under feedback control.

Figure 2.2: Schematic diagram of the FCOR algorithm

18
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Figure 2.3: Comparison of the ARMA, R? and FCOR approaches for control loop
performance measures

Figure 2.4: Schematic diagram of the industrial cascade reactor control loop
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Chapter 3

Multivariate Processes:

Preliminaries

3.1 Introduction

Time-delays are the most fundamental limitation on the achievable performance of any
feedback controller. Performance assessment of SISO processes as introduced in Chapter 2
reflects this fundamental performance limitation in the stochastic framework. In the
following chapters, we explore performance assessment of multivariable processes. The
interactor matrix, a non-trivial extension of the SISO time-delay term, characterizes the
most fundamental limitation on the achievable performance of any multivariable feedback

controller.

3.2 Preliminaries of MIMO processes

For the sake of brevity and convenience, the backshift operator ¢g~! will be omitted
throughout this thesis, unless circumstances necessitate its presence. For example, the
transfer function matrix T'(¢g~!) will be expressed simply as T. Unless otherwise illustrated,
a standard MIMO process model

Y, =TU; + Na, (3.1)

21
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is used throughout the thesis, where Tand N are proper (causal), rational transfer function
matrices in the backshift operator ¢—1; Y;, U, and a; are output, input and noise vectors
of appropriate dimensions. For stochastic systems, a; is further assumed to be white noise

with zero mean and Var(a;) = %,.

To solve the multivariable deadbeat and minimum variance control problems, Wolovich
and Falb(Wolovich and Falb, 1976), Wolovich and Elliott (Wolovich and Elliott, 1983),
Goodwin and Sin (Goadwin and Sin, 1984) introduced the interactor matrix D, which is
the generalization of the SISO time delay for the MIMO case.

Theorem 1 For every n x m proper, rational polynomial transfer function matriz T,
there is a unique, non-singular, n x n lower left triangular polynomial matriz D, such that
ID| = q" and

im DT = lim T=K
q- 10 710

where K is a full rank (full column rank or full row rank) constant matriz, the integer r
is defined as the number of infinite zeros of T, and T is the delay-free transfer function
matriz of T which contains only finite zeros. The matriz D is defined as the interactor

mairiz and can be written as
D =Dog® + D1g* ' +---+ Dy_1q

where d is denoted as the order of the interactor matrix and is unique for a given
transfer function matriz (Shah et al., 1987 Mutoh and Ortega, 1993), and D; (for

1=0,---,d— 1) are coefficient matrices.

The interactor matrix D can be one of the three forms described in the sequel. If
D is of the form: D = ¢%I, then the transfer function matrix T is regarded as having a
simple interactor matriz. If D is a diagonal matrix, i.e., D = diag(g®,¢%,---,¢%), then
T is regarded as having a diagonal interactor matriz. Otherwise T is considered to have
a generul interactor matriz (one realization of which is a triangular interactor matrix).
However, the general interactor matriz also has forms other than the lower triangular

form. It can be a full matrix or an upper triangular matrix (Shah et al., 1987; Huang
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et al., 1996c). Rogozinski et al. (1987) have introduced an algorithm for the calculation
of a nilpotent interactor matriz. Peng and Kinnaert (1992) have introduced the unitary

interactor matriz.

Definition 1 Instead of taking the lower triangular form, if an interactor matriz as per

Theorem 1 satisfies
DT(¢ Y )D(g) =T

then this interactor matriz is denoted as the unitary interactor matriz.

Existence of the unitary interactor matrix has been established by Peng and
Kinnaert(1992) .

To illustrate the point, take a 2 x 2 transfer function matrix as an example:

-t 05g=!

T = T-Zq_'r 1429~

0.5¢—! -1
T THeT
Since -

1 0.5

lim ¢T =
q-i-0 05 1

is a full rank matrix, T has a simple interactor matrix with D = ql.

However, if T is changed to
-2 0.5¢~3
T-| BT EE
05a~ -
e T
then
¢ 0 1 0

lim T =
=01 o0 g 05 1

is clearly full rank. Thus the interactor matrix

¢ 0
0 ¢

D=

is a diagonal matrix.
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Furthermore, if T is changed to

—~t -1
ro|
~1 ~1
1+”3F’ T-F-‘F"
then it has a general interactor matrix. Goodwin and Sin(1984) have shown the lower

triangular interactor matrix of this last transfer function matrix T as
0
D= 7
- +2¢ ¢
This can be easily checked by taking the limg-1_,o DT = K and testing that K is full
rank.

Now using the algorithm due to Rogozinski et al.(1987) , a unitary interactor matrix
can be factored out as

0.5¢ +0.5¢> 0.5 — 0.5¢°
0.5¢2 —0.5¢° 0.5¢% +0.5¢3

D=

This matrix has the property: DT(¢q~')D(q) = I.

A clear explanation of the interactor matrix has been given by Shah et al.(1987) .
For a SISO transfer function T = £¢-4, the time delay, ¢~¢, introduces d infinite zeros
in the transfer function. The- transfer function T is not invertible in the sense that the
inversion of T, T—! = éq‘, is not proper. However, if we multiply the transfer function
by the interactor matrix (it is a scalar in the SISO case), D = ¢%, then the delay-free
transfer function T = DT = £ is invertible in the sense that the inversion is casual
or proper. In the MIMO case, the interactor matrix D plays the same role as in the
SISO case. Multiplication of the transfer function by the interactor matrix D removes
the infinite zeros from the original transfer function matrix T and yields the delay-free

transfer function matrix T, i.e., T = DT.

The introduction of the interactor matrix is important not only because it solves the
multivariable minimum variance control problem but it also provides a basic tool to seek
the benchmark performance measure of the multivariable process as we will see in the

following sections.
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3.3 Conclusions

Wolovich and Falb's lower-triangular interactor matrix and its extension to the unitary
interactor matrix has been introduced in this chapter. Examples have been given to
illustrate the concept. The unitary interactor matrix will play a fundamental role in the

following chapters.



Chapter 4

Unitary Interactor Matrices and

Minimum Variance Control

4.1 Introduction

There are many limitations to achievable control loop performance, for example time
delays, existence of poorly damped or non-invertible zeros, constraints on control action,
desired robustness characteristics, etc. Amongst all these constraints, the time delay is the
most fundamental constraint that has attracted tremendous interest in the development
and theory of process control. Wolovich and Falb(1976) have shown that the analog of the
time-delay term for a SISO system, which is feedback control-invariant, is the interactor
matrix for a MIMO system, which is also feedback control-invariant. Subsequently
Wolovich and Elliott(1983) and Goodwin and Sin(1984) extended the concept of the
interactor matrix to discrete systems. The interactor matrix characterizes the most

fundamental performance limitation of a linear multivariable system.

The interactor matrix, as originally proposed by Wolovich and Falb(1976), had a
lower triangular form. With this form of the interactor matrix, the minimum variance

control law(Goodwin and Sin, 1984; Dugard et al., 1984) and minimum ISE control

'A version of this chapter has been submitted to Automatica as a short paper.
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law(Tsiligiannis and Svoronos, 1988) are output-order dependent, i.e. under minimum
variance control, Var[y; (t)] is minimized, Var[ys(t)] is minimized subject to the constraint
that Var([y,(¢)] is minimized, and so on. Therefore the importance of each output depends
on the order it is stacked in the output vector, i.e. the first output variable is the most
important for the design of minimum variance control, the last output variable is the
least important. Re-arrangement of the output variables results in a different optimal
control law. Shah et al.(1987) pointed out that selection of the form of an interactor
matrix is application-dependent, i.e. it may take an upper triangular form or a full
matrix form, and yet in LRPC schemes for a specific choice of tuning parameters, the
controller is independent of the interactor matrix. Rogozinski et al.(1987) proposed an
algorithm for factorization of the nilpotent interactor matrix which has the full-matrix
form. Peng and Kinnaert(1992) found the existence of the unitary interactor matrix,
which is a special form of the nilpotent interactor matrix. Since the unitary interactor
is an all-pass term, factorization of such a unitary interactor matrix does not change the
spectral property of the underlying system. This property of the unitary interactor matrix
is desirable for minimum variance control or singular LQ control and multivariate control
loop performance assessment using minimum variance control as the benchmark. Here

the term “singular LQ control” denotes LQ design without penalty on the control action.

The main contributions in this chapter are 1) extension of the unitary interactor matrix
into the weighted unitary interactor matrix; 2) an alternative derivation of the optimal
singular LQ or minimum variance control law with respect to the minimum variance control
law (Goodwin and Sin, 1984) and the singular LQ control law (Harris and MacGregor,
1987); 3) proof of equivalence of minimum variance control law (Goodwin and Sin, 1984)
and the singular LQ control law (Harris and MacGregor, 1987), if a weighted unitary
interactor matrix is used. This chapter is organized as follows. Section 4.2 introduces
the unitary interactor matrix. In section 4.3 the unitary interactor matrix is applied to
the explicit solution of the minimum variance control law. The unitary interactor matrix
is then extended to the weighted unitary interactor matrix, and identity between the
minimum variance control law and the singular LQ control law is established in section 4.4.

This is followed by concluding remarks in section 4.6. Extension to the generalized unitary
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interactor matrix, which factors out both unstable and infinite zeros and may be regarded
as an alternative solution to the inner-outer factorization (Chu, 1985), is discussed in
Chapter 10. For the sake of presentation, only the square transfer function matrix is

considered in this chapter.

4.2 Unitary interactor matrices

The unitary interactor matrix has been defined in Chapter 3. Existence of the unitary
interactor matrix is established in Peng and Kinnaert(1992) .

Lemma 1 For a full rank (in the field of g~') rational, proper transfer function matriz T,

there ezists a non-unique unitary interactor matriz. However, any two unitary interactor

matrices, D(q) and D(q), satisfy:
D(q) =T'D(q)
where T is an n x n unitary real matriz, i.e. TTT = J.
Proof: See Peng and Kinnaert(1992) for the proof. ™

Readers are also referred to Peng and Kinnaert(1992) and Rogozinski et al.(1987) for
the algorithm to factor the unitary interactor matrix from a transfer function matrix.
For reader’s convenience, the algorithm is summarized in Appendix A. In Chapter 5,
this algorithm will be simplified by using QR decomposition of only the first few Markov
parameter matrices or impulse response matrices. A priori knowledge of the interactor
matrix is tantamount to knowing the entire transfer function matrix, which is often a
demanding requirement. One alternative is to simply compute the interactor matrix by
estimating the first few Markov parameters of the closed-loop process via dither signal

excitation.

The non-uniqueness of the interactor matrix can also be due to different ordering of
the output variables, i.e. the way to stack each output variable into the output vector.
The relationship between differently-ordered unitary interactor matrices is established in

the following lemma.
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Lemma 2 If D(q) is the unitary interactor matriz of T, and D(q) s the unitary interactor
matriz of the oulput-reordered transfer function matriz T(¢7') = VT(q™Y), where V is

row-ezchanging operator (an orthogonal matriz), then
D(q) =rD(q)VT
where T s an n x n unitary real matriz.

Proof: From the definition of the unitary interactor matrix, we have

lim D(@)T(q™) = K (@1)

q'—0
tim D(¢q)T(¢7') = lim D(q)VT(¢™") = K> (4.2)
g0 g0
and (D(q))~' = DT(¢g™1), (D(q))~' = DT(q~1), V-1 = VT.
From equation (4.1) and (4.2), one can obtain
lim D(@)VTDT(¢") = K K;' &t (4.3)
120
lim D(q)VDT(¢7') = KoK =T (4.4)
g0
It is obvious from equations (4.3) and (4.4) that I! = I'T. Since D(@VTDT (g™ is a
finite-order matrix polynomial, {.e.
D(@)VTD"(q7") £ E(q.q™")
= M E g+ g B+ g + B+ qB + By + - + LBy,
equation (4.3) implies that D(q)VT DT (g~) has no positive power of ¢- One may therefore
write it as D(q)V7DT(g™!) = E(g™"). On the other hand, equation (4.4) also implies that
D(q)VDT(¢q™') = ET(q) has no positive power of q or equivalently E(g~!) has no negative
power of ¢q. Thus the matrix polynomial E(q,q7') is neither a function of gnorq~l. It
follows then from (4.3) and (4.4) that
D(q)vTDT(¢7Y) = 1T
D(qjvDT(¢Y) =T

which yields
D(q) =TD(q)VT
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Bittanti et al.(1994) have also defined a spectral interactor matriz, which has the same
property as the right unitary interactor matrix defined by Panlinski and Rogozinski(1990) .
The unitary interactor matrix is an all-pass factor, as a delay-term should be, and retains
the spectral property of the underlying system after infinite zeros are removed and is
an ideal factorization of time-delays for the design of minimum variance or singular LQ
control. The advantage of factorizing a unitary interactor matrix as an all-pass factor
is its computational simplicity compared to the spectral interactor factorization or the

inner-outer factorization.

4.3 Unitary interactor matrices and the explicit solution

of minimum variance control law

Goodwin and Sin(1984) have extended the deadbeat deterministic control strategy to

minimum variance control of systems with stable zeros. Consider a multivariable system
Y =TU; + Na,

where T is the system transfer function matrix and N is the disturbance transfer function
matrix. The minimum variance control law can be designed to make the variance of the
interactor-filtered output DY; or equivalently Y; = ¢~%DY; minimum, where the positive
integer d is the order of the interactor matrix or the minimum integer which makes ¢—4D
proper. This yields a simple muitivariable control design strategy.

Theorem 2 For a multivariable process
Y:=TU; + Na, (4.5)
with the linear quadratic objective function (singular LQ objective function) defined by

J = E(Y[Y) (48)
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where Y; = ¢g—4DY,, an ezplicit optimal control law is given by
U: = -T"'RM7'DY; = ~-T~'RF'(q9D)Y; (4.7)
where T = DT, Mr = ¢%F, F and R satisfy the identity:

qDN=Fy+---+ Fy1g7*! +q7°R (4.8)
F

and R is a rational proper transfer function matriz.

Proof: Consider the process with a general interactor matrix:
Y, =TU. + Na; = D"'TU, + Na, (4.9)
Multiplying both sides of (4.9) by ¢~9D yields

q°DY: = q %TU,+q ®DNa,
= q-dm + ﬁat (4.10)

where N is a proper transfer function matrix. By defining ¥; = q~?DY;, equation (4.10)

has been transformed to a process with a simple interactor matrix i.e.
Y: = ¢ 9TV, + Na, (4.11)
Substituting equation (4.8) into (4.11) yields
Y: =TUi_q + Ras_q + Fa; (4.12)
The last term in this equation cannot be affected by the control action, i.e.
Var(V) = E(Y;¥{") > Var(Fa,)

Therefore
E(YT¥,) 2 tr(Var(Fa,))

The minimum variance control is achieved when the sum of the first two terms on the

right hand side of equation (4.12) is set to zero, i.e.

TU;—a+ Rayq =0
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This yields
Ui =-T"'Ra, (4.13)
Substituting equation (4.13) into (4.12) yields
ﬁ = Fa, (4.14)

Therefore
o =FY, (4.15)

Substituting equation (4.15) into (4.13) gives the minimum variance control law
U.=~T"'RF™'Y, = ~T~'RF'(¢~D)Y, (4.16)
By defining My = q?F, Equation (4.16) can be written as
U. = -T"'RMZ' DY,

where F’ and R are defined by

¢ 'DN = Fy + -+ + Fa_17%*' +¢79R
F
ar

DN =Mr+R

However this minimum variance control law is only able to minimize variance of the
interactor-filtered variable ¥;. If D is a lower triangular interactor matrix as used by
Goodwin and Sin(1984), then the minimum variance control law of Y; has the property that
Var[y,(t)] is minimized, Var([yz(t)] is minimized subject to the constraint that Var{y,(t)]
is minimized, and so on. Therefore the control law is output-order dependent (Dugard
et al., 1984). On the other hand, if D is a unitary interactor matrix, we have the following

result:

Lemma 3 If D is a unitary interactor matriz, then a proper optimal control law which

minimizes the LQ objective function of the interactor-filtered output Y,

Jy = E(YTY) (4.17)
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also minimizes the LQ objective function of the original output Y
J» = E(Y,TY)) (4.18)

and J1 = Jp. Thus the singular LQ control law of the original variable Y; can be obtained
via the singular LQ control law of the unitary interactor-filtered variable Y,.

Proof: Since a; is random white noise with zero mean, we have
E(YTY,) = tr{Var(¥,)]
Using Parseval’s theorem and noticing the property of the unitary interactor matrix, i.e.
DT(g')D(q) =TI or DT(e#)D(e) =T (for all w)
we have
rlVar(B)] = 5= [ slD(E)ov(w) DT = 5)]do
= 5 [ D7D v ()]

= 3= [ trigro]
= tr{Ver(Y:)] = E(v,)T(%7)

where ¢y (w) is the power spectrum density of Y;, and the notation of the power spectrum
density is given by (Ljung, 1987): ¢v(w) = T2 ___ Ry(r)e~9™ and Ry(r) = E(Y,YL,).

Therefore J, = J», and minimization of J, is equivalent to minimization of Js. ™

Another important property of the unitary interactor matrix for minimum variance control

is that the control law is output-order independent.

Lemma 4 If D is a unitary interactor matriz, then the minimum variance control law as

solved by Theorem 2 is output-order invariant.

Proof: It follows from Theorem 2 that for the original system

K=Tt]g+Nat



the minimum variance control law is
U;=-T"'RMz'D
and for the output re-ordered system
Y. =VY; =VTU, + VNa; = TU, + Na,
the minimum variance control law is
0. = -7~ RM"'DY, (4.19)
where DN = Mr + R and T = DT. From Lemma 2, we have
D=rpvT

Therefore
T = DT =rDVTVT ='DT = T

and

Mr + R=DN =TDVTVN =T'DN =T(MF +R)
Thus Mp = T'Mr and R = TR. Substituting T, R, Mr, D and ¥; = VV, into
equation (4.19) yields

Ue = -T"'TTTRMz'TTTDVTVY, = -T-'RM;'DY; = U,

Lemma 5 The minimum variance conirol law as given in Theorem 2 is scaling
independent, i.e. if a interactor matriz D is pre-multiplied by an invertible constant matriz
P (D = PD), then using D as the interactor matriz results in the same control law as

using D as the interactor matriz.

Proof: For two interactor matrices, D and D, with

b=pPD (4.20)
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we have
T = DT = DD~'T = PDD~'T = PT (4.21)
and
Mr + R =DN = PDN = P(Mr + R) = PMg + PR
Therefore
Mr = PMgp (4.22)
R = PR (4.23)

The minimum variance controller(with D as its interactor matrix) is
U. = -T ' BMr"'DY, (4.24)
Substituting equations (4.20), (4.21), (4.22) and (4.23) into (4.24) yields
U: = -T~'P~'PRM;'P~'PDY, = -T-'RMZ'DY, = Uj,

Theorem 3 If D is a unitary interactor matriz, the minimum variance control law as

given tn Theorem 2 is unique.

Proof:  Non-uniqueness of the unitary interactor matrix is due to 1) output ordering
and/or 2) scaling, i.e. D = 'D. It has been shown in Lemma 4 that the minimum
variance control law is output order invariant. From Lemma 5, it follows that the unitary
scaling matrix T does not affect the control law. Therefore the minimum variance control

law with the unitary interactor matrix is unique. e

4.4 Weighted unitary interactor matrices and singular LQ
control

Definition 2 Instead of taking the lower triangular form or unitary interactor matriz

Jorm, if an interactor matriz as per Theorem 1 satisfies

DI(¢7")Du(q) =W (4.25)
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where W > 0 s a symmetric weighting matriz, then this interactor matriz is regarded as

the weighted unitary interactor matriz.

The weighted unitary interactor matrix has similar properties as the unitary interactor
matrix. Existence of the weighted unitary interactor matrix is established in the following

theorem.

Theorem 4 For a full rank (in the field of q—1) rational, proper transfer function matriz
T, there ezists a non-unique weighted unitary interactor mairiz. However, any two

weighted unitary interactor matrices, Dy,(q) and Dy(q), satisfy

ﬁm(‘l) =T'Dy(q)

where T is a n x n unitary real matriz, i.e. [TT = I.

Proof: From the definition of the weighted unitary interactor matrix, we have

q_lilrg 0 Dy(q)T(¢7!) = K, (4.26)
lim Dy,(q)T(q™") = K> (4.27)
10

From equation (4.26) and (4.27), one can obtain

Jm Du(e)(Du(9))™ =K1Kz =T (4.28)
Jm Du(g)(Du(g) ™" = KoK =T (429)

From the definition (equation (4.25)), the following equations follow:

(Du(g))™' = W DI(g™) (4.30)
(Du(@))™t = W-DI(¢™") (4.31)

Substituting (4.31) and (4.30) into (4.28) and (4.29) respectively yields

lim Dy(q)W™'DL(¢7!) = KiK;' =T! (4.32)
q—

lim Dy(q)W~'DI(q7') = KoK{'=T . (4.33)
g0
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It follows from equations (4.32) and (4.33) that I is a unitary real matrix, i.e. [~! = I'T.
Equations (4.32) and (4.33) imply that Dy, (q)W—1DT(¢~!) and Dy(q)W~'DT(¢™!) have
neither a positive nor negative power of q. Therefore
Dy(q9)W-'DI(g™") = [T
Dy(W™'Di(¢™") = T
It follows that
Dy(q) =TD;T(¢ )W (4.34)

Substituting (4.30) into (4.34) yields

Du(q) =TDy(g)

Existence of the weighted unitary interactor matrix is given by Corollary 1. .

Corollary 1 One of the solutions for the weighted unitary interactor matriz s given by
Dy(q) = D(Q)VVU2

where D(q) is a unitary interactor matriz of the weighted transfer matriz W/ 2T(q~ ). In

general, any weighted unitary interactor matriz Dy (q) can be written as

Dy(q) =T D(q)W'/?

Proof: Since D(q) is the unitary interactor matrix of W'/2T(q~1), Dy(q) =
D(q)W'/? must be an interactor matrix of T(q~!). Furthermore, from DI (¢ )Dyu(q) =
W1/2DT(q~1)D(q)W'/2 = W, one can conclude that Dy(q) is a weighted unitary
interactor matrix. From Theorem 4, the general solution of the weighted unitary interactor
matrix can be written as Dy,(q) = "'D(q)W/2. s

Corollary 2 If the interactor matriz is a weighted unitary interactor matriz D,,, the
result obtained in Theorem 2 is equivalent to the solution of the weighted singular LQ
control problem:

J = E(YWY;)

where W is the weighting matriz.



38

Proof: It follows from the same procedure as the proof of Lemma 3. Thus minimization
of the variance of the interactor-filtered variable Y; by a proper optimal control law is

equivalent to minimization of the weighted variance of the original variable Y;. a

The unitary interactor matrix or weighted unitary interact matrix can be used for the
design of singular LQ output feedback control law.

Theorem 5 If a weighted unitary interactor is used for a process without non-invertible
zeros, then its minimum variance control law as solved in Corollary 2 via Theorem 2 is the
same as the singular LQ output feedback control law solved via spectral Jfactorization(Harris
and MacGregor, 1987; Harris et al., 1996).

Proof: For a MIMO process
Y: =TU, + Na,

where N can be represented by an ARIMA model as N = ©®-!. Harris and
MacGregor(1987) and Harris et al.(1996) have shown that the singular LQ control law

(when input penalty matrix Q = 0) is solved as
U:=~-H|(Y: — LA"'U;) = —-H1Na; = —H,8d" L q, (4.35)

where LA~! = T is a matrix fraction representation of the transfer matrix T, H; is a filter

transfer matrix with
H =T'F (4.36)

where T~! = AT'"! is the optimal inverse of T (a proper inverse). T is solved from spectral
factorization
rir =rfwlL (4.37)

where W is the output weighting matrix 2. F} is solved via
FL=r0"1 (4.38)
where 7 is solved from the Diophantine equation

LAWO =T¥"r + ¢qP(q)d (4.39)

*In Harris and MacGregor (1987), W is denoted as Q.
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Notice that here we use the notation '#(¢~!) = I'T(q) and LH(¢q~!) = LT(q).

Left-multiplying both sides of (4.37) by A~¥ and right-multiplying by A~!, and using
the fact that T =TA~! and T = LA-!, we have

TAT =TAWT (4.40)

If a weighted unitary interactor is used as a factorization of time delays, then T = D, T
does not contain any infinite zeros(time-delays), and equation (4.40) or (4.37) is also
satisfied, i.e. T (T = D,T) is the proper optimal inverse of T. Now left-multiplying
(4.39) by A~H yields

TAWO = TEr + A—H[qP(q)]® (4.41)

Right-multiplying both sides of (4.41) by &~! yields

THWN = TH+6~! + A~H[qP(q)] (4.42)
From the definition of the weighted unitary interactor, we have

TH = (D;'TY® = THp;® = THp, w1

Substituting this into (4.42) yields

THD,N =THro~1 L A-H [aP(q)] (4.43)
Multiplying (4.43) by T—F results in

DyN =1&"' + T-9A-HgP(q)] = +6~! + T~F[qP(q)] = R+ Mp (4.44)

The first term R = r®~! is simply a proper matrix and involves only negative power
terms of ¢~*. The second term My = ~H#[¢P(q)] = [T (q)[gP(q)] involves only positive
power terms of g. This has the same representation as in Theorem 2, and therefore Mz

must be a finite order matrix polynomial.

Combining (4.44), (4.38), (4.36) and (4.35) yields

Ui =-T r®la; = —T"'Rq, . (4.45)
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Under this control law, the closed-loop response can be written as

Y = TU:+ Na,
= —-Dz'TT 'Ra; + D7'DyNa:
= —Dg'Ra: + D3'[MF + Rla;
= Dg'Mra, (4.46)
Therefore
a¢ = Mg ' Dy Y,
Substituting this into (4.45) yields

U. = -T"'RMz'D, Y, (4.47)

This yields the same control law as Theorem 2 with the weighted unitary interactor matrix,

D,,. .

4.5 Numerical Example

Consider a 2 x 2 multivariable process, with the open-loop transfer function matrix T

and disturbance transfer function matrix N given by
_ S Kina- ]
= -oL_.«r‘l‘ T=01¢=T
0.3¢~! -2
| odeT  T0ET |
1 —06 _ |
N = | T705¢ T T=05¢T

0.5 L0
| T=0.5¢-T T=0.5¢T |

Suppose that the LQ objective function is given by

J = E[Y{Y{]
Then, a unitary interactor matrix is required for the design of the optimal control law.
Following the procedure in Appendix A, a unitary interactor matrix D can be factored as:

-0.9578¢ -0.2873¢
~0.28734> 0.9578¢%
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and the order of the interactor matrix d = 2. Thus, DN can be calculated as
—1.1014 0.287
DN = =] ﬁTs:-’fT
0.191, 1.1302
ng)'- : ("b"ﬁg'zf)’l- 59
From q~?DN = F + q~9R, one can calculate F and R as

F=

—1.1014¢7! 0.2874¢"
0.1916 +0.0958¢~! 1.1302 + 0.5651¢~"

—0.5507 _0.1437
1-05¢"T T-05¢T

R=
0.04 0.2826
1—05¢ T 1—0.5¢—1T

The optimal (minimum variance) control law can then be calculated from equation (4.7).
The interactor-filter output (¥; = ¢~ %DY;) under optimal control is given by

equation (4.14):

- —-1.1014¢71 0.2874¢1
Yilmy = Fa; =
0.1916 4+ 0.0958¢~! 1.1302 + 0.5651¢!
Now consider a weighted LQ objective
J = EY,Twyy]

Suppose the weighting matrix is given by

W =
0 4

It follows from Corollary 1 that the weighted interactor matrix is given by
D, = DW'/?

where D is a unitary interactor matrix of the weighted transfer function matrix W1/2T.
Following the procedure in Appendix A, the unitary interactor matrix D is calculated as

~0.8575¢ —0.5145
D= 7 7 . (4.48)
0.5145¢2 —0.8575¢
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Thus, the weighted unitary interactor matrix is

~0.8575¢ —1.029¢

Dy, =
0514542 —L1.715¢
The matrices F and R can be calculated from g 4D,N = F + ¢~%R as

-1.3720¢7" —-0.5145¢7!
—-0.3430 — 0.1715¢"" —2.0240 — 1.01204~!

F =

—0.6860 _—0.2572
R=| ™05 T T=a5¢T
—0.0858 —0.5060
—0. 1-0.5¢-1

The optimal (minimum variance) control law can then be calculated from equation (4.7)
with the interactor matrix D substituted by the weighted unitary interactor matrix Dy,
i.e

U = ~T~'RMz'D,Y; = —(D,T)"'RF~'(¢~%D,)Y;

The interactor-filtered output (172 = ¢~%D,Y;) under optimal control is given by

equation (4.14) as

- —-1.3720¢! —-0.5145¢"!
Ytlme = Fa; = G
~0.3430 — 0.1715¢~! —2.0240 — 1.0120¢~!

4.6 Conclusions

This chapter has shown that the unitary/weighted-unitary interactor matrix is an
“ideal” factorization of the time-delays of multivariable systems for the design of minimum
variance control or singular LQ control. Using the unitary/weighted-unitary interactor
matrix, the simple multivariable minimum variance control strategy as proposed by
Goodwin and Sin(1984) gives a unique solution which is identical to the singular LQ
output feedback control law (Harris and MacGregor, 1987). This result is particularly
useful for multivariable control loop performance assessment and for the design of singular

LQ control of a minimum phase MIMO process.



Chapter 5

Estimation of the Unitary

Interactor Matrices

5.1 Introduction

The notion of an interactor matrix(Wolovich and Falb, 1976) for a multivariate system
can be best understood by relating it to the meaning of the time delay for a univariate
process. In the case of a univariate process, the time delay in terms of the sampling time is
equal to the number of zero or almost-zero impulse response coefficients, and corresponds
to the time that elapses between the moment a change in the input occurs to the moment
it takes for this input to have an effect on the output; or it is the result of the first
nonsingular or non-zero impulse response coefficient having an effect on the output. From
a systems theoretic viewpoint the delay corresponds to the number of infinite zeros of a

discrete-time process.

This idea is easily generalized to the multivariate case also in terms of the impulse
response coefficient or the Markov parameter matrices. In the multivariate case, the notion
of a delay corresponds to the fewest number of impulse response or Markov parameter

matrices whose linear combination is nonsingular. This means that a set of inputs acting

!A version of this chapter is to appear in the Journal of Process Control (in press), and a shorter version
is also in the Proceedings of 1996 IFAC World Congress.
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via this specific linear combination of Markov parameter matrices can have a desired effect
on the output. This linear combination of impulse response matrices can be expressed in
a polynomial matrix form. The determinant of this polynomial matrix has as its roots
the number of infinite zeros of the discrete time multivariate system. Simple examples
to illustrate these concepts are considered in Shah et al.(1987). The knowledge of the
interactor matrix is an important prerequisite to high performance control strategies such
as minimum variance control. However, until recently a knowledge of the delay or the
interactor matrix was tantamount to the knowledge of the entire process transfer function
matrix. As per the above definition, it should appear that relatively simple tests can
be performed to determine if a linear combination of the first few Markov or impulse
response matrices is singular or not. This is precisely the purpose of this chapter in which
we propose the use of a SVD-based procedure to determine if a linear combination of a set
of matrices has full rank. The proposed procedure allows us to compute the time delay
matrix with minimum effort using routine closed or open-loop data with dither excitation
and its subsequent use in multivariate control loop performance assessment or control law

design.

The algorithm for factoring the lower triangular interactor matrix as suggested by
Wolovich and Falb (1976) and Goodwin and Sin (1984) generally requires a complete
knowledge of the transfer function matrix. Shah et al. (1987) and Mutoh and Ortega
(1993), however, have suggested a solution of the interactor matrix by solving a set
of linear, algebraic equations of certain Markov parameter matrices (impulse response
coefficient matrices). This latter approach directly connects the Markov parameter
matrices to the interactor matrix without going through the transfer function and is
numerically convenient and attractive for estimation of the interactor matrix of a MIMO
process. The lower triangular interactor matrix has played an important role in classic
multivariable control. Readers are referred to Walgama (1986) and Sripada (1988) for
interesting discussions on this issue. Shah et al. (1987) and Rogozinski et al. (1987) have
also pointed out that the interactor matrix need not necessarily take the lower-triangular
form in application. For example, an interactor matrix with a unit-DC gain or other

useful features may be more important in practice, and therefore the interactor matrix
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(as proposed by Wolovich and Falb) is not necessarily unique in the sense that it can have
forms other than the lower triangular form. However, the “optimal” form of the interactor
matrix is application dependent. For a deterministic system, optimal control design
based on the lower triangular interactor matrix yields a conditional minimum-time or
minimum-ISE control in the sense that the optimization is input-output pairing or ordering
dependent (Tsiligiannis and Svoronos, 1988). For a stochastic system, optimal control
design based on the lower triangular interactor matrix yields a conditional minimum
variance control (Dugard et al., 1984). Peng and Kinnaert (1992) and Bittanti et al.
(1994) have introduced the unitary or spectrum interactor matrix for the design of singular
LQ state feedback control and optimal filter. Design of multivariable (singular) LQ
control for processes with time delays usually involves spectral factorization (Harris and
MacGregor, 1987). The unitary interactor matrix simplifies such a procedure. It gives an
alternative derivation (with respect to Harris and MacGregor(1987)) of the LQ controller
for processes without finite unstable zeros and with output penalty matrix Q; = I and
control weighting Q2 = 0, i.e. J = E[YTY]. The unitary interactor matrix can be
easily extended to weighted unitary interactor. This weighted unitary interactor matrix
can then be used for the design of the weighted singular LQ controller, i.e. a controller
which minimizes J = E[YTQ,Y]. The unitary interactor matrix is in fact a special case
of the nilpotent interactor matrix as defined by Roéozinski and co-workers (1987,1990),

and plays an important role in multivariate control loop performance assessment theory.

For closed-loop control performance assessment, estimation of the interactor matrix
under closed-loop conditions is desired. In this chapter, an algorithm for estimation of
the unitary interactor matrix is proposed. Using the proposed method, the interactor
matrix can be estimated from closed-loop data without estimation of the open-loop transfer

function matrix.

The main contributions of this chapter are: 1) development of a new method
for determination of the order of the interactor matrix by using the singular value
decomposition technique; 2) extension of the results in Rogozinski et al. (1987) and
Peng and Kinnaert (1992) for factorization of the unitary interactor by using the first
few Markov parameters of a transfer function matrix; 3) use of closed-loop data for the
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estimation of the Markov parameters of the transfer function matrix; and 4) experimental
evaluation and industrial application of the proposed algorithm. Unlike other interactor
factorization methods which generally require complete knowledge of the entire transfer
function matrix, this algorithm only requires the first few Markov parameter matrices.

This chapter is organized as follows. The method for determination of the order of
the interactor matrix is developed in Section 5.2. The algorithm for the calculation of the
unitary interactor matrix is then introduced in Section 5.3. The estimation of the unitary
interactor matrix under closed-loop conditions is given a detailed treatment in Section 5.4.
The determination of a numerical rank is discussed in Section 5.5. The chapter ends with
illustration on a simulated example and a pilot-scale experiment in Section 5.6, and an

industrial application in Section 5.7.

5.2 Determination of the order of interactor matrices

The interactor matrix has been given in Theorem 1. Wolovich and Falb (1976), and
Goodwin and Sin (1984) have suggested factoring a lower triangular interactor matrix
from the transfer function matrix. To do this, @ priori knowledge of the entire transfer
matrix is generally required. This is a fairly strong requirement. Shah et al. (1987) have
suggested factoring the interactor matrix directly from Markov parameters of the process.
This idea is further explored for the determination of the order of the interactor matrix.

The Markov parameter representation of a transfer function matrix can be written as

00
T=Y G~ (5.1)

=0

and the interactor matrix is written as
D =Dog* + D1¢" ' +--- + D4_1gq (5.2)
Erom Theorem 1:

lim DT = qliltgo[Doq" +D1g* ' +--- + Dg_1q|[Gog™t + Gig ™2 +-- ] =K

10
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where K is a full rank matrix (i.e. rank(K)=min(n,m)), we have

DoGo =0
D\Go + DoG1 =0

Dyg_1Go+---+ D1Gg_o + DG4 1 =K
Selving the abeve algebraic equations yields the general solution of the interactor matrix.

The above algebraic equations can be further written in a matrix form as

[ 6o 0 o0 - 0]
Gy Go 0 --- 0
[Dg—1,---,Dg] | : i . . 1| =[K,0,---,0] (5.3)
Ga—2 Gg—3 --- - 0
| Ga-1 Gg2 -+ -+ Go |
or for simplicity
DG=K (5.4)

where G is a block-Toeplitz matrix. D denetes the algebraic matrix form of the interactor,
while D is the matrix polynomial form of the interactor. If Gy is net full rank, then
in addition to the infinite zeros due to the zero-order-hold, at least one mere infinite
zero exists in the transfer function matrix. Direct inversion for solving equation (5.4) is
impossible due to G being rank defective. Existence of the solution for equation (5.4) also
depends on the order of the interacter matrix d, i.e., the “size” of G such that there is
at least an exact selution of D. For determining the order of the interactor matrix, the
singular value decomposition technique can be used.

Censider the singular value decompesition? of the block-Toeplitz matrix as:
g 0w
Vi

ZNote here that the linear matrix equation is in the form of XA = B, instead of AX = B, where X
is the unknown vector or matrix. The definitions of the null space and the image space of A for the two

G=UsVT = [U,, U] (5.5)

equations are consequently different.
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where (Uy, U] and [V}, V3]T are orthogonal matrices, the columns of U, span the null space
of G (in the sense that UTG = 0), I, is a full rank diagonal matrix, and the rows of VT

span the row space of G.

Existence of the exact solution for equation (5.4) requires that 1) rank(G) >
rank(K)=rank(K)=min(n,m), and 2) each row of K. must be within the row space spanned
by Vi or orthogonal to the row space spanned by VF, i.e.,

KV, =0 (5.6)
This can be simplified by writing
[ Vo |
Vao
_K‘,Z=[K101"'10] R =m1 (5’7)
| Va |

where V3; is the upper partition of V with its row dimension same as the column dimension

of T. Thus, the condition expressed by equation (5.6) is equivalent to
KV =0 (5.8)

If K (or T') is a square matrix or is an n X m non-square matrix with n > m, equation (5.8)
is further simplified to
Vap =0 (5.9)

If, however, these conditions are not satisfied, the block-Toeplitz matrix must be
expanded by adding more Markov parameters until they are satisfied. Thus, the order of
the interactor matrix d can be determined from Equation (5.8) or (5.9).

If T is a square transfer function matrix, then the nullity increasing property of the
block-Toeplitz matrix (see Remark 1) can also be conveniently used to determine the order
of the interactor matrix.

Remark 1 Mutoh and Ortega (1993) have suggested using the nullity increasing property

of Markov parameters for determination of the order of the interactor matriz, d, of a square
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transfer function matriz. According to the nullity increasing property, the dimension of
null space of G increases with ezpansion of G until all d Markov parameters are included
in Matriz G.

In summary, the result presented in this section is not only useful for factorization of
the interactor matrix as discussed in the following sections, but also useful in the design of
multivariate adaptive control without a complete knowledge of the interactor matrix (Shah

et al., 1987).

5.3 Factorization of unitary interactor matrices

The solution of equation (5.4) is not unique. The “optimal” solution depends on the
application. The unitary interactor matrix discussed in this section is one of several such
“gptimal” solutions for the application in minimum variance control and multivariable
control loop performance assessment. Rogozinski et al.(1987) have introduced the nilpotent
interactor matriz. For a class of interactor matrices which are more suitable for LQ
design, Peng and Kinnaert (1992) have further considered the unitary interactor matriz
which is a special case of the nilpotent interactor matrix. Bittanti et al.(1994) have
also defined a spectral interactor matriz, which has essentially the same property as the
right unitary interactor matriz discussed in a separate paper by Panlinski and Rogozinski
(1990). In Chapter 4, the unitary interactor matrix has been shown to be a suitable
factorization of the time delay for minimum variance or singular LQ control. It maintains
the spectral property of underlying system unchanged after infinite zeros of the transfer
matrix are removed. The “Inner-Outer” factorization as introduced in (Chu, 1985) factors
out an “all-pass” transfer matrix which also maintains the spectral property. However,
it requires the solution of an algebraic Riccati equation. Significant additional effort and
process information are then required to factor out the infinite zeros from the Inner-Outer
factorization.

The algorithm for the calculation of the unitary interactor matrix proposed by
Rogozinski et al. requires right matrix fraction (RMF) of the transfer matrix. This is
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tantamount to knowing the entire transfer function matrix. In the present chapter, if the
Markov parameter representation is used, the algorithm can be simplified.

Assumption 1 : T is of a full renk n x m rational polynomial transfer function matriz,

i.e., rank[T(q~')] = min(n,m)
Assumption 2 : T is proper, i.e., limg-1_,9T(q7") < c0.

A block matrix of the first d Markov parameters is expressed in a block matrix form

A=[GY,GY,---GEIT

Once this block matrix A is formed, the unitary interactor matrix D(q) can be factored out
from this block matrix following the procedure in Rogozinski et al. (1987) and Peng and
Kinnaert (1992). However, the numerator matrix coefficients of the right matrix fraction
(RMF) of T would be replaced by the first d Markov parameter matrices. Note that even
without the knowledge of the order of the interactor matrix d, the algorithm can also
factor the unitary interactor matrix but must include enough Markov parameter matrices

into A by, e.g. trial and error.
Example 3 A numerical ezample is given to illustrate the proposed algorithm

Consider a 2 x 2 transfer function matrix:
-1 -1
""1-07'.—1’14- _’—f1-o.1q-
-1 2 -1
f—-§-3¢r‘ T-&ir'

To determine the order of the interactor matrix, using the SVD method (skipping the first

T = (5.10)

step G = Gg which is obviously rank defective) gives

(1 1 0 0]
Gy 0 2 2 00
g=| " = (5.11)
G1 Go 01 01 1 1
| 06 08 2 2|
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Using the SVD decomposition (G = ULVT) and Equation (5.5) gives

[ 0.8944 | [ o
3.6812 0 0
-0.4472 0
U= Va = = 0 27322 0
0 -0.7071
0 0  0.0629
0] | 07071 |

The column dimension of T is 2, thus the upper partition of V5 can be written as

Vor =

and raenk(G) > rank(K) = min(n,m) = 2. The conditions for existence of the interactor
matrix are therefore satisfied, and consequently the order of the interactor matrix d = 2
is selected. The block matrix of the first two Markov parameters can be formed as

T
1 2 01 06

1 2 01 08

A=

Following the algorithm in Rogozinski et al. (1987) (see also Appendix A), a unitary

interactor matrix can be factored as

—0.4472 —0.8944
D= 1 7 (5.12)

-0.8944¢% 0.4472¢%

It can be easily verified that DT(¢~1)D(q) = I.

5.4 Estimation of the interactor matrix under closed-loop

conditions

The proposed factorization algorithm requires only the first d Markov parameter
matrices (or impulse response coefficient matrices), i.e., the first several steps of the initial
responses of a system. Since the first few Markov parameter matrices contribute to the
initial transient response of the process, these parameters characterize the high ‘frequency

dynamics of the process. Thus the interactor matrix, which consists of a linear combination
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of the first few Markov parameters, typically represents the high-frequency gain (Shah
et al., 1987) of a system. An identification strategy which can yield good estimates in the
high frequency range is more desired. A relatively high-frequency dither signal may be used
for such purpose. Computationally a correlation analysis generally provides a relatively
good estimate of these first few Markov parameters, since Var(Gi) oc 1/(N — k)(Box
and Jenkins, 1976), where G} is the estimated Markov parameters via cross correlation
analysis, and N is total number of data points used for the estimation. Alternatively, an
FIR or a parametric model can also be fitted from input-output data, which can also yield
Markov parameters. By utilizing the following lemma, correlation analysis or parametric

model fitting can be performed directly from closed-loop data.

Lemma 6 For a multivariable process as shown in Figure 5.1, the interactor matriz (Dy)
of the closed-loop transfer function matriz from Wy to Y: (Ty = (I+TQ)~'T) is the same
as the interactor matriz (D) of the open-loop transfer function matriz (T')

Proof: It follows from the matrix inversion lemma (Soderstrom and Stoica, 1989) that

Ta = (I+TQ)'T
= [-TT+1N™'QIT
= T(I+QT)™"

Thus, if D is the interactor matrix of T', then limg—1_,q DT = K and

. — -1
Jm DTy= lim DT(I+QT)

Ay l a%n
G N
e __L_Y.

O

2
<
£

¥e
R

Figure 5.1: A simplified process control loop diagram
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= lim DT(I +0)~" (due to the zero-order-hold)
0

=K
On the other hand, if Dy is the interactor matrix of Ty, then limg-1_,g DgTy = Kq, or
i T “l= K
q_hglm DaT(I +QT) d

Thus

lim DyT = Ky
q10

and therefore D is also the interactor matrix of the open-loop transfer function matrix
T. ]

If the dither signal is inserted from the setpoint, the same conclusion holds for the closed-
loop transfer function matrix from Y, to Y; following the same procedure of the proof,
provided that the controller transfer function matrix does not introduce new infinite zeros

to the process.

Remark 2 This lemma provides a well-known fact that the delay structure or the
interactor matrix is “feedback invariant”(Wolovich and Falb, 1976), i.e. the Markov
parameters of the open and closed-loop transfer function matrix are different but their
linear combination yields the same interactor matrix. With this result, the interactor
matrix of an open-loop transfer function can be estimated directly from the closed-loop

data.

Whenever the dither signal is “white” or can be whitened by time series analysis, simple
correlation analysis can be performed. For actual plants, a random dither signal may not
be allowed. For such case simple step changes of the setpoint may be conducted instead.
However, such simple setpoint signals may not be sufficiently modelled by a time series
model, and therefore a correlation analysis is not appropriate. In this case, a parametric
model (including FIR) should be considered. As mentioned earlier, one must keep in mind
that a low-frequency dither signal may yield a poorer estimate of the interactor matrix
than a relatively high-frequency dither signal.
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Our purpose is to identify the interactor matrix from closed-loop data via the dither
signal or the setpoint to the output. A MISO identification procedure can be used if
the dither signals or setpoint changes of all loops are conducted simultaneously. If,
however, the dither signal or setpoint change of each loop is conducted separately, a
SISO identification procedure can be used.

Remark 3 A typical industrial process could be very high order and subject to non-
linearity. A process under regulatory control usually operates around a nominal point.
Identification of the interactor matrix under closed-loop conditions therefore provides a
more realistic estimate than under open-loop conditions in the sense that it gives the
interactor matrix of the process around the current operating point. This property
is particularly useful for adaptive control and control loop performance monitoring.
Similarly, a gaod estimate of the first few Markov parameters or initial transient responses
is more important than a “good” estimate of the overall transfer function matrix which
often compromises a fit over a wider frequency range. Computationally, a direct
identification of the first few Markov parameters is also more desirable than identification
of the full transfer function matrix first and then transferring it to Markov parameters.
Therefore, factorization of the interactor matrix from the first few Markov parameters is

preferred to factorization of the interactor matrix from the transfer function matrix.

5.5 Numerical rank

The estimated Markov parameter matrices are not exact due to disturbances, and
this makes numerical determination of the rank of the block-Toeplitz matrix G somewhat
arbitrary. To cope with the difficulty, a result from Aoki (1987) (see also Paige (1981)) is
used:

Let H be a theoretical matrix with its theoretically exact singular value decompaosition,
UTZVT. Suppose that a numerically constructed approximation to H is available as
H = H + AH, where it is known that ||[H — HJ| < a||H||. Here the constant a represents

a measure of data accuracy. If the computer round-off error is omitted, then in terms of
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the singular values of H and H, this inequality can be stated as
loi — 6: < ad,

where 0}, 6; denote the i** theoretical singular and calculated singular values respectively.
If 6, is greater than ad}, but Or41 i8 less than this number then clearly o, is positive.
Hence the rank of the matrix is at least r. The next singular value, 0,4, may be possibly
zero. Such an r may then be chosen as the numerical rank of the true but unknown matrix
H.

Golub and van Loan(1989) have another useful result that the difference of the singular
value of H+ F and H is bounded by the largest singular value of F, where E is considered
as a perturbation matrix. We will regard this largest singular value as the threshold value.

The above results can be applied to find the rank of Gi and G. The Acoki approach
requires a priori knowledge of a. To find the value a, we may use an empirical value or a
statistical value. As an example, Tiao and Box (1981) use 2/v/M (where M is the sample

size) as the relative error, a.

The threshold value approach is also useful if some pre-knowledge of perturbation is
available. The correlation analysis or FIR model fitting often provides such knowledge.
In addition to the Markov parameter matrices expressed by equation (5.1), the Markov
parameter matrix corresponding to the zero order of q, written as G_; in accordance with
equation (5.1), is also obtained simultaneously in the correlation analysis. Due to the zero-
order-hold, G, is theoretically zero, and therefore it does not appear in equation (5.1).
However its estimation is not zero due to disturbance. Thus, the estimated value of G_;
provides an approximation of the perturbation matrix, F, and can be used to determine
the rank of the estimated Markov parameters. Once the order of the interactor matrix is
determined, the column block matrix of the Markov parameters can be formed, and the
factorization of the unitary interactor matrix can proceed.
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5.6 Simulation and experimental evaluation on a pilot

scale process

Example 4 A closed-loop multivariable process, represented by the block diagram shown
in Figure 5.1, is simulated. The interactor factorization algorithm based on correlation
analysis is used to find the closed-loop interactor matriz, and the results are compared
to the open-loop interactor matriz. To keep routine operation of process and to show the
asymptotic property of correlation analysis, the magnitude of the dither signal is chosen
such that it has a very weak effect on the process oulput relative to the ezisting process

disturbances.

For the sake of comparison, we use the same open-loop transfer function T as that of

example 3. The remaining transfer function matrices of Figure 5.1 take the following

values:
04 O 1 2 1 O
Q= N = Gy =
0 0.3 3 4 01

The setpoint is assumed to be zero. a;; and az: are white noise random processes with
Za1 = 0.07%I and %, = 0.12]. In this simulation, the existing variance of the output
without the dither signal has a magnitude of

0.2203 0.3958
Yy = (5.13)
0.3958 0.7402

With injection of the dither signal, variance of the process output becomes

[ 0.2381 0.4268
] 0.4268 0.7956 ]
Thus the dither signal has a negligible effect on the process. Since the dither signal is
weak, a relatively large sample size of 5000 points is used3. Applying the cross-correlation

Yy =

analysis, the first three Markov parameter matrices (including G_,) are calculated as

a -0.0223 0.0135 . 1.0161 0.9824 G —0.9321 --0.8885

-1 = = =

-0.0268 -0.0182 2.0435 1.9626 —14394 -1.1543

3The sample size can certainly be reduced if the magnitude of the dither signal is increased.
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The SVD decomposition of G_; yields the largest singular value as 0.0355. Thus, the
value of 0.0355 can be taken as the threshold to decide if a singular value is significantly
different from zero. We can also use the relative error a = 2/V/N = 2//5000 = 0.0283 to
test the rank.

Form the matrix G as G = Go. The SVD decomposition of G yields

e [ 0.4464 0.8948 } £ [ 3.1663 0 ] v ,:0.7208 —0.6932 J
0.8948 —0.4464 0 0.0043 0.6932 0.7208
Compared to either the threshold value or the relative error, it is clearly reasonable to
assume that rank(G) = 1, and no exact solution of the matrix D exists. Thus, the
dimension of G must be increased by adding more Markov parameter matrices. Before

collecting more Markov parameters, It is convenient for further analysis to modify G by

setting its smallest singular value to zero, i.e.,

Gy, = UZV
_ | 0.4464 0.8948 3.1663 0 | | 0.7208 -0.6932 | | 1.0187 0.9797
0.8948 —0.4464 0 0| 06932 0.7208 2.0422 1.9640

This is a reasonable approximation when a singular value is significantly smaller than
other singular values and the matrix has been tested to be rank defective. If fact, it
is recommended to test the rank of each Markov parameter matrix and modify them
accordingly before one forms the block-Toeplitz matrix G and the block matrix A. Now

increase the dimension of G by

Gy, o
G=| " . (5.14)
G &
The SVD decomposition yields
[ 44745 o0 0 0] [ 0.6074 -0.3866 0.6940 0
s_| 0 2256 o0 o0 v | 05474 04204 —0.7183 0
0 0 0.0687 0 -0.4150 -0.5883 0.0355 —0.6932
o 0 0 0] | —0.3991 —0.5657 0.0341  0.7208 |
Clearly rank(G) > 2 and
-
0
Vor =
0
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An exact solution of D exists and the order of the interactor matrix d = 2 is selected.

The block matrix is formed as

T
- 1.0187 2.0422 -0.9321 -1.4394
0.9797 1.9604 -0.8885 —1.1543

Following the algorithm in (Rogozinski et al., 1987) (see Appendix A also), the estimated

unitary interactor matrix can be factored as

B —0.4464q —0.8948¢
—0.8948¢> 0.4464¢°

This result agrees well with the theoretical open-loop interactor matrix shown in
Equation (5.12).

Example 5 To evaluate the proposed algorithm on a physical process, both open-loop and
closed-loop experiments have been conducted on a two-tnteracting tank pilot-scale process.
Each tank is a double-walled glass tank 50 cm high with an inside diameter of 1{.5 cm.
The levels (h1, hy) of the two tanks are the two controlled variables. The signals to the two
valves (u1,u3) are manipulated to control the levels. The process is shounm in figure 5.2.
The sampling interval is taken as T, = 20sec. A two-step delay (including zero-order-
hold) €s introduced in front of the first valve, and a three-step delay (including zero-order-
hold) is introduced in front of the second valve. Two sets of multiloop P/PI controllers
are implemented in the ezperiments. Open-loop and closed-loop interactor matrices are
estimated from open-loop and closed-loop data respectively. The estimated open-loop and

closed-loop interactor matrices are then compared.

An open-loop multivariable test was conducted with the result shown in figure 5.3. The two
manipulated signals, u; and uy, are applied simultaneously. The multivariate prediction
error method (Ljung, 1987) is used for identification of this multivariate process, which
yields the following Markov parameters:

01632 0| _, | 0.1462 0.0185 | _,
+ +

Topen = q
0.0169 0 0.0355 0.1249
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Following the procedure as introduced in the foregoing sections, a unitary interactor matrix

can be calculated as

—-0.9947¢° -0.103

—0.1030¢% 0.994743
The interactor matrix depends on the first few steps of the initial responses. Since the
initial responses of the interaction terms between the two tanks are relatively weak, the

interactor matrix is dominated by the diagonal terms.

Closed-loop tests with a P-controller (Proportional only) and with a PI-controller are
conducted respectively, which yield results shown in figure 5.4. Dither signals, w;, and
wo, are applied to the process simultaneously. The following Markov parameters of the
closed-loop process are obtained from the closed-loop data:

) : r .
0.1910 0 0.1600 0.0090
Tp = a2+ g+
0.0192 0 ] 0.0414 0.1260

and

01704 0 | _, ( 0.1451 0.0132 -3
Tpr= T+ B
0.0177 0 ] 0.0369 0.1290

These yield the closed-loop interactor matrices as

—0.9950¢> —0.1000¢2 |
Dp = 7 ¢ (5.16)

~-0.1000¢° 0.99504°

and

—0.9946 -0.1033
Dpr = v d (5.17)
-0.1033¢® 0.99464°

The similarity between equation (5.15) and equations (5.16) and (5.17) clearly

demonstrates that the interactor matrix is “feedback-invariant”, and can be estimated
from closed-loop data. The small differences between these three interactor matrices may
be attributed to disturbances.

5.7 Industrial application

Example 6 A multivariate industrial distillation process is studied in this example. A



Figure 5.2: Schematic of the two-interacting tank pilot-scale process.
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Figure 5.3: Open-loop (input and output) test data where u = 0 corresponds to 50%
open of the valve, and the units of hy and hy are voltage. The time scale
is in terms of sampling intervals.
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Figure 5.4: Closed-loop (dither and output) test data where the units of hy and hy
are voltage. The time scale is in terms of sampling intervals.
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untlary interactor matriz is estimated from industrial closed-loop data.

The process consists of 3 distillation towers as shown in figure 5.5. The bottom product
of the last tower is the main product and the distillates or the top products of the
remaining two towers are recycled to the upstream process. The problem encountered
for the multiloop controller design of this process is the strong interaction between levels
of the first two towers and between the temperature and the level of the second tower.

Since the last tower is relatively small, temperature variation in the second tower can
significantly disturb the temperature of the last tower. Regulating the temperature of the
last tower at a constant value is important for regulating the quality of the final product.
Due to the strong interaction between the temperature and the level loops in the second
tower, a multivariable controller is clearly desirable. Therefore, the control ob jective in
this study is the temperature and level control of the second tower in order to reduce
disturbances to the last tower. To design a high performance multivariable controller, it

is in the interest of control engineers to know the interactor matrix.

Simple closed-loop setpoint changes were conducted on this process. To simplify
the test, setpoint changes of the level and temperature were conducted separately.
Identification of the closed-loop Markov parameters or transfer function matrix can
therefore be cast as four separate open-loop identification problems of SISO impulse
response parameters or transfer functions. Figure 5.7 shows the four SISO identification
results. The corresponding setpoints are shown in figure 5.6. To identify closed-loop

Figure 5.5: The industrial process flowsheet
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Figure 5.6:  Setpoints for the closed-loop tests. The time scale is in terms of sampling
intervals

transfer function matrices of the temperature and level, only two experiments are required.
One is for the level setpoint test, and the other one is for the temperature setpoint test.
However, in this example the level setpoint tests were conducted twice with different
excitation signals due to saturated data record of the temperature response when the first
set of level setpoint test was conducted. Note that in figure 5.7, the solid line denotes
the estimated-model prediction based only on the past inputs, and the dash-doted line

denotes actual outputs.

The four identified SISO models form the closed-loop transfer function matrix and
yield the following Markov parameters.
- 0 0 0 -0.6629
G = g+ 24
0 0.1513 0.0130 0.1267
0.0713 -0.5022 | _,
g+
0.0118 0.1062

Since time-delays of each SISO model can be easily determined through SISO identification
procedure (Soderstrom and Stoica, 1989), zeros which appear in the above Markov



Figure 5.7: Predicted vs actual outputs; all data have been zero-mean centered. The
time scale ts in terms of sampling intervals

parameter matrices are exact zeros and correspond to time-delays in the SISO models.

Following the same procedure as introduced earlier, an order of the interactor matrix

d = 3 is obtained. The block matrix of the first three Markov parameters is formed as

T
0 0 0 0.0130 0.0713 0.0118

0 0.1513 -0.6629 0.1267 —0.5022 0.1062

A=

The unitary interactor matrix is calculated as

D— 0.9749¢> -0.2225¢
0.2225¢ 0.9749¢2

5.8 Conclusions

In this chapter, an algorithm has been developed for estimating interactor matrices
and in particular the unitary interactor matrices under closed-loop as well as open-loop
conditions. The singular value decomposition method has been used to determine the order

of the interactor matrix. The algorithm for factorization of the unitary interactor matrix
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has been simplified by using only first few Markov parameter matrices. The proposed
algorithm has been evaluated by simulated example, pilot-scale experiment and industrial
processes. The results presented in this chapter are useful for the design of minimum
variance or singular LQ control, optimal Hj-control, optimal filtering, and particularly

multivariable control loop performance assessment methads.



Chapter 6

Feedback Controller Performance

Assessment: Simple Interactor

6.1 Introduction

The interactor matrix D can be one of the three forms as discussed in Chapter 3. If
D is of the form: D = q%I, then the transfer function matrix T is regarded as having a
ssmple interactor matriz. This is the simplest form of the interactor matrices. Although it
is usually unlikely to encounter a real process with a simple interactor matrix, the resulé
presented in this chapter provides a basis for solutions to processes with diagonal and

general interactor matrices that follow later in this thesis.

This chapter is organized as follows. The feedback controller-invariance property of
the minimum variance control term is discussed in Section 6.2. The FCOR (for Filtering
and CORrelation analysis) algorithm is presented in Section 6.3. The proposed algorithm
is illustrated by a simulated example in Section 6.4, followed by concluding remarks in

Section 6.5
A version of this chapter is in the Proceedings of 1995 American Control Conference and a part of
material will also appear in Automatica (in press).
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6.2 Feedback controller-invariance of minimum variance

term and its separation from routine operating data

The simplest form of a multivariable process has a square process transfer function
matrix with a simple interactor matrix. Keviczky (Keviczky and Hetthessy, 1977) and
Borison (Borison, 1979) have given the minimum variance control law for processes with
simple interactor matrices. The purpose of this section is to show that the minimum
variance term is feedback control invariant and can be estimated from routine operating
data.

Theorem 6 For the multivariable process with a simple interactor matriz:
Y; =TU;: + Na; (6.1)
the minimum variance control is obtained by minimizing
J = ElY]TY]]
or equivalently (for the simple interactor matriz) minimizing
J = Ev:Y[]

The performance measure is given by the following steps:

1. The quadratic measure of minimum variance is given by
E[YT Yilmin = E(eF)(er) = tr(Var(Fay))
and the minimum variance itself is given by
Var(Y:)|min = Var(e:) = Var(Fa,)

where e, = Fay, the polynomsial matriz F depends only on the time-delay d and the
notise model, and satisfies the identity:
¢ DN =Fy+---+Fi174 Y +47R

F
where R is a proper rational transfer function matriz; and furthermore '
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2. if one models closed-loop routine operating data under feedback control by the

Jollowing multivariate moving-average process:

Y- EY:) = Fac+ Fiae1+---+ Fy_10¢-d41
e
+ Poag_d + Liag—g—1 +- -

We—d

then the minimum variance term, e, = Fas, consists of the first d terms of this
moving-average model, and therefore can be separated using time series analysts of
rouline operating data and be used as a benchmark measure of multivariate minimum

vartance control.

Proof:  For this case of the simple interactor matrix, the transfer function matrix can

be written as
T=q%T (6.2)

where T is the delay-free transfer function matrix of T. Substituting equation (6.2) into

equation (6.1) yields
Y: = q~*TU, + Na,

Consider the feedback control law given by U; = ~QY;. The closed-loop transfer function
is then given by
Y: = —¢7TQY; + Na, (6.3)

Now consider the Diophantine identity:

N=F+q R (6.4)

where
F=FR+Fq'+...+Fy_qg@"
and R is the remaining proper and rational transfer function matrix. Substituting

equation (6.4) into equation (6.3) gives

Y: = (¢*T +TQ)~'¢*(F + ¢~ *R)a,
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Applying the matrix inverse lemma yields

[q7%I — q~*T(I + ¢~ *QT) ' Qq*|¢*[F + ¢~ *Rla.

Fa, — q~%T(I + ¢'QT)"'QFa; + ¢ *Ra; -

—q~*T(I +q7*QT)'QRa;

Fa:+q ®Ra¢ — ¢~*T(I + ¢~ 'QT)"'QNa;

Fa¢+ La;_q (6.5)

Y:

e

where
L=R-T(I+q%QT)'QN (6.6)

is a proper rational transfer function matrix. The two terms on the right hand side of

equation (6.5) are therefore independent.

Define e; = Fa; and w;._q = La;—q. Then
Var(Y;) > Var(e;) = Var(Fa;)

and
E[YTY] > E[ef &] = tr(Var(Fay))

The equality holds under minimum variance control when L = 0. The minimum variance
control law is therefore obtained by simply setting L = 0 in equation (6.6). The resulting
controller transfer function, U; = —QY; is given by

Q=-T"¢g%I- NR Y
Combining this with equation (6.4) yields

Q = -T g I-(F+q?RR!
= T-'RF-! (6.7)

which is the minimum variance control law. Notice that in equation (6.5), the controller

has no influence on the first term, which is minimum variance term of the process output,

Yilmo =€: = Fay = (Fo + Fig™' +... + Fy_147 @ V)q, (6.8)
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Therefore if a closed-loop response under feedback control is modelled by a multivariate
moving-average process as

Ye - E(Y,) = Foae + Frae—y +--- + Fy_16t—g41 + Loae—q + L1ar_g—1 + -+ (6.9)

et We—d

It follows that the feedback control invariant term, e;, can be separated out from other
feedback control relevant terms. The minimum variance performance is subsequently

estimated from e;. (]

6.3 The FCOR algorithm

6.3.1 Multivariable performance index

As proved in the last section, e, 2 Fa, is the feedback control invariant minimum
variance term. This minimum variance term can be used as a benchmark for the
multivariable performance measure. By using equation (6.8), one can write the minimum
variance term e; as

ee=(Fo+q 'F+--- +q " Fy_)a;

Thus
Emy = E[etez’]
= FREoFy +---+ F4_15,FF, (6.10)
where
La= E(ata{ )

On the other hand, the closed-loop output vector Y; under feedback control can be

represented by an infinite multivariate moving average process, i.e.,
Ye = Foat + Fiag—1 + -+ Fg_18¢—g41 + Fyagq + -+ (6.11)
So the covariance of the output and the noise at lag i is given by

Tva(f) = ElYial_] = K%, (6.12)
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Now consider the definition of the performance index as

n(d) £ tr(SmeS7) /n (6.13)

where n is the dimension of ¥;, £y = diag(Xy) and Sy = Var(Y:). When a process
is under minimum variance control, we have £y = X,.,; thus it can be shown that
n(d) = 1. If control is poor relative to the minimum variance control, then we should

expect 0 < n(d) < 1. Applying equation (6.13) to a SISO process where n = 1 gives

o2 a2
n(d) = tr(%me) = Tmw
o2 ol
which is the performance measure of a SISO process. A correlation analysis yields a
computationally simple procedure for calculating n(d) as follows.
Equation (6.13) can be written as

nxnd) = tr(Emufzi-rl)
= tr(E7 " Cme S 2 (6.14)

Substituting equations (6.10) into equation (6.14) and using the relation established in
equation (6.12) yields

n x n(d) = tr[E5 2 Sy,4(0)Z;  Zay (0) S5/ 2+
+57 2 Sy () IR (ST +
+o + £ 28y, (d - S Ep(d - )57
= tr(pva(0)0; ' Pav (0) + pva(1)p; ' pay (1) +--- +
+pva(d — 1)p7 ' pav(d ~ 1))
where py,(i) = 5528y () E2, (5, £ diag(Z,)), is the multivariate cross correlation

between Y; and a;—;; p, = &5 Y 22.,8'1/ 2, is the multivariate autocorrelation of a;. If a

scaled cross correlation is defined as gy, (t) £ pya(i)pa’? and

Z8 [ pre® rel® - prald-1) ]

then we have _
n(d) =trZ22T /n (6.15)



Note from equation (6.14) and equation (6.15) that
z ZT - 2;1/22'“2;1/2

The above multivariable performance thus has a clear physical interpretation which is
stated as follows. The diagonal elements of matrix ZZ7 are the performance measures of

each single output ny(d), -- -, nva(d), and therefore

nd) = tT(ZZT)/n - nvi(d) + "'1° + nyn(d)

= (the average performance of n outputs)

where the individual performance, ny;(d), is the ratio of the minimum variance (under
multivariable minimum variance control) and the actual variance in the it* output. The
performance measure is therefore a comparison between the variance of each single output
and that of the corresponding minimum variance output achieved under multivariable
minimum variance control. Thus, one can simultaneously obtain the single output
performance index from the diagonal elements of the matrix ZZ7, when we calculate the
overall multivariable performance index n(d). Furthermore, if we take the process offset

into account, the modified performance index can be written as

n'(d) = tr(EmeSl,.)/n (6.16)

where £, is the diagonal matrix of Emse, and e = Ty + 667 is the mean square
error. The expression for 1/(d) can also be simplified by following the analogous procedure
for n(d) that results in expression (6.15) from equation (6.14).

Although a, is unknown, it can be replaced by the estimated white noise &; as
introduced in the next section. The FCOR approach provides a relatively easy way to
calculate the performance measure of a multivariable process with a simple interactor
matrix. However, the algorithm is not limited to the simple interactor matrix process.
In the following chapters it will be shown that, via interactor filtering of the outputs,
multivariable processes with diagonal or triangular interactor matrices can eventually be
transferred to the simple interactor matrix form for the sake of minimum variance control

and performance assessment.
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6.3.2 Filtering or whitening

The original source of variation in a regulatory closed-loop process may be traced back
to a white noise excitation, a;, as shown in Figure 6.1. The relationship between Y; and
a; is established by the closed-loop transfer function Gy, = (I + TQ)~!N. Thus the
variation of Y; is due to the excitation of a; through Gy,. The estimation of this noise
sequence is important for performance assessment. By reversing the process, the white
noise sequence can be viewed as an output from a filter whose input is the process output
Y:. Many methods have been developed to fit the filter model and obtain estimates of
the white noise sequence from output data, and in some literature the estimation of a;
is known as “whitening” or “prewhitening” (Box and MacGregor, 1974; Soderstrom and
Stoica, 1989; Goodwin and Sin, 1984). Such a whitened noise sequence can also be denated
as the “innovation sequence” (Goodwin and Sin, 1984). The process of obtaining such a
“whitening” filter is analogous to time-series modeling, where the final test of the adequacy
of the model consists of checking if the residuals are “white”; these residuals are the
estimated white noise sequence. In contrast to time-series modeling where the estimation
of the model is of interest, the residual or the innovation sequence is the main item of
interest in this “whitening” process. Depending on data, an AR or ARMA (alternatively
a Kalman Filter based innovation model in state space representation) can be used for
estimating a;. The identification of these MIMO innovation models (i.e., “whitening”
filters) has attracted some interest (Reinsel, 1993; Aoki, 1987). Many efficient algorithms
have been developed such as arz, armaz, etc. in Matlab (The Math Works, Inc.).

6.4 Simulation

Example 7 This ezample illustrates the performance assessment of a multivariable

process with a simple interactor matriz.

Consider a multivariable process: Y; = TU; + Na¢, where

1 2
- - 1 - 24
T=q 2 1-0.4¢q— 1-0.5¢—

1 1
1~0.1¢ T T1-0.2¢-T
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2 1
1-0.9¢-T T1-0.3¢-Y

1 2
I=04d¢ T T1-05¢T

N =

g-10
is of full rank, we conclude that d = 2. Using equation (6.4), N is separated to
- - 1.629—2 0.09¢—2
2+ 1.8q L | + 0.3q L + 1—_66§¢_-2T m-.#zf
- - 0.16¢~ 0.5¢~
1+0.4q 1 24¢q 1 quq—_r —51—71_0.51_
F+q’R (6.17)

N =

(>

Under minimum variance control, the process output is written as e = Fa;, and this
part of the output is invariant under feedback control and can be used as a benchmark to

access controller performance of this process.

For the sake of illustration, consider a simple proportional control of the form

v=-qvi=-|" ° |y
0 K
Applying the FCOR algorithm to the output vector Y; yields the results shown in
Figure 6.2. The solid line and the dashed line denote the theoretical value of the
performance indices with and without considering the offset respectively, while the asterisk
and circle denote the corresponding estimated performance indices. The abscissa in this
graph corresponds to the value of the proportional gain. It can be seen that for this
form of proportional, diagonal control, if the offset is not considered in the performance
measure, the maximum performance measure is 0.7 when the proportional gain K takes
the value of 0.1. The performance measure under open-loop condition (when K = 0)
appears to be acceptable compared to the maximum performance measure (0.7). If the
offset of a process output is also considered in the measure of performance, a deteriorated
performance would be expected. As shown by the dashed line (the setpoint is taken as
Y;® = [3,3]7 in the simulation), the overall performance index is now lower than the

performance measure without considering the offset. The open loop process(i( = 0) no
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longer demonstrates good performance. The best performance is obtained when K = 0.2
instead of K = 0.1. Increasing the proportional gain decreases the offset and therefore
improves the performance when the offset dominates the output. This is the reason that
the best performance shifts toward the right from K = 0.1 to K = 0.2. However, with gain
greater than 0.2, the process becomes more oscillatory and eventually becomes unstable.
When the variation caused by the oscillation dominates the output, the performance goes
down rapidly. The offset no longer dominates the performance measure and the measure

now approaches the same performance as that without considering the offset.

6.5 Conclusions

The multivariable performance measure has been defined, and the computationally
simple algorithm (the FCOR algorithm) to estimate multivariate performance indices has
been established in this chapter. The results can be applied to multivariable processes with
simple interactor matrices and provide a basis for the following chapters. The application

of the proposed algorithm has been demonstrated by a simulated example.
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Chapter 7

Feedback Controller Performance

Assessment: Diagonal Interactor

7.1 Introduction

Although minimum variance control is not practically desirable due to its poor
robustness and/or excessive control effort requirement, it does provide an absolute lower
bound on the process variance. This lower bound naturally serves as a useful benchmark
to evaluate current control loop performance if reduction of process variation is the
control objective. Such a control loop performance measure provides guidelines and useful
information for control engineers when they design, tune or upgrade controllers or control
strategies. If the best performance cannot satisfy the requirement, alternative control
strategies such as implementing feedforward control and/or reducing dead time may be
necessary. For a number of industrial processes (particularly pulp/paper processes),
reduction of process variation is the main objective in controller design. Performance
assessment with minimum variance control as the benchmark is therefore particularly
useful for such processes. In fact, the first application of the performance assessment

technique was on a paper machine (Astrom, 1967). However, most industrial processes

A version of this chapter is to appear in the Canadian Journal of Chemical Engineering, February,
1997.
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are inherently multivariate in nature. Performance assessment with multivariate minimum
variance control as the benchmark is therefore more desirable. This chapter is an extension
of Chapter 6 considering closed-loop performance assessment of multivariate processes with
the diagonal interactor matrix.

In this chapter, feedback invariance of multivariable processes with diagonal interactor
matrix is discussed in Section 7.2, followed by a brief extension of the FCOR algorithm
in Section 7.3. The chapter also considers a detailed evaluation of an industrial headbox
control system using routine aperating data in Sections 7.4 and 7.5.

7.2 Feedback controller-invariance of minimum variance

term and its separation from routine operating data

Chapter 2 has shown that the measure of minimum variance control performance of
SISO processes can be estimated from routine operating data. The key to this property
is that the minimum variance term is feedback control invariant. This idea has been

extended to MIMO processes with the simple interactor matrix in Chapter 6.

For MIMO processes with a general interactor matrix (neither simple nor diagonal),
the feedback invariance property of minimum variance control (minimizing J = E(Y; —
Y P)T(Y: - Y?) or J = E(Y; =Y P)TW (Y, - Y?)) can also be solved by using the unitary
or weighted unitary interactor matrix as will be discussed in Chapter 8. Just as a priori
knowledge of the time delay is required for SISO applications, performance assessment
of MIMO processes with general interactor matrices requires that the interactor matrix
must be known from a priori knowledge. This is tantamount to knowing the entire transfer
function matrix (Goodwin and Sin, 1984) or at least the first few Markov parameters or
impulse response coefficients of the transfer function matrix as discussed in Chapter 5.

However, some well-designed multivariable processes have the structure of the diagonal
interactor. Like the SISO case, the diagonal interactor matrix only depends on the pure
time delays of the transfer function and is easier to obtain from a priors knowledge of
processes. This diagonal structure is therefore elaborated in the present chapter. The
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treatment of the general interactor matrix is discussed in Chapter 8.

In Chapter 6, we have shown that for the process with a simple interactor matrix:
Y: = ¢ %TU; + Na; (7.1)

where d is the time delay and T is the delay-free transfer function matrix, the following
inequality holds:
Var(Y:) 2 E(et)(e:)” = Var(Fay)

where e; = Fay, F is defined by the identity:

N=F+Fq"+--+Fp1g7@ 44 9R

F

F; (for i =0,---,d ~ 1) are also constant coefficient matrices, and R is a proper rational
transfer function matrix. If closed-loop, routine operating data under feedback control is
modelled by a multivariate moving-average process:

Ye - E(Y:) = Foar + Fiae—1 + - + Fa—16t-d+1+ Looe—a + L16¢—g—1 + --- (7.2)

e Weed

where L; (for £ =0, 1, ---) are constant coefficient matrices, then the term w;_4 is feedback
control dependent, and the term e; consisting of the first d terms of the moving-average
model is independent of feedback control. Under minimum variance control, w;_4 vanishes,

and therefore e; represents the process under minimum variance control and can be

estimated from routine operating data.

Now consider a process with a diagonal interactor matrix, D = diag(q®,q%,- - q%):
Y; =TU, + Na; = D~'TU, + Na, (7.3)
Multiplying both sides of equation (7.3) by ¢~¢D, where d = maz(dy,-- - ,dy), yields
g7 'DY; = ¢ *TU,+q*DNa,
= ¢ U, + Na; (7.4)

where Nisa proper transfer function matrix between the disturbance a; and the interactor-
filtered output q~?DY;. By defining ¥; = q—¢DY,, equation (7.4) has been transferred to
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the same form as equation (7.1), i.e.,
Y; = ¢ 'TU; + Na, (7.5)
This is a process with a simple interactor matrix. It follows that
Var(Y:) > E(@)()T = Var(Fa,)
where €; = f’ag, and F is defined by the identity:

N=F+Fq'l++ Fi1g~@D 14~4f

F
Thus if the interactor-filtered, routine operating data under feedback closed-loop control

is modelled by a multivariate moving-average process:

Y:— E(Y,) = f’oat +Fla+---+ f’a.mg-dﬂ + éoat-d +Liaeg g +- .- (7.6)

é: We—gd

then the minimum variance term é: is independent of feedback control and can therefore

be estimated from routine operating data.

Although the feedback invariance term & represents the minimum variance term of the
interactor-filtered variable Y, it also represents the minimum variance term of the original
variable Y;. Dugard et al.(1984) have shown that for the case of the diagonal interactor
matrix, the control law which minimizes variance of the interactor-filtered variable Y, also
minimizes variance of each element of the original variable Y; (i.e., yi(t), for i = 1,---,n).
Thus the diagonal elements of Var(é;) also provide absolute lower bounds of variance
for each original output under multivariable feedback control. Furthermore note that

% = q~ %%y, and therefore

Var(y1(t)) = Var(§i(t)

Var(yn(t)) = Var((t))

i.e., the diagonal elements of variance (covariance) matrix of the original variable Y; are
the same as that of the interactor-filtered variable Y:. Asshown in Chapter 6, the diagonal
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elements of the variance (covariance) matrix are the variance of each output and are the
terms required in performance assessment. Thus performance assessment of the original
variable Y; is equivalent to performance assessment of the interactor-filtered variable ;.

One natural question that arises is: how does one do performance evaluation of
processes that have non-minimum phase zeros? Desborough and Harris (1992) and Huang
et al. (1996b) have pointed out that this does not affect its application. Performance
assessment simply provides an absolute lower bound of process variance, although the
lower bound may or may not be practically realizable or admissible depending on the zero
location of the process. This information of the absolute lower bound is particularly useful
for the design, tuning, monitoring and upgrading of control loops. For loops which indicate
high performance measures, further tuning of controllers is neither necessary nor useful.
For loops which indicate poor performance measures, further analysis such as process
identification and/or re-design of the control algorithm may be necessary. Existence of
non-minimum phase zeros implies that the actual or achievable lower bound is larger than
the absolute lower bound. Consequently the performance measure underestimates the
actual or achievable performance. Take the performance measure of a SISO process as an
example. This performance measure or index is defined as 1(d) = 63,,/02, where 02, is
the absolute lower bound of process variance, and 0!2, is the variance of the process output.
If a process has non-minimum phase zeros, then its achievable minimum variance is &2,

with 52, > ¢2,,. Consequently
() = ony /0y < Gou/or =1/(d)

where 7/(d) is the achievable performance measure. Therefore the performance measure
1n(d) underestimates the achievable performance n/(d). However, this does not affect
its application. For example, if a process has an acceptable performance measure (e.g.
1(d) > 0.5), design considerations due to the existence of non-minimum phase zeros should
in fact bolster its acceptability since its achievable performance measure is likely to be even
higher than its absolute performance measure (i.e. 7'(d) > n(d) > 0.5). On the other hand,
if a process has an unacceptable performance measure, it falls into the category of processes
which may require further analysis, e.g. identification or controller re-design. Therefore
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existence of non-minimum phase zeros does not matter since these non-minimum phase
zeros can be detected via identification and the achievable performance measure 7/(d) can
be subsequently obtained anyway. Once again, it must be emphasized that the techniques
proposed in this chapter and other literature, e.g. Harris(1989), only require routine
operating data and & priori knowledge of time delays.

7.3 Performance measures

7.3.1 The FCOR algorithm

The multivariable performance index is defined in Chapter 6 as:
A =
n(d) = tr(SmeSy') /n (7.7)

and performance indices of individual outputs or the individual performance indices are
defined as:

[ ya] T S diag(SpmeSy) (7.8)
where Sy = diag(Zy), Ly = Var(Y;), and T, is the lower bound of Zy. These indices
indicate the comparison of variance between the diagonal elements of the actual variance

matrix and the corresponding diagonal elements of the minimum variance matrix.

For the process with a diagonal interactor matrix, these performance indices
are equivalent to performance indices of the interactor-filtered variable. Therefore
performance assessment of the original variable can be obtained from performance

assessment of the interactor-filtered variable, i.e.,
n(d) = tr(SmnE3") /m (79)

and
[hyrs =+ s ] = diag(Zmin 31) (7.10)
where £ = diag(Sy), £y = Var(¥i), and Sz is the lower bound of Ty

Chapter 6 has shown that multivariate correlation analysis yields a computationally

simple procedure for calculating these performance indices as follows.
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Define a scaled cross correlation as
Prs(0) 2 oz ()ps'/?

and a block matrix as
z = [ﬁf’a(o),ﬁf’c(l)’ 1Py (d —1)]

where pg. (1) = 2;1/ ?E,())E2"/? is the multivariate cross correlation between Y; and a,_;
(note £, = diag(X,;) and ﬁ‘-, = diag(Zy)); and p, = £ YV 2525212 is the multivariate
autocorrelation of a;. Then

n(d) = tr(227)/n (7.11)

and
[y~ - ] = diag{Z22T} (7.12)

where n(d) is in fact the average of the individual performance indices. Although a; is
unknown, it can be replaced by the estimated white noise d; from a filtering process as
shown in Chapter 6. This filtering procedure is equivalent to fitting Y; by a multivariate
time series (ARI or ARIMA). The residual after fitting is the “whitened” noise &,. This
procedure based on Filtering and CORrelation analysis is labelled as the FCOR algorithm.
Thus the FCOR approach provides a relatively easy way to calculate the performance
measure of a multivariable process with a diagonal interactor matrix, which avoids solving
the multivariate Diophantine identity. However, the algorithm is not limited to processes
with the diagonal interactor matrix. It will be extended to processes with the general
interactor matrix in Chapter 8.

7.3.2 The effect of sampling intervals

To apply the FCOR algorithm, a representative set of routine operating data should
be sampled. Theoretically, the data sampling frequency is assumed to be the same as
the controller sampling frequency. However, this sampling frequency may not be always
desirable in practice due to the following reasons: 1) the quality measure of many industrial
process is based on the outputs sampled at other frequencies which can be higher or lower
than the controller sampling frequency, and a different sampling frequency of a stochastic
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signal may result in a different measure of the variance (MacGregor, 1976); 2) controller
sampling rate can be very fast or even continuous on some control loops such as PID
loops, and minimum variance control using such fast controller sampling frequency usually
requires an excessive control action and gives an unrealistic benchmark performance;
3) different control loops may have different controller sampling frequencies, i.e. no
unique sampling frequency may be available for multivariate performance assessment;
and 4) many available industrial data are sampled typically at a lower frequency than the
controller sampling frequency. In such cases, one has to use a data sampling frequency
which is different from the controller sampling frequency. Since the feedback-invariance
property holds for any causal linear feedback controller within the time-delay period,
the FCOR algorithm is generally valid for any sampling frequency as well. It calculates
a performance index relative to a minimum variance controller whose control sampling
frequency is the same as the data sampling frequency. However, a controller sampling
frequency different from the data sampling frequency means that actual performance
assessment should consider the different effect of an extra time delay in addition to the
actual physical delay in the process. This additional time delay corresponds to the presence
of a zero-order-hold device. To illustrate the point, we assume that the process time delay
is tq4, the control interval of the existing controller is ¢., and the data sampling interval or
the control interval of the assumed benchmark (minimum variance) control is ¢,. Then the
actual time-delay in the process is t4 + tc, and the time-delay for the assumed benchmark
(minimum variance) control is ¢, +125. In order to separate the minimum variance portion
from routine operating data, feedback-invariance property must hold within the time-delay
period from 0 to ¢4 + ¢, in the existing control loops. Since feedback-invariance does hold
within the actual time-delay period from 0 to ta +tc, the FCOR algorithm estimates a
theoretically exact result if ¢4 + ¢, < ta + 1, i.e. if the data sampling frequency is higher
than the controller sampling frequency. However, if ty+¢, > ta+1ic, i.e. the data sampling
frequency is lower than the controller sampling frequency, then the feedback-invariance
property holds within the actual time-delay period from 0 to t4+t., but does not hold from
tq+lc to tg+t,. Therefore t4+t. (instead of tq +¢,) is recommended as the approximate
time-delay in the calculation of the performance index when the data sampling ﬁ:equency
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is lower than the controller sampling frequency. This underestimates the time-delay by
the portion ¢, — ¢ and consequently may underestimate the performance index. However,
as illustrated in the last section, slight underestimation of the performance index does not
affect its application.

7.4 Application to a headbox control system

The headbox is the soul of the entire pulp/paper machine (Newcombe, 1991). Its
purpose is to transform a pipe flow of pulp stock into a homogeneous, uniform flow across
the width of a machine wire running at high speed. Weyerhaeuser’s Grande Prairie NSK
pulp mill utilizes a Fourdrinier machine commissioned in the early 1970’s. The process

description, control objectives and problem description are discussed in the following.

7.4.1 Process description

The headbox is a unit operation within the pulp/paper-making process which takes
stock (pulp and water mixture) flowing in a pipe and transforms it into a uniform,
rectangular flow equal in width to the machine wire and at a uniform velacity in the
machine direction. Good headbox operation results in uniform basis weight, little or no
flocculation, and excellent retention on the wire. The schematic of the Fourdrinier machine
employed by the mill at Grande Prairie is shown in Figure 7.1. The pressure/vacuum-air-
pad headbox is used to produce a sheet of approximately 149.7 kg/278.7 m? (330 1b/3000
fi2). White water mixed with thick stock is delivered to the bottom of the headbox
by a high-speed fan pump. A rotating rectifier near the slice lip keeps the pulp evenly
distributed across the machine. A vacuum pump is used to reduce the air pad pressure

below atmospheric.

7.4.2 Process control

The primary control objective in headbox control is to obtain a uniform basis weight,
moisture, and caliper on the sheet. These properties are important for both the operability
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of the machine and the pulp’s final quality. In keeping with common practice (Nordstrom
and Norman, 1994), sheet formation is maintained by continuous jet/wire ratio, headbox
consistency and pond level control. The plant experiences poor operability when these
control parameters deviate from their optimum values. Headbox consistency is controlled
through thick stock (basis mass) valve adjustments, although slice opening will impact
consistency as well (Rice, 1972). Pond level is controlled by changing the fan pump speed.
The jet/wire ratio is a function of total head and wire speed. The total head at the slice
lip is indirectly controlled by adjusting the air pad pressure which is directly controlled by
adjusting the air flow valve on the high pressure side of the air re-circulation pump. Wire
speed (in conjunction with the basis mass valve) is manually adjusted by the operator to

control production rate.

7.4.3 Problem description

Unlike consistency control, which has been trouble-free over the years, jet/wire and
pond level control have been the source of many operational problems. These problems
stem from the pressure and level loops complexity in dynamics, a high degree of coupling
between the two loops, significant noise in the measured values; and the dependence of
the loops on external variables that change with time such as production rate or grade
changes.

Man-power limitation is also a major cause of poorly tuned control loops. For
instance, the duties of control engineers usually include maintenance of the control system,
maintenance of existing computer applications, development of new control applications,
and other day-to-day "fire-fighting” assignments. Therefore, the largest problem in
achieving or maintaining "healthy” control loops is the time-consuming testing required
to analyze and monitor each individual control loop. From a time allocation perspective,
manual loop analysis results usually fall into one of three categories: 1) A preponderance
of tests achieves very good performance for hundreds of control loops, but occupies most
of the control engineer’s time. 2) A large number of negative results indicates that testing

is insufficient, but no control engineer is available to mitigate the problems. 3) A series
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of time-consuming and labour-intensive tests shows very good tuning results, but process
drifts or changes quickly nullify the results and re-tuning is required all over again. Because
of other time commitments, insufficient testing is the norm and, as a result, costly sheet
breaks are often the first indication of poor control performance.

The objective of this research into loop performance is to provide the plant control
engineers with an on-line measure of control loop performance obviating the time-
consuming manual test. This measure can be monitored on a regular basis and
performance statistics used to schedule loop re-tuning. The result of a proactive re-
tuning schedule that requires less control engineer and technician effort will maintain
better overall loop performance and reduce plant downtime.

7.5 Performance assessment of the headbox control

system

7.5.1 Single loop performance assessment

The schematic diagram of the current control system is shown in figure 7.2. The present
control strategy is to regulate the total head (pressure plus level) by adjusting the air pad
pressure and the pond level via multiloop PID controllers. To assess control performance,
we first applied the SISO loop performance assessment technique to individual loops,
which may answer the following questions: 1) If the current level loop cannot be further
tuned due to some constraints, is it possible to further reduce variation of the total head
by adjusting the pressure loop controller? 2) If the pressure loop is well tuned and cannot
be adjusted, is it possible to further reduce variation of the level by adjusting the level

loop controller?

Feedback control performance assessment of SISO processes has been discussed by
Harris (1989), and Desborough and Harris (1992) . The FCOR algorithm can also be
directly applied to SISO processes. However, the setpoint of the pressure loop is randomly
adjusted in this application, which requires a special treatment.
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The process of the pressure loop can be written in a standard form as
pt = ¢ Tuc + Na,

where T and N are (SISO) rational transfer functions. Under feedback control U =
—Q(pt - p:p)’
pe = —q~*TQ(p: — p{”) + Na,
This is equivalent to
pe—pi* = —¢"'TQ(p: — p{?) - p” + Nay

The random adjusted setpoint can be modelled by pi = Mb,, where M is a rational

transfer function and b; is white noise. By defining ¢; = p, — p{?, we have
€ = —q T Qe — Mb, + Na,

The last two terms on the right hand side of the equation may be lumped as O, via, e.g.
the spectral factorization, where 6 is a rational transfer function and v; is white noise.
Therefore

& = —q¢ T Qe + 01, (7.13)

Equation (7.13) is a standard form as used in performance assessment of SISO processes
with a zero setpoint. Thus the algorithm in Chapter 2 can be applied to assess performance
of the variable ¢, without restriction. The only question is whether it is appropriate to

replace p; with ¢; as the monitored variable.

The rush/drag ratio is defined by

K, A vE +H,
t= =

where K. is the rush/drag ratio, V; is the wire speed, P, is the pressure, H; is the level
and c is a unit conversion coefficient. Here we use the notation that P; and H; are the
original variables (actual measurements) of the pressure and the level respectively, while

p: and A, are their deviation variables.

Ideally, the rush/drag ratio should be kept constant so that the fibre suspension
can be distributed uniformly on the wire. In practice, the operator always monitors the
rush/drag ratio which is an indication of how well the total head is being controlled.
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It follows from Figure 7.2 that
P? = (cK*?V;)* - H, (7.14)

The setpoint of rush/drag ratio K*P is set by the operator and is a constant. V; is kept
constant by the motor driving the wire. Using deviation variables, equation (7.14) can be
written as

pe’ = —he

Thus
€ =pi —pf =pe+ hy

which is a variable representing the total head variation and is indicative of the rush/drag
ratio variation. This is indeed the most important variable for the operator to monitor

continually.

Presently, the performance measure of the headbox by the operating personnel is the
variance of pressure and level data being sampled with the sampling interval 15 seconds.
The same sampling interval is therefore used for performance assessment here. It is
known from previous step tests that both the pressure and level loops have time delays of
approximately 3 sampling intervals each. Figure 7.3 shows a typical set of data which was
collected over 50 hours at a 15 seconds sampling interval. Note that both the level and the
pressure are measured by using the pressure unit, Pa. The process was under multiloop
PID control with a control interval of 1 second. Applying the FCOR algorithm to variables
€ and h, respectively yields results shown in Figure 7.4, where each performance index is
calculated from 1000 data points, i.e. 4.2 hours for calculation of each performance index.

By definition, the performance index should be in-between ‘0’ and ‘1. While ‘1’
means the best performance, ‘0’ means the worst performance including unstable control.
For example, a performance index of 0.5 implies that current variance can be reduced
(potentially) by a factor of 0.5 if an optimal tuning is implemented. Depending on
the application, the loop performance measure can be classified as optimal/good/bad
or acceptable/unacceptable or others. Single loop performance assessment results shown

in Figure 7.4 clearly indicate an ‘optimal’ performance of current single lodp tunings
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of both loops. Note that the benchmark performance is minimum variance control of
the individual loop. Therefore there is little potential for further reduction in process
variance by adjusting or re-designing the controller individually. It should be noted that
the performance index is cycling periodically due to differences between day-and-night
ambient conditions. Although the headbox process is housed inside a building, ambient
conditions do affect the pulp quality before it enters the headbox.

7.5.2 Multivariate performance assessment

SISO performance assessment can only indicate the potential of performance
improvement by adjusting individual loops. Since the level and the pressure loops are
coupled, a multivariate control strategy can further reduce process variations. Multivariate

performance assessment can provide the measure of such potential.

Previous tests provided the following a priori knowledge of the process: 1)the time
delay from a change of the air flow control valve to both the pressure and level responses
is approximately 3 sampling intervals; 2)the time delay from the fan pump speed change
to the level response is approximately 3 sampling intervals, and the time delay from the
fan pump speed change to the pressure response is approximately 2 sampling intervals. It
follows from Tsiligiannis and Svoronos (1988) that this process has a diagonal interactor
matrix, i.e., by examining each row of the transfer function matrix, it can be shown that
each output can be paired to an input with the minimum delay in that row. For detailed
discussion of the occurrence of diagonal interactor matrix in practice, readers are referred

to Appendix B.

Since the pressure loop has a randomly adjusted setpoint and the variable of interest
of this assessment is the total head (p + k), the problem should be reformulated as it was
done in the SISO case. The multivariable model with the outputs p; and h; can be written

as

pe = Tnyu + Tioup + Nyja; + Nysayp (7.15)
To1u; + Tpus + Naja; + Nagas : (7.16)

T
[



91

where u; is the manipulated variable of the air flow control valve; uy is the manipulated
variable of the fan pump speed; Ti;, T5; and Ty are approximately first-order transfer
functions, while T}» can be approximated by a second order transfer function; N;; (for
t = 1,2,j = 1,2) are disturbance transfer functions and can be modelled by autoregressive
moving average processes. The pressure, p;, is measured by a low range differential pressure
transmitter with the low side of the transmitter vented to atmosphere. The level, he, is
measured by a flange mounted transmitter. The air flow control valve on the suction of the
vacuum pump is a Fisher V100 segmented ball valve. The fan pump speed is controlled by
a variable speed DC drive. Multiloop PID controllers are implemented in the process. The
pressure loop is controlled by manipulating the air flow control valve, and the level loop is
controlled by manipulating the fan pump speed. Note that except for a priori knowledge
of the time-delays in T;;, other information about T;;, N;; and controller transfer functions

is not required for performance assessment.

It follows from the analysis in the SISO case that (in the deviation variable sense):

P = —h (7.17)

Substituting equation (7.16) into equation (7.17) yields
pe” = —To1u1 — Tooup — Noja; — Npa (7.18)

Subtracting equation (7.18) from equation (7.15) yields
pt —pf = (Tu + Tn)ut + (Ti2 + TroJuz + (Nus + Nat)ar + (Niz + Nap)az  (7.19)

For simplicity, equation (7.19) can be written as

€ = TY1u1 + T1puz + N{ja; + Nipao (7.20)

It follows from equation (7.17) that ¢ = p; — pP = p, + hy = “total head” which
conveniently is the variable of interest that we would like to monitor. More importantly,
equation (7.20) represents the pressure equation, which transfers the random setpoint to
a constant (zero) setpoint. Therefore equation (7.20) together with (7.16) represents a

2 x 2 multivariable process with constant setpoints for both variables ¢ and he. In this
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case, it can be easily verified that the time delay structure of the multivariable process
with process variables ¢; and h; is the same as that of the multivariable process with
process variables p; and h;. Therefore, performance assessment methods as introduced in
the foregoing sections can be readily applied and their results are shown in Figure 7.5.

In Figure 7.5, ‘4’ represents the performance index of the total head, and ‘*’ represents
the performance index of the level output. The average performance index of the total head
is 0.85 and the average performance index of the level is 0.22. Note that the benchmark
is multivariable minimum variance control. Compared to the SISO assessment which
yields the performance index of the total head as an almost perfect ‘1’, multivariate
assessment does indicate that, if desired, there is a potential to reduce the variation
of the total head very slightly by implementing multivariable control. However, the
improvement may not be significant to justify implementation of the multivariable control
or an interaction compensator in practice. There is clearly a potential to reduce level
variation by implementing multivariate control. However, reduction of level variation is
not the objective. Therefore in order to reduce the variance of the total head, alternative
control strategies such as feedforward control or reduction of the dead time may be
necessary if further improvement in performance is desired.

Since the current total head variance is 260.6 Pa2 (0.0042 [in. H,O]2) and level variance
is 387 Pa? (0.0062 [in. H»O]?), the multivariable performance indices also imply that within
the present control framework the total head variance is never less than 0.85x260.6 = 221.5
Pa? (0.0036 [in. H2O]?) and the level variance is never less than 0.22 x 387.7 = 85.3 Pa2
(0.0014 [in. H,0J?).

The assessment results thus indicate that:

1. the overall control performance is subject to periodic changes due to the difference
between day and night ambient conditions;

2. within the framework of the single-loop controller tuning, there is little potential to
reduce the total-head variance by tuning the pressure controller or reduce the level

variance by tuning the level controller;
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3. within the current control structure, total-head variance is no less than 221.5 Pa2
(0.0036 [in. H20]?) under any linear (SISO or MIMO) feedback control;

4. the present controllers have been well tuned, and it may be unnecessary to further

adjust controller tunings or implement a multivariable control algorithm;

5. since any possible deduction in the total-head variance is no more than 15% by tuning
or re-designing the feedback control, it may be necessary to implement feedforward
control or reduce dead times or change the current control structure in order to
significantly reduce the variance of the total head.

Since the selected data sampling frequency is lower than the controller sampling frequency
in this example, as stated in the previous sections, a possible underestimation of the
performance indices may be expected. However, any possible underestimation error only
implies that the actual performance is even better than the estimated performance or the
actual lower bound is larger than the estimated lower bound, and therefore it does not

affect any of the above conclusions.

7.6 Conclusions

Control-loop performance assessment of multivariate processes with diagonal interactor
matrices has been introduced. Both single loop performance and multivariable
performance of the headbox control loops have been estimated from actual industrial
data. The results have shown that the present controllers have been well tuned, and
it is unnecessary to further adjust controller tunings or implement multivariate control
under current control structure. In order to further improve control performance,
implementation of feedforward control or reduction of dead times or re-design of the
control structure may be necessary. These results therefore provide guidelines for control
loop tuning and provide an insight for the potential benefits of exploring multivariable

control strategy.
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Figure 7.4: Performance assessment from the single-input and single-output approach.
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Chapter 8

Feedback Controller Performance

Assessment: General Interactor

8.1 Introduction

Factorization of a simple or diagonal interactor matrix only requires a priort knowledge
of the pure time-delays of each element in a transfer function matrix. Factorization of a
general interactor matrix, however, requires a complete knowledge or at least the first
few Markov parameter matrices of a MIMO process. The unitary interactor matriz as
introduced by Peng and Kinnaert(1992) plays an important role in feedback controller
performance assessment of processes with general interactor matrices. Estimation of the
unitary interactor matrix using closed-loop data from simple closed-loop tests has been
discussed in Chapter 5.

The main contribution of this chapter is to obtain the feedback controller-invariant
term for MIMO processes with general interactor matrices and proposal of a control
loop performance measure that is conceptually simple and computationally efficient. The
algorithm is valid for performance assessment of all class of multivariable (square or non-

square) systems. Although the method introduced in this chapter can be applied to

A version of this chapter is to appear in Automatica (in press), and a shorter version is also in the
Proceedings of the 1996 IFAC World Congress.
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simple or diagonal interactor matrices as well, it is not recommended since the algorithms
introduced in Chapters 6 and 7 are more efficient in handling these special class of

processes.

This chapter is organized as follows. The interactor matrix is first reviewed, and a
suitable expression for the MIMO feedback controller-invariant, minimum variance control
loop performance measure, is derived, all in section 8.2. The key ingredient of this
scheme is filtering and subsequent correlation analysis (FCOR). The FCOR algorithm
is used to estimate the achievable multivariate minimum variance performance from
routine operating data. Its derivation for the general interactor matrix is considered
in section 8.3. The application of the FCOR algorithm to a simulated square and a
non-square MIMO process, and an industrial absorption unit is considered in section 8.4,
followed by concluding remarks in section 8.5.

8.2 Feedback controller-invariance of minimum variance

term and its separation from routine operating data

8.2.1 Review of the unitary interactor matrix

Consider the MIMO process with a general interactor matrix:
Y:=TU:+ Na; (8.1)

where Tand N are proper (causal), rational transfer function matrices in the backshift
operator ¢~'; Y;, U, and a¢ are output, input and white-noise vectors of appropriate

dimensions.

Wolovich and Falb(1976) and Goodwin and Sin(1984) have shown existence of a unique
lower triangular form of the general interactor matrix. However, the interactor matrix
can also take other forms. It can be a full matrix or an upper triangular matrix (Shah
et al., 1987). Rogozinski et al.(1987) have introduced an algorithm for the calculation
of a nilpotent interactor matriz. Peng and Kinnaert(1992) have introduced the unitary
interactor matriz, which is a special case of the nilpotent interactor matrix. The unitary
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interactor matrix has been discussed in Chapter 3. Some important properties of the
unitary interactor matrix in minimum variance or singular LQ control have been discussed
in Chapter 4.

Existence of the unitary interactor matrix is established in Peng and Kinnaert(1992).
The unitary interactor matrix has been shown to be an “ideal” factorization of the time
delay matrix for minimum variance or singular L.Q type control in Chapter 4. A simple
algorithm exists for the calculation of the unitary interactor matrix (Rogozinski et al.,
1987; Peng and Kinnaert, 1992) (see also Appendix A). The traditional procedure for
factorization of the general interactor matrix does require complete knowledge of the
transfer function matrix (Wolovich and Falb, 1976; Goodwin and Sin, 1984; Rogozinski
et al., 1987; Peng and Kinnaert, 1992). In Chapter 5, it has been shown that factorization
of the interactor matrix can be achieved from the first few Markov parameter or impulse
response coefficient matrices of the process. Consequently, estimation of the unitary
interactor matrix is simplified and can be estimated by using closed-loop data from
simple closed-loop tests. The two special interactor matrices, the stmple interactor matrix,
D = ¢~?I, and the diagonal interactor matrix, D = diag(g~®,---,q~%), are also unitary
interactor matrices. Performance assessment for the simple interactor and the diagonal
interactor has been discussed in Chapter 6 and Chapter 7 respectively.

8.2.2 Feedback controller-invariance of minimum variance term and its

separation from routine operating data

Minimum variance control (or the benchmark control) is defined by a feedback control
law which minimizes the output LQ objective function without penalty on the control
action:

J = E(Y: - V;")T(¥; - V")

or the weighted LQ objective function:
J = E(Y - Y)W (Y, - ;")

This is also regarded as Singular LQ control (Peng and Kinnaert, 1992). For simplicity in
the following proof we shall first assume that the setpoint, Y;'P, is zero and the weighting
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function W = I. Then the singular LQ objective function is reduced to
J = EYTY

The general case is discussed in Remark 5 when the setpoint is not zero, and in Remark 7
when W # I.

Consider the multivariable process
Y; =TU; + Na,

Using the notation of multivariable minimum variance control due to Goodwin and
Sin(1984), the minimum variance control law can be designed to make the variance of
the output DY; or equivalently ¥; = q~¢DY; minimum, where the positive integer d is
the maximum order (highest power of g) of all the elements of the interactor matrix, D.
The filter, g~¢D, removes infinite zeros from the transfer function matrix. Since D is a
unitary interactor matrix, the singular LQ or minimum variance control laws for ¥; and
Y; are the same. This important property of the unitary interactor matrix is discussed in
Remark 6. Unlike previous work on the design of multivariable minimum variance control
by Goodwin and Sin(1984) and many others in the literature (Tsiligiannis and Svoronos,
1988; Harris and MacGregor, 1987), the main focus of this study is the derivation of a
sustable expression for the feedback controller-invariant, minimum variance term, from

routine operating data.

Theorem 7 For a multivariable process
Yt =TU;+ Na; (8.2)
the minimum variance control is obtained by minimizing
J = B[]V (8.3)

where Y; = q~9DY, is the interactor-filtered output. The performance measure is then

given by the following steps:
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1. The quadratic measure of minimum variance is given by
E[Y," Velmin = E(e] )(ee) = tr(Var(Fa))

where e; = Fay, the polynomial matriz F depends only on the interactor matriz and
the nosse model, and satisfies the identity:

¢ DN =Fp+---+Fy_1g74 D +49R (8.4)
F

where R is a proper rational transfer function matriz;

2. If one models closed-loop routine operating data under feedback control by the

Jollowing multivariate moving-average process:

V.- E(Y,) = Foae+ Fiae—1 +--- + Fy_18-q41
e
+Loae—g+ Liaeg_1 +--- (8.9)

We-d

then the mintmum variance term, e; = Fa., consists of the first d terms of thts
moving-average model, and therefore can be separated from time series analysis of
routine operating data and be used as a benchmark measure of multivariate minimum

variance control.

Proof: As shown in Chapter 6, for a process with a simple interactor matriz, i.e.
D =q9I,
Y = ¢ %TU; + Na, (8.6)

where T is the delay-free transfer function matrix, the following inequality holds:
E[YTYi] > E(e] )(e:) = tr(Var(Fay))
where e; = Fay, and F is defined by the identity:

N=FR+Fq'+--+F_1%Y+qR
F
where F;, for i =0,---,d — 1, are constant coefficient matrices, and R is a proper rational

transfer function matrix. The equality holds when the minimum variance control law is

implemented on the process.
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If routine closed-loop operating data under feedback control is modelled by a

multivariate moving-average process:

.- E(V) = Foar + Fiae1 +--- + Fy_1ae—qs1 + Loa—g + Lrae_g1 +---  (8.7)

(73 We—d
then the term w;_4 is feedback controller-dependent, and the term e; consisting of the first
d terms of the moving-average model is independent of feedback control. Under minimum
variance control, w_4 vanishes, and therefore e; represents the minimum variance term

and can be separated from time series analysis of routine operating data.

Now consider the process with a general unitary interactor matriz i.e. D # q~°I:
Y: = TU; + Na; = D~'TU, + Na, (8.8)
Multiplying both sides of (8.8) by ¢—%D yields

¢ °DY; = q*TU.+q °DNa,

where N is a proper transfer function matrix. By defining Y; = g~%DY, equation (8.9) is

now transformed to the same form as (8.6), i.e.
Y, = ¢"TU; + Na, (8.10)
This is a process with a simple interactor matriz. It follows that
EY{"¥] 2 E@E)(&) = tr(Var(Fay))
where & = Fay, F is defined by the identity:

N=q*DN=Fy+Fiq'+---+ Fi1g@ D 4q°R (8.11)

ag

F

Thus if the interactor-filtered, routine operating data under feedback control is modelled

by a multivariate moving-average process:

Y: - E(Y)) = Fya + Frag 1 +--- + 17’4-10:-d+g + Looe_a + Liog-q1 + - (8.12)

é We-d
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then the lower bound term & is independent of feedback control and can therefore be
estimated from routine operating data. To simplify notation, the tilde signs, ~, on the
right hand side of equation (8.12) and (8.11) have been dropped in the statement of

Theorem 7. ]

Remark 4 The feedback controller-invariant property of the minimum variance term
is valid for both square and non-square transfer function matrices. When the transfer
function is of full rank with the row dimension smaller than the column dimension, then
the minimum variance is achievable. This is clear from the proof in Chapter 4 and
Chapter 6, where the inverse of T, T, is replaced by its pseudoinverse, 7f. On the other
hand, when the transfer function matrix is a non-square matrix with the row dimension
larger than the column dimension, then the feedback controller-invariant term may not
be achievable. Since a unitary interactor matrix can always be factored irrespective of
whether the transfer function matrix is a square or non-square matrix (Rogozinski et al.,
1987), the methodology for performance assessment as proposed in this chapter is valid

for both square and non-square transfer function matrices.
Remark 5 If the setpoint is not zero, then we define
€t & Y;?-Y:
The interactor-filtered singular LQ objective is now written as
J = B(Y: - ¥;")T (V: - V") = E[{] &)
where Y; = ¢~9DY;, Y** = q~¢DY/® and & = q~9De;. Chapter 11 will show that in this
case, instead of using ¥; for the time series analysis as shown in Theorem 7, € should be

used for the analysis. Then the first d terms of the moving-average model of & constitute

the feedback controller-invariant minimum variance term.

Remark 6 It has been shown in Chapter 4 that if D is a unitary interactor matrix, then
the minimum variance control law which minimizes the following objective function of the

interactor-filtered variable Y;:

Ji = E(Y, - Y")T(Y, - ¥;**) (8.13)
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also minimizes the objective function of the original variable Y;
B2 = E(Y: ~ ;") (Y: - ;) (8.14)

and J1 = JQ.

Thus the performance measure of the original variable Y; can be obtained via the

performance measure of the interactor-filtered variable }.’g

Remark 7 In Remark 6, if the unitary interactor matrix is replaced by a weighted unitary
interactor matrix, Dy, then
E(Y. - ¥,")T (V. - ¥,?) = E(Y: - Y")TW(Y; - V;")

where D, satisfies DID,, = W. Existence and factorization of such weighted unitary
interactor matrix can be found in Chapter 4. With such an interactor matrix, the minimum
variance control law for the interactor-filtered variable, Y, is identical to the weighted
minimum variance control law for the original variable, Y;. In fact, in Chapter 4 it has
been shown that the minimum variance control law is identical to the singular LQ control

law solved via the spectral factorization method (Harris and MacGregor, 1987).
To summarize Theorem 7 and Remarks 4 to 7, the following general result is presented:

For a multivariable (square/non-square) process

Y. =TU; + Na;
the minimum variance control is obtained by minimizing
J =E[(Y. - Y,"YTW(Y, - Y;P)] = E(f We,)

If one models closed-loop routine operating data under feedback control by the following

multivariate moving-average process:

€& —E(&) = Foat+Flae—1+---+ Fa_164-d41
e
+Lott-a+ L18e—g—1 +---

Wed
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where & = g ?Dye;, then the minimum variance term, &|my = €¢ = Fae, consists of
the first d terms of this moving-average model, and therefore can be separated from time
series analysis of routine operating data. The quadratic benchmark performance measure,
E(e] Wer)|my can then be calculated from E(eTe).

Remark 8 Deduction of the minimum variance control benchmark performance as in
this chapter requires knowledge of only the time-delays (or infinite zeros) of the transfer
function matrix. No other information is required. In practice there are many limitations
in reducing output variance through feedback control. Control action constraints,
existence of poorly damped or unstable (NMP) zeros, desired robustness characteristics
etc., are examples of such limitations. Time-delays or the interactor matrices are the most
fundamental level of limitation in reducing variance, and is the only possible performance
limitation that can be estimated from routine operating data. Identification of such
benchmark performance does not imply implementation of such a controt law. However,
this benchmark performance provides an absolute lower bound or global minimum (Astrom
and Wittenmark, 1990) of process variance and “so can be used much like the Cramer-
Rao lower bound on variance in statistical parameter estimation(Harris et al., 1996)".
Even for minimum phase systems, implementation of minimum variance control is usually
not recommended (Desborough and Harris, 1992; Eriksson and Isaksson, 1994) due to its
poor robustness and need for excessive control action. Certainly for non-minimum phase
systems, it would be imprudent to implement such a benchmark control law. Nevertheless,
minimum variance control does serve as a useful “global minimum” reference point and
provides a first-level benchmark against which to assess current control performance. This
first-level performance measure is obtained with minimum effort—from routine operating
data together with a priori knowledge of the time delay matrix. This a priori knowledge
can be obtained from simple tests of the MIMO process under closed-loop conditions and
subsequent SVD analysis of the data as discussed in Chapter 5. Using this SVD method,
entire knowledge of the model of the process is not a necessary prerequisite for estimating
the interactor. The proposed method thus provides an efficient tool to comprehensively
monitor modern processing facilities which can have hundreds and possibly thousands

of control loops. For those loops which indicate good first-level performance measures,
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no further adjustment or testing is necessary. For loops which indicate poor performance
measures, a second-level study which may require process identification and/or redesign or
retuning of control loops, may be necessary. Thus the second-level performance assessment
need only be conducted on a limited number of loops and this saves valuable personnel
time. The benchmark performance (local minimum) subject to constraints such as non-
minimum phase and control action constraints can then be studied at this second-level
performance assessment; other performance measures such as regulation of step-type
disturbances (Eriksson and Isaksson, 1994) are also studied at this level; these issues
will be discussed in the following chapters.

8.3 The FCOR algorithm for general interactor matrices

8.3.1 Multivariable performance measures

As proved in the previous sections, performance assessment of multivariable processes
can be reduced to finding the minimum variance term, ¢, from a multivariate moving
average process, which has the general form shown in equation (8.5). From equation (8.5),
the covariance between the output and the white noise sequence at lag ¢ (for i < d) is
given by

ElVial ] = FiTa £ T4,(d) (8.15)

where £, = E(a¢al). From

9 DYilmo £ Vilmy = & = Foae +-+- + Fy 16¢—d41
one can solve for Y¢|my as

Yilmo = ¢"D~'(Foae + Fiae—1 + -+ + F4_1¢-d41)

where ¥;|my is the interactor-filtered output under minimum variance control, and Y|my
is the original output under the same control law. Note that from Remark 6 the minimum
variance control laws of ¥; and Y; are identical. For the unitary interactor matrix, we have
(D~Y(q) = DT(gY)), iee. |
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D™ = (Dgg?+---+ D4_1q)!
= DIq%+---+ DI ¢! (8.16)
Therefore

(D§ +---+DI_1¢* ) (Fo +--- + Fam1g™ %)

(Eo + Elq—l +---4+ Ed_lq"“'l)ag (8.17)

Yelmo

e

(Note that for a weighted unitary interactor matrix, Dg'(q) # DZI(¢~!), but Dy =
DyniW'/? and Dyg; is a unitary interactor. Thus, Dt = w-2pT (4~') and
equation (8.16) has to be modified accordingly.)

Due to causality, any term with positive power of ¢ in equation (8.17) must be zero.

Equation (8.17) can be written as a compact matrix form:

(B, By, Egy] =
[ Fo F - Fg, .
Fr B
[DF,Df,--, DT 41| ¢ (8.18)
Fy_,
| Fa—1 ]

From equation (8.17), variance of Y; under minimum variance control can be written as

Zmy = Var(Yilme) = BoEaEg + -+ E4_1T.E],
& xxT (8.19)
where X 2 [ESY? BiTY2, .. By 517 (8.20)
From equation (8.15), we have F; = £y, (i)T;! (8.21)

Substituting equation (8.21) into (8.18), and then substituting the result into (8.20) yields
[ 2,052 =pME? sy (@d-1)S5Y? ]
e MET? g, @zT?
x=(Df,DT,.--,DT_ 1] : .

- Sg d-1)27" _
| Bp,@-1)27 |
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Since variance of Y; under minimum variance control can be calculated from
equation (8.19), the objective function based performance measure (denoted as MIMO

performance measure) can be calculated as

minimum variance _ E[Y,T ¥ilmin
actual variance ~  E[YZY]
_ trime
T EEXY)
tr(XXT)
TSy

n(d)

It is often desired to compare the variance-covariance matrix of the actual output with
the variance-covariance matrix of ideal output under minimum variance control. The
performance indices of individual outputs are obtained from the diagonal elements of such
comparison:

(g1 o] = diag{EmeEy"'} = diag{XXTE;'}

where Sy = diag(Zy). The individual output performance indices represent the
performance of each output with respect to the ideal output under multivariable minimum
variance control. If an offset exists in the process output, then the output variance,
Ly, should be replaced by the output mean square error in the above calculation of the

performance indices.

Although a; is unknown in this calculation, it can be replaced by the estimated
“white” noise sequence, @, or the innovation term via time series analysis as introduced
in the filtering or whitening section in Chapter 6. This whole procedure of obtaining the
multivariable performance index is the FCOR algorithm. The FCOR approach provides

a relatively easy way to calculate the performance measure of a multivariable process.

Harris et ¢l.(1996) have proposed another approach to assess performance of
multivariable systems using spectral factorization to normalize the lower triangular
interactor matrix and subsequently using the Diophantine identity to calculate the
benchmark performance. Readers are referred to Harris et al.(1996) for detailed discussion.
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8.4 Evaluation of the FCOR algorithm on a simulated

example and an industrial application

8.4.1 Simulated example

Example 8 This simulation ezample demonstrates application of the FCOR algorithm to

both square and non-square multivariable systems with the general interactor matriz.

Consider a 2 x 2 multivariable process, with the apen-loop transfer function matrix T and
disturbance transfer function matrix N given by

[ -1 h

Ki2q—2
T— | ST e

-2

0.3¢"
| DT e |

[ —06 _ |
N = 1-0.5¢~ W

0.5 1.0
L 1—0.5¢—1 1-0.5¢—1 ]

The white noise excitation, a;, is a two-dimensional normally-distributed white noise
sequence, with ¥, = I. The output quality is measured by J = E LY. A unitary

interactor matrix D can then be factored out as:

~09578 —0.2873
D= 9 —0.2873¢ (8.22)

—0.2873¢> 0.9578¢>

Then DN is given by
~1.1014 0.2874
DN = | T3 [oken
oisl6g 11302g?
¢~*DN (d = 2) can be separated in the form of equation (8.4), where F and R matrices

are gbtained as

—1.1014¢! 0.2874¢~1
F= 1 1 (8.23)

0.1916 + 0.0958¢~% 1.1302 + 0.5651¢!

—0.5507 0.1437
R= 1-05¢-T 1~0.5¢-T . (8.2 4)

- 0.0479 0.2826
1-05¢-T T-05¢T



110

The feedback controller-invariant term is therefore

—1.1014¢7! 0.2874¢!
ee = Fay = a;
0.1916 + 0.0958¢~! 1.1302 + 0.5651¢~!

The theoretical minimum variance matrix under the minimum variance control can be

calculated from Y|y = ¢¥D~'Fa, as

1-0.02752¢g~1 —0.6— 0.1623¢!
Yilme = a;
0.5 +0.09176¢! 14+0.5412¢~1

This will be the theoretical benchmark to assess performance of the feedback controller.
The FCOR algorithm will estimate this benchmark from routine operating data.

Suppose a multiloop minimum variance controller based on the two single loops without

interaction compensation:
0.5—0.20¢—!
oS 0
0 0.25-0.200¢1
{1=0.5¢~T)(1+0.5¢-7)

is implemented on this process. The a priori knowledge of the interactor matrix can be

Q=

estimated either from previous open-loop tests or from simple closed-loop tests. One can
then apply the FCOR algorithm to the interactor-filtered variable Y, and the MIMO
performance index of the original variable Y; can be estimated. The result is shown in
figure 8.1, where performance indices include objective function based performance index
(denoted as MIMO) and individual output performance indices (denoted as yl and y2
respectively). In this example, when Kjs = 0 (K12 is the numerator gain of element (1,2)
of the process transfer function matrix T.), the performance measure of both outputs
reaches the optimal value due to weak interaction. However, with increasing interaction
(1.e. as Kz increases) the performance deteriorates, and eventually the performance index
of y) approaches zero. Performance of y; is more sensitive to the change in Kj5. It appears
that the objective function based MIMO performance index is influenced significantly by
Y1 in this example. This plot also shows a good agreement of the estimated performance

indices with the theoretical ones.
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Figure 8.1:  Performance assessment of a square MIMO process (with a general
interactor matriz) under multiloop minimum variance control

To see the effect of output weighting, a weighting matrix

v o)

is assumed, i.e. y, is regarded as a more important output variable than y;. Following

the procedure in Chapter 4, a weighted unitary interactor matrix is formed as

—0.8575¢ —1.029¢
Dy =
0.5145¢> —-1.715¢%

The feedback control invariant polynomial matrix F can be calculated from g %Dy,N =
F +q %R as

=0.3430 - 0.1715¢! —2.0240 ~ 1.0120¢~!
The theoretical minimum variance matrix under the weighted minimum variance control
can be calculated from Y;|my = ¢¥D;Fa, as

F [ -1.3720¢7! -0.5145¢71
¥ 1—-0.08824¢"! —0.6 -~ 0.5207¢~!
t —
™| 05+0.07354¢-1  1+0.43394-"

This will be the theoretical benchmark to assess performance of the feedback controller.
The FCOR algorithm will estimate this benchmark from routine operating data. The



112

results are shown in Figure 8.2. Since y2 becomes the more important output variable,
the benchmark variance of y, should be reduced and the benchmark variance of y, is
expected to increase. Consequently, the performance indices of y2 should decrease and the
performance indices of y; is expected to increase. The objective function based MIMO
performance indices should somehow move toward the performance index of y5. All these
are confirmed by Figure 8.2. This figure also shows good agreement between the theoretical
indices and estimated from the FCOR algorithm. Notice that while individual performance
indices can be larger than 1, the objective function based MIMO performance indices are
always less than 1.

The FCOR algorithm can also handle non-square systems. Consider the input-output
transfer function in example 8 replaced by a 2 x 3 transfer function matrix:
-1 K -2 0.21-2
1-0.4q-T l—-ll)?l.q-l 1-0.5¢~
0.7¢~! -2 0.8¢~2
=057 T T0ErT TeogeT

This non-square transfer function matrix has the following unitary interactor matrix:

T =

—-0.81929 —0.5735¢
~0.5735¢> 0.8192¢2

D=

Suppose a multivariable controller:

p=r 0

=1 0 iy

0’61'_‘:14-1 o.s;&:.ﬂ-l
is designed for this system. With the multivariable controller operating on this 2-output
and 3-input system, the performance can be estimated by using the FCOR algorithm
on routine operating data. The results are shown in figure 8.3. For this example,
the performance index of y; steadily deteriorates with increasing interaction, while the
performance index of y, shows a more complicated pattern of performance change with

increasing interaction.
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8.4.2 Industrial application

An industrial absorption process is shown in figure 8.4. The process is designed for
the removal of CO, from the feed gas that is a mixture of CO,, Hy, and N,. The solution
contains a combination of potassium carbonate and a catalyst additive. It absorbs CO,
from the CO; absorber on the right and is regenerated in the CO, stripper on the left by
reboiling and steam-stripping the CO, from the solution. The term “lean solution” refers
to stripper bottom flow which is mostly free of CO, whereas the “semi-lean solution”
coming from the first-stage stripping still contains some CO,. Since the solution is
circulated continuously between the two towers, an extremely strong interaction exists
between the two PID-controlled level loops of both towers. The objective of this analysis
is performance assessment of the two level controllers. For this process, the output quality
is measured by J = E(Y; — Y)W (Y; - ;") with the weighting matrix W = I (defined
as weighting #1) and the setpoint being constant. Different weighting matrices are also
studied in this example. A representative set of routine operating data was sampled over
15 hours with sampling time T, = 5sec as shown in Figure 8.5. The time delay of the
loop u; -y; is known to be 19 sampling periods, and the time delay of the loap ua - yo
is known to be 23 sampling periods. The interactor matrix has the diagonal structure,
which is a special unitary interactor matrix. According to plant engineers, the u, - y; loap
is supposed to be tightly tuned.

The left graph in Figure 8.6 shows the estimated multivariable performance indices
(weighting #1), where each point represents the performance measure based on the last
750 data points, i.e one hour of data. The performance indices can be seen to be fairly
stable over 14 hours with an average multivariable performance index (objective function
based) of 0.5. To further investigate this process, the individual output performance is
studied. The performance indices of output y; and y» are also shown in the left graph of
Figure 8.6. The performance measure of y; is close to minimum variance control(=~ 1).
However, the performance measure of y, (= 0.2) indicates rather poor control of this
output. Thus these two loop tunings are fairly “unbalanced”. Further study shows

that a strong negative correlation exists between the variations of y1 and yo. "Therefore
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this assessment suggests that 1) in order to improve the overall performance, the loop 1
controller (for y;) needs to be detuned so that the loop 2 controller (for y3) can be more
tightly tuned; 2) there may be little or no incentive to further improve the performance
of y; since it is performing at almost minimum variance levels; and 3) the performance
of y» may be significantly improved by simply adjusting current control parameters or
redesigning the control algorithm, e.g., by detuning the loop 1 controller and tightly
tuning the loop 2 controller. In summary, this assessment justifies further analysis of this
process, and indicates the potential for improving regulatory performance, particularly
the performance of y,.

Now suppose that the level of the first column is a much more import variable to
regulate than the level of the second column. A weighting matrix W = diag(100, 1)
(defined as weighting #2) is assumed. Then, one would expect this process to indicate
good performance in terms of objective function based MIMO performance index. On the
other hand, if a weighting matrix W = diag(1, 100) (defined as weighting #3) is assumed,
i.e. the level of the second column is much more important than the first column, then
one should expect that this process has very poor performance. All these are confirmed
in the right side graph in Figure 8.6.

8.5 Conclusions

The main contributions of this chapter are:

e Development of a computationally simple algorithm to estimate control loop
performance measure of a general class (square and non-square) of MIMO processes.
The use of this measure for preliminary process diagnosis and monitoring of
multivariable processes under multiloop control has been illustrated by application
to an industrial process. This later topic is bound to be the sub ject of considerable
industrial interest for pre- and post-audit of advanced control applications.

® The derivation of this algorithm is based on the idea of a minimum variance
benchmark standard that has been extended from the SISO to the MIMO case.
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e The derived algorithm is simple and has been successfully evaluated by simulated
and actual industrial application.

¢ The proposed performance assessment together with the analysis of dispersion and
spectral analysis as introduced by DeViries and Wu(1978) can result in a powerful

tool for multivariable performance monitoring and diagnosis.
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Chapter 9

Feedforward & Feedback
Controller Performance

Assessment

9.1 Introduction

Minimum variance feedback control is the best possible feedback control in the sense
that no other controllers can give lower process variance than it. If a process indicates
a good performance measure relative to minimum variance control, further tuning of the
existing feedback controller is neither useful nor helpful. If further reduction of process

variance is required, then one may have to implément feedforward control.

Design of minimum variance feedforward & feedback control can be found in Box
and Jenkins(1976), Sternad and Soderstrom(1988). Desborough and Harris(1993) have
discussed feedforward controller performance assessment of SISO processes. The main
contribution of this chapter is to extend the MIMO feedback controller performance
assessment technique to feedforward plus feedback case. If feedforward controllers have
not been actually implemented on the process, then this analysis gives a measure of the

potential benefit of implementing feedforward controllers. This chapter is organized as

119
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follows. In section 9.2, the theoretical background and calculation procedure for FF&FB
control performance assessment is established. The proposed method is then illustrated by
a numerical example and an industrial application in section 9.3, followed by concluding

remarks in section 9.4.

9.2 Performance assessment of MIMO processes using

minimum variance FF&FB control as the benchmark

9.2.1 Minimum variance FF&FB control benchmark performance

Consider a MIMO process:
Y: = TU; + Nga¢ + Npb, (9.1)

where T' (n x n) is the input-output transfer function matrix, Ny (n x n,) and Nj (n x ny)
are disturbance transfer function matrices, a; (n, x 1) is the “driving force (white noise)”
for realization of the unmeasurable disturbances, and b (n; x 1) is the “driving force” for
realization of the measurable disturbances and is independent of a;. The “driving force”,

be, can be indirectly measured through time series analysis (data prewhitening):
& = Gmbe (9-2)

where £ (ny x 1) is directly measured disturbances, Gy, (n; X n) is the transfer function

matrix obtained from time series analysis of &;.

By factoring T as T = D~'T where D! is the delay matrix or the inverse interactor

matrix, equation(9.1) can be written as
Y: = D7ITU, + N,a;: + Npb, (9.3)

Multiplying both sides of equation(9.3) by ¢g~%D where d is the order of the interactor
matrix (the smallest integer that makes ¢~2D casual or the largest power of ¢ in D), yields

Y: = ¢ UTU; + N,a; + Nyb, T (94)



121

where
. = ¢ DY
ﬁa = q-dDNa
Ny, = ¢ DN,
Using the Diophantine identity
ﬁa = Fy +q_dRa
Ny = F+q°R,
where
Fo = FP+F® " +... 4 F® 4@

Fo= B9+ FOq 4oy B g

are matrix polynomials, and R, and R, are proper rational transfer function matrices.

Using these Diophantine identities, equation(9.4) can be written as
Y: = Fuae + Fyby + TU,_g + Rage—g + Rybs_q (9.5)

Due to causality of the control law, U;_q must be independent of Faa; and Fyb;, since
these two terms occur after the time ¢ ~ d. Therefore, the first two terms on the right

hand side of equation(9.4) are control independent. In other words,
Var(Y,) > Var(Faa, + Fyb;)
or in LQ form (total variance):
E(YY,) 2 tr(Var(Faa,)) + tr(Var(Fib))

Equality holds when the remaining terms on the left hand side of equation(9.5) are equal

to zero, t.e.
TUi—d+ Ry8s—q + Ryby_q =0

which gives the following control law:

Ue = ~T~'(Raa; + Rybr) (9.6)
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Substituting equation(9.6) into equation(9.5) yields
Ye = Faa, + Fyby
This gives
ae = F7X(¥; — Fybe) 9.7)
Substituting equation(9.7) into equation(9.6) results in the feedback plus feedforward

control law:
Us = =T 'R.F; ' (q7D)Y; + T-Y(R.F ' Fy — Ry)b, (9.8)

By using equation(9.2), equation(9.8) can be written as
Us = =T 'R,F, (¢ 'D)Y, + T~ (R, F'F; - R)G ' (9.9)

The first term on the right hand side of equation(9.9) reflects the feedback part of the
minimum variance feedforward and feedback control law, and the second term reflects the
feedforward part of the minimum variance feedforward and feedback control law. This
minimum variance control law may or may not be practically implementable depending
on the invertibility of process zeros. In practice, there are many limitations on achievable
performance in addition to time-delays and non-invertible zeros. Constraints on control
action, existence of poorly damped zeros, and desired robustness characteristics are
examples of such limitations on the achievable performance as discussed in Chapter 8.
Nevertheless, this minimum variance control provides the absolute lower bound on the
process variation and serves as a convenient benchmark for the first-level performance

assessment.

This minimum variance feedback & feedforward control law apparently only minimizes
the total variance (LQ objective function) of the interactor-filtered variable ¥;. However, if
D is a unitary interactor matrix, then the minimum variance control law which minimizes

the following LQ objective function (total variance) of the interactor-filtered variable Y
J = E[Y]TY)] (9.10)
also minimizes the LQ objective function of the original variable Y;:

J2 = E[YTY] (9.11)
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and J, = J; (for proof see Lemma 3). In the sequel, this LQ objective function or total
variance will be used for the scalar performance measure of the MIMO system, and we
will no longer distinguish the performance measures between the original variable, Y;, and
the interactor-filtered variable, Y.

In summary, under minimum variance FF&FB control, the closed-loop response can
be denoted by
et 2 Vilmin = Fage + Fyb, (9.12)

where e; is the FF&FB controller-invariant term, t.e. no feedforward and feedback
controllers can change this term, and therefore it can be estimated from routine closed-loop
aperating data under any linear FF&FB controllers. This yields the following theorem.

Theorem 8 The minimum variance of the interactor-filtered output Y; is FF&FB control
invariant, and can be estimated from routine operating data Y;. The estimation is via
multiveriate moving-average time series analysis of Y;, i.e. if write Y; as

Y: = Fé“)at +-- 4 Fﬁ)lat-dﬂ +F§a)at—d+' . '+Féb)b¢ +--- 4 F,ﬁ)lbz-m +F.$b)bt—d+' -

o

C: =Fa, ae e?‘ ='-VF'bbt

then
€ = e;‘ + etm
constitutes the minimum FFE&FB variance, where e¢ = Faa; $s the contribution of the

unmeasurable disturbances to the minimum variance sequence e;, and e* = Fyb; is the

contribution of the measurable disturbances to the minimum variance sequence e;.

Note that this minimum FF&FB variance may not be achieved by minimum variance
feedback control only, and the lower bound achieved by feedback control is no less than the
lower bound achieved by feedforward plus feedback control (Pierce, 1975). Estimation of
the lower bound achieved by feedback control (minimum FB variance) has been established
in Chapter 8, i.e. if one models the interactor-filtered output, Y;, by the following moving-
average model:

V= Fove +--- + Fa_yygiy +Fayeeg + - --
e{‘B




124

then ef ® is feedback controller-invariant, and E[(eFB)T(eFB)) constitutes the total
minimum FB variance. Here v, is actually a lumped disturbance from both unmeasurable
and measurable disturbances. The benefit of implementing feedforward & feedback control
is therefore

AJ = Jrg — JrrerB = E[(ef ®)T(ef B)] — E(ef er) (9.13)

or the benefit relative to the present process variance
_ El(ef®)T(ef B)] — E(e] er)
AJ% = E(YTY;)
or the benefit relative to minimum FB variance
E((ef®)(ef B)] - E(e] er)
Ef(e; ®)T (e )]

AJ% =

9.2.2 Feedback controller performance assessment of MIMO processes

using minimum variance FF&FB control as the benchmark

A closed-loop response to both unmeasurable and measurable disturbances can be
written as
Y: = Gaa: + Gt (9.14)
where G, and Gg are rational, proper transfer function matrices. Equation (9.14) can be
estimated via any standard system identification tools with & as the known input and Y;
as the output. Substituting & = Gpb: into equation(9.14) yields

where the transfer function matrix G, can be estimated from multivariate time series

analysis of { via system identification tools. Multiplying equation(9.15) by ¢~%D yields
q DY, = ¥, = ¢"DGua; + ¢ DG¢G by (9.16)

Equation (9.16) can be further written as the Markov parameter form (impulse response
form):
Y. = Féa)at oot Fnsi)lat-('i-l)“"‘f'}“)ag_d +- ';+F(§b)bt N Fﬁb—)lbt—(d—ll'f'ﬁ?)bt—d +--

(9.17)

3 - "
€, Lh L4
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where F,-(") and F}(") are the Markov parameter matrices (impulse response coefficient
matrices); é is the inflation in e due to non-optimal FB control to the unmeasurable
disturbances; é* is the inflation in ef® due to non-optimal FF/FB control to the measurable
disturbances. From equation(9.17), we have

Var(ef) = FOS(F)T +--+ FO 5, (F&)T
Var(el') = FOS(FO)T +---+ FY 5y(FO )T

where £, = E(a,a]) and Ty = E(b5]). Thus the quadratic measure (total variance) of

minimum FF&FB variance control,
Jrrerp = E(ef er) = E(ef)T (ef) + E(e*)T (e]")

can be calculated following the above procedure and can then be used as the benchmark
against which to assess performance of feedforward & feedback controllers. The quadratic
measure of minimum FB-only control Jrg = E[(ef B)T (ef )] may be estimated via the
FCOR algorithm. Then the benefit of implementing optimal FF&FB control can be
calculated from equation (9.13).

9.3 Numerical example and an industrial application

9.3.1 Numerical example

Performance assessment of feedback control for a 2 x 2 process has been studied in
Chapter 8. In this example, the benefit of implementing feedforward & feedback control
to the same process will be discussed. The process has the following transfer function

matrices:

-1 -2
- | T o
-1 -2

1 —0.6 0.1g-2 —0.2¢1
N, = 1-05¢-T T1-0.5¢-T Ny = '—q'—l’1-o.4q- 1-0.3¢—

-2 -1
= 0.'5 —1-—61.'51’0 = —ﬁ—”g ¥ —12’64.%-1

;
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A unitary interactor matrix D can be factored as:

D —0.9578¢ —0.2873¢
—0.2873¢% 0.9578¢2

Then N, = ¢g~4DN, is given by

— - —-0.5507 0.1437
N, = —1.1014¢" 0.2874¢" +g~2| T705¢°T T-0.5¢~T
_ - 0.0479 0.
3.1916 +0.0958¢~! 1.1302 + 0.5651q 1# | ot e |
Pa Ra

and Ny = ¢~4DN; is given by

_ 0 0 —4.559—141.341¢q—2 —-30.65+5.36%1‘1
Nb = +q—2 zg—q't iig-—-ﬁ-—’h 10—q~1)(10—-3¢—

-1 6.465—2.73¢~! 2.104—0.9768q!
0 0.3256¢ o I o G T
R R,

The minimum FF&FB variance term can then be written as

—-1.1014¢7t 0.2874¢L 0 0
e = Foas + Fyb = a; + be
0.1916 + 0.0958¢~1 1.1302 + 0.5651¢~" 0 0.3256¢~!

Assuming £, = Ea;a] =1 and £ = Ebb = 41, the quadratic measure (total variance)

of minimum variance FF&FB control can be calculated as
JrryFB = Eetret = 3.3626

If, on the other hand, only minimum variance feedback control law is implemented, the
feedback controller-invariant minimum variance term can be estimated by applying a FB
performance assessment algorithm such as the FCOR algorithm to process data. This

gives the quadratic measure (total variance) of minimum feedback control as
Jrp = 4.1873

The benefit of adding optimal feedforward control relative to minimum FB variance is

then:

4.1873 — 3.3626
AJ% = 11873 =19.6%
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In summary, the achievable total variance by implementing any feedback control is no less
than 4.1873; the achievable total variance by implementing any feedback and feedforward
control is no less than 3.3626. The benefit of adding feedforward control is about 20%
relative to minimum variance FB control. The optimal values may or may not be

achievable depending on practical constraints.

9.3.2 Industrial application

The proposed performance assessment methods were applied to a Mitsubishi Chemical
Corporation industrial process at Mizushima, Japan. As depicted in Figure 9.1, the
process consists of an integrated cracking unit and a separation unit. In the current
operation, oscillatory behavior in bath TC2 and TC3 occurs frequently which causes the
compaosition of the distillate and bottoms to fluctuate. Clearly, the cracking furnaces are
highly integrated with the distillation column and therefore when tuning all of the single
loop controllers, interactions and the multivariable plant performance must be considered.
The main objective of this study is to assess the current control performance of TC2 and
TC3, identify their primary source of variation and analyze the benefit of implementing
feedforward control. Based on this analysis, recommendations regarding control structure,
controller tuning and process modification can be made that will reduce variation of TC2
and TC3. Expected benefits of a reduction in the variance of TC2 and TC3 are improved
operability and yields of subsequent processes and lower reboiler and condenser energy

requirements for the distillation column.

It is known from a previous plant test that the process has a diagonal interactor matrix

as

D'=

This interactor matrix clearly satisfies DT (q~1)D(q) = I, which is a unitary interactor
matrix. The number of data points used for this analysis is 7000 with sampling
interval T; = Imin. There are more than 20 measured disturbances. Three measured
disturbances were selected from a screening test as candidates for feedforward control.
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They are the flow rate measurement FM?2, the temperature measurement TM1 and the
pressure measurement PM3. In this case, feedforward controllers have not been actually
implemented. This study will analyze the benefit of implementing feedforward controllers.
A representative set of data for the two outputs and the three measured disturbances is
shown in Figure 9.2. Following the procedure as proposed in this chapter, the total

minimum FF&FB variance is estimated as
Jrrerp = E(ef)T (ef) + E(€™T (™) = 0.0356 + 0.0683 = 0.1039

The total minimum FB variance (if only minimum variance feedback control is

implemented) is estimated from the FCOR algorithm as
Jre = E[(ef ®)T (ef B)] = 0.1386
The total current process variance is calculated as
Jact = E(Y: = YP)T(Y; — Y,'P) = 0.2366

Based on these results, the total variance of the process variables may be reduced from
the current value of 0.2366 to a minimum of about 0.14 or 42% reduction in the variance
by implementing a multivariate minimum variance feedback control only. The minimum
value itself may or may not be achievable depending on invertibilty of the process zeros.
On the other hand, a multivariate minimum variance feedforward plus feedback control
strategy may bring the total variance down by 1-0.1039 /0.2366 = 56%. The improvement
relative to the actual variance due to applying feedforward control is therefore

_ 0.1386 — 0.1039
- 0.2366

These results lead to the recommendations that both feedforward control and multivariate
feedback may be beneficial and worthwhile for further analysis.

AJ% = 15%

9.4 Conclusions

This chapter has extended the MIMO performance assessment of feedback controllers
to feedforward plus feedback controllers. It has been shown that the minimum FF&FB
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variance is feedforward and feedback controller-invariant and can be estimated from
routine operating data via time series analysis. The proposed performance assessment
method has been illustrated by a numerical example and applied to an industrial

application.
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f

Source of disturbances
T™I1, FM2, PM3

Figure 9.2: Process data trajectory. The time scale is in terms of sampling intervals.



Chapter 10

Performance Assessment of

Nonminimum Phase Systems

10.1 Introduction

With complete knowledge of process dynamics, any possible limitations on the
achievable performance may be calculated via procedures such as convex optimization
and linear programming (Boyd and Barratt, 1991; Dahleh and Diaz-Bobillo, 1995). This
is generally not a very attractive approach to process performance monitoring, since a
typical plant can have hundreds and thousands of control loops, and identification of all
loops, to obtain process models, is a very demanding requirement. Performance monitoring
should be carried out in such a way that the normal operation of a process is affected as
less as possible. In addition, process dynamics and disturbances may drift from time to
time, and the initially identified model may not represent the true dynamics. Thus on-line

performance monitoring is necessary.

Different types of constraints require different levels of process knowledge. Some
constraints require less a priori knowledge of processes than others. If one can separate
the constraints into different levels, then control loop performance may be assessed from
the simplest to the hardest constraints with progressively more information required about
the process at each stage. Only those loops which indicate poor performance at the first

131
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level then need to be examined at the next level of performance assessment. Time-delays
pose the first level of performance limitations. However, time-delays are easiest to obtain
or estimate. Therefore, performance limitations due to time-delays is assessed at the first
level. The second level of performance limitation would be due to non-invertible zeros.

Tyler and Morari(1995) have considered performance assessment of SISO systems with
non-invertible zeros. In Chapter 6, 7 and 8, performance assessment of MIMO processes
with time delays or infinite zeros has been considered. This chapter is an extension to
the previous results in which we can consider performance limitations and assessment in
the presence of unstable process zeros. Throughout this chapter, we shall assume that the

process is open-loop stable, i.e. no poles lie outside the unit circle.

This chapter is organized as follows. The generalized unitary interactor matrix, an
all-pass factor, is introduced in Section 10.2. Performance assessment of processes with
non-invertible zeros is discussed in Section 10.3, followed by a numerical example in
Section 10.4. Concluding remarks are addressed in Section 10.5.

10.2 Generalized unitary interactor matrices

For multivariable processes with non-invertible zeros, an interactor matrix which can
also factorize the non-invertible zeros in addition to the infinite zeros is desirable. The
optimal control law corresponding to the admissible minimum variance and minimum ISE

control requires such an interactor matrix (Tsiligiannis and Svoronos, 1989).

Definition 3 An interactor mairiz, Dg, satisfying the following four conditions, is

defined as the generalized unitary interactor matriz of T.
1. The unitary condition is held: DZ(g~')D¢(q) =I.
2. There ezists a non-singular constant matriz K, f € R**™ such that

qlillgo DT = King ) (10.1)
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3. There exist non-singular matrices K; € R™™ such that

i = . P = 170 10.
q_Ian:/m_ DeT =Ky (i=1 s) (10.2)
where 03, (1 =1,---,3) are the non-invertible zeros of T, i.e. [o;] > 1.

4. The poles of D¢ in terms of q are {g1,---,0,} (including the multiplicities).

The algorithm for factorization of the unitary interactor matrix as discussed in
Chapter 4 extracts infinite zeros from the transfer function matrix. To extract
finite non-invertible zeros, a bilinear transformation as introduced by Tsiligiannis and

Svoronos(1989) can be used:
-1 _ 1 +p—10’
pl+o

and therefore
1_l—oqt

gl-o
where o is an unstable zero, and p~! is a map of ¢~!. For any non-minimum phase zero
g~ ! =1/a, this mapping transforms the finite zero in the g-domain to an infinite zero in
the p-domain, i.e. from ¢~! = 1/¢ to p~! = 0. Therefore existing methods for extraction
of the infinite zeros can be applied. This also proves existence of the generalized unitary

interactor matrix.

The generalized unitary interactor can therefore be factored as
DG = DyDiy;

where D;ys is a unitary interactor matrix representing infinite zeros of T, and Dy is
a unitary interactor matrix representing non-invertible zeros of T. The order (d) of the
interactor matrix D¢ is defined as the order of Ding. According to this procedure, each p-q
transformation factors out one unstable zero. To factor out all {o1,+--,0,} non-invertible
zeros, s steps of such transformation are required. Each step involves a simple algebraic

manipulation. Dy can therefore be written as

Df = Df-Df.—l ot Dfx
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The “Inner-Outer” factorization (Chu, 1985) can also factor the unstable and infinite zeros.
It involves solution of an algebraic Riccati equation in the state space framework. The
generalized unitary interactor matrix provides an alternative solution to the inner-outer

factorization.

Example 9 Consider the following system from Tsiligiannis and Svoronos(1989):

Tsiligiannis and Svoronos(1989) have shown that a lower triangular generalized interactor
matrix can be factored as
q 0
-I.OQMq% q——#{,’_‘f‘"

The optimal control law based on such lower triangular interactor matrix results in optimal
(minimum variance) control of the first variable, and conditional optimal control of the
remaining variables (Tsiligiannis and Svoronos, 1989). Therefore, importance of each
variable depends on the order it is stacked in the output vector. Different ordering of the
output vector results in the different optimal control laws. On the other hand, as shown
in the next section a generalized unitary interactor matrix gives an optimal control law
which minimizes the LQ objective function or Hj norm and therefore the resulting optimal

control law is unique.

Now we show a procedure for factoring a generalized unitary interactor matrix from
this process. The transfer function matrix has a simple time-delay structure or a simple
interactor matrix Dins = qI (therefore d = 1), and an unstable zero at 1+ /0.3 = 1.5477.
If the infinite zeros are factored out, then the transfer function matrix with finite (stable

and unstable) zeros is obtained as

o._%?' — 0'.5
— o‘.s - 0-.60‘

Mapping from g-domain to p-domain using the bilinear transformation

-1 _ 1+15477p7!
T L5477 +p1
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yields the transfer function matrix (Tf) in the p-domain as

0.6(1.54774+p~" 0.5(1.54774p—!
r | TSt Toirrio
0.6(1.5477+p~1) 0.6(1.54774p~1

This can be further written in the Markov parameter form as:

p-l-*-...

T 0.8091 0.7386 + 0.2542 0.3178
0.8863 0.8091 0.3814 0.2542

The first Markov parameter matrix is rank defective, therefore there is at least one infinite
zero in T in the p-domain. Using the first two Markov parameter matrices to form a block

Markov parameter matrix yields

[ 0.8091 0.7386
0.8863 0.8091
0.2542 0.3178
| 0.3814 0.2542 |

A —

Applying the algorithm given by equations (A.4) to (A.7) to A©), one can then proceeds

as follows:

For ¢ =1 (iteration #1): r =1,k =1,

—0.7385 0.6742
Q(l) —
—0.6742 —0.7385
[0 0]
O B
01
[0 0
x :
v = | ° 1
P 0]
[ —1.2001 -1.0955 ]
A0 _ | 00694 —0.0633
—0.4531 —0.4020
| 0 0 |
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Because rank(A()) = 2 = min(n, m), the algorithm terminates and the unitary interactor
matrix given by equations (A.2) and (A.3) is calculated as

-0.6742 -0.7385
-0.7385p 0.6742p

Ds(p) = [

Substituting the bilinear transformation
-1 1-15477¢71
p = -l_
Tl—0o
back into Dy(p) yields the unitary interactor matrix in g-domain which contains the
unstable zero of T

-0.6742 ~0.7385

=0.7385(1—1.5477¢) 0.6742(1—-1.5477q)
q—-1 q-1.

A generalized unitary interactor matrix, containing both infinite and finite non-invertible

zeros, can therefore be calculated as

Do < DD —0.6742¢q —0.7385¢
G = Vflinf = —0.7385(1-1.5477q)q  0.6742(1—1.5477q)q
q—1.5477 q-1.5477

10.3 Feedback controller performance assessment of

MIMO processes with non-invertible zeros

10.3.1 Performance assessment with admissible minimum variance
control as the benchmark

For MIMO systems with non-invertible zeros, the LQ problem can be solved via
spectral factorization (Youla and Bongiorno, 1985; Harris and MacGregor, 1987; Peng
and Kinnaert, 1992), via optimal H> control (Morari and Zafiriou, 1989; Dahleh and
Diaz-Bobillo, 1995) or via the state space approach (Kwakernaak and Sivan, 1972).
Alternatively, one may solve it through a simple and intuitive approach as discussed
in Astrom and Wittenmark(1990) . This last approach provides an explicit expression
for the feedback controller invariant terms, and is the most suitable approach for seeking
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the feedback control invariant term (benchmark control performance) for control loop
performance assessment. Astrom and Wittenmark(1990) have shown that this admissible
minimum variance control problem for SISO systems can be solved by minimizing the
filtered variable y{ - The filter is an all-pass factor, which removes all zeros that are
outside the unit circle from the input-output transfer function while keeping the spectrum
unchanged. The spectrum of y{ is therefore the same as that of y,. Minimization of
Var(y{) is equivalent to minimization of Var(y,). The generalized unitary interactor
matrix is also an all-pass factor and can serve as such a filter for the MIMO system as
well. Thus the methodology used in the SISO case can be extended to the MIMO case in
an intuitive way. The following theorem is an extension to Astrom and Wittenmark(1990)
» or to Goodwin and Sin(1984) to consider the generalized unitary interactor matrix for
the solution of the admissible minimum variance control law. The admissible minimum
variance control law can also be derived from the optimal H> control law. This is discussed
in Section 10.3.2.

Theorem 9 Consider a MIMO process with unstable zeros
Y =TU; + Na, (10.3)
The control objective is to minimize the LQ objective function defined by
J = E(YTY,) (10.4)
Then the admissible minimum variance control law is given by
Ut = ~T ' Bmp(F +q~*Ramp) (4~ D5)Ye (10.5)

where T = DcT; d is the order of the interactor matriz; D¢ is the generalized unitary
interactor; F, Rymp and Rpmmp are derived from the Diophantine identity:

¢°DeN=Fy+Fig' +--- + Fi1q™ ™' +q7* (Rpmp + Rimp) (10.6)
F R
where F; (fori =0,1,---,d—1) are constant coeffictent matrices, R is the remaining proper

transfer matriz, Ramp contains all unstable poles of R after partial fraction ezpansion, and
Ry is the remaining term of R after the partial fraction ezpansion.



138

Proof: Multiplying both sides of equation (10.3) by ¢~4Dg yields
9~'DgY: = TU;_4 + ¢ *DcNa (10.7)
Substituting equation (10.6) into equation (10.7) yields
¢7DcY: = TUp—4 + Far +q *Rumpas + % Rengay (10.8)

Since GG(q7")Gc(g) = I by the definition of the generalized unitary interactor,
minimization of E[(g~¢D¢Y;)T (¢-¢D¢Y,)] is equivalent to minimization of E[YTY,] for
any admissible feedback control.

The following interpretation of the unstable operator follows from Astrom and
Wittenmark(1990) (see also Wiener(1949)). Consider the operator 1/(1 + ag~') where
la| > 1. This operator is normally interpreted as a causal unstable operator. Because

la] > 1, and the shift operator has the norm |g[ = 1, the series expansion

1 1 ¢ g.. 1 1
= = =[] - ~ —C = s
l1+ag! al+gq/a a[ aq-{bazq2 ]

converges. Thus the operator 1/(1 + ag~!) can be interpreted as a noncausal stable
operator. Therefore the term, q"R,m,,, in equation (10.8) can be expanded in terms of
the ‘q’ operator. For example, consider Ramp = 1/(1 +aq~!). Then the expansion

¢! _1g% }_[q—d-u _ lq-d+2 + 1 g8 -]
l+ag7! al+q/a a a a?

converges, and the most recent term in this expansion is %q“*’l that cannot be controlled

by the control action, U;_q = Upg %, which is one step earlier. Clearly the term Fa, is also
independent of U;_4. Therefore the optimal control law is obtained by letting the sum of
the remaining terms in equation (10.8) to zero. This yields

Ut-g = T 'Rppar—q (10.9)

or
U = ~T 'Rpypay (10.10)

Substituting equation (10.10) into equation (10.8) yields

q7*DgY: = (F + ¢~ %Ramp)a: (10.11)
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Thus
a¢ = (F + 9" Ramp) ' (¢ Dg)Y: (10.12)

Substituting equation (10.12) into equation (10.10) yields the admissible minimum
variance control law:
U= "T_IRmp(F‘*'q—anmp)-l(q-dDG)Yt (10.13)

From equation (10.11), the closed-loop response under the admissible minimum variance

control is given by

— - — A
Y.=(q dDG) l(F +4q anmp)at = Grmina¢ (10.14)

Now we are in the position to show an approach to estimate the admissible minimum
variance control variance from closed-loop data using the results in Theorem 9. It is clear
from the proof of Theorem 9 that for such a purpose, one needs to estimate the terms F
and Rpmp from closed-loop data in order to obtain equation (10.11) or equation (10.14).

If D¢ contains only infinite zeros, then equation (10.11) reduces to
q~?DgY; = Fa,

Any non-optimal feedback control will inflate the process by adding an extra term to this
equation as discussed in Chapter 8, i.e.

g7 %DgY: = Fa; + Lay_q

where L is a proper rational transfer function matrix and is feedback control dependent.
The correlation analysis between the interactor-filtered variable g~¢DgY; and a; yields
the feedback controller-invariant term F. Thus a simple FCOR based correlation analysis
yields the benchmark performance. However, if D¢ contains unstable poles (non-invertible
zeros of T'), then equation (10.11) is the closed-loop response under admissible minimum

variance control. It is evident from the proof of Theorem 9 that the terms F and Ramp
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are feedback control invariant, and any non-optimal feedback control will add an extra
term to equation (10.11) as

q7%DcY: = Fay + Rumpas—q + La_q

where L is feedback control dependent.

To estimate the terms F and Ramp, we shall fit Y; by a time series model as
Y =Ggae

Then multiply G4 by ¢~¢ Dc to obtain the interactor-filtered closed-loop transfer function
matrix G, i.e.
Gy =q*DcGa
Let G7; be expanded to
G& = Fa; + ba;_4

where F = Fy+ Fig™' +--- + F4_1¢"%!, and & is the remaining rational proper transfer

function matrix of Gy, Finally, from & one can obtain Rppp as
Rpypmp = {®}+

where {.}, denotes that after a partial fraction expansion of the operand, only the terms
corresponding to unstable poles are retained. With the knowledge of F and Rpmp, the
closed-loop response under the admissible minimum variance control can be calculated

from equation (10.14).

The algorithm to calculate the admissible minimum variance control response for
feedback control performance assessment of nonminimum phase processes is summarized
in Table 10.1

10.3.2 Alternative proof of admissible minimum variance control

To justify the proof and also the interpretation of causal unstable operators adopted
in Theorem 9, we compare the control law obtained in Theorem 9 with the optimal Hy

control law. Morari and Zafiriou(1989) have solved minimum H,-norm control for the
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Table 10.1: The procedure for calculation of the benchmark performance of MIMO
processes with non-invertible zeros

M

1. estimate or factorize the generalized unitary interactor matrix from T as Dg;
2. fit routine operating data Y; by a time series model to obtain Ga;

3. multiply Ga by ¢~?D¢ to obtain Gy, = ¢~IDgGy, where d is the order of the

interactor matrix;
4. expand G into

Gu=Fo+Fig~'+---+ Fy_1g7 Y 4479
F

where F; for (i = 1,2,---,d — 1) are constant coefficient matrices, and ¢ is the

remaining term after the expansion;

5. using partial fraction expansion, ¢ can be expanded into
¢= Rmnp +L

where Rqmp contains all unstable poles which are the non-invertible zeros of T, and
L is the remaining term after the partial fraction expansion. Then the process under
admissible minimum variance control can be written as

Y: = ¢*DG'(F + ¢ Rump)as (10.15)

%
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MIMO system with non-invertible zeros. In this section, we show that the admissible
minimum variance control law given in Theorem 9 is the same as the optimal H> control
law given by Morari and Zafiriou(1989) for stochastic systems.

Theorem 10 (Morari and Zafiriou, 1989): Consider the MIMO process with non-
tnvertible zeros,
Y: =TU; + Na,

Factor T into all-pass portion and minimum-phase portion
T = D;'T
where DEI or D¢ is an all-pass factor. Similarly factor N into
N = NN,
where Np is an all-pass factor. Then, the Ha optimal control is given by
Q* =qT g 'DcN}.N-!

where Q* is the controller transfer function matriz in the IMC framework. Its relation

with the conventional feedback control Q (Us = ~QY;) is given by
Q=Q(-TQ)"

The operator {.}. denotes that after a partial fraction ezpansion of the operand, only the

strictly proper terms are retained ezcept those corvesponding to the poles of Dg.

Assume N has no zeros outside unit the circle. This is a general assumption for
the stochastic system (Astrom and Wittenmark, 1990; Goodwin and Sin, 1984), since
any unstable zeros in N can be replaced by their image (reciprocal) without changing the
disturbance spectrum. With this assumption, the control law under conventional feedback

control framework can be written as
Q= @U-TeYT (10.16)
= ¢T{q"'DeN} N~ (I - T {g~' DN} N7
= ¢I7{g" DeN}.(N - gD' (g~ DaN}.) ™ |
= ¢T"{q"'DeN}.(DGN - ¢{g™' DeN}.) ' D (10.17)
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With use of the Diophantine identity:

¢7IDGN =Fy+ Fig™" +---+ Fg_147%* +¢7¢ (Bnmp + Rmp)
F R

we have

¢7'DeN = ¢*'(q7?DgN)
= ¢ 'F+q 'Rump +q Ry (10.18)

In equation (10.18), only the term 4 Ry is strictly proper without containing poles of
Dg¢. Note that poles of D¢ are the non-invertible zeros of T. Therefore

{¢7'DeN}e = ¢ ' Rpnp (10.19)

and consequently
DgN - q{¢7'DcN}. = ¢°F + Rump (10.20)

Substituting equations (10.19) and (10.20) into equation (10.17) yields

Q = qT ¢ 'Rup(¢®F + Romp) ™' Dg
= T—lRmp(F"'q—anmp)-l(q—dDG)

Thus the optimal H3 control law expressed in the conventional feedback control framework

can be written as
Ui = =T Rup(F +q~%Rump) " (¢~ Dg)Y;

which is the same as the admissible minimum variance control law in equation (10.13).

10.4 Numerical example

Example 10 Consider the same system as in Ezample 9 with the disturbance transfer
function matriz as:
1 —0.6
N=| T =T
0.5 1
1-05¢ T T1=0.5¢-T
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A generalized unitary interactor matrix has been factored in Example 9 as

—0.6742¢ —0.7385¢
—0.7385(1-1.5477q)q  0.6742(1—1.5477q)q
—15477 _J'Tm—Lq- :

With the order of the interactor matrix d = 1, we have the Diophantine identity

D¢ = D¢Djpy =

¢ ?DeN =q¢q~'DgN

[ -0.5217 —0.167
0.8708—0.4808¢—1 —~2.4238+1.3383¢—"!
L0621 1793 | | oot asene e |
F R
—0.52 —0.167
0.8275 —2.3032 0.0433 —0.1206
L 0.6213 -1.7293 1 L T=Lse™T  T-15dTrg T | 1-05¢-T 1_—0.15q~'1' i
F Rump Renyp
—0.5217  _—0.1670
_ -1.0434 1 -0.3340 1 g~ T-0.5¢-T T—05¢T (10.21)
0.6213—0.1340¢~!  —1.7293+0.3731¢~ . —0.
| T T ermrerT— T e
F+q— ;anp R:‘P
The closed-loop response under admissible minimum variance control is therefore
q—dDGYt =(F+ q—anmp)at
Substituting numerical values, we have
~0.6742 —0.7385 V. -1.0434 —0.3340
—0.7385(g—'—1.5477) 0.6472(¢='—-1.5477) | ¢ | 0.6213-0.1340¢=! —1.7293+0.3731g-' | %¢
L e e
This can be simplified as
-0.6742 ~0.7385
—0.7385(¢~! — 1.5477) 0.6472(¢! — 1.5477)
-1.0434 -0.3340
= a; (10.22)

0.6213 — 0.1340¢~' —1.7293 + 0.3731¢!

Equation (10.22) represents the theoretical closed-loop response under admissible

minimum variance control. Assume, for simplicity, that Var(a:) = I, then the achievable
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minimum variance can be calculated from equation (10.22) as

Var(Y:)|me =

16137 -0.3521
= YN (10.23)
—0.3521 1.4988

Define the individual output variance under the admissible minimum variance control as

[0F achs B acn] = diag{Tocs} (10.24)

Now consider calculation of this achievable minimum variance from the closed-loop
transfer function under feedback control. An IMC controller (Tsiligiannis and Svoronos,
1989) given by

o — (1=04g™)(1— 0547 7.78(1-0.357g™")  —8.333(1 — 0.4¢~1)
(1 —0452¢~1)(q™" ~ L54T7) | _19435(1 —0517¢-1)  10(1 — 0.54~1)

is implemented on the process. The controller transfer function matrix Q* denotes the
control under IMC framework. Under IMC control, the closed-loop transfer function,

which can be estimated via time series analysis in practice, is written as

Ga = (I-TQ")N
1-q¢1 0 L —0.6
—2.7908 13 —1)g~1  1.5477(1~q—2 1—0-5 = lq- (10.25)
et i) || = e
The interactor-filtered closed-loop transfer function matrix can be written as

Gy =q*DgGuy =g 'DeGy
[ —1.6150+3.7787¢-1-2.1637¢~2  —0.5169-2.9672¢" 42 784192
_ -W— 5L T - _(TFJTG%WP)"-& : LEATT—q
0.6213—0.6213¢—2 —1.7293+1.7293¢—2
[ T [ 1.9277-1.%1-1 —2.8596+2.9511¢~!
1.2722-1.10219-! —3.5411+3.0676g~!
I 0.6213 -1.7293J W’FT%F’T Wm-&%m |
R

\— -l [l

F
[ ] [ =0.5217 _—0.167
_ ~1.0434 -0.3340 ! 0 0 +q! T=05¢-T T1-05¢ T
- 0.8275 ~2.3032 00433 —0.1206
L 0.6213 1.7293 1 | =TsmeET TS | | 05T T-05T

ng

F Ramp L
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-1.0434 —0.3340 J

0.6213—0.1#4“ —1.7293+0.3731¢—!
L -1 T T—15477q 1

F+q~ ;anp

1.9277— l.%- 1 —~2.8596+2.95119~!

-’

0.4448 —1.2380

-03¢T 1=05¢T

N

L
The first term on the left hand side of the last equation is the same as that given in

=~

equation (10.21). Therefore, one can see that the achievable minimum variance term
F+ q“‘R,.,,.,, can indeed be estimated from closed-loop data. In practice, estimation of
this term requires time series analysis of closed-loop data Y; and the a priori knowledge
of the generalized unitary interactor matrix Dg.

By the assumption that Var(a,) = I, the closed-loop output variance can be calculated
from equation (10.25) as

1.8133 —~1.1546
Var(Y;) = Sy (10.26)
—1.1546 9.5164

Comparing equation (10.26) to equation (10.23), allows one to compare the actual variance
with the achievable minimum variance. The objective function based performance index
as defined in Chapter 8 can be calculated as

& min(EYTY)])  trSeu - 0.97
EYY] — trZy

which indicates an overall MIMO feedback control performance. With the maximum

performance index as 1 and poorest performance index as 0, this index indicates relatively

poor performance. The reason is: in Tsiligiannis and Svoronos (1989), the controller
is actually designed for setpoint tracking of a step change but not for regulating the
disturbances as assumed in this example. Nevertheless, output #1 is close to its lower

bound with the individual performance index as

where o7, is the individual output variance defined by

[02,,02,] £ diag(Ty)
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Output #2, on the other hand, is far away from its lower bound with the individual

performance index as

A O3ach _ 14988
®= o2 T 95164

Thus, the controller has good performance in regulating output #1 but poor performance
in regulating output #2. The reason is, as shown in Tsiligiannis and Svoronos (1989),

0.16

a lower triangular interactor matrix was used for the control design, and therefore good

performance of the first output should be expected.

10.5 Conclusions

A generalized unitary interactor matrix has been introduced in this chapter. The
admissible minimum variance control law derived by using the generalized unitary has been
shown to be identical to the optimal H; control. With a priori knowledge of the generalized
unitary interactor matrix, the admissible minimum variance control performance can be
estimated from routine operating data, and subsequently used for control loop performance

assessment. A numerical example demonstrates the applicability of the proposed method.



Chapter 11

A Unified Approach to

Performance Assessment

11.1 Introduction

Feedback control performance assessment with minimum variance control as the
benchmark has been discussed in the earlier chapters. It has been shown that this
techinique is an efficient and also the most convenient tool to monitor industrial processes

which can have hundreds and even thousands of control loops.
However, Eriksson and Isaksson (1994) have shown that the aforementioned technique

gives an inadequate measure of the performance if the aim is not stochastic control, but,
for example, step disturbance rejection or setpoint tracking. Tyler and Morari(1995) have
a similar claim on this issue. One objective of this chapter is to discuss this issue and
extend Harris’ idea of control loop performance assessment to cover practical issues such as
deterministic disturbances and setpoint changes. It is shown that many practical problems
such as those posed by Eriksson and Isaksson and others can be readily solved under the
same framework as proposed by Harris (1989) via appropriate formulation of the initial

problem. Another objective of this chapter is to unify the performance assessment of
! A part of this chapter has been accepted for presentation at the 1997 IFAC Advanced Chemical Process
Control Symposium.
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both stochastic and deterministic systems under the H» norm framework. Therefore, the
results developed in the earlier chapters can be extended to more general cases.

This chapter is organized as follows. Assessment of setpoint tracking performance
is discussed in Section 11.2. In Section 11.3, deterministic disturbances are explained
under the stochastic framework. Performance assessment of feedback controllers for
regulating both stochastic and deterministic disturbances is discussed in Section 114,
and the treatment on pure deterministic disturbances is discussed in Section 11.5. In
Section 11.6, a unified approach for performance assessment is proposed. Simulation
example is given in Section 11.7, followed by concluding remarks in Section 11.8.

11.2 Setpoint tracking problem

As discussed in the previous chapters, the standard formulation of performance
assessment using minimum variance control as the benchmark is shown in Figure 11.1
by assuming Y, =0 or & =0, where N, Q, T and M are disturbance, controller, plant
and setpoint transfer function matrices respectively; a; is white noise with zero mean; For

this assumption it follows from figure 11.1 that
Y =-TQY; + Na, (11.1)

Under this formulation, routine operating data Y; can be used for performance assessment.
However, this formulation is of interest only when applied for performance assessment of
the regulatory controller. In some cases the setpoint tracking performance may also be of

interest.

Define ¢ = Y,"” — ¥, as the setpoint tracking error. Assuming a, = 0 for consideration

of pure setpoint tracking problem?, it follows from figure 11.1 that
€& = —=TQe: + ME, (11.2)

where the setpoint, ¥;7, can be regarded as the realization of a white noise sequence, &;, as

input into a rational transfer function matrix, M. It will be shown that a “deterministic”
If a¢ # 0, the setpoint signal needs to be considered with other disturbances. This issue will be
discussed in the following sections.
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setpoint can also be produced by filtering a white noise input. One may note that
equation (11.2) has the same form as equation (11.1), i.e. the setpoint tracking problem
can be formulated as a regulatory control problem by a simple change of variables. The
only difference is the data used for analysis. For the setpoint tracking problem, one uses
e = Y,? - Y, while either ¢ or Y; can be used for the performance assessment of the
regulatory control problem. In the sequel, we will focus on the regulatory control problem,
Le. we consider performance assessment of Y; with ¥;® = 0. If setpoint tracking is also
considered, then Y; simply needs to be replaced by the tracking error ¢; = Y? - Y;, and
the results developed in the previous chapters can be used.

11.3 Deterministic disturbances occurring at random time

MacGregor et al.(1984) have shown that many deterministic disturbances such as the
step, ramp and exponential changes can be modeled as autoregressive-integrated-moving-
average (ARIMA) processes. The only difference between deterministic and stochastic
disturbances is the probability distribution of the shocks or the white-noise sequence.

This point is illustrated by using the following example.

Three (ARIMA) filters are studied in this example, i.e. the integral filter 1/(1 — ¢~1),
the double integral filter 1/(1—¢~')? and the sinusoidal filter sin(w)q~'/(1—2¢~cos(w) +
q~2). Figure 11.2 shows probability density function of the shock in a special case. It is
symmetric but not normal-distributed. The shock takes only three values, —1, 0 and 1 with
99.98% probability density concentrated at the point 0. Figure 11.3 shows the realization

|
N

Sp
Ay RC e - T—-<L—-Y‘

Figure 11.1: Block diagram of closed-loop process
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Figure 11.2: Probability distribution of the shock

of the signal by passing the shock through the three filters respectively. Clearly these
graphs represent a deterministic step, ramp or sinusoidal signal with possible magnitude,
slope or phase changes occurring at random times. The magnitude change of the sinusoidal
signal in Figure 11.3 is due to the non-zero initial value when the second shock occurs.
The true deterministic signal (occurring at random time) is abtained in the limiting case.
Readers can also refer to (Ljung, 1987) for discussion of such deterministic signals for

identification problems.

Optimal stochastic control laws, such as MVC, GPC and LQG, are independent of
the probability distribution of the shock as long as the shock has zero mean and finite
variance (MacGregor et al., 1984). Instead, how to formulate the disturbance model
is important for control design irrespective of the deterministic or stochastic nature of
the disturbances. The minimum variance control law generally yields a minimum SSE
control law? for deterministic disturbances (MacGregor et al., 1984). For example, if the
disturbance model is N = 1/(1 — ¢~!), then the minimum variance control law will be a
minimum SSE control law to step-type disturbances. Similarly, if the disturbance model is
of the sinusoidal structure, then the minimum variance control law yields a minimum SSE

control law to sinusoidal disturbances. These issues become more evident in the H, control

3SSE = Sum of Square Error, i.e. J = 7 Dimg €
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Figure 11.3: Signal generated by passing the shock through filters

framework in Section 11.6. Since the setpoint tracking problem can be re-formulated as a
regulatory control problem, minimum variance control can naturally handle stochastic or
deterministic setpoint tracking problems. Consequently, the methodology of performance
assessment for stochastic regulatory control can be generalized to performance assessment
of deterministic disturbance rejection as well as setpoint tracking property of the controller.
However, estimation of the performance index must be given a special treatment when
disturbances are deterministic in nature. This is illustrated in the following section.

11.4 Performance assessment with both stochastic and

deterministic disturbances

We begin with an example to show difficulties in performance assessment when both
stochastic and deterministic disturbances are concerned. Eriksson and Isaksson (1994)
have a numerical example showing an unreasonable performance measure if minimum
variance control is used as the benchmark. In the example, the transfer functions, in our
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notation, have the following values

47 _ -4 033
T = ¢ —0.674 1
1-04q7!
1 -0.67¢—1
0 = 0.7 — 0.47¢™!
0.33 — 0.10g-L — 0.23¢—<

N =

The white noise sequence a; has variance 02 = 0.36. The controller is a well-designed
Dahlin controller. The minimum variance can be calculated as 02, = 0.4033, and the
output variance with the Dahlin controller acting on the process is given as 03 =0.6115.

Hence the performance index (in our notation) is

i & T _ 04033 _

o2  0.6115

where #j,? is the performance index with minimum variance control as the benchmark
with 0 < fpin < 1. If the controller is changed to a P-only controller with a gain of 0.1745,

the output variance becomes 012, =0.4037. This yields the performance index as

0.4033
Mhmin = 54037 — 099
This indicates that the performance of the P-controller is better than the Dahlin controller,

and seems an unacceptable conclusion. It is, however, a correct result.

Performance assessment techniques as proposed by Harris(1989) provide assessment
of control loop performance under routine operating conditions. In this example, step-
type disturbances or setpoint changes do not affect the process. An integral control is
clearly not necessary in this situation. Therefore a P-controller gives a better performance
measure than the Dahlin controller which has integral action. However, integral action is
practically desired in order to handle random-walk type stochastic disturbances or step-
type deterministic disturbances or setpoint changes. It is therefore necessary to sample the
data carefully before carrying out the performance evaluation. For example, one should
ask if the set of sampled routine operating data contains effects of all disturbances that

“In this chapter, the subscript “min” stands for minimum variance or optimal H; control. For example,
fimin represents the performance index with minimum variance or optimal H> control as a benchmark.
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truly affect the process, i.e. if the set of data is representative. Performance assessment
will then estimate the benchmark which optimally regulates the disturbances occurring
during the data-sampling period.

Since all disturbances can be regarded as shocks (with different probability
distributions) filtered by different disturbance filters, all of the disturbances can be
theoretically lumped together via spectral factorization. Practically, the dynamics of
the lumped disturbances can also be estimated via time series analysis. The benchmark
control (one-degree-of-freedom control) would be a controller which minimizes the effect
of the lumped disturbances.

11.5 Performance assessment with pure deterministic

disturbances

If deterministic disturbances occur rather infrequently (e.g. only one step-change
occurs in the collected data), time series modeling of the closed-loop process cannot
depict the nature (e.g. step-type) of the disturbances. Performance assessment then may
not be carried out under the stochastic framework. Under these circumstances, direct
identification of the closed-loop transfer function from the disturbances to the process
output is desired. There is no difficulty in identifying such a model if the deterministic
disturbances are measurable (e.g. setpoint change) since it is equivalent to an open-loop

identification problem.

Take the MIMO case with the simple interactor matrix (i.e. D = ¢%I) as an example.
The closed-loop transfer function from a; to Y; can be written as

Y} = (I+¢q9TQ)"'Na, (11.3)
= Fo+Fq '+ + Foig ) o, + Fageg + - -- (11.4)
2

where F;’s correspond to impulse response coefficient matrices of the transfer function
matrix from a¢ to ¥;, and e; = Fa, is feedback invariant irrespective of the probability
distribution of a;. If a; is a random stochastic shock, then the closed-loop transfer
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function matrix from a¢ to ¥; can be estimated via time series analysis. If g, is a single
shock (deterministic disturbances), then the closed-loop transfer function matrix can be
identified via identification tools. In both cases the term of ¢; = Fa, can then be separated
from the closed-loop transfer function matrix, and subsequently used as a benchmark to
assess control loop performance.

The performance measure for stochastic disturbances can be directly applied to
performance assessment for deterministic disturbances. For stochastic disturbances, one
can always normalize a, such that Var(a,) = I by adjusting N. According to the definition
of the objective-based performance index for the stochastic disturbances as defined in
Chapter 8, we have

= min(E[Y,TY;])
- ElYY]
tr(Fg Fo + FTFy +---+ FF | Fy_,)
tr(Fy Fo+ FTFL + -+ FT  Fa 1 + FT Fa+ Fg Far1 +--7)
Equation (11.5) defines an H» norm measure (Dahleh and Diaz-Bobillo, 1995) of the
system. The denominator in equation (11.5) represents the H, norm of the closed-loop

(11.5)

system, and the numerator represents the H> norm of the feedback controller-invariant
part. If a; in equation (11.4) is a scalar impulse or shock, then equation (11.5) defines a
measure of SSE performance, i.e.
Tin = (FOTFQ +FFF1+-'-+F£IF4_1)
" FoTFb+F1TF1+---+F.EF4.1+F;’F4+F§i1Fa+1+---

min(SSE)
SSE

11.6 Unified assessment of stochastic and deterministic

systems

Whether disturbances are stochastic or deterministic in nature, they require the
two-step procedure for control loop performance assessment. The first step involves
filtering (i.e. time series analysis using only output data to obtain closed-loop transfer
function from a; to Y;) in the stochastic case, and identification of the same closed-loop
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transfer function in the deterministic case. The second step invoives calculation of the
performance index which is basically the ratio of the sum of square terms of the impulse
response coefficients (matrices) of the closed-loop transfer function for both stochastic and
deterministic disturbances. The sum of square terms of the impulse response coefficients
(matrices) is in fact the H> norm of the system. Thus performance assessment for both
deterministic and stochastic systems may be unified under the H, framework.

The Hj norm of a transfer function (matrix) G is defined as (Dahleh and Diaz-Bobillo,
1995):

1618 = 5= [ G )6 (e )
= S e[
=0

where F; is the impulse response coefficients (or Markov parameter matrices) of G.
Consider the closed-loop response to disturbances a, as shown in Figure 11.1(with
Y;? = 0), which is

Vi =(I+TQ) 'Na,

The corresponding closed-loop transfer function matrix is therefore
Ga={I+TQ)"'N

If a; is a single ‘shock’, then Y: represents closed-loop response to a deterministic
disturbance, and the H, norm of Gg defines the sum of square of the errors (SSE) of
the closed-loop system. However, if a; is a white-noise sequence with Var(a;) = I, then
according to Parseval’s Theorem,

E(TY) = trlVar(¥)] = 5 [ r(Gule)GH(e))do = Gal}

which is the quadratic measure of variance of the closed-loop output. The variance matrix
of the white noise sequence, g, can always be normalized to an identity matrix by adjusting
the disturbance transfer function matrix N.

Therefore the H, norm applies to both stochastic and deterministic. systems.
Consequently, the optimal H; control law is an optimal control law for both deterministic
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and stochastic disturbances. In the sequel, we simply consider the optimal or desired H,
control as the benchmark for control locp performance assessment of both stochastic and
deterministic systems. For example, the unified scalar performance index with optimal
H; control as the benchmark is

__ min([Gal})
Bz

Then for stochastic disturbances, this index is precisely the objective function based index
defined in Chapter 8 for performance assessment of stochastic systems.

11.7 Simulation

For the same process as used in (Eriksson and Isaksson, 1994), performance of the
Dahlin-controller and the simple P-controller is re-assessed. In addition to the “routine”
disturbances from the shock a, (Normal-distributed with Var(a:) = 0.36), deterministic
step-type disturbances are added to the system as shown in Figure 11.4. b; is the shock
with the most of its probability density concentrated on b = 0. Therefore disturbance 4;
is a randomly occurring step-type deterministic disturbance.

Simulation results of the process with the Dahlin-controller are shown in Figures 11.5
and 11.6. The FIR model or impulse response (using 20 coefficients) of closed-loop transfer

| B

1-0.4q 1
1-0.67g! 1q’!
5
ue | 033t \-/ ¥,
controller t
- 1-0.67q! ~

Figure 11.4: Block diagram representation of the simulated process
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function from 4, to y, is identified as
Gys = 0.9798—0.0040¢ " +0.05664 2 —0.0608¢ 3 ~0.7350¢~* —0.1207¢~5-0.0899¢ 6 +-- - -

Due to time delay d = 4, the first four terms of Gys are feedback invariant for impulse
disturbances, i.e. for the disturbance model N = 1. For a step disturbance (i.e. for
N = 1/(1+q~1)), one can either integrate impulse response coefficients or directly use the
output and the differenced input data (i.e. filtering input data &; by (1 — ¢g~1)) to obtain
the step response coefficients. Direct identification (using 20 coefficients) yields the step

response

5¢ 2 Yelstep = 0.9807 + 0.9775¢~" + 1.0341¢72 +0.9732¢2 4 0.2383¢™4 + 0.1174¢~5 + - --

The first four terms are feedback control invariant for this step-type disturbance (i.e. for
N = 1/(1 — ¢~1)). This also implies that the peak error due to a unit step disturbance is
no less than 1 for any linear feedback controller. A comparison between theoretical step
response and predicted step response and 95% error bounds (95% confidence interval)
is shown in Figure 11.6. Clearly the Dahlin controller has performance very close to
minimum SSE or optimal H> controller for the step disturbance in this example since
the first four points are feedback control invariant. The performance index for the step
disturbance can be calculated as

min(|[s¢{13)
Hsel |2
0.98072 4 0.97752 + 1.03412 + 0.97322
0.98072 + 0.97752 + 1.03412 + 0.97322 + 0.23832 + 0.1174%

= 0.9824

Nmin

2

This is very close to the theoretically calculated index which is 0.976. The residuals
from Figure 11.5 can be used to assess performance of the controller for rejection of
“routine” stochastic disturbances. Applying the FCOR algorithm to the residuals yields
the performance index for stochastic disturbances as

Nmin ~ 0.69

This result agrees well with previous analysis for the same process with only stochastic

disturbances in Section 11.4. Therefore, in this example the Dahlin controller has
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Figure 11.5: Process response and identification results (Dahlin controller)

“optimal” performance for rejection of step-type disturbances, but has relatively “low”

performance for rejection of stochastic disturbances.

For the simple P-controller, using the same deterministic and stochastic disturbances
as those used for the simulation of the Dahlin controller, the following polynomial transfer

function is identified.
G.r e 0.9883 — 0.76744!
¥ T - 0.7382¢1

The predicted step response is

002 gl = 09883 — 0767491
t= Wt = T 03820 (1 — D)

This step response has an offset. Therefore the SSE or Hj norm of y; is infinite, and the

performance index of the P-controller to step disturbance is

_ min(lls®) _
[Isell3
Similarly the residuals after fitting can be used to assess performance of the P-controller

imin

for rejection of the “routine” stochastic disturbances. Applying the FCOR algorithm
yields the performance index for stochastic disturbances as

n=0.97
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Figure 11.6: Predicted output response to a step disturbance (Dahlin controller)

This also agrees well with the previous analysis for the process with only stochastic
disturbances in Section 11.4. Therefore, the simple P-controller has “optimal” performance

for rejection of “routine” stochastic disturbances, but has very poor performance for
rejection of step-type disturbances.

11.8 Conclusions

Feedback control loop performance assessment for regulating both stochastic and
deterministic disturbances and/or setpoint tracking has been discussed in a unified manner
under the H, framework. It has been shown that performance assessment of deterministic
disturbances and /or setpoint tracking can be treated in a very similar way as the treatment

of the stochastic system. The proposed method has been evaluated by a simulated
example.
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Chapter 12

Performance Assessment:

User-defined Benchmark

12.1 Introduction

Control loop performance assessment has been extended to many situations, and many
approaches have been developed as discussed in the earlier chapters; e.g. performance
assessment of: 1) SISO feedback control systems (Desborough and Harris, 1992; Stanfelj
et al., 1993; Kozub and Garcia, 1993; Lynch and Dumont, 1993; Tyler and Morari, 1995b),
2) feedback control of nonminimum phase SISO systems (Tyler and Morari, 1995a); and 3)
MIMO feedback control systems (Huang et al., 1995a; Huang et al., 1996b; Harris et al.,
1995; Harris et al., 1996). The portion of a process output that is feedback controller
invariant determines the theoretically achievable minimum variance and characterizes
the most fundamental performance limitation of a system due to existence of time-
delays/infinite zeros. However, practically there are many other limitations on the
achievable control loop performance. Existence of nonminimum phase or poorly damped
zeros, sampling rate, amplitude and/or rate constraints on controt action, robustness

constraints etc. are examples of such limitations. Therefore, a feedback controller that

A version of this chapter has been accepted for presentation at the 1997 IFAC Advanced Chemical
Process Control Symposium.
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indicates performance reasonably close to minimum variance control does not require
further tuning (if the variance is of main interest). However, a feedback controller
that indicates poor performance relative to minimum variance control is not necessarily
a poor controller. Further analysis of performance limitations and comparisons with
more realistic benchmarks is usually required. Performance assessment with minimum
variance control as a benchmark requires minimum effort (routine operating data plus
a priors knowledge of time-delays), and therefore serves as the most convenient first-
level performance assessment test (if the variance is of main interest). Only those
loops that indicate poor first-level performance need to be re-evaluated by higher-level
performance assessment tests. A higher-level performance tests usually requires more a
priori knowledge than just a knowledge of time-delays. This chapter addresses practical

issues which are considered for such higher-level performance assessment test.

The main contribution of this chapter is to propose a technique of practical control
loop performance assessment relative to a benchmark in terms of a user-specified closed-
loop dynamics. All of these are discussed for SISO and MIMO systems. Normally, the
MIMO case is general and includes the SISO system as a special case. However, the
delay matrix (or the interactor matrix) of the MIMO system is not a simple extension
to the time-delay term of the SISO system. Thus, the SISO case is first considered for
clarity of presentation. This chapter is organized as follows. Performance assessment of
minimum phase systems with desired closed-loop dynamics as a more practical benchmark
is considered in Section 12.3, and the treatment of nonminimum phase systems is discussed
in Section 12.4, followed by concluding remarks in Section 12.5.

12.2 Preliminaries

In Section 12.3, we will assume that the plant transfer function (matrix) T has no
zeros or poles outside the unit circle except for the time-delays (infinite zeros). This
condition will be relaxed in Section 12.4. The disturbance transfer function (matrix) N
has no poles outside the unit circle, but can have zeros outside the unit circle. However,

an all-pass factor Np, which contains all zeros that are outside the unit circle including
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the infinite zeros, can be factored out from N, ,such that N = N Np and N is a minimum-
phase transfer function (matrix). This factorization does not change the H, norm of the
closed-loop system, i.e. [[(I + TQ)~IN|j3 = [|(I +TQ)~'N [j3. The admissible minimum
variance or optimal H, control law does not depend on the all-pass term N,(Astrom and
Wittenmark, 1990; Morari and Zafiriou, 1989). Therefore, if there are unstable or infinite
zeros in N, one simply needs to factorize an all-pass term from it. The remaining N term
is then considered as the disturbance transfer function (matrix). This will not affect the
H3 norm of the closed-loop system and its optimal control law. Time series analysis does
automatically produce such minimum phase disturbance transfer function (matrix). Thus,
we assume that the disturbance transfer function (matrix) N has no zeros outside the unit

circle as well.

12.3 Performance assessment with desired closed-loop

dynamics as the benchmark: minimum phase systems

12.3.1 SISO case

The minimum variance or optimal Hy control law serves as a good global reference point
to assess control loop performance. However, the minimum variance or optimal H» control
law may not be a desired one in practice. For example, if the process has a fast controller
sampling rate, then minimum variance or minimum SSE control with such sampling rate
usually requires excessive control actions. Therefore, in many practical circumstances, a
more realistic user-specified benchmark control is desirable. For example, one may wish
to consider desired closed-loop dynamics as a reference benchmark in terms of settling
times, overshoot etc. Specifically it would be of interest to know if the actual closed-loop
dynamics are close to or far away from the desired dynamics. Kozub and Garcia(1993)
have suggested that one of the choices for the practical benchmark performance can be
the minimum variance control response (finite moving-average term) filtered by a filter.
Tyler and Morari(1995b) suggested using a generalized likelihood ratio to test if the
actual performance (in the form of impulse response coefficients of the closed-lodp transfer
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function Gq = (I + TQ)~1N) is in the set of the desired performance. All of these are
limited to SISO applications. However, since the actual performance (in the form of
impulse response coefficients of G4) can be estimated from data using time series analysis
or standard identification tools (Ljung, 1987), performance assessment can be directly
computed by comparing the actual impulse response coefficients to the desired impulse
response coefficients. Direct observation and analysis of the actual impulse response
coefficients gives one significantly more information than a simple “yes or no” test, and
can be easily extended to MIMO applications. For example, a maximum likelihood ratio
test cannot tell whether the controller is over-tuned or under-tuned or how and in which
way it is different from the desired performance. On the other hand, a cursory study of
the impulse response coefficients may easily provide such tuning guidelines.

An important fact that has been ignored by other researchers is that the desired closed-
loop dynamics (Gg.s) cannot be arbitrarily specified. They need to consider the physical
limitations. For example, closed-loop response within the time-delay period is feedback
control invariant and cannot be specified by users. Nonminimum phase zeres cannot
be cancelled by a stable controller and must affect the desired closed-loop dynamics as
well. These limitations are considered in the present chapter when the desired closed-loop

dynamics are specified.

The differences between optimal Hj control and the user specified benchmark control
(desired closed-loop dynamics) can be clearly seen from equation (11.4). For optimal Hj
control, the remaining terms after the first d terms should be zero. For user specified
benchmark control, the first d terms should be the same as those under optimal Hs
control, but the remaining terms are no longer zero. These remaining terms define the
desired closed-loop dynamics. The closed-loop dynamics (e.g. for the SISO case) therefore

have the following form?:

Yeluser = (fo+f1q7 + -+ fa0q ™2+ f4_ 197 +q79GR)a;  (12.1)
2

where Gp is a stable and proper transfer function. There are many ways to specify the

%In this chapter, the subscript “user” stands for a user-specified benchmark control. For example, Yyser
represents the process output under the user-specified control.
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term Gg based on information such as closed-loop settling time, time constant, decay
ratio, desired variance, frequency domain characteristics, robust performance etc. If Gp
is directly specified as desired closed-loop dynamics, i.e. Gp = Gg.s, then only a priori
knowledge of time-delays is required for calculation of such benchmark performance. If
the desired closed-loop response is specified by some other characteristic such as settling
time, then G consists of a set of transfer functions, and no explicit expression for Gp
is actually defined. One can simply test, for example, whether the actual closed-loop
settling time is the same as the desired value. However, all these specifications of G are
somehow arbitrary, and it is not clear how such specifications affect closed-loop dynamics,
e.g. in terms of performance optimality and robustness properties. For example, in the
specification of the settling time, there are infinite number of Gg that can be considered,
and one does not know which one has the performance closest to optimal control. On the
other hand, it is well-known that optimal H; control augmented by a filter improves robust
performance and provides good compromise between performance and robustness, and
the closed-loop dynamics can be adjusted by the tuning of the filter parameters (Mohtadi,
1988; Morari and Zafiriou, 1989).

Consider the specification of G as
Gr=(1-Gr)R (12.2)

where Gr is a stable and proper filter and, R (a rational proper transfer function) is
defined via the Diophantine identity:

N=F+q°R
Then equation (12.1) becomes
Yeluser = (fo+ /197" + -+ + fa—1a”! +¢7U(1 — GF)R)ac (12.3)

The filter G can be specified according to the desired closed-loop dynamics. It should be
chosen in such a way that asymptotically (1—-GFr)R converges to zero, i.e. no offset occurs.
For example, if R has a pole equal to 1 (e.g. step-type disturbances), then (1 — GF) must
have a zero equal to 1 in order to preserve the asymptotic property of the optimal H,
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control law. If a commonly used first-order filter, which satisfies the asymptotic property
for type 1 system, is specified as:

l-a

OF = e

then a can be calculated via the desired closed-loop settling time or time constant by
AT
a= &P(-T)

where AT is the sampling interval and 7 is the time constant of the closed-loop process.
However, one should note that the closed-loop dynamics also depend on R in addition to

the filter dynamics.

We shall show that the specification of the closed-loop system as in equation (12.1) is
practically achievable for a minimum-phase system, and the specification in equation (12.2)

is equivalent to the Hs optimal control law augmented by a filter.

Consider the controller specification in the IMC framework as shown in Figure 12.1.
Wrrite the plant transfer function as T = ¢—9T, where T is the delay-free transfer function.
Then by assuming T = T, we have

v = (1-q 'TQ")Na;

= Na;—q°TQ"Na,

= (F+q%R)a; — ¢~ ?TQ"*Na,

= Fai+q %R~ TQ*N)a, (12.4)
Equating equation (12.4) and equation (12.1) yields

R-TQ*N =Gr
This results in
« R-Gr
=N

This IMC controller is proper and stable. Therefore the closed-loop response specified in

(12.5)

equation (12.1) is achievable. For specification in equation (12.2), equation (12.5) becomes

_R-(1-Gr)R _GrR
TN - TN

Q* (12.6)
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If Gr = 0, then Q* = 0 and the controller is in open-loop mode. If Gg = 1, then according
to equation (12.3),

ytluser =(fo+ flq—l +---+ fd—lq—(d—n)at

This is the minimum variance control response or optimal H> control response. Thus, the
controller as specified in equation (12.6) is in fact an optimal H> control law augmented
by a filter Gr (Morari and Zafiriou, 1989). The role of the filter is to adjust or tune the
controller from the open-loop mode (Gr = 0) to optimal H> control mode (Gr = 1).

However, the specification in equation (12.2) requires a knowledge of R. The term R
must be calculated from the disturbance transfer function N via the Diophantine identity.
Therefore, the disturbance transfer function should be known in order to apply such
a specification. For most setpoint tracking problems and some regulatory problems, the
dynamics of the setpoint are known as a priori knowledge. For example, if one is interested
in the tracking or regulatory performance of step-type setpoint or disturbances, then the
disturbance dynamics are simply N = 1/(1 — ¢q~!). If a priori knowledge of N is not
available, it will be shown in Section 12.4 that the disturbance transfer function N can be

conveniently estimated under closed-loop conditions with dither excitation.

Since complete dynamics of the user-specified closed-loop system are available, one
can directly compare the current closed-loop dynamics with the user-specified closed-
loop dynamics. For example, to calculate the performance index under the stochastic
framework, the variance of the user-specified benchmark control can be calculated from
equation (12.1) and is defined as ¢2,,,. The performance index can then be calculated as

the ratio:

Olser

2
gy

Nuser =

Example 11 Consider a first-order process with a time-delay and the transfer function

given by:
= a~1\g~2
r=2-9)e
1-08q¢-1
Let the disturbance transfer function be:
1

1-g¢1
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The sampling interval AT = 5 sec. The main objective in this design is to regulate y, in
the presence of integrated white noise or random-walk type disturbances. The choice of
the desired closed-loop time constant, 0.5 < T < 1 min, reflects this. If setpoint tracking

performance was of interest, perhaps a smaller desired closed-loop time constant could

have been specified.

Since the time-delay d = 2, N is expanded according to the Diophantine identity as

N=1+ql+q? L
F R

Therefore, the minimum variance is
2 vV = 942
Omy = Var(Fa;) = 20;

Now consider a first-order filter:
f= l—a
T 1-~ag!

To satisfy the desired closed-loop time constant 0.5 < 7 < 1 min with sampling interval
AT =5 sec, the parameter a can be calculated from

a= ezp(-%T-)

This results in 0.85 < o < 0.92. The desired closed-loop response can be calculated from
equation (12.3) as

l~a 1
Ytluser = foas+ frae_1 + (1 - gt )1 —T0t2

«Q
= at+a;-1+ iTq_lat_g (12.7)
1+(1-a)g!
1(_ aq_)f a (12.8)

where 0.85 < a <0.92. This gives the achievable user-specified closed-loop response.

The variance of the desired closed-loop can also be calculated from equation (12.8) as

O2serla=0.85 = Var(ye)la=o.s5 = 4.603602
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and
‘712uerla=0.92 = Var(y)la=0.92 = 7.51040’2

Therefore
4.603602 < 02,,, < 7.510402

Now consider the same pracess under integral control

0.1
1-g¢q!
with Var(a;) = 1. The closed-loop system was simulated and 5000 data points were

Q=

recorded. A truncated moving-average model is obtained from time series amalysis of
Y- The coefficients of this moving-average model correspond to the closed-loop impulse
response coefficients. These coefficients together with their 95% bounds are plotted in
Figure 12.2. The desired closed-loop dynamics have been shown in equation (12.8). Their
corresponding impulse response coefficients are calculated and plotted together with the
actual impulse response coefficients in Figure 12.2. Since the desired impulse response is
not a single curve but a region (a region between the two solid lines), any actual impulse
response which falls within this region is considered acceptable. However, the actual
impulse response coefficients are estimated values. Therefore a statistical test should be
used to determine whether or not the actual impulse response falls into the region. One
can consider the desired performance region as if it constitutes a thick or ‘fuzzy’ desired
impulse response curve: (1) For any particular actual impulse response coefficient, if its
95% confidence interval and the ‘fuzzy’ desired performance region do not intersect, then
we may conclude that this particular coefficient does not fall in the desired region with
95% confidence; (2) If more than 5% of impulse response coefficients, over the time-period
of interest, do not fall in the desired region as tested in the first step, then one may
conclude that the actual performance does not lie in the set of the desired performance.
The confidence bounds can always be narrowed by increasing the data sampling size, and
hence the reliability of such test can be increased. This is a quantitative or ‘yes’ or ‘no’
decision criteria. However, a visual or qualitative analysis of the plot is more important and
it is recommended that this be done. Figure 12.2 clearly shows unacceptable performance
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of the integral controller. The actual closed-loop behaves as an underdamped system, and
in fact the system appears to be over-tuned.
Now we add a second-order filter to the integral controller:

Q=( 0.05 — 0.04¢! ) 1
T '2-09¢1-0.05¢2'1—q 1

The simulation result is shown in Figure 12.3. The actual closed-loop dynamics are slightly
slower than the desired, and in fact are not in the desired set. The controller appears to

be under-tuned. Finally a slightly aggressive controller

0= (011 —0088g! 1
T '2-0.78¢"1-0.11¢g72'1 — ¢ 1

is implemented. The result shown in Figure 12.4 indicates that the actual performance is
now in the set of the desired performance.

Note that by using the same method, one can make many performance tests. For
example, one can even specify the desired performance set in terms of the frequency domain
specifications. Then the actual closed-loop dynamics together with their confidence
intervals in the frequency domain can be calculated. The performance test can be
made in the frequency domain. The significance of this method is that it can provide
information including tuning guidelines, via observation of the patterns of the impulse
response coefficients or the spectrum of the closed-loop systems.

12.3.2 MIMO case

Consider the MIMO system:
Y. =TU;+ Na;

where T is a process transfer function matrix, N is the disturbance transfer function
matrix, Y, U: and a; are output, input and disturbance with appropriate dimensions.
A unitary interactor matrix D with DT(¢g=')D(g) = I can be factored from the transfer
function matrix T, such that T = DT isa delay free transfer function matrix. Factorization
of such a unitary interactor matrix does not change the H norm of the transfer function
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Figure 12.1: Control loop configuration under IMC framework
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Figure 12.2: Closed-loop impulse response coefficients for a simple integral controller.
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Figure 12.3: Closed-loop impulse response coefficients for an integral plus filter
controller.
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Figure 12.4:  Closed-loop impulse response coefficients for a detuned integral plus filter
controller.
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matrix, i.e. [|T{} = [[T|[3. Using the Diophantine identity, the disturbance transfer
function matrix N can be expanded as
¢DN=Fy+Fig”' +--- + Fg1g™@ ) 4g79R
F
where F; (for ¢ = 1,---,d — 1) are constant coefficient matrices, and R is the remaining

proper transfer function matrix after the expansion. In Chapter 8 the minimum variance
or optimal Hy norm control response has been shown to be3:

Yimin = ¢*D 7 (Fo+ Fig™' +--- + Fy_1q~(@V)q, (12.9)

= (Bo+Eiq ' +---+ Bg_1g7 (¢ V)q, (12.10)

where E; (for i = 1,---,d — 1) are constant coefficient matrices. It has also been shown

in Chapter 8 that the minimum variance control response Yi|min can be estimated from

routine operating data with a priori knowledge of the unitary interactor matrix D.

For performance assessment with a reference benchmark different from minimum
variance or optimal Hy norm control, a user specified transfer function matrix Gg should

be augmented to equation (12.10) as
Yiuer = (Eo+ E1g' +--- + E4_1¢~9D) 4 Gpq~%)a, (12.11)

Gr is a stable and proper transfer function matrix. In practice, Gg may be specified as
a diagonal matrix. Then dynamics of each output correspond to the diagonal elements.
Now we are in the position to show that the user-specified closed-loop response as shown
in equation (12.11) is achievable.

Under the IMC framework, the closed-loop response can be written as
Y, =(I-TQ")Na,
Factor T as T = D™'T, where T is the delay-free transfer function matrix. Then
Yo = (I-D7'TQ")Na,

= ¢*D7Y(¢"?DN - ¢~ITQ"N)a,

3In Chapter 8, Ye|mo represents the process output under minimum variance control. In this chapter,

this output is changed to Yi|min to reflect the minimum variance or equivalently optimal H, control.
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Using the Diophantine identity g~*DN = F + q~9R, we have
Y = ¢*D7Y(F +q 'R~ q9TQ"N)a,
= ¢*D"'Fa; + D~'(R - TQ*N)a, (12.12)

As shown in Chapter 8, the first term on the right hand side of equation (12.12) is the

minimum variance control response and can be written as
Yelmin = ¢*D7'Fay = (Eg + -+ + Eg_1g~%*)q, (12.13)

Substituting equation (12.13) into equation (12.12), and then equating the result to

equation (12.11) yields
D~YR-TQ"N)=Ggrq™*

This results in
¢’D~Y(R-TQ'N) =Gnr (12.14)

Solving equation (12.14) yields
Q =T Y(R-q*DGp)N"

Again, Q" is proper and stable, and therefore is a practically achievable controller.

As discussed in the SISO case, there are many ways to specify the transfer function
matrix Gg. One may directly specify it as a desired transfer function matrix, i.e.
Gr = Gges. Performance assessment with such specification requires only routine
operating data plus a priori knowledge of the interactor matrix.

Alternatively, one may directly add a desired term into equation (12.9) such that
Yelmin =D~ Y(Fy + Fig™t +--- + Fy_1979Y 4 g-9GRr)a,

where Gg = I — G, and GF is the user specified filter transfer function matrix according
to the desired closed-loop dynamics. The filter serves as a tuning knob between optimal
H control (G = I) and open-loop performance (Gr =0).
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Example 12 Consider a process with the following transfer function matrices:

r | F e

-2

| 2 e

[ —06 |
=057 T 1057

N =

0.5 1.0
| T0EFT  TTO5FT

A unitary interactor matrix D can be factored out as:

~0.9578¢ —0.2873¢

D=
—0.2873¢> 0.957842
Then
- - —0.5 .1437
DN — ~1.1014¢™! 0.2874¢! | o L
0.1916 + 0.0958¢~! 1.1302 + 0.5651¢! | T T ]
F R

The minimum variance term can be written as

~1.1014¢™! 0.2874q 1
e =Fa; =
0.1916 +0.0958¢~' 1.1302 + 0.5651¢!
Therefore
’tlmin = qu-let
1 -0.6 1| —0.0275 -0.1624
= ( +q~
05 1 0.0918 0.5413
Eo E

Note that this explicit expression for Y:lmin can always be estimated from routine operating
data under any feedback control with a priori knowledge of the unitary interactor matrix.
If we assume £, = Ega = I, then the minimum variance can be calculated as

1.3871 -0.1904

Zonin = Va"(ytlmin) =
-0.1904 1.5504

with the quadratic performance measure (H2 norm) as

E(Ytr},t)lmin = tr(Zmin) = 2.9375
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Now we assume that the controller sampling interval is AT = 5 sec, the desired
response of output #1 is first-order with time constant Tt = 1 min, and the desired
response of output #2 is also first-order but with time constant 7 = 0.5 min. If the
desired closed-loop response is specified as

Yiluser = (Eo + E1g™ +--- + GrEy_ g~ V)q, (12.15)

i.e. the closed-loop impulse response coefficient matrices decay steadily at the desired
time constants starting from the last feedback control invariant term, E4_;, then the filter
transfer function matrix should be designed according to the desired dynamics as

1
T=095=T 0
Grp = | T0%2¢ 1
0 o

Equation (12.15) can be further written as

Ye=(Bo+ Erg™ +--- + Eg19™% Y + ¢(Gr — NEy_1g™%)a,
Gr

Since Gr(g™! = 0) = I, G = 9(Gr — I)E4_, is proper. According to
equation (12.11), this is an achievable closed-loop response. Substituting numerical values
to equation (12.15) yields

1-0.9475¢~!  —0.640.3896g—!
_1—0_11‘32q- _“‘?_1—0.924;-
0.5—-0.33329~! 1-0.3087¢~!
_“%‘1—0.354- —1—o.as"7‘q-

This achievable closed-loop response satisfies the user requirement, and can be estimated

Ytluser =

from routine operating data under any feedback control with a priors knowledge of the
unitary interactor matrix. Its variance can be calculated as

1.5366 —0.5148

Luser = Var(Yt'user) =
-0.5148 2.3362

with the quadratic performance measure (H2 norm) as
E(Ytrn)luser = tr(Zuser) = 3.8729

which is 1.3 times as large as E(YY)|min.
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12.4 Performance assessment with desired closed-loop
dynamics as the benchmark: nonminimum phase

systems

In this section, we relax the assumption of minimum-phase plants by assuming that the
plant transfer function (matrix) T can have zeros outside the unit circle. The user-specified
performance assessment of the MIMO process when the process has non-invertible zeros
is discussed in this section.

Consider the MIMO system:

Y, =TU; + Na,

Factor T as T = Dg'T, where D! is the all-pass factor or the generalized unitary
interactor matrix as is discussed in Chapter 10, which contains both infinite and non-
invertible zeros of T. The generalized unitary interactor matrix D' can also be regarded
as an all-pass factor of T, and can be calculated via the Inner-Outer factorization (Chu,
1985) as well. A proper feedback controller cannot cancel time-delays. Time-delays
are therefore constraints on the achievable performance. A stable controller cannot
cancel non-invertible zeros. Non-invertible zeros also impose constraints on the achievable

performance.

In Chapter 10, we have shown a procedure for performance assessment of nonminimum-

phase MIMO processes. The procedure consists of the following steps:

1. Factor the generalized unitary interactor matrix from T as Dg;
2. Fit routine operating data Y; by a time series model, G;

3. Multiply G4 by ¢~#Dg to obtain G!; = ¢~9D;G., where d is the order of the

interactor matrix;
4. Expand G, into

Ga=F+Fg +--- 4+ Fy_ gD 444
3
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where F; for (i = 1,2,---,d — 1) are constant coefficient matrices, and ¢ is the

remaining (proper) term after the expansion;
5. Using partial fraction expansion, ¢ can be expanded into
o= anp +L

where all poles of Ramp are unstable poles which are the non-invertible zeros of T,
and L is the remaining term after the partial fraction expansion. Then the process

under admissible minimum variance or optimal H, controt can be written ast
Yilodmo = ¢*DZ'(F + ¢~ *Rump)a (12.16)

This procedure will evaluate control performance with the admissible minimum variance
or optimal H; control as the benchmark. To assess control performance with the user
specified benchmark as the desired closed-loop dynamics, a user specified transfer function
matrix G g should be augmented to equation (12.16) as

Yieluser = ¢*DG (F + 4 %Rump + ¢~ %GR)ay (12.17)

Note that the closed-loop dynamics also depend on the poles of DEI (reciprocals of the

non-invertible zeros) in addition to poles of Gg.

Now we show that the specification in equation (12.17) gives performance that is
achievable. Under the IMC framework, closed-loap response can be written as

! = (I-TQ*)Na,
= Na;-TQ*Na, (12.18)
= (¢°Dg")(¢"*DeN)a; — TQ*Na, (12.19)

Using the Diophantine identity, g~?Dg N can be expanded as

T'DoN =Fo+ Fig”' +--- + Fi1g™%) 4474 (Rppmy + Rimp)
2 1

“In this chapter, the subscript “admv” stands for “admissible minimum variance control”. For example,
Vilsdme represents the process output under the admissible minimum variance control.



179

where Rpmp contains all unstable poles of R after partial fraction expansion, while
Rmp contains all stable poles after the partial fraction expansion. Using this identity,
equation (12.19) can be written as

Yo = ¢*DG'(F + ¢ *Rump + 4 *Rup)a: — TQ* Na,
= ¢'DG'(F + 4 *Rump)ae + [(4°Dg") Rmpg™* — TQ"Nlay  (12.20)

Equating equation (12.20) and equation (12.17) yields
(4°Dg") Rmpq™* ~TQ"N =¢*D5'Grg™*
This can be written as
(¢’Dg")Rmpq™* — DG'TQ*N = ¢*D5'Grg~? (12.21)
Solving equation (12.21) yields
Q* =T '(Rpp —Gg)N! (12.22)
This is an achievable IMC control law.

As in the discussion for the minimum phase system, if one specifies Gr = (I-GF)Rpp,

where G is a filter transfer function matrix, then equation (12.22) becomes
Q* =T 'GrRp,N™! (12.23)
and equation (12.17) becomes
Yiluser = 4*DG'(F + 4~ Ramp +9~%(I — Gr)Rmp)ay (12.24)

If Gy = 0, then the process is in the open-loop mode. If Gr = I, then equation (12.24)
is the admissible minimum variance or optimal Hj control response. Therefore, the filter

Gr adjusts the controller performance between open-loop mode and optimal H> control.

Consider the closed-loop transfer function defined by
Guw={I+TQ'T

Gy is the closed-loop transfer function from the dither signal w; to the output ¥; (see
Figure (12.5)). With dither signal excitation, Gw can be identified under closed-loop
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conditions. Identification of the closed-loop transfer function matrix Gy under closed-
loop conditions is equivalent to an open-loop identification problem.
Using routine operating data, the disturbance transfer function N can be identified

via time series analysis of sensitivity-filtered data Sy, ie.
57 = (I + TQ)Y; = Na,
where the sensitivity S is defined by § = (I +7'Q)~.. Since Gy = (I +TQ)™'T, we have
S=I-Gu,Q

where Q is normally assumed to be known, but it can also be directly identified from
closed-loop data. Therefore, the disturbance transfer function matrix can be estimated
under closed-loop conditions. With the knowledge of D¢, N and the user specified filter
GF, one can calculate the user specified benchmark performance via equation (12.24).

The simplest form of G, will be a diagonal matrix.

Example 13 Consider the following system from Tsiligiannis and Svoronos(1989):
[ _06g! _osg-t ]
—qq_—l’ 1-0.5¢—

T< | 770
Assume the disturbance transfer function matriz as
[ —0.6

v | ke e

0.5 1
| T-05¢-T T-0.5¢T |

A generalized unitary interactor matrix can be factored as:

—0.6742q —0.7385¢

=0.7385( 1-1.5477¢)q 0.6742( 1-1.5477¢)q
q-1. q-1.

and the solution of the Diophantine identity yields

DG = DfD,'nf =

¢ %DgN = ¢ 'DgN
—~0.5217 -=0.1670
—1.0434 -0.3340 TTSFT TTBF

+q~ - e
o.6213—o.1340¥—1 -l.7293+0.373%g‘1 0.0433 —0.1205
1-1.5477¢— 1-~1. q 1-05¢-1 1-0.5¢—T

F‘Hl-dﬂnmp Rmp

2
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The closed-loop response under admissible minimum variance control is therefore given by

47*DGYladmo = (F +q~*Rump)ac (12.25)

Assume, for simplicity, that Var(a,) = I, then the achievable minimum variance can be

calculated from equation (12.25) as:

A 16137 —0.3521
Ladmv = Var(Yilodme) = (12.26)
—0.3521 1.4988

and its quadratic measure (H, norm)

E(Y Yo)ladmy = tr(Sadmy) = 3.1125

Suppose that the controller sampling interval is AT = 5 sec and a closed-loop response

with time constant T = 1 min is desired. According to this requirement, a filter can be

designed as
0.08
Gr = 1-0.92¢~ 0
0.08
0 1-0.92¢— T

Since Gr(g~! = 1) = I, this specification preserves the asymptotic property of the type 1
system. From equation (12.24), the user specified closed-loop response can be written as

¢*DcY: = (F + ¢ Rump + (I — Gr)Rmp)ay (12.27)

Substituting numerical values into equation (12.27) and simplifying the results gives

~0.674 +0.957¢! — 0.310¢~2 -0.738 + 1.048¢™! - 0.339¢—2
1.143 - 2.361¢~" + 1.574¢2 - 0.339¢~% —1.001 + 2.069¢™" ~ 1.379¢~2 + 0.297¢3

_ | —1.523 + 1.961¢~! — 0.48¢~2 —0.487 + 0.627¢~! - 0.153¢~2
0.661 ~ 1.117¢™" +0.537¢2 ~ 0.061g™3 —1.840+ 3.111¢~! - 1.497¢~2 + 0.171¢~3
This is an achievable closed-loop response satisfying user’s requirement. Its variance can

be calculated as
23131 0.3130

03130 2.3248

Suser é Var(ytlu:er) =

and its quadratic measure (H» norm) as

E(YTY) user = tr(Suser) = 4.6379
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which is 50% larger than the achievable minimum variance. The performance indices
are also adjusted accordingly. For example, the quadratic function based performance

measure is adjusted according to
Tuser = 1.5Madme

where
A tr(Suser)
Thuser = tr(Ey)

12.5 Conclusions

Practical feedback control performance assessment has been discussed in this chapter.
A filtered optimal H> control law with desired closed-loop dynamics has been proposed
as a practical benchmark to assess control loop performance. The proposed approach
has taken into account both minimum phase and nonminimum phase systems. Simulated
examples have illustrated application of the proposed methods.
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Figure 12.5: Block diagram of the closed-loop system.



Chapter 13

Performance Assessment: LQG

Benchmark

13.1 Introduction

Many authors (Harris(1989), Desborough and Harris(1992) , Stanfelj et al.(1993) ,
Lynch and Dumont(1993) , Kozub and Garcia(1993) ) have reported the use of
minimum variance control as a benchmark standard against which to assess control
loop performance. This idea has been extended to MIMO processes in the previous
chapters. However, these methods are concerned with performance assessment with
minimum variance or optimal H, norm control as the benchmark, a benchmark which

does not explicitly take into account the control effort.

In any case, minimum variance control is usually not a desired control algorithm of
choice in most practical situations due to its demand for excessive control action and poor
robustness. However, performance assessment with minimum variance or optimal H> norm
control as the benchmark does provide us with such useful information as a global lower
bound of process variance or the H, norm measure. For example, if a controller indicates

good performance relative to minimum variance control, then further tuning of the existing

! A version of this chapter has been presented at the 1996 AIChE Annual Meeting.
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controller would be neither useful nor necessary. However, if a process indicates poor
performance relative to minimum variance control, then there is a potential to improve
its performance but no guarantee that the performance may be improved by retuning the
existing controller. In such cases further analysis, such as performance evaluation with
control action constraints taken into account, may be necessary. In general, tighter quality
specifications result in smaller variation in the process output but typically requires more
control effort. One may therefore be more interested in knowing how far away is the
control performance from the “best” achievable performance with the same control effort,

ie. in mathematical form the resolution of the following problem may be of interest:
Given E[u?] < o, what is min{ E[y?]}?

The solution (achievable performance) is given by a tradeoff curve as shown in
Figure 13.1. This curve can be obtained from solving the LQG problem (Kwakernaak and
Sivan, 1972; Harris, 1985; Boyd and Barratt, 1991), where the LQG objective function is

defined by
J(X) = Bly?] + AE[u]

By varying A, various optimal solutions of E[y?] and E[u?] can be calculated. Thus a
curve with the optimal E[u?] as the abscissa and E[y?] as the ordinate is formed from
these solutions. Boyd and Barratt (Boyd and Barratt, 1991) have also shown that a
variety of constraints (e.g. hard constraints, robustness specification and etc.) can be
formed as convex optimization problems and are readily solved via convex optimization
tools. Any linear controller can only operate in the region above the tradeoff curve (Boyd
and Barratt, 1991) shown in Figure 13.1. It is clear that given E[u?] = o, the minimum
value (or the Pareto optimal value (Boyd and Barratt, 1991)) of E[y?] can be found from
this curve. This curve therefore represents the bound of performance and can be used for

performance assessment purpose.
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13.2 Performance assessment with control action taken

into account

13.2.1 LQG solution via state space or input-output model

The theory in this section is well-known. Readers are referred to Kwakernaak and
Sivan (1972) and Astrom and Wittenmark (1990). We will not discuss the theory but
rather emphasize the LQG solution strategy via the Control Toolbox in Matlab in this
section.

Consider a state space model as

Ti41 = Az + Bup + Guy

Yy = CZ‘:-*—D‘U: +‘U¢

where
Elw] = E[v] =0, EwuwT|=Q, EwT]=R, EuwT]=V

Then the Kalman filter can be written as
=} =2 + K! (y — Cz} — Duy)
where z} is the state prediction and can be written as
They = Az{ + Bu,

The steady state Kalman filter gain K/ can be solved via the Riccati
equation (Kwakernaak and Sivan, 1972). The solution is readily available via a Matlab
function such as dige. If the state transition matrix 4 is singular (e.g. due to time delays),
then the function dlge2 in the Matlab based MPC toolbox can be used. This uses the

iterative method to solve the Riccati equation.

The optimal state feedback gain L (u; = ~Lz{) is also solved via the Riccati
equation (Kwakernaak and Sivan, 1972). The solution is readily available in the Matlab
function digr. For a singular matrix A, one could use dare in the LMI/Matlab toolbax,

which also uses an iterative method to solve the Riccati equation.
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One can also solve the LQG problem with the input-output transfer function via
Harris and MacGregor (1987) approach which uses the spectral factorization and the
solution of the Diophantine identity. A special case (when the control weighting is zero)
has been discussed in Chapter 4. For the general solution, readers are referred to Harris
and MacGregor (1987).

13.2.2 LQG solution via GPC

Another way to solve this LQG problem is via the generalized predictive control (GPC)
or model predictive control (MPC) approach (since the multivariate MPC/Matlab toolbox
is available). Consider a cost function of the form (Clarke et al., 1987):

N2 N
Jopc = E{ 3 [ye+; — reas]’ + 3 A[Augyji]?}
=Ny j=1
GPC gives a control law which “minimizes” the above objective function. However, in
order to achieve a time-invariant control law, only the first control action is actually
implemented in GPC, i.e. it is a receding horizon control law. Therefore, the GPC control
law does not truly minimize the above objective function. However for N; = 1, Ny, = Ns,
and Nz — oo, this objective function converges to the LQG objective function (Clarke
et al., 1987; Garcia et al., 1989; Bitmead et al., 1990), i.e.

1
EJGPC — JiQc = Elyt — e} + AE[Auy)?

Minimization of this LQG objective function, as has been shown in Kwakernaak and
Sivan (1972), yields a time-invariant optimal control law. Since the control law is time
invariant for this special tuning, the GPC control law does truly optimize its objective
function irrespective of the fact that only the first control move is actually implemented.
Therefore, the LQG problem can be solved via the infinite GPC solution. But as N3 = o0,
GPC computation requires the solution of a large linear least squares problem, while LQG
involves the solution of the recursive Riccati equation. Nevertheless, in practice, a finite
value of N; is usually enough to achieve the approximate infinite horizon LQG solution
via the GPC approach. Thus, the MPC toolbox in Matlab provides a convenient approach
to solve the LQG problem of MIMO processes.
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13.2.3 The tradeoff curve

Once the problem is formulated as the LQG problem, the tradeoff curve can be
calculated by varying the control weighting A. For the SISO application, this is
straightforward. To extend this result into MIMO systems, we need to further explore
this idea. Suppose that the white noise sequence a; satisfies V'ar(a;) = 1. However if
Var(a¢) = a2 # 1, one can always normalize it to achieve such a form. For example, in
the ARMAX form

Ay = Bu; + Ca,

If Viar(a:) = 02 # 1, then multiply the polynomial C such that €' = Ca,, and the new
ARMAX model can be written as

Ay: = Buy + C'a;

where the new white noise sequence a; = o la; and therefore satisfies V'ar(a}) = 1. In
t [ 3 a;

the sequel, we therefore assume V'ar(a;) = 1 without loss of generality.

Suppose that a regulatory LQG control law is u; = —gyt, then

CF

A
T T

and
CE

" AF + BE
where F and E are functions of A. The variance can be expressed as

U = at é Guas
1 [ -
Var(y) = Var(Gyad = - [ |Gy(e)Podu = IIGyIo2 = IGyl3
where the second equality holds by applying Parseval’s Theorem. Similarly,
Var(u) = [|Gull3os = [|Gull3

Therefore, Viar(y;) and Var(u;) are the Hp norms of the closed-loop transfer functions
from disturbance a; to y; and u; respectively. Thus, the “size” of the closed-loop transfer
function of y; or u; is of main concern in the performance assessment, irrespective of

the type of the disturbances a;. In this way, the Hp-norm measure of y; or u; can
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Table 13.1: The procedure for calculation of the LQG tradeoff curve
%

L. Formulate the problem in an appropriate LQG format.
2. Choose appropriate output weighting W and control weighting R.

3. By varying A, a series of LQG control laws can be calculated. Using these LQG

control laws, one can form the closed-loop transfer function from a, to Y; and U,

respectively.

4. The Hj norms of the closed-loop transfer functions from a; to ¥; and U, respectively
can then be calculated to provide a tradeoff curve.

also be applied to deterministic systems by replacing N to correspond to deterministic
disturbances or a specific setpoint model. More importantly, this measure can be directly
extended to the MIMO case, i.e. H> norms of the closed-loop transfer function matrices

from disturbance ¢; to Y; and U, are used for the performance measure.

For the MIMO case, the objective function of LQG control is written as
J = E[YTWY] + AE[UT RU|

where the output weighting W should be chosen in such a way that it reflects the relative
importance of the individual outputs; the control weighting R is also chosen according
to the relative cost of individual control moves. By varying ), various LQG control
law can be calculated. From the LQG control laws, one can calculate the closed-loop
transfer function matrices from a; to Y; and U, respectively as e.g., Gy and Gy. Then
the Hy norm, ||Gy|[} = {E(YTWY:)} and ||Gpli% = {E(UTRU,)} can be used to plot
the tradeoff curve. The procedure for constructing the tradeoff curve is summarized in
Table 13.1
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13.2.4 Performance assessment

Using LQG as the benchmark to assess control loop performance requires a complete
knowledge of the plant model. An open or closed-loop identification effort is therefore
required. Recent research on control relevant identification has shown that closed-loop
identification is not necessarily poorer than open-loop identification if the objective of
identification is for control (Bitmead, 1993; Gevers, 1993; Van den Hof and Schrama,
1995). For example, to design an LQG controller, the madel is best identified under closed-
loop condition with the desired LQG controller running in the loop (Zang et al., 1995).
Calculation of the tradeoff curve is similar to the design of a series of LQG controllers
by identifying an appropriate plant model. In control relevant identification, the “best”
model is identified by using an iterative method, i.e. identify a model; then re-design
an LQG controller; re-identifying the model using data collected under the LQG control;
then re-designing the LQG controller and so on. This approach is clearly not suitable for
calculation of the tradeoff curve which requires a series of LQG designs. Identification of
a “best” model for calculation of the LQG tradeoff curve thus remains an open problem
for future research. In this section, the traditional identification methods are used to find
the plant model instead. For example, we can identify the model under either closed-loop
or open-loop conditions. Under closed-loop condition, we can use direct identification or

the two-step identification as propesed in the next chapter.

The noise model is also important for the solution of the LQG problem. It may be
jointly identified with the plant model using routine operating data with dither excitation,
if regulation of these “routine” disturbances is of interest. The prediction error method
(PEM) provides models of both plant and disturbances. On the other hand, one may want
to assess control loop performance with hypothetical disturbances. For example, one may
want to know how well a controller regulates step disturbances or tracks setpoints. In this
case, the noise model (or setpoint dynamics) may simply be substituted by 1/(1 - ¢~1),
if step-type disturbance regulation or tracking is of interest.

Once the tradeoff curve is calculated, the next step is to calculate the Ho-norm of Y;

and U; under existing control in order to compare them with the tradeoff curve. Three
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different situations need to be considered.

If “routine” disturbances are of interest, then the white noise sequence a, can be

estimated from identification of the plant and noise model, i.e.
a = N~'(Y, — TUL)

where T is the estimate of T and N is the estimate of N. With the estimate of the white
noise sequence d;, the transfer functions from a; to Y: and U; can be identified. Then the

H, norms of Y; and U, are calculated.

If other hypothetical disturbances are of interest, then one needs to identify the
sensitivity function S. The closed-loop transfer functions from a; to Y and U, can then

be written as

Y; =SNa,
and
Ui =—-SQNa;
where
S=I+TQ)™!

If hypothetical setpoint changes (r¢) are of interest, then the tracking error E; is
considered. The closed-loop transfer functions from r¢ to E; and U; can be identified and
denoted as Gg and Gy. Then the H, norms of E; and U, are ||GEN|[3 and [|GyN|[3

respectively, where N characterizes the hypothetical setpoint dynamics.

13.3 Pilot-scale experimental evaluation

Example 14 To evaluate the proposed algorithm on a pilot-scale process, performance
assessment of multivariate control loops was conducted on a two-interacting tank process
shoun in Figure 13.2. The levels (hy,hy) of the two tanks are the two controlled variables.
The two inlet flow rates (u1,uy) are the manipulated variables. The sampling interval is
selected as T, = 5sec. One step time delay (in addition to the delay due to the zero-order-
hold) is introduced at the actuator of the control valve supplying water to Tank #2.
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Table 13.2: Controller tuning parameters
Controller | N, | N, | A1 A2

GPC#1 |10 {10 |04 |04
GPC#2 |5 |5 }|0.33 033
GPC#3 |5 |5 |05 |05

IMC and GPC (or MPC) controllers were implemented on this process. To implement
the IMC and GPC controllers, an open-loop identification test was first conducted to
estimate the plant model. Using the pem function in Matlab, the open-loop model was
identified as

0.1963¢—1—0.1737¢—2—-0.0112¢9=2  0.04069—7 —0.0113¢—%+0.0009¢~?
T= 1—1. 7272 1-0. +0. =
0.0147¢~! -0.01271—24»0.02#-3 0.0406¢~2—0.0299¢~3-0.0047¢—*
1—-1.3537¢- 1+0.3707¢q— 1-1.7849¢—140.7902¢—
The time domain validation on a separate set of data is shown in Figure 13.3.

The hypothetical disturbances dynamics, in this example, is taken to be

1
0
N=|FT (13.1)
0 =T

to represent step-type disturbances or setpoint changes. Based on the estimated plant
model, three GPC controllers with different tuning parameters were implemented on this
process. The tuning parameters are shown in Table 13.2: As Ny = N; and N> — 0o, GPC
theoretically converges to LQG solution. In this example, GPC converges to the infinite
horizon case as N; = N, > 10. Therefore, controller # 1 should theoretically give LQG
performance. But this may not be true due to possible model-plant mismatch. We will
evaluate the performance of these controllers in this section.

A multivariate IMC controller was also implemented on this process. To design the
IMC controller, a unitary interactor matrix has to be factored out from the plant transfer

function matrix T. It is
-0.9972¢ -0.0748¢q

D=
0.0748¢2 —0.9972¢2
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This unitary interactor matrix (an all-pass factor of the infinite zeros) represents time-
delays in the MIMO system. The optimal IMC (Optimal Hy-norm) controller is the inverse
of the delay-free transfer function matrix T, where

T=DT

To make the IMC controller implementable on this process, a filter

0.1 0
f=| 0T
0 0.1
1—0.9¢~7

has to be cascaded to the optimal IMC controller. The final IMC controller is
Q =7

where @Q* is the controller in the IMC framework (Morari and Zafiriou, 1989). This IMC

controller is denoted as controller #4 in the following discussion.

Now we begin the evaluation of these four controllers using experimental data. Suppose
we have no knowledge of the plant model and the controllers in this case. Closed-loop
identification has to be used to identify this model in order to assess performance of the
four controllers. A random binary dither signal was inserted in the setpoint. The closed-
loop response (both Y; and U; of the four controllers are shown in Figures 13.4, 13.5,
13.6 and 13.7. One can roughly get an indication of the relative performance of the four
controllers by inspecting these four figures, but it is difficult to see how good these four

controllers are relative to the best achievable control with the same control efforts.

A direct closed-loop identification using the prediction error method (Ljung, 1987;
Soderstrom and Stoica, 1989) was applied to the four sets of data to estimate the plant
model. Since the step-type setpoint tracking performance is of interest in this example,
the setpoint dynamics requires N to take the form as expressed in equation 13.1. The
tradeoff curve can be calculated as shown in Figure 13.8. One can see difference in the
curves from different sets of data. This difference is clearly not due to disturbances since
the signal to noise ratio is fairly high in this experiment. It is mainly attributable to the
bias error, i.e., the model sets does not contain the true dynamics of the plant:,. Thus an
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“LQG relevant identification strategy” is highly desirable for such an application. The
topic of control relevant identification is beyond the scope of this thesis. Interested readers
are referred to Kosut et al.(1992), Shook et al.(1992), Bitmead (1993) , Gevers (1993) and
Van den Hof and Schrama (1995) for interesting discussions on this topic.

Since controller #1 is the closest to LQG control, the tradeoff curve calculated from
this data set is used as the benchmark in this example. By directly fitting the tracking
error E; and the controller output U to the setpoint dither excitation r;, we can estimate
the closed-loop transfer function matrices from r; to E; and U, respectively. The fittings
from r; to E; and from r; to U, are open-loop identification problems. Time domain
validation (first 100 data points) for one of the experiments, controller #1, is shown in
Figure 13.9. The upper two graphs represent time domain validation of the fitting from
7¢(2 x 1) to E¢(2 x 1). The lower two graphs represent time domain validation of the
fitting from r¢(2 x 1) to U(2 x 1). The other three sets of controllers show similar results
and are not reproduced here. Using the setpoint dynamics as in equation (13.1), the
H> norm of E; and U, for the four sets of controllers can be calculated and is shown in
Figure 13.10. From this graph, one can compare the performance of different controllers
or just one controller with different tuning parameters. Among the three GPC controllers,
controller #1 is the closest to LQG as it should be. The difference between controller
#1 and LQG may be attributed to model-plant mismatch. Controller #2 has the same
“size” of tracking error as controller #1, but requires a larger control effort. Controller
#3 exhibits a control effort which is similar to the IMC controller, controller #4, but
yields a much smaller tracking error. We do not intend to show the superiority of any one
controller over the other. In fact, any of the controllers can be retuned by adjusting the
tuning or the filter parameters such that it moves toward the tradeoff curve. From this
curve, one can clearly see the potential for improving the performance of controllers #2,
#3 and #4. This study also provides insight as to how the various GPC controllers may
be tuned to give the desired performance.
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13.4 Case study on an industrial process

Example 15 The proposed performance assessment method was applied to monitor
control loop performance of an industrial cascade control loop shown in Figure 13.11.
In this ezample, we are interested in control performance under a regulatory mode for

rejecting routine disturbances at the outer loop.

In Chapter 2. We have shown that the average performance index in the outer loop is
approximately 0.15, indicating relatively poor control. Clearly this loop has the potential
to provide better controller via retuning the existing controller or redesigning the control
algorithm. However one may ask how good this controller is relative to the achievable

optimal control with the same control effort.

An open-loop test was conducted on this process using PRBS excitation. Due to
the strong signal-noise-ratio in the experiment, a reasonable open-loop model is expected
from open-loop data (Miller, 1995). However, the estimated noise model from open-
loop data may not be completely reliable, since the noise model may vary with the
operating conditions. The routine closed-loop operation may also be different from open-
loop operation, since a relative large dither signal excitation was injected to perform the
open-loop tests. Consequently the noise model obtained from open-loop tests may not
represent the true noise dynamics under routine closed-loop condition. For performance
assessment purposes, a noise model which reasonably represents the noise dynamics under

normal working condition is necessary.

One approach to bypass this problem is to use routine closed-loop operating data for
estimation of the noise model. This can be done by 1) calculating the sensitivity function,
te. §=1/(1+TQ); 2) collecting routine closed-loop operating data and filtering the
closed-loop data by the inverse sensitivity function, f.e. y/ = y/S; 3) fitting the filtered
closed-loop data by a time series model. Then this time series model is the estimated noise
model from closed-loop data. This procedure is based on the fact that routine closed-loop

data y; can be written as
N

W= TrTQ™
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where N is the noise model and a; is the white-noise excitation. If y, is filtered by 1/8S,
then y{ = y(1 + TQ) = Na;. Therefore N can be estimated from time series analysis of

vi.

With the plant model and the noise model, the tradeoff curve is obtained from the
LQG solution as shown in Figure 13.12. The abscissa represents the controt variance
measured by the expectation of incremental control action, while the ordinate represents

the variance of the temperature.

Using this graph, we can also assess the performance relative to minimum variance
control. The graph indicates that the tradeoff curve converges (towards right) to 0.07
when there is no constraint on incrementat controt action Au;. Therefore the minimum
variance (without incremental control action constraint) is 62, = 0.07. With the actuat

temperature variance 03 = 0.38, the performance index 1(d) = 02, /cr§ =0.18.

The current variance of incremental control action is about E[{Au,]? = 0.68. Using this
control action variance, the achievable temperature variance can be found from the curve
which is about 0.1. Thus the achievable performance measure with LQG as the benchmark
is 0.1/0.38 = 0.26. This is a more realistic measure of current controt performance if control
action cannot be allowed to exceed the current level. This number indicates that there is
significant potential to improve the feedback controller performance without increasing the
controtl effort. If we draw a horizontal line along the actual working point, it intersects the
tradeoff curve at the point where E[Au,]?> — 0. A significant reduction of the incremental
control variance would be possible without increasing output variance if an advanced
controller such as LQG or DMC is implemented.

13.5 Conclusions

A practical control benchmark has been proposed for assessment of control loop
performance. This practical benchmark takes both the control effort and the output
performance into account. Calculation of such a benchmark control requires process

identification. LQG is one such practical benchmark and its tradeoff curve can be
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obtained in terms of the H, norm of the appropriate transfer function matrices. Other
practical benchmarks, which usually yield a similar tradeoff curve (Boyd and Barratt,
1991) and require a numerical solution, may also be considered for further study of

practical performance assessment.
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Figure 13.3: Time domain validation of the open-loop model. The time scale is in
terms of sampling intervals.
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Figure 13.4: Closed-loop test for controller #1. The time scale §s in terms of sampling
intervals.
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Figure 13.5: Closed-loop test for controller #2. The time scale is in terms of sampling
tntervals.
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Figure 13.6: Closed-loop test for controller #3. The time scale is in terms of sampling
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Figure 13.7:  Closed-loop test for controller #{. The time scale is in terms of sampling

intervals.
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Figure 13.8: Tradeoff curve estimated from different set of data. Controller #3
(DMC#3) is not shown in the graph for clarity of the graph.
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Figure 13.9: Time domain validation for controller #1. The time scale is in terms of
sampling intervals.
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Figure 13.10: Performance assessment of the four controllers.
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Figure 13.11: Schematic diagram of the industrial cascade reactor control loop
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Figure 13.12: Performance assessment of the industrial cascade control loop (outer loop)



Chapter 14

Closed-loop Identification

14.1 Introduction

A necessary prerequisite for model-based control is a model of the process. Such
certainty-equivalence, model-based control schemes rely on an off-line estimated model of
the process, i.e. the process is “probed” or excited by a carefully designed input-signal
under open-loop conditions and the input-output data are used to generate a suitable
model of the process. In a majority of model-based control schemes used in the chemical
process industry, the models are generated with little regard for their ultimate end-use,
e.g. as in model-predictive control. Almost always in such cases, reduced-complexity
models are generated to capture the most dominant dynamics of the process. Such batch
or off-line identification methods represent a major effort and may require anywhere from

several hours to several weeks of open-loop tests.

In contrast with this, the objective in closed-loop identification is to use routine
operating data with dither signal excitation to develop a dynamic model of the process.
It is practically a very appealing idea. In this mode, process identification can commence
with the process in its natural closed-loop state. In some cases, the plant has to run under
closed-loop conditions due to safety reasons. In other cases, if a linearized dynamic model

! A version of this chapter has been accepted for publication in the Journal of Process Control and has
also been presented at the 1996 CSChE Conference.
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around a nominal operating point is desired, then this can be achieved by closed-loop
identification, since otherwise under open-loop conditions the process variables may drift
away from the nominal operating point.

The method of closed-loop identification has been in the development stage over the
last 20 years. Important issues such as identifiability under closed-loop conditions have
received attention from many researchers (Box and MacGregor, 1976; Goodwin and Payne,
1977; Gustavsson et al., 1978; Soderstrom and Stoica, 1989). A number of identification
strategies have been developed (Ljung, 1987; Soderstrom and Stoica, 1989). In traditional
identification literature, the quality of identification and identifiability issues are mainly
addressed under the assumption that the model set contains the plant i.e. the model can

describe true process dynamics.

The more typical case is that of under-modelling or identification of reduced-complexity
models when the plant is not in the model set. This is the focus of the present chapter and
is a more realistic situation since a plant is generally of relatively high-order and the model
structure used to approximate such process is almost always lower order. Stated simply,
identification is an exercise in madel-reduction. Under such circumstances, the model-
plant error consists of two terms, the bias error (due to under-modelling) and the random
error (or variance error) due to noise and disturbance effects. Several general expressions
for the asymptotic variance and bias errors have been given by Ljung (Ljung, 1987). The
relationship between the variance and bias errors has been recently addressed by Guo and
Ljung (1994) and Ljung (1994). These general expressions for the bias distribution have
also been extended to closed-loop identification (Bitmead et al., 1990; Zhu and Backe,
1993; MacGregor and Fogal, 1995). It is well known that a data pre-filter can change the
distribution of the bias error in the frequency range of interest (Ljung, 1987), and therefore
plays a somehow similar role as the change in the frequency content of the dither signal.
The choice of this pre-filter or alternatively the spectrum of the input signal is application
dependent (Gevers and Ljung, 1986; Ljung, 1987; Rivera et al., 1992).

Closed-loop identification has also attracted much interest due to the emerging research

area of joint identification and control. The key idea in the joint identification and control
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strategy (as opposed to a ‘disjoint’ or separate identification and control) is to identify
and control with the objective of minimizing a joint global control performance criterion.
This topic has received attention under such headings as: control-relevant identification,
iterative identification and control etc. Readers are referred to Kosut et al.(1992), Shook
et al.(1992), Bitmead (1993) , Gevers (1993) and Van den Hof and Schrama (1995) for
detailed discussions on these topics. The study of control-relevant identification requires
that the best identification strategy is to identify the process under feedback with the
intended controller in use. For example, a model intended for the design of minimum
variance control is best identified under minimum variance feedback control (Gevers and
Ljung, 1986), and similarly for LQG control (Zang et al., 1995; Hakvoort et al., 1994),
model reference control (Hjalmarsson et al., 1994) etc.

The purpose of this chapter, however, is to focus attention only on the identification
of the process model under closed-loop conditions. The estimated model is shown to have
asymptotically identical expressions for the bias and variance terms regardless of how the
identification run is conducted, i.e. irrespective of open-loop or closed-loop conditions.
The estimated model can then be subsequently used for improving existing controller
design, controller re-design, control-loop performance assessment, general analysis, etc.
For example, a model obtained from closed-loop data under PID control may be used
for the design of a DMC controller. Control loop performance assessment techniques
as discussed in the previous chapters do not require an explicit process model when
minimum variance control is used as a benchmark. However, if a more practical benchmark
standard such as LQG is used for evaluating existing control loop performance, then more
information about the process is required.

The main contribution of this chapter is the development of a two-step closed-loop
identification algorithm which asymptotically yields the same expressions for both variance
and bias errors as in open-loop identification. These results obviate the need to conduct
expensive open-loop tests when simple closed-loop tests with dither signal excitation can
suffice. This chapter illustrates the point that a suitable model of the process can be
estimated from closed-loop data with appropriate filtering.
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The chapter is organized as follows. Section 14.2 gives comparison between open-loop
and closed-loop identification in terms of variance and bias errors. In Section 14.3, a
two-step closed-loop identification scheme is proposed, which asymptotically yields the
same expressions of variance and bias errors as open-loop identification. The proposed
algorithm is evaluated on simulation examples in Section 14.5, and a computer-interfaced
pilot-scale plant in Section 14.6.

14.2 Accuracy aspects of closed-loop identification

Consider a linear SISO plant, schematically illustrated in Figure 14.1, and described
by
y=Tz+ Na

where a is a white noise sequence, z is the input to the process, T is the process transfer
function, and N is the noise transfer function. Let a model of the form

§=Tz+ Na
be used to approximate the process dynamics. The prediction error is defined as

(y~ Tx)

. 1

Q= ==
N
The commonly used objective function for parameter identification is to minimize the sum

of squares of the prediction error:
1 f: 2
V=="25% a°t)
Mo

This method is denoted as the prediction error method or PEM (Ljung, 1987). The total
error of the estimates can be attributed to variance and bias errors (Ljung, 1987) and may

be conceptually written as a sum of the variance error and the bias error (Ljung, 1994):
Vr=W+Vp

In this section, we deal with both the bias and variance estimation errors and compare

them between the open-loop and closed-loop cases. We show that the issue of variance and
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bias error of the parameter estimates is common to both open and close-loop identification.
The PEM is a general and efficient method for system identification. The variance of the
PEM estimator asymptotically reaches the Cramer-Rao lower bound (Ljung, 1987). This
asymptotic variance expressed in the frequency domain has been given by Ljung(1987).

Theorem 11 (Ljung, 1987) For input and output data  and y obtained Jfrom the process

shoumn in Figure 14.1, where

y=Tz+v=Tz+ Na (14.1)
the following result holds for large sample size M, large model order n and small n/M:
T(eiw
Cov ﬁ( _ . =B, (w)B " (w) (14.2)

where

B(w) = [ b, (w) PDza(w) ] and  &,(w) = IN(CJU)PO’E
Poz(w) "2

end where ®,(w) denotes the spectrum of the corresponding signal *.
Corollary 3 For an open-loop system, with the input T = w (w ts input ezcitation signal
and ts independent of noise a), and output y, equation (14.1) can be written as

y=Tw+v=Tw+ Na (14.3)

The asymptotic variance of estimates using the PEM ts given by
n [N(Ee“)Po2 _ n dy(w)

Var[T(e/)] M ol = M) (14.4)
Gl
la
N

S B S

Figure 14.1: Process model block diagram
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Proof follows directly from equation (14.2).

The results of Theorem 11 are more general than its statement may indicate. These
results are also applicable to the closed-loop case (direct identification 2) (Gevers and
Ljung, 1986) since in this case the correlation between z and 8, P.,(w), is considered
in the expression for ®(w) (see equation(14.2)). In this way, Theorem 11 can also be
extended to find the asymptotic variance of estimates T' (Zhu and Backe, 1993) and N
under closed-loop conditions, i.e. ®.4(w) # 0 (for the closed-loop case).

Corollary 4 Under closed-loop control, as illustrated in Figure 14.2, the asymptotic

variance of the estimates is given by

n ®,(w) 1
M &y (w) [S(e7v)]2

n w jw
NP +1QE)

(14.6)

Var{f'(e)]

Py (w)

Var[N(e/)] e

) (14.7)

where S = 1/(1+QT) is the sensitivity function; w is the dither signal and is sndependent

of the noise sequence, a.

Proof:  Under closed-loop conditions, the manipulated variable z can be written as

z=Sw—-SQNa
Therefore
De(w) = [S(e)PDuw(w) +1S(E) Q) 2N () 202 (14.8)
Dza(w) = —S(e™)Q(e™)N(e)o? (14.9)

The corollary follows after substituting equation (14.8) and (14.9) into equation (14.2).

Thus the asymptotic variance of T under closed-loop conditions depends on the sample
size M, the signal to noise ratio (SNR), ®,,(w)/®y(w), and the sensitivity function S(e/v).
Increasing sample size tends to improve the estimate. However, the sensitivity function

?Direct identification—identification of a plant model by directly using the input and output data
regardless of the feedback effect.
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Figure 14.2: Feedback control loop block diagram

affects the accuracy inversely. In process control, the asymptotic regulatory property
under closed-loop control is of main term of interest, i.e. it is desired to have asymptatic
disturbance rejection or lim,,_,¢ S(e/*) = 0. Typically the disturbances are step-type and
therefore such asymptotic disturbance rejection (for step-type disturbances) is achieved by
incorporating integral action. The estimate is consequently poor at these low frequencies if
a white noise dither signal is used. However, one can also take advantage of the small value
of the sensitivity at low frequency and use a dither signal which has more power at low
frequency without upsetting the process. For other control strategies such as regulation
of stochastic disturbances, the sensitivity function may have a small value in the middle
or high frequency range, and therefore poor estimates in middle or high frequency range
would be expected. The main difference in the asymptotic variance between open-loop
and closed-loop identification, is the presence of the sensitivity function S (cf eqns (14.4)
and (14.6)).

In addition to the variance of the estimates, another important measure of
identification quality is the bias error. It exists whenever the process dynamics are not
contained in the model set, as in reduced-complexity model identification. This in fact is
almost always the case in practice. The distribution of bias errors in the frequency domain
has been considered by Ljung (1987) through spectral characterization of the identification

problem.
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Theorem 12 (Ljung, 1987) For an open-loop process shown in equation(14.3), the

estimation of model parameters in the limit is given by the following optimization problem:

Orc M3 argemin /_Z [T(e7) - T(7) 28, (w) + &, (w)]mdw (14.10)

where Oy is the estimated model parameters. If the noise model N is chosen as being

fized such as N = N, then the second term on the right hand side of Equation (14.10) ¢s

constant, and the optimization problem simplifies to

Orr M3% argemin /_: [T(e™) ~ T(e) |26 (w) TIWE%“TP]@ (14.11)

These results clearly indicate that the bias distribution of [T'(e7)-T'(e7*)| in the frequency
domain is weighted by the dither spectrum, ®,(w), and the inverse of the noise spectrum,
ie. 1/|N(e/v)[2 (also regarded as a noise filter), or simply the signal to noise ratio (SNR),
®y(w)/IN (e7*)[2. If a unity noise model is considered, i.e. N = 1, then the identification
algorithm can be characterized as the output error method (OEM) (Ljung, 1987) which

does not depend on the noise spectrum:

Oar M3 arggmin /_: [T(7) ~ T(e7) 28y (w) duw (14.12)
Theorem 12 can also be extended to the closed-loop case.
Corollary 5 (MacGregor and Fogal, 1995) For the closed-loop process shown in

Figure 14.2, the estimation of model parameters in the limit is given by the following

optimization problem:

: juwy _ g2 1S (67) 12 [S(e™)? [N ()2
Ou 3™ fTe"" ~ P SEIE 5 2 — 2] qyy
v e I T R o )t FaeE (R
(14.13)
: e . & 1
where S is the sensitivity function and § = vy
Proof:  See the proof in (MacGregor and Fogal, 1995). (]

If w is a sufficiently high order persistently exciting signal, and the set of 7' contains T, the
set of N contains N, then both estimates are consistent by using the direct identification
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Table 14.1: Expressions of the asymptatic variance and bias errors

—————————

open-loop closed-loop
Variance PrEo) e
Bias LT ) = Fe) P e+ | 20T ) ~ )P EE L oy (w)+
. . . " jwy|2 jw )2
distribution +~—J—)—-!: [y:,’ T Jdw +LLM‘|: (Z.. G L'(_“ (:;u E oa)dw
—_—— e S N

method (Soderstrom and Stoica, 1989), i.e., T 3% T and N 3 N. When the model
set does not contain the process dynamics, which is generally the case and is of the interest
in this chapter, a bias in estimation results, which is weighted once again not only by the
SNR but also by the sensitivity function S. Thus the presence of the sensitivity function
is the key difference between open-loop and closed-loop identification (cf Table 14.1). To
summarize, the expressions for the asymptotic variance and bias errors under open-loop
and closed-loop conditions are listed in Table 14.1.

Remark 9 As pointed out by Schrama(1992) , Gevers(1993) and Hjalmarsson et
al.(1994), the “best” model for the joint identification and control design is not necessarily
the “best” open-loop model. In fact the “best” model for such design should have
the bias error distribution weighted by the sensitivity function. But this sensitivity
function is precisely the sensitivity function that one wishes to “design” through the
choice of a suitable model-based controller once a suitable model is available. In terms
of identification and control, this represents a “catch-22” situation, since an optimal
controller cannot be designed if a control-compatible model is not available, and such
a model cannot be estimated via closed-loop identification if its bias spectrum is not
weighted by the appropriate sensitivity function. This is the main Jjustification for
iterative identification and control. However, in the majority of the design of model-
based controllers, the estimation will not have the appropriate sensitivity function as a
weighting term. Throughout this chapter, we do not assume that the feedback controller
under which the closed-loop data are collected is the intended or the ideal c&ntroller of
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choice. In such cases, the dependence on the sensitivity function in place, based on existing
control, should be decoupled in the first place. Therefore one can decouple the effect of
the current sensitivity function on the variance and bias errors and also shape the bias
distribution through the choice of appropriate data fiiters and the spectrum of the signal
(for closed-loop identification) or the input signal (for open-loop identification). In this
way a model obtained via open or closed-loop identification can truly serve the purpose

of improved control law design, analysis or control-loop performance assessment.

14.3 Two-step closed-loop identification

An effective way to reduce variance of estimates is to increase sample size, but this
may not have the desired effect on the reduction of the bias error. Depending on the
application, smaller errors in some frequency range, e.g. around the cross-over frequency
may be desired, while larger errors at other frequencies may be tolerated. Data prefiltering
can change the distribution of the bias error over the frequency range of interest (Ljung,
1987; Bitmead et al., 1990). MacGregor and Fogal(1995) have also shown that data
prefilters and the noise model have significant effect on the bias error and identifiability
for closed-loop identification. Under closed-loop conditions, the design of data filter is
complicated by the presence of the sensitivity function. In this section, we propose a
two-step closed-loop identification method which can asymptotically decouple closed-loop
parameter estimation from the effect of the undesired sensitivity function. In so doing,
this work provides a closed-loop identification method which asymptotically retains the
accuracy of open-loop identification. Thus many of the available open-loop experimental
design techniques and data prefilters can be applied to closed-loop data. The most recent
two-step identification algorithm proposed by Van den Hof and Schrama(1993), which has
a similar procedure but has a different objective, is also summarized and compared with
the two-step approach proposed here.
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Table 14.2: Item to item correspondence between two equations

equation(14.3) | equation(14.15)

Yy 4
w w
T s
N -SQN

<

-SQNa

14.3.1 Estimation of the sensitivity function—Step 1

For a closed-loop system shown in Figure 14.2, the closed-loop response can be written

y=TSw+ NSa (14.14)

and

z=Sw—-SQNa (14.15)

The sensitivity function, S, can be estimated from equation (14.15), i.e. equation (14.15)
presents a simple apen-loop identification problem where the correlation between w and
z yields $. In order to apply Corollary 3 to analyze the variance error of the estimate, S,
the corresponding terms between equation(14.3) and equation(14.15) should be identified.
The one-to-one correspondence between different terms in equations (14.3) and (14.15) is
summarized in Table 14.2.

Using Table 14.2, the variance of the estimate of S can be found by applying Corollary 3
to equation (14.15) as

1 Do (w)|N(e)[?
M Py (w)

Varl8(e)] = ISP = 5N SE@PIQE )
and its relative variance as

V,"S'([f,-ff;,:” = ;;;?wgg’, Q)2  (14.6)
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which depends on controller dynamics Q in addition to the sample size, the model order
and SNR. In subsequent applications we will show that only the relative accuracy of the
sensitivity function is important.

Using Table 14.2, the bias distribution of the sensitivity function over the frequency
range can be found by applying Theorem 12 to equation (14.15). This yields the bias

distribution in the frequency domain as

s "3 argomin [ [1(7) ~ S(e) P00 (w) *'H(""”)'z"ﬂrmelz—w),z""” (14.17)

where H is the noise model with H = —SQN. Since the sensitivity function serves as
the first or intermediate result for subsequent identification of the process dynamics, its
order can be selected to be fairly large, i.e. the model set §, should then be able to
capture most of the dynamics of the actual sensitivity function, S. The total error (bias
plus variance) would then be dominated by the variance error (Guo and Ljung, 1994).
The variance error is then the main issue of concern here. To achieve this, PEM may be
used for estimation of the sensitivity function, which has asymptotic minimum variance.
However the distribution of the asymptotic minimum variance error over the frequency
range cannot be controlled by pre-filtering of the input-output data since both the process
model and the noise model (or filter), are jointly parametrized in the PEM algorithm to
yield asymptotic minimum variance estimates (Ljung, 1987). Therefore the main “tuning
knob” or “control parameter” to adjust the relative variance of the sensitivity function (see
equation(14.16)) is the spectrum of the dither signal, which has to be designed carefully
in order to control the variance error over the frequency range of interest. However, the
variance error can also be reduced by increasing the number of data points. Since it is not
difficult to collect a relatively large number of data points under closed-loop operation, a
relatively accurate estimate of the sensitivity function can be expected. In the following

discussion we therefore assume that § — S.

14.3.2 Estimation of the process model—step 2

Once the sensitivity function is available, the process dynamics can be estimated by
filtering output data with the inverse of the sensitivity function.
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Proposition 1 If one filters y by the inverse of the sensitivity function, and then
applies PEM (joint parameterization of process and noise models) to equation (14.14),
the asymptotic variance of the estimates is given by

Var[T(ei)] = %ZWEZ)) (14.18)
and X
Var[N(e)] n
NP =% (14.19)

Thus the variance of T and N/N is independent of closed-loop dynamics, i.e. both
open-loop and closed-loop estimates have the same ezpression of accuracy with respect
to variance (see Corollary 3).

Proof:  Using 1/S to filter y yields the following relationship between y and w from

equation (14.14):
y/S=y/ =Tw+ Na (14.20)

Identification of T' from equation(14.20) is an open-loop problem. This equation has the
same form as equation(14.3). Using w as input data and y/ as output data by applying
corollary 3, the proposition follows. .

The bias distribution of the estimate over frequency domain is also asymptotically
independent of the closed-loop dynamics as shown in the following propesition.

Proposition 2 From equation(14.20), the asymptotic estimates of T and N by using the
filtered data y/ and w are given by the following optimization problem:

1

mdm (14.21)

O3 M3 argemin [ (IT(e7) — T(e™) 2y () + Bo(w)]

Again this yields the same bias distribution as under the open-loop condition (see
Theorem 12). If both model sets, i.e. the process, T, and the noise, N, contain the
true process dynamics, and w is a sufficiently high-order persistently ezciting signal, then
the parameter estimates as per equation (14.21) will converge to the true values.

Proof: Follows by applying Theorem 12 to equation(14.20). ' -
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Remark 10 In the proof of proposition I and 2, it is assumed that the true sensitivity
function S is used to filter y. If this sensitivity function is substituted by its estimate, S,
then equation(14.20) should be written as

- S S
v/ v S v S N

The validity of Propositions I and 2 will then depend on the relative accuracy of the
sensitivity function, S/S. Therefore the relative accuracy of the estimated sensitivity s of
main concern in the first step. However, provided that S is sufficiently close to S (there
13 no model order or other structural limitations for the estimate of S), this relative error
of the estimate of S should have a negligible effect on the bias ezpression in the estimates

of T and N, but the effect on the variance ezpression remains as a future research topic.

If only the process model T is to be estimated, then the output error method can be applied
in this two-step identification approach. Estimation of both, the sensitivity function, S,
and the process model, T, are open-loop identification problems. The consistency of
the estimates § and T is independent of the noise model, as long as the noise model is

fixed (Ljung, 1987) as in the output error method.

Pre-filtering of data is important in identification. In particular, the choice of the
data pre-filter can allow one to shape the spectral distribution or composition of the bias
errors. The choice of the shaping filter should take into account the intended end-use of
the model. This topic overlaps with the area of joint identification and control and has
received much attention in the literature. The design and application of shaping Flters for
control-loop performance assessment is the subject of a future study. The point is that the
sensitivity function decoupling filter provides a good or fair starting point for the design
of the shaping filter under closed-loop conditions. In the following proposition, we show
that the bias error under the two-step identification strategy can be freely shaped.

Proposition 3 (Shaping Filter) For the two-step identification, based on the output error
method, if output data y is filtered by F = G;/S, and the input data w is filtered by G
only, where Gy is a shaping filter, then the asymptotic bias distribution is given by

Om M3 arggmin /; 1:"’[IT(-.'zj“") = T(e™)|*® (w)|G ¢ (™) [*|dw



218

Therefore the bias distribution in the limit is independent of the closed-loop sensitivity
Junction and can be shaped by the free filter G f to meet accuracy reguirement over
frequencies of interest.

Proof: Using filter F = G/S, the relationship between y and w from equation (14.14)

is now written as

v =Tw/ +G fNa (14.22)
where
_ Gy
v = 5
wl = G fw
Therefore
Bys = G ()P Bu(w) (14.23)

By applying Theorem 12 with fixed noise model of unit value (i.e. N = 1) as in OEM
yields
Op M3 arggmin [ IT(e7) — T(e7)|2® 1 (w) duw (14.24)
—”

The proposition follows on substituting equation (14.23) into (14.24). ™

The significance of this result is that the estimate obtained under closed-loop conditions
can be shaped in the frequency domain if the model does not contain the true dynamics,
while the estimator still maintains the property of consistency should the plant model (T
only) contain the true dynamics. The classic closed-loop direct identification does not
have such a property. All available methods for the design of the shaping filter for open-
loop identification can therefore be applied in this closed-loop case. For example, Shook et
al.(1992)’s open-loop long range predictive identification prefilter and Rivera et al.(1992)’s
systematic design of the control-relevant shaping filter can be applied. The choice of the
shaping filter is analogous to selecting frequency weighting of the bias error function.
Tighter weighting at some frequencies would result in expected corresponding reduction
in bias errors at these frequencies but at the cost of perhaps larger bias errors at other
frequencies. The effect of the shaping filter will be briefly shown in the experimental study

of a pilot-scale process.
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Table 14.3: The procedure for two-step identification
m

L. Fit z to w by using the PEM or OEM, and obtain an estimate, S, of the sensitivity
function, S.

2. Filter y by F = 1/S and then fit y/ to w by applying the PEM. Then obtain
estimates of T' and N whose variance and bias expressions are asymptotically the

same as open-loop identification.

M

The aforementioned two-step identification algorithm is summarized in Table 14.3 and
Table 14.4:

Remark 11 If S contains non-minimum phase zeros, then 1/S cannot be used as an
unstable decoupling filter. In this case, factorize S as

_ N*+N-
-7 D

S

where the polynomial N+t contsins all non-minimum phase or unstable zeros. Let
polynomial N** be the reciprocal polynomial of N*. Then all roots of N** are inside
the unit circle. Instead of using 1/S as the sensitivity function decoupling filter, 1/S'
should be used as the decoupling filter to filter y;, where ' = (N**N~) /D. At the same
time, we should be also filtered by Nt /N**. This will yield the same asymptotic properties
(variance and bias) as using 1/S to filter y;. However, when S contains the unit-value
zeros, the decoupling fiter 1/S will have an integral term which in some cases may cause
numerical problems. In this case, the probing or ezcitation signal is preferably inserted at

the setpoint as discussed in the following sections.

Among many other two-step closed-loop indirect identification strategies (Caines and
Chan, 1975; Phadke and Wu, 1974; Defalque et al., 1976; Soderstrom and Stoica, 1989),
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Table 14.4: The procedure for two-step identification plus shaping

1. Fit z to w by using the PEM or OEM, and obtain an estimate, S, of the sensitivity

function S.

2. Filter y by F = G¢/§ and w by G; and then fit y¥ to w/ by using the OEM.
Obtain an estimate of T whose bias is asymptotically independent of the closed-loop
sensitivity function and is shaped by the filter G;.

one of the most recent two-step identification strategies with a different objective has been
proposed by Van den Hof and Schrama(1993) whose approach is summarized below.

Lemma 7 Assume that the consistent estimate of the sensitivity function, S — S, is
obtained in the first step. If the input data w is filltered by S, i.e. w/ = Sw, before
applying OEM, then T' can be directly estimated Jrom the filtered data and ts a consistent
estimate.
This is clearly seen from equation (14.14), where

y =TSw+ NSa =Tw! + NSa (14.25)
whereas the approach proposed in this chapter considers filtering y by 1/S as follows:

y/S =Tw+ Na

which is
yf =Tw+ Na
For brevity, the approach proposed by Van den Hof and Schrama is denoted as w-

filtering method, while the approach proposed in this chapter is denoted as y-filtering
method. In Van den Hof and Schrama(1993), “The sensitivity function is used to simulate
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a noise free input signal for an open loop identification of the plant to be identified.
Using the output error method, an ezplicit approrimation criterion can be formulated,
characterizing the bias of identified models in the case of undermodelling”.

Lemma 8 By using the OEM, the w-filter approach yields the asymptotic frequency bias

distribution as
O M3 arggmin f (IT(e) - T(e7)2|S (£7) |28 o (w)dw

Thus the frequency weighting on the bias [T(e/”) — T(e7*)|2 depends on the sensitivity
Junction, S. In the approach proposed in this chapter, the frequency weighting on the bias

ts independent of the sensitivity function.

This can be proved by applying equation(14.12) in Theorem 12 to equation(14.25). It
should be pointed out that, under the framework of joint identification and control, the
dependency of the bias error on the sensitivity function is not undesired provided that the
desired sensitivity function or the intended feedback controller is running during the data
collection.

Remark 12 One of the main differences between the w-filtering approach and the y-
filtering approach is whether w or y should be filtered by the sensitivity function or the
tnverse of the sensitivity function before carrying out the second step of identification.
These two approaches result in different identification objectives. The y-filtering approach
as proposed in this chapter aims at 1) achievement of the same “accuracy” ezpressions with
respect to bias and variance errors under closed-loop and open-loop conditions (including
consistency of the estimates if the model set contains the plant dynamics); this result ss
achieved by decoupling the closed-loop sensitivity function from closed-loop data, and 2)
obtaining ezplicit ezpressions for both asymptotic variance and bias ervors. This approach
is obtained by comparison of the asymptotic variance and bias errors for open-loop and
closed-loop conditions. The w-filtering approach as proposed by Van den Hof and Schrama
provides 1) a consistent estimate of the input-output transfer function if the model contains
the plant dynamics, and 2) an ezplicit expression for the asymptotic bias distribution
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only. The following illustrations show that these have important implications in closed-

loop identifscation.

14.3.3 Other practical considerations

Until now we mainly consider the case where the dither signal is injected from w as
shown in Figure 14.2. We will illustrate that the general result can be extended to the
case where the dither signal is injected from any point, for example via the setpoint r.
Figure 14.3 shows an equivalent transformation of the block diagrams. The closed-loop

response is now written as
y=STQr+ SNa

This can be transformed to

1 N
—y=Tr+—a
sQY Q

Therefore if y is filtered by 1/SQ before applying the PEM or OEM, the relationship

between r and y7 is

yf=Tr+g-a

It is clear that both variance and bias distribution of estimates by using the PEM or OEM
will be independent of the sensitivity function. Since it is again an open-loop identification
problem, a shaping filter G4 can also be cascaded to the decoupling filter to shape the
bias distribution in the frequency domain as illustrated in the foregoing discussion.

In this case instead of estimating the sensitivity function S during the first step as in
the foregoing section, QS should be estimated jointly. This can be obtained by noticing
the following relationship between r and z:

z=QSr— NQSa

Identification of QS using data r and z is an open-loop identification problem. Therefore
it can be shown that the relative accuracy of the estimate of QS is independent of
the sensitivity function. Since the inverse of QS does not contain the unit-value zeros
introduced by tntegral control, it is the preferred sensitivity function decoupling ﬂter when

tntegral action ezists in the controller.
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Figure 14.3: Equivalent transformation of block diagrams.

14.4 Extension to MIMO systems

The two-step closed-loop identification can be extended to MIMO systems.

Proposition 4 Under closed-loop condition, the transfer function matriz T can be
estimated via two steps. The sensitivity function is estimated from closed-loop data in
the first step. The transfer matriz T from the sensitivity-filtered closed-loop data is then

estimated in the second step.
Proof: From figure 14.2, we have
i = (I+TQ) 'Tw+ (I +TQ) 'Na,
= STw;+SNa; (14.26)

where § = (I + TQ)™! is defined as the sensitivity matrix. Filtering both sides of
equation (14.26) by the inverse sensitivity matrix S~ = (I+TQ) ) (or the return difference
matrix (Bitmead et al., 1990)) gives

Y/ = 5V, = Tw; + Naq (14.27)
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This is clearly an open-loop identification problem. We also have

ze = (I+QT) 'we—(I+QT) 'QNax
= S;w — S:QNay (14.28)

where S; = (I + QT)~L. The sensitivity function S can be written as
S=Q'I+Qr)'Q=Q7's.Q (14.29)

where the controller transfer function matrix Q either is known as a priori knowledge or
can be identified from closed-loop data. Clearly, estimation of S; via equation (14.28)
is also an open-loop identification problem. Therefore the two-step identification can be
achieved by 1) estimation of the sensitivity function S via equations (14.28) and (14.29),
and 2) identification of the transfer function matrix T via equation (14.27). ™)

14.5 Simulation

Example 16 Consider a second order ARMAX model with the transfer function given by
(1 —0.7859¢" + 0.3679¢~2)y: = (0.3403 + 0.2417¢ Jus—; + (1 —0.8¢7! +0.12¢72)a(t)

A unity feedback control law is implemented in this simulation. The proposed y-filtering
approach is compared with the direct identification method. The white noise a; and the
white-noise dither signal w; are independent with Var(a;) = 2.25 and Var(w) = 1
respectively. The number of data points in the simulation is M = 5000.

In general, identifiability under direct closed-loop identification requires that both the
plant and disturbance dynamics lie in the set of plant and disturbance models (Soderstrom
and Stoica, 1989). However, the w-filtering and y-filtering approaches do not have such
a restriction in the choice of the noise model. The difficulty with the direct identification
method is the choice (or tradeoff) of the plant model and the noise model, i.e. the plant
model and the noise model are strongly coupled. One may choose high order models for

both the plant and the noise, but this may violate the parsimony principle and also increase
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the variance error of the estimates as discussed in the previous sections. Therefore, an
incorrect choice of the noise model may yield an erroneous plant model and vice versa.
In this example, we show that a first-order model, that is identified using the direct
identification method and passes all residual tests, gets deviates significantly from the
true dynamics. On the other hand, the y-filtering approach transforms the closed-loop
identification to an open-loop identification problem and successfully detects the lack of
fit when the first-order plant model is used.

Both the direct identification and y-filtering methods begin with a model of the first-
order plant and second-order disturbances. There is clearly a model-order mismatch for
such a choice of plant model. We will see which identification method can detect such a
mismatch. Both methods use the Box-Jenkins model structure, i.e. BJ function in the
System Identification toolbox in Matlab. Residual tests for the models identified from
both methods find the correlation between residuals and inputs and thus indicate a lack
of fit or a model-plant mismatch. This indicates that one may either increase the order of

the noise model or increase the order of the plant model for the next trail.

To see the effect of the noise model, the noise models are increased to order three.
The residual test for the direct identification is shown in Figure 14.4. The upper part of
the figure shows the autocorrelation of the residuals and clearly indicates “whiteness” of
the residuals. The lower part of the figure is the cross correlation between residuals and
past inputs, i.e. Efgsu;_r]/0a0, for 7 > 0, where T is the lag of the cross correlation
function. This cross correlation test clearly indicates sufficiently good fit of the data,
i.e. no regions outside the 99% confidence intervals. Therefore, the model obtained
from direct identification passes the residual test, but the Bode diagram of the model
shown in Figure 14.6 clearly demonstrates lack of fit. On the other hand, the residual
test of the y-filtering identification is shown in Figure 14.5. The residuals also pass the
“whiteness” test, but the cross correlation between the residuals and the inputs shows
“spikes” outside the 99% confidence intervals and fails the test. Note that since the y-
filtering approach transforms the closed-loop identification problem into the open-loop
identification problem, the cross correlation test has to be carried out for both positive
and negative legs (including the zero lag), i.e. the cross correlations between th;z residuals
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and all inputs (both past and future inputs) (Ljung, 1987; Soderstrom and Stoica, 1989).
Now we try to further increase the order of the noise model to a higher order (e.g. 5%
order) for the y-filtering method while keeping the first-order plant model. The residual
test is shown in Figure 14.7, and the model again fails the cross correlation test. This
indicates that one has to increase the plant model order. Consequently, the plant model
is increased to second order. The residual test is shown in Figure 14.8, and this model
clearly passes the residual test. Therefore, the y-filtering method is able to find the correct
model of the plant despite the error in the choice of the noise model and the Bode plot of
the final estimate is shown in Figure 14.6.

The asymptotic variance of the estimate Var(T") using the y-filtering approach is given
in equation (14.18). This equation is valid when the exact sensitivity function S is used
as the decoupling filter, 1/S, as shown in Proposition 1 and Remark 10. The predicted
variance can be calculated from equation (14.18) and is denoted by the dotted lines in
Figure 14.9. To test validity of this predicted variance, 50 Monte-Carlo simulation runs
are performed for this example. T is calculated from the two-step y-filtering approach
using the exact sensitivity function as the decoupling filter. The variance of the estimate,
f‘, from 50 runs is calculated and also plotted in Figure 14.9 as the dash-dotted lines. Two
cases with different data points for each simulation run are considered. The result for 512
data points is shown in the top part of the figure, and the result for 1024 data points is
shown in the bottom part of the figure. The predicted 1o bounds of the Nyquist plot are
shown in Figure 14.10. Note that Var(T) is defined by the variance of complex-valued
random variables as (Ljung, 1987)

Var(T) = E(T - ET)(T - ET)*

where * means complex conjugate. From Figure 14.9, one can see that a good match in
the low to medium frequency range is obtained in this example, but the mismatch in the
high frequency range is relatively large. The reason could be: 1) the asymptotic variance
as given by Ljung(1987) is an approximate expression, and should not be regarded as
an exact expression; and 2) the spectrum of dither and disturbances in each Monte-Carlo
simulation run is different and may not be flat (white) over the frequency range of interest.
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Figure 14.4: Residual test for the model identified by using direct identification method
(first-order plant and third-order noise).

Example 17 Consider an ezample in Schrama(1991). The plant under consideration
consists of a transfer function, which is a discrete-time model of a laboratory set-up, and
some artifictal nosse contribution. The plant transfer function is given by

T 1073(0.98¢~! + 12.99¢~2 + 18.59¢~3 + 3.30¢~* — 0.02¢75)
T 1-4.40¢-% +8.09¢—2 ~ 7.83¢"3 + 4.00g—* — 0.864—°

In order to state a non-trivial case-study, according to Schrama(1991), noise contributions
are assumed to additively affect the input u and oulput y. The additive input noise is a

white notse with variance 1/9. The output noise is a white noise that is filtered by

_ 0.01(2.89 + 11.13¢™! +2.74¢72)

N =
1—-2.70g-L + 2.61q-2 — 0.90¢~3

A control law
Q= 0.61 —2.03¢7! +2.76¢72 — 1.83¢~3 + 0.49¢*
T 1-2.65¢"! +3.11g72 - 1.75¢~3 + 0.39¢—*
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Figure 14.5: Residual test for the model identified by using the y-filtering method
(first-order plant and third-order notse).
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Figure 14.6: Comparison between direct identification and the y-filtering methods.



229

Correlation function of residuais

oSt 4

-0.05
-25

20 -5 -10 -5 o 5 10 15 20 25
lag

Figure 14.7: Residual test for the model identified by using the y-filtering method
(first-order plant and fifth-order noise).
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Figure 14.8: Residual test for the model identified by using the y-ﬁltenng method
(second-order plant and second-order noise).
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Figure 14.9: Variance of the estimate calculated from Monte-Carlo simulation
(second-order plant and second-order noise).
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Figure 14.10: Predicted 1o bound of the Nyquist plot (second-order plant and second-
order noise). :
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is implemented in the plant. A dither signal with variance 1 is injected in the process in
order to perform closed-loop identification. To demonstrate the effect of under-modeling,
a 4% -order plant model (the original plant is 5t*-order) is used for the identification.

The w-filtering approach and y-filtering approach are applied to the process and the results
presented in the Bode diagrams shown in Figure 14.11. Since the interest in this example
is the plant model and the output error method is used for parameter estimation, the most
relevant model validation is the cross-correlation test between residuals and inputs (Ljung,
1987). The cross-correlation tests are performed with results shown in Figure 14.12 and
14.13. Since both w-filtering and y-filtering transform the closed-loop identification to
open-loop identification, the cross-correlation test should be conducted over the whole
graph (i.e. including both negative and positive legs). Clearly, the models obtained under
w-filtering and y-filtering both pass the residual test.

Although both models have passed the time-domain test, the qualities of the models
are significantly different in the frequency domain. If we look at the estimated sensitivity
function shown in Figure 14.14, we can see the smaller magnitude of the sensitivity
function in the medium frequency range with the minimum occurring around the frequency
w = 0.17rad/s. This shape of the sensitivity function is expected to affect the identification
result. This is confirmed in Figure 14.11. The w-filtering approach gives a poor match
in the medium frequency range including the cross-over frequency, particularly around
the frequency w = 0.17rad/s. The y-filtering, on the other hand, matches the true plant
relatively well in the medium frequency range including the cross-over frequency, although
this improvement is at the cost of the high frequency mismatch.

Example 18 The ezample used by Van den Hof and Schrama(1993) ts considered in this
Monte Carlo simulation for comparison of different approaches. The discrete plant (casual
but not strictly causal) is represented by transfer functions

1
T 1-1.6¢"1+0.89¢2

T

Q=q"'-038¢7"
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Figure 14.11: Comparison between y-filtering and w-filtering approaches.
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Figure 14.12: Cross-correlation test Jor w-filtering.
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Figure 14.13: Cross-corvelation test Jor y-filtering.
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Figure 14.14: Estimate of the sensitivity function

_ 1—156g"" + 1.045¢~2 — 0.3338¢~3
T 1-235¢1 +2.09¢~2 — 0.6675¢°

The notse signal a and the dither signal w are independent unit variance zero mean

N

random signals. The number of data points for each run is chosen as M = 2048 in
accordance with Van den Hof and Schrama(1993) and the simulation was run 50 times
with different random seeds. Although this is an unreglistic plant (without any time-delay),
mathematically this is a good simulation ezample to compare the sensitivity to the model

structure mismatch for different identification schemes.

To compare sensitivity of the w-filtering, y-filtering and the direct PEM closed-loop
identification to model-plant mismatch, one step time-delay is considered in the model.
Without model-plant mismatch, all of these three methods should give consistent estimates
as discussed in the previous sections. A model of the following form is therefore assumed

7= (b1 +bagt)q !
1+a197! +aq~?

The estimated sensitivity function is shown in Figure 14.15. The sensitivity at lower
frequency is smaller than at higher frequency. There is a valley with a minimum magnitude



234

Figure 14.15: The upper plot is the sensitivity Junction. The lower plot is the averaged
Bode magnitude graph of T over 50 runs.

at the frequency of 0.18. This shape of the sensitivity function reduces the accuracy
at lower frequency, and one would expect relatively large estimation errors around the
frequency of 0.18, if the w-filtering approach is used (see Lemma 8). The lower portion of
Figure 14.15 confirms this. Compared to the w-filtering approach, the y-filtering method
clearly avoids the peak error with a slightly larger mismatch at high frequencies. The direct
closed-loop identification does not work in this example due to the structure mismatch.
The comparison of the three approaches can also be clearly seen from the averaged Nyquist
plot shown in Figure 14.16.

14.6 Experimental evaluation on a pilot-scale process

In real practical situations, it is difficult to validate the model, T, estimated under
closed-loop conditions with the real process, T, since the latter is unknown. For the
purpose of practical evaluation, in the following experimental study, separate identification
tests under open-loop and closed-loop conditions are performed. The model estimated
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Figure 14.16: The averaged Nyquist plot of the estimate over 50 runs

under closed-loop condition can be considered a suitably adequate and validated model if

it matches the model estimated under carefully designed open-loop conditions.

Example 19 The proposed algorithm ts evaluated on a pilot-scale process shown in
figure 14.17. Each tank is a double-walled glass tank 50 cm high with an inside diameter
of 14.5 cm. The level of the second tank is the output or controlled variable. The water
flow to the first tank s manipulated in order to control the level of the second tank. A
PID controller (with T; = 1sec) is implemented on the inner loop (flow loop). An IMC
controller (Ty = 5sec) is implemented on the outer loop (level loop). The block diagram
of the real-time Simulink Workshop implementation of the IMC controller is shown in
Figure 14.18. A second-order model was obtained from open-loop test. This model was
validated by checking it with a separate input-output data set. Closed-loop tests were then
conducted. Using the proposed method and other closed-loop identification methods, several
process models were obtained. These models were compared with the model obtasned from
the open-loop test.
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Figure 14.17: Schematic of the computer-interfaced pilot-scale process.
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Figure 14.18: Block diagram for smplementation of IMC control using the real-time
Simulink Workshop.
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Figure 14.19: FEzcitation signal and response. The physical units are voltage in the
plot where —2V to 42V correspond to 0% to 100%. The time scale is in
terms of sampling tntervals.

Figure 14.19 shows the computer-generated random binary sequence as used in the
open-loop test. The step-type random binary sequence was smoothed by a second order
Butterworth filter with the cutoff frequency significantly larger than the bandwidth of the
process. The bandwidth of the process was estimated from previous open-loop tests. A

second-order model was estimated by using the prediction error method and found to be

0.0023¢~2
1 — 1.9314¢- L + 0.9323¢2

T=

where the two-step time delay is due to a zero order hold and an additional artificially
introduced unit-step time delay. The predicted versus actual data (using a separate
validation or test data with different setpoint excitation inputs) are shown in Figure 14.20.

Clearly the open-loop model is a good representation of the real process.

Since there is integral action in the IMC contral, it is preferable to insert an excitation
signal via the setpoint to avoid a pole on the unit circle in the sensitivity function
decoupling filter. Figure 14.21 shows the excitation signal and the output under the
closed-loop test. The y-filtering, w-filtering and direct closed-loop identification methods
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Figure 14.20: Predicted versus actual data from another open-loop test. The time scale
ts the sampling tntervals.

were used to estimate the process model. Second order models are identified and the
resulting Nyquist plots are shown in Figure 14.22. If there is no model-plant mismatch,

all the Nyquist plots should converge to one plot when the sample size increases.

If a first order process model is assumed, then a model-plant mismatch is indeed
present. A larger bias error would be expected at lower frequencies if w-filtering or
direct closed-loop identification is used. Nyquist plots of the identified models shown
in Figure 14.23 confirm this. Since this is a over-damped second order plant, the model-
plant mismatch by using a first order to represent a second-order over-damped plant is
not severe. The direct identification does not fail in this example. = The effect of the
shaping filter on the identification is illustrated by using a 4t* order low-pass Butterworth
filter cascaded to the decoupling filter. A shown by the results displayed in Figure 14.24.
Clear improvement of the estimate at low to middle frequencies is obtained by cascading
the shaping filter to the decoupling filter. Depending on the application, different shaping
filters at different frequencies can be designed for the control algorithm of choice.



Figure 14.21:

Figure 14.22:

239

excitation: r
o-s Ll v L L3 L] ¥ Ll L3 L
VOK\—A-/\-/\I\NVWV\_/\M—MAA//V\AN\A ]
_os - . - i i . A £ L
0 100 200 30 400 SO0 600 700 800 900 1000
level controlier output: x
‘ L3 L s L3 L] LS L ] L3
oS} R
V af b
_05 L . i L. S A e - 3
(1} 100 20 300 400 500 600 700 800 900 1000
output (level): y
05 v L B LA oy L3 L L3 Ll
VOW"‘/\/\’\/\/W\/V <
-05 L L.

. - 1 A 1 . L
0 100 200 00 400 500 600 700 800 900 1000

Ezcitation signal and response under the closed- loop condition. All
physical units are voltage in the plot where —2V to 42V correspond to
0% to 100%. The time scale is in terms of sampling intervals.

3

Comparison of the identified process models using different methods when
a second-order model is used.
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Figure 14.23: Comparison of the identified process models using different methods when
a first-order model is used.
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Figure 14.24: Effect of the shaping filter for the first-order model.



241

14.7 Conclusions

The accuracy aspects of closed-loop identification have been discussed. It has been
shown that the key difference between closed-loop and open-loop identification is the
sensitivity function. The sensitivity function inversely affects the variance and bias
errors of the estimate under closed-loop conditions. A two-step closed-loop identification
has been proposed, which yields identical asymptotic properties as under open-loop
identification. The proposed algorithm has been evaluated by simulated examples as
well as by pilot-scale experiments. These results affirm the strategy, that a suitable
model commensurate with its intended end use can always be identified under closed-
loop conditions through the choice of appropriate data prefilters.



Chapter 15

Conclusions and

Recommendations

15.1 Concluding remarks

The main contributions of this thesis are development of the theory and computational
algorithms for control loop performance assessment using multivariate statistical methods,
and experimental evaluation of these techniques on computer-interfaced pilot-scale
processes and actual industrial processes. Specific theoretical and computational

contributions include:

1. Extension of the unitary interactor matrix into the weighted/generalized unitary

interactor matrices.

2. Application of the unitary, weighted unitary and generalized unitary interactor

matrices to solve multivariable minimum variance control problem, the benchmark

for multivariate control loop performance assessment.

3. Proof of the equivalence of the minimum variance control law(Goodwin and
Sin, 1984) and the singular LQ control law (a special solution in Harris and
MacGregor(1987)) by using the weighted unitary interactor matrix.

242



10.

11.

12.

13.

243

- Development of an algorithm for estimation of the unitary interactor matrix under

bath open-loop and closed-loop conditions.

- Derivation of the explicit expression for the feedback control invariant portion of

process variance.

- Development of an efficient algorithm for performance assessment of multivariable

processes, which is denoted as the FCOR algorithm (for Filtering and CORrelation
analysis).

Development of the multivariate feedforward & feedback control loop performance

assessment technique.

Development of the technique for feedback control performance assessment of

nonminimum-phase multivariate systems.

Proposal of a unified approach for performance assessment of both regulatory control
and setpoint tracking for both stochastic and deterministic systems under the H,

framework.

Development of performance assessment schemes with practical considerations such

as a user-defined benchmark.

Development of a performance assessment scheme which takes control effect into

account.

Development of a two-step closed-loop identification scheme, which asymptotically

yields the same variance and bias expressions as open-loop identification.

Evaluation of the proposed algorithms using simulated, pilot-scale processes and
actual industrial processes.

Computer code for simulations, pilot-scale experiments and industrial applications in this

thesis was written using Matlab and real-time Matlab/Simulink.
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15.2 Recommendations for future work

Control loop performance assessment is a relatively new and active area of research.
The results presented in this thesis address some of the fundamental issues in this theory.
As stated in this thesis, there are many limitations on the achievable control performance.
Higher level assessment generally requires more a prioni knowledge of the processes which
is typically unavailable in industry. This in itself poses a stumbling block in the application
of these ideas in industry. The emphasis in new and ongoing research must be to develop
tests, tools and techniques that are plant-friendly and conceptually simple to understand
and apply. Future development in this and related areas should therefore dwell on these

issues and consider the following class of problems:

1. LQG is a good benchmark for performance assessment of DMC controllers. To
obtain such a benchmark, a suitable model should be identified under closed-loop
conditions. Although it cannot be directly applied, the control relevant identification

technique is recommended for such a solution.

2. The confidence intervals for performance assessment results are desired for on-line
performance monitoring, since the number of data points in such an environment
is often limited and the uncertainty can be severe. This typically requires analysis
based on asymptotic statistical theory and is a challenging theoretical problem.

3. Robustness performance should be taken into account in higher-level control loop
performance assessment. This could require frequency domain analysis of the

sensitivity or complementary sensitivity functions.

4. Hard constraints should also be taken into account in practical control loop
performance assessment. This would require an optimization procedure. The convex

optimization is one possible technique in the resolution of this problem.

5. Control loop performance assessment of a linear plant with a non-linear controller
such as constrained DMC or adaptive controller is worthy of further mvestngatlon
The solution to this problem would have great industrial appeal.
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Control loop performance assessment with recommendation for controller tuning.
Ideally, the solution to this problem should be obtained by using routine operating
data only. The recommended tool for such a solution could be spectral analysis of
both input and output data.

Multivariate statistical analysis should be further explored in control loop
performance assessment. ANOVA analysis can give insight into the internal
relationship of different control loops. Hypothesis tests can tell whether the

monitored process variables deviate from the target values.

Control loop performance assessment is naturally related to process fault detection,
another important research area yet to be explored.

Control loop performance assessment can be integrated with quality control, loop
maintenance, and fault detection to form a highly integrated expert system.

It is of interest to generalize all Matlab codes in this thesis to form a toolbox for

control loop performance assessment.
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Appendix A

The algorithm for the calculation

of a unitary interactor matrix

The following algorithm is from Rogozinski et al. (Rogozinski et al., 1987) and Peng
and Kinnaert (Peng and Kinnaert, 1992).

Definition 4 The n x n first degree polynomial matriz U(q) will be called a row shift
polynomial matriz (r.s.p.m) of order k;, where

0 I
Ulg) =Usq+ U = T
qut. 0

The matrices Uy and U, are defined through the matriz of coefficients

0,
Uo
U= =L |, n=r+k
U
Ok,

tn which Uy, U, are of dimensionn xn, I, is thenxn tdentity matriz, and 0, is a r-row
matrsz of zeros.
From RMF (right matrix fraction) description of T'(¢"!) = N(q)R"1(q), where

N(g) = No@® + M@ +--- + N, (A
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a block matrix of coefficients is formed as

The unitary interactor matrix D(q) can be factored out from equation (A.1) (or the block
matrix of coefficients) by the following theorem.

Theorem 13 (Rogozinski et al., 1987) For a transfer matriz T(q) satisfying
Assumption (1) and (2) there exists a unitary interactor matriz consisting of finite (t)
factors:

D(q) = $9(g)S¢1)(q)--- 5M(q) (A2)
where

5 (q) =UO(g)Q® (A.3)

and U%)(q) is a r.s.p.m. of order k; and Q¥ is a non-singular n x n real matriz (an
orthogonal matriz for the factorization of the unttary snteractor).

The algorithm is as follows:

Set i =0, NO(q) = N(q), A® = A, and DO = [, to start the algorithm. Consider
the % jteration in the evaluation of D(q)

Step 1:

Ifr; = rank(Ngi’l)) = min(n,m), the algorithm terminates and the unitary interactor
matrix is D(g) = DO-1(q), set t =i —1;

If r; < min(n,m), factorize Néi-l) by QR factorization into

0; 0;

NEY = (@)t ie, QUN{™ = (A4

@ |’ (1)
oD oD
where Q®) is an n x n unitary (orthogonal) real matrix, k; = n —r; and 0; is a k;-row zero
matrix.

Step 2:
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Pre-multiplying N@—1(q) by matrix Q®
N(q) = QUING-1)(q) (A.5)
[the leading coefficient of N(qg) is now equal to the right-hand side of (A.4)].
Step 3:
Pre-multiplying N(q) by the r.s.p.m. of order k;
NG (q) = U (q)N(q) (A-6)

[this multiplication shifts the matrix of coefficients of N(q), A®), upwards by k; rows of

zeros. Update the matrix
D®(q) = s®(q)Dt~D(q) (A7)

This ends the it* iteration. Combining equations (A.4) to (A.7), the ith iteration of the
algorithm results in

NO(q) = U (g)QW N1 (q) = D (q) N~V (q) = DD (g) N(q)
where S)(q) and D®)(q) are defined by equations (A.3) and (A.7).
The final iteration (t ={ — 1) yields
N®(q) = D(q)N(q) (A.8)

where D(g) = D*)(q) is the unitary interactor matrix.



Appendix B

Examples of the diagonal /general

interactor matrices

The diagonal interactor matrix is relatively easy to obtain. For processes with
diagonal interactor matrices, the smallest delay in each row is associated with the
diagonal element of the matrix, i.e., each element, d;, of the diagonal interactor matrix,
D = diag{q#,---,q%}, is actually the minimum delay in the i*® row of the transfer
function matrix. In other words, the diagonal interactor matrix solely depends on the
minimum delay of each row of the transfer function matrix. Most interactor matrices of
the actual multivariable process are either diagonal or general matrices (Goodwin and Sin,
1984; Walgama, 1986; Wolovich and Elliott, 1983). The non-diagonal interactor matrix
occurs when certain linear dependencies exist among the rows of the transfer function
matrix (as ¢g~! — 0) after the minimum delay of each row is factored out. For example,

consider a 2 x 2 process
O.H" q“§ 1.4-0.9¢1)
T= P T e ol (B.1)
THET TR
The minimum time delay of the first row is g2, and the second row ¢—3. After factoring
out these minimum time delays from each row ( this is equivalent to pre-multiplying T by
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a diagonal matrix diag(q?, ¢®)), we have the transfer function matrix
0.5 ~2(1.4—0.99—!
F = | 07T u_..’aq_—gf—)'l-o ]
1.23 47
T-05¢°* =0.7q T
Thus

. 05 0
im T=
qi0 1.23 4.7

which is of full rank. Therefore the interactor matrix is a diagonal matrix, s.e., D =
diag(q2, ¢°). However, if the element T} 3 of the transfer function matrix in equation (B.1)

happens to be ﬁgg—;&%ﬂl, then using the same diagonal factorization yields

L. 05 191
im T =
g0 1.23 4.7

which is rank defective, and a non-diagonal interactor matrix is then expected. In real
processes, the exact linear dependency as in this illustration rarely occurs. Another special
case happens when the time delays associated with a particular input are larger than delays

associated with other inputs. For example, if the transfer function of equation (B.1) is

o.ﬁ-z (1.4-0.%-121—‘

o ages

1.23¢~ 4.7~
05T ToobeT
then the delays associated with second input are larger than the delays associated with

changed to

the first input. Thus using only the diagonal factorization will yield

- 05 0
lim T =
g0 1.23 0
which is rank defective, and a non-diagonal interactor matrix is therefore expected. The

existence of a general (non-diagonal) interactor matrix is generally due to this latter case.

In many multivariable processes under multiloop control, it is implicitly assumed that
the input-output paring is such that the diagonal elements have smaller delays. This leads
to the observations that the occurrence of a diagonal interactor matrix is not rare. More
generally, even if a multivariable process has the minimum-delay pairing structure but
is not paired in such a way in the actual multiloop design, the interactor matrix is still
diagonal.



