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Abstract

Recent long-scale-length spherical target experiments, performed on the OMEGA EP

laser, are analyzed for stimulated Raman side-scattering (SRSS). This work has been

motivated by results obtained on experiments performed at the National Ignition

Facility (NIF), relevant to directly-driven inertial confinement fusion (ICF) [1, 2].

These NIF experiments have shown SRSS to be an important process, possibly re-

sponsible for the observed hot electron generation. Our model, based on ray tracing,

is able to explain the time-dependent scattered light spectra from the OMEGA EP

experiments: It identifies SRS side-scatter and near backscatter from portions of each

incident beam where the scattered electromagnetic wave is generated in the direction

parallel to contours of constant density. The nature of SRSS instability (temporal

versus spatial growth) is discussed. It is suggested that the OMEGA EP platform

could provide a good surrogate in which to develop SRSS mitigation strategies.
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Chapter 1

Introduction

Fusion is a nuclear mechanism that releases a large amount of energy by combining

two light atoms into a single heavier atom. The first achievable fusion mechanism (i.e,

having the highest reaction cross-section) is that of a deuterium (D) atom (hydrogen

with 1 neutron (n)) and a tritium (T) atom (hydrogen with 2 neutrons), this fusion

mechanism is called DT fusion for short.

D + T → He4(3.5MeV) + n(14.1MeV)

In this reaction the excess energy is carried by the (He4) alpha particle (3.5 MeV) and

a neutron (14.1 MeV). This energy can be thermalized and used to heat steam as in a

conventional nuclear fission power plant. The reason this is the first achievable mech-

anism is because it has the lowest temperature and density requirements compared

to using different fuel atoms. Currently there are two main approaches to creating

controlled fusion conditions in laboratories. The first is magnetic confinement fusion

(MCF) which uses magnetic fields to contain the fuel in a donut shaped “magnetic

bottle” and then heat the fuel for a relatively long time, on the order of seconds. The

other main approach to fusion is inertial confinement fusion (ICF). In this approach,

lasers to are used to greatly compress and then heat the fuel to fusion conditions.

The inertia (mass) of the target prevents disassembly of the fuel before the fusion re-

actions are complete[3]. This method requires a significantly higher density, or more

compression, but for a much shorter period than MCF (eg., 10ns). In ICF, the DT
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fuel is encapsulated in a sphere with an outer layer of CH called an ablator. The

ablation layer is heated by the lasers and explodes outward which causes a counter

force inwards (the ablation pressure) compressing the DT fuel.

There are two different approaches to ICF: one is indirect drive [4] and the other is

direct drive [5]. Indirect drive uses an apparatus called a hohlrahm which is a cylin-

der of gold (or another heavy element) where the spherical fuel target is suspended

inside (Fig 1.2). The lasers are directed towards the openings of the cylinder and

hit the inner walls. The laser light interacts with the gold, heating the wall to such

high temperatures (millions of K) that it emits x-rays. It is the x-rays inside of the

hohlrahm which ablate and compress the target. The Lawerence Livermore National

Laboratory (LLNL) is the leading laboratory conducting research in ICF using the

National Ignition Facility (NIF) (Fig 1.3). It currently holds the record for the great-

est fusion yield (at 1.3 MJ). The other main approach to ICF is direct drive which is

where the lasers are directed right at the target itself (Fig 1.1).

1.1 Motivation

The potential of laser fusion is limited by laser plasma instabilities (LPI) that occur

when intense laser light propagates through plasma. One of these limiting LPIs is

stimulated Raman scattering (SRS) [6]. SRS is a resonant decay of the drive laser

light into a lower frequency scattered light wave and a electron plasma wave (EPW).

The electron plasma wave is an electrostatic wave that can accelerate electrons to

high energy causing the fuel to be preheated. Preheating of the fuel lowers the

compressibility of the fusion target. Since high densities are required to achieve ICF,

compression is an important factor and limiting the amount of high energy electrons is

essential. Raman scattering also introduces an energy loss in fusion experiments. The

scattered light wave that results from SRS often leaves the plasma in such a way that

is does not contribute to the compression. The lowest frequency that the scattered

light can have is half of the frequency of the incident light [6], which means that half
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Figure 1.1: Shows the process of direct drive ICF. Lasers are shot at the target, the
lasers heat the target and cause the outer ablation layer to explode. The ablation
layer explodes outwards causing a counter force that compresses the fuel inside the
target to densities where fusion can occur. Once fusion reactions begin, the energy
that is released keeps the fuel hot enough for more reactions to occur. The blue arrows
represent the laser light. The yellow arrows represent the explosion force of the outer
ablation layer of the target. The red arrows represent the counter force from the
explosion. This image was taken from Inertial Confinement Fusion: An Introduction
published by the Laboratory for Laser Energetics at the University of Rochester.

or more than half of the energy in the incident light will be converted to scattered

light and not used to heat the plasma. SRS is an issue in all laser fusion applications

due to the inefficiency of energy transfer to the fuel, as well as the generation of high

energy electrons which preheat the fuel. Finding the location and conditions where

SRS occurs, and what causes it, is the first step to mitigating its deleterious effects

in laser fusion.

3



Figure 1.2: Shows a hohlrahm, which is the target apparatus used in indirect drive
experiments. This image was taken from the photo gallery page of the Lawrence
Livermore National Laboratory National Ignition Facility and Photon Science website:
lasers.llnl.gov/media/photo-gallery.

Figure 1.3: Shows one of the two laser bays at the National Ignition Facility. These
bays contain 96 each and are 122 meters (400 feet) long. This image was taken
from the photo gallery page of the Lawrence Livermore National Laboratory National
Ignition Facility and Photon Science website: lasers.llnl.gov/media/photo-gallery.

Laser fusion experiments performed with the OMEGA EP laser [7] at the Labo-

ratory of Laser Energetics (LLE) at the University of Rochester have recently shown

signatures of SRS detected by a scattered light diagnostic called the Sub-Aperture
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Back-scatter Station (SABS). SABS measures the intensity of light that travels back

towards one of the four drive lasers. We are able to simulate this experiment using

numerical simulations of the target hydrodynamics and a ray tracing analysis that

was developed as part of my thesis work. This ray tracing analysis used a new tech-

nique to find what SRS mechanisms contribute the most to the experimental detected

results. The OMEGA EP fusion experiment that the research in this paper is based

on is a two beam direct drive experiment with 700 µm diameter target sphere and

700 µm diameter laser focal spot.

As a final motivational note: on August 8, 2021 while preparing this thesis, there

was a indirect drive shot (shot 210808) at the National Ignition Facility (NIF) that

resulted in 1.3 MJ of fusion energy. This shot shows a large improvement over previous

shots done at NIF in both fusion yield, by a factor of ∼8, and hot spot temperature, by

a factor of ∼2 in keV. This large improvement can be attributed to burn propagation.

Burn propagation is where the alpha particles (helium ions) that are created from

the fusion reactions keep the fuel plasma hot enough for more reactions to occur

after the laser pulses have finished. In previous experiments, the peak density and

peak neutron yield have occurred at the same time. In this high yield shot, the peak

neutron yield occurred after the peak density had occurred, which is evidence of burn

propagation.

1.2 Thesis Objectives

The purpose of this research is to identify the parameters of SRS mechanisms that

result in a high gain detected by the diagnostics. From experimental data, we have

the intensity of detected Raman light with respect to the wavelength of the light over

the duration of the experiment. With the ray tracing, we can simulate the experiment

and look at which SRS rays have the largest gains and would contribute the most to

the detected SRS. After finding these high gain rays, we can look at what portion

of the incident beams the Raman light is coming from and what angle the Raman
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light launches at. Knowing where the high gain Raman comes from and what angle

it launches at can help in designing future fusion experiments to mitigate SRS.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 describes the physics of the stimulated

Raman scattering instability.; Chapter 3 describes the ray tracing of electromagnetic

and electron plasma waves.; Chapter 4 describes how the MATLAB code created

through my thesis work predicts the scattered light spectra of the OMEGA EP di-

agnostic.; Chapter 5 describes the applications of the MATLAB code to investigate

SRS in recent experiments.; Finally, Chapter 6 presents a summary and conclusions.
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Chapter 2

Stimulated Raman Scattering

Two of the main instabilities that are concerning for laser fusion experiments are

resonant three wave coupling instabilities [6]. These three wave coupling instabilities

arise when a large amplitude incident light wave is coupled with a scattered light

wave and, either an electron plasma (Langmuir) wave for the Raman instability or

an ion acoustic wave for the Brillouin instability. The names of these instabilities

are borrowed from similar scattering mechanisms that exist in nonlinear optics of

solids [8]. The reason these are instabilities in the case of laser fusion is because the

incident light is extremely intense (≥ 1015 W/cm2). The stimulated Raman scattering

instability caused lots of problems in the 2011 ignition campaign when the NIF-the

world’s most energetic laser-became operational. Hundreds of kJs of Raman light was

observed in the National Ignition Campaign [9]. This electron plasma wave can have

a very high phase velocity (of order the velocity of light) and so can produce very

energetic electrons when it damps. These highly energetic electrons can preheat the

fuel in laser fusion applications. When the fuel is preheated, it is harder to compress

and lowers the peak density of a shot. This preheating issue is why the Raman

instability is a particularly significant concern for laser fusion.

The Raman instability can be simply described as an incident photon depositing

some of its energy into the plasma as an electron plasma wave (or plasmon) and

the remainder in a scattered photon. The frequency and wave number matching
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conditions for the Raman instability are

ω0 = ωs + ωEPW, (2.1)

k0 = ks + kEPW. (2.2)

Figure 2.1: The wave number matching conditions.

where ω0 (ωs) and k0 (ks) are the frequency and wave number of the incident (scat-

tered) light wave, and ωEPW (kEPW) is the frequency (wavenumber) of the electron

plasma wave. The wave number matching conditions are illustrated in Fig. 2.1. The

instability requires that ω0 ≳ 2ωpe, where ωpe = 4πe2ne/me is the electron plasma

frequency, ne, me are the electron number density and mass, respectively, while e is

the elementary charge. This is because the dispersion relation of both the scattered

light wave and electron plasma waves must be satisfied and both require the frequency

of the waves to be greater than ωpe.

The reason the frequency of a light wave needs to be greater than ωpe to propagate

in a plasma is that the maximum frequency of the electron current is ωpe. For EM

waves with frequencies lower than this, the electron current cancels the displacement

current that is required for EM wave propagation.

9



In the process of the Raman instability, part of the incident energy is scattered in the

form of a red-shifted light wave, and part is deposited into an electron plasma wave.

By multiplying the frequency matching condition [Eq. (2.1)] by ℏ (Planck’s constant)

and noting that ℏω is the energy of a photon or plasmon, it can be seen that for each

photon undergoing this process, the fraction of its energy transferred to the plasma

wave is (ωEPW/ω0). This portion of the energy will heat the plasma as the electron

plasma wave damps as it propagates through the plasma.

The Raman instability has a feedback loop that is responsible for the instability

(Fig. 2.2). Before giving a mathematical derivation, it is imperative to first consider

the physical mechanisms that are at play: Consider an incident pump light wave with

electric field amplitude EL propagating through a plasma with a density fluctuation

(δn) along the direction of propagation, that is associated with an electron plasma

wave. Since the electrons oscillate in the light wave with the velocity

vos =
eEL

meω0

, (2.3)

a transverse current δJ = −evosδn is generated.

This transverse current generates a scattered light wave with an amplitude δE

which interferes with the incident light to produce a variation in the wave pressure

∇(E2/8π) = ∇(EL · δE)/4π. (2.4)

Variations in wave pressure push plasma from regions of high pressure to regions of

low pressure and vice versa. A density fluctuation is generated which reinforces the

original perturbation if the wave numbers are suitably matched [Eqs. (2.1) & (2.2)].

Due to this feed-back loop, an instability is possible: A small density fluctuation leads

to a transverse current which generates a small scattered light wave, which can in

turn reinforce the density fluctuation via a variation in the wave pressure.
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Figure 2.2: A visual representation of the Raman instability feedback loop.

2.1 Instability analysis

The coupled equations describing the Raman instability can be derived starting from

Maxwell’s equations and a fluid model for the electron response. For this derivation,

consider a light wave propagating through a plasma which is spatially uniform in

density and temperature. It is particularly convenient to use the electric and magnetic

fields in terms of the vector potential A and the electrostatic potential ϕ, where

B = ∇×A and E = −∇ϕ− c−1∂A/∂t. Starting with the Ampere-Maxwell equation

∇×B =
4π

c
J+

1

c

∂E

∂t
, (2.5)

substituting for E and B, and choosing the Coulomb gauge, ∇·A = 0, we obtain the

wave equation for A in terms of the plasma current and electrostatic potential:

(︃
1

c2
∂2

∂t2
−∇2

)︃
A =

4π

c
J− 1

c

∂

∂t
∇ϕ.

The current density J naturally splits into its transverse part Jt (transverse in re-

lation to the light wave k-vectors) and its longitudinal part Jl (which is related to

the electrostatic plasma wave). The longitudinal part of J is related to ∇ϕ via Pois-

son’s equation and the equation for conservation of charge (obtained by taking the

divergence of Eq. (2.5) and making use of Poisson’s equation):
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∇2ϕ = −4πρ (2.6)

∂ρ

∂t
+∇ · J = 0, (2.7)

where ρ is the charge density. Taking the time derivative of Eq. (2.6) and substituting

for ∂ρ/∂t gives

∇ ·
(︃

∂

∂t
∇ϕ− 4πJ

)︃
= 0. (2.8)

Since ∇ · Jt = 0 by definition, we obtain:

∂

∂t
∇ϕ = 4πJl. (2.9)

Hence we arrive at a wave equation for the vector potential A with a source term

that is proportional to the transverse current:

(︃
1

c2
∂2

∂t2
−∇2

)︃
A =

4π

c
Jt. (2.10)

Assuming the EM wave is polarized such that its electric field vector (polarization)

has no component in the direction of variation of the electron density (A · ∇ne = 0),

the transverse current can be expressed as Jt = −neeut. Where ut is the oscillation

velocity of an electron in the electric field of the light wave and ne is the electron

density. For |ut| ≪ c which is typical for ICF conditions, ut = eA/mec since

∂ut

∂t
= − e

me

Et =
e

mec

∂A

∂t
. (2.11)

Hence, we obtain an equation for the propagation of a light wave in a plasma:

(︃
∂2

∂t2
− c2∇2

)︃
A = −4πe2

me

neA. (2.12)
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The scattering of a large amplitude light wave (AL) by a small amplitude density fluc-

tuation (ñe) about n0 (the uniform background plasma density), can be determined

by substituting for A = AL + Ã and for n = n0 + ñe in Eq. (2.12). Linearization

leads to an equation for the scattered light wave Ã

(︃
∂2

∂t2
− c2∇2 + ω2

pe

)︃
Ã = −4πe2

me

ñeAL. (2.13)

As in our earlier heuristic description, the right hand side is the transverse current

(α ñevos) which produces the scattered light wave (Ã).

To derive an equation for the density fluctuation associated with the electron

plasma wave nẽ, it is possible to treat the ions as a fixed, neutralizing, background

since they have too much inertia to react to electric fields of frequencies as high as

ωpe. The electrons as a warm fluid. The continuity and force equations comprising

this model are:

∂ne

∂t
+∇ · (neue) = 0 (2.14)

∂ue

∂t
+ ue · ∇ue = − e

me

(︃
E+

ue ×B

c

)︃
− ∇pe

neme

, (2.15)

where ne, ue and pe are the density, velocity and pressure of the electron fluid, re-

spectively. Separating the velocity into longitudinal (uL) and transverse components

(eA/mec) (ue = uL+eA/mec), substituting into the above momentum equation, and

using a standard vector identity gives an equation for uL:

∂uL

∂t
=

e

me

∇ϕ− 1

2
∇
(︃
uL +

eA

mec

)︃2

− ∇pe
neme

. (2.16)

The second term on the right hand side is the ponderomotive force (related to the

gradient of the wave pressure mentioned earlier) and is proportional to the gradient

of the intensity of both the longitudinal and transverse components of the electric

field.
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We now use the adiabatic equation of state (pe/n
3
e = constant) in order to unite

the plasma pressure in terms of density and linearize the continuity and momentum

equations. In particular, we take uL = ũ, ne = n0+ ñe, A = AL+Ã and ϕ = ϕ̃ where

the tilde denotes an infinitesimal quantity. The linearized electron fluid equations

become:

∂ñe

∂t
+ n0∇ · ũ = 0, (2.17)

∂ũ

∂t
=

e

me

∇ϕ̃− e2

m2
ec

2
∇(AL · Ã)− 3v2Te

n0

∇ñe, (2.18)

where vTe =
√︁
Te/me is the electron thermal velocity. Taking a time derivative of

the continuity, then a divergence of the momentum equation, and finally eliminating

the term ∂(∇ · ũL)/∂t gives our equation for the electron density perturbation that

is reinforced by the wave pressure (LHS term):

(︃
∂2

∂t2
+ ω2

pe − 3v2Te∇2

)︃
ñe =

n0e
2

m2
ec

2
∇2(AL · Ã). (2.19)

This equation describes the generation of a density fluctuation caused by the beat-

ing/interference between the large amplitude EM wave (AL) and the scattered wave

(Ã).

2.2 Dispersion relation

Eqs. (2.13) and (2.19) above describe the coupling of the electrostatic and electro-

magnetic waves discussed in the introduction of this chapter. To derive the dispersion

relation for the Raman instability and to see how the wave number/frequency match-

ing conditions arise, we take AL = A0 cos(k0 · x − ω0t) and Fourier analyze these

equations. The result is:

14



(ω2 − k2c2 − ω2
pe)Ã(k, ω) =

4πe2

2me

A0 [ñe(k − k0, ω − ω0) + ñe(k + k0, ω + ω0)] , (2.20)

(ω2 − ω2
EPW)ñe(k, ω) =

k2e2n0

2m2
ec

2
A0 ·

[︂
Ã(k− k0, ω − ω0) + Ã(k+ k0, ω + ω0)

]︂
, (2.21)

where ωEPW = (ω2
pe + 3k2

EPWv2Te)
1/2 is the Bohm-Gross frequency, ω0 and k0 are the

frequency and wave number of the large amplitude light wave, and ω and k are

the Laplace and Fourier variables, respectively. We next use the first equation [Eq.

(2.20)] to eliminate Ã from the second [Eq. (2.21)] and assuming polarization is

perpendicular to the scattering plane. Taking ω ≃ ωpe, such that ω corresponds very

closely with the EPW frequencies, and neglecting the terms ñe(k− 2k0, ω− 2ω0) and

ñe(k + 2k0, ω + 2ω0) as very non-resonant, we obtain the dispersion relation:

ω2 − ω2
EPW =

ω2
pek

2v2os
4

[︃
1

D(ω − ω0,k− k0)
+

1

D(ω + ω0,k+ k0)

]︃
. (2.22)

Here Dt(ω, k) = ω2 − k2c2 − ω2
pe is the dispersion function for EM waves in plasma

and vos is the oscillatory velocity of an electron in the large amplitude light wave.

[A useful engineering formula is: vos = 8.095 × 108
√
I15λ0,µm cm/sec, where λ0,µm is

the laser wavelength in microns, and
√
I15 is the laser wavelength in units of 1015

W/cm2.]

The instability growth rates can be found from the dispersion relation given in Eq.

(2.22). For back or sidescatter (relative to k0), we can neglect the upshifted (anti-

stokes) light wave as non-resonant D(ω + ω0,k+ k0) ≫ 1, giving:

(ω2 − ω2
EPW)[(ω − ω0)

2 − (k− k0)
2c2 − ω2

pe] =
ω2
pek

2v2os
4

.

Or, on introducing the dispersion function for the plasma waves Dl(ω, k) ≡ ω2 −

ω2
EPW(k):
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Dl(ω,k)Dt(ω − ω0,k− k0) =
ω2
pek

2v2os
4

, (2.23)

where the subscripts l and t distinguish the dispersion functions for the longitudinal

(plasma wave) and transverse (EM) waves, respectively. From the above dispersion

relation, we can see why the instability is of the three-wave coupling type: The EPW

(Dl) is coupled to a scattered EM wave (Dt) by the large amplitude wave (v2osc). We

take ω = ωEPW+δω to be nearly resonant, where δω ≪ ωEPW, and note that maximum

growth occurs when the (frequency-downshifted/Stokes) scattered light wave is also

resonant i.e., when

(ωEPW − ω0)
2 − (k− k0)

2c2 − ω2
pe = 0. (2.24)

We then use the envelope approximation (which assumes δω ≪ ωEPW):

Dl(ωEPW + δω,k) ≃ ∂Dl

∂ωEPW

δω = 2ωEPW δω, (2.25)

Dt(ωEPW − ω0 + δω,k− k0) =
∂Dt

∂(ωEPW − ω0)
δω = 2(ωEPW − ω0) δω. (2.26)

On substitution of Eqs. (2.25) and (2.26) into Eq. (2.23) we obtain:

4ωEPW(ωEPW − ω0) δω
2 =

ω2
pek

2v2os
4

(2.27)

δω2 = −k2v2os
16

ω2
pe

ωEPW(ω0 − ωEPW)
. (2.28)

From Eq. (2.28) we see that the correction to the EPW frequency is purely imaginary

(δω = iγ). An imaginary frequency corresponds to exponential growth in time eγt.

The solution for γ is:

γ =
kvos
4

[︃
ω2
pe

ωEPW(ω0 − ωEPW)

]︃1/2
. (2.29)
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The wave number k is determined by the condition that the EM wave is also resonant

[Eq.(2.24)]. For example, for direct backscatter where the growth rate maximizes (k

is largest), we have:

k = k0 +
ω0

c

(︃
1− 2ωpe

ω0

)︃1/2

. (2.30)

The wave number k of the EPW depends on the electron plasma density where the

instability occurs (Fig. 2.3), it starts from k = 2k0 for n ≪ nc/4, and goes to k = k0

for n ∼ nc/4, as is apparent from the matching condition.

Note that we can write the resonance condition [Eq. (2.30)] as

(k− k0)
2 = k2

0

[︄
1− 2

(︃
ne

nc

)︃1/2
(︄
1 +

3

2
k2λ2

De

[︄
1−

(︃
ne

nc

)︃1/2
]︄)︄]︄

, (2.31)

which can be approximated as

(k− k0)
2 = k2

0

[︄
1− 2

(︃
ne

nc

)︃1/2
]︄
, (2.32)

since k2λ2
D ≪ 1 for parameters relevant to ICF.

The wave number and growth rate are less for any 90◦ sidescatter (k ≃
√
2k0 for

n ≪ nc/4) compared to backscatter (recall that directions are given relative to k0).

For the more general case of sidescatter in which A · ∇n ̸= 0, the growth rate is

further reduced since the electric vectors of the incident and scattered light waves are

no longer aligned. For example, it is apparent from the equation for ñe [Eq. (2.21)],

from the start of this section, that the growth rate will vanish when Ã · A0 = 0.

Hence sidescatter occurs preferentially out of the plane of polarization, the case we

have treated.

[We remark on an important point here that must be understood: The terminology

of “sidescatter” can be confusing because it can refer to two different processes: (1) is
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Figure 2.3: The wave number matching conditions for SRS, showing the dependence
on density [Eq.(2.32)].

sidescatter relative to the direction of the pump - as described here - or (2) sidescatter

relative to the direction of the density gradient. It is the latter that is described in

Chapter 5 and is of the most interest).]

Finally, note that for forward scatter at very low densities, k ≪ ω0/c, both the

upshifted and downshifted light waves can now be nearly resonant i.e.,

D(ω ± ω0,k± k0) ≃ 2(ωpe ± ω0)δω,

choosing k = ωpe/c and let ω = ωpe + δω, where δω ≪ ωpe. Substituting into the

dispersion relation, we find the maximum growth rate (δω = iγ):

γ ≃
ω2
pe

2
√
2ω0

vos
c
. (2.33)

2.3 Threshold due to wave damping

Equation (2.29) implies that even an infinitesimally small incident light wave will

lead to instability and exponential growth of the decay waves in time. In practice,

some threshold intensity is required. To introduce the concept we introduce damping
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and see that such damping of the unstable waves introduces a threshold intensity for

instability generation. The simplest way to include the effect of damping is to add

the phenomenological terms νs(∂Ã/∂t) and νe(∂ñ/∂t) to Eqs. (2.25) and (2.26) in

Section 2.2, where νs (νe) is the energy damping rate for the scattered light wave

(the electron plasma wave). The dispersion relation [Eq. (2.22)] remains the same as

before with the substitutions:

ω2 − ω2
pe → ω(ω + iνe)− ω2

pe, and D(ω, k) → ω(ω + iνs)− k2c2 − ω2
pe.

With this substitution, the instability analysis proceeds as before. For example,

for back or sidescatter, we again retain only the down-shifted light wave, take ω =

ωEPW + iγ, and choose k according to the resonance condition to obtain maximum

growth. Then we obtain

(γ + γe)(γ + γs) = γ2
0 , (2.34)

where γe and γs are the amplitude damping rates (half of the energy damping rates

νe and νs) and γ0 is the growth rate in the absence of damping [Eq. (2.34)]. The

threshold condition due to damping then is

γ0 ≥
√
γeγs. (2.35)

As an example, we consider backscatter for ωpe/ω0 ≪ 1/2 and assume only collisional

damping νe. Substituting the expression for the growth rate into the above then gives

the threshold condition:

(︂vos
c

)︂2
>

(︃
ωpe

ω0

)︃2
ν2
ei

ω0ωpe

,

where νei is the collision frequency. This threshold intensity can be quite low in fact

it is almost always exceeded in ICF experiments; In general, Landau damping of the
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plasma wave needs to be included. This result is useful, however, as it permits an

intuitive description to be obtained for the main physical process responsible for the

SRS threshold in ICF.

2.4 Threshold due to plasma inhomogeneity

In practice, gradients in the plasma density have much more influence on the threshold

intensity (vosc) compared to damping. To see this, remember that the resonance

conditions must be fulfilled for there to be an instability:

ω0 = ωs + ωEPW,

k0 = ks + kEPW.

When considering an inhomogeneous plasma, [i.e., one where the plasma density and

temperature vary in space] the wave numbers become functions of position. This

means that, if the resonance conditions are satisfied at some z=0, a mismatch κ will

be present at other locations:

κ = k0(z)− ks(z)− kEPW(z).

We can estimate how far in z we have to move resonance from the point κ(z = 0) = 0

before resonant interaction is lost. To do this, we (somewhat arbitrarily) require that

the resonance will be lost when the accumulated mismatch in phase is one-half:

∫︂ lINT

0

κ dz ∼ 1/2,

where lINT represents the size of the resulting interaction region. [This is a 1-D

approach, where the z direction is the direction in which the plasma variables are

changing. This means that the wave numbers in the above expression for κ are the

components in this direction.] Taylor expanding about the matching point [(κ =

κ(0) + κ′z)] gives, by elementary integration, the resonance length:
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lINT ∼ 1/
√
κ′.

We make the connection with the previous damping threshold by noting that the

decay waves dissipate some of their energy when propagating out of the interaction

region. In this way, we introduce an “effective damping rate” that is approximately

given by:

νeff ≡ vgi/lINT,

where vgi is the component of the group velocity of the ith wave (i = s, EPW) along

the gradient (i.e., in the z direction). Inserting these effective damping rates into Eq.

(2.35) for the threshold that was computed using real damping gives:

γ2
0

|κ′vgsvgEPW|
≳ 1. (2.36)

Somewhat fortuitously, this is the (correct) result obtained by a detailed analysis,

however, there is a caveat: spatial inhomogeneity converts the instability from one

that grows in time to one that grows in space. The threshold condition given by Eq.

(2.36) is the condition for exp(2π) spatial growth in intensity. More generally, the

expression for the spatial amplification in intensity is:

I = I0 exp

[︃
2πγ2

0

|κ′vgsvgEPW|

]︃
,

where the (gain) factor in the exponent is known as the “Rosenbluth gain”:

G =
2πγ2

0

|κ′vgsvgEPW|
. (2.37)

Recall that we have previously defined γ0:

γ0 =
kvos
4

[︃
ω2
pe

ωEPW(ω0 − ωEPW)

]︃1/2
.
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Since we will make use of it later, we consider Raman backscatter at n ≪ nc/4 and

compile both the threshold and the Rosenbluth gain.

Figure 2.4: Wave vector diagram for near SRS backscatter at small plasma densities.

The calculation is simplified since the wave number of the electron plasma wave

depends more sensitively on density than the wave numbers of the transverse waves

do. We can then make the approximation

κ′ ≃ −∂k/∂z,

and hence

|vg,EPWκ′| ∼ ∂ωpe/∂z.

Neglecting temperature gradients and assuming a locally linear variation in density

with a scale length L = ne/(∂ne/∂z), we find that ∂ωpe/∂z ≃ ωpe/(2L). Noting that

vgs ≃ c and substituting into the Rosenbluth expression [Eq. (2.36)], we obtain the

threshold condition:

(︂vos
c

)︂2
>

2

k0L
,
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and the Rosenbluth gain:

G = πk0L(
vosc
c

)2. (2.38)

The Rosenbluth gain has been the standard formula used for evaluating the gain

of stimulated Raman scattering in laser fusion experiments. The major flaw in us-

ing the Rosenbluth gain formula is that it diverges when the scattering angle θ is

perpendicular to the density gradient. Had we considered this geometry, Eq. (2.37)

would have been replaced by G = πk0L(vosc/c)2

cos(θ)
. Pierre Michel derived a new formula

for Raman gain that does not diverge at the turning point[2]. This formula is a path

integral of a local gain rate along the Raman light ray that depends on the damping

of the coupled Langmuir wave and the beat wave that results from the incident beam

and scattered light interacting. The Rosenbluth gain formula can be retrieved from

this gain formula when the Raman light rays are straight lines. Refraction (bending)

of the rays remove the divergence. Before implementing this approach we first review

the ray tracing of the plasma waves.
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Chapter 3

Ray Tracing

In what follows, the ray tracing equations for EM and electron plasma waves are given

without derivation. The derivation uses the ideas of the WKB theory [10] that is often

used to solve wave equations that have slowly varying inhomogeneity. For example, it

is used in quantum mechanics to solve the Schrödinger for weakly varying potentials.

Notice that this has nothing to do with plasmas, and is very general. For example,

classical mechanics is the geometrical optics (ray tracing) limit of quantum mechanics.

In rays tracing, our plasma waves will behave like particles. For a derivation, see Sec.

7.2 (p. 352) in “Modern Classical Physics” by Thorne and Blandford.

As we have seen in Section 2.2, waves of a given type have a dispersion function

D(ω,k). The frequency ω and wavenumber k for a wave are not arbitrary, but are

related by the dispersion function by D(ω,k) = 0. When solved explicitly for, say,

ω = ω(k) we call this the dispersion relation. The dispersion function which is given

implicitly for EM waves of a particular polarization in an unmagnetized plasma is:

D(ω,k) = −c2k2 + ω2 − ω2
pe, (3.1)

where ωpe is the electron plasma frequency, and c is the speed of light. The dispersion

function for Langmuir (electron plasma) waves is similar:

D(ω,k) = −3v2Tek
2 + ω2 − ω2

pe, (3.2)
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where vTe is the electron thermal velocity.

In ray tracing, the dispersion function can be used to construct a ray Hamilto-

nian D′. It completely describes the propagation of rays in the same way that the

Hamiltonian in classical mechanics completely describes the trajectories of particles

[11]:

D′ =

(︃
∂D

∂ω

)︃−1

D. (3.3)

For EM and EPWs the ray Hamiltonian D′ can be taken to be

D′ =
1

2ω
D. (3.4)

The reasons for this scaling are so that our rays will be parameterized by a t which

is the physical time. To see how this arises, see Sec. 3.2 of the book “Ray Tracing

and Beyond” by E.R. Tracy, A.J. Brizard, A.S. Richardson, and A.N. Kaufman.

Using Eq. (3.4) as a Hamiltonian, the ray position x and its wavevector k evolve

in time in the ray phase space (x,k) according to Hamilton’s equation (just like a

mechanical particle where the wavevector k takes the place of the momentum p).

Hamilton’s equation for our plasma wave “particle” are then:

dx

dt
= −∇kD

′,

dk

dt
= ∇xD

′.

Substituting for the EM wave Hamiltonian, we get the ray equations for EM waves:

dx

dt
=

c2k

ω
, (3.5)

dk

dt
= −ω

2

ne

nc

∇x log ne, (3.6)
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where nc =
meω2

0

4πe2
is the critical density for EM waves of frequency ω. In an inhomo-

geneous plasma that is stationary (or changes very slowly in time) the frequency ω is

constant.

From Eq. (3.5) it is seen that the ray position moves in the direction of the local

wavenumber (momentum) with the local EM group velocity (vg = c2k/ω). The local

wavenumber k “feels a force” (think k ∼ p) that pushes the ray in a direction opposite

the gradient of the electron density and with a strength that is proportional to ne/nc.

Since the critical density nc is a cutoff for EM waves, it is often helpful to think of

EM rays as being repelled (reflected) by their cutoff (k → 0). This turns out to be

true for all sorts of waves in general. Notice that the system of equations [Eqs. (3.5)

& (3.6)] are first order in time. This means that the ray position and its wavevector

must be specified at some initial moment in time.

We can do the same thing to get the ray equations for Langmuir waves too:

dx

dt
=

3v2Tek

ω
,

dk

dt
= −ω

2

ne

nc

∇x log ne −
3

2

k2v2Te
ω

∇x log Te,

where Te is the spatially varying electron temperature. As for EM waves, the ray

position moves in the direction of the local wavenumber but this time with the local

plasma wave group velocity which depends on the electron temperature. Electron

plasma waves (EPW) also exhibit a cutoff and it can be useful to think of EPW rays

as being repelled (reflected) by their cutoff (k → 0). The local wavenumber k again

“feels a force” (think k ∼ p) that pushes the ray in a direction opposite the gradient

of the electron density and with a strength that is proportional to ne/nc. For plasma

waves there is also a force coming from gradients in electron temperature.
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3.1 The use of ray tracing in laser-plasma experi-

ments

The usual reason for ray tracing in ICF is because the laser light is the source of energy

that will be used for the application - compressing a fusion target. The rays can be

used to compute how much laser energy is absorbed and where it is absorbed (as a

function of time). Furthermore, the size of the plasma is usually very large compared

with the wavelength of the laser light, so solving Maxwell’s equations numerically

on such a large volume with sufficient resolution would be prohibitively expensive or

impossible.

All that is needed are the initial conditions for a ray (the initial point in the ray

phase space) [x(0),k(0)] and we can find the ray at any other time. However, it is

not enough to have one ray. In order to compute the electric field (or laser intensity)

everywhere in the target we would need an infinite family of rays. In practical terms, a

large number of incident rays that are distributed over the laser spot. Given the rays,

the electric field intensity can be determined as a function of space (by interpolation)

from which the absorption can be computed.

To specify the ray initial conditions relevant to an experiment, we need to know

what the laser spot looks like at the position of the target. Of course we need to

know the functional form for ne(x), Te(x) and their spatial derivatives. We usually

get these from a radiation-hydrodynamics code. Our use of the rays will be somewhat

different: Instead of computing absorption with rays we will compute SRS gain. This

still requires a knowledge of the laser intensity as this is an important factor in the

determination of gain.
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3.2 Computing laser intensity in the plasma from

rays

Given that the ray trajectories have been computed, as shown above for example,

some extra information is required to compute the amplitude or intensity of the

light wave along the trajectory. This information has to do with the properties of

neighbouring rays.

To do this using the formal method of Tracy et al. Ray tracing and beyond [12],

the extra information comes from computing the ray “focusing tensor” θ,ij along each

ray:

θi,j ≡
∂2θ

∂xi∂xj
,

Where θ is the phase along the ray. This phase can always be computed because

we know the wavevector everywhere along the trajectory parameterized by time t.

Remember that k = ∇θ, so θ,ij is like the derivatives of the wavenumber:

θ,ij ≡
∂kj
∂xi

.

The trace of the focusing tensor is the divergence of k:

θ,ii ≡
∂ki
∂xi

= ∇ · k.

For a 2-D case, and specializing for EM waves the following equations can be derived

[12]:

dθ,zz
dt

= D,zz −
c2

ω

[︁
θ2,zz + θ2,rz

]︁
, (3.7)

dθ,rr
dt

= D,zz −
c2

ω

[︁
θ2,rr + θ2,zr

]︁
, (3.8)

dθ,rz
dt

= D,rz −
c2

ω
[θ,zzθ,zr + θ,rzθ,rr] . (3.9)
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Once this system is solved for the focusing tensor components θ,22 and θ,rr along the

ray, then we get the action J (and amplitude A, intensity I = A2) from solving

d logJ
dt

= D,zzθ,zz +D,rrθ,rr. (3.10)

We note that the action J is related to the intensity I by J = A2Dω, where A is the

wave amplitude, and Dω = ∂D/∂ω = 2ω.

The derivatives of the dispersion function that are required in Eqs. (3.7) - (3.9) are

D,zz = Dr,r = −c2

ω
,

D,zz = − 1

2ω

∂2ω2
pe

∂z2

D,rr = − 1

2ω

∂2ω2
pe

∂r2

D,rz = D,rz = − 1

2ω

∂2ω2
pe

∂r∂z
.

These equations describe the effects of (swelling in intensity as the group velocity

decreases), as well as the changes in wave intensity as neighbouring rays converge

(focus) or diverge. These changes occur because of conservation of wave action.

If the plasma is of uniform density, then:

d logJ
dt

= −c2

ω
∇ · k. (3.11)

Finally, we note that a more ad-hoc approach is used in radiation hydrodynamics

codes. Typically the intensity change along a ray is estimated using its neighbours

(that are discretely sampled). The divergence of the rays can be estimated by how

much the area they span changes along the path and the approximate solution to the

above equation [Eq. (3.11)] estimated.
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3.3 Ray tracing summary

The equations defined in this chapter are sufficient to compute the intensity and ray

trajectories of laser beams that are incident on a known plasma profile (ne, Te) subject

to known initial conditions. This profile is typically known only at discrete points

in space and time because it is computed numerically (by radiation-hydrodynamics

code). Likewise, the solution to the ray equations must be obtained numerically. In

the next chapter we describe the implementation of a numerical scheme that is used

in Chapter 5 to compute SRS gain and to interpret experimental data.
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Chapter 4

MATLAB Implementation of the
Ray Tracing and SRS Gain
Equations

In this chapter, we describe the simulation code that was developed and its operation.

The purpose of the code is to simulate laser fusion experiments in order to figure out

the mechanisms causing the scattered light that is detected in the physical experiment.

A visual representation of the flow of the code is given in Fig. 4.1.

As seen in Fig. 4.1, the first step to the simulation code is to import a file con-

taining the plasma variables. The most important being the plasma density and

temperature. A radiation-hydrodynamics code called DRACO[13] simulates the ex-

periment and writes the data to a file - a “DRACO file”. This DRACO file contains

information that is only an estimate of the hydrodynamics of the physical experiment.

Currently, it remains difficult to actually measure the hydrodynamic profiles. The

main information that is used from this file is the two dimensional density and tem-

perature. The data is two dimensional as a rotational symmetry is assumed. All the

information in this file is separated into 20 time slices which are 0.25 ns apart from

each other. Most of the simulation work done was performed for a single time slice

(i.e., by assuming steady state). From this DRACO file we obtain a 2 dimensional

grid that has spatial limits of -807.616 µm to 1371.285 µm for the z (horizontal) axis

and -1255.646 µm and 1255.646 µm for the r (vertical) axis.
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Figure 4.1: A visual representation of the simulation flow.

Next, the incident beams are created and their initial conditions set by the

makeRayBundle function. This function takes a launch list (see Listing 4.1) as an

argument and returns a ray bundle that can be integrated. The variable rayBundle

is a cell array of ray structure and launchList is a structure that contains initial

conditions and other necessary information. This function can also be used to create

Raman at the detector location and work backwards to find where the detected Raman

originates.

Listing 4.1: This code is used to create a structure that is passed to another function
“makeRayBundle”. This structure is a list of the desired properties of the ray bundle.
l aunchL i s t . type = ’laserBeam ’ ; % trigger for ’makeRayBundle ’

l aunchL i s t .mode = ’forward ’ ; % Sets whether the rays advance in time ’forward ’

% or retrace its path ’backward ’

l aunchL i s t . nrays = 20 ; % Number of rays in the bundle

l aunchL i s t . f r equency = cnst . omega0 ; % Frequency of the light for this bundle in 1/sec

l aunchL i s t . f o ca lP t = [ −400 ,0 ] ; % Coordinates of center of spherical target

% in microns

l aunchL i s t . spot = s t r u c t ( ’type’ , ’SG8’ , ’diameter ’ , 7 0 0 ) ; % sets the beam diameter

angle = 180+(+23.3); % (degres) is measured from "target norm"

l aunchL i s t . c en t r o id = [ cosd ( angle ) , s ind ( angle ) ] ; % unit vector in direction

% of beam propagation

l aunchL i s t . t r a n s l a t e = 5 .0 e3 ; % distance in um from focus to

% translate so that we are sure to

34



% be far enough away to start

% Create a ray bundle

rayBundleB2 = makeRayBundle ( launchList , rayGd ) ;

Listing 4.2: The makeRayBundle function.
function rayBundle = makeRayBundle ( launchList , rayGd , segLength , itmax )
bundleType = launchL i s t . type ;

switch bundleType
case ’laserBeam ’

nrays = launchL i s t . nrays ;
omega = launchL i s t . f r equency ∗ ones (1 , nrays ) ; % rad/sec

c en t r o id = launchL i s t . c en t r o id ; % direction vector [kz ,kr]

% norm to 1

f o ca lP t = launchL i s t . f o ca lP t ;
spotShape = launchL i s t . spot ; % just a diameter for now

% (e.g. 500 um)

% initial ray positions (col vecs) in beam wavefront coords

rayWavPositions = zeros (2 , nrays ) ; % each column is a ray

rayWavPositions ( 2 , : ) = linspace(−spotShape . diameter /2 , . . .
spotShape . diameter /2 , nrays ) ; % microns

rayNorm = [ −1 ,0 ] ;

angleB = atan2 ( c en t r o id ( 2 ) , c en t r o id ( 1 ) ) ;
angleA = atan2 (0 , −1);
angle = angleB−angleA ;

% rotate to be parallel to direction and translate to 5 mm away

rotMat = [ cos ( angle ) ,−sin ( angle ) ; sin ( angle ) , cos ( angle ) ] ;
rotPos = rotMat∗ rayWavPositions ;

% translate origin to focus

transPos = rotPos+repmat ( foca lPt ’ , 1 , nrays ) ;

% translate 5 mm away (outside of the plasma)

t r a n s l a t e = −( l aunchL i s t . t r a n s l a t e )∗ cent ro id ’ ; % microns

r ayPos i t i on s = transPos+repmat ( t r an s l a t e , 1 , nrays ) ;
% transport into plasma can be done here?

% set the frequency depending on the mode

switch launchL i s t .mode
case ’forward ’

rayBundle . f requency = omega ; % run time forwards

case ’backward ’

rayBundle . f requency = −omega ; % run time backwards

otherwi se
error ( ’bad mode in launchList ’ )

end

lambdaum = 1 . e6 ∗( cnst . twopi∗ cnst . c . / omega ) ; % um

rayBundle . nc = 1 .1 e21 . / lambdaum . ˆ 2 ;
rayBundle . name = ’laserBeam ’ ;
rayBundle . type = ’EM’ ;
rayBundle .mode = ’forward ’ ;

case ’RamanAtDetector ’

% Similar to the ’laserBeam ’ case

. . .
o the rw i se

error ( ’not a valid beam type’ )
end

rayBundle . nrays = nrays ;
rayBundle . d i r e c t i o n = launchL i s t . c en t r o id ;
rayBundle . rayICs = rayPos i t i on s ;
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rayBundle . t r a j s = c e l l (1 , nrays ) ;
rayBundle . ha l t = zeros (1 , nrays ) ; % to terminate a trajectory

% bring into the domain if required

if strcmp ( l aunchL i s t . type , ’laserBeam ’ ) | strcmp ( l aunchL i s t . type , ’RamanAtDetector ’ )
rayBundle = moveToDomain( rayBundle , rayGd , segLength , itmax ) ;

end

end

To set the initial conditions for the incident light beams, there is a subfunc-

tion (used in the last if statement of makeRayBundle) called moveToDomain. This

moveToDomain subfunction moves the initial position of the rays in the bundle to be

within the simulation domain. These incident beams are then propagated towards the

target using the function “pushBundle”. This pushBundle function is used anytime

any ray is propagated in the simulation. It solves the ray equations [Eqs. (3.1) and

(3.2)] to advance the ray trajectory over a given interval of time.

Listing 4.3: This function (pushBundle) uses ode45 to integrate the propagation of
the rays in the simulation. This is the longest and most computing expensive portion
of the code since it loops through all the rays in the ray bundle that are passed to
the function and integrates the trajectory of each ray.
function bundleOut = pushBundle ( rayBundle , rayGd , tStep , margin , npts )

if ˜exist ( ’margin ’ , ’var’ )
margin = [150 150 150 1 5 0 ] ; % margin around domain in microns

end

if ˜exist ( ’npts’ , ’var’ )
npts = 2000 ; % points to use in str line check

end

% Integrate all the rays in the bundle one at a time

for rayIdx = 1 : rayBundle . nrays ;

% check to see if we need to move this ray

if rayBundle . ha l t ( rayIdx )
cont inue % skip to next ray (iteration of loop)

end

tra j I sNew = isempty ( rayBundle . t r a j s { rayIdx } ) ;
waveType = rayBundle . type ;

if tra j I sNew % need IC’s for trajectory

if waveType == ’EM’

x0 = rayBundle . rayICs ( : , rayIdx ) ’ ; % position x0 is row vector here

k0 = toDispSur face ( x0 , rayBundle , rayIdx , rayGd ) ;
tPrev = 0 ; % start from t=0

else

error ( ’Currently new trajectories are for EM waves only’ )
end

else

l a s t I n f o = rayBundle . t r a j s { rayIdx }( end , : ) ; % use the last time info

x0 = l a s t I n f o ( 2 : 3 ) ; % position row vector

36



k0 = l a s t I n f o ( 4 : 5 ) ; % wave vector row vector

tPrev = l a s t I n f o ( 1 ) ;
end

omega ps = 1 . e−12∗rayBundle . f requency ( rayIdx ) ;
d i rn = sign ( omega ps ) ; % see which direction we’re going

tStop = tPrev+tStep ;
tSpan = [ tPrev , tStop ] ;
ray0 = [ x0 , k0 ] ’ ; % initial condition (column vector)

% in phase space for ode integrator

% Integrate over the given time span

if tStop > tPrev
switch waveType

case ’EM’

[ tr , yr ] = ode45 (@( t , y ) odeEmRayFun( t , y , omega ps , . . .
rayGd ) , tSpan , ray0 ) ;

case ’EPW’

[ tr , yr ] = ode45 (@( t , y ) odeLwRayFun( t , y , omega ps , . . .
rayGd ) , tSpan , ray0 ) ;

o the rw i se
e x i t ( ’invalid waveType ’ )

end

newTraj = [ tr , yr ] ; % Otherwise ode45 will return a struct

withinMargin = inDomain ( yr ( end , 1 : 2 ) , rayGd , margin ) ;
if any (˜ withinMargin )

rayBundle . ha l t ( rayIdx ) = 1 ; % set halt flag for

% out -of-margin

end

% attach solution to rayBundle structure

if tra j I sNew
rayBundle . t r a j s { rayIdx } = newTraj ;

else

% append to existing

o ldTraj = rayBundle . t r a j s { rayIdx } ( 1 : end −1 , : ) ; % drop IC

rayBundle . t r a j s { rayIdx } = [ oldTraj ; newTraj ] ;
end

end % the if tSpan ..

end % for loop over rays

bundleOut = rayBundle ;

end

The inDomain subfunction used in pushBundle is very similar to moveToDomain.

The inDomain subfunction is a check function that returns a Boolean true or false

depending on whether or not the ray positions that are passed are within given

margins of the domain of the simulation space. The toDispSurface subfunction is

used to calculate the wavevector at either the initial ray position or the last position

of the ray’s trajectory. The other two subfunctions, odeEmRayFun and odeLwRayFun,

are used to calculate the the right hand side of the ODE that is solved using the

MATLAB function ode45.
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Listing 4.4: The function odeEMRayFun interpolates the density and spatial variations
in density along the ray trajectories. These interpolated values are then used to
calculate the time derivatives of the rays’ position and wavevector.
function dydt = odeEmRayFun( t , y , omega ps , rayGd)

global cnst

clum = ( cnst . c ) ∗ ( 1 . e−6); % speed of light in microns/ps

ln10 = cnst . ln10 ;
twopi = cnst . twopi ;

lambdaum = twopi∗clum/abs ( omega ps ) ; % vac wavelength microns

kVac = abs ( omega ps )/ clum ; % vacuum wavenumber 1/um

nc = 1 .1 e21/lambdaumˆ2 ; % crit density in 1/cm^3

x = y ( 1 : 2 ) ; % current position at phase space point y

kVec = y ( 3 : 4 ) ; % current ray wavevector at phase space point y

goodPt = inDomain (x ’ , rayGd ) ;

if goodPt
% interpolation for current position

[ t i , bc ] = po intLocat ion ( rayGd .DT, x ’ ) ; % Delauney triangles

tr iValNe = rayGd . valsNe ( rayGd .DT( t i , : ) ) ;
logNe = dot ( bc ’ , tr iValNe ’ ) ’ ; % log10 of electron density

% disp(logNe) % debugging

netonc = 10ˆ( logNe )/ nc ;

triValDLogNedz = rayGd . valsDLogNedz ( rayGd .DT( t i , : ) ) ;
dLogNedz = dot ( bc ’ , triValDLogNedz ’ ) ’ ; % at phase space point

% disp(dLogNedz)

triValDLogNedr = rayGd . valsDLogNedr ( rayGd .DT( t i , : ) ) ;
dLogNedr = dot ( bc ’ , triValDLogNedr ’ ) ’ ; % at phase space point

% disp(dLogNedr)

dzdt = sign ( omega ps )∗ clum∗kVec (1)/ kVac ;
drdt = sign ( omega ps )∗ clum∗kVec (2)/ kVac ;
dkzdt = −0.5∗ ln10 ∗omega ps∗netonc ∗dLogNedz ;
dkrdt = −0.5∗ ln10 ∗omega ps∗netonc ∗dLogNedr ;

dydt = [ dzdt , drdt , dkzdt , dkrdt ] ’ ; % column vector

else

% move ray in a straight line

dzdt = sign ( omega ps )∗ clum∗kVec (1)/ kVac ;
drdt = sign ( omega ps )∗ clum∗kVec (2)/ kVac ;
dkzdt = 0 . 0 ;
dkrdt = 0 . 0 ;

dydt = [ dzdt , drdt , dkzdt , dkrdt ] ’ ; % column vector

end

end

After the incident ray bundles, representing the incident laser beams, are created

and propagated far enough towards the target, these ray bundle structures can be

saved and then loaded in a different simulation run in order to save some computation

time. Next, the intensity of the incident rays are integrated along their trajectory
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after an initial intensity is assigned to the rays based on the experimental parameters.

For this work, the initial intensity of all the rays in both incident bundles are set to be

the same. However, for future simulation runs the initial intensity could be different

for every ray and each time slice in order to account for different beam profiles and

laser pulse shapes.

Listing 4.5: The mapIntensity function interpolates the temporal damping rate along
the trajectory of the passed light ray bundles and integrates the intensity.
function i n t e n s i t y = mapIntensity ( rayBundle , rayGd)

i n t e n s i t y = c e l l (1 , rayBundle . nrays ) ;

for rayIndx = 1 : rayBundle . nrays
t r a j = rayBundle . t r a j s { rayIndx } ;

ncForRay = rayBundle . nc ( rayIndx ) ; % cm^-3

gammaEM = interpOnTraj ( ’gammaEM ’ , t r a j , rayGd , ncForRay ) ;
time = t r a j ( : , 1 ) ;
tSamp = time ; % the times where gammaEM is known (sampled)

tspan = [ time (1 ) time ( end ) ] ;

l n I 0 = log ( rayBundle . I0 ( rayIndx ) ) ;

s o l = ode45 (@( t , y ) d ln Idt ( t , y , tSamp ,gammaEM) , tspan , l n I 0 ) ;

l o g I = deval ( so l , time ) ’ ;

i n t e n s i t y {1 , rayIndx } = exp ( l o g I ) ;
end

end

function outva l = d ln Idt ( t , ln I , tSamp ,gammaEM)
% returns the rhs to dlog(I)/dt = - gammaEM(t)

gamma = −1.e−12∗gammaEM; % convert from s^-1 to ps^1 and

% give the right sign

if t < tSamp (1)
outva l = gamma ( 1 ) ;

elseif t > tSamp( end )
outva l = gamma ( end ) ;

else

outva l = interp1 ( tSamp , gamma , t ) ;
end

% catch NaNs if any are encountered

if isnan ( outva l )
outva l = 0 ;

end

end

Once the incident ray bundles have been created, propagated, and have a known

intensity along their trajectory, we can begin to simulate stimulated Raman scat-

tering: We first choose which of the rays of the incident bundles (beams) to iterate
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over, as well as an array of SRS launch angles ranging from -179 to -20 and 20 to

180 degrees with respect to the local wavevector at a given position on the incident

ray. Typically, each beam is described by 20 ray trajectories, although this number is

user selectable and can be increased if more resolution is required. The launch angles

are distributed evenly within the given range. During this process, we need a way

to measure what Raman scattered light is detected and the gain of each ray of the

detected Raman light. A detector structure is created to save the detected Raman

data to (Listing 4.6). The fields of this structure include the angular position and

acceptance of the detector, information on the origin of each Raman ray, the detected

frequencies, and gain values at the last point of a ray.

Listing 4.6: Shows how the information for detected Raman is collected and saved in
a detector structure variable.

de t e c t o r = s t r u c t ( . . .
’name’ , ” d e f au l t ” , . . . % e.g. "FABS 32B"

’angPos ’ , [ 2 3 , 0 ] , . . . % position of detector [theta ,phi] in degrees

’angAccept ’ , 3 , . . . % acceptance angle in degrees

’sourceBeams ’ , [ ] , . . . % Array of incident rayBundle structs

’sourceParams ’ , [ ] , . . . % Descriptor for each row of freqs

% detector.source [1,1] = time in ns of hydro slice

% detector.source [1,2] = index of sourceBeams array

% detector.source [1,3] = SRS angle in degrees

’frequencies ’ , [ ] , . . . % store frequencies here

’histogram ’ , [ ] , . . . % frequencies in a row vector

’RosGain ’ , [ ] , . . . % store Rosenbluth gains here

’RosGainHist ’ , [ ] , . . . % Rosenbluth gain corresponding to ’histogram ’

’gain’ , [ ] , . . . % Pierre ’s gain

’gainHist ’ , [ ] , . . . % Pierre ’s gain corresponding to ’histogram ’

’filter ’ , [ ] ) ;

The following process is repeated for each of the incident beam bundles included

in a simulation run: For each incident ray bundle, hydrodynamic time slice, and

SRS launch angle, these values are saved to the detector structure as a new row in

sourceParams and create a new row in the frequencies, RosGain, and gain fields.

Next, we iterate through all the desired rays of the incident bundle to simulate the

creation, propagation, and detection of Raman light. The creation of the Raman

light (and EPW if desired) is done through the function RamanWavevectors sh. This

function interpolates the density, temperature, scale length, and density gradient unit

vector along the trajectory of the passed incident ray. These interpolated values are
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used to calculate the wavevectors for Raman light rays and EPW rays for the desired

SRS launch angle. There are three checks to make sure that the Raman that was

created is physical. These checks are that the Raman wavevector is purely real, that

the ray is below the Landau cutoff (k2λ2
De ≲ 0.9), and that only inbound points on

the incident beam create Raman.

Listing 4.7: The getRamanWavevectors sh function.
function [ srsBundle , epwBundle ] = getRamanWavevectors sh ( t r a j , omega ps , . . .

rayGd , angle , . . .
rayI15 , range , inboundOnly , . . .
itmax , landauC )

global cnst
cumps = ( cnst . c ) ∗1 . e−6; % in um/ps

kvac = omega ps/cumps ; % (omega_ps is a scalar) inverse microns

lambdaVac = cnst . twopi /kvac ; % microns

nc = 1 .1 e21/lambdaVac ˆ2 ; % cm^-3

[ nrows nco l s ] = size ( t r a j ) ;

if i s s c a l a r ( omega ps )
omega ps = repmat ( omega ps , nrows , 1 ) ;

else

error ( ’omega_ps must be a scalar ’ )
end

% default number of iterations

if ˜exist ( ’itmax’ , ’var’ )
itmax = 5 ;

end

% default Landau cutoff

if ˜exist ( ’landauC ’ , ’var’ )
landauC = 0 . 3 ; % maximum allowable k*lambdaDebye

end

% default inboundOnly is true (no SRS after nc/4 is reached)

if ˜exist ( ’inboundOnly ’ , ’var’ )
inboundOnly = true ;

end

% default range is max range

if ˜exist ( ’range’ , ’var’ )
range = [350 7 5 0 ] ;

end

% For each point on ray we want a density , temperature , and density

% gradient information

neL i s t = interpOnTraj ( ’valsNe ’ , t r a j , rayGd ) ;
t eL i s t = interpOnTraj ( ’valsTe ’ , t r a j , rayGd ) ; % eV

g radStu f f = interpOnTraj ( ’unitGrad ’ , t r a j , rayGd ) ; % [z r L^-1]

if nco l s == 4
xLoc = t r a j ( : , 1 : 2 ) ; % (Z, R) (nrowsx2)

kvecs = t r a j ( : , 3 : 4 ) ; % (kZ,kR) (nrowsx2)

elseif nco l s == 5
t t = t r a j ( : , 1 ) ; % times

xLoc = t r a j ( : , 2 : 3 ) ; % (Z, R)

kvecs = t r a j ( : , 4 : 5 ) ; % (kZ,kR)

end
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unitGrad = gradStu f f ( : , 1 : 2 ) ;
inver seL = gradStu f f ( : , 3 ) ;

% Compute vosc/c

voscToc = ( cnst . voscToC ) . ∗ sqrt ( rayI15 ) . ∗ lambdaVac ; % check shape

voscToc2 = voscToc . ˆ 2 ;

% normalized scale length: (omega_0 L/c)

%

i nve r s eLFloor = 0 . 0 0 1 ; % Smallest allowable value of inverseL

i nver seL ( inverseL<i nve r s eLFloor ) = inver s eLFloor ;
L = 1 ./ inver seL ; % should check for zeros!

Lnorm = ( omega ps/ cnst . cumps ) . ∗L ; % dimensionless

% incident light wavevector magnitude for each point

k0 = sqrt ( kvecs ( : , 1 ) . ˆ 2 + kvecs ( : , 2 ) . ˆ 2 ) ; % um^-1 (nrowsx1)

k0Hat = kvecs . / [ k0 k0 ] ; % unit vector in the direction of k0

% plasma paramters on the ray points

ne = 10 . ˆ ( neL i s t ) ; % cm^-3

neTonc = ne/nc ;
wpeTow0 = sqrt ( neTonc ) ;
lamDeb2 = ( cnst . lamDebye )ˆ2∗ t eL i s t . / ne ; % cm^2

lamDebum2 = 1 . e8∗ lamDeb2 ; % um^2

outBound = find ( neTonc >= 0 . 2 5 ) ; % indices for outbound points

if isempty ( outBound )
last InboundIdx = numel ( neTonc ) ;

else

l ast InboundIdx = outBound ( 1 ) ;
end

rotMat = [ cosd ( angle ) ,− s ind ( angle ) ; s ind ( angle ) , cosd ( angle ) ] ;

% kSRSHat is rotated counterclockwise by "angle" degrees from k0Hat

for i = 1 : nrows
columnVec = rotMat ∗ [ k0Hat ( i , 1 ) ; k0Hat ( i , 2 ) ] ;
kSRSHat( i , 1 ) = columnVec ( 1 ) ;
kSRSHat( i , 2 ) = columnVec ( 2 ) ;

end

kSRSMag = kvac .∗ sqrt (1−2.∗ sqrt ( neTonc ) ) ;
kSRS = kSRSMag .∗ kSRSHat ;
kLangmuir = kvecs−kSRS ;
k = sqrt ( kLangmuir ( : , 1 ) . ˆ 2 + kLangmuir ( : , 2 ) . ˆ 2 ) ;
kHat = kLangmuir . / k ; % Langmuir unit wavevector

k2lam2 = (k . ˆ 2 ) . ∗ lamDebum2 ;

% dimensionless EPW wavevector used in Rosenbluth gain calculation

%

dimlessEPWFac = ( cnst . cumps ˆ2 .∗ k . ˆ 2 ) . / omega ps . ˆ 2 ;

isRealK = imag (kSRSMag) == 0 ; % logical vectors

isBelowLandau = abs ( k2lam2 ) <= landauC ˆ2 ;
is Inbound = ( 1 : numel ( k ) ) ’ <= last InboundIdx ;

freqEPW = omega ps .∗wpeTow0 .∗ sqrt (1+3∗k2lam2 ) ; % ps^-1

%freqEPW = omega_ps .* wpeTow0 .*(1+3/2* k2lam2 ); % ps^-1

freqSRS2 = ( omega ps .∗wpeTow0 ) . ˆ 2 + cumpsˆ2∗kSRSMag . ˆ 2 ; % ps^-2

freqSRS = sqrt ( freqSRS2 ) ; % ps^-1

vacWavlSRS = cnst . twopi∗cumps . / freqSRS ; % microns

ncSRS = 1.1 e21 . / vacWavlSRS . ˆ 2 ; % cm^-3

neToncSRS = ne . / ncSRS ;
inRange = (vacWavlSRS >= range (1)/1000) & (vacWavlSRS <= range ( 2 ) /1000 ) ;

if inboundOnly
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goodidxs = find ( isRealK & isBelowLandau & isInbound & inRange ) ;
else

goodidxs = find ( isRealK & isBelowLandau & inRange ) ;
end

% Get the times

%

if exist ( ’tt’ , ’var’ )
ttgood = t t ( goodidxs ) ;

else

ttgood = zeros (1 , numel ( goodidxs ) ) ;
end

% density dependent part of Rosenbluth gain (alpha)

%

alphaFac1 = 1./(1− sqrt ( neTonc ) ) ; % incident wave

alphaFac2 = 1 ./ sqrt(1−neToncSRS ) ; % SRS wave

alphaFac = alphaFac1 .∗ alphaFac2 ;

% angular dependent part of Rosenbluth gain (beta)

%

cosPhi = abs ( dot ( unitGrad , kSRSHat , 2 ) ) ;
cosTheta = abs ( dot ( unitGrad , kHat , 2 ) ) ;

% checks for small values (smaller than a set floor value) of cosPhi

% and cosTheta

cosF loor = 0 . 0 1 ; % Smallest allowable value of cosines

cosPhi ( cosPhi<cosF loor ) = cosF loor ;
cosTheta ( cosTheta<cosF loor ) = cosF loor ;

betaFac = cosPhi . ∗ ( cosTheta . ˆ 2 ) ;

otherFacs = alphaFac . / betaFac ;

% Calculate Rosenbluth gain

% Calculated as a column vector

RosGain = ( cnst . pi /4 ) .∗Lnorm( goodidxs ) . ∗ ( voscToc2 ( goodidxs ) ) . . .
.∗ dimlessEPWFac ( goodidxs ) . ∗ otherFacs ( goodidxs ) ;

xs = xLoc ( goodidxs , : ) ; % row vector (z r)

ks = kLangmuir ( goodidxs , : ) ; % row vector (kz kr)

epwBundle . name = ’plasmaWave ’ ;
epwBundle . type = ’EPW’ ;
epwBundle .mode = ’forward ’ ;
epwBundle . nrays = numel ( goodidxs ) ;
epwBundle . ha l t = zeros (1 , numel ( goodidxs ) ) ;
epwBundle . f requency = 1 . e12∗freqEPW( goodidxs ) ’ ; % (row vec) s^-1

epwBundle . t r a j s = c e l l (1 , numel ( goodidxs ) ) ;

% put in an intial condition for each trajectory

for idx = 1 : numel ( goodidxs )
% needs to be a row vector: t, z, r, kz, kr

epwBundle . t r a j s { idx } = [ ttgood ( idx ) xs ( idx , : ) ks ( idx , : ) ] ;
end

xs = xLoc ( goodidxs , : ) ; % row vector (z r)

ks = kSRS( goodidxs , : ) ; % row vector (kz kr)

srsBundle . name = ’srsLight ’ ;
s rsBundle . type = ’EM’ ;
s rsBundle .mode = ’forward ’ ;
s rsBundle . nrays = numel ( goodidxs ) ;
srsBundle . ha l t = zeros (1 , numel ( goodidxs ) ) ;
srsBundle . f requency = 1 . e12∗ freqSRS ( goodidxs ) ’ ; % row vec 1/sec

lam0 = ( cnst . twopi )∗ ( cnst . cumps ) . / freqSRS ( goodidxs ) ’ ;
s rsBundle . nc = 1 .1 e21 . / lam0 . ˆ 2 ; % cm^-3 for use in pushBundle ()
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srsBundle . t r a j s = c e l l (1 , numel ( goodidxs ) ) ;
srsBundle . RosGain = RosGain ’ ; % Converted to a row vector

srsBundle . k0res = kvecs ( goodidxs , : ) ’ ;
s rsBundle . a0 = 0.85 e−9.∗sqrt ( rayI15 ( goodidxs ) .∗10ˆ15 .∗ lambdaVac . ˆ 2 ) ’ ;

% put in an intial condition for each trajectory

for idx = 1 : numel ( goodidxs )
% needs to be a row vector: t, z, r, kz, kr

srsBundle . t r a j s { idx } = [ ttgood ( idx ) xs ( idx , : ) ks ( idx , : ) ] ;
end

end

After the Raman rays and EPW rays are created, we use pushBundle to propagate

the rays. For the Raman light rays, there is a function that checks if the Raman has

been propagated to where the change in direction of the trajectory of the rays is within

a specified limit (i.e., it has exited the plasma). This function takes an argument that

sets this limit to change in direction in degrees per picoseconds, as well as can check if

the rays have reached a certain density. Once the Raman rays have reached the point

that satisfied the given conditions we check to see which rays hit the detector. Rays

that hit have their frequencies and gains saved to the detector structure. The gains

are computed by performing an integral along the ray path of the scattered Raman

light. The formula is given in Chapter 5. The way we check to see if a Raman ray

hits the detector is through a function called checkDetector that iterates through

all the rays in the passed Raman bundle and checks the angular direction of the

wavevector in the last point along the trajectory falls within the acceptable range.

The acceptable range depends on the actual physical properties of the detector. For

this work the angle is 23 ± 3 degrees.

Listing 4.8: This evaluates the integrated gain of the Raman rays. This function uses
the gain formula from Pierre Michel’s paper[2].
function gain = gainMap ( rayBundle , rayGd , rays )

global cnst

if ˜exist ( ’rays’ , ’var’ )
rays = 1 : rayBundle . nrays ;

end

gain = zeros (1 , length ( rays ) ) ;

for srsRay = rays
t ra jLength = size ( rayBundle . t r a j s {1 , srsRay } , 1 ) ;

% all wavevectors in inverse microns
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kSVec = rayBundle . t r a j s {1 , srsRay } ( : , 4 : 5 ) ;
kS = sqrt ( kSVec ( : , 1 ) . ˆ 2 + kSVec ( : , 2 ) . ˆ 2 ) ;
k0res = repmat ( rayBundle . k0res ( : , srsRay ) ’ , t ra jLength , 1 ) ;
kBVec = k0res − kSVec ;
kB = sqrt (kBVec ( : , 1 ) . ˆ 2 + kBVec ( : , 2 ) . ˆ 2 ) ;

% all frequencies in rad/sec

%omegaB = cnst.omega0 - srsBundle2.frequency(1,srsRay );

ne = interpOnTraj ( ’valsNe ’ , rayBundle . t r a j s {1 , srsRay } , rayGd ) ;
ne = 10 .ˆ ne ;
omegaP = ( cnst . wpe ) . ∗ sqrt ( ne ) ;
omegaPRes = omegaP ( 1 ) ;

nc = rayBundle . nc ( srsRay ) ; %cm^-3

gamma = interpOnTraj ( ’gammaEM ’ , rayBundle . t r a j s {1 , srsRay } , rayGd , nc ) ;
nu e i = gamma .∗ nc . / ne ; %s^-1

Te = interpOnTraj ( ’valsTe ’ , rayBundle . t r a j s {1 , srsRay } , rayGd , nc ) ; %eV

vThermal = 4 .19 e11 .∗ sqrt (Te ) ; %um/s

omegaB = sqrt ( omegaPRes .ˆ2 + 3 . ∗ (kB . ˆ 2 . ∗ vThermal . ˆ 2 ) ) ;

a0 = rayBundle . a0 ( srsRay ) ;
D = omegaB .ˆ2 − omegaP .ˆ2 − 3 .∗ (kB.∗ vThermal ) . ˆ 2 ;

lamD = 7.43 e6 .∗ sqrt (Te . / ne ) ; %um

kLam = kB.∗ lamD ;
nuLan = omegaP .∗ sqrt ( cnst . pi /8) .∗ ( (1+3 .∗kLam . ˆ 2 ) . / ( kLam . ˆ 3 ) ) . ∗ . . .

exp ( − (1 ./ (2 .∗kLam.ˆ2 )+3/2) ) ;

nu = nuLan + (omegaB . ˆ 2 . / omegaP . ˆ 2 ) . ∗ nu e i ;
in tegrand = ( (kB . ˆ 2 . ∗ a0 . ˆ 2 . ∗ omegaP . ˆ 2 ) . / ( 4 . ∗ kS ) ) . . .

. ∗ ( ( 2 . ∗ nu .∗ omegaB ) . / (D.ˆ2 + 4 .∗nu . ˆ 2 . ∗ omegaB . ˆ 2 ) ) ; %inverse microns

pathLength = computePathLength ( rayBundle , srsRay ) ;

a l lGa in = cumtrapz ( pathLength {1 , srsRay } , in tegrand ) ;
ga in (1 , srsRay ) = a l lGa in ( end ) ;

end

end

Once the fields of the detector structure have been completely filled out, synthetic

diagnostics can be generated. In addition, several plotting functions were written,

but are not described here. Examples of synthetic diagnostics and various plots can

be found in Chapter 5.
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Chapter 5

Identification of stimulated Raman
side scattering in near-spherical
coronal plasmas

5.1 Introduction

This chapter describes the application of the previously described MATLAB code,

developed as part of the thesis work, to investigate SRS that has been observed in

recent experiments. The experiments were performed on the four beam OMEGA

EP laser at the Laboratory for Laser Energetics at the University of Rochester. The

analysis is based on hydrodynamic simulations that were performed by Dr. Andrey

Solodov (of the University of Rochester) using the DRACO radiation-hydrodynamics

code.

As we describe in Section 5.2, a scattered light diagnostic was implemented in these

experiments. It was able to collect scattered light, in the SRS range of frequencies,

that falls within a sub-aperture of one of the four OMEGA EP beams. Somewhat

surprisingly, a large SRS signal was observed, spanning a wide frequency range. The

observation of large levels of SRS was previously thought to occur in very large, hot,

plasmas only (for typical direct-drive laser intensities) i.e., requiring MJ-class laser

facilities, such as the NIF [14]. Indeed, no SRS signatures are observed at all in

direct-drive ICF experiments performed on LLE’s 60 beam OMEGA laser.
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The results of these calculations (Sec. 5.4), provide an explanation of the obser-

vations in the form of stimulated Raman sidescattering. We believe the results, that

have been obtained, represent a significant advance in terms of our understanding

of laser-plasma interactions relevant to direct-drive ICF and directly-driven target

experiments in general.

5.2 Experimental configuration

We focus on one type of experiment out of the several that have been recently de-

scribed in Rosenberg et al [7]. These are spherical targets with one side illumination

and have characteristics that we consider generic for all direct drive schemes: Namely,

that the isodensity contours in the underdense corona are near-spherical and that

multiple beams overlap (four in this case).

Figure 5.1: A schematic representation of spherical target experiments on OMEGA
EP. The target is illuminated from one side by 1–4 beams (numbered B1–B4) in the
inset. The dashed line denotes the plane containing the beam symmetry axis (solid
arrow) and the centroids of beams B3 and B4.

A schematic diagram is shown in Fig. 5.1. In these experiments, between 1 and 4

beams were used to illuminate spherical polystyrene (CH) targets of 700 µm diameter.

The incident beams had a super-Gaussian radial intensity profile with a nominal beam

diameter of 750µm. Each beam is polarized in the vertical direction. The laser pulse

shapes were either 2 ns square or 4 ns linear ramp. The peak vacuum focused intensity

of each beam was I = 2× 1014 W/cm2. A sub-aperture backscatter station (SABS),
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located in the aperture of beam B4, collected backscattered light and passed it to

streaked spectrometer. An example of a typical scattered light spectrum is shown

in Figure 5.2. The streaked spectrometer recorded scattered light in the wavelength

range of (400–750) nm, however in most cases a long pass filter was applied which

blocked signal for wavelengths shorter than 630 nm.

The 630 nm long pass filter (e.g., as seen in Figs. 5.3a and 5.3b) was applied

in most of the experiments performed by Rosenberg et al. because their focus was

on the spectroscopy of near 700 nm scattered light and the strong signal at shorter

wavelengths was a nuisance. Unfortunately, it does complicate the comparison of our

predictions with experiment. We hope our findings will motivate further experiments

of this kind.

Figure 5.2: Temporally streaked scattered light spectrum for shot # 30575 in which a
700 µm spherical target was irradiated with a 4-ns ramped pulse peaking at I = 2×
1014W/cm2. The spectrum indicates a significant SRS reflectivity in the underdense
corona.

The ∼700 nm spectroscopy was motivated by the fact that, in OMEGA-scale

coronal plasmas, two-plasmon decay (TPD), which is the decay of an electromagnetic

wave (EMW) into two Langmuir waves (LWs), is the dominant instability. However,

planar experiments at NIF [14] showed strong absolute SRS signatures at ∼700 nm,
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rather than the characteristic TPD doublet. As NIF experiments have a much longer

density scale length, Ln ∼ 600 µm and higher electron temperature, Te ∼ 4− 5 keV,

than OMEGA-scale ones (Ln ∼ 150 µm, Te ∼ 2 keV), the OMEGA EP experiments

were conducted to understand nc/4 interaction regimes for hydrodynamic conditions

intermediate between the two [7]. The goals of this work are distinct and two fold:

One is to investigate the origins of the spectral features observed in the scattered

light spectrum over the whole Raman scattering range of frequencies. The other is

to investigate the state-of-the art for modeling such scattering.

5.3 Ray-based model predictions of the SRS scat-

tered light spectrum

Our ray tracing analysis, motivated by the desire to understand the spectral features

of the scattered observed in the experiments over the Raman range of frequencies,

is based on the path integral method for computing sidescatter gain as described in

Michel et al [2]. Figure 5.3 gives another example of scattered light data using a

different combination of beams.

As simulating SRS over the whole interaction region (Fig. 5.4) is a computation-

ally expensive proposition (although potentially possible, particularly with temporal

wave-envelope codes) we choose a geometrical optics (or ray tracing) approach. The

geometrical optics approximation is valid for the incident beams, absent nonlinear

interactions even in the presence of weak absorption or growth. We assume the same

is true for SRS reflected light and the associated EPW such that the amplitude A

of all waves have an eikonal form: A = Ã exp [iθ(x)− iωt] (we assume the plasma

is time independent, as justified below, so that the phase is time independent). The

eikonal equation for each wave type is solved using ray tracing.

The dispersion function D(ω,k) for a particular wave type can be used to construct

a ray Hamiltonian D′ = (∂D/∂ω)−1 D that describes the propagation of rays. Using

this Hamiltonian, the ray position x(t) and its wavevector k(t) ≡ ∇xθ(x) evolve in

50



(a)

(b)

Figure 5.3: Streaked scattered light spectrum for experiments with a 2-ns laser pulse
shape using beams B3 and B4 only (shot # 32063) (a) and B1 and B2 only (shot #
32064) (b). The laser intensity was the same in both cases (I = 2 × 1014 W/cm2).
The signal originating from beams B1 and B2 is over two orders of magnitude smaller
than that from beams B3 and B4 (Fig. 5.1).

time in the ray phase space (x,k) according to Hamilton’s equations:

dx

dt
= −∇kD

′, (5.1)

dk

dt
= ∇xD

′. (5.2)

Substituting for the EM wave dispersion function D = DEM ≡ ω2 − c2k2 − ω2
pe(x),

we get the ray equations for EM waves:
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(a)

(b)

Figure 5.4: Predicted hydrodynamic conditions for shot # 30577. Density profile,
ray trajectories [incident in cyan, EPW in red, and SRS in green] (a), temperature
profile, and flow velocity [black arrows; length gives magnitude in arbitrary units] (b)
used in the 2-D ray tracing simulations. Black dashed lines (a) show constant density
contours (from inner most to outer most, nc, nc/4, and nc/10)

dx

dt
=

c2k

ω
= vg,t, (5.3)

dk

dt
= −ω

2

ne

nc

∇x log ne, (5.4)

where c is the speed of light in vacuum, ne is the electron density, and nc [= meω
2/(4πe2)]

is the critical density for EM waves of frequency ω with e and me being the elec-

tron charge and mass, respectively. Repeating this process for Langmuir waves

[D = DEPW ≡ ω2 − 3v2Tek
2 − ω2

pe(x)] results in:
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dx

dt
=

3v2Tek

ω
= vg,l, (5.5)

dk

dt
= −ω

2

ne

nc

∇x log ne −
3

2

k2v2Te
ω

∇x log Te, (5.6)

where Te(x) is the spatially varying electron temperature and vTe = (Te/me)
1/2 is

the electron thermal velocity. Temperature variations cause refraction of the EPW,

but it is a much weaker effect that variations in electron density [O(k2λ2
De)]. Landau

damping typically restricts kλDe ≲ 0.3, so k2λ2
De ≲ 0.9, where λDe = (Te/4πnee

2)(1/2)

is the electron Debye length.

Equations (5.3)–(5.6) assume the plasma profile is stationary (unchanging in time)

and therefore the frequency for each corresponding wave is constant along the ray

[equal to its initial frequency (Sec. 5.3.1)]. This is a good approximation for our

purposes as we concentrate on times that are late enough to avoid the initial phase

of corona formation [t ≲ (1 − 2) ns]. We also assume that the hydrodynamic profile

is fixed for the time of propagation of the ray, tprop. This is a good approximation

since tprop ≪ thydro, where thydro is the characteristic time associated with variation

of the hydrodynamic quantities.

In the absence of measured hydrodynamic profiles, we use simulated profiles for the

hydrodynamic quantities (e.g., ne and Te). These have been obtained using the draco

radiation-hydrodynamics code[13]. Examples of such plasma profiles are shown in

Fig. 5.4 which shows the electron plasma density (Fig. 5.4a) and the electron tem-

perature (Fig. 5.4b) at a time t = 2.5 ns from the start of the laser pulse. The

simulated experiment had a 4 ns linear ramp laser pulse with a peak (overlapped)

laser intensity of I = 8.5 × 1014 W/cm2. The hydrodynamic simulations are 2D and

assume rotational symmetry of the hydrodynamic variables about the z axis. Notice

that the electron temperature is quite inhomogeneous, having a peak temperature

of ∼ 2.2 keV in the area of beam overlap and falling to about half this value at the

beam wings. This is interesting as Raman is thought to be usually favored in the
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high temperature regime. The (radial) density scale length is in the range of 200 –

300 µm in the nc/4 region.

The ray equations [Eqs. (5.3)–(5.6)] are also solved in two spatial dimensions.

However, unlike the hydrodynamics, these are solved in the 2-D plane that contains

the symmetry axis of the four beams together with the centroids of beams B3 and

B4. This plane is shown schematically in Fig. 5.1 by the dashed blue line labelled

“P”. This simplifying assumption is motivated by the observation that beams B1 and

B2 (that lie out of this plane) contribute very little to the observed SRS signal in the

SABS detector. Figure 5.3 shows the detected scattered light for an experiment in

which only beams B3 and B4 were fired (Fig. 5.3a) and an experiment in which only

beams B1 and B2 were used (Fig. 5.3b). As the plasma profile is not expected to

differ greatly between these two cases, it can be seen that most of the light collected

in SABS originates from beams B3 and B4. Note that the color scale is logarithmic,

showing that the difference is approximately two orders of magnitude.

5.3.1 Ray initial conditions for the incident laser light

In addition to the plasma profiles, Eqs. (5.3)–(5.6) require initial conditions to be

specified. As these are first order differential equations in time, we must specify the

initial (t = t0) position x(t0) and wave vector k(t0) for each ray. Describing each beam

with N rays, the initial position xi(t0) of the ith ray (i = 1, N) is chosen to be on

the right simulation boundary, where it is intersected by a beam, while the directions

ki(t0)/|ki(t0)| are fixed at an angle of +23◦ for beam B4 and −23◦ for beam B3 (angle

with respect to z axis, pointing from the center of the target). The magnitudes |ki|

are chosen so that the rays lie on the dispersion surface D(ω,ki(t0);xi(t0)) = 0.

For the wavefield of each beam to be constructed in the SRS active region (Sec. 5.3.2

provides more details), the initial phase θ[xi(t0)], focusing tensor ∂i∂jθ[xi(t0)] [12],

and intensity I[xi(t0)] must be specified at t = t0 for each ray. Of these, the most

important is the intensity along the ray as this is directly required for computation
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of the SRS gain. Given the initial intensity, the intensity can be easily computed

at any point on the ray, using Eq. (5.11), so long as a caustic surface is not en-

countered[12]. For the purposes of computing SRS gain (Sec. 5.3.2), caustics are not

encountered. The intensities are chosen to be consistent with the intensity profile of

a beam smoothed by a phase plate as described in Sec. 5.3.2. Figures 5.4a and 5.4b

show the ray trajectories that result. Ray integration is stopped when the time t is

sufficiently large for the ray to have reflected from its turning point. The rays for

beams B3 and B4 are overlaid on a plot of the electron density in Fig. 5.4a, while

the beam B4 rays are overlaid on a plot of the electron temperature and plasma flow

velocity in Fig. 5.4b. The plasma profiles in both cases are taken at time t = 2.5

ns from the start of the laser pulse. Since the hydrodynamics is fixed during ray

integration, this time is merely a parameter.

5.3.2 Raman scattering instability with rays

A ray splitting procedure has been adopted which simulates SRS in the following

way: After we launch the incident beams towards the target, we sample points along

the incident ray trajectories and check to see if these points can support three wave

resonance. This is the case if, at the point x, solutions exist to the three wave

resonance conditions

ω0 = ωs + ωEPW (5.7)

k0 = ks + kEPW, (5.8)

where ω0 and k0 are the local frequency and wavenumber of the incident light at the

particular point x on the incident ray, and the frequencies and wavenumbers of the

scattered light and EPW satisfy their local dispersion relations: DEM(ωs,ks;x) = 0

and DEPW(ωEPW,ks;x) = 0. The direction of the scattered wave vector is chosen from

the range of all positive angles, with the exception of near forward scatter (< ±5◦),
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with respect to the k vector of the incident light. The choice of direction is repeated

for several rays originating from the same point to sample all possible scattering

directions, i.e., we do not assume side scatter.

If a sampled point can support three wave resonance and the EPW is not heavily

damped (i.e., beyond the Landau cutoff) a Langmuir wave and a Raman scattered

light wave are launched using x and kEPW, ks as their initial conditions, respectively.

The Raman light, of frequency ωs, is propagated using the ray equations [Eqs. (5.3)

and (5.4)], the Langmuir waves can also be propagated if desired [while we make no

use of the EPW here, we feel that the trajectories are instructive; they will be used to

compute Thomson scattering spectra in future studies]. Next, the trajectory of the

Raman light is checked to see if it would hit the detector (SABS). This is accomplished

by checking the direction of the Raman light to see if its angle of propagation falls

within the angular acceptance of the detector on exiting the plasma. If the Raman ray

hits the detector, a gain is computed by evaluating a path integral along its trajectory,

using Eq. (5.9) as described below. Both the gain and scattered light frequency are

saved to a detector scorecard to be used in the analysis leading to Figs. 5.5 and 5.9.

Equation (5.9), derived recently by Michel et al. [2], has been shown to accurately

compute the spatial gain for SRS (including SRS side scatter) when the instability is

convectively unstable. It assumes a local, driven, EPW response (not requiring the

EPW rays):

G =

∫︂
s

k2
b |a0|2ω2

p

4ks

2νωb

D2
EPW(ωb,kb; s) + 4ν2ω2

b

ds, (5.9)

where the path integral is taken along the full ray trajectory for the Raman light

(the ray trajectory is parameterized by the path length s instead of time t, that has

been used in Eqs. (5.3) and (5.4), where ds = vgdt as this is a more natural param-

eterization for spatial growth). In the above, a0 is the normalized vector potential

a0 = eA/(mec
2) ≃ 0.85×10−9

√︂
I(W/cm2)λ2

0(µm), where I is the pump light intensity

evaluated at x(s),
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kb is the spatial beat frequency between the incident and scattered light: kb(s) =

k0(s)−ks(s), ωb is the (constant) beat frequency ωb = ω0−ωs and DEPW is the EPW

dispersion function that relates the mismatch between the beat frequency ωb, of the

two light waves, with the local frequency of a Langmuir wave:

DEPW(kb, ωb) = ω2
b − [ω2

pe(s) + 3v2ek
2
b(s)]. (5.10)

The incident light intensity |a0|2[x(s)] and wavevector k0[x(s)], along the path of

the scattered light ray, are interpolated from the intensities and wavenumbers that are

known at discrete points along the family of N incident light rays. The wavenumbers

have been obtained from the solution to Eqs. (5.3) and (5.4), while the intensities

are obtained by solving for the action conservation law along each incident ray. This

equation is:

d logJ
dt

= −2c2
∂2θ

∂xm∂xm

− 2νem, (5.11)

where J = 2ωA2 is the wave action, A is the wave amplitude, νem = 1/2(ω2
pe/ω

2)νei is

the amplitude (temporal) damping rate for EM waves, with νei ≃ 3×10−6 log ΛneZ/T
3/2
e,eV

being the electron–ion collision frequency in inverse seconds [6]. (log Λ is the Coulomb

logarithm, ne is the electron density in cm−3, Z is the ionization, and Te,eV is the elec-

tron temperature in eV).

To solve Eq. (5.11) along each incident ray trajectory x = x(t;x0) the first term

on the RHS of Eq. (5.11) (called the “focusing” tensor in Tracy et al. [12]) is

required. This is quite straightforward to compute so long as a wave caustic is

not encountered (the case here for densities below nc/4 where the intensity is re-

quired for the computation of SRS). This term represents the local divergence of rays

[∂2/(∂xm∂xm)θ ≡ ∂/∂xmkm] and, as such, it only makes a significant contribution for

densities above nc/4. It can be neglected in the SRS active region (roughly the area

contained within the ne = 0.1nc and ne = 0.25nc isodensity contours in Fig. 5.4).
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Pump depletion caused by SRS has also been ignored in Eq. (5.11) as have any ef-

fects of cross-beam energy transfer. The lack of pump depletion is consistent with

the rather moderate SRS gain computed O(10), while CBET is mostly confined to

regions of higher density. As an aside, we recall that in a linearly varying plasma

density profile of scale length L, Eq. (5.9) reproduces Rosenbluth gain [15, 16] for a

straight line ray trajectory[2]:

GR =
πk2

L|a0|2L
4ks cos(θ∇)

. (5.12)

It is refraction (bending of the scattered light ray trajectories) that regularizes the

divergence in the Rosenbluth gain for sidescatter (angles θ → ±90◦). Note that the

angle θ∇ and the term “sidecatter” are defined with respect to the direction of the

local density gradient.

5.4 Calculation results

Figure 5.5 shows the maximum gain of SRS light originating from beam B3 [Fig. 5.5a],

and the corresponding detected wavelength [Fig. 5.5c], that falls within the angular

acceptance of the SABS detector as a function of ray index and SRS angle. The

highest gains observed reach G ∼ 15 and are the result of a θ = −120◦ scattering

angle from ray 5 of beam B3. The rays are numbered 1-20, starting from the bottom

(beam #3 is the lower of the two beams shown in Fig. 5.4. The SRS wavelength

of this high gain ray, is λs ≃ (530 − 540) nm which corresponds to a density of

ne ≃ 0.12nc. This scattering condition is shown in Figure 5.6, with the lower panel

of this figure showing a zoom-in of the scattering region. In the figure, several SRS

scattering events are shown along ray 5 for a fixed scattering angle of θ = -120◦ and

densities in the range 0.1 ≲ ne/nc ≲ 0.15. It is evident that the Raman light (green

rays) correspond to sidescatter with respect to the density gradient (about which the

pump is obliquely incident). Furthermore, the sidescatter propagates backwards with
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(a) (b)

(c) (d)

Figure 5.5: The maximum gain for detected SRS rays is shown as a function of local
SRS angle (with respect to the incident light ray) and ray index for beams B3 (a)
and B4 (b). Panels (c) and (d) show the SRS wavelength for the above.

respect to the pump. Notice that several conditions are responsible for this result: the

scattering angle must compensate for refraction so that the SRS is detected, while

only certain scattering angles will result in sidescatter and hence high gain. The

considerations are responsible for the locus of maximum gain moving toward more

forward scattering angles (and longer wavelength) as the selected rays move from the

lower wing to the top: rays undergoing sidescatter near the center of the beam must

occur at higher densities (longer wavelengths) in order to be detected (since more

refraction is required).

The corresponding results for SRS originating from beam B4 (i.e., the beam con-
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(a)

(b)

Figure 5.6: Sidescatter of the opposing beam (B3) can be observed in the SABS of
beam B4. The incident light rays are marked with arrows and the isodensity contours
are solid black lines.

taining SABS) are shown in Fig. 5.5b and Fig. 5.5d. The highest gain here (G ≃ 12)

occurs for reasons similar to the highest gain rays from B3: It occurs for θ ≃ 150◦

scattering from ray #1 at a wavelength of approximately 650 nm this is a longer wave-

length (higher density) than the highest gain ray originating from B3 because more

refraction is required for detection. It is again sidescatter (Fig. 5.7). Scattering from

the same ray can be detected for smaller scattering angles (down to ≲ 90◦ from the

forward direction) but it must occur at a slightly lower density (shorter wavelength)
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(a)

(b)

Figure 5.7: Sidescatter from the lower wing of beam B4 can be observed and has the
highest gain. Raman events are shown for points sampled along rays 1 and 2.

to be detected and has lower gain because it is not sidescatter (Fig. 5.5d). As show

in the zoom-in of this process [Fig. 5.7b], sidescatter at the position of ray #2 must

occur at slightly higher density to be detected and at a more forward angle. This

continues, with diminishing gain, until the center of the beam is reached (ray 10 in

Fig. 5.5d). Moving to the upper wing of B4, the scattering angle must now move to

the other side (downward direction) this accounts for the “jump” seen in Figs. 5.5b

and 5.5c. Ray #11 (near the middle of B4) is θ ≃ 90◦, with Ray #20 (the upper wing)

maximizing the gain for θ ≃ (160◦ − 170◦). This is simultaneously near backscatter,
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(a)

(b)

Figure 5.8: Sidescatter from the upper wing of beam B4 can be observed in its own
lens. Raman events are shown sampled along the trajectory of ray #20. The high
gain rays are sidescatter.

with respect to the pump, and sidescatter with respect to the density gradient (Fig.

5.8). The gain here is large (G ∼ 12) and occurs at a scattered light wavelength of

λs ∼ 580 nm. The maximum gains observed, irrespective of origin within a beam, as

a function of scattered wavelength is shown in Fig. 5.9

It is seen that the mechanism of scattering is essentially the same for both beams,

with each having similar peak gains. The peak gain from B3 is seen to occur at

a shorter scattered wavelength than for B4 [Fig. 5.9]. The main result is that the
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highest gains all correspond to sidescatter, with the gains for backscatter being small

G ∼ 2. The largest gains are also observed at the extremities/wings of the beam

for B4 and to a lesser degree for B3. We speculate that the contribution from B4

could be decreased by the use of a smaller laser spot. In these experiments, the beam

spots were quite large relative to the target size (750 µm spot versus 700µm target

diameter).

Figure 5.9: The maximum gain detected as a function of scattered light wavelength.
The contributions from Beam 3 and 4 are plotted separately.

5.4.1 Comparison with experimental data

In comparing the predictions with experimental data, we see that several features are

reproduced. However, care must be taken because only scattering events contained

in plane “P” [Fig. 5.1] have been included.

Figure 5.10 shows that the brightest signal occurs at a scattered wavelength range

λs = (550 − 570) nm. This is in reasonable agreement with sidescatter from B3

[Fig. 5.9]. This is in reasonable agreement with sidescatter from beam B3 [Fig. 5.9]

as the estimated gain at this wavelength is certainly sufficient to produce a strong

scattered light signal. (Recall that our calculations correspond to t = 2.5 ns).
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The model also predicts that substantial gain should be present over a wide range

of scattered light wavelengths; the gain decreasing with increasing wavelength from

beam 3 but somewhat less and more constant for beam 4. A decrease in scattered

light signal is indeed observed with increasing wavelength (Fig. 5.10). However, our

model is unable to capture the rapid drop in signal for λs ≳ 640 nm. This is the

famous Raman gap, for which we currently have no explanation.

Figure 5.11 shows two experiments that can be used to isolate the contributions

from beams B3 and B4. Unfortunately the long pass filter was present in these

experiments. As a result, we are unable to conclusively determine that the brightest

spectral feature [Fig. 5.10a] originates from beam B3. However we can conclude that

beams B3 and B4 contribute about equally to scattered light of λs ≃ 630 nm, which

is consistent with our predictions (Fig. 5.9).

5.5 Summary and discussion

Through the ray tracing analysis performed, based on predicted plasma profiles, we

have shown that the main SRS mechanisms, active in OMEGA EP experiments, is

most likely tangential sidescatter with respect to the local density gradient. This

is because Raman light that is amplified in a direction perpendicular to the density

gradient experiences a larger gain due to the weakest dephasing of the resonance by

the density gradient.

We have demonstrated that the contributions from each incident beam to the

detected SRS spectra is somewhat different with respect to its wavelength dependence.

The shorter wavelength SRS being primarily generated from beam B3.

The good agreement between our simulations and the experimental results moti-

vates future experiments without a long pass filter. This would permit an exploration

of SRS with wavelengths in the range of ∼(500 - 600) nm, including an assessment

of the relative contributions of beams B3 and B4. Future experiments might also

investigate the polarization of the SRS.
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(a)

(b)

Figure 5.10: Time-resolved scattered light spectra for 4 ns ramp (shot # 30575) (a)
and 2 ns square pulse with a long pass filter (shot # 30578) (b).

While we do see agreement within a wide range of wavelength, the shape of the

SRS spectrum extends to shorter wavelength than the experimental data. We also

provide no explanation for the “Raman gap”. This could be due to inaccuracies in

the hydrodynamic code predictions for the plasma profiles, or other factors that we

have not accounted for in this work.

Future extensions to this work will include 3-D modeling and an investigation into
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(a)

(b)

Figure 5.11: Streaked scattered light spectra for an experiment using beams B3 and
B4 only (shot # 32063) (a); beam B4 only (shot # 32069) (b). The SABS diagnostic
is within the aperture of beam 4 (Fig. 5.1).

the potential for sidescatter to become absolutely instable. The transition to absolute

instability might provide an explanation for the existence of the Raman gap.

5.6 Acknowledgment

We acknowledges the support of the Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC), [funding reference numbers RGPIN-2018-05787, RGPAS-

66



2018-522497].
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Chapter 6

Conclusions, Recommendations, &
Future Work

6.1 Conclusions

In the work presented in this thesis, a ray tracing approach was taken in the Eikonal

Laser Plasma Simulation Environment (ELPSE) to predict the stimulated Raman

scattered (SRS) light spectra in spherical target experiments done on the OMEGA

EP laser. Recent experiments conducted at the Nation Ignition Facility suggest that

SRS sidescatter (with respect to the density gradient) is possibly responsible for the

observed hot electron generation[1, 2]. This work was motivated by the fact that

SRS sidescatter can generate hot electrons is a concern for directly-driven inertial

confinement fusion.

The ray tracing model we developed is able to predict the time-dependent scattered

light spectra from experiments done on OMEGA EP. The model can also identify the

origins of high gain Raman light, as well as which SRS mechanisms create the most

high gain Raman light. We see that the mechanism that creates the largest gain is

tangential sidescatter. Tangential sidescatter is where the scattered light is launched

near parallel to isodensity contours. When the scattered light travels through near

resonant densities it accumulates a large gain, as seen from the path integral gain

formula derived by Michel et al. [2]. In this work, we calculated the gain of Raman

rays that hit the detector and therefore only observed tangential sidescatter that
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would refract towards the detector. The comparison of the scattered light spectra

and the experimental data was favourable.

6.2 Future Work

The ray tracing analysis of stimulated Raman scattering in spherical target experi-

ments on OMEGA EP motivates further experiments on EP to further explore SRS

mitigation strategies. The simulation results show a large amount of SRS with λs ≲

630 nm. This motivates experiments to be done on OMEGA EP where SABS does

not have the long pass filter applied.

As the ray tracing code stands, it could be utilised to predict Thomson scattering

off of the electron plasma waves that can be propagated in the simulation. In the

simulations done for the work presented in this paper, the incident beam intensity was

taken to be constant over all incident beam rays. Further use of this simulation code

could implement varying ray intensities across the beam to more accurately predict

the SRS spectra. This code also only calculates the gain of Raman light rays that hit

the detector. It could be interesting to further investigate the physics of SRS gain

instead of just trying to predict the detected scattered light spectra.

The simulation code should eventually be converted into a three-dimensional code

for further understanding of OMEGA EP experiments. Adding more resolution (i.e,

increase the number of incident rays per beam and increase the sampling done) would

increase the accuracy. In this work we focus on the highest gain detected per wave-

length band (∼ 10 nm), however, developing a way to instead look at the overall

detected intensity on the SRS spectra would be a better comparison to the exper-

imental data. However, all three of these suggestions would greatly increase the

computation time.
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