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Abstract

Onion messages (OMs) are private messages sent between nodes in the Lightning

Network (LN) using onion routing. While they are intended to enable interesting

applications such as reusable invoices, refunds, and asynchronous payments, OMs may

also be used for unintended applications such as streaming data or spam. LN nodes

can impose a rate limit on forwarding OMs to mitigate this. However, if not carried

out carefully, the rate limit can expose the network to a denial of service (DoS) attack,

where an adversary may disrupt or degrade the OM service by flooding the network.

This DoS threat is particularly concerning because, under current specifications, a

single OM can traverse hundreds of nodes, affecting all the nodes on its way. In

addition, the adversary can hide their true identity thanks to the privacy-preserving

nature of onion routing. We propose a simple solution to address this threat with

two main components. The first component limits the distance over which OMs

can travel. For this purpose, we introduce two methods: a hard leash and a soft

leash. The hard leash strictly limits how far OMs can travel, while the soft leash

makes it exponentially harder for OMs to traverse long distances. While the first

method requires changes in the message format, the second method can be easily

adopted without altering OMs. The second component of our solution consists of a

set of simple yet effective forwarding and routing rules. We demonstrate that when

these rules and the proposed leashes are applied, an adversary cannot significantly

degrade the onion messaging service, assuming that the adversary does not control a

significant fraction of funds in the network.
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Chapter 1

Introduction

Bitcoin [2], introduced in 2008 by an anonymous entity known as Satoshi Nakamoto,

was the first peer-to-peer electronic cash system. In simple terms, it allows people

to send and receive money (Bitcoins) directly without needing a bank or any other

intermediary. This decentralized nature is one of Bitcoin’s key advantages.

Another significant benefit of Bitcoin is its enhanced security. Transactions are

recorded on a public ledger, the blockchain, secured by cryptographic algorithms.

This makes it extremely difficult for anyone to alter past transactions or counterfeit

the currency. Additionally, Bitcoin can provide financial services to people who do

not have access to traditional banking systems. For instance, someone in a remote

area without a bank can still send and receive Bitcoins, with the only requirement

being internet access.

These features have driven Bitcoin’s adoption and popularity, establishing it as a

revolutionary financial technology. However, despite its potential, Bitcoin faces sig-

nificant challenges, particularly regarding scalability and transaction processing time.

The network’s current infrastructure can handle around 7 transactions per second [3,

4], which is insufficient for Bitcoin to fulfill its promise of becoming a global payment

system when compared with centralized solutions like Visa [5, 6]. Additionally, the

transaction processing times are quite high, with the current necessary time of around

an hour for a transaction to be finalized. Addressing these issues is crucial for Bitcoin
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to realize its potential as a decentralized global digital currency.

The Lightning Network (LN) [7, 8] is a payment channel network (PCN) [9, 10]

created to address Bitcoin’s scalability issues. In LN, two users (nodes) establish

a bidirectional payment channel by locking funds in a funding transaction on the

Bitcoin blockchain. This means opening a channel requires sending a transaction to

the underlying blockchain (on-chain). However, once the channel is open, the two

parties can send transactions back and forth directly to each other without sending

any transactions to the underlying blockchain (off-chain).

Two nodes with an open channel between them can adjust the balance of funds in

the channel to one side or the other by signing new transactions, called commitment

transactions, that reference the initial funding transaction. However, they do not need

to publish these updated commitment transactions on-chain. When they are finished

transacting, they close the channel and broadcast the last commitment transaction

to the Bitcoin blockchain, which reflects the last agreed-upon balance. This method

enables instant and low-cost off-chain transactions, enhancing Bitcoin’s scalability.

While a single payment channel enables two parties to transact directly and effi-

ciently off-chain, its utility is limited to those two participants. However, the real

potential of payment channels is unlocked when multiple channels are interconnected

to form a network. This network allows users to route payments without a direct

channel to the recipient. Known as multi-hop payments, this concept enables a pay-

ment to traverse several channels, with the payer paying a small fee to intermediary

nodes to incentivize them to forward the transaction. As long as a path exists be-

tween the sender and receiver, funds can be securely transferred, effectively creating

a decentralized payment system that scales beyond the limits of individual channels.

The current payment process on LN operates with unidirectional communication

before executing each payment. In this process, the payee creates an invoice that

contains all the necessary details to complete the payment and sends it to the payer.

The invoice is typically communicated to the payer in an off-network manner, such as
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by scanning a QR code. Once the payer receives the invoice, he executes the payment

using the provided information.

In this process, the only communication before payment execution is from the

payee to the payer through the invoice. However, many interesting use cases require

bidirectional communication between the payer and payee before payment execution.

Some examples of these use cases are refunds and reusable invoices. As LN evolves

into a comprehensive financial platform, facilitating these use cases is becoming more

essential.

LNURL (Lightning Network Uniform Resource Locator) [11] is a promising method

that introduces bidirectional communication. LNURL integrates HTTP servers along-

side LN nodes, allowing real-time bidirectional communication before initiating pay-

ments. This capability enhances LN’s flexibility for various financial applications,

including the ones mentioned above.

Despite its advantages, LNURL presents challenges. Users must maintain an

HTTP server alongside their LN node, increasing resource demands, complexity, and

potential security risks. Furthermore, the reliance on external communication meth-

ods can impact user privacy and anonymity.

An alternative, more recent, approach to facilitate bidirectional communication

between nodes within LN is through Onion Messages (OMs) [12]. OMs are transmit-

ted within LN directly between peers without the necessity of establishing channels

between them. OMs, by design, leverage onion routing [13], a technique that en-

sures messages pass through multiple intermediate nodes without them being able to

learn about the origin, destination, or the content of the message, enhancing users’

anonymity and privacy.

While OMs offer significant benefits such as enhanced privacy and bidirectional

communication within the network without prior channel establishment, they also

introduce potential security challenges. One concern is the increased attack surface

they create. Since OMs can be used to send anonymous messages that can traverse
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numerous hops, there is a risk of adversaries exploiting this feature for Denial of

Service (DoS) attacks [14, 15].

An adversarial node could exploit the network by flooding it with OMs, disrupting

normal operations without the risk of detection due to the anonymity inherent in onion

routing. The layered encryption of OMs obscures the origin of these spam messages,

making it challenging to trace and block them. This complicates the prevention of

DoS attacks, as opposed to conventional networks where the source of each message

is identifiable and can be blocked if deemed malicious.

1.1 Contributions

This work proposes methods to enhance the OM service’s robustness against DoS

attacks. We examine two types of DoS attacks. The first type of attack involves an

adversary flooding the network with OMs, aiming to degrade the OM service network-

wide. This attack can overwhelm the network’s capacity to handle legitimate messages

effectively. The second type of attack targets a specific victim node by flooding it

with OMs. This attack strategy intends to isolate the victim node from the rest of

the network, disrupting its ability to properly communicate with other nodes through

OMs.

We propose a solution consisting of two key components to mitigate these threats.

The first component limits the distance OMs can travel within the network, reducing

the potential impact of DoS attacks. The second component introduces a method

to regulate the rate at which OMs are forwarded among peers, preventing excessive

traffic that could overwhelm individual nodes.

Our theoretical analysis, supported by simulations on a network resembling the

real-world LN, demonstrates that implementing these components effectively miti-

gates the identified attacks, provided the adversary does not control a substantial

portion of the network’s total funds. This approach enhances the resilience of the

OM service against malicious activities, ensuring a more reliable and secure commu-
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nication infrastructure for participants.
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Chapter 2

Background and Related Works

This chapter aims to provide the necessary context for the security problem that our

method addresses. We begin with an overview of LN and an explanation of the current

payment process. Next, we discuss the limitations of the existing payment process in

supporting the advanced applications expected from a widely used payment network.

We briefly explore how LNURL [11] can enable these features by integrating HTTP

web servers with LN nodes while also increasing complexity and expanding the attack

surface regarding privacy and security. Finally, we explain what OMs are and how

they can facilitate the implementation of these features within LN.

2.1 Lightning Network

Despite Bitcoin’s numerous advantages, it still has some issues and limitations on

becoming the global payment network people use daily. We mention some of these

problems here.

• Latency. Typically, a transaction on the Bitcoin blockchain first spends some

time in the transaction pool and then has to have six confirmation blocks on

top of the block it’s included in to be considered finalized. With a block time

of around 10 minutes, a transaction takes approximately more than an hour to

become final on Bitcoin.

• Fees. In the Bitcoin blockchain, miners invest significant computing power and
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energy to mine blocks in exchange for a financial reward. Each block added

to the blockchain comes with a block reward and the fees associated with the

transactions included in the block. Consequently, the current Bitcoin blockchain

network is unsuitable for small payments, as the transaction fees might exceed

the value of the payment itself.

• Throughput. Even if users accept the latency and are willing to pay the high

fees, the limited throughput of Bitcoin will not allow all transactions to go

through the blockchain. The throughput of the Bitcoin blockchain is around 7

transactions per second [3, 4]. This limit is much lower than needed to facilitate

users’ daily transactions [7].

• Privacy. Privacy on the Bitcoin blockchain is a significant concern due to its

transparency. All transactions are recorded on a public ledger, meaning any-

one can view the transaction details, including the sender, receiver, and the

amount. Although Bitcoin addresses are pseudonymous, sophisticated tech-

niques can link transactions to real-world identities [16–19], de-anonymizing

users and undermining user privacy. This becomes a more significant issue if

we want Bitcoin to be used for daily transactions and payments and not just

for investment.

Layer two solutions can address the latency, fees, throughput, and privacy issues on

the Bitcoin blockchain by enabling off-chain transactions still secured by the under-

lying blockchain. This thesis focuses on the Lightning Network (LN) [7, 8], a second

layer payment channel network (PCN) built on Bitcoin.

The concept behind LN is intuitive: recording every single transaction on the

blockchain is unnecessary. In LN, two parties open a bidirectional channel with each

other by one or both [20] of them locking up funds in an on-chain transaction that

requires both channel partners to cooperate and prevents either channel partner from

spending the funds unilaterally.
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Two on-chain transactions are required for each channel: one to open and fund

the channel and another to close it, as illustrated in Figure 2.1. However, once the

channel is open, the participating parties can exchange their balances off-chain as

frequently as they wish. The on-chain transaction used to open the channel is called

the “funding transaction”, and the total amount of funds deposited in this transaction

is referred to as the “channel capacity”.

Figure 2.1: On-chain transactions for funding and closing a channel.

After opening a channel, both parties can send funds up to the channel’s capacity

back and forth with off-chain transactions by updating the commitment transactions

that spend the funding transaction’s output. Each transaction in the sequence uses

Bitcoin’s scripting language; thus, a Bitcoin smart contract manages the negotiation

of funds between channel partners. The smart contract is set up to penalize a channel

partner who tries to submit a previously revoked channel state. The off-chain trans-

actions executed on the channel are instant and low-cost while leveraging the security

of the underlying blockchain. When the channel partners decide to settle the final

balance, they will publish the last commitment transaction on-chain, which sends the

funds from the funding transaction to their chosen addresses.

Until now, we have described how two parties can leverage an LN channel to send

low-cost instant payments back and forth off-chain. However, it is difficult to expect

any two parties that want to send payments to each other to establish a channel since

it requires an on-chain transaction, which is slow and costs high fees. To address

this, once several participants have channels from one party to another, payments
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can also be “forwarded” through intermediary parties by choosing a path across the

network from the payer to the payee that goes through several payment channels.

For instance, Alice can send a payment to Charlie without a direct channel with him

by routing the payment through intermediary nodes like Bob and Eve. Alice would

then pay small fees to Bob and Eve to incentivize them to forward the payment, as

shown in Figures 2.2 and 2.3.

Figure 2.2: The initial state where Alice
wants to send a payment of 2 coins to
Charlie without having a direct channel
with him.

Figure 2.3: The final state of channel bal-
ances after Alice has sent a payment of
two coins to Charlie through the interme-
diary nodes.

The LN uses onion routing [13] to ensure privacy and security while forwarding

payments through intermediary nodes. This method, originally developed for secure

communication, encrypts the payment information in layers similar to the layers of an

onion. As the payment is forwarded through each intermediary node, only the infor-

mation relevant to that specific node is decrypted, while the rest remains encrypted.

This approach prevents any intermediary from knowing the full path, the payment

amount, or the identities of the sender and receiver. By using onion routing, LN not

only safeguards user privacy but also ensures that payments are routed efficiently and

securely across the network.

This approach offers significant advantages. First, it is simple and secure, handling

off-chain transactions while ensuring security through the underlying blockchain. Sec-
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ond, transactions between peers in their channels are settled instantly, with negligible

fees paid to the intermediary nodes to forward the payment in the network. Most

importantly, network throughput can be significantly improved, making the system

more efficient and scalable.

It is important to understand that the Lightning Network is nothing more than an

application on top of Bitcoin, using Bitcoin transactions and Bitcoin Script. The LN

protocol is a creative way to get more benefits from Bitcoin by allowing an arbitrary

amount of instant payments with instant settlements without having to trust anyone

else but the Bitcoin network. LN addresses all the previously mentioned concerns.

Here’s how:

• Latency. LN allows transactions to be conducted off-chain. Only the initial

and final states are recorded on the underlying blockchain. This significantly

reduces the time users wait for confirmations, as transactions can be settled

instantly off-chain.

• Fees. By conducting transactions off-chain, LN reduces the need to pay high

on-chain transaction fees. Since only the opening and closing of a channel are

recorded on the blockchain, the intermediate transactions incur minimal fees,

making micropayments feasible.

• Throughput. LN dramatically increases the transaction throughput by al-

lowing numerous transactions to occur off-chain. LN can handle thousands of

transactions per second compared to the Bitcoin blockchain’s 7 [3, 4] transac-

tions per second.

• Privacy. LN enhances user privacy through several key mechanisms. Keeping

transactions off the public ledger ensures they are not permanently and publicly

recorded. LN also employs onion routing for payment forwarding, which pre-

vents intermediary nodes from learning the payment amount, source, or desti-
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nation. Additionally, channel balances in LN are private to the two participants

involved, so network nodes cannot determine payment flows by inspecting these

balances. Consequently, transactions on LN remain visible only to the source

and destination [7, 8].

2.1.1 Payment Flow

In LN, the payment process begins with the recipient generating an invoice. This in-

voice is a unique, encoded string containing information such as the payment amount,

expiry time, the recipient’s node ID, the amount, and the hash of a unique secret

preimage. The payer scans a QR code or copies this invoice into their LN wallet

to initiate the payment. Upon receiving the invoice, the payer’s wallet first verifies

the invoice details and then searches for a payment route across the network of LN

nodes and channels using the publicly available LN topology data it has received by

gossiping with other network nodes [21].

Once a suitable route is found, the source node generates an onion-encrypted pay-

ment packet and forwards it to the first intermediary node. The payment is locked

using the hash of the preimage, a secret piece of data known only to the recipient. The

onion-encrypted message then travels through the selected route, with each node for-

warding the payment until it reaches its destination. Upon receiving the payment, the

recipient reveals the preimage, allowing all nodes along the route to unlock and settle

the transaction. This process ensures quick, atomic, and secure off-chain payment

settlements without recording each transaction directly on the Bitcoin blockchain,

thus achieving scalability and efficiency.

However, this approach cannot facilitate some functionalities required for a global

payment network like LN, mostly because of the lack of bidirectional communication

before payment execution. With the current process, there is only a unidirectional

communication from the payee to the payer through the exchanged invoice.
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2.1.2 Shortcomings and Solutions

In this section, we point out some core features that LN lacks, which prevent it from

becoming the global payment system it aspires to be. Some of these features are:

• Streamlined Refunds. In the current payment flow, only the payee must send

an invoice via an off-network method when initiating a transaction. However, if

the payee needs to issue a refund, the original payer must follow the same process

and provide a new invoice for the refund through off-network communication.

This approach is impractical for merchants, as they cannot expect customers

to generate invoices for refunds. Instead, merchants should be able to issue

refunds automatically without requiring any action from the customer.

• Reusable Invoices. The current invoices can only be used once since they

contain the preimage, which should be kept secret and revealed after payment

completion. This prevents users from publishing an invoice once and receiving

multiple payments.

• Asynchronous payments. With the current payment flow, both the payee

and the payer must be online simultaneously for the payment to go through

successfully. The requirement for the payee to be online at each payment can be

inconvenient, especially for small, everyday transactions expected to go through

instantly.

Facilitating the features mentioned above requires bidirectional communication be-

fore payment execution. However, the current invoices only facilitate one-way com-

munication from the payee to the payer before payment execution.

One of the promising methods that was built to facilitate these use cases and

more is LNURL [11]. With LNURL, users also run a web server alongside their LN

node. The webservers will facilitate the bidirectional communication necessary for

the mentioned features. Instead of sending the invoice, the payee will communicate
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with the payer how to reach his web server and some possible query parameters to

pass to the web server.

LNURL is very effective in addressing the requirements to facilitate the mentioned

features. However, as mentioned, integrating LNURL requires running a web server

alongside the LN node. This requirement makes it more difficult for users to run and

maintain LN nodes. Running a separate web server can also introduce new privacy

and security challenges.

Onion Messages (OMs) [12] were introduced to provide the required bidirectional

communication more securely and privately inside the same network of LN nodes.

2.2 Onion Messages

OMs enable lightweight, private, and secure communication within the Lightning

Network (LN) by utilizing onion routing [13], similar to the Tor network. While

OMs [12] can facilitate the interesting features mentioned above, they can also be

used by a malicious actor to execute a Denial of Service (DoS) [22] attack on the

network.

DoS attacks using OMs are difficult to prevent because of their distributed and

privacy-preserving nature. OMs use layered onion encryption to conceal the message

content from intermediary nodes, revealing only the necessary routing information for

each node to forward the message to the next. This layered encryption ensures that

intermediary nodes cannot determine the message’s origin, destination, or payload,

preserving privacy at every step of the communication process.

Unlike the payment messages, which can only be 1366 bytes, OMs can also have a

bigger size of 32834 bytes. This bigger size was introduced to enable nodes to forward

bigger payloads containing more information. However, in Appendix A, we show that

this bigger size can be used to create messages that travel for hundreds of hops; a

malicious actor can leverage this, making the DoS attack using OMs more effective.

Moreover, an adversary can leverage Sybil attacks to further enhance the impact of
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a DoS attack within the LN. A Sybil attack occurs when an attacker creates multiple

nodes to gain more influence over the network. In the context of OMs, an adversary

could deploy numerous Sybil nodes that participate in routing OMs. This increases

the likelihood of successfully executing a DoS attack and makes it more challenging

to detect and mitigate the attack, as the malicious traffic appears to be spread across

many seemingly independent nodes. Combining Sybil attacks and exploiting larger

OM sizes poses a significant threat to the LN’s stability, allowing adversaries to

execute highly effective and difficult-to-detect DoS attacks.

2.3 Related Works

2.3.1 Tor

Tor [23], a close counterpart to OM service, recently experienced a DoS attack [24,

25]. Tor’s response involved integrating PoW as a defense mechanism [26, 27]. OM

service, however, requires a tailored solution, as it differs from Tor in several aspects:

1. Tor messages have a default travel distance of three hops [28], whereas OMs are

allowed to travel hundreds of hops as calculated in Appendix A.

2. Tor’s nodes have distinct roles (entry, relay, exit), unlike the homogeneous na-

ture of the OM service nodes.

3. While Tor focuses on anonymous internet access, the OM service facilitates

lightweight communication with significantly lower transmission rates.

4. Implementing a rate limit proportional to invested funds, as proposed in this pa-

per, is simpler in LN compared to the Tor network, as LN inherently integrates

the concept of money.
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2.3.2 The Probabilistic Method

A probabilistic algorithm proposed on the LN mailing list [29] suggests applying per-

peer rate limits on incoming OMs to be relayed. The core idea is to track the neighbor

that requested the forwarding of the last OM on each outgoing connection. When a

message exceeds the rate limit, an onion message drop message is sent to the previ-

ous hop, indicating the breach and halving the rate limit for that peer. The previous

hop then follows the same process, forwarding the message to its previous hop and

similarly halving its rate limit with that peer. Although occasional misattributions

may occur, this scheme aims to statistically penalize the correct source of the DoS

attack.

For example, if a node, say A, receives a rate limit error from one of its peers, say

B. It will refer to its memory to identify which peer had requested the last message

forwarded to B. If C was the last peer who requested a message to be forwarded

to B, the punishment for C is that A would respond by tightening its rate limit

for C, essentially penalizing C for exceeding the rate limit. Subsequently, C will

take the same measure for his peers, creating a chain of punishment. This cascade

of adjustments will most likely propagate back to the original sender of excessive

message requests.

The primary advantages of this method are its linear memory usage and simplicity.

However, despite its simplicity, this method poses several challenges:

1. Originally designed for a scenario where OMs travel through peers with estab-

lished channels, it does not match the current LN implementation that allows

OMs to traverse peers without channels.

2. The method imposes strict rate limits on all links in a path after an adversary

sends numerous messages, potentially affecting many peers given the maximum

hop limit of 469.
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3. Determining when and how to halt the rate limit chain propagation between

peers requires careful consideration for balancing security and operational effi-

ciency.

4. Reverting the network to normalcy from a strict rate limit is complex and crucial

for maintaining resilience.

2.3.3 Our Work

In this work, we tailored a solution for the OM service, addressing the specific chal-

lenges outlined above and ensuring effective attack mitigation. We leveraged the

nodes’ sum of channel balances and assigned the rate limit proportional to it. This

acts similarly to a proof-of-stake (PoS) mechanism and assigns the more invested

nodes in the network a higher bandwidth.
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Chapter 3

Mitigating DoS Attacks on Onion
Messages

3.1 System Model

We model LN using a graph GL = (V,EL), where V represents the set of nodes in

the network, and EL represents the set of channels. The communication graph is

also represented as a graph GC = (V,EC), where EC denotes the communication

links between nodes in LN. This work assumes that GC is a complete graph. This

implies that any two nodes in the network can establish a communication link (e.g., a

TCP connection) to exchange OMs, and there’s no need for two nodes to have an LN

channel between them to forward a message. This aligns with what has been currently

implemented in BOLTs [12], the standard reference outlining LN’s implementation.

We assume that each node in LN maintains a list of all other nodes in the network,

along with the amount of their funds, defined as the sum of the capacities of the

channels they own. This assumption aligns with the LN, where channel capacities

are publicly announced, even though channel balances remain private.

Node A ∈ V may accept an OM from another node B ∈ V and forward it to

another node C ∈ V . However, A may limit the rate at which it forwards messages

for B. We note that a specific rate-limiting algorithm is not prescribed in the OM

specifications outlined in BOLTs [12]. However, nodes are strongly encouraged to im-

plement a rate-limiting algorithm. In our model, we make the simplifying assumption
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that all nodes within the network uniformly adopt the same rate-limiting algorithm.

This simplification enables us to explore network behavior under a standardized rate-

limiting framework.

Adversary. The adversary can create one or more nodes in the network by pay-

ing the fees for funding transactions and putting in the minimum channel capacity

required and can send OMs using these nodes at any rate it wishes. However, we

assume that the total funds locked in the channels owned by the adversary are small

compared to the total funds in the whole network. We also assume that joining the

Lightning Network does not present a major barrier to the adversary other than pay-

ing the funding transaction fee, but controlling a large portion of the total funds in

the network does. Thus, our mitigation method leverages a Proof of Stake (PoS) like

mechanism to prevent Sybil attacks.

Considering the above model, we explore two DoS attacks. We recognize that the

adversary may harbor various motives for executing an attack within the Lightning

Network. Two primary motives under consideration are as follows:

• Degrading Network Availability: In the first attack, the adversary attempts

to flood the network with unnecessary OMs to degrade the OM service. This

type of attack seeks to hinder the network’s general functionality and its ability

to efficiently transmit messages.

• Disrupting a Specific Node: In the second attack, the adversary targets a

particular victim node with OMs to prevent other nodes in the network from

reaching it. This targeted approach seeks to incapacitate a specific network

participant, potentially for malicious purposes.

We’ve defined a straightforward success metric for our DoS prevention methods:

the probability of successfully sending an OM between two honest nodes.

• In the network degradation attack scenario, we randomly select two honest
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nodes as the source and destination. In this case, the success metric is the

probability that the destination will successfully receive the message.

• We follow a similar approach for the attack aimed at a specific node, but the des-

tination is fixed to the targeted node, while the source is chosen randomly. The

success metric measures the probability of successfully delivering the message

to the targeted node.

3.2 Proposed Solution

Our proposed solution comprises two straightforward components. The first compo-

nent involves limiting the number of hops an OM can traverse. Drawing inspiration

from the Tor network [23], which achieves anonymity with just three hops [28], we

recognize that, since OMs move through peers rather than channels, nodes can effi-

ciently reach any other node within a short hop count. While we may not necessarily

restrict this number to three, we introduce methods to limit the maximum number

of hops, as what is required is much lower than the existing 469-hop limit.

The second component of our solution involves implementing simple forwarding

rules for nodes to follow. In the subsequent section, we analyze how the combined

limitations on the maximum number of hops and the enforcement of these simple

forwarding rules significantly mitigate the considered DoS attack scenarios.

3.2.1 Limiting the Travel Distance

While onion packets used for forwarding payments are limited to 1366 bytes, OMs

can have a larger size of 32834 bytes [30]. The expanded size of OMs introduces

a potential vulnerability that a malicious actor can exploit to send messages that

maximize the available space to traverse numerous hops. A 1366-byte OM packet

has a maximum travel distance of 19 hops, but a 32834-byte OM packet has a much

larger maximum distance of 469 hops as calculated in Appendix A. To mitigate this,
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we introduce two alternative methods to impose a cap on the maximum number of

times a message can get forwarded in the network.

Soft leash.

The soft leash does not force a strict hard limit on the maximum number of hops for an

OM. Rather, it makes it exponentially more difficult for a source node to create OMs

that travel far. This effectively serves as a practical deterrent against excessively long

paths while allowing for flexibility within reasonable limits. Additionally, it allows

honest users the flexibility to choose a longer path to enhance their privacy when

needed while making it more difficult for adversaries to generate large volumes of

spam messages.

In this method, similar to the solution recently implemented in the Tor network

[26], each hop requires the sender to provide proof of work (PoW). However, OMs

within LN differ from packets in the Tor network in one key aspect: Tor uses a default

path length of 3 and a maximum path length of 8, while LN does not impose such

a strict limit. Given this fundamental difference between LN and the Tor network,

we propose a PoW-based algorithm that scales exponentially rather than linearly

with the number of hops. As illustrated in Figure 3.1, we achieve this by linking

each hop’s PoW to the preceding hop’s, effectively creating a chain of PoWs. With

this approach, each additional hop appended to this chain exponentially increases

the computational challenge of calculating the PoW for the entire path. This limits

the adversary’s capacity to add hops far beyond the desired max number of hops set

by adjusting the difficulty of PoW. Furthermore, this method naturally imposes a

boundary on the adversary’s potential fan-out factor.

Figure 3.1 illustrates the process undertaken by the source node A to establish

shared secrets with nodes along the path (B,C,D) for creating an onion-encrypted

message. For each node along the path, the hash resulting from the combination of

the shared secret and the latest Bitcoin block hash must adhere to PoW conditions,
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such as being below a certain value.

Figure 3.1: The source node PoW generation process.

The difficulty adjusts dynamically. Each network node chooses its acceptable target

for the PoW difficulty and adjusts it based on the rate of messages it receives from

its peers. It will then announce its PoW target in gossip messages.

For the technical implementation, we must understand that the onion encryption in

LN is possible by the source node using the Diffie–Hellman algorithm to create shared

secrets with each node in the path [30]. To make the messages untraceable between

multiple hops, an additional measure involves blinding the key at each hop [30].

This deterministic blinding procedure enables the sender to compute corresponding

blinded private keys during packet construction, effectively deriving all associated

shared secrets. This enables the source node to create the OM and encrypt each layer

using the relevant shared secret for the intended hop to decrypt. We demonstrate

this algorithm for creating PoWs in Figure 3.1.

In the methodology we put forth, every node along the path expects the PoW

provided for that hop to be less than a certain target. To meet this condition, the

source node must repeatedly create temporary key pairs (ephemeral key pairs), which

is the only changeable aspect of the entire process. The aim is to find a key pair that

produces PoWs for each hop that is less than the target of that particular hop.
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Subsequently, each node in the path verifies the PoW associated with that node.

Because PoWs are chained together, the computational demand to generate valid

PoWs grows exponentially as the number of hops in the route increases. This limits

the sender’s capacity to add more hops. Furthermore, this method naturally imposes

a boundary on the attacker’s potential fan-out factor.

To prevent replay attacks on our PoW, we borrowed an idea from Tor. We use a

hash table or a bloom filter for less capable nodes to keep track of previously used

PoWs. However, unlike Tor’s random seeds [27], we link our PoW to the latest Bitcoin

block’s hash as illustrated in Figure 3.1. Although Bitcoin block hashes are not a

true source of randomness [31, 32], they suffice for our use case. This way, we deter

precomputed PoWs, making the network more secure. We note that the hash table

or bloom filter used for replay protection can reset with each new block since PoWs

associated with previous blocks become invalid. This makes generated PoWs unique

for each node at each block height, simplifying the process and enhancing network

efficiency by omitting the need to gossip randomly chosen seeds. This approach is

feasible because every LN node is connected to a Bitcoin node and can access on-chain

data.

The only adjustable input to the process of creating the shared secrets with all the

hops along the path is the ephemeral key pair that the source node chooses for the

payment.

We want the difficulty to increase exponentially rather than linear because it’s

exponentially less justified for the source node to include more hops in the path. For

example, it is justified if the source node wants four nodes on the path instead of three

for more privacy. But it’s significantly less justified if a node wants eleven nodes on

the path instead of ten.

This method does not introduce any new attack surfaces because the protocol looks

exactly the same from the outside. Each shared secret is only known to the source

and the exact node with which it was supposed to be used.
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To get a better sense of the PoW difficulty, we simulated the process of choosing

ephemeral public-private key pairs, calculating shared secrets, and checking the PoW

condition for different difficulties and path lengths. The result of this experiment can

be observed in table 3.1. This table contains the average number of ephemeral key

pairs tried by the source node to generate a valid PoW for all hops in a path based

on different difficulties and path lengths. We can see that the difficulty increases

exponentially with increasing the path length.

Path length 3 leading zeros 4 leading zeros 5 leading zeros

1 6 7 30

2 63 330 1194

3 433 4854 14415

4 2826 30382 4020887

Table 3.1: Average number of ephemeral key pairs tried to generate a valid PoW.

From table 3.1, we can see that by choosing the right difficulty for each hop, honest

nodes can easily create a few messages that can travel for many hops, providing them

with great privacy. At the same time, it will be very difficult for an adversary to

create many messages that travel for many hops.

Hard leash.

This method enforces a strict upper limit on the hops an OM can traverse. As

illustrated in Fig. 3.2, this is achieved by dividing the message into two segments, one

for routing information and another for the actual payload. For example, consider a

32,834-byte message. The first 66 bytes of the message are dedicated to the message

headers, leaving us with 32768 bytes. Let’s divide the remaining 32768 bytes into two

segments, a first portion of 280 bytes for routing information and a second segment

of 32,488 bytes allocated for the payload. In this configuration, with the calculations

in Appendix A, the limited size of 280 bytes dedicated to routing data restricts the
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packet to a maximum of 4 hops. It is worth noting that these specific numbers are

adjustable but need consensus among all nodes within the network.

The encryption and decryption processes for the message remain consistent, regard-

less of the division into sections. Each message segment, both routing and payload

parts, will be encrypted for each hop by the source and decrypted at its corresponding

hop. Although only the last hop will see the plain payload, this approach ensures that

the message appears distinct at each hop, hence preserving its untraceable nature as

required.

Figure 3.2 illustrates how an OM is structured into two parts while still fitting

within a single packet. One part contains the routing information, while the other

contains the payload, which is exclusively intended for the final hop. The message

length remains constant regardless of the number of hops in the path.

Figure 3.2: Hard leashed onion messages.

Importantly, both parts are encrypted by the source for each hop and get decrypted

separately by each node on the path. At each hop, the path information part is

also padded with bits to maintain consistent length throughout the route. Notably,

intermediary hops only gain access to encrypted data in the payload section, with

meaningful content revealed solely at the final hop after decryption. The gradual

shift in color opacity signifies the successive removal of encryption layers from the

message.
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3.2.2 Forwarding and Routing

As the second component of our solution, we propose simple rules for nodes to follow

when forwarding OMs and routing their messages. Importantly, the memory require-

ment to implement these rules scales linearly with the number of peers, which makes

this method feasible.

Forwarding

In our approach, nodes do not limit OMs destined for themselves and always prioritize

sending their own messages over forward requests of their neighbors. Because of

this, the first and last link in the path will always be able to forward the message.

Additionally, nodes do not limit the rate of OMs they send on any outgoing link.

However, they enforce a rate limit on forwarding OMs from each of their peers. This

rate limit is set to αA ·FB for peer B by node A, where αA is an adjustable parameter

for each node, and FB is the sum of the capacities of channels owned by B. We refer

to this sum as the funds of node B.

Setting the rate limit proportional to FB ensures that nodes with greater invest-

ment in the network receive a higher rate limit. This strategy strengthens the system’s

resilience against Sybil attacks and significantly raises the financial barrier for poten-

tial attackers to impact the network. The coefficient α is included to ensure that each

node only accepts forwarding requests up to its capacity or willingness.

Imposing this rate limit can be as straightforward as a node, say A, storing a

last forward time variable for each of its peers. If A receives a forwarding request

from, say B, it compares the time of this request with the last forward time of

B. If the difference is large enough (specifically, greater than 1
αA·FB

), A will forward

B’s message and update its last forward time; otherwise, A discards B’s message.

However, nodes can also implement slightly more sophisticated techniques, such as

sliding windows or token bucketing [33], to impose the rate limit more effectively.
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Routing

Since our forwarding rules prioritize nodes with greater investment by allocating

higher rate limits, source nodes should choose random paths weighted by the funds of

the nodes in the network. This approach routes messages through higher-bandwidth

links and reduces the likelihood of messages being routed through adversarial nodes,

assuming the adversary controls only a small portion of the network’s funds.

In essence, nodes with greater investment in the network receive more bandwidth,

making it harder for adversaries to saturate these high-bandwidth links. When rout-

ing honest messages, we prioritize these high-bandwidth links to be included in the

path.

Algorithm 1 outlines the proposed path-finding mechanism. This algorithm selects

a path of a desired length from a graph by probabilistically choosing nodes using

their funds as weights. It first computes the cumulative distribution of node funds,

normalizing them to create cumulative probabilities. During path selection, for each

hop, a random number between zero and one is generated, and the corresponding node

is selected based on the cumulative probabilities. This process is repeated until the

path reaches the desired length, ensuring that nodes with higher funds have a higher

chance of being selected, resulting in a path that reflects the underlying distribution

of node funds.
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Algorithm 1: The proposed path selection algorithm.

Input: V ; // A list of graph nodes V along with nodes’ funds

Input: l ∈ N ; // Desired path length where l < L
Output: path ; // A list of relay nodes from

// the source to the destination

1 Function SelectNextNode(cumulativeProbabilities):
2 r ← Random number between 0 and 1;
3 foreach (node, cumulativeProbability) ∈ cumulativeProbabilities do
4 if r ≤ cumulativeProbability then
5 return node;
6 end if

7 end foreach

8 cumulativeProbabilities← [];
9 totalFunds←

∑︁
node∈V node.funds;

10 cumulative← 0;
11 foreach node ∈ V do
12 cumulative← cumulative+ node.funds;
13 cumulativeProbabilities←

cumulativeProbabilities ∪ {(node, cumulative/totalFunds)};
14 end foreach
15 path← [];
16 while |path| < l do
17 next← SelectNextNode(cumulativeProbabilities);
18 path← path ∪ {next};
19 end while
20 return path;

3.3 Resistance of the Proposed Solution

In Section 3.1, we outlined two potential attack scenarios that pose significant risks to

the system. In this section, we conduct a detailed analysis to evaluate the effectiveness

of the proposed solution in mitigating the impact of these scenarios.

3.3.1 Flooding the Network

In this attack scenario, the adversary attempts to degrade the availability of the OM

service by flooding the network with a large number of OMs. The objective is to

overwhelm the system by saturating as many links as possible and exploiting the

bandwidth its neighboring nodes provide. This attack is designed to strain network
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resources and disrupt normal operations, diminishing the overall service quality.

As discussed in Section 3.1, we assume the communication graph is complete, given

that OMs traverse through peer connections rather than LN channels. Additionally,

because a link can be saturated from one direction while still available from the

opposite direction, we model the network as a complete directed graph without self-

loops. This assumption provides a more accurate representation of the network’s

communication dynamics and potential vulnerabilities.

Theorem 1 Let L denote the maximum number of hops an OM can travel, and

l ≤ L denote the OM path-length parameter used in the path-selection algorithm

(Algorithm 1). Let FA be the total funds of the adversary, and FH =
∑︁n

i=1 Fi be the

total fund of honest nodes, where Fi denotes the fund of honest node Ui, and n is the

total number of honest nodes in the network.

Then, for every pair of distinct honest nodes Us and Ud, the probability that an OM

message, sent on a random path chosen by Algorithm 1, from Us to Ud fails is at most

1− (1− γ)l−1 + (L− 1) · (l − 2) · (1− γ) · γ · δ

≤ (L− 1) · (l − 1) · δ · γ

where

γ =
FA

FA + FH

is the fraction of funds in the entire network that belongs to the adversary, and

δ =
Fmax

Favg

=
maxi(Fi)

(
∑︁

i Fi) /n
=

maxi(Fi)

FH/n

is the ratio of the maximum fund held by any single honest node to the average fund

across all honest nodes in the network.

Proof. Let P be the random path selected by Algorithm 1. The OM sent on

P fails if and only if at least one of the following events occurs: 1) event Edrp: the

path P contains an adversarial node, in which case the adversarial node will drop the
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message; 2) event Esat: the path P contains an honest link saturated by the adversary1,

in which case the OM is dropped by the receiver of the link. In the following, we find

an upper bound on the probability for each of the above two events. We then simply

add these probabilities to get an upper bound on the probability of OM failure.

To select the random path P , Algorithm 1 chooses (l − 1) nodes at random in

(l − 1) rounds, where in each round, the probability that a given node is selected is

proportional to its fund. Therefore, Pr(Edrp), the probability that Algorithm 1 selects

a node that belongs to the adversary is simply equal to

Pr(Edrp) = 1− (1− γ)l−1.

Next, we establish an upper bound on Pr(Esat).

For any two nodes Ui, Uj ∈ V , we assume that αi = αj = α, indicating that all

nodes in the network dedicate an equal computing capacity for forwarding OMs. The

adversary can establish up to n connections to all the n honest nodes, where each

connection can push a rate of at most α · FA. Moreover, each connection can engage

at most (L− 1) honest links (the first link is not an honest link as it is incident to an

adversarial node, hence (L− 1) instead of L). Therefore, the sum of all the rates the

adversary can impose on honest links in the network denoted b, is at most

b ≤ α · FA · (L− 1) · n (3.1)

Assuming they are honest links, the first and last links on path P do not drop the

OM, even when saturated. This is because the source node prioritizes forwarding its

own OMs, and the destination node always accepts OMs destined for itself. Therefore,

in analyzing Pr(Esat), we only consider the middle l − 2 links on the path P .

The probability that the kth link, 1 < k < l, on the path P is a saturated honest

link is ∑︂
i,j

fi · fj · Ii,j, (3.2)

1A link other than the first and the last links as those links belong to, respectively, the source
and destination and do not drop the OM message.
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where fi =
Fi

FA+FH
, fj =

Fj

FA+FH
, fi · fj is the probability that the kth link, 1 < k < l,

is (Ui, Uj), and Ii,j is a variable equal to one if the adversary has saturated (Ui, Uj),

the link from Ui to Uj; and equal to zero otherwise. To set Ii,j to one, the adversary

needs to push OMs at a rate of at least αFi from Ui to Uj. Since the adversary’s

maximum budget is b, we must then have

∑︂
i,j

(α · Fi) · Ii,j ≤ b (3.3)
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Thus, we get

Pr(Esat)
by(3.2) and union bound

≤ (l − 2) ·

(︄∑︂
i,j

fi · fj · Ii,j

)︄
fmax=maxi(fi)

≤ (l − 2) ·

(︄∑︂
i,j

fi · fmax · Ii,j

)︄

= (l − 2) · fmax ·

(︄∑︂
i,j

fi · Ii,j

)︄

= (l − 2) · fmax ·

(︄∑︂
i,j

Fi

FA + FH

· Ii,j

)︄

= (l − 2) · fmax

FA + FH

·

(︄∑︂
i,j

Fi · Ii,j

)︄

= (l − 2) · fmax

FA + FH

· 1
α
·

(︄∑︂
i,j

(α · Fi) · Ii,j

)︄
(3.3)

≤ (l − 2) · fmax

FA + FH

· 1
α
· b

(3.1)

≤ (l − 2) · fmax

FA + FH

· 1
α
· (α · FA · (L− 1) · n)

= (l − 2) · fmax

FA + FH

· (FA · (L− 1) · n)

= (L− 1) · (l − 2) · FA

FA + FH

· (fmax · n)

= (L− 1) · (l − 2) · γ · (fmax · n)

= (L− 1) · (l − 2) · γ ·
(︃

Fmax

FA + FH

· n
)︃

= (L− 1) · (l − 2) · γ ·
(︃
FH

FH

· Fmax

FA + FH

· n
)︃

= (L− 1) · (l − 2) · γ ·
(︃

FH

FA + FH

· Fmax

FH/n

)︃
= (L− 1) · (l − 2) · γ · (1− γ) · δ

(3.4)

Finally, by a union bound, we get that the probability that the OM fails (over the

choice of random path selection by Algorithm 1) is at most equal to

Pr(Edrp) + Pr(Esat) ≤
[︁
1− (1− γ)l−1

]︁
+ [(L− 1) · (l − 2) · γ · (1− γ) · δ] (3.5)

thus
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Pr(Edrp) + Pr(Esat) ≤
[︁
1− (1− γ)l−1

]︁
+ [(L− 1) · (l − 2) · γ · (1− γ) · δ]

≤ [(l − 1) · γ] + [(L− 1) · (l − 2) · γ · (1− γ) · δ]

< [(L− 1) · γ] + [(L− 1) · (l − 2) · γ · (1− γ) · δ]

< [(L− 1) · γ] + [(L− 1) · (l − 2) · γ · δ]

= (L− 1) · γ · [1 + (l − 2) · δ]

= (L− 1) · γ · [1− δ + (l − 1) · δ]

≤ (L− 1) · (l − 1) · γ · δ

where the last inequality is because δ ≥ 1 as the maximum value of a set of numbers

is not less than their average, hence δ =
maxni=1(Fi)∑︁n

i=1 Fi/n
≥ 1.

Sybil resistance. One of the main objectives of the proposed solution is to prevent

the adversary from gaining an advantage in failing OMs by simply adding nodes with

no or small funds in the network. Theorem 1 shows the proposed solution achieves

this goal. As proven in the theorem, the power of adversary (in failing OMs) is at

most equal to

(L− 1) · (l − 1) · γ · δ. (3.6)

This equation is a function of the fraction of total funds in the network owned by

the adversary (γ) rather than the number of nodes controlled by the adversary. The

other parameters in the equation, i.e. L and l and δ, are all system parameters and

are out of the adversary’s control.

Impact of the travel distance. An OM can travel up to L hops, which means

the parameter l in the path selection algorithm (algorithm 1) can be as large as L. By

setting l = L in equation (3.6), we find that the probability of OM failure increases

quadratically with L. This underscores the importance of minimizing L to limit the

adversary’s power.

Impact of distribution of funds. Consider two networks, each with an identical

number of honest nodes and the same total amount of funds. Also, assume that
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the adversary possesses the same amount of funds in both networks. However, the

distribution of funds among the honest nodes differs between these networks. This

raises an interesting question: which network is more resilient against the maximum

number of OM failures imposed by the adversary? Theorem 1 suggests that a uniform

distribution of funds among honest nodes offers the highest resilience.

According to (3.6), the bound established in Theorem 3.6, both networks have

identical values of γ, as the funds of the adversary and the total funds of the honest

nodes are the same in each. However, the network with a uniform distribution of

funds among honest nodes has δ = 1, the minimum possible value by definition. In

contrast, in a network with a non-uniform distribution, δ > 1 because the maximum

fund held by any honest node is strictly greater than the average funds of honest

nodes.

To further highlight the effects of fund distribution on network resilience, the fol-

lowing example evaluates the adversary’s power in two distinct scenarios. In the first

scenario, the total funds are uniformly distributed among the honest nodes. In the

second scenario, the same amount of total funds is allocated non-uniformly among

the nodes.

Example 1 Consider a network with n honest nodes and a fixed total fund FH . As-

sume that the adversary’s total fund equals the average fund of honest nodes, that is,

FA = Favg = FH/n. Let L = l = 3. In the first scenario, the total fund of FH is uni-

formly distributed among the honest nodes, such that each node receives FH/n = Favg.

For this scenario, we have γ1 = FA

FA+FH
= FH/n

FH/n+FH
= 1

n+1
and δ1 = Fmax

Favg
= 1. Thus,

by Theorem 1, the probability of failure is given by:

Pr(fail1) = O(L · l · γ1 · δ1)

= O
(︃
1

n

)︃
.

(3.7)

In the second scenario, suppose the total fund of FH is distributed non-uniformly

among honest nodes. Specifically, the first n− 1 honest nodes receive identical funds
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of f , but the n’th node receives a fund of m · f , where 1 < m < n is a number. For

this scenario, we get

γ2 =
FA

FA + FH

=
FH/n

FH/n+ FH

=
1

n+ 1
= γ1,

and

δ2 =
Fmax

Favg

=
m · f

m·f+(n−1)f
n

=
m · n

m+ n− 1

Therefore, by Theorem 1, we have:

Pr(fail2) = O(L · l · γ2 · δ2)

= O(γ2 · δ2)

= O
(︃

1

n+ 1
· m · n
m+ n+ 1

)︃
= O

(︂m
n

)︂
.

(3.8)

Note that γ2 = γ1, but δ2 = θ(m) ·δ1. Thus, according to Theorem 1, the probability

of failure in the second scenario is expected to be a factor of θ(m) higher than in

the first. The adversary can exploit this heightened risk to significantly increase the

probability of failure. To demonstrate this, consider the adversary sends OMs at a

rate of α ·FA = α ·Favg to each honest node Ui, where 1 ≤ i < n, and directs them to

forward these OMs to node Un, effectively saturating all links to Un.

Assume two honest nodes, Us and Ud, with Us using the routing algorithm (Algo-

rithm 1) to select a random path P = (Us, Ui, Uj, Ud) of length l = 3 to send an OM to

Ud through random nodes Ui and Uj. The probability that the link (Ui, Uj) is saturated

equals the probability that i < n and j = n, which is equal to

(n− 1)Favg

n · Favg

· Favg

n · Favg

=
n− 1

n2
= θ

(︃
1

n

)︃
,

in the first scenario, while the equivalent probability in the second scenario is

(n− 1) · f
(n− 1) · f +m · f

· m · f
(n− 1) · f +m · f

=
(n− 1) ·m
(n+m− 1)2

= θ
(︂m
n

)︂
.

These probabilities are asymptotically optimal as they match the upper bound estab-

lished by Theorem 1, with the latter being a factor of θ(m) larger than the former,

illustrating the significant impact of a non-uniform fund distribution.
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A tighter bound. We can further tighten the bound established in Theorem 1.

The idea to do this is by making the second inequality in (3.4) tighter. By doing so,

Theorem 2 replaces δ = Fmax

Favg
in Example 1 with δ̌ = F

(k)
max

Favg
, where F

(k)
max is the average

funds of the top k, k = 1 + ⌊ (L−1)FA

Favg
⌋ honest nodes. Since clearly F

(k)
max ≤ Fmax, we

get that δ̌ ≤ δ, hence we get a tighter upper bound in Theorem 2.

Theorem 2 Let L denote the maximum number of hops an OM can travel, and

l ≤ L denote the OM path-length parameter used in the path-selection algorithm

(algorithm 1). Let FA be the total funds of the adversary, and FH =
∑︁n

i=1 Fi be the

total fund of honest nodes, where Fi denotes the fund of honest node Ui, and n is the

total number of honest nodes in the network.

Then, for every pair of distinct honest nodes Us and Ud, the probability that an OM

message, sent on a random path chosen by algorithm 1, from Us to Ud fails is at most

1− (1− γ)l−1 + (L− 1) · (l − 2) · γ · δ̌

≤ (L− 1) · (l − 1) · δ̌ · γ

where

γ =
FA

FA + FH

is the fraction of funds in the entire network that belongs to the adversary, and

δ̌ =
F

(k)
max

Favg

is the ratio of the average fund held by the top k honest nodes to the average fund

across all honest nodes in the network, and k = 1 + ⌊ (L−1)FA

Favg
⌋.

Proof. Replacing b in (3.3) with the right-hand side term in 3.1 we get

∑︂
i,j

(α · Fi) · Ii,j ≤ α · FA · (L− 1) · n,

thus ∑︂
i,j

Fi · Ii,j ≤ FA · (L− 1) · n
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Without loss of generality, we assume f1 ≥ f2 ≥ . . . ≥ fn. Similarly to the proof of

Theorem 1, we have

Pr(Esat) ≤ (l − 2) ·

(︄∑︂
i,j

fi · fj · Ii,j

)︄
.

Starting with this inequality, we get

Pr(Esat) ≤ (l − 2) ·

(︄∑︂
i,j

fi · fj · Ii,j

)︄

≤ (l − 2) ·
(︃

b

α · FH

· f1 +
b

α · FH

· f2 + . . .+
b

α · FH

· fk
)︃

≤ (l − 2) · b

α · FH

· (f1 + f2 + . . .+ fk)

= (l − 2) · b

α · FH

·
∑︁k

i=1 Fi

FA + FH

= (l − 2) · b

α · (FA + FH)
·
∑︁k

i=1 Fi

FH

≤ (l − 2) · α · FA · (L− 1) · n
α · (FA + FH)

·
∑︁k

i=1 Fi

FH

= (L− 1) · (l − 2) · FA

FA + FH

·
∑︁k

i=1 Fi

FH/n

= (L− 1) · (l − 2) · γ · δ̌

(3.9)

Next, similar to the proof of Theorem 1, we get

Pr(Edrp) + Pr(Esat) ≤
[︁
1− (1− γ)l−1

]︁
+
[︁
(L− 1) · (l − 2) · γ · δ̌

]︁
≤ [(l − 1) · γ] +

[︁
(L− 1) · (l − 2) · γ · δ̌

]︁
< [(L− 1) · γ] +

[︁
(L− 1) · (l − 2) · γ · δ̌

]︁
= (L− 1) · γ ·

[︁
1 + (l − 2) · δ̌

]︁
= (L− 1) · γ ·

[︁
1− δ̌ + (l − 1) · δ̌

]︁
≤ (L− 1) · (l − 1) · γ · δ̌

where the last inequality is because δ̌ ≥ 1 as the average funds of top honest nodes

is not less than the average fund of all honest nodes.
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The adversary’s optimal strategy. Suppose the adversary’s strategy is to

maximize the probability that the h-th link of the path between the source and the

destination, where 1 < h < l, is saturated. The probability that the h-th link of the

path is between nodes Ui and Uj is fi ·fj. The adversary’s cost to saturate this link is

α ·Fi = c ·fi, where c = α ·(FA+FH) is a constant. Therefore, informally speaking, to

gain a probability fi · fj, the adversary needs to spend a cost of c · fi from its budget

b. This suggests that the adversary should target Uj with the maximum value of fj

(i.e., the node with the maximum fund) to maximize the gain fi · fj. If the adversary

has already saturated all the links to the node with the maximum fund and still has

a remaining budget, it should aim to saturate the links to the next node with the

highest fund, and so on. The above suggests that to maximize the probability of OM

failure, the adversary should aim at saturating the links to the honest nodes with top

funds. This intuition is used in Theorem 2 to improve the bound in Theorem 1.

Partial communication graph. In line with the BOLT standards, we have

assumed that the communication graph GC is a complete graph, meaning that any

two nodes in the network can establish a communication link to exchange OMs. An

interesting question is whether the bound of Theorem 1 on the network’s resilience

can be improved if nodes restrict themselves to an incomplete/partial communication

graph. We answer this positively for networks where funds are distributed non-

uniformly between nodes, that is, in networks with δ > 1. This is positive news, as

in practice, δ can be quite large. For instance, as of May 20, 2024, δ = 446 in LN.

Next, we demonstrate a method based on partial communication graphs, which can

significantly improve the resilience of networks such as LN where δ is large. In this

method, the source node restricts the proposed path selection algorithm (Algorithm 1)

to a subset S of nodes when constructing a path to the destination. The fund of each

node in the subset, however, remains equal to the node’s funds in the entire network,

not just within the subset S. The following theorem establishes a bound on the

probability of OM failure in this method, expressed as a function of the total and
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maximum funds within the subset S.

Theorem 3 Suppose we restrict the selection of relay nodes in the path-selection

algorithm (Algorithm 1) to a subset S of nodes within the network. Then, for every

pair of distinct honest nodes Us and Ud, the probability that an OM message, sent

along a randomly chosen path by Algorithm 1 from Us to Ud, fails is at most

(l − 1) · FA ·

⎛⎜⎝ 1

F
(s)
tot

+ (L− 1) · |S| · F
(s)
max(︂

F
(s)
tot

)︂2
⎞⎟⎠ (3.10)

where FA represents the total funds of the adversary in the entire network, F
(s)
max is

the maximum fund held by any single node in the subset S, and F
(s)
tot is the total fund

of all nodes within S.

Proof. Let P be the random path selected by Algorithm 1 when relay nodes are

restricted to the subset S. The OM message sent on P fails if and only if at least one

of the following events occurs: 1) Event Edrp: the path P includes an adversarial node,

which consequently drops the message. 2) Event Esat: the path P features an honest

link that is saturated by the adversary, leading to the OM message being dropped by

the receiver of that link.

To determine the random path P , Algorithm 1 selects (l − 1) nodes at random

across (l − 1) rounds. In each round, the probability of selecting a specific node is

proportional to its fund. Consequently, the probability Pr(Edrp), that Algorithm 1

selects an adversarial node, is given by

Pr(Edrp) = 1−

(︄
1− F ′

A

F
(s)
tot

)︄l−1

≤ (l − 1) · FA

F
(s)
tot

,

(3.11)

where F ′
A ≤ FA represents the total fund of the adversary’s nodes within the subset

S.
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Let F1, F2, . . . , Fh denote the funds of honest nodes U1, U2, . . . , Uh in S, where h

denotes the number of honest nodes in S. Note that only the nodes in S forward OMs.

The adversary is capable of establishing up to h connections with these honest nodes,

each connection pushing a rate of at most α · FA. Furthermore, each connection can

engage up to (L − 1) honest links. Consequently, the total rate that the adversary

can impose on links between honest nodes in S, denoted by b(s), is bounded by

b(s) ≤ α · FA · (L− 1) · h

≤ α · FA · (L− 1) · |S|
(3.12)

The probability that the kth link, 1 < k < l, on the path P is a saturated honest

link is ∑︂
1≤i,j≤h

fi · fj · Ii,j, (3.13)

where fi =
Fi

F
(s)
tot

, fj =
Fj

F
(s)
tot

, fi · fj is the probability that the kth link, 1 < k < l, is (Ui,

Uj), and Ii,j is a binary variable equal to one if the adversary has saturated (Ui, Uj),

the link from Ui to Uj; and equal to zero otherwise. To set Ii,j to one, the adversary

needs to push OMs at a rate of at least αFi from Ui to Uj. Given the adversary’s

maximum budget is b(s), we must then have

∑︂
1≤i,j≤h

(α · Fi) · Ii,j ≤ b(s). (3.14)
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Thus, we get

Pr(Esat)
by(3.13) and union bound

≤ (l − 2) ·

(︄ ∑︂
1≤i,j≤h

fi · fj · Ii,j

)︄
f
(s)
max=maxUi∈S(fi)

≤ (l − 2) ·

(︄ ∑︂
1≤i,j≤h

fi · f (s)
max · Ii,j

)︄

= (l − 2) · f (s)
max ·

(︄ ∑︂
1≤i,j≤h

fi · Ii,j

)︄

= (l − 2) · f (s)
max ·

(︄ ∑︂
1≤i,j≤h

Fi

F
(s)
tot

· Ii,j

)︄

= (l − 2) · f
(s)
max

F
(s)
tot

·

(︄ ∑︂
1≤i,j≤h

Fi · Ii,j

)︄

= (l − 2) · f
(s)
max

F
(s)
tot

· 1
α
·

(︄ ∑︂
1≤i,j≤h

(α · Fi) · Ii,j

)︄
(3.14)

≤ (l − 2) · f
(s)
max

F
(s)
tot

· 1
α
· b(s)

(3.12)

≤ (l − 2) · f
(s)
max

F
(s)
tot

· 1
α
· (α · FA · (L− 1) · |S|)

= (l − 2) · f
(s)
max

F
(s)
tot

· (FA · (L− 1) · |S|)

= (L− 1) · (l − 2) · FA

F
(s)
tot

·

(︄
F

(s)
max · |S|
F

(s)
tot

)︄

= (L− 1) · (l − 2) · |S| · FA · F (s)
max(︂

F
(s)
tot

)︂2 .

(3.15)

Therefore, by (3.15), (3.11) and a union bound, we get that the probability that

the OM fails (over the choice of random path selection by Algorithm 1) is at most
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equal to

Pr(Edrp) + Pr(Esat) ≤

(︄
(l − 1) · FA

F
(s)
tot

)︄
+

⎛⎜⎝(L− 1) · (l − 2) · |S| · FA · F (s)
max(︂

F
(s)
tot

)︂2
⎞⎟⎠

≤

(︄
(l − 1) · FA

F
(s)
tot

)︄
+

⎛⎜⎝(L− 1) · (l − 1) · |S| · FA · F (s)
max(︂

F
(s)
tot

)︂2
⎞⎟⎠

≤ (l − 1) · FA ·

⎛⎜⎝ 1

F
(s)
tot

+ (L− 1) · |S| · F
(s)
max(︂

F
(s)
tot

)︂2
⎞⎟⎠

(3.16)

We define a subset S ⊆ V as optimum if it minimizes the upper bound (3.10) of

Theorem 3. Note that the leading coefficients (l−1) and FA in (3.10) are independent

of the choice of the set S. Thus, a set S is optimum if it is a member of

S = argmin
S⊆V

⎛⎜⎝ 1

F
(s)
tot

+ (L− 1) · |S| · F
(s)
max(︂

F
(s)
tot

)︂2
⎞⎟⎠ (3.17)

Although the set V has an exponential number of subsets S, Theorem 5 demon-

strates that a set in S can be found in quadratic time. We will use this set in the

simulation setting to show that LN can improve its resilience against the adversary

by using a partial communication graph.

Lemma 4 Consider a network with m nodes u1, u2, . . . , um. Let Fi denote the funds

of node Ui in the network. Suppose F1 ≤ F2 ≤ . . . ≤ Fm.

Then there exists a set S ∈ S such that S = {Uk|k ∈ [i, j]} for some integers 1 ≤ i ≤

j ≤ m.

Proof. Let us define the spread of a set as the greatest difference between the

subscript indices of any two nodes in the set. For instance, the spread of the set

{U2, U5, U7, U8} is 8 − 2 = 6. Let S be a set in S with the minimum spread. We

show that S = {Uk|k ∈ [i, j]} for some integers 1 ≤ i ≤ j ≤ m. Let Ui and Uj
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be the nodes in S with the maximum difference between their indices. Towards a

contradiction, suppose that there is an integer i < k < j such that Uk /∈ S. Let

S† = (S ∪ {Uk}) \{Ui}, that is S† is formed from S by adding Uk to and removing Ui

from S. We have |S†| = |S|, F (s†)
max = F

(s)
max and F

(s)
tot ≤ F

(s†)
tot as Fi ≤ Fk. Therefore, by

(3.17), we get

S ∈ S =⇒ S† ∈ S.

This is a contradiction since S† has a strictly smaller spread than S, but S was

assumed to have the smallest spread among the sets in S.

Theorem 5 There exists a quadratic-time algorithm (algorithm 2) for finding a set

in S.

Proof. By Lemma 4, there is a set S ∈ S such that S = {Uk|k ∈ [i, j]} for some

integers 1 ≤ i ≤ j ≤ n. There are quadratically many sets of this form. Using

dynamic programming as described in Algorithm 2, one that belongs to S can be

identified in quadratic time.

42



Algorithm 2: Finds subset S to minimize Equation 3.17.

Input: funds // List of funds of honest nodes

Output: S // Subset of honest nodes that minimizes δ · γ
1 Sort funds in non-decreasing order;
2 L← maximum OM travel distance;
3 n← length of funds;
4 minV alue←∞;
5 bestSubset← {};
6 for start← 0 to n− 1 do
7 sMax← funds[start];
8 sSum← funds[start];
9 sLen← 1;

10 for end← start+ 1 to n do
11 sSum← sSum+ funds[end];
12 sLen← sLen+ 1;
13 if sMax < funds[end] then
14 sMax← funds[end];
15 end if
16 currentV alue← 1/sSum+ (L− 1) ∗ sLen ∗ sMax/(sSum)2;
17 if currentV alue < minV alue then
18 minV alue← currentV alue;
19 bestSubset← funds[start : end];

20 end if

21 end for

22 end for
23 return bestSubset;

3.3.2 Targeting a Victim Node

In this attack scenario, the adversary aims to prevent nodes from reaching a victim

node W . We demonstrate that the probability of any honest node U ’s message to

W being dropped before reaching W is bounded by the limits specified in Theorem 1

and Theorem 2.

Let P denote the random path selected by Algorithm 1. As in the previous analysis,

the OM sent on P fails if at least one of the following events occurs: 1) Event Edrp:

The path P contains an adversarial node, which will drop the message; 2) Event Esat:

The path P contains an honest link saturated by the adversary, leading to the OM

being dropped by the link’s receiver.
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The probability that algorithm 1 selects a path containing an adversarial node is

given by

Pr(Edrp) = 1− (1− γ)l−1,

consistent with previous results.

To analyze Pr(Esat), note that according to the forwarding rules, if the last node

on P is honest, then the link from this node to W will never drop a message destined

for W , even if the link is saturated. Moreover, all nodes on path P are selected

by Algorithm 1 independently of the destination node W . Therefore, Pr(Esat) is

independent of the destination node choice. This implies that in analyzing Pr(Esat),

we can consider W to be any node in the network, and hence, the analysis of Pr(Esat)

mirrors those presented in Theorem 1 and Theorem 2.

3.4 Privacy

The content of OMs is encrypted, ensuring that only the intended destination can

decrypt the message. An interesting question is whether a node on path P selected

by Algorithm 1 may gain information about the source or the designation node.

We prove that the middle nodes on path P , i.e., nodes other than the first and last

nodes on P , gain no information about the source or the destination. The intuition

is simple: Algorithm 1 selects path P independent of the source and the destination.

After selecting P , the source sends the message to the first node on P , and the last

node on P is set to forward the message to the destination. Therefore, the path P

reveals no information about the source or the destination. Consequently, the middle

nodes on P , which in the best case know the entire P , gain no information about the

source and the destination. The next theorem states this fact formally.

Theorem 6 Consider a network and let X be the random variable representing the

node that is the source of an OM sent over the network. Let P be the random variable
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representing the random path chosen by Algorithm 1. Then

I(X;P ) = 0,

i.e., knowing the random path P provides no information about X.

Proof. algorithm 1 is designed to choose the path P independently of the source

and the destination nodes. Specifically, algorithm 1 does not use the source or the

destination nodes as inputs in its decision-making process. This design ensures that

the choice of P is not influenced by any information about the identity of the source

node X.

Given this independence, the conditional probability of P given X is the same as

the unconditional probability of P :

Pr(P | X) = Pr(P ).

Consequently, the conditional entropy H(P | X) equals the entropy H(P ), imply-

ing that:

I(X;P ) = H(P )−H(P | X) = 0,

which signifies that X and P are independent. Therefore, knowing the path P pro-

vides no information about the source node X.

The probability that the first node on P belongs to the adversary is

FA

FA + FH

.

Similarly, the last node on P belongs to the adversary with the same probability. Since

Algorithm 1 selects the nodes on P independently at random (with replacement), the

probability that both the first and the last nodes on path P are adversarial is(︃
FA

FA + FH

)︃2

(3.18)

By Theorem 6, the middle nodes on path P gain no information about the source or

the destination, hence the probability that the adversary discovers both the source

and the destination is bounded by (3.18).
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3.5 Simulations

We leverage simulations to understand the extent of mitigation our solution provides.

The simulations were executed on a graph constructed from an exported list of public

nodes and channels from the real-world LN graph on May 20, 2024. At that time,

the network comprised approximately 15,120 nodes and 51,579 public channels, con-

taining about 3,268.82 bitcoins. With the bitcoin price of around 69,000 USD per

bitcoin, the total value in the network was approximately 225,548,580 USD.

Forwarding onion messages does not require nodes to have a channel between them,

and they can be sent just like gossip messages, as currently implemented. We assume

a complete graph of nodes in our simulation because, unlike channel creation, creating

a peer connection is cheap. We should also keep in mind that links are bidirectional,

and although a link might get saturated in one direction, it might still be able to

forward OMs in the other direction.

Our simulation imports all the nodes and channels, along with their capacities, from

the exported file into a NetworkX graph. We then insert an adversary node with a

certain amount of total funds (FA) into the network. We assume the adversary does

not have a computation limitation for creating messages, so it will send as many

messages as its neighbor’s rate limits allow it to. It then forwards those messages to

the neighbors of its neighbors, asking them to further forward the messages as far as

L hops, which is the number of maximum hops that our distance-limiting algorithm

allows it to. In our simulations, we assume L = 3, meaning that the maximum

distance an OM can travel is three.

To get an upper bound of the adversary’s effectiveness, we assume the adversary

to be a strong adversary. We define a strong adversary as one that can saturate

any given set of links in the network up to a budget b. It is important to note that a

feasible adversary may not be strong, as the set of links it can saturate must form a

set of paths originating from itself (the paths the adversary uses to flood the network).
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However, in our simulations, we use a strong adversary instead of a feasible one to

evaluate the extent of the damage (OM failures) that any feasible adversary could

potentially cause.

We then proceed with executing the adversary’s channel saturation process. We

experiment with two saturation algorithms that an adversary can possibly choose to

apply. In the first one, which we call the test adversary, the adversary starts using

its budget b, saturating channels at random. In the second one, we consider the

optimal adversary described in Section 3.3.1, which starts by saturating the links

to the highest fund node and then progresses to the next highest fund node.

After the saturation phase, many of the links in the network would become sat-

urated by the adversary, and the forwarding requests of honest users on these links

would be unable to be successfully executed. Then, we start the second phase of the

simulation, which is sending honest onion messages and measuring their failure rate.

In the second phase, since we know that the first link from the source and the

last link that goes to the destination are both always available, we only choose the

intermediary hops, and then if any of the links in the chosen path are saturated, we

consider it a failed attempt otherwise we count it as a successful attempt.

The simulation results are plotted in Figure 3.3. This plot demonstrates how the

optimal adversary performs much better than the test adversary. We can also see

that the upper bound presented in Theorem 2 follows the optimal adversary much

closer than Theorem 1’s upper bound.

47



Figure 3.3: Optimal and test adversaries failure rates compared with the upper
bounds in Theorems 1 and 2.

To better be able to see the details, Figure 3.4 contains the same data without

the Theorem 1’s upper bound. This chart shows how closely the upper bound in

Theorem 2 follows the failure rate that an optimal adversary can cause. We can also

see that the failure rate for the test adversary is not zero but rather very small. Most

of the test adversary’s failures are because of the adversary node being on the path

of transactions rather than failure because of a saturated link.
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Figure 3.4: Optimal and test adversaries failure rates compared with the upper bound
in Theorem 2.

To further analyze the plot in Figure 3.4, consider an adversary with a fund of

100,000 USD. If the adversary begins to saturate links at random, it will generate

a 0.001 probability of honest OM failure across the network, which does not signifi-

cantly impact the experience of honest users. However, if the adversary employs an

optimal strategy, they can increase the failure probability to 0.15 for honest OMs.

Importantly, no adversary with a fund of 100,000 USD can exceed the failure proba-

bility of approximately 0.15, as established by the upper bound derived in Theorem 2.

Thus, the optimal strategy of the adversary almost approaches this theoretical upper

bound.

Now, consider an adversary with a larger fund, such as 1 million USD. If the

adversary randomly saturates links, it would induce a 0.009 failure probability on

honest OMs, a relatively insignificant impact. However, by employing an optimal

strategy, the adversary can escalate the failure probability to approximately 0.42,

which is notably more effective and is closer to the theoretical upper bound of 0.5, as

established by Theorem 2.

We conducted the same experiments on the partial communication graph to com-
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pare the results with the upper bound calculated in Theorem 3. Algorithm 2 was

applied to LN to identify the optimal subset that minimizes the upper bound spec-

ified in Theorem 3. This subset contains |S| = 26 nodes, with a total fund of

F
(S)
tot = 153,660,300 USD and a maximum individual fund of F

(S)
max = 13,305,211

USD. Since honest nodes derive this subset from publicly available information, the

adversary can also determine the subset. In both Theorem 3 and the simulation, we

assume the adversary is aware of the subset that honest nodes will select and will

create nodes that integrate into this chosen subset. The adversary node is added to

this subset, and the simulation is then executed. The results are shown in Figure 3.5.

Figure 3.5: Optimal and test adversaries failure rates in the subset compared with
the upper bound in Theorem 3.

We observe that the difference between the failure rates caused by the optimal

adversary and the test adversary is much smaller in this subset (Figure 3.5) compared

to the whole network (Figure 3.4). This smaller difference is attributed to the fact

that the value of δ for this subset is approximately 2.25, which is significantly lower

than the 446 calculated for the entire network. A smaller δ indicates a more uniform

distribution of node funds within this subset, reducing the impact of the saturation

algorithm. As a result, whether links are saturated randomly or with an optimal
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strategy makes little difference.

Comparing Figure 3.5 with Figure 3.4, we observe that restricting the communica-

tion graph to the selected subset has notably reduced the optimal adversary’s ability

to disrupt the OM service. The results indicate that even an optimal adversary with

a budget of one million dollars can only achieve a 4.5% failure rate in the OM service,

with the upper bound, as calculated by Theorem 3, being approximately 7.1%. This

upper bound of 7.1% for the subset is significantly lower than the 50% failure rate

derived from Theorem 2, as illustrated in Figure 3.4.

When interpreting these results, it’s important to remember that honest OMs can

be reattempted. For instance, in the presence of an optimal adversary with a fund of

1 million USD, a single attempt to send an honest OM has a success probability of

approximately 0.58 on the whole network as shown in Figure 3.4. Adding a second

attempt increases the success probability to 1 − (0.422) = 0.8236. Similarly, with

three, four, and five attempts, the success probability rises to 0.9259, 0.9689, and

0.9869, respectively. This demonstrates that with our proposed mitigation method,

even in the presence of an optimal adversary with 1 million USD in funds, honest

nodes can achieve a success probability of over 92% with just three attempts. This

is particularly significant given that onion messages are designed as an unreliable,

lightweight communication method [12].
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Chapter 4

Conclusion and Future Work

This research investigated potential DoS threats to LN leveraging the newly intro-

duced OM service. We presented two possible attack scenarios: one aimed at de-

grading the overall OM service availability and another targeting the reachability of

a specific node.

To mitigate these attacks, we proposed a method composed of two mechanisms.

The first involves reducing the OM travel distance by implementing a hard or soft

leash. The second enforces a rate limit on nodes, where this limit is suggested to be

proportional to the funds invested by each node to increase the cost of the DoS attacks.

We demonstrated the efficacy of our proposed solution in mitigating the attacks.

Implementing these mechanisms leads to fewer messages traveling shorter distances,

establishing an effective prevention/mitigation strategy against DoS threats. Finally,

we demonstrated the effectiveness of our proposed solution in mitigating the attacks.

While our proposed solution provides a robust defense against DoS threats in Light-

ning Network’s onion messaging service, testing the solution in real-world scenarios,

including various adversarial models and network conditions, would be valuable. Such

experiments would provide insights into potential edge cases and help refine the pro-

posed mechanisms for optimal performance and security.
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Appendix A: Travel Distance

Here we calculate the number of hops that the 1366-byte and 32834-byte messages

can travel through the network. The HTLC messages can only use the 1366-byte

size. The first 66 bytes are allocated to the packet’s headers, leaving 1300 bytes

for the payload. The TLV (Type-Length-Value) payloads require a minimum of 47

bytes for intermediate hops (including 1 byte for tlv length, 2 for amt to forward,

2 for outgoing cltv value, 10 for short channel id, and 32 for hmac) and 37 bytes

for the exit hop (comprising 1 byte for tlv length, 2 for amt to forward, 2 for

outgoing cltv value, and 32 for hmac). Consequently, the maximum number of

intermediate hops is ⌊(1300 − 37)/47⌋ = 26. Including the exit hop, the longest

possible path length is 27.

The calculation above is for HTLC messages that forward payments between net-

work nodes. However, the payload needed for each hop is different for onion messages.

The calculation for 1366-byte onion messages is as follows.

Similar to HTLC messages, OM headers consist of 66 bytes: 1 byte for the version,

33 bytes for the public key, and 32 bytes for the hmac [12]. Therefore, the payload

capacity is 1366− 66 = 1300 bytes. Additionally, payloads at each OM intermediary

hop require a minimum of 70 bytes, comprising 1 byte for the length, 32 bytes for the

hmac, 1 byte each for the type and subtype, 33 bytes for the blinded node id, and

2 bytes for the enclen [12]. Consequently, the maximum number of hops a message

can traverse is ⌊1300/70⌋ = 18 hops. Including the last hop, the longest possible path

length is 19.

For the larger 32834-byte OMs similar to above, we calculate the maximum travel
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distance to be ⌊(32834 − 66)/70⌋ = 468 hops. Including the last hop, the longest

possible path length is 469.
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