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Abstract 

Residual feed intake (RFI), a measure of feed efficiency, and its component traits including 

average daily gain (ADG), dry matter intake (DMI) and metabolic weight (MWT) are traits of 

great economic importance to the beef industry. The genetic improvement of these traits can 

improve the industry’s profitability as well as reduce the environmental footprints of beef 

production, thus leading to more sustainable beef production. However, these traits are difficult 

and expensive to measure on individual animals, making them good candidates for genomic 

prediction, a method that predicts animal’s genetic potential based on DNA markers. However, 

the accuracies of genomic prediction on these traits are general low in beef cattle and it is believed 

that incorporation of information on genetic mechanisms controlling these traits will improve the 

accuracy of genomic prediction. Therefore, in the current project we aimed to use RNAseq 

technology to identify candidate functional genes associated with RFI and its component traits in 

beef cattle. We further investigated the potential of improving genomic prediction accuracy of RFI 

and its component traits by utilizing the functional gene information.   

 In the first study we analyzed whole liver transcriptome RNAseq data between six (n = 6) 

high and six (n = 6) low-RFI steer groups from three beef cattle breeds including Angus, Charolais 

and Kinsella Composite (KC) raised together. Similar analyses were performed in the second study 

between the steer groups with divergent component trait phenotypes from the three breeds. In total 

we identified 253, 252, 375 and 206 differentially expressed (DE) genes associated with RFI, 

ADG, DMI and MWT, respectively. For each trait the majority (82 – 88%) of the DE genes were 

breed specific. Functional enrichment analyses revealed that the identified DE genes are mainly 

involved in metabolism of lipids, carbohydrates, amino acids, molecular transport, cellular 

movement and cell-to-cell signaling.  



iii 

 

 

In the third study we explored differential micro RNA (miRNA) expression between six (n 

= 6) high and six (n = 6) low-RFI steers in the three beef breeds considered in studies I and II. 

Likewise, in the fourth study we investigated the association of miRNA expression with ADG, 

DMI and MWT in the three beef breeds. We identified 39 DE miRNAs associated with RFI, 36 

DE miRNAs associated with ADG and 46 miRNAs were identified as associated with both DMI 

and MWT. Consistent with the DE genes findings in the first and second studies, DE miRNAs 

were also majorly breed specific. Additionally, DE miRNAs were predicted to target 55 – 76% of 

the identified DE genes which are involved in key molecular and cellular functions such as 

metabolism of lipids, carbohydrates, protein and amino acids as well as cell proliferation, and cell 

death and survival.   

To explore the possibility of improving genomic prediction accuracy through integration 

of transcriptomic information in the fifth study, we compiled a functional single nucleotide 

polymorphisms (SNP) panel from a total of 3,735 DE and miRNA target genes from this project 

and from literature (coding and miRNA precursor genes),  and compared it to a commercial 50K 

SNP panel and a randomly selected (Random) SNP panel. Genomic prediction accuracies for RFI 

and its component traits were estimated for 7,372 beef animals from six beef breed populations 

including Angus, Charolais, KC, Elora, PG1 and TX. Results from this study indicated that 

generally the functional panel did not significantly yield higher genomic prediction accuracies than 

the other two panels. However, it had slightly higher accuracy for all the four traits for within 

Charolais evaluation. 

 In conclusion, results from this PhD thesis project contribute to the understanding of 

genetic architectures of feed efficiency and its component traits. The results also demonstrated the 

potential to enhance genomic prediction accuracy through integration of functional information. 
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However, further research on the utilization of functional information is required to enhance 

genomic prediction accuracy of feed efficiency and its related traits in beef cattle. 
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the study. Kate Keogh contributed to functional enrichment analyses. Sinéad Waters, Paul 
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Chapter 1. General introduction 

1.1 Beef production 

Beef is a major protein and other nutrients source for human consumption whose demand 

continues to increase due to the growing human population size and the improving economic status 

of people (Gerber et al. 2013; Li 2017; Smith et al. 2018). Beef also contributes largely to the 

world economies, for example, in Canada the beef industry accounts for up to 16% of total farm 

cash receipts (years 2014-2018), as well as provides an average of 228,000 jobs to Canadians with 

an annual contribution of $18 billion to the gross domestic product (GDP), (CCA 2018). In the 

USA, beef is the fourth largest agricultural export contributing up to $7.3 billion to the annual (for 

2017) export revenues (USDA 2017). With the projected increase of the global population to 9.6 

billion by the year 2050 (Gerber et al. 2013), the increase demand for beef is likely to impart more 

pressure on already limited production resources including land, water, fertilizers, labor and feed 

materials (Gerber et al. 2013). Additionally, cattle contribute up 65% of the total livestock 

greenhouse gas emissions, of which beef and dairy cattle account for 41% and 20% respectively 

(Gerber et al. 2013). This environmental impact is expected to cause public concerns on increasing 

beef production unless stainable production strategies are implemented.  

1.2 Feed efficiency in beef cattle 

For sustainable beef production, improving feed efficiency of the beef animals is among 

the practical strategies that have been proposed (Hocquette & Chatellier 2011). Feed efficiency 

can generally be defined as the ability of the beef cattle animal to convert consumed feed 

(nutrients) into salable product/beef (Carstens & Tedeschi 2006). Feed efficiency is of great 

interest to the beef 
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production industry mainly because feed and feeding related costs represent the largest 

variable production cost for the industry ranging between 55 to 75% of the total variable costs 

(Ahola & Hill 2012; Brandebourg et al. 2013). The high costs of feeds or feed materials can 

majorly be attributed to numerous factors including the increased cost of feed production inputs 

such as fertilizers, land, labor, water, and thus feed processing costs (Archer et al. 1999). The cost 

of feed is further exacerbated by the competition with human food or bioenergy production from 

the same materials that are used to produce animal feeds. In beef cattle, feed efficiency is measured 

by several traits including partial efficiency of gain (Kellner 1909), feed conversion ratio (Brody 

1945), Kleiber ratio or growth/metabolic weight (Kleiber 1947), residual feed intake (Koch et al. 

1963), residual body gain (Crowley et al. 2010) and residual intake and body weight gain (Berry 

& Crowley 2012). 

1.3 Residual feed intake 

Of the feed efficiency measures, residual feed intake (RFI), which is defined as the 

difference between the actual feed intake of the animal and expected intake of the animal based on 

its body weight and growth rate (Koch et al. 1963), has gained popularity as a measure of feed 

efficiency in beef cattle due to its phenotypic independency from body weight and growth rate of 

the animal (Kennedy et al. 1993; Archer et al. 1999). Numerous studies in beef cattle have revealed 

RFI as having moderate heritability estimates (0.16 – 0.68), (Herd & Bishop 2000; Arthur et al. 

2001; Schenkel et al. 2004; Nkrumah et al. 2006; Mao et al. 2013; Pryce et al. 2014). This has 

enabled the beef industry to improve feed efficiency through genetic selection for RFI. Moreover, 

studies have also reported positive 



3 

 

 

genetic correlation estimates between RFI and methane emission (Nkrumah et al. 2006; 

Hegarty et al. 2007), hence revealing possibilities of reducing the carbon footprint impact of beef 

cattle to the environment through selection of more feed efficient animals.  

1.4 Physiological background of residual feed intake 

RFI is a complex trait whose phenotypic variability is affected by multiple body organs, 

and hence numerous physiological process. Some of the main physiological mechanisms 

influencing RFI include feeding patterns, digestibility, heat increment of fermentation, activity and 

body composition which have been reported to account for 2%, 10%, 9%, 10% and 5% of the RFI 

variability in beef cattle respectively (Herd et al. 2004; Richardson & Herd 2004). In addition, 

protein turnover, tissue metabolism and stress together were predicted to account for around 37% 

of the RFI variability, whereas other processes such as ion or molecular transport accounted for 

27% of RFI variation (Herd et al. 2004; Richardson & Herd 2004). 

1.5 Molecular genetic background of RFI 

With the advancement of functional genomics and molecular genomic tools such as 

identification of molecular markers (including microsatellites and single nucleotide 

polymorphisms or SNPs) in the bovine genome, efforts have been made to genetically characterize 

RFI and its component traits in beef cattle. The initial attempts to characterize the genomic basis 

of feed efficiency and the component traits was performed through linkage and association analysis 

with a few markers distributed across the bovine genome. Multiple QTLs were located on 

chromosomes for RFI, dry matter intake (DMI) and average daily gain (ADG) (Barendse et al. 

2007; Nkrumah et al. 2007; Sherman et al. 2009). Additionally, SNP markers within candidate 

genes believed to have effects on RFI or its component traits have been evaluated for associations 

with these traits (Sherman et al. 2008; Karisa et al. 2013; Alexandre et al. 2014). These studies 
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revealed associations between feed efficiency or/and its component traits with SNP markers in 

candidate genes such as GHR, NR1I3, IGF2, NPY and UCP2 (Sherman et al. 2008; Karisa et al. 

2013; Alexandre et al. 2014). With the development of denser commercial SNP panels spanning 

the entire genome, several studies have performed genome-wide association studies with the aim 

of identifying genomic regions or SNPs associated with RFI, or/and its component traits in 

different beef cattle populations/breeds (Abo-Ismail et al. 2010; Bolormaa et al. 2011; Mujibi et 

al. 2011b; Rolf et al. 2012; Abo-Ismail et al. 2014; de Oliveira et al. 2014; Saatchi et al. 2014; 

Santana et al. 2014; Olivieri et al. 2016; Santana et al. 2016; Seabury et al. 2017). In general, RFI 

and its component traits are controlled by many QTLs that are distributed on all the 29 autosomal 

bovine chromosomes, except MWT for which no QTL has been identified yet on chromosome 29 

(Hu et al. 2018). The estimated additive effects of the significant SNP markers or genomic 

windows associated to these traits are generally small, and the studies considering multiple breeds 

have indicated that the identified QTLs are largely breed specific (Saatchi et al. 2014). Some QTLs 

have been reported to have pleotropic effects of controlling RFI and its component traits (Nkrumah 

et al. 2007; Seabury et al. 2017). Moreover, genes close or within the regions associated with RFI 

have been identified to be generally involved in multiple biological functions such as energy 

generation and use, protein metabolism, lipid metabolism, molecule transport, the immune 

response, cellular secretion, cellular activity, and growth (Abo-Ismail et al. 2010; Mujibi et al. 

2011a; de Oliveira et al. 2014; Olivieri et al. 2016; Santana et al. 2016). 

In addition to genome-based QTL linkage mapping and DNA marker association or 

genome-wide association studies (GWAS), transcriptome analyses have also been performed to 

characterize feed efficiency and the related traits. Differential gene expression in the tissue from 

several organs such as the liver (Chen et al. 2011; Alexandre et al. 2015; Paradis et al. 2015; 
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Tizioto et al. 2015; Weber et al. 2016), adipose tissue (Weber et al. 2016), spleen, skeletal muscle 

(Tizioto et al. 2016; Weber et al. 2016), pituitary gland (Weber et al. 2016), rumen epithelia (Kern 

et al. 2016; Kong et al. 2016; Reynolds et al. 2017), jejunum (Lindholm‐Perry et al. 2016; Foote 

et al. 2017; Reynolds et al. 2017), duodenum (Lindholm‐Perry et al. 2016; Weber et al. 2016) and 

ileum (Lindholm‐Perry et al. 2016) have been investigated in relation to feed efficiency (especially 

RFI) and its component traits in beef cattle. Indeed, consistent with the results of GWAS, multiple 

genes associated with feed efficiency and the related traits have been identified through these 

whole transcriptome studies on all the 29 autosomal chromosomes. Some of the major biological 

functions identified in these studies as associated with include lipid metabolism, amino acid 

metabolism, carbohydrate metabolism, drug or xenobiotic metabolism, transport of molecules and 

immune response and inflammation (Chen et al. 2011; Alexandre et al. 2015; Tizioto et al. 2015; 

Weber et al. 2016; Foote et al. 2017; Reynolds et al. 2017).  

Furthermore, post translational gene expression regulation processes play key functions in 

modulating different cellular processes to maintain homeostasis and optimal or normal cell 

function (Lackner & Bähler 2008; Lu & Clark 2012). In this regard studies on the differential 

expression of microRNAs (miRNAs) and potential regulatory activities on their target genes have 

been studied in beef cattle in the skeletal muscle (De Oliveira et al. 2018) and liver (Al-Husseini 

et al. 2016; De Oliveira et al. 2018). These studies have identified multiple miRNAs associated 

with feed efficiency and some of the miRNAs have been predicted to target differentially expressed 

genes in the same tissues (Al-Husseini et al. 2016; De Oliveira et al. 2018). Also, more recently 

some proteomic studies have been conducted to investigate the molecular controls of RFI at the 

proteome level in the liver tissue (Baldassini et al. 2018; Fonseca et al. 2019). Identified 

differentially abundant proteins are majorly involved in energy metabolism, xenobiotic 
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metabolism, vitamin metabolism, amino acid metabolism, mitochondrial function, oxygen 

transport, blood flow, ion transport, and cell survival, microbial metabolism, biosynthesis of fatty 

acids, and antigen processing and presentation (Baldassini et al. 2018; Fonseca et al. 2019). 

Despite all the reviewed studies, we still do not have a clear picture of the molecular architecture 

of RFI and its component traits as the concordance of the identified genes across studies is low 

even for the same tissue type. This could generally be attributed to the differences in the 

breed/population, sex type and age of the animals used in the different studies, and in the 

environmental conditions under which the experimental animals in the different experiments were 

tested. 

1.6 Genomic selection for feed efficiency 

Traditional genetic selection for feed efficiency requires accurate measurement of feed 

intake for each of the selection candidate or their relatives which is currently an expensive and 

time-consuming process (Chen et al. 2013; Pryce et al. 2014). This rendered genomic selection a 

greatly desirable method of genomic evaluation and selection for feed efficiency. Genomic 

selection involved estimation of genetic merit of selection candidates based only on their genome-

wide marker genotypes after the SNP markers’ effects are estimated based on the reference animals 

that have both marker genotype and phenotypic information (Meuwissen et al. 2001; Meuwissen 

et al. 2013). The accuracy of genomic prediction or genetic merit estimation is of great interest as 

it is a key factor affecting the response to genomic selection (Goddard 2009; Goddard & Hayes 

2009). Genomic prediction accuracy is affected by several factors including the size of the 

reference population, genetic relationship between the selection candidates and the reference 

population, heritability of the trait, number of SNP markers in the evaluation panel, genetic 

architecture of the trait and the statistical method used for the genetic evaluation (Goddard 2009; 
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Goddard & Hayes 2009; Zhang et al. 2019). In beef cattle, achieving a reasonably greater accuracy 

of genomic predictions is a challenge due to the difficulty to establish large reference populations 

with good genetic representation of crossbred commercial animals from the industry, which is 

characterized by less usage of artificial insemination and high rate of crossbreeding (Stock & 

Reents 2013). Consequently, multiple strategies have been evaluated with the objective of 

improving genomic prediction accuracy for feed efficiency or the related traits. For example, 

Mujibi et al. (2011) evaluated effect of BayesB and random regression BLUP (RR-BLUP) 

methods of genomic evaluation, together with SNP density and structure of the reference 

population on genomic prediction accuracy of RFI, DMI and ADG in a crossbred population 

(Mujibi et al. 2011c). In general, they obtained higher genomic prediction accuracy with RR-

BLUP than the BayesB method. Also, they obtained higher genomic prediction accuracy when 

they allowed sire overlap between the reference and validation populations than when no sire 

overlap was allowed. Interestingly, higher accuracies were also obtained using a subset of 200 

SNP with larger SNP effects than using the commercial 50K SNP genotypes (37,959 SNPs). 

However, they hypothesized that SNP effects of the top 200 SNPs for each trait could have been 

limited to the studied population. In another study using two purebred (Angus and Charolais) 

populations, Chen et al. (2013) evaluated the impact of the reference population construction 

strategies, and statistical methods (GBLUP and BayesB) for RFI. On average, allowing sire 

overlap between the validation and training population resulted in higher accuracies than when no 

sire overlap was allowed. Within breed evaluations had higher accuracies than across breed 

genomic prediction. In a study by Khansefid et al. (2014), residual feed intake records and SNPs 

of high density (HD) chip of 842 Holstein heifers and 2,009 beef cattle from Australia, and 2,763 

Canadian beef cattle were combined as a reference population in an attempt to improve the 
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genomic prediction accuracy for RFI (Khansefid et al. 2014). The results showed that the multi-

breed reference population increased the accuracy of genomic prediction slightly by an average of 

5% through using a larger multibreed population (Khansefid et al. 2014). 

From the above highlighted studies, it is evident that there is potential for improving 

genomic prediction accuracies for feed efficiency and the related traits in beef cattle through 

incorporation of functional information into genomic prediction as proposed by Snelling et al. 

(2013). This is mainly because of reduced reliance on linkage disequilibrium (LD) for gene or 

regulatory SNP markers to capture the effects of QTLs (Snelling et al. 2013). It is believed that 

functionally enriched SNP panels would also result in a higher genomic prediction accuracy for 

crossbred animals as prediction would be based on the functional SNP effects expected to be 

relatively stable across breeds or breeds, rather than LD that is usually unstable across population 

or usually broken down through crossing(Snelling et al. 2013). Transcriptome studies provide an 

important source of such biological information as they have the potential to identify transcribed 

genes associated with the traits (Snelling et al. 2013).   However, differentially expressed genes 

and enriched molecular processes in key tissues related to RFI and its component traits in beef 

cattle remain largely unknown, especially when difference breeds are considered, and utilization 

of gene SNPs or functional SNPs has not been investigated in beef cattle regarding genomic 

prediction accuracy of feed efficiency and its related traits. 

1.7 Research objectives  

In this thesis project we performed five studies whose specific objectives were to: 
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(i)  Identify genes associated with feed efficiency in beef cattle and biological functions 

through liver global transcriptome analyses in three beef breed populations (Angus, 

Charolais and Kinsella Composite). 

(ii) Identify genes associated with average daily gain or dry matter intake or metabolic weight 

in beef cattle and biological functions through liver global transcriptome analyses in three 

beef breed populations (Angus, Charolais and Kinsella Composite). 

(iii) Identify microRNAs associated with feed efficiency in beef cattle and their potential target 

genes through liver differential microRNA expression analyses in three beef breed 

populations (Angus, Charolais and Kinsella Composite). 

(iv) Identify microRNAs associated with genes associated to average daily gain or dry matter 

intake or metabolic weight in beef cattle and their potential target genes through liver 

differential microRNA expression analyses in three beef breed populations (Angus, 

Charolais and Kinsella Composite). 

(v) Investigate the potential of improving genomic prediction accuracy for feed efficiency and 

the component traits in beef cattle through integrating SNPs of DE genes identified by 

transcriptome analyses from our current project as well as from literature into a functional 

SNP panel for genomic selection. 
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Chapter 2. Transcriptome analyses reveal reduced hepatic lipid synthesis and 

accumulation in more feed efficient beef cattle 

 

2.1 Abstract  

The genetic mechanisms controlling residual feed intake (RFI) in beef cattle are still largely 

unknown. Here we performed whole transcriptome analyses to identify differentially expressed 

(DE) genes and their functional roles in liver tissues between six extreme high and six extremes 

low RFI steers from each of the three beef breed populations including Angus, Charolais, and 

Kinsella Composite (KC). On average, next generation sequencing yielded 34 million single-end 

reads per sample, of which 87% were uniquely mapped to the bovine reference genome. At false 

discovery rate (FDR) < 0.05 and fold change (FC) > 2, 72, 41, and 175 DE genes were identified 

in Angus, Charolais, and KC, respectively. Most of the DE genes were breed-specific, while five 

genes including TP53INP1, LURAP1L, SCD, LPIN1, and ENSBTAG00000047029 were common 

across the three breeds, with TP53INP1, LURAP1L, SCD, and LPIN1 being downregulated in low 

RFI steers of all three breeds. The DE genes are mainly involved in lipid, amino acid and 

carbohydrate metabolism, energy production, molecular transport, small molecule biochemistry, 

cellular development, and cell death and survival. Furthermore, our differential gene expression 

results suggest reduced hepatic lipid synthesis and accumulation processes in more feed efficient 

beef cattle of all three studied breeds.  

2.2 Introduction  

An animal’s ability to convert consumed feed into saleable meat is of central importance 

to the meat production industry because feed and feeding related costs are the single largest 

variable expense in animal production (Shalev & Pasternak 1989; Ramsey et al. 2005; Van 
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Heugten 2010; Ahola & Hill 2012; Brandebourg et al. 2013). As the global demand for meat 

products continues to increase due to population growth, and improved economic prosperity in the 

developed and developing world, provision of feed for meat animal production will become a 

potential burden on global resources including land, water, fertilizers, and labor (Archer et al. 

1999; Naylor et al. 2005; Salter 2017). In addition, environmental footprints including greenhouse 

gas emission associated with meat animal production have become a public concern (Gerber et al. 

2013). Of meat production animals, beef cattle are the largest animals and a major contributor to 

environmental footprints (Gerber et al. 2013). Studies have shown that more feed efficient beef 

cattle not only consume less feed for the same amount of meat produced, but also have a reduced 

methane emission (Nkrumah et al. 2006; Hegarty et al. 2007; Fitzsimons et al. 2013). Therefore, 

decreasing production inputs through improving feed efficiency and reducing environmental 

footprints will be a vital step in improving the sustainability of the beef production industry.  

Feed efficiency is a complex trait that can be measured using a variety of methods (Archer 

et al. 1999). Residual feed intake (RFI) is one of the measurements of feed efficiency and is defined 

as the difference between actual and expected feed or dry matter intake required for maintenance 

and growth (Koch et al. 1963). RFI has become a more preferred measure of feed efficiency in 

beef cattle due to its phenotypic independence from production traits (Archer et al. 1999; Mao et 

al. 2013) and moderate heritability (Nkrumah et al. 2007a; Mao et al. 2013), which allow a 

reasonable response to genetic selection for more efficient animals without compromising their 

growth rate and mature weight.  

It has been proposed that RFI is controlled by several physical, physiological and metabolic 

processes such as feed intake, digestion, body composition, tissue metabolism, activity and 

thermoregulation (Herd et al. 2004; Richardson & Herd 2004; Herd & Arthur 2009). With the 
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advancement of DNA markers and genotyping technologies, multiple candidate chromosomal 

regions or quantitative trait loci (QTL) that contribute to the variation of RFI in beef cattle have 

been identified through DNA markers, based linkage and association studies (Barendse et al. 2007; 

Nkrumah et al. 2007b; Sherman et al. 2009; Abo-Ismail et al. 2014; de Oliveira et al. 2014; Saatchi 

et al. 2014). However, the significant QTL regions and DNA variants vary largely across studies. 

To further identify genes associated with RFI, whole transcriptome profiling studies between beef 

cattle with divergent RFI phenotypes have also been performed for several tissues such as liver 

(Chen et al. 2011; Alexandre et al. 2015; Paradis et al. 2015; Tizioto et al. 2015; Khansefid et al. 

2017), skeletal muscle (Tizioto et al. 2016; Weber et al. 2016; Khansefid et al. 2017), adipose 

(Weber et al. 2016), pituitary (Weber et al. 2016), rumen (Kong et al. 2016) and duodenum (Weber 

et al. 2016). However, only a small proportion of the reported differentially expressed genes were 

shared across these studies. This discrepancy of DE genes identified across studies could be 

attributed to the differences in breed types, sex type, tissue, and age of the animals used in the 

studies, as well as the differences in management and environmental conditions under which 

animals were raised and tested. These confounding factors hinder our understanding on genetic 

mechanisms that regulate RFI. Therefore, to better elucidate genetic influence on feed efficiency 

in beef cattle, we calculated RFI on steers from three distinctive beef breeds including Angus, 

Charolais, and Kinsella Composite (KC) of similar age that were born, raised, and managed under 

the same environmental conditions, and then identified DE genes and molecular 

functions/processes associated with RFI within and across the breeds using whole transcriptome 

RNAseq analyses of liver tissues of high and low RFI phenotype steers from each breed 

population.  
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2.3 Materials and Methods 

2.3.1 Animal populations and management 

All animals used in this study were managed according to the guidelines established by the 

Canadian Council of Animal Care (Olfert et al. 1993) and the experiment procedures were 

approved by the University of Alberta Animal Care and Use Committee (AUP00000777). Beef 

steers from three beef cattle herds including purebred Angus, purebred Charolais, and Kinsella 

Composite (KC) were used in this study. The three beef cattle herds were located and managed 

alike at the Roy Berg Kinsella Ranch, University of Alberta, Canada. These cattle herd populations 

were described previously (Nkrumah et al. 2007b; Mao et al. 2013). Briefly, the purebred Angus 

and Charolais cows were bred by artificial insemination (AI) and natural service bulls with their 

pedigree information maintained by the Canadian Angus or Charolais Associations, respectively. 

The KC herd was produced from crosses between Angus, Charolais, or Alberta Hybrid bulls and 

the University of Alberta’s hybrid dam line that was generated by crossing composite cattle lines 

of multiple beef breeds as described by (Goonewardene et al. 2003).The animals used in this study 

were born between April to May of 2014 and were weaned at approximately six months of age. 

They were then fed a background diet composed of 80% barley silage, 17% barley grain, and 3% 

rumensin pellet supplement, and then a transition diet with gradually decreasing barley silage and 

increasing barley grain proportions for 3 weeks prior to the finishing diet of 75% barley grain, 

20% barley silage, and 5% rumensin pellet supplement (as fed basis).  

2.3.2 Growsafe feedlot test and residual feed intake calculation   

In 2015, 50 Angus, 48 Charolais, and 158 KC steers were measured for individual feed 

intake between April to August using the GrowSafe system® (GrowSafe Systems Ltd., Airdrie, 

Alberta, Canada), and were fed a finishing diet during the feed intake test. Details of individual 



23 

 

 

animals’ daily feed intake data collection using the GrowSafe automated system was described 

previously by (Mao et al. 2013). Briefly, daily dry matter intake (DMI) of each steer was calculated 

as the average of daily feed intakes over the test period (70 to 73 days), standardized to 12 MJ ME 

per kg dry matter based on the energy content of the diet. Initial body weight and average daily 

gain (ADG) for each animal were obtained from a linear regression of serial body weight (BW) 

measurements that were recorded on two consecutive days at the beginning, at approximately 14 

day intervals during the feedlot test, and on two consecutive days at the end of test. Metabolic 

body weight (MWT) was calculated as midpoint BW0.75, where midpoint BW was computed as 

the sum of initial BW of the animal and the product of its ADG multiplied by half the number of 

days under the feedlot test. For each breed, the expected DMI for each animal was predicted using 

the regression intercept and regression coefficients of ADG and MWT on actual standardized daily 

DMI, and RFI was computed as the difference between the actual standardized daily DMI and the 

expected DMI as proposed by Koch et al (1963).  

2.3.3 Liver tissue collection 

Animals with extreme RFI phenotype values were slaughtered at Agriculture and Agri-

Food Canada (AAFC) Lacombe Research Centre (Lacombe, AB) between July and September of 

2015. Steers were targeted for slaughter at an average backfat thickness of 8 mm between the 12th 

and 13th ribs as measured by ultrasound using an Aloka 500V diagnostic realtime ultrasound 

machine with a 17cm 3.5Mhz linear array transducer (Overseas Monitor Corporation Ltd., 

Richmond BC), which resulted in an average slaughter age of 494 ± 3, 518 ± 4, and 457 ± 4 days 

for Angus, Charolais, and KC, respectively. The liver sample of each animal was collected 

immediately after slaughter and the tissue was dissected from approximately the same location on 

the right lobe with the fibrous capsule removed. Samples were separately bagged and labeled, and 
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were immediately flash frozen in liquid nitrogen, transported on dry ice, and stored at -80ºC until 

RNA extraction. 

2.3.4 RNA isolation and purification 

From the frozen liver samples, a total of 36 samples (12 from each breed) consisting of six 

samples from animals with the highest and six animals with the lowest RFI phenotypes from each 

of the three breeds were selected for total RNA extraction and consequently differential gene 

expression analyses. The frozen liver tissue of each steer was pulverised into fine powder using 

liquid nitrogen with a pre-chilled mortar and pestle on dry ice. Total RNA was then extracted from 

10 mg of the pulverised tissue using a Qiagen RNeasy Plus Universal Kit (Qiagen, Toronto, ON, 

Canada) and further purified using a Zymo RNA Clean & Concentrator (Zymo, Irvine, CA, USA). 

RNA was quantified using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Wilmington, 

DE, USA) and was deemed acceptable if its absorbance (A260/280) was between 1.8 and 2.0. 

RNA integrity was confirmed using a TapeStation-Agilent instrument (Agilent Technologies, 

Mississauga, ON, Canada), and the RNA integrity number (RIN) values for all samples were 

higher than eight. 

2.3.5 cDNA library preparation and sequencing 

Preparation of cDNA library and sequencing for each of the 36 animal samples were 

performed at the Clinical Genomics Centre (Toronto, ON, Canada), where mRNA was purified 

and enriched from 1 µg of each of the total RNA samples and then fragmented. Thereafter, the 

first strand of the cDNA was synthesized using SuperScript II Reverse Transcriptase enzyme 

(Thermo Fisher Scientific, San Jose, CA, USA) and the second strand was synthesized using the 

DNA Polymerase I and RNase H enzymes (Illumina, San Diego, CA, USA).  The cDNA libraries 

were validated using gel electrophoresis to confirm that the fragment size was 150bp (on average) 
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and concentration was on average 25ng/µl per sample. Unique oligonucleotide adapters were 

added to the cDNA of each sample to allow for multiplexing. Of the prepared sample cDNA 

libraries, 27 (all Angus, all KC and 3 Charolais samples) were single end sequenced (100bp) under 

the high output run mode of the Illumina Hiseq 2500 System on eight flow cell lanes, while the 

other 9 Charolais samples were sequenced under the rapid run mode of the same sequencing 

equipment. High quality single end reads of 101bp with an average Phred score of 36 and 37 for 

high output run mode and rapid run mode, respectively, were obtained with an average of 31 and 

46 million reads per sample for high output run mode and rapid run mode, respectively. All 

sequence data generated for this study has been submitted to the Gene Expression Omnibus 

repository under the accession number GSE107477. 

2.3.6 RNAseq data analyses 

Raw single-end sequence reads for each sample were assessed for sequencing quality using 

FastQC (Version 0.11.5) with default parameters (Andrews 2010). Reads of each sample were 

independently aligned and mapped to the bovine genome UMD3.1 using the TopHat (version 

2.1.1) RNAseq mapper with default single end read alignment parameters (Kim et al. 2013). Reads 

that were uniquely aligned to each gene annotated in the GTF Bovine gene annotation file 

(ftp://ftp.ensembl.org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz) were counted 

using HTSeq-count with default parameters (Anders et al. 2015) which generated the read count 

tables that were used for downstream differential gene expression statistical analyses. 

2.3.7 Differential gene expression statistical analysis  

Gene read count tables from HTSeq-count, the annotation file downloaded from Ensembl 

Biomart (http://www.ensembl.org/biomart/martview/9153354bb2bef3f0fe8126460f4804ae), and 

sample information file were used for differential gene expression statistical analyses using edgeR 

ftp://ftp.ensembl.org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz
http://www.ensembl.org/biomart/martview/9153354bb2bef3f0fe8126460f4804ae
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(Robinson et al. 2010). Genes within each breed with less than one count per million (CPM) of 

mapped reads in at least six samples (half of the analyzed samples) were removed from further 

analyses as proposed by Anders and colleagues (Anders et al. 2013). For the retained genes, their 

counts were normalized using the trimmed mean M values (TMM) method to account for the 

variation in library sequencing depths between samples (Anders et al. 2013). The TMM 

normalization method implemented in edgeR was proposed by Robinson & Oshlack (Robinson & 

Oshlack 2010), and it assumes that the majority of the sequenced genes in the libraries are not 

differentially expressed. With one sample considered as a reference, a TMM factor was calculated 

for each sample as a weighted mean of log ratios of gene-wise log fold changes and absolute 

expression level after exclusion of genes with the highest (30%) log-fold change ratios and highest 

(5%) absolute expression. The TMM value for each sample was expected to be equal or close to 

one, if not, correction factors were calculated and applied to the original library sizes to calculate 

new effective library sizes. Normalized read counts were then analyzed with a generalized linear 

model for each of the breed populations with an assumption of a negative binomial distribution of 

gene counts to identify differentially expressed genes, as implemented in egdeR. The statistical 

models used for analyses are as described below: 

Model.1 log (CPM)ijkl= µ + RFIi+ SIREj + e ijkl 

Model.2 log (CPM) ijmkl = µ + RFIi + SIREj + SEQm + eijmkl 

Model 1 was used for Angus and KC steer gene expression analyses, where log (CPM) ijkl was the 

log transformed read counts per million of mapped reads for the gene l in sample k from ith RFI 

group (high or low) and jth SIRE group, and eijkl as the random error term. Model 2 was used for 

Charolais steer gene expression analyses, where log (CPM)ijmkl was the log transformed counts per 
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million of gene l in sample k from the ith RFI group, jth SIRE group, and mth SEQ, and eijmkl was 

the random error term. The term µ was the population mean and RFI, SIRE and SEQ were treated 

as fixed effects in the models. For each model, the RFI group consisted of 6 steers with high RFI 

values in the high-RFI group and 6 steers with low RFI values in the low-RFI group. The SIRE 

effect of Angus, Charolais, and KC steers included 6, 5, and 9 sires, respectively. For Charolais, 

SEQ was included as an additional fixed effect to account for differences due to the sequencing 

modes (i.e. high output run mode or rapid run mode) (Model.2). Differentially expressed (DE) 

genes were identified using a likelihood ratio test of each gene expression level between the two 

RFI groups with the high-RFI group (or less feed efficient group) used as the reference group. The 

analysis was performed for each gene; therefore, Benjamin-Hochberg method was used to control 

the false discovery rate (FDR) due to multiple testing (Benjamini & Hochberg 1995). A threshold 

FDR of 0.05 and fold change (FC) of greater than two (> 2) were used as the cut off to indicate 

significant differential gene expression.  

2.3.8 Functional enrichment analysis  

To understand the biological functionality of the DE genes identified, functional analyses 

for the DE genes within each breed were performed using Ingenuity Pathway Analysis software 

(IPA) (Redwood City, CA; www.qiagen.com/ingenuity). Ensembl bovine gene IDs and log2-fold 

change (logFC) of the DE genes were used as identity (ID) and expression level (Observation 1), 

respectively, in IPA. To increase the number of mapped genes, Ensembl IDs for the unmapped 

genes were extracted and replaced with their closest human orthologue gene Ensembl IDs. 

Thereafter a combined list of bovine Ensembl for the mapped and human ortholog Ensembl IDs 

for unmapped genes was used for IPA biological function analysis. Molecular and cellular 

functions or biological functions were considered significantly enriched if the p-value for the 

http://www.qiagen.com/ingenuity
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overlap comparison test between the input gene list and the IPA Knowledge base database for a 

given biological function was less than 0.05. Activation or deactivation level of a specific enriched 

metabolic process within a biological function was defined by the Z-score (Krämer et al. 2013) 

that was calculated from the expression levels of the overlapping DE genes, where a negative or a 

positive score indicated deactivation or activation, respectively. 

2.4 Results 

2.4.1 Difference of RFI and other performance traits between high and low-RFI groups  

 The averages and the t-test P-values for RFI and other performance traits are presented in 

Table 2.1. The animals used in this study had raw RFI values ranging from 1.55 to -1.096, 1.82 to 

-1.38, and 1.99 to -1.63 kg/day of dry matter intake for Angus, Charolais, and KC, respectively. 

The average RFI values of the low and high RFI steer groups were significantly different (P ≤ 

1.69E-07) for all the three breed populations (Table 2.1). Of the RFI component traits, only DMI 

was significantly different between the two RFI groups for all the three populations, with low RFI 

or more feed efficient animals consuming significantly (P ≤ 0.01) less feed than their counterparts 

in the high RFI group for all the three breed populations. All the averages of growth and carcass 

traits as well as slaughter ages were not significantly different between the high and low RFI 

groups for all the studied breeds (P > 0.01).  

2.4.2 Sequencing and alignment quality assessment 

The Illumina sequencing yielded an average of 32,059,334 (SD = 2,575,908), 42,028,676 

(SD = 8,852,805), and 30,259,896 (SD = 5,977,827) raw single-end sequence reads from the 12 

cDNA libraries of Angus, Charolais, and KC samples, respectively. On average, the rapid run 

output mode produced more reads per sample (46,335,115 (SD = 5,355,272)) than the high output 

sequencing mode (30,931,809 (SD = 4,435,107)). The reads had an average length of 101bp and 
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an average Phred quality score of 36.2 ± 0.07. All reads were free of any sequencing adaptors and 

no read was flagged as having poor quality. On average 87% of the total sequences per sample 

were uniquely aligned and mapped to annotated genes in the bovine reference genome. The 

number of raw sequence reads, sequencing quality assessment, and alignment summary results for 

each sample are provided in the Supplementary Data S1 file. 

2.4.3 Differential gene expression analysis 

After filtering out non-expressed genes, 11,823, 11,942 and 11,819 genes were found to 

have sufficient expression for further analyses (> 1 CPM for at least half of the samples) in the 

liver tissues of Angus, Charolais, and KC, respectively. The majority (96.1%) of the expressed 

genes were common to all the three breeds as shown in Figure 2.1a, hence showing a great 

similarity between the breeds in terms of genes expressed in the liver tissue. Of the expressed 

genes, 72 (46 downregulated and 26 downregulated in low-RFI steers), 41 (19 downregulated and 

22 upregulated in low-RFI steers), and 175 (108 downregulated and 67 upregulated in low-RFI 

steers) DE genes were identified in Angus, Charolais, and KC, respectively at the significance 

threshold of FDR <0.05 and FC >2. A subset of the most significantly differentially expressed 

genes (by FDR values) from each breed is shown in Table 2.2, whereas the full lists of all 

differentially expressed genes for each breed are provided in the Supplementary Data S2, 

Supplementary Data S3, and Supplementary Data S4 for Angus, Charolais, and KC, respectively. 

When we compared DE genes across breeds, the majority of them (68.1% for Angus, 63.4% for 

Charolais, and 84.6% for KC) were breed specific, with only a few genes being shared between 

breeds (8 to 20 DE genes) or across the breeds (5) as shown in Figure 2.1b. The five common DE 

genes across all the three breeds included TP53INP1, LURAP1L, SCD, LPIN1, and 

ENSBTAG00000047029 (paralogous to RPS23) (Figure 2.2). Four of these genes (TP53INP1, 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c0e083d2-856c-4031-9a09-af06dee60bb2/Supplementary%20Data%20S1.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5d811c5c-4670-46bf-aa47-2048ee738500/Supplementary%20Data%20S2.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5c5facc6-04c8-4515-a0f4-158f65f0a00c/Supplementary%20Data%20S3.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/901ca197-7ffe-4427-b290-30e5fd1163ea/Supplementary%20Data%20S4.xlsx
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LURAP1L, SCD and LPIN1) were downregulated in all low RFI steers across the three breeds, 

whereas ENSBTAG00000047029 was upregulated in low RFI steers of Angus and Charolais but 

downregulated in KC low RFI steers as illustrated in Figure 2.2. Between two breeds, Angus and 

KC shared the most unique DE genes (n = 15), of which the majority (n = 13) had the same 

expression direction in low RFI animals of the two breeds, and only two genes had a different 

expression direction in the efficient animals of the two breeds. Angus and Charolais shared the 

fewest (n = 3) DE genes (Figure 2.1b), of which GNAZ and DLK1 were both downregulated in 

Angus but upregulated in Charolais low RFI animals (Supplementary Data S2 and Supplementary 

Data S3).  

2.4.4 IPA Functional Enrichment Analysis  

From the DE genes identified, 70, 37 and 169 were successfully mapped to the IPA 

knowledge base database for Angus, Charolais, and KC respectively. Subsequently, 27 

significantly enriched biological functions (P-value < 0.05) were detected for Angus and KC, and 

23 functions for Charolais. All significant biological functions and their enrichment P-values for 

each breed are provided in the Supplementary Data S5. The majority (n = 23 or 85.2%) of the 

identified biological functions were common across the three-studied breeds (Figure 2.1c). The 

most significantly enriched biological functions included lipid metabolism, amino acid 

metabolism, carbohydrate metabolism, energy production, molecular transport, small molecule 

biochemistry, cellular development, and cell death and survival. Table 2.3 shows the DE genes 

involved in the top five most significantly enriched biological functions for each of the studied 

breeds. A full list of all biological functions identified is provided together with the list of DE 

genes for each breed in the Supplementary Data S2, Supplementary Data S3 and Supplementary 

Data S4 for Angus, Charolais and KC respectively. 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5d811c5c-4670-46bf-aa47-2048ee738500/Supplementary%20Data%20S2.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5c5facc6-04c8-4515-a0f4-158f65f0a00c/Supplementary%20Data%20S3.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5c5facc6-04c8-4515-a0f4-158f65f0a00c/Supplementary%20Data%20S3.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/390c60e5-30e3-4366-853b-0643a9d47c17/Supplementary%20Data%20S5.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5d811c5c-4670-46bf-aa47-2048ee738500/Supplementary%20Data%20S2.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5c5facc6-04c8-4515-a0f4-158f65f0a00c/Supplementary%20Data%20S3.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/901ca197-7ffe-4427-b290-30e5fd1163ea/Supplementary%20Data%20S4.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/901ca197-7ffe-4427-b290-30e5fd1163ea/Supplementary%20Data%20S4.xlsx
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Of the five shared DE genes identified in this study across the three breeds, LPIN1 and 

SCD were involved in lipid metabolism, small molecule biochemistry, carbohydrate metabolism 

and energy production. LURAP1L was involved in small molecule biochemistry, and TP531NP1 

was involved in carbohydrate metabolism and molecular transport. Within the lipid metabolism 

function, further analyses of regulatory gene networks revealed several enriched fat or lipid related 

metabolic processes as presented in Figure 2.3, Figure 2.4, and Figure 2.5 for Angus, Charolais, 

and KC, respectively. Lipid synthesis was predicted to be downregulated in the liver tissues of 

more feed efficient animals (low-RFI steers) across all the three breeds (Figure 2.3, Figure 2.4, 

and Figure 2.5). Lipid accumulation was also predicted to be downregulated in KC and Charolais 

feed efficient steers. Additionally, downregulation of accumulation of triglycerides was predicted 

in Angus and KC for low-RFI steers. These results indicate that more feed efficient beef cattle 

have reduced hepatic lipid synthesis and accumulation. However, oxidation of fatty acids was 

relatively upregulated in KC and Charolais while downregulated in Angus.  

2.5 Discussion 

The liver is a relatively small organ (1-2% of body mass) although metabolically it is a 

very active and important organ sharing 18-26% of the total body oxygen for its metabolic 

activities (Reynolds 1992). The liver is a central physiological and metabolic organ of ruminant 

animals. It is responsible for modulation and distribution of nutrients to peripheral tissues and 

organs for maintenance and production purposes such as muscle deposition in beef cattle or milk 

production in dairy cattle (Seal & Reynolds 1993). The liver is also involved in important 

metabolic and physiological functions relating to glucose, lipid, protein, mineral and vitamin 

metabolism as well as immune function, steroid hormone catabolism and detoxification of 

ammonia and endotoxins (Drackley et al. 2005; Donkin 2012). Therefore, transcriptome 
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differences in the liver tissues between efficient and inefficient animals offer a great potential to 

shed some light on genes and biological functions that are involved in determining RFI in beef 

cattle. In the current study we employed RNAseq to explore whole transcriptome expression 

differences between individuals with divergent RFI phenotypes in three beef cattle breed 

populations. Angus and Charolais are two distinct beef breeds with Angus being a British breed 

characterized by its moderate frame and early age fattening, whereas Charolais is a continental 

European breed with a larger frame, and later maturity and fattening (Briggs & Briggs 1980). KC 

is a composite herd composed of animals bred through crossing of multiple breeds as reported by 

Nkrumah et al. (2007). Breed composition analyses showed that the 12 KC steers used in this study 

had an average of 22.3% Angus and 6.7% Charolais influence along with multiple other beef 

breeds, indicating that KC is genetically distinct from the two pure breeds included in this study.  

Our results showed that the majority of the identified DE genes related to RFI were breed 

or breed population specific although 96.1% of expressed genes in liver were common across the 

three breeds. This could be an indication that causal genes and causals mutations contributing to 

RFI variation in beef cattle are likely breed specific. This concurs with a low level of overlapped 

QTL regions of RFI across multiple breeds as reported by Saatchi and colleagues in multi-breed 

QTL analysis study (Saatchi et al. 2014), as well as concurs with a greater discrepancy of QTL 

regions reported in different studies (Barendse et al. 2007; Nkrumah et al. 2007b; Abo-Ismail et 

al. 2014; de Oliveira et al. 2014). Furthermore, with respect to previous liver tissue whole 

transcriptomic studies in beef cattle, only 31 of the 253 DE genes identified in the current study 

have been previously reported in the liver tissue of beef cattle with divergent RFI phenotypes 

(Chen et al. 2011; Alexandre et al. 2015; Tizioto et al. 2015; Weber et al. 2016), as listed in the 

supplementary excel files S2, S3, and S4. It is interesting to note that of the five genes differentially 
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expressed across all three cattle populations in our study, two genes including Stearoyl Co-A 

desaturase (SCD) and Lipin 1 (LPIN1) code for key enzymes involved in lipid metabolism. Tumor 

protein p53 inducible protein 1 (TP53INP1) gene codes for a stress inducible protein (SIP) that is 

involved in regulation of cell death (apoptosis) and cell cycle arrest influenced by cell stressors 

(Tomasini et al. 2003). Leucine rich adaptor protein 1 like (LURAP1L) codes for an adaptor 

protein reported to be involved in regulation of cell motility and migration (Cheng et al. 2017), 

while ENSBTAG00000047029 codes for an uncharacterized protein and its sequence is paralogous 

to ribosomal protein S23 (RPS23) that encodes a protein that is a component of the 40S subunit of 

the ribosomes (protein synthesis organelles) (Kitaoka et al. 1994), suggesting that these genes play 

key roles in altering RFI across the studied beef breeds.  

Although the DE genes we identified were mainly breed specific, the enriched biological 

functions were greatly similar across the breeds, indicating that genes influencing RFI in beef 

cattle are involved in the same biological functions underlying the trait across different breeds 

even though the specific genes underlying RFI are different between breeds. Some of the major 

biological functions identified in our study included lipid metabolism, molecular transport, small 

molecule biochemistry, energy production, amino acid metabolism, carbohydrate metabolism, cell 

development, and cell death and survival. Our results showed that lipid metabolism was the most 

significantly enriched biological function in Angus and Charolais, and the fourth most enriched 

function in KC, indicating the significant biological importance of lipid metabolism in regulating 

RFI in beef animals. Lipid metabolism has also been previously identified as an important 

biological function in relation to beef cattle RFI in other hepatic transcriptome studies (Chen et al. 

2011; Alexandre et al. 2015; Weber et al. 2016).  



34 

 

 

Regarding lipid metabolism, our results showed that lipid synthesis (including 

triacylglycerol synthesis) was predicted to be downregulated in the liver tissues of low-RFI 

animals from all the three beef breeds (Figure 2.3, Figure 2.4 and Figure 2.5). Similarly, 

downregulation of genes involved in lipogenesis and steroidogenesis in both liver and fat tissue of 

low-RFI Yorkshire pigs has been reported by Lkhagvadorj and colleagues (Lkhagvadorj et al. 

2010). In a liver transcriptomic study of Nellore steers, downregulation of fatty acid synthase 

(FASN) was reported in steers with low residual intake and body weight gain (low-RIG) 

(Alexandre et al. 2015), implying possible reduced fatty acid synthesis in the liver tissue of those 

animals. In a more recent study in Angus cattle, predicted downregulation of lipid synthesis was 

reported in the adipose tissue of low-RFI steers (Weber et al. 2016). These observations suggest 

that feed efficient animals (not only cattle) direct consumed energy/nutrients away from lipid 

synthesis and probably towards protein or lean muscle synthesis. Notably, SCD and LIPN1 genes 

identified as differentially expressed across all the three studied cattle breeds are involved in lipid 

synthesis. SCD codes for Stearoyl Co-A desaturase enzyme, a rate limiting enzyme in the 

biosynthesis of monounsaturated fatty acids, predominantly oleic and palmitoleic acid (Ntambi & 

Miyazaki 2004). The synthesized fatty acids are then used as substrates for biosynthesis of other 

lipids such as phospholipids, triglycerides and cholesterol esters. Therefore, differential expression 

of this gene between feed efficient and inefficient animals may contribute to the genetic 

linkage/correlations between feed efficiency and carcass fatty acid composition that have been 

reported in beef cattle (Inoue et al. 2011; Zhang et al. 2017). Differential expression of the SCD 

gene between RFI divergent beef animals has been reported in pituitary, muscle, adipose and 

duodenum tissues where it was also downregulated in low-RFI Angus steers (Weber et al. 2016). 

LIPN1 encodes for Lipin-1 a phosphatidate phosphatase (PAP) enzyme, and a member of the Lipin 
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protein family, which are mainly involved in triacylglycerol (TAG) synthesis in the glycerol 

phosphate pathway where they dephosphorylate phosphatidic acid to diacylglycerol (Csaki et al. 

2013). Diacylglycerol is then converted to triacylglycerol by diacylglycerol transferase (DGAT). 

Triacylglycerol is a major and vital form of energy storage in adipose tissues and source of fatty 

acids for oxidation in both cardiac and skeletal muscles (Csaki et al. 2013). We acknowledge the 

fact that in ruminants such as cattle, lipogenesis or lipid synthesis predominantly occurs in the 

adipose tissue and a limited capacity of lipogenesis occurs in the liver (Roh et al. 2006). This 

limited lipogenesis in the liver does however generate new fatty acids that are either esterified into 

triglycerides for storage in adipose tissue, oxidized in the liver or exported to other parts of the 

body as lipoproteins where they are used as a source of energy and structurally as membrane 

building components. Additionally, downregulation of accumulation and storage of lipids (such as 

triglycerides) was predicted in the low-RFI animals in all three studied breed populations. This 

could be another metabolic advantage of feed efficient animals have over inefficient animals. It is 

worth mentioning that species with limited hepatic lipogenesis like cattle also have limited 

potential to secrete triglycerides from the liver as compared to those species that use the liver as 

the major tissue for lipogenesis (Pullen et al. 1990). Therefore, increased hepatic lipid synthesis 

and accumulation predicted in the high-RFI animals could consequently lead to increased fat 

accumulation in the hepatic cells of inefficient animals. Increased accumulation of fat in the liver 

cells may lead to the development of fatty liver (Drackley et al. 2005). Fatty liver then impairs the 

liver tissue’s optimal functionality of gluconeogenesis, β-oxidation, endotoxin and metabolic 

waste detoxification, exposing the animals to a number of metabolic stressors (Drackley et al. 

2005). Interestingly, our results showed predicted upregulation of lipid secretion, transport and 

efflux from the hepatic cells of low-RFI steers which could be another mechanism of minimizing 
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fat accumulation in those cells. In this regard, reduced liver fat synthesis and accumulation might 

be an adaptive metabolic or physiological advantage for feed efficient animals to maintain an 

optimal functioning liver tissue as compared to the inefficient animals. Although we did not 

perform histological evaluation of the liver tissues of the animals studied in the current study, an 

independent study on Nellore steers by Alexandre et al. (2015) through histopathological 

evaluation observed different liver tissue health status between the less feed efficient or high-RIG 

animals as compared to high efficient animals or low-RIG (Alexandre et al. 2015). In that study, 

they reported increased periportal liver lesions in the less feed efficient compared to high feed 

efficient animals, which they hypothesized was because of increased hepatic lipid biosynthesis and 

elevated bacterial infection in the less feed efficient animals (Alexandre et al. 2015), hence 

revealing that hepatic tissue health could influence observed differences in feed efficiency in beef 

cattle. 

Although phenotype records of the fat related traits (FUFAT, AFAT and marbling score) 

in our study did not show significant difference between the high and low RFI steer groups, low 

fat accumulation or deposition in more feed efficient beef animals in different body parts has been 

reported by a number of studies. For example, Trejo et al. (2010) and Nascimento et al. (2016) 

reported significantly lower internal fat content in more feed efficient beef cattle carcasses as 

compared to inefficient animals (Trejo 2010; Nascimento et al. 2016). Richardson and colleagues 

also reported lower carcass and internal fat in low-RFI Angus steers than high-RFI steers 

(Richardson et al. 2001). In our previous studies, it was observed that more feed efficient beef 

cattle tended to have less backfat and slightly less marbling (Nkrumah et al. 2007a; Mao et al. 

2013). In a more recent transcriptomic study, higher specific gravity of carcasses from feed 

efficient Angus steers was observed in comparison to the inefficient steers, indicating lower fat 
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and higher lean content in the carcasses of more feed efficient animals (Weber et al. 2016). In the 

same study, transcriptome analysis results predicted reduced fat synthesis and accumulation in the 

adipose tissue of the animals with low-RFI or more feed efficient animals (Weber et al. 2016). 

Therefore, our results and the previous reports showing fat synthesis and accumulation differences 

between feed efficient and inefficient animals could be a result of metabolic prioritization of 

nutrients, especially energy. The efficient animals probably spend less energy on lipid synthesis 

and accumulation/deposition, which metabolically require more energy than lean tissue or protein 

deposition (McDonald 2002; Robinson & Oddy 2004), thus indicating that energy required to 

deposit fat may play a major role in determining feed efficiency in growing steers.  

The liver modulates body nitrogen through several amino acid and other nitrogen 

compound metabolic processes, such as protein synthesis (Eisemann et al. 1989; Keiding & 

Sørensen 2007), protein and amino acid catabolism and ureagenesis (Reynolds 1992; Seal & 

Reynolds 1993). Indeed, our data demonstrates that amino acid metabolism was the most 

significantly enriched biological function in the crossbred animals with 22 DE genes involved 

(shown in Table 3), though only three DE genes (SLC7A5, ANXA2 and ABCC4) and two DE genes 

(GATM and EDNRA) were identified as involved in amino acid metabolism in Charolais and 

Angus, respectively. The genes identified in KC are involved in several amino acid metabolic 

processes such as catabolism of amino acids (AASS, ARG1, ASL, GOT1, HAL, SDS and TAT), 

amino acid transport (ARG1, IGF1, SLC16A10, SLC22A7, SLC25A15 and SLC7A2) and the urea 

cycle (ARG1 and ASL). Even though we could not obtain activation/deactivation prediction scores 

for the identified processes from IPA because of low DE gene numbers, the majority of the DE 

genes identified in these processes were downregulated in low-RFI steers. For example, of the 

seven genes involved in amino acid catabolism, six (ARG1, ASL, GOT1, HAL, SDS and TAT) were 
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downregulated in low-RFI animals, and this suggests reduced protein and amino acid breakdown 

in the feed efficient animals. Argininosuccinate lyase (ASL) and arginase (ARG1) are key enzymes 

in ureagenesis, where Argininosuccinate lyase catalyzes conversion of argininosuccinate to 

arginine, and arginase catalyzes conversion of arginine to urea and ornithine (Morris Jr 2002). 

Hence, downregulation of these genes could be an indication of reduced amino acid catabolism 

and/or reduced synthesis of urea in the liver. Lower levels of blood urea concentration have been 

reported in low-RFI steers as compared to high-RFI beef cattle by Richardson et al. (2004) and 

Fitzsimons et al. (2013), suggesting that amino acid metabolism also plays a considerable role in 

regulating RFI of beef cattle (Richardson et al. 2004; Fitzsimons et al. 2013). 

Carbohydrate metabolism was another interesting enriched biological function in our study 

with 13 DE genes involved in Angus (genes shown in Table 2.3), 10 in Charolais, and 31 in the 

crossbred KC population (genes of both populations shown in Supplementary Data S3 and 

Supplementary Data S4). Association between RFI variation and carbohydrate metabolism has 

been previously reported in a liver whole transcriptome study between efficient and inefficient 

Angus steers (Khansefid et al. 2017). More interestingly, some of the DE genes we identified are 

involved in gluconeogenesis, and these included ADIPORA, GATM and SCD for Angus, NROB2 

and SCD for Charolais, and DUSP1, FGF21, GNMT, NROB2, PPARGC1A, SCD, SDS and TAT 

for KC. Carbohydrates are a very important nutrient to an animal as they provide more than half 

of the total energy needed by an animal for maintenance, growth and production (muscle 

deposition in beef cattle) (Nafikov & Beitz 2007). Furthermore, glucose is the main source of 

metabolic energy in the body, however, in ruminants most of the carbohydrates (cellulose and 

starch) are fermented by rumen microbes into volatile fatty acids (VFAs) which are absorbed into 

the blood stream and transported to the liver (Nafikov & Beitz 2007), where VFAs are utilized for 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5c5facc6-04c8-4515-a0f4-158f65f0a00c/Supplementary%20Data%20S3.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/901ca197-7ffe-4427-b290-30e5fd1163ea/Supplementary%20Data%20S4.xlsx
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biosynthesis of several organic molecules including carbohydrates. Therefore, differential 

expression of genes involved in carbohydrate metabolism between inefficient and efficient animals 

may reflect the difference in catabolic or anabolic efficiency difference in carbohydrate synthesis 

and utilization by these animals.  

2.6 Conclusions  

We investigated differential gene expression through RNAseq analyses in the liver tissues 

of steers with divergent feed efficiency phenotypes from two beef pure breeds and a composite 

breed population that were born, raised and managed under the same environments, and with a 

similar age. We identified a total of 253 unique genes associated with RFI in the three Canadian 

beef cattle breeds, of which five DE genes were shared across all three breeds. The study showed 

a great similarity in the biological functions associated with RFI across the three breeds, with lipid 

metabolism, amino acid metabolism, carbohydrate metabolism, molecular transport, energy 

production, small molecule biochemistry, cell death and survival, and cellular development being 

the major functions we identified. Our results further suggest reduced hepatic lipid synthesis and 

fat accumulation in more feed efficient beef cattle across all the studied breeds, which may be an 

indication of energy prioritization away from lipid deposition and towards lean growth or 

maintaining better health or function of liver tissue. However, most of DE genes identified in this 

study were breed specific, which indicates that most causative genetic mutations contributing to 

RFI variation are likely not the same across beef breeds or expressed differently in different breeds. 

Further studies including blood tissue whole metabolome profiling, liver lipid biosynthesis and 

accumulation evaluation, and transcriptome analyses from multiple tissues at various 

developmental stages would help generate a better understanding of the genetic influence and 
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would contribute to identification of causative mutations for RFI in beef cattle, especially when 

different beef breeds are examined. 
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2.8 Figures and Tables 

 

Figure 2.1. Venn diagrams showing: (a) overlap of expressed genes (> 1CPM in ≥ 6 samples) in the three studied breed populations; 

(b) overlap of differentially expressed genes (DE genes) in the three studied breed populations; (c) overlap of biological functions 

identified. 
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Figure 2.2. Expression profile (log2(Fold-change)) in low-RFI steers of the five differentially expressed (DE) genes common across all 

three breeds. 
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Figure 2.3. Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in the different lipid 

metabolic processes and their predicted activation or deactivation levels in Angus low-RFI steers. 
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Figure 2.4. Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in the different lipid 

metabolic processes and their predicted activation or deactivation levels in Charolais low-RFI steers. 
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Figure 2.5. Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in the different lipid 

metabolic processes and their predicted activation or deactivation levels in KC low-RFI steers. 
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 Table 2.1. Differences of RFI and other performance traits between groups of high (n = 6) and low RFI steers (n = 6) of the three 

breeds (Angus, Charolais and Kinsella Composite). 

“*” indicates significant difference (P-value≤ 0.01). RFI – residual feed intake, DMI – daily dry matter intake, ADG–average daily gain, 

MWT– metabolic body weight, FUREA - final ultrasound ribeye area at the end of feedlot test ; FUFAT - final ultrasound backfat at 

the end of feedlot test; HCW - hot carcass weight; AFAT - carcass average backfat; REA = carcass ribeye area; LMY - lean meat yield; 

Marbling score (100–399 = trace marbling or less, 400–499 = slight marbling, 500–799 = small to moderate marbling, and 800–1199 = 

slightly abundant or more marbling). L_RFI±SE- mean RFI values for the low RFI group ± standard error (SE); H_RFI±SE- mean RFI 

values for the high RFI group ± standard error (SE). 

  Angus Charolais  Kinsella Composite (KC) 

Trait L_RFI±SE H_RFI±SE P-value L_RFI±SE H_RFI±SE P-value L_RFI±SE H_RFI±SE P-value 

RFI/kg/day -0.84±0.07 1.29±0.10 9.24E-09* -1.10±0.0.08 1.15±0.16 1.69E-07* -1.29±0.11 1.52±0.12 1.18E-08* 

DMI/kg/day 11.46±0.51 13.31±0.43 0.01* 10.11±0.16 12.32±0.16 2.21E-06* 9.21±0.36 12.74±0.36 3.95E-05* 

ADG/kg/day 1.88±0.11 1.74±0.12 0.38 1.64±0.04 1.67±0.08 0.78 1.48±0.10 1.63±0.07 0.26 

MWT/kg 115.58±5.41 115.63±2.75 0.99 120.73±1.50 119.74±1.79 0.68 99.7±2.70 104.67±2.77 0.23 

FUREA/cm2 84.41±1.56 80.34±3.08 0.27 93.80±2.27 91.99±3.25 0.66 70.28±2.90 74.22±1.52 0.26 

FUFAT/mm 9.23±1.24 9.57±0.68 0.73 7.08±0.85 5.67±0.63 0.21 8.67±0.55 8.98±0.45 0.67 

HCW/lb 763.23±44.26 753.47±22.00 0.85 855.17±23.18 843±9.89 0.64 656.67±21.52 697.33±24.54 0.24 

AFAT/mm 10.67±1.09 12.17±1.40 0.42 8.33±1.11 6.67±0.49 0.20 11.67±1.18 10±0.51 0.22 

CREA/cm2 75.83±2.34 74.33±4.45 0.77  95.3±4.44 94±3.12 0.81 69.67±2.54 76.33±2.23 0.08 

LMY/% 56.43±1.18 55.2±1.76 0.57 60.88±1.09 61.94±0.62 0.42 55.79±0.87 57.81±0.56 0.08 

Marbling score 393.33±23.47 438.33±17.78 0.16 370±36.79 398.33±14.24 0.49 378.33±20.56 378.33±20.56 1.00 

Slaughter 

age/day 

488.9±5.2 500.3±4.4 0.12 517.3±6.6 522.0±5.0 0.58 445.2±3.4 464.0±7.1 0.04 
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Table 2.2. Twenty-nine most significantly (by FDR value) differentially expressed genes in Angus, Charolais, and KC.  

Angus Charolais Kinsella Composite (KC) 

Gene  logFC FDR Gene logFC FDR Gene logFC FDR 

RPL12 3.05 6.72E-20 PRAP1 -2.93 9.4E-22 SERPINI2 5.52 1.92E-47 

Sectm1b 2.67 1.33E-19 CYP2C19 3.146 1.9E-21 FKBP5 -4.66 2.2E-25 

CDHR5 -3.17 9.81E-19 SLC13A2 1.987 2.6E-08 LPIN1 -4.49 4.9E-23 

PRSS2 -4.73 4.79E-18 REC8 -1.416 1.9E-05 CYP2B6 -3.49 9.67E-15 

HLA-DQA1 2.99 2.55E-17 CES1 -1.694 3.3E-05 CES1 2.42 3.04E-14 

APOA4 2.36 8.67E-14 GPX3 1.412 2.6E-04 PRAP1 -4.00 1.83E-12 

HLA-DQA2 -2.83 3.55E-13 LURAP1L -1.726 2.6E-04 NAV2 2.29 8.5E-11 

ECEL1 -2.50 5.51E-11 AK4 1.225 2.6E-04 AK4 2.26 3.38E-10 

DOPEY2 2.39 3.29E-10 LAMB3 -1.462 2.6E-04 AKR1B10 -3.98 4.73E-10 

LOC690507 -2.77 5.79E-10 TP53INP1 -1.367 5.6E-04 COL27A1 1.94 1.17E-08 

SLC22A2 -3.59 1.06E-09 SLC7A5 -1.71 07E-04 SLC16A6 -2.46 3.59E-08 

GIMAP4 1.93 3.46E-09 TMEM176B 1.195 1.35E-03 STS -2.41 4.52E-08 

SCD -2.07 1.40E-08 HLA-DQB1 -2.194 2.6E-03 ALAS1 -2.23 9.65E-08 

HLA-B -1.97 3.55E-07 TNC 1.233 2.71E-03 GLCE -2.19 1.3E-07 

HOPX 1.71 4.97E-07 CXCL2 1.474 3.37E-03 GNMT -2.23 4.85E-07 

UGT2B7 1.64 1.14E-06 NR0B2 -1.18 4.12E-03 SDS -2.14 7.61E-07 

HLA-B -1.79 1.44E-06 THEM4 -1.239 9.12E-03 ARG1 -1.99 3.05E-06 

CCDC80 -1.95 1.47E-06 PDK4 -1.33 0.0184 ABHD2 1.67 4.49E-06 

CABYR 1.66 3.91E-06 GPNMB 1.155 0.0192 NMNAT2 -3.02 5.49E-06 

UGT2B17 -1.78 4.86E-06 LPIN1 -1.118 0.0192 PER1 -2.03 7.37E-06 

LPIN1 -1.77 5.94E-06 SERPINA3 -1.225 0.0192 GLS2 -1.95 7.65E-06 

SLCO4A1 -1.87 5.94E-06 TBATA 1.02 0.0195 WFDC2 -2.02 8.16E-06 

ASCL1 -1.71 6.26E-06 RND1 1.021 0.02 MKNK1 -1.90 1.13E-05 

IFI6 -1.79 9.22E-06 INMT 1.104 0.0291 OAT -2.01 1.51E-05 

RXRG 1.42 1.06E-04 ANXA2 1.065 0.0309 MFSD2A -2.05 1.64E-05 

FKBP5 -1.53 2.14E-04 SCD -1.275 0.0356 MYCL 2.03 1.88E-05 

ALAS1 -1.54 2.47E-04 SLC4A4 -1.063 0.0389 ERBB2 1.51 4.23E-05 

TSKU -1.54 9.20E-04 KLHL13 -1.184 0.0429 HLA-B -1.75 4.36E-05 

LURAP1L -1.49 1.26E-03 SPNS2 1.028 0.0466 ASB9 -2.80 4.80E-05 

FDR = False discovery rate; logFC = log2 (Fold-Change in low RFI steers in comparison with high RFI steers). 
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Table 2.3. Five topmost significantly enriched biological functions within each breed and the DE genes involved within each specific 

function. 
 

Biological Function No. of 

genes 

Genes involved in the biological function 

(Angus)1 Lipid metabolism 21 ELOVL5, GATM, HP, LPIN1, ADIPOR2, CSF2RB, SLC22A2, CCDC80, 

ZBTB16, ACSS2, EDNRA, CPT1B, RXRG, APOA4, UGT2B17, SCD, FKBP5, 

G0S2, MARCO, PLA2G2D, DLK1 

2 Molecular transport 20 ADIPOR2, APOA4, CCDC80, CPT1B, CSF2RB, DLK1, EDNRA, ELOVL5, 

G0S2, GATM, HP, LPIN1, MARCO, PLA2G2D, RXRG, SCD, SLC22A2, 

TP53INP1, UGT2B17, ZBTB16 

3 Small molecular 

biochemistry 

23 ACSS2, ADIPOR2, APOA4, CCDC80, CPT1B, CSF2RB, DLK1, EDNRA, 

ELOVL5, FKBP5, G0S2, GATM, HP, LPIN1, LURAP1L, MARCO, PLA2G2D, 

RXRG, SCD, SLC22A2, TP53INP1, UGT2B17, ZBTB16 

4 Carbohydrate metabolism 13 SCD, CCDC80, UGT2B17, LPIN1, CSF2RB, PLA2G2D, GNAZ, TP53INP1, 

EDNRA, GATM, ADIPOR2, ELOVL5, APOA4 

5 Energy production 6 SCD, CCDC80, LPIN1, G0S2, ADIPOR2, CPT1B 

(Charolais)1 Lipid metabolism 14 ABCC4, AKR1C1/AKR1C2, ANXA2, CES1, CYP2C19, DLK1, LPIN1, NR0B2, 

PDK4, SCD, SLC4A4, SPNS2, THEM4, TNC 

2 Molecular transport 17 ABCC4, AKR1C1/AKR1C2, ANXA2, CES1, CXCL2, DLK1, LPIN1, NR0B2, 

PDK4, SCD, SIRPA, SLC13A2, SLC4A4, SLC7A5, SPNS2, TNC, TP53INP1 

3 Small molecule 

biochemistry 

21 ABCC4, AK4, AKR1C1/AKR1C2, ANXA2, CES1, CYP2C19, DLK1, GPX3, 

LPIN1, LURAP1L, MIOX, NR0B2, PDK4, SCD, SLC13A2, SLC4A4, SLC7A5, 

SPNS2, THEM4, TNC, TP53INP1 

4 Energy production 6 AKR1C1/AKR1C2, CYP2C19, LPIN1, NR0B2, PDK4, SCD 

5 Cellular development 15 ANXA2, CXCL2, DLK1, GNAZ, GPNMB, LAMB3, LPIN1, NR0B2, PDK4, 

RND1, SCD, SIRPA, SLC7A5, TNC, TP53INP1 
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(KC)1 Amino acid metabolism 22 AASS, ACMSD, ARG1, ASL, ERBB2, GCH1, GCLC, GHR, GLS2, GNMT, GOT1, 

HAL, IGF1, IGFBP2, OAT, RXRG, SDS, SLC16A10, SLC22A7, SLC25A15, 

SLC7A2, TAT 

2 Small Molecule 

biochemistry 

64 AASS, ABCG8, ACACA, ACMSD, ADA, AK4, AKR1B10, APOA1, ARG1, ASL, 

ASPG, ATP2A2, BAG3, CDKN1A, CES1, CPT1B, CXCL10, CYCS, CYP1A1, 

CYP2B6, DUSP1, EDNRA, ELOVL2, ERBB2, ERBB3, FGF21,GATA4, GCH1, 

GCLC, GHR, GLS2, GNMT, GOT1, HAL, HMGCR, IGF1, IGFBP2, INSIG1, 

LPIN1, MFSD2A, MKNK1, NMNAT2, NPC1, NR0B2, OAS1, OAT, OGDH, 

P2RY2, PER1, PNP, PPARGC1A, RBP5, RHOJ, RXRG, SCD, SDS, SLC16A10, 

SLC22A7, SLC25A15, SLC7A2, SQLE, STS, TAT, ZBTB16 

3 Cell death and survival 64 ACACA, ADA, APMAP, APOA1, ARG1, ATP2A2, BAG3, BTG2, CCND1, 

CDKN1A, CES1, CXCL2, CXCL10, CYCS, CYP2B6, DDIT4, DUSP1, EDNRA, 

ERBB2, ERBB3, FGF21, FKBP5, GADD45B, GATA4, GCH1, GCLC, GHR, 

GLS2, GNL3, GNMT, HEYL, HLA-B, HLA-F, HMGCR, IGF1, IGFBP2, INSIG1, 

IRAK3, ITGA7, KYAT1, LRIG1, MANF, MKNK1, MOB3B, NMNAT2, NPC1, 

NR0B2, OAS1, OGDH, PER1, PIGR, PNP, PPARGC1A, PRAP1, RHOJ, RRS1, 

SCD, SERPINA3, TOP1, TP53INP1, TRIB2, UHRF1, USP2, ZBTB16 

4 Lipid metabolism 43 ABCG8, ACACA, ADA, AKR1B10, APOA1, ASPG, ATP2A2, BAG3, CDKN1A, 

CES1, CPT1B, CXCL10, CYCS, CYP1A1, CYP2B6, DUSP1, EDNRA, ELOVL2, 

ERBB2, FGF21, GATA4, GHR, GNMT, GOT1, HMGCR, IGF1, IGFBP2, 

INSIG1, LPIN1, MFSD2A, MKNK1, NPC1, NR0B2, OGDH, P2RY2, PER1, 

PPARGC1A, RBP5, RXRG, SCD, SQLE, STS, ZBTB16 

5 Molecular Transport 45 ABCG8, ACACA, ADA, APOA1, ARG1, ATP2A2, BAG3, CDKN1A, CES1, 

CPT1B, CXCL10, CXCL2, CYP1A1, DUSP1, EDNRA, ELOVL2, ERBB2, 

ERBB3, FGF21, GATA4, GHR, GNMT, HMGCR, HOOK1, IGF1, INSIG1, 

LPIN1, MFSD2A, NPC1, NR0B2, P2RY2, PER1, PIGR, PNP, PPARGC1A, 

RHOJ, RXRG, SCD, SLC16A10, SLC16A6, SLC22A7, SLC25A15, SLC38A7, 

SLC7A2, ZBTB16 
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Chapter 3. Liver transcriptome profiling of beef steers with divergent feed 

intake, metabolic weight or growth rate phenotypes 

3.1 Abstract 

 Average daily (ADG) and dry matter intake (DMI) are key determinants of the beef 

production profitability. These traits together with metabolic weight (MWT) are combined as 

component traits to calculate residual feed intake (RFI), a common measure of feed efficiency in 

beef cattle. Recently, there have been significant efforts towards molecular genetic 

characterization of RFI through transcriptomic studies with different breeds and tissues. However, 

molecular mechanisms of RFI component traits remain largely unexplored. Therefore, in the 

current study we investigated the hepatic transcriptomic profiles and their association with ADG, 

DMI and MWT in Angus, Charolais, and Kinsella Composite (KC) populations through global 

RNAseq analyses. In each population and for each trait, 12 steers with extreme phenotypes (n = 6 

low and n = 6 high) were analyzed for differential gene expression. On average, 11854, 11900 and 

11792 genes were expressed in the liver tissue of Angus, Charolais and KC steers, respectively. 

We identified 123, 102 and 78 differentially expressed (DE) genes between high and low-ADG 

animals of Angus, Charolais and KC populations, respectively. For DMI, 108, 180 and 156 DE 

genes were identified between high and low-DMI from Angus, Charolais and KC populations, 

respectively, while for MWT, 80, 82 and 84 genes were differentially expressed between high and 

low-MWT animals in Angus, Charolais and KC populations, respectively. The identified DE genes 

were largely breed-specific (81.7% for ADG, 82.7% for DMI, and 83% for MWT). However, the 

DE genes were largely involved in the same biological functions across the breeds. Among the 

most enriched biological functions included metabolism of lipid, carbohydrates, amino acids, 

vitamins and minerals, small molecule biochemistry, cellular movement, cell morphology and cell 
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to cell signaling and interaction. Notably, we identified multiple DE genes that were involved in 

cholesterol biosynthesis, and immune response pathways for the three studied traits. Together, our 

findings provide insight into the genetic mechanisms and candidate genes that influence feed 

intake, growth, and metabolic weight of beef cattle. 

3.2 Introduction 

Animal growth rate and feed intake are very important traits to the beef industry as they 

both directly affect the productivity, and thus profitability of the industry. To finish beef cattle for 

meat production, feedlot operators maintain their animals in the feedlot and incur costs such as 

labor, management, veterinary, feed and feeding related costs, with the latter accounting for over 

65% of the total production costs (Ahola & Hill 2012). It is therefore of great interest to beef 

producers to raise faster growing animals with minimal or reduced daily feed consumption to 

optimize productivity of production systems profits (Hill & Ahola 2012). It has been reported that 

growth rate measured as average daily gain (ADG) and feed intake measured as daily dry mater 

intake (DMI) are moderately to highly heritable traits, with estimated heritability of 0.35 to 0.59 

(Schenkel et al. 2004; Nkrumah et al. 2007; Mao et al. 2013), hence the potential to breed and 

select for more efficient animals. Additionally, ADG and DMI together with metabolic weight 

(MWT) are key component traits used in the calculation of animal feed efficiency termed as 

residual feed intake (RFI) in beef cattle (Koch et al. 1963). Furthermore, ADG and DMI are also 

important traits that can be included in beef cattle genetic selection and breeding programs to 

improve the efficiency of beef production. 

In recent years, several transcriptome studies on different tissues including the liver tissue 

have been performed to identify molecular mechanisms of feed efficiency traits including RFI in 

different beef cattle breeds or populations (Chen et al. 2011; Al‐Husseini et al. 2014; Alexandre 
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et al. 2015; Paradis et al. 2015; Kong et al. 2016; Tizioto et al. 2016; Weber et al. 2016; Khansefid 

et al. 2017; Mukiibi et al. 2018). However, only a few studies have focused on identifying such 

mechanisms for ADG and DMI (Foote et al. 2017; Lindholm‐Perry et al. 2017; Reynolds et al. 

2017; Zarek et al. 2017). ADG, DMI and MWT are complex traits whose molecular architecture 

involve multiple organs, and the liver is a major physiological and metabolic organ involved in 

nutrient metabolism and homeostasis (Van den Berghe 1991), immune response (Racanelli & 

Rehermann 2006), and growth regulation through its endocrine function (Baruch 2000). Given this 

metabolic vitality, it is eminent that genes expressed in liver probably directly or indirectly 

influence animal growth rate, feed intake and metabolic weight of the animal. Therefore, in the 

current study we analyzed RNAseq data of liver tissues of selected beef steers of extreme 

phenotypes, with the aim to identify differentially expressed genes and metabolic or biological 

functions that underlie ADG, DMI and MWT phenotypic differences in Canadian beef populations 

including Angus, Charolais, and Kinsella Composite.  

3.3 Materials and Methods 

3.3.1 Animal populations and management 

Populations and management of the animals used in this study have been described 

extensively in our previous study by Mukiibi et al. (2018) (Mukiibi et al. 2018). Briefly, the 

animals were managed under the Canadian Council of Animal Care (CCAC) guidelines on the 

care and use of farm animals in research teaching and testing (CCAC 2009), and the experimental 

procedures were approved by the University of Alberta Animal Care and Use Committee 

(AUP00000777). Beef steers from three beef cattle herds including purebred Angus, Charolais, as 

well as Kinsella Composite (KC) were used in this study. All animals were born, raised and 

managed similarly at the Roy Berg Kinsella Ranch, University of Alberta, Canada. The purebred 
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Angus and Charolais cows were bred by artificial insemination (AI) followed by natural service 

bulls and their pedigree information was maintained by the Canadian Angus or Charolais 

Association, respectively. The KC herd descended from crosses between Angus, Charolais, or 

Alberta Hybrid bulls and the University of Alberta’s hybrid dam line that was generated by 

crossing composite cattle lines of multiple beef breeds as described by Goonewardene et al. (2003). 

Commercial crossbred bulls have also been used in the KC herd since 2012. The animals used in 

this study were born during the months of April and May in 2014 and were castrated right after 

birth. The steer calves remained with their dams over the summer and grazed mixed tame grass 

pasture, then weaned at approximately six months of age. They were transitioned to backgrounding 

diet composed of 80% barley silage, 17% barley grain, and 3% rumensin pellet supplement, and 

then fed set-up diets with gradually decreasing barley silage and increasing barley grain 

proportions for 3 weeks prior to introducing them to the finishing diet of 75% barley grain, 20% 

barley silage, and 5% rumensin pellet supplement (as fed basis).   

3.3.2 GrowSafe feedlot test, phenotype measurement and calculations 

 In 2015, 50 Angus, 48 Charolais and 158 KC steers were measured for individual feed 

intake between April and August using the GrowSafe system® (GrowSafe Systems Ltd., Airdrie, 

Alberta, Canada). During this test period, animals were fed a finishing diet as described above. 

The process of measuring the individual animals’ daily feed intake using the GrowSafe automated 

system has been described previously by Mao et al. (2013) (Mao et al. 2013). Briefly, DMI of each 

steer was calculated as the average of daily feed intakes over the test period (70 to 73 days), 

standardized to 12 MJ ME per kg dry matter based on the energy content of the diet. Initial body 

weight and ADG for each animal were obtained from a linear regression of serial body weight 

(BW) measurements that were recorded on two consecutive days at the beginning, at 
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approximately 14-day intervals during the feedlot test, and on two consecutive days at the end of 

test. MWT was calculated as midpoint BW0.75, where midpoint BW was computed as the sum of 

initial BW of the animal and the product of its ADG multiplied by half the number of days under 

the feedlot test.  

3.3.3 Liver tissue collection  

At the end of the feedlot test all animals from each of the three breeds were slaughtered at 

Agriculture and Agri-Food Canada (AAFC) Lacombe Research and Development Centre 

(Lacombe, AB) between July and September of 2015. Steers were rendered fit for slaughter at a 

backfat thickness of ≥ 8 mm as predicted from a final ultrasound backfat measurement that was 

performed between the 12th and 13th ribs at the end of the GrowSafe feedlot test using an Aloka 

500 diagnostic Realtime ultrasound machine with a 17cm 3.5Mhz linear array transducer 

(Overseas Monitor Corporation Ltd., Richmond BC). The three steer groups had average slaughter 

ages of 494 ± 3, 518 ± 4, and 457 ± 4 days for Angus, Charolais, and KC respectively. The liver 

sample of each animal was collected immediately after slaughter and the tissue was dissected from 

approximately the same location on the right lobe with the fibrous capsule removed. Samples were 

separately bagged, labeled and were immediately flash frozen in liquid nitrogen. Subsequently the 

liver samples were transported to the laboratory on dry ice, and then stored at -80ºC until RNA 

extraction. 

3.3.4 RNA isolation and purification  

From the frozen liver samples, a total of 60 samples (20 from each breed) were selected 

for total RNA extraction based on their residual feed intake values (i.e. 10 steers with high and 10 

with low RFI values). The frozen liver tissue of each steer was pulverized into fine powder in 

liquid nitrogen with a pre-chilled mortar and pestle on dry ice. Total RNA was then extracted from 
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10 mg of the pulverized tissue using a Qiagen RNeasy Plus Universal Kit (Qiagen, Toronto, ON, 

Canada) and further purified using a Zymo RNA Clean & Concentrator (Zymo, Irvine, CA, USA). 

RNA was quantified using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Wilmington, 

DE, USA) and was deemed acceptable if its absorbance (A260/280) was between 1.8 and 2.0. 

RNA integrity was confirmed using a TapeStation-Agilent instrument (Agilent Technologies, 

Mississauga, ON, Canada), and the RNA integrity number (RIN) values for all samples were 

higher than 8. 

3.3.5 cDNA library preparation and sequencing  

Preparation of cDNA libraries and subsequent next generation sequencing of each of the 

60 libraries were performed at the Clinical Genomics Centre (Toronto, ON, Canada) using the 

Illumina TruSeq® RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA), where mRNA was 

purified and enriched from 1 µg of each of the total RNA samples using oligo-dT attached 

magnetic beads, and then fragmented through elevated heating to produce mRNA fragments of 

length 120-200bp and a median of 150pb. Thereafter, the first strand of the cDNA was synthesized 

using SuperScript II Reverse Transcriptase enzyme (Thermo Fisher Scientific, San Jose, CA, 

USA) and the second strand was synthesized using the DNA Polymerase I and RNase H enzymes 

(Illumina, San Diego, CA, USA). The cDNA libraries were validated using gel electrophoresis to 

confirm that the fragment size was 150bp (on average) and concentration was on average 25ng/µl 

per sample. Unique oligonucleotide adapters were added to the cDNA of each sample to allow for 

multiplexing. Of the prepared cDNA sample libraries, 48 (all Angus, all KC and 8 Charolais) 

samples were single end sequenced (100bp) under the high output run mode of the Illumina Hiseq 

2500 System on eight flow cell lanes. The other 12 Charolais samples were sequenced under the 

rapid run mode of the same sequencing equipment. All sequence and phenotype data used in this 
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study have been submitted to the Gene Expression Omnibus repository under the accession number 

GSE107477. 

3.3.6 RNAseq data bioinformatic analyses  

Raw sequence data for each sample was assessed for sequencing quality using FASTQC 

software (Version 0.11.5) with default parameters (Andrews 2010). Tophat2 (version 2.1.1) 

RNAseq mapper was used to align and map the reads to the bovine reference genome UMD3.1 

using default single end read alignment parameters (Kim et al. 2013). Reads that were uniquely 

aligned to each gene annotated in the bovine gene transfer format (GTF) file 

(ftp://ftp.ensembl.org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz) were counted 

using HTSeq-count package (Anders et al. 2015) with default parameters to generate read count 

tables that were further used for differential gene expression statistical analyses. 

3.3.7 Differential gene expression analyses 

The 20 animal samples from each of the three cattle populations were sorted independently 

by ADG, DMI or MWT. The 12 samples within each breed with extreme phenotypes (n= 6 high 

and n= 6 low) for each trait were then analyzed for differential gene expression. The gene count 

tables generated by HTSeq-count, the gene annotation file downloaded from Ensembl Biomart 

(http://uswest.ensembl.org/biomart/martview/beba0f867162345fad64c14ad5232f2c), and the 

sample information file were used for differential gene expression statistical analysis using the R 

Bioconductor package edgeR (Robinson et al. 2010). To increase statistical power of the analyses, 

genes within each breed that had less than one count per million (CPM) of mapped reads in at least 

six samples (half of the analyzed samples) were filtered out from the analyses as proposed by 

Anders et al. (2013) (Anders et al. 2013). For the genes retained after filtration, their counts were 

normalized using the trimmed mean M values (TMM) method (Robinson & Oshlack 2010), to 

ftp://ftp.ensembl.org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz
http://uswest.ensembl.org/biomart/martview/beba0f867162345fad64c14ad5232f2c
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account for the technical variations between samples due to RNA extraction, cDNA library 

construction and differences library sequencing depths of genes (Robinson & Oshlack 2010). To 

test for differential gene expression between high and low-phenotype groups for each trait within 

a breed, normalized counts were modeled using a generalized linear model likelihood ratio test 

under assumption of a negative binomial distribution with the trait group as a fixed effect. For 

Charolais, sequencing run mode, either rapid or high output, was also included in the model to 

account for the difference in the sequencing modes. Genes were considered significantly 

differentially expressed between the trait groups at a threshold of Benjamin-Hochberg’s false 

discovery rate (FDR) of 0.05 and fold change (FC) of greater than 1.5 (> 1.5). 

3.3.8 Functional enrichment analysis 

  Functional enrichment analysis of the DE genes for each trait within a breed was performed 

using Ingenuity Pathway Analysis software (IPA) (Redwood City, CA; 

www.qiagen.com/ingenuity), with Ensembl bovine gene IDs and log2-fold change (log2FC) of the 

DE genes as input data. The core analysis in IPA was performed on the mapped genes to identify 

significantly enriched biological functions, canonical pathways and upstream regulators. 

Molecular and cellular functions (biological functions), canonical pathways, and upstream 

regulators were considered significantly enriched if the overlap comparison test (Fisher’s exact 

test) between the input DE gene list and the IPA Knowledge base database for that given biological 

function had a p value less than 0.05. Activation or deactivation of a specific enriched metabolic 

process, pathway or gene expression regulator was defined by the Z-score (Krämer et al. 2013) 

that was calculated based on the log2-fold changes of the overlapping DE genes involved in a 

process or canonical pathway, where a negative or a positive score indicated deactivation or 

activation of a process, respectively. 

http://www.qiagen.com/ingenuity
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3.4 Results 

3.4.1 Phenotypic differences between animal groups 

For ADG, the steer groups of high-ADG and low-ADG within all the three studied breeds 

were significantly different from each other at P < 0.0042 with Bonferroni correction of 12 

multiple tests at α < 0.05, Table S1 in Supplementary Data S6. There were no significant 

differences between the groups for all the other phenotypic traits except for final ultrasound ribeye 

area at the end of feedlot test for the KC steers. For DMI, steers from low-DMI group significantly 

consumed less feed per day as compared to those from the high-DMI group within each breed (P 

< 0.0042), Table S2 in Supplementary Data S6. As expected, low-DMI steers had significantly 

lower RFI than high-DMI animals in Charolais and KC (P < 0.0042), and for Angus Low-DMI 

steers also had lower RFI than their high-DMI counterparts although the difference did not reach 

the significance level of P < 0.0042. When the steer groups in each breed were compared for the 

other production phenotypes, no significant difference was observed between high and low-DMI 

animals except for MWT, for which, low-DMI steers showed lower MWT than the high-DMI 

steers and the difference reached the significance level of P < 0.0042 at the KC population. For 

metabolic weight, our results showed that animals in the high-MWT group within each of the 

studied population had significantly (P < 0.0042) higher metabolic weight than those in the low-

MWT group (Table S3 in Supplementary Data S6). It is observed that animals with high metabolic 

weights on average also had significantly (P < 0.0042) higher hot carcass weights (HCW) than 

those with lower MWT. For Angus, animals with low-MWT ate significantly less feed per day as 

compared to the high-MWT animals. All the other phenotypes were not significantly different 

between the MWT groups across the three breeds.  

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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3.4.2 Sequencing and alignment quality assessment  

On average next generation transcriptome sequencing (NGS) generated more than 32, 40 

and 29 million raw single end sequence reads for the Angus, Charolais and KC cDNA libraries, 

respectively (Table 3.1). FASTQC sequence data quality assessment results showed that the 

sequence reads were of high quality with the reads having average length of 101bp and average 

Phred quality score of more than 36. For alignment to the bovine reference genome, we obtained 

high unique alignment of approximately 87% reads per sample (Table 3.1).  

3.4.3 Differential gene expression  

Of the 24,616 annotated bovine genes, 11,849, 11,923 and 11,809 were found to be of 

sufficient expression level (i.e. Counts per million or CPM in at least six samples > 1) for 

differential liver gene expression analyses in ADG divergent steers from Angus, Charolais and KC 

populations, respectively. For Angus, 123 DE genes were identified between the ADG divergent 

steers, of which 74 genes were unregulated and 49 genes downregulated in fast growing (high-

ADG group) animals. For Charolais, we identified 102 DE genes for ADG with 39 and 63 DE 

genes that were up and downregulated respectively in high-ADG steers. For KC, 78 genes showed 

significant DE between high and low-ADG steers, with 23 and 55 of these genes respectively up 

and down regulated in high-ADG steers. Based on FDR, the forty topmost significantly 

differentially expressed genes which code for characterized proteins for each breed are presented 

in Table 3.2. The full list of all DE genes identified as associated with ADG for each breed are 

provided in the Supplementary Data S7. Most of the DE genes (81.7%) were breed specific, 

however, a sizable number of DE genes were shared at least between two breeds (Figure 3.1a). 

Five DE genes including SLC17A9, CXCL3, IFI27, JSP.1 and ENSBTAG00000003492 were 

shared among three breeds, with SLC17A9, CXCL3 and IFI27 showing consistent direction of 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/7919fc4c-5fe3-459a-883d-87753ff5fc4b/Supplementary%20Data%20S7.xlsx
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expression in fast growing steers across the three studied populations as presented in Figure S1 in 

the Supplementary Data S8.  

For DMI, 11871, 11961 and 11793 genes were expressed sufficiently for differential gene 

expression in Angus, Charolais and KC steers, respectively. For Angus, we identified 108 DE 

genes, with 57 genes up and 51 genes downregulated in low-DMI steers. Among the Charolais 

steers, 180 genes (120 upregulated and 60 downregulated in low-DMI animals) were differentially 

expressed. For KC, 156 genes (107 upregulated and 49 downregulated in low-DMI steers) were 

differentially expressed. The forty most significant protein coding DE genes by FDR are presented 

in Table 3.3, and all identified DE genes associated with DMI for each breed are provided in the 

Supplementary Data S9. Also for DMI, most (82.7%) of the identified DE genes were breed 

specific, with only four DE genes including IFI27, ENSBTAG00000003492, 

ENSBTAG00000024700, ENSBTAG00000047029 common among the three studied breeds, and a 

considerable number of DE genes (17-24 DE genes) were uniquely shared between breed pairs as 

shown in Figure 2.1b. However, none of the common DE genes showed consistent expression 

direction across the three breeds (Figure S2 in Supplementary Data S8). 

 For MWT, 11843, 11908 and 11774 genes were adequately expressed and hence were 

considered for analysis for the Angus, Charolais and KC steers, respectively. Of these expressed 

genes, 80 (34 upregulated and 46 downregulated in low-MWT steers), 82 (21 upregulated and 61 

downregulated in low-MWT steers), 84 (40 upregulated and 44 downregulated in low-MWT 

steers) genes were differentially expressed in Angus, Charolais and KC steers respectively. The 

forty most significant DE genes (coding for characterized proteins) by FDR are presented in Table 

4 and all identified DE genes associated with MWT in each of the studied breeds are provided in 

the Supplementary Data S10. Comparison of the identified DE genes across breeds showed a 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/82077525-59d7-4f9d-8e6a-c5d92cb390ac/Supplementary%20Data%20S9.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/5f7cb70b-155f-4418-b4d5-2f598c8c65f1/Supplementary%20Data%20S10.xlsx
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similar trend as for ADG and DMI with most of the DE genes (83%) being breed specific and only 

five DE genes including MT1E, CTGF, PRAP1, TMEM45A and CYP2B6 were identified as 

common across the three breeds ( Figure 3.1c). Two of these shared genes (i.e. MT1E and CTGF) 

showed consistent expression across the three populations with MT1E being downregulated and 

CTGF upregulated in low-MWT animals as shown in Figure S3 in Supplementary Data S8.  

3.4.4 Gene expression across traits within breed 

DE genes identified to be associate with ADG, DMI and MWT were compared with the 

DE genes for RFI reported by Mukiibi et al. (2018) within each studied population as shown in 

Figure S4 in Supplementary Data S8. Within each breed, the DE genes were largely trait specific 

with only four (HP, ENSBTAG00000047029, SERPINA3 and IFI27), one 

(ENSBTAG00000048094) and two (ENSBTAG00000022590 and ENSBTAG00000003492) DE 

genes shared across four traits in Angus, Charolais and KC, respectively. However, there was some 

considerable number of genes shared between pairs of the traits. For example, 46 genes were 

common between ADG and MWT, 31 genes shared between ADG and DMI, and 39 genes shared 

between ADG and RFI in Angus, Charolais and KC steers respectively. 

3.4.5 Functional Enrichment Analyses  

For ADG, a total of 120, 102 and 78 DE genes were mapped to the IPA knowledgebase 

database for Angus, Charolais and KC, respectively. These mapped DE genes were significantly 

(P < 0.05) involved in 20 molecular and cellular functions for Angus, 27 for Charolais and 28 for 

KC. Of all the identified molecular and cellular functions, 18 (58.1%) were common to all the 

three breeds as shown in Figure 3.1d. The most significantly enriched functions included cellular 

movement, lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, cell-

to-cell signaling and interaction, molecular transport, amino acid metabolism and carbohydrate 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
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metabolism (Figure S5, Figure S6 and Figure S7 in the Supplementary Data S8). It is worth noting 

that lipid metabolism and small molecule biochemistry functions were among the top five enriched 

biological functions across the three breeds.  

Within lipid metabolism, several metabolic processes related to lipid accumulation, lipid 

synthesis, lipid oxidation and lipid transport were identified as enriched by the differentially 

expressed genes as shown in Figure 3.2, Figure 3.3 and Figure 3.4 for Angus, Charolais and KC 

respectively. Synthesis of lipid (including steroids, fatty acids and acylglycerol) was predicted to 

be downregulated in the liver tissue of high-ADG animals from Charolais and KC steers (Figure 

3.3 and Figure 3.4). Accumulation of lipid was predicted to be downregulated in Charolais (Figure 

3.3), while upregulated in Angus and KC high-ADG steers, as shown in Figure 3.2 and Figure 3.4 

respectively. Transport of lipid and fatty acid oxidation were predicted as upregulated in both 

Charolais and KC high-ADG steers. Some of the key DE genes associated with lipid metabolism 

identified in the current study include CYP7A1, IGF1, SAA1, HMGCR and NROB2 for Angus, 

SCD, FASCN, APOA1, APOA4, SAA1, PDK4 and HMOX1 for Charolais, and SCD, LPIN1, 

FGF21, CYP7A1 and CES1 for KC. Lists of all DE genes involved in each of the five topmost 

enriched functions within each breed are provided in Table S4 in the Supplementary Data S6. 

Other than being the among the topmost enriched molecular and cellular functions for KC, 

amino acid and carbohydrate metabolism were also enriched for both Angus and Charolais with 

important enriched underlying processes. In relation to amino acid metabolism, some of the 

enriched metabolic processes included transport of amino acids, synthesis of amino acids and 

catabolism of amino acids. Top amino acid metabolism related processes for each breed and the 

DE genes involved in these processes, activation/deactivation score and overlap test p-values are 

presented in Table S5 in Supplementary Data S6. For carbohydrate metabolism biological 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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function, glucose uptake, and carbohydrate synthesis (gluconeogenesis), carbohydrate oxidation 

and transport were among the enriched metabolic processes as shown in Table S6 in 

Supplementary Data S6. 

IPA also revealed several interesting enriched activated or deactivated pathways for the 

identified differentially expressed genes in relation to growth rate in the three studied breed 

populations, with the topmost enriched pathways for each breed shown in Table 3.5. In Angus, 

superpathway of cholesterol biosynthesis was the most significantly (P = 1.35E-05) enriched 

pathway involving four of the DE genes (SQLE, HMGCR, HMGCS1 and CYP51A1) and was 

predicted to be inactivated in high-ADG steers with a Z-score of -2.00 (Table 3.5). LXR/RXR and 

PXR/RXR activation pathway was the most significant pathway involving seven (IL1R2, SCD, 

RXRG, APOA1, APOA4, FASN and SAA1) and five (GSTM1, SCD, CYP7A1, IGFBP1 and ALAS1) 

DE genes for Charolais and KC, respectively (Table 3.5). Additionally, IPA identified several 

upstream gene expression regulators and their predicted activation or deactivation level in the liver 

tissue of high-ADG animals across the three studied breeds. SREBF1 is a transcription factor that 

was predicted as the most significant (P = 9.41E-11) expression regulator in Angus and was shown 

to regulate expression of 14 (AK4, CYP51A1, CYP7A1, GPNMB, GPX3, HMGCR, HMGCS1, 

IFI30, IL1R2, NR0B2, OAT, SERPINA3, SERPINE1 and SQLE) of the identified DE genes in this 

breed (Table S7A in Supplementary Data S6). For Charolais, the P450 oxidoreductase (POR) 

enzyme was the most significant (P = 1.86E-12) regulator, regulating expression of 13 DE genes 

(ACTG1, APOA4, CSAD, CYP2B6, ELOVL2, GADD45B, HMOX1, NOCT, PDK4, SCD, SDS, 

SERPINA3 and SQLE) (Table S7A in Supplementary Data S6). For KC, interferon beta (IFN-β) 

was the most significant (P = 5.63E-14) upstream regulator, predicted to regulate 12 DE genes 

(DUSP1, HLA-B, IFI44, IFI6, ISG15, MX1, MX2, MYC, OAS1, RSAD2, SLC16A6 and USP18) 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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and to be inactivated in high-ADG animals with a Z-score of -3.08 (Table S7A in Supplementary 

Data S6). 

For DMI, 107, 177 and 155 DE genes were mapped to the IPA database for Angus, 

Charolais and KC, respectively, and we identified 27, 22 and 25 significantly enriched biological 

functions for Angus, Charolais and KC respectively, with 18 of them (60%) common to all breeds 

( Figure 3.1e). The top enriched functions associated with DMI included lipid metabolism, 

molecular transport, small molecule biochemistry, cell death and survival, carbohydrate 

metabolism, vitamin and mineral metabolism, cellular movement, cellular function and 

maintenance, cell-to-cell signaling and interaction and cellular development (Figure S8, Figure S9 

and Figure S10 in the  Supplementary Data S8). The genes involved in the top enriched molecular 

and cellular functions associated with DMI in each breed are provided in Table S4 in the 

Supplementary Data S6. Lipid metabolism was among the top enriched molecular and cellular 

functions in Angus and Charolais. For KC, all the top enriched functions we identified were related 

functionality of cells, with cellular function and maintenance being the most significantly enriched 

function. Within lipid metabolism for Angus, 30 DE genes were involved in several lipid related 

metabolic processes including concentration and accumulation of multiple lipids (cholesterol, 

phospholipids, triacylglycerol and acylglycerol), and catabolism of lipid as shown in Figure 3.5. 

Accumulation of lipid and concentration of lipids such as cholesterols and triacyl glycerides were 

predicted to be downregulated in low-DMI steers, whereas metabolism of membrane lipid 

derivative and quantity of polyunsaturated fatty acids were predicted to be upregulated. Some key 

DE genes involved in the metabolism of lipids in Angus include SCD, ARNTL, LIPN1, APOA4 

and ABHD6. For Charolais, 47 DE genes were identified as involved in different lipid metabolism 

processes. Some of the processes including uptake of lipid, accumulation of lipid and uptake of 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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cholesterol were predicted to be downregulated in the liver tissue of low feed intake animals as 

shown in Figure 3.6. However, other processes such as synthesis of lipid, synthesis of cholesterol, 

transport of lipid, and fatty acid metabolism were predicted to be upregulated in the same animals 

as shown in Figure 3.6. Some of the major DE genes related to lipid metabolism identified in 

Charolais included ABCA1, ABCG5, ABCG8, CYP7A1, NROB2, NPC1, CES1, SAA1, IL1B and 

SULT1E1. For DMI in KC, 51 DE genes were identified as involved in cellular function and 

maintenance, and these genes are mainly involved in a number of immune related functions such 

as proliferation of T lymphocytes, T cell development, phagocytosis of cells and T cell 

homeostasis which were predicted to be upregulated in liver tissue of low-DMI animals as shown 

in Figure 3.7.  

Pyrimidine ribonucleotides interconversion was identified as the most significantly (P = 

1.20E-03) enriched pathway in Angus with three (NUDT5, CMPK2 and AK8) DE genes involved 

in this pathway (Table 3.5). For Charolais, LPS/IL-1 mediated inhibition of RXR function was the 

most significant (P = 2.63E-10) pathway, with 15 of the DE genes (IL1R2, ABCG8, GSTM1, 

ABCG5, SULT1E1, JUN, SULT1C4, NR0B2, CYP7A1, SLC27A6, IL1B, ALDH3B1, HMGCS1, 

ABCA1, CYP2C19) involved in this pathway and it was predicted to be relatively activated (Z-

score = 0.33) in low feed intake steers (Table 3.5). For KC, we identified interferon signaling 

pathway as the most significant (P = 1.00E-10) pathway for this breed involving eight of the 

identified DE genes (all upregulated) as shown in Figure S11 in the  Supplementary Data S8, and 

was predicted to be activated (Z-score = 2.83) in low-DMI animals (Table 3.5). All the top enriched 

canonical pathways associated with DMI for each breed are presented in Table 3.5. Besides 

canonical pathways, IPA also predicted the top gene expression regulators and their 

activation/deactivation state as associated with feed intake for each of the breeds. Interferon alpha 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/a910103f-1493-410d-8203-929e412b4068/Supplementary%20Data%20S8.pdf
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cytokine group was predicted as the most significant gene expression regulator in Angus and KC. 

It was predicted to be inactivated (Z-score = -0.63) in Angus and activated in KC (Z-score = 3.86). 

For Charolais, FGF19 growth factor was the most significant (P = 2.30E-16) regulator involved 

in the regulation of 15 DE genes. Top five enriched upstream gene expression regulators and their 

predicted activation or deactivation state in low-DMI steers from the three studied populations are 

presented in Table S7B in Supplementary Data S6.  

For MWT, 80, 81 and 83 DE genes from Angus, Charolais and KC, respectively were 

mapped to the IPA database. These genes significantly enriched 24, 24 and 19 molecular and 

cellular functions for Angus, Charolais and KC respectively, with 17 of the enriched functions in 

common (63%) across breeds (Figure 3.1f). The major functions that were identified as associated 

with MWT included lipid metabolism, amino acid metabolism, small molecule biochemistry, 

vitamin and mineral metabolism, molecular transport, cell morphology, cellular movement, cell-

to-cell signaling and interaction, cell death and survival and drug metabolism. The genes involved 

in these major molecular and cellular functions associated with MWT in each breed are provided 

in Table S4 in the Supplementary Data S6. As for ADG and DMI, lipid metabolism and small 

molecule metabolism were among the top functions for both Angus and Charolais. Topmost (by 

P-value) enriched processes within amino acid metabolism and lipid metabolism for Angus, lipid 

metabolism and cellular movement for Charolais, and cell death and survival, and cellular 

movement for KC are presented in Table S8 in Supplementary Data S6. IPA additionally identified 

several significantly enriched canonical pathways associated with metabolic weight in each of the 

breeds, the top enriched canonical pathways are presented in Table 3.5. LPS/IL-1 mediated 

inhibition of RXR function was the most significant (P = 1.38E-05) pathway for Angus and was 

predicted to be inactivated (Z-score = -2.00) in low metabolic weight steers. For Charolais, 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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neuroinflammation signaling pathway was identified as the most significant (P = 1.45E-04) 

pathway and predicted to be activated (Z-score = 1.89) in low-MWT steers (Table 3.5). For KC, 

antigen presentation pathway was the most significant (P = 3.39E-04) involving three of the 

identified DE genes (HLA-B, HLA-DQB1 and HLA-DQA2) (Table 3.5). For the upstream gene 

expression regulation factors, the ligand dependent nuclear receptor RORA was identified as the 

most significant (P = 5.29E-07) expression regulator in Angus and was shown to affect expression 

of eight of the DE genes including CCL24, CYP2B6, HMGCR, IGF1, ITPR1, SLC13A2, SULT1E1, 

SULT2A1. Albeit, cytokines IFNG and IL6 were identified as the most significant gene expression 

regulators in Charolais and KC steers respectively. IFNG was predicted to be activated (Z-score = 

1.22), whereas IL6 was predicted to be inactivated (Z-score = -1.27) in low-MWT steers of the 

respective breeds. The top enriched gene expression regulators associated with MWT for each 

breed are presented in Table S7 C in Supplementary Data S6. 

3.5  Discussion 

The liver is a central metabolic organ that provides and distributes energy and other 

essential nutrients to the muscles, brain, adipose tissue and other peripheral organs in the animal’s 

body (Jeremy et al. 2002; Rui 2011), thus implying its critical importance in energy and other 

nutrient assimilation and distribution. The liver is also an important immunological organ involved 

in both innate and adaptive immunologic systems of the animal (Parker & Picut 2005; Racanelli 

& Rehermann 2006), which are vital for not only animal’s health but also influence many other 

systems including animal growth and development. 

In the current study we employed RNAseq analyses of liver tissue from 60 steers of three 

Canadian beef cattle populations (Angus, Charolais and KC) to study gene expression difference 

between the high and low phenotype steer groups for three feed efficiency related traits ADG, DMI 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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and MWT. To maximize the phenotypic difference of the animals for the particular trait under 

investigation, we sorted the 20 steers of each of the three breeds and selected the 6 highest and 6 

lowest steers for differential gene expression gene analyses. Each trait under investigation showed 

significant differences between the high and low extreme phenotype groups (Table S1, S2 and S3 

in Supplementary Data S6). It is worth noting that with the aim of minimising environmental 

differences between the studied animals, they were raised on the same experimental farm and were 

managed similarly. In addition, the two extreme groups of each population did not differ 

significantly in their age when the liver samples were collected. (Table S1, S2 and S3 in 

Supplementary Data S6). Although the two extreme groups of the target trait also exhibited 

significant differences in a few of other production traits due to their biological correlations, the 

strongest divergence for ADG, DMI or MWT provided suitable contrast of animal groups for 

differential gene expression analysis for each of the trait under investigation. 

Our results showed a great diversity in terms of differentially expressed genes between 

breeds for the same trait (Figure 3.1, a-c). For example, of the 252, 375 and 206 DE genes 

associated with ADG, DMI and MWT, only 1% to 2% of them were shared between all three 

breeds, while, 81.7% to 83% were breed specific, and 3% to 8% uniquely common between two 

breeds for a trait. This diversity of differential gene expression implies that probably these traits 

are largely controlled by different genes in the different breeds. A similar trend of predominantly 

breed specific differential gene expression profiles across breeds in the same animal populations 

(including animals used in the current study) has been previously observed and reported for 

residual feed intake by Mukiibi et al. (2018) (Mukiibi et al. 2018). However, DE gene comparison 

within a breed showed a relatively moderate number of gene overlap (12 – 29%) between MWT 

and ADG or DMI. This could be an indication of shared genetic mechanisms underlying these 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf


77 

 

 

traits, which supports the moderate to high genetic correlations between MWT and ADG or DMI 

reported in beef cattle (Crowley et al. 2010; Mao et al. 2013).  

3.5.1 Association of lipid metabolism with growth rate, feed intake and metabolic weight 

Although the DE genes we identified were largely breed specific for each of the trait, the 

significant enriched molecular and cellular functions are mostly common with a 58% to 63% 

overlap between breeds for the three traits (i.e. ADG, DMI and MWT). Our results showed lipid 

metabolism as an important metabolic function that were strongly associated with growth rate, 

feed intake, and maintenance weight in at least two of the studied populations. Lipid metabolism 

has also been reported to be associated with feed efficiency and component traits such as RFI 

(Chen et al. 2011; Tizioto et al. 2015; Weber et al. 2016; Mukiibi et al. 2018), residual intake and 

gain (Alexandre et al. 2015) and growth rate (Foote et al. 2017) in beef cattle.  

For the growth rate, lipid metabolism was significantly associated with enriched molecular 

and cellular function across all the cattle populations studied, indicating that hepatic lipid 

metabolic processes play important roles in regulating body weight gain in beef steers irrespective 

of the breed. Accumulation of lipid, concentration of cholesterol, synthesis of cholesterol, 

metabolism of membrane lipid derivative and concentration of lipid were among the enriched 

processes across the three breeds. Notably, lipid synthesis as a metabolic process was enriched for 

Charolais and KC, where it was predicted to be downregulated in the fast-growing animals (Figure 

3.3 and Figure 3.4). Additionally, in Angus, 14 lipogenic genes (AKR1C3, IL1R2, SOCS3, NR0B2, 

F2R, IGF1, ELOVL5, CYP7A1, ABHD6, HMGCR, PGAP1, SQLE, CYP51A1 and HMGCS1) were 

identified as associated with ADG, of which eight genes (IGF1, ELOVL5, CYP7A1, ABHD6, 

HMGCR, PGAP1, SQLE, CYP51A1 and HMGCS1) were downregulated in the liver tissue of high 

ADG animals (Figure 3.2). The predicted down regulation of lipid synthesis genes in the fast-
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growing animals might be an indication that these animals divert their energy from lipid synthesis 

away from lipid metabolism and towards muscle deposition, hence resulting in faster body weight 

gain. However, this speculation should be considered with caution as the liver’s contribution to 

total endogenous lipogeneses in ruminants is minimal as compared to the adipose tissue (Roh et 

al. 2006). Therefore, further transcriptome studies considering the muscle and adipose tissues 

should be pursued. Despite lipid synthesis not being enriched as a process within lipid metabolism 

in KC, synthesis of different lipid species including cholesterol ester (CYP7A1, SCD), 

diacylglycerol (LPIN1, SCD), long chain fatty acid (GSTM4, SCD), phospholipid (CES1, CYP7A1, 

LPIN1, MFSD2A, PIP5K1A) and triacylglycerol (CYP7A1, LPIN1, SCD) were identified in this 

population (Figure 3.3).  

For DMI, lipid metabolism was also among the top five significantly enriched cellular and 

molecular functions for both Angus and Charolais (Figure 3.4 and Figure 3.5, respectively). Seven 

DE genes involved in lipid metabolism (CYP7A1, SAA1, CCDC80, LPIN1, GNMT, HP and 

PIP5K1A) in both Angus and Charolais were identified. Although accumulation of lipid was 

predicted as downregulated in the liver tissue of low-DMI animals of both breeds, our results 

showed difference between the steer groups in terms of predicted concentration of different lipids. 

For example, cholesterol and fatty acids concentration were predicted to be downregulated in low-

DMI Angus animals (Figure 3.4) but upregulated in Charolais animals with similar phenotypes 

(Figure 3.5). Indeed, bovine breeds differ in their hepatic lipid concentrations as reported by 

O'Kelly (1974) (O'Kelly 1974). Therefore the predicted difference in hepatic lipid concentrations 

between Angus and Charolais could potentially be due to the genetic distinctiveness between the 

two breeds as Angus is a breed of moderate frame and earlier maturing and fattening, whereas 

Charolais is characterized by a larger frame and later maturity to fattening (Briggs & Briggs 1980).  
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Similarly, our results revealed a strong association between lipid metabolism with 

metabolic weight within Angus and Charolais steers. Steroid metabolism, synthesis of lipid, 

metabolism of terpenoid and secretion of testosterone were among the commonly shared enriched 

processes between the two breeds. Lipid synthesis in Angus (involving ABHD6, CYR61, ETNPPL, 

HMGCR, HMGCS1, IGF1, IGFBP2, IL1R2, PIP5K1A and SULT1E1) and Charolais (involving 

FADS1, HMOX1, IL1B, LPIN1, PDK4, PLTP, PTGS1, SOAT2, SULT1E1, TBXAS1 and THRSP) 

was predicted to be upregulated (activated) in low metabolic weight animals. However, as 

highlighted above, the liver is not a major lipogenic organ in the ruminant animal’s body. 

Differential expression of key lipogenic genes including steroidogenic genes and the predicted 

upregulation of lipid synthesis in low-MWT steers as compared to high-MWT could be an 

indication that these animals not only differ in the amount of metabolically active tissue but also 

differ in terms of metabolic activity level in those same tissues.  

It is essential to highlight that herbivorous animals such as cattle that almost entirely 

depend on endogenous cholesterol biosynthesis, with the liver contributing substantially to this 

biosynthesis (Bell 1981). Cholesterol is utilized for synthesis of steroid hormones, bile acids, 

vitamin D, and cholesteryl esters which are a major lipid transport mechanism in ruminants (Bell 

1981). In the current study, several DE genes involved in numerous cholesterol or steroid 

metabolism processes (e.g. synthesis of cholesterol, sterol metabolism and accumulation of sterol) 

, canonical pathways (e.g. superpathway of cholesterol biosynthesis, LXR/RXR activation and 

mevalonate pathway I) and upstream gene expression regulator (SREBF1) have been identified. 

The superpathway of cholesterol biosynthesis was identified among the top significantly enriched 

pathways for ADG in Angus where it was predicted to be downregulated in high-ADG steers, and 

for DMI in Charolais where it was predicted to be downregulated in low-DMI steers. Four of the 
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DE genes identified as associated with ADG in Angus (SQLE, HMGCR, HMGCS1 and CYP51A1) 

are involved in the cholesterol biosynthesis pathway and were all downregulated in high-ADG 

animals. For DMI in Charolais, five DE genes including SQLE, PMVK, IDI1, HMGCR and 

HMGCS1 are involved in the cholesterol biosynthesis pathway, and they were all downregulated 

in low-DMI steers. Interestingly, SQLE, PMVK, IDI1, HMGCS1, HMGCR, PMVK, SQLE, and 

IDI1 are key enzymes catalyzing important steps in cholesterol biosynthesis (Brown & Sharpe 

2015). For example; HMGCS1 codes for the 3-hydroxy-3-methylglutaryl-CoA synthase 1 that 

characterizes the condensation of acetoacetyl-CoA and acetyl-CoA to 3-hydroxy-3-

methylglutaryl-CoA, an initial reaction in cholesterol biosynthesis (Brown & Sharpe 2015). 

HMGCR encodes for 3-hydroxy-3-methylglutaryl-CoA reductase, an enzyme that characterizes 

the reduction of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid, a rate-limiting step in 

cholesterol synthesis (Brown & Sharpe 2015). SQLE codes for squalene monooxygenase, which 

is an enzyme that oxidises the first oxygenation step in cholesterol/sterol biosynthesis and is 

considered a rate-limiting enzyme in this process (Brown & Sharpe 2015). Liver X receptors 

(LXR) and retinoid X receptors (RXR), which are heterodimer nuclear receptors that regulate 

cholesterol metabolism through regulation of cholestrogenic enzymes, and carriers (Sharpe & 

Brown 2013; Hong & Tontonoz 2014) was identified to be associated with ADG, DMI and MWT. 

Additionally, SREBF1 codes for sterol regulatory element-binding protein 1, which is a key 

(together with SREBF2) expression regulator of genes involved in cholesterol biosynthesis (Hua 

et al. 1995). The association of cholesterol biosynthesis with growth and feed intake is an 

interesting revelation from our results as they imply that selection of fast-growing animals or low 

feed intake could result in the production of beef with low cholesterol content, a dietary health 

concern of many beef consumers. Consistent with our findings, association of cholesterol 
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metabolism with feed efficiency was reported by Karisa et al. (2014) (Karisa et al. 2014), and 

lower blood cholesterol content has been observed in more efficient beef animals as compared to 

inefficient animals (Alexandre et al. 2015; Bourgon et al. 2017). Also, downregulation of HMGCR 

and SQLE in the liver tissue of feed efficient animals has been previously reported in crossbred 

steers (Mukiibi et al. 2018). 

3.5.2  Association of amino acid and carbohydrate metabolism with growth, feed intake 

and maintenance weight 

The liver is also an important regulator of nitrogenous compounds including amino acids, 

through transamination, anabolic, and catabolic processes (Reynolds 1992). Amino acids released 

from the liver are necessary for protein synthesis in different tissues including muscle, leading to 

tissue deposition and overall growth (Huntington & Eisemann 1988). Additionally, in ruminants 

the liver is the main tissue of glucose that is a major source of energy for the different tissues 

(Nafikov & Beitz 2007). The liver synthesizes glucose through gluconeogenesis, a process that 

utilizes amino acids, volatile fatty acids and glycerol as precursors (Nafikov & Beitz 2007), hence 

making it the principle organ in carbohydrate and energy metabolism in ruminant animals. For 

ADG, amino acid metabolism was among the top enriched cellular and molecular functions in 

Charolais and KC animals, with carbohydrate metabolism was one of the top enriched functions 

in KC. With respect to amino acid metabolism in Charolais, processes such as synthesis of amino 

acids, metabolism of serine family amino acids and other amino acid metabolic related processes 

were strongly enriched, whereas catabolism of amino acids, synthesis of L-proline, metabolism of 

essential amino acids and others were enriched for KC with DE genes ARG1 and AASS being 

involved in most of these processes. ARG1 and AASS code for critical enzymes in amino acid 

metabolism, ARG1 codes for arginase enzyme which catalyzes conversion of arginine to urea and 
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orthenine in the urea cycle (Morris Jr 2002), whereas AASS codes for alpha-aminoadipate-

semialdehyde synthase, a bifunctional enzyme that catalyzes a twostep conversion of lysine to 

alpha-aminoadipic semialdehyde in the lysine degradation pathway(Sacksteder et al. 2000). For 

Angus, amino acid metabolism was not among the most significant functions associated with 

ADG, however, it was significantly enriched by mainly amino acid transport DE genes including 

SLC16A10, SLC1A2, SLC25A15 and SLC3A1 as presented in Table S5 of the Supplementary Data 

S6. Additionally, amino acid metabolism also showed strong association with MWT in Angus 

steers with numerous enriched amino acid metabolic processes such as uptake of cystine (Table 

S5 in Supplementary Data S6). Carbohydrate metabolism was among the most significantly 

enriched functions in Angus and enriched in Charolais and KC as well, with respect to ADG. 

Important processes including oxidation of carbohydrate, synthesis of carbohydrate, 

glycogenolysis, intake of glucose and gluconeogenesis were identified as associated to growth rate 

in the studied animals (Table S6 in Supplementary Data S6). In agreement with our results, Foote 

et al (2017) have reported carbohydrate and amino acid metabolism association with beef cattle 

growth and feed intake in the jejunum tissue (Foote et al. 2017). Studying the rumen epithelial 

tissue transcriptome of crossbred steers with divergent feed intake and growth phenotypes, Kern 

et al (2016) reported carbohydrate metabolism associated with feed intake and gain (Kern et al. 

2016). Besides feed intake and body weight gain, hepatic carbohydrate and amino acid metabolism 

have also been identified to be associated with feed efficiency in beef cattle (Chen et al. 2011; 

Mukiibi et al. 2018). 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/c5bda823-d21d-40f9-a5ec-7c0c378d1f87/Supplementary%20Data%20S6.pdf
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3.5.3 Association of immunological functions with growth, feed intake and maintenance 

weight 

In the current study, we identified immune function related genes that were differentially 

expressed in the liver tissue of animals with divergent growth rate or feed intake or metabolic 

weight phenotypes. For example, acute phase response signaling was among the top enriched 

canonical pathway for Angus steers with divergent growth rate phenotypes involving SOCS3, HP, 

SAA1, SOCS2, SERPINA3, LBP and SERPINE1, and was predicted as upregulated in the fast-

growing animals. Within the composite breed KC, steers with divergent dry mater intake had a 

large number of differentially expressed immune related genes, and they were involved in multiple 

immune function processes such as engulfment by macrophages, T cell homeostasis, T cell 

development and differentiation of T lymphocytes, which were predicted to be upregulated in the 

liver tissue of low feed intake KC. Additionally, interferon signaling pathway (involving OAS1, 

IFI6, PSMB8, STAT1, TAP1, IRF1, IFITM1 and ISG15 ), Th1 pathway (involving NFIL3, CD3E, 

HLA-B, CD274, HLA-DQB1, HLA-DQA2, STAT1, CD3D and IRF1) and PKCθ signaling in T 

lymphocytes (involving CACNA1I, RAC2, CACNG1, CD3E, HLA-B, HLA-DQB1, CD3D and 

LCP2) were among the top enriched pathways associated with feed intake in KC and also predicted 

to be activated in KC steers with lower feed intake (Table 3.5). Since the liver is a major organ to 

process absorbed materials from the gastrointestinal tract including microbes and toxins, it plays 

an important role in defending the body against invading pathogens through phagocytosis by the 

Kupfer cells or killing the infected cells through lysis and inducing apoptosis by natural killer cells 

and natural killer T cells (Nakamoto & Kanai 2014). Previously, associations of feed efficiency or 

its component traits with immune related functions have been reported in beef cattle through 

transcriptome studies. For example, Kern et al (2016) reported association of immune response 
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related genes expression in the rumen epithelial tissue with feed intake and body weight gain 

phenotypic differences (Kern et al. 2016). With respect to hepatic transcriptome studies, 

associations of feed efficiency and hepatic immune response in beef cattle have been reported by 

Alexandre et al (2015) and Paradis et al (2015) (Alexandre et al. 2015; Paradis et al. 2015). Paradis 

et al (2015) identified five immune genes (HBB, MX1, ISG5, HERC6 and IF44) associated with 

feed efficiency in crossbred heifers. Similarly, in our study MX1, ISG5, HERC6 and IF44 were 

also identified as associated either with ADG, DMI or MWT in KC steers, whereas for Charolais 

steers, MX1, ISG5 and IF44 were either associated with DMI or MWT. These and several other 

genes we identified in this study are regulated by α and β interferon signaling as shown by 

canonical pathways and upstream regulator results and are hence involved in innate immune 

function (Stetson & Medzhitov 2006; Boxx & Cheng 2016). These reported DE genes related to 

immune functions indicate possible immunological adaptations to the feedlot challenges by some 

of the animals, which probably have implications on animal’s feed intake and growth. 

3.6 Conclusions 

We identified a total of 252, 375 and 206 protein coding genes associated with growth rate, 

feed intake, and maintenance weight of beef cattle, respectively, through hepatic transcriptome 

sequence data analyses. The majority of the identified DE genes for the traits were breed specific. 

However, most of the enriched biological functions are common across the three breeds. 

Functional enrichment showed that the identified DE genes were involved in multiple cellular and 

molecular functions that mainly include metabolism of lipid, carbohydrates, amino acids, vitamins 

and minerals, small molecule biochemistry, cellular movement, cell morphology and cell to cell 

signaling and interaction. Our functional results further revealed strong associations of both 

cholesterol biosynthesis and immune related functions with growth, feed intake and metabolic 
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weight through identification of pathways and upstream gene expression regulators involved in 

these processes or functions. The DE genes and major biological functions associated with growth, 

feed intake, and metabolic weight advance our understanding of genetic mechanisms that regulate 

feed intake, growth, and feed efficiency in beef cattle respective to various breeds/breed 

populations, which will also help design strategies of genetic and genomic selection and breeding 

to improve the traits.  

3.7 References 

Ahola J.K. & Hill R.A. (2012) Input Factors Affecting Profitability: a Changing Paradigm and a 

Challenging Time. In: Feed efficiency in the beef industry (ed. by Hill RA), p. 10. Wiley-

Blackwell, Ames, Iowa. 

Al‐Husseini W., Gondro C., Quinn K., Herd R., Gibson J. & Chen Y. (2014) Expression of 

candidate genes for residual feed intake in Angus cattle. Animal genetics 45, 12-9. 

Alexandre P.A., Kogelman L.J., Santana M.H., Passarelli D., Pulz L.H., Fantinato-Neto P., Silva 

P.L., Leme P.R., Strefezzi R.F. & Coutinho L.L. (2015) Liver transcriptomic networks 

reveal main biological processes associated with feed efficiency in beef cattle. BMC 

genomics 16, 1073. 

Anders S., McCarthy D.J., Chen Y., Okoniewski M., Smyth G.K., Huber W. & Robinson M.D. 

(2013) Count-based differential expression analysis of RNA sequencing data using R and 

Bioconductor. Nature protocols 8, 1765-86. 

Anders S., Pyl P.T. & Huber W. (2015) HTSeq–a Python framework to work with high-throughput 

sequencing data. Bioinformatics, btu638. 

Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data. 

Baruch Y. (2000) The liver: a large endocrine gland. Journal of hepatology 32, 505-7. 



86 

 

 

Bell A. (1981) Lipid metabolism in liver and selected tissues and in the whole body of ruminant 

animals. In: Lipid metabolism in ruminant animals (pp. 363-410. Elsevier. 

Bourgon S., de Amorim M.D., Miller S. & Montanholi Y. (2017) Associations of blood parameters 

with age, feed efficiency and sampling routine in young beef bulls. Livestock Science 195, 

27-37. 

Boxx G.M. & Cheng G. (2016) The roles of type I interferon in bacterial infection. Cell host & 

microbe 19, 760-9. 

Briggs M.H. & Briggs M.D. (1980) Modern breeds of livestock. Macmillan, New York. 

Brown A.J. & Sharpe L.J. (2015) Cholesterol Synthesis. In: Biochemistry of lipids, lipoproteins 

and membranes (eds. by Ridgway N & McLeod R), pp. 327-58. Elsevier, Amsterdam, 

Netherlands. 

CCAC (2009) Guidelines on the care and use of farm animals in research, teaching and testing. 

Canadian Council on Animal Care Ottawa, ON, Canada. 

Chen Y., Gondro C., Quinn K., Herd R., Parnell P. & Vanselow B. (2011) Global gene expression 

profiling reveals genes expressed differentially in cattle with high and low residual feed 

intake. Animal genetics 42, 475-90. 

Crowley J., McGee M., Kenny D., Crews Jr D., Evans R. & Berry D. (2010) Phenotypic and 

genetic parameters for different measures of feed efficiency in different breeds of Irish 

performance-tested beef bulls. Journal of animal science 88, 885-94. 

Foote A., Keel B., Zarek C. & Lindholm-Perry A. (2017) Beef steers with average dry matter 

intake and divergent average daily gain have altered gene expression in the jejunum. 

Journal of animal science 95, 4430-9. 



87 

 

 

Goonewardene L., Wang Z., Price M., Yang R.-C., Berg R. & Makarechian M. (2003) Effect of 

udder type and calving assistance on weaning traits of beef and dairy× beef calves. 

Livestock production science 81, 47-56. 

Hill R.A. & Ahola J.K. (2012) Feed Efficiency Interactions with Other Traits: Growth and Product 

Quality. In: Feed efficiency in the beef industry (ed. by Hill RA), p. 148. Wiley-Blackwell, 

Ames, Iowa. 

Hong C. & Tontonoz P. (2014) Liver X receptors in lipid metabolism: opportunities for drug 

discovery. Nature reviews Drug discovery 13, 433. 

Hua X., Wu J., Goldstein J.L., Brown M.S. & Hobbs H.H. (1995) Structure of the human gene 

encoding sterol regulatory element binding protein-1 (SREBF1) and localization of 

SREBF1 and SREBF2 to chromosomes 17p11. 2 and 22q13. Genomics 25, 667-73. 

Huntington G.B. & Eisemann J.H. (1988) Regulation of nutrient supply by gut and liver tissues. 

Journal of animal science 66, 35-48. 

Jeremy M.B., John L.T. & Lubert S. (2002) Each Organ Has a Unique Metabolic Profile. In: 

Biochemistry (ed. by Moran S), p. 1259. W. H. Freeman and Company, New York. 

Karisa B., Moore S. & Plastow G. (2014) Analysis of biological networks and biological pathways 

associated with residual feed intake in beef cattle. Animal Science Journal 85, 374-87. 

Kern R.J., Lindholm-Perry A.K., Freetly H.C., Snelling W.M., Kern J.W., Keele J.W., Miles J.R., 

Foote A.P., Oliver W.T. & Kuehn L.A. (2016) Transcriptome differences in the rumen of 

beef steers with variation in feed intake and gain. Gene 586, 12-26. 

Khansefid M., Millen C., Chen Y., Pryce J., Chamberlain A., Vander Jagt C., Gondro C. & 

Goddard M. (2017) Gene expression analysis of blood, liver, and muscle in cattle 



88 

 

 

divergently selected for high and low residual feed intake. Journal of animal science 95, 

4764-75. 

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R. & Salzberg S.L. (2013) TopHat2: accurate 

alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 

Genome biology 14, R36. 

Koch R.M., Swiger L.A., Chambers D. & Gregory K.E. (1963) Efficiency of feed use in beef 

cattle. Journal of animal science 22, 486-94. 

Kong R.S., Liang G., Chen Y. & Stothard P. (2016) Transcriptome profiling of the rumen 

epithelium of beef cattle differing in residual feed intake. BMC genomics 17, 592. 

Krämer A., Green J., Pollard Jr J. & Tugendreich S. (2013) Causal analysis approaches in ingenuity 

pathway analysis. Bioinformatics 30, 523-30. 

Lindholm‐Perry A., Cunningham H., Kuehn L., Vallet J., Keele J., Foote A., Cammack K. & 

Freetly H. (2017) Relationships between the genes expressed in the mesenteric adipose 

tissue of beef cattle and feed intake and gain. Animal genetics 48, 386-94. 

Mao F., Chen L., Vinsky M., Okine E., Wang Z., Basarab J., Crews D. & Li C. (2013) Phenotypic 

and genetic relationships of feed efficiency with growth performance, ultrasound, and 

carcass merit traits in Angus and Charolais steers. Journal of animal science 91, 2067-76. 

Morris Jr S.M. (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annual 

review of nutrition 22, 87-105. 

Mukiibi R., Vinsky M., Keogh K.A., Fitzsimmons C., Stothard P., Waters S.M. & Li C. (2018) 

Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more 

feed efficient beef cattle. Scientific reports 8, 7303. 



89 

 

 

Nafikov R.A. & Beitz D.C. (2007) Carbohydrate and lipid metabolism in farm animals. The 

Journal of nutrition 137, 702-5. 

Nakamoto N. & Kanai T. (2014) Role of toll-like receptors in immune activation and tolerance in 

the liver. Frontiers in immunology 5, 221. 

Nkrumah J., Basarab J., Wang Z., Li C., Price M., Okine E., Crews D. & Moore S. (2007) Genetic 

and phenotypic relationships of feed intake and measures of efficiency with growth and 

carcass merit of beef cattle. Journal of animal science 85, 2711-20. 

O'Kelly J. (1974) The concentrations of lipids in the plasma, liver and bile of genetically different 

types of cattle. Comparative Biochemistry and Physiology Part B: Comparative 

Biochemistry 49, 491-500. 

Paradis F., Yue S., Grant J., Stothard P., Basarab J. & Fitzsimmons C. (2015) Transcriptomic 

analysis by RNA sequencing reveals that hepatic interferon-induced genes may be 

associated with feed efficiency in beef heifers. Journal of animal science 93, 3331-41. 

Parker G.A. & Picut C.A. (2005) Liver immunobiology. Toxicologic Pathology 33, 52-62. 

Racanelli V. & Rehermann B. (2006) The liver as an immunological organ. Hepatology 43, S54-

S62. 

Reynolds C.K. (1992) Metabolism of nitrogenous compounds by ruminant liver. The Journal of 

nutrition 122, 850-4. 

Reynolds J., Foote A., Freetly H., Oliver W. & Lindholm‐Perry A. (2017) Relationships between 

inflammation‐and immunity‐related transcript abundance in the rumen and jejunum of beef 

steers with divergent average daily gain. Animal genetics 48, 447-9. 

Robinson M.D., McCarthy D.J. & Smyth G.K. (2010) edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139-40. 



90 

 

 

Robinson M.D. & Oshlack A. (2010) A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome biology 11, R25. 

Roh S.G., Hishikawa D., Hong Y.H. & Sasaki S. (2006) Control of adipogenesis in ruminants. 

Animal Science Journal 77, 472-7. 

Rui L. (2011) Energy metabolism in the liver. Comprehensive physiology 4, 177-97. 

Sacksteder K.A., Biery B.J., Morrell J.C., Goodman B.K., Geisbrecht B.V., Cox R.P., Gould S.J. 

& Geraghty M.T. (2000) Identification of the α-aminoadipic semialdehyde synthase gene, 

which is defective in familial hyperlysinemia. The American Journal of Human Genetics 

66, 1736-43. 

Schenkel F., Miller S. & Wilton J. (2004) Genetic parameters and breed differences for feed 

efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of 

Animal Science 84, 177-86. 

Sharpe L.J. & Brown A.J. (2013) Controlling cholesterol synthesis beyond 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGCR). Journal of Biological Chemistry, jbc. R113. 

479808. 

Stetson D.B. & Medzhitov R. (2006) Type I interferons in host defense. Immunity 25, 373-81. 

Tizioto P.C., Coutinho L.L., Decker J.E., Schnabel R.D., Rosa K.O., Oliveira P.S., Souza M.M., 

Mourão G.B., Tullio R.R. & Chaves A.S. (2015) Global liver gene expression differences 

in Nelore steers with divergent residual feed intake phenotypes. BMC genomics 16, 242. 

Tizioto P.C., Coutinho L.L., Oliveira P.S., Cesar A.S., Diniz W.J., Lima A.O., Rocha M.I., Decker 

J.E., Schnabel R.D. & Mourão G.B. (2016) Gene expression differences in Longissimus 

muscle of Nelore steers genetically divergent for residual feed intake. Scientific reports 6. 



91 

 

 

Van den Berghe G. (1991) The role of the liver in metabolic homeostasis: implications for inborn 

errors of metabolism. In: Journal of inherited metabolic disease (pp. 407-20. Springer. 

Weber K.L., Welly B.T., Van Eenennaam A.L., Young A.E., Porto-Neto L.R., Reverter A. & 

Rincon G. (2016) Identification of gene networks for residual feed intake in angus cattle 

using genomic prediction and RNA-seq. PloS one 11, e0152274. 

Zarek C., Lindholm-Perry A., Kuehn L. & Freetly H. (2017) Differential expression of genes 

related to gain and intake in the liver of beef cattle. BMC research notes 10, 1. 

 

3.8 Figures and Tables 

 

 Figure 3.1. Venn diagrams showing differentially expressed genes overlap among Angus, 

Charolais, and Kinsella Composite (KC) for (a) Average daily gain (ADG), (b) Average daily dry 

matter intake (DMI) and (c) metabolic weight (MWT). Venn diagrams showing significant 

enriched biological functions overlap among breeds for (d) ADG, (e) DMI and (f) MWT. 
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 Figure 3.2. Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to 

average daily gain (ADG) in Angus steers. 
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Figure 3.3. Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to 

average daily gain (ADG) in Charolais steers. 
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Figure 3.4. Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to 

average daily gain (ADG) in Charolais steers. 
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Figure 3.5. Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to 

average daily dry matter intake (DMI) in Angus steers. 
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Figure 3.6. Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to 

average daily dry matter intake (DMI) in Charolais steers. 
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 Figure 3.7. Cellular function and maintenance gene and molecular processes interaction network within lipid metabolism function as 

associated to average daily dry matter intake (DMI) in Kinsella Composite (KC) steers. 
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Table 3.1. Averages of the sequencing quality and alignment assessment parameters for Angus, 

Charolais, and Kinsella Composite (KC) animals. 

SD = standard deviation  

 

Table 3.2. Top 40 significantly (by FDR) differentially expressed genes of characterized proteins 

between high and low-ADG steers from Angus, Charolais and Kinsella Composite populations. 

Angus Charolais Kinsella Composite 

Gene log2FC FDR Gene Log2FC FDR Gene log2FC FDR 

TMEM45A -3.87 4.69E-76 TMEM45A -1.81 2.08E-19 IFI27 -2.69 9.87E-39 

SERPINA3 3.32 1.74E-55 HOPX -1.63 5.59E-16 LPIN1 -2.54 1.48E-34 

GPX3 2.94 1.75E-53 AKR1B15 1.59 1.66E-14 IFI6 -1.67 5.27E-15 

AKR1B15 2.68 2.33E-38 TNC -1.73 2.20E-13 SERPINA3 1.56 1.01E-14 

GPNMB 1.85 3.79E-21 HLA-DQB1 -1.86 6.68E-13 ISG15 -1.59 8.76E-14 

HP 2.43 8.42E-18 GPC3 -1.64 3.17E-12 HBB -1.49 8.54E-13 

S100A2 1.58 1.09E-15 KEL 1.53 1.19E-11 HERC6 -1.44 2.45E-12 

SERPINA3 1.95 7.74E-15 DDO -1.90 2.07E-10 GNMT -1.42 2.57E-12 

HOPX 1.43 1.32E-14 GPX3 -2.20 2.72E-10 GADD45G -1.35 6.14E-11 

IFI6 -1.47 1.96E-13 SERPINA3 2.45 3.14E-10 SLC5A8 1.75 9.76E-10 

UGT2B7 -1.35 4.93E-13 AC108941.2 -1.55 3.09E-09 CES1 1.24 5.26E-09 

IFI27 -1.42 2.42E-12 IGLV2-18 -1.60 3.17E-08 SERPINI2 1.29 3.15E-08 

GPC3 -1.37 1.83E-11 CYP2B6 1.29 4.48E-08 CYP7A1 1.44 4.51E-08 

HMGCS1 -1.30 2.50E-10 SLC25A45 1.80 1.42E-07 TSKU -1.24 1.43E-07 

SECTM1 1.19 4.95E-10 SERPINA3 -1.61 1.97E-07 IFIT1 -1.38 1.43E-07 

SULT2A1 1.18 7.65E-10 IGLV2-18 -1.44 3.27E-07 UHRF1 -1.60 2.15E-07 

SPIDR 1.20 7.83E-10 SCD -1.26 3.28E-07 HLA-

DQA1 

-1.29 2.72E-06 

IGHG1 1.17 2.32E-08 S100A10 -1.14 4.06E-07 NOCT -1.10 3.39E-06 

ECEL1 1.10 5.27E-08 STS -1.12 7.69E-07 WFDC2 -1.03 4.29E-06 

JAKMIP2 1.44 9.89E-08 UHRF1 -1.47 1.48E-06 ZNF385B 1.19 4.29E-06 

CYP51A1 -1.12 1.57E-07 CCDC80 -1.41 4.63E-06 MX2 -1.26 6.20E-06 

 
Angus (SD) Charolais (SD) KC (SD) 

Total number of reads 32,419,572 

(2527134) 

40,796,790 (8826642) 29,571,035 (5,730,204) 

Uniquely aligned reads 28,388,072 

(2394131) 

35,584,367 (8,224,313) 25680361 (4,964,214) 

Average Phred Score 35.6 (0.23) 35.6 (0.60) 37.8 (0.18) 

Uniquely aligned reads 

(%) 

87.5 (1.12) 87.0 (2.01) 86.9 (0.84) 
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AIF1L 1.02 2.62E-07 SLC13A2 -1.21 5.92E-06 RSAD2 -1.01 6.91E-06 

AKR1C1 1.22 2.91E-07 EGR1 -1.33 6.60E-06 GSTM2 -1.07 9.32E-06 

CCL24 1.35 4.38E-07 CRYAB -1.04 7.08E-06 C12orf45 -1.01 1.15E-05 

DLK1 -1.28 4.54E-07 HIST1H2BI -0.99 7.11E-06 IGFBP1 0.97 1.50E-05 

VCAM1 -1.28 2.21E-06 GNMT -0.90 3.75E-05 EXTL1 0.96 2.94E-05 

MT1G 1.07 6.21E-06 EPCAM -1.05 8.16E-05 ALAS1 -1.00 3.46E-05 

SQLE -0.99 1.05E-05 IFI27 -0.90 9.13E-05 STS -0.95 4.15E-05 

IL1R2 1.09 2.69E-05 ACSS2 -0.88 1.24E-04 PLEKHG6 1.11 1.36E-04 

SERPINE1 0.88 4.03E-05 SLC17A9 0.92 1.31E-04 LURAP1L -1.02 1.65E-04 

SLC13A2 0.91 5.28E-05 SCD -1.29 1.37E-04 PRAP1 -0.93 1.92E-04 

SERPINI2 -1.21 5.40E-05 THNSL2 0.91 2.19E-04 SCD -0.95 2.95E-04 

TNFRSF10A -1.21 7.39E-05 RCL1 -0.88 2.30E-04 FKBP5 -0.89 5.62E-04 

RAP1GAP 0.96 7.48E-05 MID1IP1 -0.85 2.42E-04 TAT -1.02 6.56E-04 

OXER1 -0.84 8.35E-05 MBOAT2 -1.24 2.42E-04 FGF21 0.95 6.85E-04 

SLC1A2 -0.88 1.25E-04 SOAT2 1.30 3.09E-04 ACE2 -0.84 7.03E-04 

MAMDC2 -1.08 1.25E-04 FOXA3 -0.84 3.13E-04 MX1 -0.87 7.98E-04 

DENND2A 0.82 1.50E-04 MAMDC2 -1.09 4.79E-04 IFI44L -0.83 8.80E-04 

ROS1 -1.09 1.83E-04 REC8 -0.84 7.97E-04 WFS1 0.81 1.24E-03 

CLBA1 1.15 2.55E-04 ISG15 -0.78 9.07E-04 ALOX15B 1.15 1.64E-03 

log2FC = log2(Fold Change of a gene in high ADG animals with reference to low-ADG animals) 

and 2FDR = False discovery rate adjusted P-Value. 

 

Table 3.3. Top 40 significantly (by FDR) differentially expressed genes of characterized proteins 

between high and low-DMI steers from Angus, Charolais and Kinsella Composite populations. 

Angus Charolais Kinsella Composite 

Gene log2FC FDR Gene log2FC FDR Gene log2FC FDR 

IFIT1 -2.49 1.38E-34 SLC22A2 4.47 1.92E-47 IFI27 3.13 9.17E-50 

GPX3 -2.38 1.42E-30 REC8 -2.61 1.22E-37 CXCL9 2.82 2.83E-44 

GPNMB -2.23 4.16E-27 EGR1 2.38 3.46E-31 GBP3 2.99 3.15E-41 

HBB 2.97 3.93E-26 IGLC1 2.48 3.46E-31 IFI6 2.24 1.09E-27 

SERPINA3 -1.90 1.24E-20 IGHG1 2.31 3.95E-28 CYP2B6 -2.17 1.62E-27 

ISG15 -1.83 1.04E-17 SERPINA3 2.47 3.92E-26 HERC6 2.07 1.07E-25 

SFRP2 1.72 9.15E-17 CCDC80 2.25 1.56E-23 IFIT1 2.35 3.23E-25 

HERC6 -1.44 1.18E-11 SFRP1 -1.79 1.00E-18 ISG15 2.03 3.28E-23 

DDO -1.63 3.99E-10 GPX3 2.08 6.20E-17 CXCL10 2.22 1.06E-22 

FKBP5 1.37 7.10E-10 HLA-DQB1 -2.11 5.26E-16 TMEM45A -2.84 1.63E-22 

RSAD2 -1.35 1.01E-09 CLDN15 1.61 4.46E-15 MX2 2.07 4.80E-20 

SDS 1.36 1.82E-09 ABCG8 1.54 2.98E-14 AK4 1.79 2.11E-19 

APOA4 1.29 6.27E-09 CES1 -1.52 2.20E-12 CD274 2.44 7.13E-16 

MBOAT2 -1.28 7.41E-09 S100A10 1.41 1.49E-11 SERPINA3 -1.60 2.60E-15 

CDHR5 -1.25 7.65E-09 CYP11A1 1.41 2.03E-11 AKR1B15 -1.75 7.10E-14 
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MX1 -1.26 1.44E-08 NNAT 1.63 8.45E-11 OAS1 1.44 1.49E-12 

IL20RA -1.32 4.02E-08 FGF21 1.43 6.40E-10 GBP7 1.71 2.55E-11 

SLC2A5 1.28 1.40E-07 AC108941.2 1.50 8.82E-10 RSAD2 1.36 2.55E-11 

STEAP4 1.19 2.94E-07 CYR61 1.32 1.15E-09 MKI67 1.45 4.35E-11 

GNMT 1.10 1.18E-06 PRAP1 1.26 1.73E-09 PSMB9 1.46 7.64E-11 

MYOM1 1.21 2.78E-06 CUX2 1.41 2.73E-09 KYAT1 -1.21 1.03E-08 

GPC3 1.06 7.85E-06 CARNS1 1.27 3.43E-09 IFI44L 1.15 1.01E-07 

SERPINA3 -1.31 1.98E-05 TNC 1.32 4.57E-09 RTP4 1.17 1.01E-07 

HP -1.52 2.27E-05 SLC7A2 -1.26 6.17E-09 ATP6V1C2 -1.66 2.12E-07 

LPIN1 1.03 2.27E-05 HMGCS1 -1.26 2.55E-08 RBP5 -1.12 3.20E-07 

SECTM1 1.02 2.28E-05 IL1R2 1.48 3.82E-08 GBP3 1.31 5.23E-07 

SCD -0.99 3.23E-05 LPIN1 -1.23 4.91E-08 HAPLN3 -1.14 9.08E-07 

NR1D1 -0.96 3.32E-05 CDH17 1.13 1.82E-07 CTGF 1.49 1.29E-06 

CREM 0.96 3.57E-05 HP 1.61 3.99E-07 PSMB8 1.04 2.77E-06 

PYROXD2 0.98 4.35E-05 IGLV2-18 1.29 6.43E-07 TAP1 1.02 4.52E-06 

RTP4 -0.93 8.43E-05 ABCG5 1.16 6.55E-07 FOXS1 1.45 7.19E-06 

SCD -0.95 9.57E-05 SLC4A4 -1.08 9.88E-07 PIM1 -1.00 8.79E-06 

RNF125 0.96 1.20E-04 IFI27 -1.13 1.19E-06 WFS1 -0.99 9.48E-06 

IFI44L -0.91 2.21E-04 CLDN4 1.47 2.00E-06 IFIT2 1.41 1.53E-05 

NOCT 0.92 2.59E-04 FOS 1.21 2.91E-06 NLRC5 1.05 2.76E-05 

CYP7A1 -0.88 3.43E-04 HOOK1 -1.04 2.91E-06 UBA7 0.97 2.77E-05 

AKR1B15 -0.94 4.51E-04 SQLE -1.09 3.37E-06 RAB20 -0.96 3.20E-05 

DDIT4 0.91 4.80E-04 STRIP2 -1.03 3.92E-06 CITED4 0.96 3.20E-05 

SPTB -0.83 9.02E-04 IGLC1 1.15 4.94E-06 RRM2 1.36 3.20E-05 

CKAP4 -0.83 9.42E-04 DLK1 1.19 5.02E-06 IL20RA 1.13 3.33E-05 

log2FC = log2(Fold Change of a gene in low-DMI animals with reference to high-DMI animals)  

and FDR = False discovery rate adjusted P-Value. 

 

Table 3.4. Top 40 significantly (by FDR) differentially expressed genes of characterized proteins 

between high and low-DMI steers from Angus, Charolais and Kinsella Composite populations. 

Angus Charolais Kinsella Composite 

 Gene  logFC FDR  Gene logFC FDR Gene logFC FDR 

GPX3 -2.55 5.66E-37 SERPINA3 4.94 1.74E-99 TMEM45A -5.23 2.12E-119 

IFI27 2.50 1.14E-35 CYP2B6 -1.57 2.13E-17 HOPX -1.76 1.53E-17 

SERPINA3 -2.45 9.25E-32 HLA-DQB1 -1.83 1.04E-13 SERPINA3 -1.73 1.04E-16 

IFI6 1.98 5.95E-22 IGLC1 -1.44 5.06E-13 IFI27 1.64 3.16E-15 

SERPINA3 -2.51 4.61E-21 TMEM45A -1.25 2.49E-11 IFI6 1.54 5.51E-14 

GPNMB -1.57 1.91E-14 ECEL1 1.17 6.28E-10 GPX3 -1.36 3.81E-11 

SERPINI2 1.73 5.62E-13 AC108941.2 1.16 6.19E-08 CYP2B6 -1.36 1.02E-10 

HBB 1.99 5.62E-13 KEL 1.20 6.19E-08 FBLN2 -1.36 6.92E-09 

AKR1B15 -1.58 1.39E-12 FBLN2 1.17 6.19E-08 WFS1 -1.21 1.34E-08 

AC108941.2 1.37 1.84E-11 HOPX -1.02 2.74E-07 CTGF 1.53 5.43E-08 
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SDS 1.37 5.82E-11 FGF21 -1.12 7.30E-07 HBB 1.32 1.72E-07 

AIF1L -1.27 6.18E-10 S100A10 0.97 2.04E-06 CXCL9 1.29 5.13E-07 

TMEM45A 1.26 9.39E-09 PLA2G2D 1.41 2.12E-06 UGT2B7 -1.08 7.53E-07 

SULT2A1 -1.16 5.72E-08 PLTP 0.92 7.78E-06 CYP3A7-

CYP3A51P 

-1.19 7.53E-07 

CKAP4 -1.10 2.23E-07 IL1B 1.11 8.46E-06 ATP5MGL -1.47 9.00E-07 

RAP1GAP -1.22 1.55E-06 KCTD12 1.02 1.93E-05 PIM1 -1.06 1.74E-06 

NUF2 1.44 1.55E-06 CSF2RB 0.93 4.06E-05 IGHG1 1.06 2.99E-06 

TNC 1.08 1.55E-06 SFRP1 -0.87 4.19E-05 ZNF385B -1.21 4.85E-06 

CDHR5 -1.00 5.21E-06 MARCO 0.85 6.56E-05 IGLC1 1.39 9.42E-06 

SLC13A2 -1.11 6.80E-06 PRAP1 -1.00 8.72E-05 IGLC1 1.00 2.61E-05 

ROS1 1.32 9.40E-06 FAM47E -1.01 1.05E-04 HLA-

DQB1 

0.97 3.59E-05 

HP -1.57 1.81E-05 HLA-DQB1 1.05 1.25E-04 CES1 0.94 4.26E-05 

AK4 0.92 6.05E-05 CSF1R 0.83 1.84E-04 SERPINI2 1.08 4.26E-05 

DENND2A -0.89 1.12E-04 UCP2 0.80 3.12E-04 ASIP 1.00 9.88E-05 

SFRP2 0.89 1.16E-04 ADGRE1 0.79 3.31E-04 UGT2B7 0.91 1.57E-04 

SDCBP2 1.20 2.19E-04 PTN 0.91 3.31E-04 ACE2 0.88 1.79E-04 

CYP2B6 0.88 4.01E-04 IGHA1 -0.89 5.98E-04 HP -1.34 1.89E-04 

PLCD4 -0.89 4.20E-04 SLC13A2 1.02 1.05E-03 AKR1C1 1.01 2.44E-04 

FAM13A 0.99 4.81E-04 PDK4 0.79 1.15E-03 REEP5 -0.86 3.59E-04 

GNMT 0.82 6.79E-04 PTGS1 0.75 1.23E-03 TGM2 0.85 4.61E-04 

CFH 0.95 7.04E-04 FADS1 0.91 1.25E-03 CDH11 -0.99 5.44E-04 

CYR61 0.94 1.04E-03 SLC7A5 1.00 1.46E-03 PRAP1 0.85 5.49E-04 

ABHD6 0.85 1.44E-03 SOAT2 0.86 1.94E-03 DDO 0.99 6.82E-04 

HMGCR -0.83 1.44E-03 PPP1R3C -0.74 2.00E-03 CARNS1 0.88 1.00E-03 

GPC3 0.81 1.76E-03 IGHG1 -0.71 2.79E-03 SLCO4A1 -0.95 1.46E-03 

BICC1 -0.96 2.27E-03 LPIN1 0.72 2.96E-03 RAB20 -0.81 1.62E-03 

IGFBP2 -0.80 2.49E-03 IGLV2-18 -0.95 2.96E-03 RFLNA -0.83 1.74E-03 

ISG15 0.76 3.08E-03 RASL10A 0.99 3.33E-03 SDS -0.81 1.91E-03 

PRAP1 0.79 3.30E-03 TMEM176B 0.71 4.09E-03 ECEL1 0.88 2.09E-03 

DLK1 0.97 3.49E-03 SMPDL3B 0.81 4.75E-03 CLDN15 0.78 2.09E-03 

log2FC = log2(Fold Change of a gene in low-DMI animals with reference to high-DMI animals) 

and FDR = False discovery rate adjusted P-Value. 
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Table 3.5. Top enriched canonical pathways associated with growth rate, feed intake and metabolic weight in Angus, Charolais and 

Kinsella Composite (KC) animals. 

Trait_Breed Ingenuity Canonical Pathways P-value Ratio Z-score Molecules 

ADG_ Angus Superpathway of Cholesterol Biosynthesis 1.35E-05 0.14 -2.00 SQLE, HMGCR, HMGCS1, CYP51A1 
 

Nicotine Degradation II 2.40E-05 0.08 -2.24 UGT2B17, FMO2, INMT, CYP51A1, CYP2C19 
 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

2.40E-05 0.04 2.24 IL1R2, NR0B2, FMO2, CYP7A1, LBP, HMGCS1, 

SULT2A1, CYP2C19  
Acute Phase Response Signaling 4.17E-05 0.04 0.82 SOCS3, HP, SAA1, SOCS2, SERPINA3, LBP, 

SERPINE1  
LXR/RXR Activation 4.37E-05 0.05 -1.00 IL1R2, SAA1, CYP7A1, LBP, HMGCR, CYP51A1 

      

ADG_Charolais LXR/RXR Activation 1.23E-06 0.06 0.45 IL1R2, SCD, RXRG, APOA1, APOA4, FASN, SAA1 
 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

6.61E-05 0.03 0.00 IL1R2, SULT1E1, CPT1B, ALDH3B1, GSTA1, 

CYP2B6, CYP2C19  
PXR/RXR Activation 2.09E-04 0.06 

 
SCD, GSTA1, CYP2B6, CYP2C19 

 
FXR/RXR Activation 2.63E-04 0.04 

 
APOA1, APOA4, FASN, SAA1, FOXA3 

 
Glycine Betaine Degradation 8.71E-04 0.20 

 
SDS, SHMT2 

      

ADG_KC PXR/RXR Activation 3.39E-06 0.08 
 

GSTM1, SCD, CYP7A1, IGFBP1, ALAS1 
 

Interferon Signaling 7.76E-06 0.11 -2.00 OAS1, MX1, IFI6, ISG15 
 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

1.38E-04 0.03 
 

GSTM1, IL36G, GSTM4, CYP7A1, ALAS1, SOD3 

 
2-amino-3-carboxymuconate Semialdehyde 

Degradation to Glutaryl-CoA 

3.55E-03 1.00 
 

ACMSD 

 
4-hydroxybenzoate Biosynthesis 3.55E-03 1.00 

 
TAT 

      

DMI_ Angus Pyrimidine Ribonucleotides Interconversion 1.20E-03 0.07 
 

NUDT5, CMPK2, AK8 
 

Pyrimidine Ribonucleotides De Novo 

Biosynthesis 

1.38E-03 0.07 
 

NUDT5, CMPK2, AK8 

 
LXR/RXR Activation 2.69E-03 0.03 

 
SCD, APOA4, SAA1, CYP7A1 

 
Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

3.39E-03 0.05 
 

DHX58, IFIT2, ISG15 

 
GADD45 Signaling 3.63E-03 0.11 

 
GADD45B, CDKN1A 
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DMI_Charolais LPS/IL-1 Mediated Inhibition of RXR 

Function 

2.63E-10 0.07 0.33 IL1R2, ABCG8, GSTM1, ABCG5, SULT1E1, JUN, 

SULT1C4, NR0B2, CYP7A1, SLC27A6, IL1B, 

ALDH3B1, HMGCS1, ABCA1, CYP2C19  
Superpathway of Cholesterol Biosynthesis 2.34E-06 0.18 -2.24 SQLE, PMVK, IDI1, HMGCR, HMGCS1 

 
Mevalonate Pathway I 2.45E-06 0.31 -2.00 PMVK, IDI1, HMGCR, HMGCS1 

 
LXR/RXR Activation 5.13E-06 0.07 -1.34 IL1R2, ABCG8, ABCG5, SAA1, CYP7A1, IL1B, 

HMGCR, ABCA1  
Superpathway of Geranylgeranyl 

diphosphate Biosynthesis I (via 

Mevalonate) 

7.94E-06 0.24 -2.00 PMVK, IDI1, HMGCR, HMGCS1 

      

DMI_KC Interferon Signaling 1.00E-10 0.22 2.83 OAS1, IFI6, PSMB8, STAT1, TAP1, IRF1, IFITM1, 

ISG15  
Antigen Presentation Pathway 6.31E-09 0.18 

 
PSMB9, NLRC5, HLA-B, HLA-DQB1, PSMB8, HLA-

DQA2, TAP1  
Th1 Pathway 3.80E-07 0.07 1.41 NFIL3, CD3E, HLA-B, CD274, HLA-DQB1, HLA-

DQA2, STAT1, CD3D, IRF1  
Th1 and Th2 Activation Pathway 5.25E-06 0.05 

 
NFIL3, CD3E, HLA-B, CD274, HLA-DQB1, HLA-

DQA2, STAT1, CD3D, IRF1  
PKCθ Signaling in T Lymphocytes 1.82E-05 0.05 2.45 CACNA1I, RAC2, CACNG1, CD3E, HLA-B, HLA-

DQB1, CD3D, LCP2       

MWT_Angus LPS/IL-1 Mediated Inhibition of RXR 

Function 

1.38E-05 0.03 -2.00 IL1R2, SULT1E1, CYP2B6, LBP, HMGCS1, 

SULT2A1, CYP2C19  
Melatonin Degradation I 8.13E-05 0.06 1.00 SULT1E1, CYP2B6, SULT2A1, CYP2C19 

 
Superpathway of Melatonin Degradation 1.10E-04 0.06 1.00 SULT1E1, CYP2B6, SULT2A1, CYP2C19 

 
IGF-1 Signaling 6.46E-04 0.04 

 
CTGF, IGF1, CYR61, IGFBP2 

 
Mevalonate Pathway I 9.33E-04 0.15 

 
HMGCR, HMGCS1 

      

MWT_Charolais Neuroinflammation Signaling Pathway 1.45E-04 0.02 1.89 HMOX1, VCAM1, HLA-B, IL1B, HLA-DQB1, CSF1R, 

GRIN3A  
Prostanoid Biosynthesis 4.68E-04 0.22 

 
PTGS1, TBXAS1 

 
Granulocyte Adhesion and Diapedesis 5.37E-04 0.03 

 
VCAM1, SELL, IL1B, MMP11, SDC3 

 
Graft-versus-Host Disease Signaling 7.24E-04 0.06 

 
HLA-B, IL1B, HLA-DQB1 

 
Altered T Cell and B Cell Signaling in 

Rheumatoid Arthritis 

4.47E-03 0.03 
 

HLA-B, IL1B, HLA-DQB1 

      

MWT_KC Antigen Presentation Pathway 3.39E-04 0.08 
 

HLA-B, HLA-DQB1, HLA-DQA2 
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Pathogenesis of Multiple Sclerosis 4.47E-04 0.22 

 
CXCL10, CXCL9 

 
Nicotine Degradation III 1.07E-03 0.05 

 
UGT2B17, CYP2B6, CYP2C19 

 
Th1 Pathway 1.41E-03 0.03 

 
SOCS3, HLA-B, HLA-DQB1, HLA-DQA2 

 
Melatonin Degradation I 1.62E-03 0.05 

 
UGT2B17, CYP2B6, CYP2C19 

ADG = Average daily gain; DMI = Average daily dry matter intake; MWT = metabolic weight. 
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Chapter 4. Bovine hepatic miRNAome profiling and differential miRNA 

expression analyses between beef steers with divergent feed efficiency 

phenotypes 

4.1 Abstract 

Micro RNAs (miRNAs) are a group of small (~22nt) RNAs that negatively regulate their 

target genes and have been widely recognized as principle regulators or modulators of a broad 

range of biological processes of living organisms including cattle. Since miRNAs regulate multiple 

biological processes, it is indicative that miRNAs are involved in differential regulation of genes 

involved in economically important traits in the beef industry, such as feed efficiency. Multiple 

studies have identified genes and biological functions associated with feed efficiency traits such 

as residual feed intake (RFI). However, limited studies have been performed to identify miRNAs 

associated with RFI in beef cattle. The objective of the current study was to apply RNAseq to 

profile the liver miRNAome of 60 beef steers and identify differentially expressed (DE) miRNAs 

between high and low-RFI animals from Angus, Charolais and Kinsella Composite (KC) 

populations. We identified 588 miRNAs as expressed in the liver tissue of the studied animals, 

90% of which were expressed in animals from all three populations. Ten previously identified 

(known) miRNAs including bta-miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, bta-miR-

30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f, bta-miR-27a-3p and bta-miR-101 were identified 

as exceptionally highly expressed in the liver tissue of all steers, accounting for over 78% of the 

aligned reads. Additionally, we identified 241 novel bovine miRNAs, of which the majority were 

breed specific. We performed differential miRNA expression analysis between low and high-RFI 

steers from Angus (high (n = 6), low (n = 6)), Charolais (high (n = 6), low (n = 6)) and KC (high 

(n = 6), low (n = 6)) populations. At a threshold of fold-change ≥ 1.5 and P-value < 0.05, we 
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identified 12 (7 up- and 5 downregulated in low-RFI animals), 18 (12 up- and 6 downregulated in 

low-RFI animals) and 12 (8 up- and 4 downregulated in low-RFI animals) DE miRNAs for Angus, 

Charolais and KC steers, respectively. The majority of the DE miRNAs were breed specific, with 

only bta-miR-449a being differentially expressed in all the three breeds. The DE miRNAs were 

predicted to target up to 76% of previously identified genes associated with RFI in the same 

populations. Our results provide insights into the bovine hepatic miRNAome and their potential 

roles in molecular regulation of RFI in beef cattle. 

4.2 Introduction 

Genetic selection and the breeding of more feed efficient beef animals is of great interest 

to beef producers, since increased efficiency would potentially reduce the cost of beef production 

with respect to feed and feeding related costs, which contribute up to 75% of the total variable 

production costs (Ahola & Hill 2012). Additionally, studies have shown that breeding for more 

feed efficient animals can significantly reduce methane emission from beef cattle (Nkrumah et al. 

2006; Hegarty et al. 2007), which would consequently lower the carbon footprint of these animals. 

Understanding genetic control of complex traits such as feed efficiency can help enhance the rate 

of genetic improvement of such traits via more effective genetic or genomic selection (Fang et al. 

2017). In this regard, multiple genome wide (Barendse et al. 2007; Nkrumah et al. 2007; Abo-

Ismail et al. 2014; de Oliveira et al. 2014; Saatchi et al. 2014) and global transcriptomic (Chen et 

al. 2011; Alexandre et al. 2015; Paradis et al. 2015; Tizioto et al. 2015; Kong et al. 2016; Tizioto 

et al. 2016; Weber et al. 2016; Khansefid et al. 2017; Mukiibi et al. 2018) studies have endeavored 

to identify genes and biological functions associated with feed efficiency in beef cattle.  

MicroRNAs are a group of small RNAs with an average length of about 22 nucleotides, 

resulting from the enzymatic cleavage of longer RNA molecules (mainly of intergenic and intronic 
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origin) by DROSHA (nucleic) and DICER (cytoplasmic) RNase endonucleases (Gregory & 

Shiekhattar 2005; Moutinho & Esteller 2017; Bartel 2018). MicroRNAs combine with Argonaute 

proteins to form a miRNA-induced silencing complex (miRISC) (O'Brien et al. 2018), which under 

the guidance of the miRNA, bind to the seed region of the 3’ untranslated regions (UTRs) of the 

target mRNA protein coding gene (O'Brien et al. 2018). This process leads to gene expression 

repression by promoting mRNA decay or repressing mRNA translation into proteins (Creighton 

et al. 2009; O'Brien et al. 2018). MicroRNAs have also been demonstrated to be directly or 

indirectly involved in the epigenetic regulation of gene expression (Moutinho & Esteller 2017). In 

mammalian cells, miRNAs target and regulate expression of up to 60% of the transcribed genes 

(Friedman et al. 2009), hence, they are involved in multiple biological functions including cell 

proliferation, cell cycle, cell development, apoptosis, metabolism of amino acids, metabolism of 

lipids, metabolism of carbohydrates and metabolism of minerals and vitamins (Murakami & 

Kawada 2017). In liver tissue, miRNAs have been implicated in regulating hepatic cell 

proliferation, hepatic metabolism of nutrients (including lipids, carbohydrates, vitamins and 

minerals, and proteins and amino acids), energy metabolism and detoxification (Chen & Verfaillie 

2014).  

Liver transcriptomic studies have demonstrated the potential for the hepatic tissue’s 

involvement in the molecular control of feed efficiency through identification of differentially 

expressed genes between efficient and inefficient animals (Chen et al. 2011; Alexandre et al. 2015; 

Paradis et al. 2015; Tizioto et al. 2015; Weber et al. 2016; Khansefid et al. 2017; Mukiibi et al. 

2018). For example, in our most recent study, we identified multiple differentially expressed genes 

associated with feed efficiency, some of which are involved in key hepatic functions such as lipid 

metabolism, energy production, amino acid metabolism and carbohydrate metabolism, in beef 
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cattle (Mukiibi et al. 2018). However, only a few studies have sought to identify possible miRNA 

regulation of genes involved in the molecular control of feed efficiency in beef cattle (Al-Husseini 

et al. 2016; De Oliveira et al. 2018; Carvalho et al. 2019). Therefore, in the current study we aimed 

to profile the hepatic miRNAome of beef steers from three beef breed populations, including 

Angus, Charolais and Kinsella Composite, and to identify miRNAs associated with feed efficiency 

through RNAseq differential expression analyses. 

4.3 Materials and Methods 

4.3.1  Animal populations and management 

The management practices and population descriptions of the experimental animals used 

in the current study have been presented in our recent study (Mukiibi et al. 2018). In summary, the 

animals were raised and managed following the Canadian Council of Animal Care (CCAC) 

guidelines on the care and use of farm animals in research teaching and testing (CCAC 2009), and 

all the experimental procedures applied to the animals were approved by the University of Alberta 

Animal Care and Use Committee (AUP00000777). We used a total of 256 beef steers from two 

purebred populations including Angus and Charolais, and crossbred beef steers from the Kinsella 

Composite population. The steers were born, raised and managed similarly at the Roy Berg 

Kinsella Ranch, University of Alberta, Canada. All the purebred Angus and Charolais cows were 

serviced through artificial insemination, followed by natural service by purebred Angus and 

Charolais bulls whose pedigree records were maintained by the Canadian Angus or Charolais 

Association, respectively. KC animals were produced through crossing Angus, Charolais, or 

Alberta Hybrid bulls with the University of Alberta’s hybrid dam line. The crossbreeding design 

used to generate the University of Alberta’s hybrid dam line from composite cattle lines of multiple 

beef breeds has been previously described by Goonewardene et al. (2003). Additionally, since 
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2012, commercial crossbred bulls have been added to the KC herd for natural service. The animals 

used in the current study were born between the months of April and May of 2014 and were 

castrated immediately after birth. The steer calves were maintained with their dams on pasture and 

weaned at an average age of six months. The weaned animals were transitioned to a backgrounding 

diet composed of 80% barley silage, 17% barley grain, and 3% rumensin pellet supplement, and 

thereafter fed set-up diets with gradually decreasing barley silage and increasing barley grain 

proportions for 3 weeks. Subsequently, they were introduced to the finishing diet of 75% barley 

grain, 20% barley silage, and 5% rumensin pellet supplement (as fed basis).   

4.3.2  GrowSafe feedlot test, phenotype measurement and calculations 

 Between the months of April and August in 2015, 50 Angus, 48 Charolais and 158 KC 

steers were measured for individual feed intake using the GrowSafe system® (GrowSafe Systems 

Ltd., Airdrie, Alberta, Canada). A detailed account of the process for measuring each individual 

animal’s daily feed intake using the GrowSafe automated system has been provided by Mao et al., 

(2013). Briefly, the animals were tested for feed intake for a period ranging from 70 to 73 days, 

during which animals were fed on a finishing diet. Average daily intake of each animal was 

calculated as the average of the daily feed intake records over the test period, standardized to 12 

MJ ME per kg dry matter, based on the energy content of the diet. Initial body weight (BW) and 

average daily gain (ADG) for each animal were obtained from a linear regression between serial 

body weight measurements and time (days), and they were recorded on two consecutive days at 

the start, at approximately 14-day intervals during the feedlot test, and on two consecutive days 

prior to the end of test. Metabolic mid-weight (MWT) was calculated as midpoint BW0.75, where 

midpoint BW was computed as the sum of the initial BW of the animal and the product of its ADG, 

multiplied by half the number of days under the feedlot test. RFI was calculated as the residual 
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from a linear regression model where dry matter intake was regressed on ADG and MWT as 

proposed by Koch et al. (1963). 

4.3.3 Liver tissue collection 

Tissue collection and processing procedures have been previously described in our recent 

study (Mukiibi et al. 2018). Briefly, all the animals used in the current study were slaughtered at 

the Agriculture and Agri-Food Canada (AAFC) Lacombe Research Centre (Lacombe, AB) 

between July and September of 2015. Animals were considered ready for slaughter at an average 

back-fat thickness of 8 mm between the 12th and 13th ribs, which was measured using an Aloka 

500 diagnostic real time ultrasound machine with a 17 cm 3.5Mhz linear array transducer. The 

animals were on average slaughtered at the age of 494 ± 3, 518 ± 4, and 457 ± 4 days for Angus, 

Charolais and KC respectively. The liver of each animal was collected immediately after slaughter 

and dissected at relatively the same location on the right lobe and the fibrous capsule was removed 

from the sliced liver tissue samples. The samples were there after bagged separately in plastic re-

closable bags, labelled, flash frozen in liquid nitrogen and transported on dry ice to the laboratory 

where they were stored at -80oC until total RNA extraction. 

4.3.4 Total RNA extraction 

Total RNA extraction was performed on 20 samples (10 with positive and 10 with negative 

RFI phenotype values) from each breed. Each of the selected liver tissue samples were pulverized 

into a fine powder using liquid nitrogen and a pre-chilled mortar and pestle on dry ice. Total RNA 

containing small RNAs was then extracted using the Qiagen RNeasy Plus Universal Mini Kit 

(Qiagen, Toronto, ON), according to the manufacturer’s instructions. A NanoDrop 2000 

Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) was used to quantify the RNA. 

We obtained total RNA with an average concertation of 1851.8ng/µl per sample, and with 
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absorbance ratios (A260/280) ranging between 1.8 and 2.0. RNA integrity was confirmed using a 

TapeStation-Agilent instrument (Agilent Technologies Canada, Mississauga, ON). RNA integrity 

number (RIN) values for all samples were higher than 8 which deemed them to be high quality 

and suitable for cDNA library preparation and downstream transcriptomic profiling. 

4.3.5 Construction of cDNA libraries and sequencing 

In total 60 cDNA libraries were prepared and sequenced at the Clinical Genomics Centre 

(Toronto, ON, Canada). The libraries were prepared using the Illumina Truseq Small RNA Library 

Prep Kit (Illumina, San Diego, CA, USA) from 1 µg of each of total RNA. Initially, an RNA 3’ 

adapter was ligated to the 3’ end of the RNAs in the total RNA samples using a T4 RNA Ligase 2 

enzyme, thereafter, an RNA 5’ adapter was added to the 5’ end of the 3’ adaptor-ligated-RNAs 

using a T4 RNA Ligase. The RNA 3’ and RNA 5’ adapters were designed to specifically target 

miRNAs and other small RNAs resulting from similar biogenic processing. The 5’ and 3’ adapter 

ligated RNA was then reverse transcribed using the SuperScript II Reverse Transcriptase (Thermo 

Fisher Scientific, San Jose, CA, USA) and the RNA RT primer to generate single stranded cDNA. 

The cDNA was then PCR amplified with a universal RNA PCR primer, and a second RNA PCR 

primer containing a six-nucleotide indexing sequence to allow multiplexed sequencing of multiple 

samples on the same flow cell lane. The cDNA libraries were purified via gel electrophoresis using 

a 6% PAGE Gel, and the 160bp and 145bp cDNA bands were excised for subsequent sequencing. 

Four sequencing pools of 15 miRNA libraries were constructed by pooling an average of 2nM 

cDNA from each library. The pooled cDNA libraries were sequenced on two flow cells using the 

Illumina Hiseq 2500 sequencing platform under Rapid run mode, with expected read length of 

50bp (1x50bp single read (SR)). After sequencing, the raw sequence data were demultiplexed into 
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individual FASTQ files for each sample using the Illumina bcl2fastq-v2.17.1.14 conversion 

software (Illumina). 

4.3.6 Bioinformatic sequence data processing and miRNA expression profiling 

Raw sequence reads were firstly assessed for sequencing quality using FASTQC version 

0.11.7(Andrews 2010). The reads were evaluated for quality based on numerous parameters such 

as; average read length, adaptor content, per sequence GC content and per base sequence quality 

scores. Thereafter, the Illumina 3’ adaptor sequence (TGGAATTCTCGGGTGCCAAGG) was 

clipped off all the raw read sequences using cutadapt version 1.16 (Martin 2011). Reads of lengths 

shorter than 15bp, and longer than 28bp were removed as short and long reads, respectively. The 

retained reads were filtered for other bovine short RNA species including ribosomal RNAs 

(rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) and small nucleolar RNAs 

(snoRNAs) downloaded from https://rnacentral.org/. The final processed sequence reads were re-

evaluated for quality using FASTQC. 0.11.7 (Andrews 2010). 

  To profile both novel and known miRNA expression in the samples from the cleaned 

sequence data, the miRDeep2 package (version 2.0.0.8) modules (Friedländer et al. 2011) were 

used together with the UMD3.1 bovine genome from Ensembl version 93, and the known bovine 

mature miRNA sequences and their precursor sequences from the miRBase database (release 22) 

(Griffiths-Jones et al. 2007). The mapper module (mapper.pl) with default parameters was used to 

collapse reads of the sequences into clusters, and then it employed the bowtie-1.1.1 short sequence 

aligner (Langmead et al. 2009) to align the collapsed reads to the indexed UMD3.1 reference 

genome. Using default parameters, and input files including the reference genome, collapsed reads 

versus reference genome alignment, known bovine (and human) mature miRNAs and their 

precursors sequences (including the hairpin structures), and Bos taurus (bta) as the species of 

https://rnacentral.org/
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interest, the miRDeep2 module (miRDeep2.pl) was used to quantify bovine miRNAs. Using 

known mature miRNAs and their precursor sequences as input files, miRDeep2 enacted the 

quantifier module to quantify all known expressed miRNAs in our sequence data, hence producing 

read counts for each individual sample.  

Subsequently, miRDeep2 predicted possible novel miRNAs and their respective precursors 

based on their read alignment to the bovine reference genome. Genomic regions stacked with 

aligned reads were excised as potential precursors and evaluated by the RNAfold tool (Markham 

& Zuker 2008) within ViennaRNA-1.8.4 for their potential to form stable secondary structures 

(hairpins), their ability to be partitioned into mature, loop and star strand, and their base pairing in 

the mature miRNA region. Overall, the RNAfold P-value, the miRDeep2 score and the probability 

that the miRNA candidate was a true positive, were estimated and produced as output together 

with novel mature miRNA consensus sequences and their respective precursor sequences, for each 

novel miRNA. 

4.3.7 Differential miRNA expression analysis 

Initially, counts for each mature miRNA coming from more than one precursor were 

averaged. Thereafter, all miRNAs that had less than 10 total read counts across the studied samples 

were filtered out. Then miRNA expression variation patterns between 20 samples in each breed 

were visualized through principle component analysis of the read counts from the mirDeep2 

module using the DESeq2 Bioconductor package (Love et al. 2014) and ggplot2 R packages. 

Twelve samples including six samples with extreme high and six samples with extreme low-RFI 

phenotypes that showed regular miRNA expression (as compared to all other samples in the same 

breed) were considered for differential miRNA expression using the egdeR package in R 

(Robinson et al. 2010). To increase the statistical power of the analyses, miRNAs within samples 
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from each of the breeds that had less than one count per million (CPM) in at least six samples (half 

of the analyzed samples) were filtered out from the analyses, as proposed by Anders et al. (2013). 

For the retained miRNAs, their counts were normalized using the TMM method (Robinson and 

Oshlack, 2010). To test for differential miRNA expression between high and low-RFI steer groups 

from each breed, the normalized counts were modeled using a generalized linear model under a 

binomial distribution with the high-RFI group as a reference. MicroRNAs were deemed 

differentially expressed at a P-value less than 0.05, and fold change (FC) greater than 1.5. We 

performed differential miRNA expression for all expressed known mature miRNAs and the top 25 

expressed novel miRNAs in each breed. 

4.3.8 Validation of differentially expressed miRNAs 

Six differentially DE miRNAs with relatively high expression per sample were selected for 

validation of the small RNAseq results. These included bta-miR-2415-3p, bta-miR-133a and bta-

miR-2419-5p for Charolais, and bta-miR-424-5p, bta-miR-223 and bta-miR-155 for KC. bta-miR-

192 and bta-miR-93 were selected as endogenous controls for Charolais, whereas bta-miR-2284x 

and bta-let-7b were selected as reference miRNA genes for KC, based on their expression 

abundance and stability across samples (average M values of 0.18 (KC) and 0.22 (Charolais)), 

determined using geNorm in the GenEx Software v.5.2.7.44 (2010) Relative expression of the 

selected miRNAs were obtained through stem-loop RT- TaqMan qPCR(Chen et al. 2005) using 

the high quality total RNA (minimum RIN value of 8, and average concentration of 1870ng/µl) 

that was also used for small RNA sequencing. Reverse-transcription (RT) stem-loop primers and 

TaqMan qPCR assays (containing the probe and forward and reverse primers) were purchased 

from Thermo Fisher Scientific (https://www.thermofisher.com). RT primer IDs and TaqMan 

qPCR assay IDs for each validated internal control are provided in Supplementary Data S11. Serial 

https://www.thermofisher.com/
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
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dilutions of pooled cDNA samples were used to determine amplification efficiencies using the 

equation E = -1 + 10(-1/slope). The slope was calculated by plotting the linear curve of cycle threshold 

(CT) values against the log dilutions (Pfaffl, 2001). Primers had PCR efficiencies of between 89 

and 110%.  

Initially, the reverse transcription reactions for each sample including the no template 

controls were performed using the TaqMan® MicroRNA Reverse Transcription Kit. Each sample 

reaction contained 5 µl of total RNA (2ng/µl), 1µl of MultiScribe Reverse Transcriptase enzyme, 

3µl of stem-loop RT primer, 0.15µl of dNTP mix, 1.5µl of 10x RT buffer, 0.19µl of RNase 

inhibitor and 4.16µl of nuclease free water. The 15µl reactions were incubated in an Eppendorf 

5331 Mastercycler Gradient v2.30.31 thermocycler for 30 minutes at 16oC, 30 minutes at 42oC 

and 5 minutes at 85oC.Thereafter, real-time quantitative PCR (qPCR) was performed using the 

TaqMan® Fast Advanced Master Mix Protocol. The 20µl qPCR reaction contained 10µl of 

TaqMan Fast Advanced Master Mix, 1µl of TaqMan MicroRNA Assay, 1.33µl of RT reaction 

product (cDNA) and 7.67µl of nuclease free water. All qPCR reactions were performed in 

triplicate on a MicroAmp® Fast Optical 96-Well Reaction Plate in the Applied Biosystems™ 7500 

Fast Real-Time PCR System v2.0.1 (Applied Biosystems, Foster City, California, USA). The 

reactions were incubated for 2 minutes at 50oC, for 20 seconds at 95oC, and followed subsequently 

by 40 PCR cycles of 3 seconds at 95oC for denaturation and 30 seconds at 60oC for annealing and 

extension. Threshold cycle values from the Real-Time PCR thermocycler were then imported into 

GenEx Software v.5.2.7.44 (2010) (MultiD Analyses AB, Göteborg, Sweden). The CT values were 

adjusted to account for inter-plate variation using the inter-plate calibrator sample included on the 

plates and to account for amplification efficiencies. The replicates were averaged, and the resulting 

CT values were normalized to the reference genes and Log2 relative quantities were calculated to 
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the highest-p CT value. The relative quantities were then analyzed for differential miRNA 

expression between high and low-RFI steers using a two tailed t-test. 

4.3.9 miRNA Target genes prediction 

Target genes for highly expressed known miRNAs and most expressed novel microRNAs 

across the three populations, , and the differentially expressed known and novel miRNAs from 

each breed were predicted using three TargetScan 7.0 Perl scripts (Agarwal et al. 2015) 

downloaded from http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi. 

TargetScan and its associated packages were used to predict mammalian miRNA target genes 

based on a scoring model that includes the following attributes; 3’-UTR target-site abundance, 

predicted seed-pairing stability, identity of the nucleotide at position 1 of the sRNA, identity of 

the nucleotide at the 8th position of the sRNA, identity of the nucleotide at the 8th position of the 

target site, local AU content near the target site, supplementary pairing at the miRNA 3’ end, 

predicted structural accessibility, minimum distance of the site from the stop codon or 

polyadenylation site, probability of target site conservation, ORF length, 3’-UTR length, number 

of offset-6mer sites in the 3’ UTR, and the number of 8mer sites in the ORF (Agarwal et al. 2015).  

Firstly, we predicted the conserved and non-conserved target sites using targetscan_70.pl 

by providing all the known gene transcripts UTR sequence alignments and the miRNA family 

information as inputs. The miRNA family information file included the miRNA family IDs, the 

seed sequence (from 2nd position nucleotide to 8th position nucleotide 5’ of miRNA sequences) 

and the NCBI IDs of 8 species (cow, sheep, domestic goat, horse, human, mouse, rat and pig). 

Thereafter, we used targetscan_70_BL_bins.pl and targetscan_70_BL_PCT.pl to calculate the 

branch length and the conservation probability of the conserved target sites. Finally, in 

http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi
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combination with RNAplfold-2.4.11, targetscan_70_context_scores.pl was used to calculate 

context++ scores for the miRNA target genes based mainly on the 14 attributes mentioned above.  

4.3.10 Functional Enrichment, and target-miRNA interaction networks analysis 

Target genes for the top expressed known and novel miRNAs with the 99th context++ score 

percentile rank were considered for functional enrichment analysis using ingenuity pathway 

analysis (IPA). Additionally, for each breed target genes for the DE miRNAs with context++ 

percentile rank higher than 50 and those which were identified as DE genes in our previous mRNA 

study (Mukiibi et al. 2018) were retained for DE mRNA - DE miRNA (Target-miRNA) interaction 

network analyses for each breed using Cytoscape 3.7.1 (Shannon et al. 2003). Functional 

enrichment analyses were also performed on the DE targets to identify the major biological 

functions that are potentially differentially modulated by the identified DE miRNAs. 

4.4 Results 

4.4.1 miRNA sequence data and alignment quality  

On average Illumina next generation sequencing yielded over 9M high quality raw reads 

per sample for Angus and Charolais, and over 11M for KC samples (Table 4.1). After 3’ adaptor 

clipping, 36.91% of the reads were removed as long reads (>28bp), 8.29% were removed as very 

short reads (< 15bp) (Table S2 in the Supplementary Data S11). Additionally, on average 0.25%, 

0.14%, 0.03% and 0.03% of the reads were removed as they aligned to bovine rRNAs, tRNAs, 

snRNAs and snoRNAs, respectively (Table S3 in the Supplementary Data S11). An average of 

5.5M reads were retained for miRNA profiling analysis by mirDeep2 (Table 4.1). The retained 

reads were of high quality as depicted by high average Phred scores in Figure 4.1a, and majority 

of the reads ranged between 20 and 24bp in length as shown Figure 4.1b. Of the retained reads, 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
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74.8 ± 0.4% mapped to the UMD3.1 bovine reference genome, with KC samples having the 

highest mapping rate of 77 ± 0.3% (Table 4.1). 

4.4.2 Known miRNA expression and novel miRNA identification 

We identified 541, 552 and 576 expressed known miRNAs in Angus, Charolais and KC 

samples, respectively. Of all the known miRNAs, 90% were common to all the three breeds as 

shown in Figure 4.2a. Among the most expressed miRNAs, bta-miR-192 was the most abundant 

miRNA in all the three breeds with an average of 867,342, 1,060,828 and 1,272,798 aligned reads 

per sample from Angus, Charolais and KC populations, respectively. Ten miRNAs showed 

predominantly high expression including bta-miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, 

bta-miR-30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f, bta-miR-27a-3p and bta-miR-101 and 

they accounted for an average of 78.4%, 78.3% and 77.9% percent of the total aligned sequence 

reads in Angus, Charolais and KC animals, respectively. The top 20 expressed miRNAs across 

studied samples from each of the breeds are presented in Table 4.2, while all the expressed 

miRNAs identified, and their average read counts in each breed are presented in Supplementary 

Data S12. At a mirDeep2 score ≥ 4, an estimated probability that the predicted miRNA candidate 

is a true positive ≥  70 ± 4%, and a significant Randfold p-value that the miRNA precursor 

sequence could be folded into a thermodynamically stable hairpin, we identified 126 (from 129 

precursors), 101 (from 103 precursors) and 125 (from 125 precursors) novel miRNAs in Angus, 

Charolais and KC samples, respectively. The identified miRNAs were largely breed specific, with 

only 31 of them being common to all the three breeds, (Figure 4.2b). The novel miRNA bta-miR-

AB-10 was the most expressed of all the identified novel miRNAs across the three breeds with a 

total of 37,061, 57,018 and 64,372 read aligned to it in Angus, Charolais and KC samples, 

respectively (Table 4.3). The hairpin structure of the precursor and the read alignment distribution 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/244b5f0e-0b89-4475-91f1-be3dd6289f6e/Supplementary%20Data%20S12.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/244b5f0e-0b89-4475-91f1-be3dd6289f6e/Supplementary%20Data%20S12.xlsx
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(i.e. alignment to the mature, star and loop sequences) across the three breeds are presented in 

Figure S2 in Supplementary Data S11. The top 20 expressed novel miRNAs and their miRDeep2 

prediction scores are presented in Table 4.3, whereas all the identified novel miRNAs miRDeep2 

prediction scores from all the three breeds are provided in the Supplementary Data S12. 

4.4.3 miRNA differential expression 

Differential miRNA expression analysis was performed between low- and high-RFI steer 

groups from the profiled animals from three studied populations. The average RFI phenotypic 

values between the two steer groups (high and low-RFI) were all significant at P-value < 0.0042 

after Bonferroni Correction for multiple comparisons (Table S2 in the Supplementary Data S11). 

For other traits, low-RFI animals consumed significantly less feed per day than their high-RFI 

counterparts in Charolais and KC as expected. For Angus, low-RFI animals on average also 

consumed less feed as compared to the high-RFI animals but the difference did not reach to the 

significant level (i.e. P-value > 0.0042, Bonferroni Correction). The average phenotypic values of 

other traits including animal slaughter age were not significantly different between the high and 

low RFI groups (Table S2 in the Supplementary Data S11). 

At a fold change of 1.5 and a P-value < 0.05, we identified 12 DE miRNAs in the liver 

tissue of Angus including (two novel miRNAs), of which five were downregulated and seven 

upregulated in low-RFI animals. In Charolais, we identified 18 DE miRNAs including (two novel 

miRNAs), of which six were downregulated and 12 upregulated in low-RFI Charolais steers. In 

KC, 12 DE miRNAs including (two novel miRNAs) were identified, of which 5 and 7 were 

downregulated and upregulated, respectively, in low-RFI steers (Table 4.4). Of the identified DE 

miRNAs, only bta-miR-449a was common to all the three breeds where it was upregulated in the 

low-RFI steers of the three population (Figure 4.3). The novel miRNA bta-miR-AB-2 was 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/244b5f0e-0b89-4475-91f1-be3dd6289f6e/Supplementary%20Data%20S12.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
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differentially expressed in both Angus and Charolais steers, however it was downregulated and 

upregulated in low-RFI Angus and Charolais steers, respectively.  

4.4.4 TaqMan qPCR miRNA differential expression validation  

Of the six selected miRNAs for validating RNAseq results using TaqMan qPCR, bta-miR-

133a was significantly differentially expressed between high and low-RFI Charolais steers at P-

value = 0.003 (< 0.05). Bta-miR-223 and bta-miR-424-5p for KC had suggestive P-values of 0.054 

and 0.086, respectively. Despite the qPCR expression profiles of most of the selected miRNAs not 

being significantly different between high and low-RFI steers as revealed by RNAseq, the methods 

showed similar trends of the miRNAs in the low-RFI animals as shown in Figure 4.4. All qPCR t-

test and fold-changes between high and low-RFI animals are presented in Table S4 in 

Supplementary Data S11. Additionally, there was a 0.81 Pearson correlation between the qPCR 

and RNAseq log2-fold changes of the six miRNAs as shown Figure S2 of Supplementary Data 

S11. 

4.4.5 Target gene prediction and functional enrichment analyses for the most abundant 

known and novel miRNAs 

We performed target gene prediction for 16 known miRNAs that were highly expressed in 

the liver tissue of the animals from the three breeds (Table 4.2). At a threshold of the 99th context++ 

score percentile, we identified 1094 target genes. Of these target genes, 1053 mapped to the IPA 

ingenuity database and they are mainly involved in cell morphology, cellular assembly and 

organization, cell death and survival, cellular function and maintenance, and cellular development 

biological functions. All metabolic and cellular functions significantly enriched by the identified 

targets are presented in Figure S3 of the Supplementary Data S11. Within the cell death and 

survival category, the target genes are primarily involved in necrosis and apoptosis. For cellular 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
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function and maintenance, the targets are mainly involved in maintaining cellular homeostasis. For 

cellular development, the target genes are involved in different cell type proliferation and 

development processes such as immune cell development and hepatic cell proliferation. Also, IPA 

identified sirtuin signaling, mitochondrial dysfunction, oxidative phosphorylation, LXR/RXR 

activation and acute phase response signaling as the most enriched pathways among the target 

genes. 

For the novel miRNAs, the overlap among the top expressed miRNAs across the breeds 

was low, hence, we performed target gene prediction for the 20-top expressed of each breed (Table 

4.3.). At a threshold of the 99th context++ score percentile, we identified 1584, 1973 and 1755 

target genes for Angus, Charolais and KC. For Angus, of the identified targets, 1520 genes mapped 

to the IPA database and they were mainly involved in cellular development, cellular growth and 

proliferation, protein synthesis, cell cycle, and cell morphology. All metabolic and cellular 

functions significantly enriched by these targets are presented in Figure S4 of the Supplementary 

Data S11. Key IPA canonical pathways enriched by these target genes included oxidative 

phosphorylation, mitochondrial dysfunction, molybdenum cofactor biosynthesis, spermine 

biosynthesis, and estrogen-mediated S-phase entry pathways. For Charolais, 1898 targets mapped 

to the IPA database and were mainly involved in cellular movement, RNA post-transcriptional 

modification, cell cycle, cellular growth and proliferation and cell death and survival. All 

metabolic and cellular functions significantly enriched by these identified targets are presented in 

Figure S5 of the Supplementary Data S11. Mitochondrial dysfunction, oxidative phosphorylation, 

sirtuin signaling, assembly of RNA polymerase II complex and estrogen receptor signaling 

pathways were identified as the major enriched IPA canonical pathways. For KC, 1358 genes 

mapped to the IPA database and are mainly involved in RNA post-transcription modification, 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
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RNA damage and repair, protein synthesis, cell morphology, and cell cycle biological functions. 

All significantly enriched metabolic and cellular identified targets are presented in Figure S6 of 

the Supplementary Data S11. In addition to oxidative phosphorylation, we identified four 

cholesterol biosynthesis related pathways including cholesterol biosynthesis I, cholesterol 

biosynthesis II (via 24, 25-dihydrolanpsterol), cholesterol biosynthesis III (via Desmosterol) and 

zymosterol biosynthesis, as the major enriched pathways by the target genes. All targets identified 

for the 16 most highly expressed miRNAs and the 20 highly expressed novel miRNAs and their 

Targetscan scoring parameter scores are provided in Supplementary Data S13.  

4.4.6 DE miRNAs and DE target gene prediction 

For the differentially expressed known and novel miRNAs (Table 4.4), we identified 44, 

31 and 118 target DE genes that we previously reported as differentially expressed between high 

and low-RFI in the liver tissue of Angus, Charolais and KC, respectively, at a context++ score 

percentile > 50. Five of the identified targets included SCD, LIPN1, LURAP1L, SERPINA3 and 

TP53INP1, and were common to all the three breeds (Figure 4.5). DLK1 and GNAZ were common 

between Angus and Charolais. AK4 and NROB2 were shared between Charolais and KC. The 

Other 7 target genes included FKBP5, SLCO4A1, ENDRA, TLE1, ZBTB16, TSKU and TTC39C, 

and were common between Angus and KC, Figure 4.5. TargetScan results for the identified target 

DE genes for the DE miRNAs for the three breeds are provided in the Supplementary Data S14.  

4.4.7 DE miRNAs and DE target genes interaction networks 

The miRNA bta-miR-449a which was identified as the common DE miRNA in the three 

populations (upregulated in low-RFI steers in all the three breed), was predicted to target 16, 11 

and 35 DE gene in Angus, Charolais and KC steers respectively, with three targets genes common 

to the three populations (SERPINA3, TP53INP1 and LPIN1). For Angus, 8 DE genes were 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/6da0a498-bbf9-4d34-be16-525968533f18/Supplementary%20Data%20S11.pdf
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/4c9da31d-3b21-44be-8c7c-f236eee25475/Supplementary%20Data%20S13.xlsx
https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/4bdb04e8-d918-403d-94a9-ac6d9e652ffc/Supplementary%20Data%20S14.xlsx
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identified as the major target genes for the DE miRNAs including FKBP5 and RAB30, with each 

was targeted by six miRNAs. The other six major target genes including COL1A1, ELOVL5, SCD, 

TLE1, TP53INP1 and TTC39C were predicted to be regulated by five DE miRNAs each, as shown 

in Figure 4.6. Of these targets, FKBP5, COL1A1, SCD, TLE1 and TP53INP1 were downregulated 

in low-RFI animals, whereas RAB30, ELOVL5 and TTC39C were upregulated in the same animals. 

Additionally, the miRNAs and DE target gene interaction networks show bta-miR-2285n, bta-

miR-2285u and bta-miR-449a (all upregulated) as the major miRNAs targeting 23, 19 and 16 DE 

genes, respectively (Figure 4.6). Of these target genes, 4 including CHL1, TENM4 (upregulated in 

low-RFI animals), LPIN1 and ASCL1 (downregulated in low-RFI animals) are co-regulated by the 

three miRNAs, whereas 10 including SCD, FKBP5, MBNL3, GNAZ, TLE1 (downregulated) and 

EDNRA, ELOVL5, CPT1B, HOPX and DOPEY2 (upregulated) are predicted to be regulated by 

bta-miR-2285 and bta-miR-2285u. Other major miRNAs including bta-miR-AB-2, bta-miR-AB-

47, and bta-miR-424-3p, are predicted to regulate 14, 13 and 12 DE genes respectively.  

For Charolais, the major targeted genes included SIRPA (predicted to be targeted by 10 DE 

miRNAs), ABCC4 (predicted to be targeted by 10 DE miRNAs), DLK1 and TP53INP1 (each 

predicted to be targeted by eight DE miRNAs), SCD, SLC7A5 and THEM4 (each predicted to be 

targeted by seven DE miRNAs) and AK4 (predicted to be regulated by six DE miRNAs) (Figure 

4.7). SLC7A5, TP53INP1, SCD and THEM4 were downregulated, whereas AK4, SIRPA, DLK1 

and ABCC4 were upregulated in low-RFI animals. Furthermore, bta-miR-2285ai-5p (14 targets), 

bta-miR-7859 (12 targets), bta-miR-2284ac (11 targets), bta-miR-AB-2 (11 targets), bta-miR-449a 

(10 targets) were predicted as the major regulators among the identified DE miRNAs and were all 

upregulated in liver tissue of low-RFI steers as shown in Figure 4.7. SIRPA (upregulated in low-

RFI steers) is predicted to be co-regulated by all the five major DE miRNAs. The majority of DE 
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genes predicted to be co-regulated by bta-mir-2284ac and bta-mir-2285ai-5p were downregulated 

in low-RFI animals, and included LURAP1L, SLC7A5, TP53INP1, PDK4, SCD, KLHL13 and 

SLC4A4 (downregulated in the low-RFI animals), and ANXA2, SIRPA, ABCC4 and CYP2C19 

(upregulated in the liver tissue of Charolais steers of low-RFI).  

For KC, the main predicted target DE genes included FKBP5 (targeted by 9 DE miRNAs), 

TP53INP1 (targeted by 8 DE miRNAs), PPARGC1A (targeted by 7 DE miRNAs), and EDNRA, 

GCH1, IGF1 and SCD which were targeted by 6 DE miRNAs each. FKBP5, SCD, TP53INP1, 

GCH1 and PPARGC1A were downregulated in the liver tissue of low-RFI animals, and IGF1 and 

EDNRA were upregulated in the liver tissue of the same animals. Among the DE miRNAs, bta-

miR-424-5p (targeting 61 DE genes), bta-miR-2411-3p (targeting 40 DE genes), bta-miR-223 

(targeting 36 DE genes) and bta-miR-449a (targeting 35 DE genes) were identified as major 

regulators as shown in Figure 4.8. Two DE targets CXCL10 (downregulated in low-RFI animals) 

and TP53INP1 (downregulated in low-RFI animals) were predicted to be regulated by all these 

four major DE miRNAs. However, there were varying numbers of target gene co-regulated by two 

or three of these DE miRNAs. For example, bta-miR-424-5p (upregulated) and bta-miR-2411-3p 

(downregulated), were predicted to uniquely target 11 of the identified DE targets including 

NMNAT2, USP2 and SLC25A15 that were downregulated in low-RFI animals, and GHR, CCND1, 

TTC39C, ELOVL2, IRAK3, IL20RA, MPZL2, NYNRIN which were upregulated in the same 

animals. Also, bta-miR-424-5p and bta-miR-223 and were predicted to co-regulate eight DE genes 

including PER1, SLC7A2, RCL1, CYP1A1, PPARGC1A and PNP (downregulated in low-RFI 

animals) and, GCLC and MYCL (upregulated in low-RFI animals). Other main DE miRNAs 

included bta-miR-AB-63 (targeting 28 DE genes), bta-miR-363 (targeting 26 DE genes), bta-miR-
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155 (targeting 23 DE genes), bta-miR-1246 (targeting 20 DE genes) and bta-miR-2483-5p 

(targeting 19 DE genes) as shown in Figure 4.8. 

4.4.8 Functional enrichment analyses of the DE target genes 

We performed IPA analysis to further characterize the biological importance of the 

identified DE targets. For Angus, the target genes are mainly involved in lipid metabolism, 

molecular transport, small molecule biochemistry, energy production and carbohydrate 

metabolism (Table 4.5). For Charolais, lipid metabolism, molecular transport, small molecule 

biochemistry, cellular movement, and cell-to-cell signaling, and interaction were identified as the 

main biological functions involving the identified DE targets (Table 4.5). For KC, the target DE 

genes are mainly involved in cell death and survival, amino acid metabolism, small molecule 

biochemistry, lipid metabolism, and vitamin and mineral metabolism (Table 4.5). 

4.5 Discussion  

4.5.1 RNAseq miRNA abundancy profiling 

RNA sequencing offers greater resolution to profile miRNAs even at a low expression level 

in the cells (Motameny et al. 2010) and allows for parallel profiling of the abundance of known 

miRNAs, and the identification of novel miRNAs (Pritchard et al. 2012). Additionally, with the 

profiled miRNA sequences, the prediction of potential target genes for both known and novel 

miRNAs is possible (Motameny et al. 2010). In the current study we employed deep sequencing 

of small RNAs to profile miRNA expression in the liver tissue of 60 beef steers from three distinct 

beef breed populations. We obtained high quality sequence reads as revealed by our sequencing 

quality results with average Phred quality score of 36.7 across the samples of the three breeds. 

Additional sequence data quality control processing (including removal of other small miRNAs) 

resulted in read sequences with an average length of 22bp, and the majority of the reads ranging 
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between 20 and 24bp across the samples from the three breeds as shown in Figure 4.1a, hence, 

providing high quality and reliable reads for downstream alignment and abundancy profiling of 

miRNAs whose natural average length is 22 nucleotides (Friedländer et al. 2011).  

4.5.2 Known miRNAs expression and functionality 

With a high average mapping rate of 75%, we identified, 541, 551 and 575 known mature 

miRNAs expressed in the liver tissues of Angus, Charolais and KC steers, respectively. 

Interestingly, 90% of these miRNAs were expressed in the three populations, indicating a high 

similarity among the breed in term of hepatic miRNA expression. Similar expression patterns were 

also observed with the expression of protein coding genes in the same populations, where over 

96% of the expressed genes were common among the liver tissues of the three beef breeds (Mukiibi 

et al. 2018). 

  Of the expressed miRNAs, 10 miRNAs including bta-miR-192, bta-miR-143, bta-miR-

148a, bta-miR-26a, bta-miR-30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f, bta-miR-27a-3p and 

bta-miR-101 showed extremely high expression in the liver tissue of the profiled animals across 

the three breeds accounting for 78.2% of the average aligned read counts in each breed. 

Interestingly, bta-miR-101, bta-miR-143, bta-miR-30a-5p, bta-let-7f, bta-miR-192 and bta-miR-

148a were previously reported among the 10 top-most expressed miRNAs in the liver tissue of 

Australian Angus steers (Al-Husseini et al. 2016) and Chinese Holstein dairy cows(Sun et al. 

2019), indicating their stable high expression across a wide range of cattle breeds, despite the 

genetic distinctiveness of these animals. Additionally, Sun et al. (2019) reported high expression 

of these miRNAs in multiple studied tissues, with bta-miR-143 and bta-miR-27b particularly 

showing high levels of expression in all the tissues from both beef and dairy animals. This implies 

the potential vitality of these miRNAs to modulate the biological processes of different tissues in 
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the body. The miRNA bta-miR-192, which was the most expressed miRNA across the three 

populations belongs to the miR-192/215 family, whose homologous members have been 

implicated in several biological functions and disease disorders in different species. For example, 

miR-192 in mice, has been reported to regulate genes involved in glucose metabolism, cell 

adhesion and migration, tumorigenesis and tumor progression, protein SUMOylation, epigenetic 

regulation and epithelial-mesenchymal transition of the hepatic cells through the HNF4–miR-194/ 

miR-192 signaling pathway (Morimoto et al. 2017). In sheep, miR-192 has been reported to be 

involved in regulating the growth and development of the skeletal muscle (Zhao et al. 2016).  

 Additionally, we identified the target genes of the highly expressed miRNAs across the 

three breeds. Functional enrichment analysis revealed that the candidate target genes were 

involved in some key biological processes including maintaining cellular homeostasis, 

proliferation of liver cells and apoptosis of cells. Consistent with our results, some miRNAs the 

majorly expressed miRNAs have been identified as important modulators of liver cellular 

metabolic homeostasis, liver cell proliferation and development, liver cell death and regeneration 

in different species (Chen & Verfaillie 2014). For example, miR-143 which was the second most 

abundant miRNA in our studied samples was reported to be involved in glucose and insulin 

metabolism in mice (Jordan et al. 2011). MiR-148 and miR-26a are involved in the regulation of 

mice hepatocyte proliferation (Zhou et al. 2012; Gailhouste et al. 2013), a key process in liver 

tissue regeneration. In the human and mouse liver tissue, miR-148a (Takagi et al. 2008) and miR-

27 (Bates et al. 2010), respectively, have been identified as regulators liver detoxification. Based 

on our results and the conserved nature of miRNA-mRNA interaction across mammalian species 

(Friedman et al. 2009), we speculate that these highly expressed miRNAs in the bovine liver might 

play similar functions as those highlighted in other species, however molecular studies are needed 
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to validate the precise functions of these miRNAs in cattle given the physiological differences 

between the species. 

 We also identified several novel miRNAs, some of which showed substantial expression 

levels in the bovine liver tissues where they might be involved in regulating different metabolic or 

growth and development of the liver tissue. Indeed, our functional enrichment results showed the 

most highly expressed novel miRNA target genes are involved in key biological functions that 

relate to the normal liver functionality such as cell cycle, cellular growth and proliferation, cell 

death and survival and protein synthesis. Functional enrichment results for both highly expressed 

known and novel miRNAs suggest a strong connection between these miRNAs and liver tissue 

growth and development. These observations are plausible, since the liver is in constant self-

regeneration or regrowth to recover hepatic tissue lost due to assault by pathogens, toxins, and 

exogenous antigens (Tao et al. 2017). Liver regeneration is a complex and highly regulated process 

that includes the initiation phase, the cell proliferation phase, and the regeneration termination 

phase, all of which are modulated by miRNAs (Chen et al. 2015; Yi et al. 2016). 

4.5.3 Differentially expressed miRNAs between efficient and inefficient animals 

The liver is a central metabolic organ serving major biological functions in the mammalian 

body including nutrients (lipids, carbohydrates, proteins/amino acid, and vitamins and minerals) 

metabolism, xenobiotics and toxin metabolism, pathogen processing and growth regulation 

(Häussinger 1996; Parker & Picut 2005). MicroRNAs are known to modulate all these functions 

(Chen & Verfaillie 2014), therefore, differential hepatic miRNA expression between efficient and 

inefficient animals can potentially contribute to the molecular variability in feed efficiency in beef 

cattle. To investigate the possible associations between liver miRNA expression and feed 

efficiency variability in beef cattle, we performed differential miRNA expression analysis between 
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steer groups of RFI phenotypes that were significantly different (high and low-RFI groups) from 

Angus, Charolais and KC populations. Indeed, we identified 39 differentially expressed known 

and novel miRNA between the steer groups in all the three studied populations. Most of the 

identified miRNAs were breed specific, which was consistent with our mRNA differential 

expression study (Mukiibi et al. 2018) that considered to the great extent the same animals from 

the three breeds, where most of the DE genes were breed specific as well. However, bta-miR-449a 

was differentially expressed in all the three breeds, with consistent upregulation in the liver tissue 

of low-RFI steers in all the breeds.  

Within each breed, the majority (i.e. 58.3% for Angus, 66.7% for Charolais and 66.7% for 

KC) of the differentially expressed miRNAs were upregulated in low-RFI animals, and hence 

suggests a general expectation of reduced expression of their target genes. Compared with the 

previous studies that have investigated the association of miRNA expression with feed efficiency 

(Al-Husseini et al. 2016; De Oliveira et al. 2018), bta-miR-424-5p was the only miRNA that was 

common between the DE miRNAs identified in our study and those reported by Al-Hussein et al. 

(2015). However, in our study, bta-miR-424-5p was upregulated in the liver tissue of low-RFI 

animals (KC), whereas Al-Hussein et al. (2015) reported it to be downregulated in the liver tissue 

of low-RFI Angus bulls. This difference could be due to the genetic differences between the 

animals or the diverse sequencing library construction methods used in the two studies. Al-Hussein 

et al. (2015) sequenced two cDNA libraries of pooled RNA from efficient and inefficient animals, 

whereas in our study we independently sequenced the cDNA libraries of the studied animals. 

  We performed, qPCR validation of the RNAseq differential miRNA expression using six 

of the identified differentially expressed miRNAs. Of these, bta-miR-133a showed significant 

differential expression, whereas, bta-miR-424-5p and bta-miR-223 showed suggestive differential 
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expression between high and low-RFI animals. However, qPCR results of all the six miRNAs 

showed a similar trend of expression (in low-RFI animals) as revealed by RNAseq in the same 

animals. Additionally, the miRNA expression profiles from the two methods show a high 

correlation of 0.81. These results provide great confidence about the reliability of both the technical 

miRNA profiling by RNA sequencing and the consequent bioinformatic processing of the 

sequence data. 

To investigate the biological importance of the DE miRNAs within each breed, we 

predicted target genes that were among the differentially expressed DE genes previously reported 

in the same animal populations (Mukiibi et al. 2018). Of the DE genes, 61%, 75.6% and 67.4% 

were predicted as potential targets of the DE miRNAs in Angus, Charolais and KC steers, 

respectively. These target genes are mainly involved in lipid metabolism, molecular transport, 

small molecule biochemistry, energy production, carbohydrate metabolism, cellular movement, 

cell-to-cell signaling and interaction, cell death and survival, amino acid metabolism and vitamin 

and mineral metabolism, implying that the identified DE miRNAs influence feed efficiency 

through differential modulation of the different processes underlying these functions in the liver. 

From the DE miRNA – DE mRNA interaction networks in in Figure 4.4, Figure 4.5 and Figure 

4.6, it can be observed that miRNAs were predicted to target multiple DE genes, and single genes 

were predicted to be targets for multiple miRNAs. This complex form of miRNAs-mRNAs 

interaction emanates from the fact that a single miRNA using its seed region, can bind to multiple 

sites in the 3’-UTRs of different genes (mRNAs), and also one target can have multiple binding 

sites for several miRNAs (Creighton et al. 2009; Hashimoto et al. 2013), hence allowing miRNAs 

to modulate multiple biological processes even though they are small in numbers as compared to 

the mRNAs that they regulate.  
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 To a large extent, we observed contrasting expression between DE genes and DE miRNAs 

in the liver tissues of low-RFI animals, for example, in Angus, of the identified DE target genes 

for the upregulated miRNAs bta-miR-2285n, bta-miR-2285u, bta-miR-449a and bta-miR-47, 52%, 

63%, 75% and 61.5% were downregulated. For Charolais, of the predicted DE targets of 

upregulated (in low-RFI animals) miRNAs bta-miR-2285ai-5p, bta-miR-7859, bta-miR-2284ac 

and bta-miR-449a, 57%, 50%, 45%, 72% and 36%, respectively, were downregulated. In KC, of 

the predicted DE targets of upregulated (in low-RFI animals) major DE miRNAs bta-miR-424-5p, 

bta-miR-223, bta-miR-449a and bta-miR-363, 62%, 67%, 66% and 54%, respectively, were 

downregulated. However, we also observed a significant number of upregulated predicted target 

genes despite being targeted by multiple upregulated miRNAs. These observations could be 

attributed to the different mechanisms of miRNA gene regulation in the mammalian cells including 

augmenting mRNA degradation through deadenylation and translation (proteins) repression when 

they bind to the 3’ UTRs of their targets (Stroynowska-Czerwinska et al. 2014). Therefore, at the 

transcriptome level we can only detect miRNA’s regulation activity if its mode of action on genes 

is through degradation of the mRNA. However, if the mode of action is via repression of mRNA 

translation into protein, the regulation affected can only be detected at the proteome level (through 

proteomics) since mRNA copies will not be changed by the increased expression of the miRNAs 

(Creighton et al. 2009; Saito & Sætrom 2010).  

4.6 Conclusions 

In the current study we employed RNAseq to performed hepatic miRNAome profiling of 

beef steers from Angus, Charolais and KC populations. We identified a total of 588 expressed 

known bovine miRNAs of which 90% were expressed in the liver tissue of the animals from the 

three populations. Of these miRNAs, bta-miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, bta-
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miR-30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f, bta-miR-27a-3p and bta-miR-101 were 

identified as the most expressed miRNAs in all three breeds. We also identified 241 novel bovine 

miRNAs expressed in the liver tissue, 69% identified as expression in only one of the three breeds, 

whereas, 13% were identified as expressed in all the three populations. Differential miRNA 

expression analyses identified 39 miRNAs as associated with feed efficiency including five novel 

miRNAs (bta-miR-AB-2, bta-miR-AB-47, bta-miR-AB-15, bta-miR-AB-63 and bta-miR-AB-225). 

The majority of the DE miRNAs were breed specific, and bta-miR-449a was differentially express 

in all three populations. The identified DE miRNAs were predicted to target mainly the genes that 

have been previously identified as differentially expressed in the liver tissues of feed efficient and 

inefficient animals from the same populations. Our results provide insight into the hepatic 

miRNAome expression profile of beef cattle and potential molecular regulatory mechanism of 

feed efficiency in beef cattle. 
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4.8 Figures and Tables 

 

Figure 4.1. (a) Line plot showing read lengths distribution in the final cleaned sequence data after quality control involving; 3’ Illumina 

sequencing adaptor clipping, removing very long reads (>28bp) and short reads (< 18bp) and removing reads that mapped other small 

RNA species (rRNAs, snRNAs, tRNAs and snoRNAs) for Angus, Charolais and KC samples; (b) Box plots showing average Phred 

quality score of the retained reads. 

  

 

a b 
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Figure 4.2.(a) Venn diagram showing overlap of expressed known miRNAs in the liver tissue of 

steers from the three studied breeds (Angus, Charolais and KC); (b) Venn diagram showing 

overlap of Novel miRNAs identified between the three studied breeds (Angus, Charolais and KC). 

  

 

 

 Figure 4.3.(a)Venn diagram showing differentially expressed miRNA overlap between the 

studied populations (Angus, Charolais and KC); (b) Bar plot showing expression of bta-miR-449a 

in low-RFI steers of the three breeds. 

b a 

b a 
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Figure 4.4. Comparison of the expression (in log2(Fold-Change)) of six differentially expressed 

miRNAs in low-RFI animals as estimated using qPCR and RNAseq methods, P= P-value of 

expression difference test between high and low-RFI animals. 

  

 Figure 4.5. Venn diagram showing differentially expressed target genes for the DE miRNAs in 

the liver tissue of Angus, Charolais and KC steers. 
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue of low-RFI Angus steers relative to high-RFI Angus animals. 

 Figure 4.6. DE target genes and DE miRNA interaction network and regulation of both DE 

miRNAs and DE targets in the liver tissue of low-RFI Angus steers. 
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue of low-RFI Charolais steers relative to high-RFI Charolais animals. 

 Figure 4.7. DE target genes and DE miRNA interaction network and regulation of both DE 

miRNAs and DE targets in the liver tissue of low-RFI Charolais steers. 
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue of low-RFI Angus steers relative to high-RFI Angus animals. 

Figure 4.8. DE target genes and DE miRNA interaction network and regulation of both DE 

miRNAs and DE targets in the liver tissue of low-RFI KC steers. 

 

 

 

 

 

 



146 

 

 

Table 4.1. miRNA sequence data quality and expression. 

  Angus Charolais Kinsella Composite 

Before quality control       

Average no. of reads 9,450,928 9,620,729 11,230,561 

Read length/bp 51 51 51 

Average quality score 37.30 37.00 35.93 

After quality control       

Average no. of reads 4,553,319      5,497,788      6,483,795     

Average lengths 22bp 21bp 22bp 

Mapping/alignment rate 74.8% 72.5% 77.1% 
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Table 4.2. Twenty highly expressed miRNAs (by aligned read counts) from each of the three populations (Angus, Charolais and KC) 

studied.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Bolded miRNAs” = 16 highly expressed miRNAs across the three breeds. 

 

 

 Angus Charolais KC 

 Expressed 

Known miRNAs 

Average 

count/sample 

Expressed 

Known miRNAs 

Average 

count/sample 

Expressed Known 

miRNAs 

Average 

count/sample 

1 bta-miR-192 867342 bta-miR-192 1060828 bta-miR-192 1272798 

2 bta-miR-143 613476 bta-miR-143 778165 bta-miR-143 961386 

3 bta-miR-148a 479349 bta-miR-148a 535207 bta-miR-148a 656136 

4 bta-miR-26a 177987 bta-miR-26a 225551 bta-miR-26a 273009 

5 bta-miR-30a-5p 163172 bta-miR-30a-5p 180528 bta-miR-30a-5p 225973 

6 bta-miR-22-3p 145620 bta-miR-22-3p 156016 bta-miR-22-3p 183337 

7 bta-miR-27b 110066 bta-miR-27b 120648 bta-miR-27b 154701 

8 bta-let-7f 108663 bta-let-7f 117980 bta-let-7f 126847 

9 bta-miR-27a-3p 70791 bta-miR-27a-3p 77866 bta-miR-27a-3p 96651 

10 bta-miR-101 65614 bta-miR-101 74408 bta-miR-101 90249 

11 bta-miR-126-5p 56376 bta-miR-21-5p 66516 bta-miR-126-5p 84323 

12 bta-miR-21-5p 52293 bta-miR-126-5p 66357 bta-miR-21-5p 73380 

13 bta-miR-92a 44493 bta-miR-191 51924 bta-miR-191 69342 

14 bta-miR-191 42488 bta-miR-215 49126 bta-miR-92a 60130 

15 bta-let-7a-5p 38480 bta-miR-92a 47179 bta-miR-100 53849 

16 bta-miR-215 35905 bta-let-7a-5p 43199 bta-let-7a-5p 50790 

17 bta-miR-486 30488 bta-miR-122 37749 bta-miR-215 46908 

18 bta-miR-30e-5p 30000 bta-miR-181a 36215 bta-miR-122 45063 

19 bta-miR-100 29097 bta-miR-26b 33505 bta-miR-486 42147 

20 bta-miR-181a 28292 bta-miR-30e-5p 32822 bta-miR-26b 41433 
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Table 4.3. Top 20 expressed novel miRNAs identified in the liver tissue of Angus, Charolais and KC steers. 

Angus 
    

Provisional ID miRDeep2 score Estimated probability that the miRNA 

candidate is a true positive 

Total read count Mature miRNA consensus 

sequence 

bta-miR-AB-10 18895.5 83±5% 37061 aaagcugaaugaacuuuuuggc 

bta-miR-AB-9 4.9 77±4% 35497 agagaugaagcacuggagc 

bta-miR-AB-122 5.5 83±4% 9964 ugggcugcagugcgcuaugcc 

bta-miR-AB-83 3438.3 83±5% 6743 aaaaccugaaugaacuuuu 

bta-miR-AB-93 1927.8 83±5% 3784 aaagaaguuuguuuggguuuu 

bta-miR-AB-59 5.1 83±4% 3766 caaaaaguuuguuuggguuuu 

bta-miR-AB-65 1854.7 83±5% 3641 aaaaagguuuguuuggguuuu 

bta-miR-AB-27 1789.4 83±5% 3501 aaaaaaguuuguuuggauuuu 

bta-miR-AB-95 5.2 83±4% 3466 aaaaaaguuuguguggguuuu 

bta-miR-AB-52 1663.5 83±5% 3254 aaaaaaguuuguuugguuuuu 

bta-miR-AB-29 1435.9 83±5% 2816 acucgaacgaauuuuuggcc 

bta-miR-AB-3 4.8 77±4% 2725 guccaguuuucccaggaa 

bta-miR-AB-2 6.2 84±5% 1536 gggggccggcggcggcggcggc 

bta-miR-AB-54 4.6 77±4% 1210 gaaaaaguuuguuuggguuu 

bta-miR-AB-67 4.3 77±4% 1116 aaaaaaguuuguuugggauu 

bta-miR-AB-28 4.8 77±4% 1051 caaaaaguucguccagauuuu 

bta-miR-AB-12 4.9 77±4% 1041 aucccacuucugacacca 

bta-miR-AB-23 502 83±5% 985 acaaccugaaugaacuuuuuga 

bta-miR-AB-19 5.1 83±4% 976 ucaaguagcucacagucuag 

bta-miR-AB-63 467.3 83±5% 915 ggaauaccggguacuguaggcu 
     

Charolais 
    

Provisional ID miRDeep2 score Estimated probability that the miRNA 

candidate is a true positive 

Total read count Mature miRNA consensus 

sequence 

bta-miR-AB-10 29069.9 77±6% 57018 aaagcugaaugaacuuuuuggc 

bta-miR-AB-9 4.9 70±4% 54090 agagaugaagcacuggagc 

bta-miR-AB-3 4.8 70±4% 3570 guccaguuuucccaggaa 
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bta-miR-AB-29 1680.6 77±6% 3296 acucgaacgaauuuuuggcc 

bta-miR-AB-19 5.1 78±5% 1897 ucaaguagcucacagucuag 

bta-miR-AB-2 6.2 78±5% 1291 gggggccggcggcggcggcggc 

bta-miR-AB-12 4.9 70±4% 1173 aucccacuucugacacca 

bta-miR-AB-23 569.8 77±6% 1118 acaaccugaaugaacuuuuuga 

bta-miR-AB-148 561.9 77±6% 1101 uuguccgacucuuagcgg 

bta-miR-AB-28 4.8 70±4% 1046 caaaaaguucguccagauuuu 

bta-miR-AB-137 416.7 77±6% 818 aaaucugaacaagcuuuuuggc 

bta-miR-AB-156 406.5 77±6% 796 aaaaaguucguuuggguuuuu 

bta-miR-AB-7 401.1 77±6% 785 aaaacugaaugaacauuuuggc 

bta-miR-AB-48 333.4 77±6% 653 cgaaaaguucguuuggguuuu 

bta-miR-AB-47 251.3 77±6% 491 aaaaguucguuucgguuuuucc 

bta-miR-AB-145 4.3 70±4% 381 ucuuggagcucaccgucuag 

bta-miR-AB-168 4.7 70±4% 375 cugaccuaugaauugaag 

bta-miR-AB-158 190.1 77±6% 372 aaaaaguuccuuuggguuuuc 

bta-miR-AB-34 174.6 77±6% 341 ucuagaagcucacagucuag 

bta-miR-AB-146 171.8 77±6% 335 uucucagguuggacaguccuga 
     

KC 
    

Provisional ID miRDeep2 score Estimated probability that the miRNA 

candidate is a true positive 

Total read count Mature miRNA consensus 

sequence 

bta-miR-AB-10 32819.1 80±5% 64372 aaagcugaaugaacuuuuuggc 

bta-miR-AB-225 3118.6 80±5% 6111 cucucgagucgcgacguguaucuc 

bta-miR-AB-65 2566.5 80±5% 5037 aaaaagguuuguuuggguuuu 

bta-miR-AB-27 2410.2 80±5% 4719 aaaaaaguuuguuuggauuuu 

bta-miR-AB-52 2256.4 80±5% 4417 aaaaaaguuuguuugguuuuu 

bta-miR-AB-29 2249.6 80±5% 4412 acucgaacgaauuuuuggcc 

bta-miR-AB-63 1079.1 80±5% 2115 ggaauaccggguacuguaggcu 

bta-miR-AB-23 750.3 80±5% 1472 acaaccugaaugaacuuuuuga 

bta-miR-AB-18 406.1 80±5% 790 aaacccugaaggaacuuuu 

bta-miR-AB-7 376.6 80±5% 737 aaaacugaaugaacauuuuggc 
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bta-miR-AB-198 289.8 80±5% 567 aaaaucugaacaaacuuuu 

bta-miR-AB-187 236.7 80±5% 463 aaaguucguucagguuuuuc 

bta-miR-AB-13 174.9 80±5% 335 cgggugggaagaggcggg 

bta-miR-AB-58 159.8 80±5% 310 caccuagugcauggucuugggc 

bta-miR-AB-57 158.4 80±5% 302 aaaaaaguuuguuugguuu 

bta-miR-AB-219 136.8 80±5% 267 uucauaggaaggugucauuca 

bta-miR-AB-205 135.1 80±5% 269 aaaacccgaacaaacuuuu 

bta-miR-AB-11 130.8 80±5% 255 uccaggauaugugcguguaacuc 

bta-miR-AB-241 102.3 80±5% 203 uguucaguggcuaaguuc 

bta-miR-AB-62 98.7 80±5% 184 uuggccagaaaguucguuuggau 
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Table 4.4. Differentially expressed known micro RNAs between high and low-RFI animals within each breed (Angus, Charolais and 

KC), with a differential expression threshold of P-value < 0.05 and Fold-change of 1.5.  

 Angus MicroRNA logFC P-value 

Known bta-miR-11985 -1.377 2.02E-04  
bta-miR-2285bg 1.185 3.85E-03  
bta-miR-2285n 1.082 4.30E-03  
bta-miR-2285u 0.836 7.75E-03  
bta-miR-424-3p 0.959 8.38E-03  
bta-miR-27a-5p -0.978 0.016  
bta-miR-24 -0.967 0.016  
bta-miR-507b -0.900 0.019  
bta-miR-449a 0.782 0.023 

  bta-miR-133b 0.663 0.033 

Novel bta-miR-AB-2 -0.833 1.35E-04 

 bta-miR-AB-47 0.617 0.014 

Charolais       

Known bta-miR-2415-3p 1.261 7.12E-08  
bta-miR-2419-5p 0.797 8.72E-07  
bta-miR-449a 1.117 0.002  
bta-miR-2285i -0.966 0.002  
bta-miR-133a 0.640 0.002  
bta-miR-2346 -1.330 0.003  
bta-miR-1842 -1.026 0.013  
bta-miR-2284ac 0.656 0.014  
bta-miR-2285ai-5p 0.645 0.015  
bta-miR-12001 -0.729 0.019  
bta-miR-299 0.772 0.024  
bta-miR-2284c -1.104 0.029  
bta-miR-365-5p 0.747 0.043  
bta-miR-485 -0.872 0.049 
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bta-miR-7859 0.916 0.049 

  bta-miR-6521 0.696 0.0496 

Novel bta-miR-AB-2 0.770 1.00E-03 

 bta-miR-AB-15 0.735 0.0158 

KC       

Known bta-miR-190a -3.133 1.47E-18  
bta-miR-449a 1.252 7.61E-06  
bta-miR-155 0.829 3.55E-05  
bta-miR-424-5p 0.756 3.62E-04  
bta-miR-223 0.737 4.96E-04  
bta-miR-1246 -0.683 1.27E-03  
bta-miR-363 0.866 3.25E-03  
bta-miR-147 0.801 5.69E-03  
bta-miR-2411-3p -0.677 0.025 

  bta-miR-2483-5p 0.877 0.039 

Novel bta-miR-AB-63 -0.897 3.18E-04 

 bta-miR-AB-225 1.227 0.008 

logFC = log2(Fold-change), and the sign on the of shows the direction of miRNA expression in low-RFI steers relative to high-RFI 

animals. 
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Table 4.5. Top five molecular and cellular (biological) functions enriched by DE target genes for Angus, Charolais and KC 

populations. 

 

 

Biological 

function 

No. of DE 

targets 

Targets involved in the biological function 

Angus Lipid metabolism 18 ACSS2, ADIPOR2, CCDC80, CPT1B, DLK1, EDNRA, ELOVL5, FKBP5, 

G0S2, GATM, HP, LPIN1, MARCO, PLA2G2D, SCD, SLC22A2, UGT2B7, 

ZBTB16 

 Molecular 

transport 

16 ADIPOR2, CCDC80, CPT1B, DLK1, EDNRA, ELOVL5, G0S2, GATM, HP, 

LPIN1, MARCO, PLA2G2D, SCD, SLC22A2, TP53INP1, ZBTB16 

 Small molecule 

biochemistry 

21 ACSS2, ADIPOR2, CCDC80, CPT1B, DLK1, EDNRA, ELOVL5, FKBP5, 

G0S2, GATM, HP, LPIN1, LURAP1L, MARCO, PLA2G2D, SCD, SLC22A2, 

SLCO4A1, TP53INP1, UGT2B7, ZBTB16 

 Energy 

production 

7 ACSS2, ADIPOR2, CCDC80, CPT1B, G0S2, LPIN1, SCD 

 

 Carbohydrate 

metabolism 

9 ADIPOR2, CCDC80, ELOVL5, GATM, GNAZ, LPIN1, PLA2G2D, SCD, 

TP53INP1 

Charolais Lipid metabolism 12 ABCC4, CES1, CYP2C19, DLK1, LPIN1, NR0B2, PDK4, SCD, SLC4A4, 

SPNS2, THEM4, TNC 

 Molecular 

transport 

16 ABCC4, ANXA2, CES1, CXCL2, DLK1, LPIN1, NR0B2, PDK4, SCD, SIRPA, 

SLC13A2, SLC4A4, SLC7A5, SPNS2, TNC, TP53INP1 
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 Small molecule 

biochemistry 

19 ABCC4, ANXA2, CES1, CYP2C19, DLK1, GPX3, LPIN1, MIOX, NR0B2, 

PDK4, SCD, SLC13A2, SLC4A4, SLC7A5, SPNS2, THEM4, TNC, TP53INP1 

 Cellular 

movement 

13 ABCC4, ANXA2, CES1, CXCL2, GNAZ, GPNMB, PDK4, SERPINA3, SIRPA, 

SLC7A5, SPNS2, TNC, TP53INP1 

 Cell-to-cell 

signalling and 

interaction 

16 ABCC4, ANXA2, CES1, CXCL2, CYP2C19, DLK1, GNAZ, GPNMB, GPX3, 

HLA-DQB1, PDK4, RND1, SIRPA, SLC4A4, SLC7A5, TNC 

KC Cell death and 

survival 

48 ACACA, APMAP, ARG1, ATP2A2, BAG3, BTG2, CCND1, CXCL10, CYCS, 

DDIT4, DUSP1, EDNRA, ERBB2, ERBB3, FGF21, FKBP5, GATA4, GCH1, 

GCLC, GHR, GLS2, HEYL, HMGCR, IGF1, INSIG1, IRAK3, KYAT1, LRIG1, 

MANF, MFSD2A, MKNK1, MOB3B, NMNAT2, NPC1, NR0B2, OAS1, PER1, 

PNP, PPARGC1A, RHOJ, RRS1, SCD, SERPINA3, TOP1, TP53INP1, TRIB2, 

USP2, ZBTB16 

 Amino acid 

metabolism 

15 ACMSD, ARG1, GCH1, GCLC, GLS2, HAL, IGF1, KYAT1, OAT, SDS, 

SLC16A10, SLC22A7, SLC25A15, SLC7A2, TAT 

 Small molecule 

biochemistry 

57 ABCG8, ACACA, ACMSD, AK4, ARG1, ATP2A2, BAG3, CXCL10, CYCS, 

CYP1A1, CYP2B6, DUSP1, EDNRA, ELOVL2, ERBB2, ERBB3, FGF21, 

FOXA3, GATA4, GCH1, GCLC, GHR, GLS2, GSTM4, HAL, HMGCR, IGF1, 

INSIG1, KYAT1, LPIN1, MFSD2A, MKNK1, NMNAT2, NPC1, NR0B2, OAS1, 

OAT, OGDH, P2RY2, PER1, PNP, PPARGC1A, RHOJ, SCD, SDS, 

SLC16A10, SLC22A7, SLC25A15, SLC7A2, SLCO4A1, STS, TAT, TP53INP1, 

TPH1, USP2, ZBTB16 

 Lipid metabolism 32 ABCG8, ACACA, ATP2A2, BAG3, CXCL10, CYCS, CYP1A1, CYP2B6, 

DUSP1, EDNRA, ELOVL2, ERBB2, FGF21, GATA4, GHR, GSTM4, 
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HMGCR, IGF1, INSIG1, LPIN1, MFSD2A, MKNK1, NPC1, NR0B2, OGDH, 

P2RY2, PER1, PPARGC1A, RBP5, SCD, STS, ZBTB16 

 Vitamin and 

mineral 

metabolism 

16 ABCG8, ACACA, ACMSD, CXCL10, CYP1A1, CYP2B6, GCLC, HMGCR, 

IGF1, INSIG1, NPC1, NR0B2, PPARGC1A, RBP5, SCD, STS 

No. of DE targets = Number of differentially expressed targets.
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Chapter 5. Differential hepatic miRNA expression between beef steers with 

divergent feed efficiency component trait phenotypes 

5.1 Abstract 

MicroRNAs (miRNAs) are major post transcription gene expression regulators involved 

in modulating multiple cellular and molecular processes. In the current study we explored 

associations of liver miRNA expression with average daily growth (ADG), dry matter intake 

(DMI), and metabolic weight (MWT) of beef steers from Angus, Charolais and Kinsella 

Composite (KC) populations. Beef steers including 50, 48 and 158, Angus, Charolais and KC 

steers, respectively, were tested for individual feed intake, growth rate and their metabolic weight 

consequently calculated, After slaughter, a total liver tissues of 60 animals from Angus (n=20), 

Charolais (n=20) and KC (n=20) were used in the current study. MicroRNA expression profiles of 

the 60 beef were obtained through high throughput sequencing of the cDNA library of each animal. 

Within each breed population, animals were independently sorted for each of the three traits 

accordingly. Six animals (n = 6) with extreme high and six animals (n = 6) with extreme low 

phenotype values for the respective trait were selected for differential miRNA analysis. For ADG, 

we identified 11(5 downregulated and 6 upregulated), 12 (8 downregulated and 4 upregulated) and 

15 (8 downregulated and 7 upregulated) differentially expressed (DE) microRNA for Angus, 

Charolais and KC steers, respectively. For DMI, 9 (3 downregulated and 6 upregulated), 21 (8 

downregulated and 13 upregulated) and 19 (9 downregulated and 10 upregulated) DE-miRNAs 

were identified for Angus, Charolais and KC animals respectively. For MWT, we identified 13 (3 

downregulated and 10 upregulated), 19 (8 downregulated and 11 upregulated), and 18 (8 

downregulated and 10 upregulated) DE-miRNAs for Angus, Charolais and KC steers respectively. 
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The differentially identified miRNAs for each trait were mainly specific each population (89% to 

98%). Target gene prediction for the DE-miRNAs across the three populations revealed that up to 

71%, 75% and 65% of the DE genes for ADG, DMI and MWT, respectively, are potential targets 

of the DE-miRNAs identified in this study. The predicted target genes are involved multiple 

biological processes including lipid metabolism, molecule transport, amino acid metabolism, cell 

death and survival, cellular movement, cellular function and maintenance, and small molecule 

biochemistry. Our findings demonstrate potential involvement of miRNAs in modulating growth 

rate, feed intake and metabolic weight of beef cattle. 

5.2 Introduction 

The liver plays key important metabolic functions in the body such as carbohydrate 

metabolism, amino acid metabolism, protein synthesis, lipid metabolism, bile synthesis, toxin 

biotransformation, microbial processing and xenobiotic metabolism (Häussinger 1996). Therefore, 

variability in metabolic activities of the liver tissues in the body is most likely to result into 

measurable difference in key production traits such feed efficiency and the related traits including 

average daily growth (ADG), dry matter intake (DMI), and metabolic weight (MWT) of the 

animal. Indeed, a sizable gene expression of some genes in the liver has been shown to be 

associated with RFI (Chen et al. 2011; Alexandre et al. 2015; Paradis et al. 2015; Tizioto et al. 

2015; Mukiibi et al. 2018), DMI (Mukiibi et al. 2019b), ADG (Mukiibi et al. 2019b), and 

MWT(Mukiibi et al. 2019b) in beef cattle. The potential post transcription regulation of the genes 

associated with RFI through microRNAs (miRNAs) has been studied (Al-Husseini et al. 2016; De 

Oliveira et al. 2018; Mukiibi et al. 2019a), however no comprehensive study on the regulation of 

DMI or ADG or MWT by miRNAs has been done. MicroRNAs are small (~22 nucleotides) 

noncoding RNAs that play principle regulators of cellular metabolism and homeostasis by 
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targeting mRNA possessing their binding cites in the 3’ untranslated regions (UTRs) (Hartig et al. 

2015). The miRNAs exert their modulation action through promoting mRNA degradation (as a 

result of deadenylation) and repression of translation, both of which result into reduced protein 

product (Fabian et al. 2010; Stroynowska-Czerwinska et al. 2014). In the current study we 

investigated the associations of the liver miRNA expression with ADG, DMI and MWT in beef 

steers from Angus, Charolais and KC populations through RNAseq analyses and predicted the 

target genes of DE- miRNA for the feed efficiency related traits.  

5.3 Materials and Methods 

5.3.1 Animal populations and management 

The management handling and raising of the animals used in this study have been described 

in our previous studies on the same animals (Mukiibi et al. 2018; Mukiibi et al. 2019a; Mukiibi et 

al. 2019b). Briefly, the Canadian Council of Animal Care (CCAC) guidelines on the care and use 

of farm animals in research teaching and testing (CCAC 2009) were followed to manage the 

experimental animals until tissue collection, and all the experimental protocols followed 

throughout the experiment were approved by the University of Alberta Animal Care and Use 

Committee (AUP00000777). A total of 256 steers from three populations in purebred Angus, 

purebred Charolais and Kinsella Composite were initially used in the current study. All the animals 

were born and raised under the same conditions at the University of Alberta’s Roy Berg Kinsella 

Research Ranch, Alberta, and Canada. The purebred Angus and Charolais animals were born by 

purebred cows that serviced through artificial insemination followed by natural service by 

purebred Angus or Charolais bulls respectively. The cross or composite breed animals were born 

by University of Alberta’s hybrid dam line (Goonewardene et al. 2003), were either serviced by 

Angus or Charolais or University of Alberta hybrid bulls. The calves were born between April and 
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May of 2014 and castrated into steer calves after at birth. The steer calves were maintained with 

their dams on pasture until weaning at an average age of six months. A backgrounding diet 

composed 80% barley silage, 17% barley grain and 3% rumensin pellet supplement was feed to 

the weaned calves as a transition diet. Subsequently, animals were fed on set-up diets that had 

decreasing barley silage and increasing barley grain proportions for three weeks, and then 

introduced to a finishing diet that was composed of 75% barley grain, 20% barley silage and 5% 

rumensin pellet supplement. 

5.3.2 Feed intake and growth and body weight measurement 

Measurement and calculation of the individual phenotypes of the experimental animals 

used in the current experiment have been also described in our recent studies on the same animals 

(Mukiibi et al. 2018; Mukiibi et al. 2019a; Mukiibi et al. 2019b). The GrowSafe Systems® 

(GrowSafe Systems Ltd., Airdrie, Alberta, Canada) equipment was used to measure individual 

feed intake of each of the 50 purebred Angus, 48 purebred Charolais and 158 KC steers for a 

feedlot test period ranging between 70 to 73 days. Daily dry matter intake (DMI) of each animal 

was computed as the average of the feed intake records through the test days, standardized to 12 

MJ ME per kg dry matter. Body weights (BW) were also measured initially for two consecutive 

days, followed by 14-day interval points during the test and then for two consecutive days at the 

end of the test. Average daily gain (ADG) and the initial body weight of each animal were 

computed through linear regression of the serial body weights on time (days). Metabolic mid-

weight (MWT) of each animal was calculated as midpoint BW0.75 where midpoint BW was 

calculated as the sum of the initial BW and the product of ADG and half the test days of the animal 

in the feedlot. 
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5.3.3 Liver tissue sample collection 

Tissue collection, processing and storage have been described in our previous studies 

(Mukiibi et al. 2018; Mukiibi et al. 2019a; Mukiibi et al. 2019b). All were slaughtered at the 

Agriculture and Agri-Food Canada (AAFC) Lacombe Research Centre (Lacombe, AB) during the 

months of July and September in 2015, at an average age of 494 ± 3, 518 ± 4, and 457 ± 4 days 

for Angus, Charolais and KC steers respectively. For each slaughtered animal the liver was 

immediately extracted, and liver tissue sample dissections used in the current samples were cut 

from the right lobe of the organ with the fibrous capsule removed. The sample dissections were 

immediately bagged in plastic re-closable bags, labelled, snap frozen in liquid nitrogen, and then 

kept on dry ice during transportation to the laboratory where they were kept under -80oC until 

RNA extraction. 

5.3.4 Total RNA extraction  

Extraction of total RNA used in the current study has been described in our previous study 

(Mukiibi et al. 2019a) as they are the same animal samples in both studies. Briefly, each of the 

three populations, total RNA was extracted from 20 samples (10 with high and 10 low RFI 

phenotypes). For each sample, 10 mg of the liver tissue was pulverised to fine powder under liquid 

nitrogen using a prechilled mortar and pestle. Total RNA was then extracted from pulverised tissue 

using the Qiagen RNeasy Plus Universal Mini Kit (Qiagen, Toronto, ON), following the 

manufacturers guidelines. The concentration of the extracted total RNA for each sample was 

measured using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 

On average, the total RNA concentration was 1851.8ng/µl per sample, with A260/280 absorbance 

ratios ranging between 1.8 and 2.0. The integrity or quality of the RNA samples was assessed 

using a TapeStation-Agilent instrument (Agilent Technologies Canada, Mississauga, ON), which 
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showed that RNA integrity number values of all our samples were greater than 8, hence deemed 

of high quality for cDNA library construction and sequencing consequently.  

5.3.5 Construction of cDNA libraries and sequencing  

Sixty cDNA libraries were prepared from high quality total RNA, enriched for miRNAs 

and subsequently sequenced at the Clinical Genomics Centre (Toronto, ON, Canada) as described 

in our recent study (Mukiibi et al. 2019a). The Illumina Truseq Small RNA Library Prep Kit 

(Illumina, San Diego, CA, USA) was used with a start concentration of 1 µg of each of total RNA 

sample. Firstly, an RNA 3’ adapter was ligated to the 3’ ends of the RNA using T4 RNA Ligase 2 

enzyme, and subsequently an RNA 5’ adaptor was added to the 5’ end of the 3’ adapter-ligated-

RNA using the T4 RNA Ligase enzyme. The RNA 3’and 5’ adapters are designed specially target 

miRNAs and other small RNAs that are products DROSHA and DICER RNA cleavage processes. 

The 3’-5’-adapter-ligated-RNA was reverse transcribed to single stranded cDNA using the 

SuperScript II Reverse Transcriptase enzyme (Thermo Fisher Scientific, San Jose, CA, USA) and 

an RNA RT primer, and then PCR amplified and indexed for multiplex sequencing. The cDNA 

constructs were then purified and enriched for miRNAs through gel electrophoresis. Four cDNA 

sequencing pools of 15 samples each were constructed by using an average 2nM of cDNA from 

each sample. Sequencing was performed by the Illumina Hiseq 2500 sequencer, on two flow cells, 

under rapid run mode and expected length of 50bp single end read. After sequencing, the Illumina 

bcl2fastq-v2.17.1.14 conversion software (Illumina) was used to demultiplex raw sequence data 

into individual FASTQ file for each sample. 

5.3.6 Bioinformatic sequence data processing and miRNA quantification 

Raw sequence data quality assessment, processing and miRNA quantification performed 

for the current study has been previously extensively described (Mukiibi et al. 2019a). FASTQ 
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version 0.11.7 (Andrews 2010) software was used to assess the sequencing quality of the raw 

reads, considering multiple quality parameters including read lengths, adapter content, per 

sequence CG content and per base sequence quality score. The Illumina 3’ prime end primer 

TGGAATTCTCGGGTGCCAAGG was trimmed from all the raw reads using cutadapt version 

1.16 software (Martin 2011), and shorter (read length < 15bp) and longer reads (read length > 

28bp) removed eliminated. Reads with read length between 15bp and 28bp were further screen for 

presence of other bovine short RNA species including ribosomal RNAs (rRNAs), transfer RNAs 

(tRNAs), small nuclear RNAs (snRNAs) and Small nucleolar RNAs (snoRNAs) that were 

downloaded from https://rnacentral.org/. Identification of novel bovine miRNAs and 

quantification of both known and novel miRNAs were performed using miRDeep2 package 

modules version 2.0.08 (Friedländer et al. 2011), the UMD3.1 reference genome (downloaded 

from Ensembl genome browser release 93), and mature and precursor sequences of known bovine 

miRNAs downloaded from miRBase database release 22 (Griffiths-Jones et al. 2007).  

5.3.7 Differential miRNA expression analyses 

Within each breed, expressed known miRNAs plus the 25 most expressed novel miRNAs 

as previously reported by (Mukiibi et al. 2019a) were analyzed for differential miRNA expression. 

To avoid expression profile bias during differential expression analyses, miRNA expression 

profiles across the 20 samples from each breed were initially evaluated by principle component 

analysis (PCA) using DESeq2 (Love et al. 2014). Consequently, 17 samples were considered 

suitable for differential miRNA expression analyses for Angus and Charolais populations, whereas 

20 samples were all suitable for KC. Animals within each breed were independently ranked for 

ADG or DMI or MWT phenotypes. For each trait within the breed, 12 animals with extreme 

phenotypes (i.e. n = 6 low and n = 6 high) were selected for differential miRNA expression analysis 

https://rnacentral.org/
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using dgeR package (Robinson et al. 2010) in R. Firstly, in each analysis miRNAs that had less 

than one count per million (CPM) in at least six samples were filtered out from the analysis. The 

counts of the remaining miRNAs were then normalized using the trimmed mean of M values 

(TMM) method (Robinson & Oshlack 2010). Thereafter, using the trait group as a fixed effect, the 

normalized counts were modeled using a generalized linear model likelihood ratio test assuming a 

negative binomial distribution of the counts. Low-ADG, high-DMI and high-MWT were 

considered as reference groups for ADG, DMI and MWT analyses respectively within each group. 

Micro-RNAs were identified as differentially expressed at a likelihood ratio test P-value lower 

than 0.05 and fold change (FC) of greater than 1.5. 

5.3.8 Validation of the differentially expressed miRNAs 

Six miRNAs that were differentially expressed between high and low-ADG steers were 

selected for DE validation through TaqMan quantitative polymerase chain reaction (TaqMan 

qPCR). These DE-miRNAs included bta-miR-6123 and bta-miR-2415-3p for Charolais, and bta-

miR-486, bta-miR-7, bta-miR-424-3p and bta-miR-424-5p for KC. Additionally based on the their 

expression level (counts) and uniformity across samples four miRNAs were selected as 

endogenous controls including, bta-mir-192 and bta-mir-2284x for Charolais, and bta-mir-2284x 

and bta-let-7b for KC. Stem-loop RT primer of each DE-miRNA and endogenous controls, and 

qPCR primers were all purchased from Thermo Fisher Scientific (Waltham, Massachusetts, USA). 

Similar pProcedure of miRNA qPCR validation followed in this study were similar to that 

provided in our recent publication on residual feed intake (Mukiibi et al. 2019a). Briefly, part of 

the total RNA used in the small RNA sequencing was used for the validation process. Firstly, for 

each miRNA, 10ng of RNA was reverse transcribed using TaqMan® MicroRNA Reverse 

Transcription Kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and a stem-loop RT 
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primer on an Eppendorf 5331 Mastercycler Gradient v2.30.31 thermocycler. Thereafter, for each 

miRNA qPCR was performed on the reverse transcription products using the TaqMan qPCR 

primers and TaqMan® Fast Advanced Master Mix following the manufacturer’s instructions. The 

Applied Biosystems™ 7500 Fast Real-Time PCR System v2.0.1 (Applied Biosystems, Foster 

City, California, USA) was used to run qPCR, which produced CT values that were normalized to 

the reference miRNAs. Relative quantities based on the CT values average were computed and 

then t-tests between the relative quantities of high and low-ADG were performed. P-values less 

than 0.05 indicated significant differential expression of the miRNA. 

5.3.9 Target gene prediction, miRNA-target interaction and functional enrichment 

analyses 

Target gene prediction for the differentially expressed miRNAs was performed using 

TargetScan Perl scripts version 7.0 (Agarwal et al. 2015). Targets of context++ score percentile 

higher than the 50th percentile and differentially expressed as reported by (Mukiibi et al. 2019b) 

were identified as targets for the DE-miRNAs, and subsequently interaction between these targets 

and DE-miRNAs were constructed in Cytoscape 3.7.1 (Shannon et al. 2003). Additionally, 

functional enrichment analysis of the identified DE-target genes was performed through core 

analyses in the ingenuity pathway analysis (IPA) software to identify the major biological 

functions modulated by DE-miRNAs, through which they regulate ADG, DMI and MWT of beef 

cattle. 

5.4 Results 

5.4.1 Sequencing qualities and miRNA profiling 

Sequence data quality and miRDeep2 miRNA profiling results have been previously 

reported in our previous study on residual feed intake (Mukiibi et al. 2019a). Briefly, on average 



165 

 

 

NGS platform produced 10 million (M) reads per sample, of which 5.5M high quality (average 

phred-score = 37.96) reads were retained for known miRNA quantification and identification of 

novel ones after the quality control analyses and filtrations. On average we identified 556 

expressed known miRNAs and a total of 241 novel miRNAs. 

5.4.2 Phenotypic differences 

With respect to ADG, the animals with high and low-ADG in each breed on average 

significantly (P-value < 0.0042 after Bonferroni Correction for multiple comparisons) differed (i.e. 

high-ADG animals grew faster than the low-ADG animals) as shown in Table 5.1. In general, the 

animals in the high and low-ADG groups did not differ in terms of other recorded phenotypes as 

shown in Table 5.1. Also, for DMI, the animal groups (low- and high-DMI) significantly (P 

<0.0042) differed with high-DMI animals on average consuming more feed per day than their 

counterparts in the low-DMI group in each of the three breeds (Table 5.2). It is noteworthy that 

across the three breeds, animals with low-DMI phenotypes also had significantly (P<0.0042) lower 

RFI than those in the high-DMI group as expected. Additionally, the MWT contrasting groups 

(high and low-MWT) in Charolais and KC were on average significantly (P <0.0042) different, 

with the animals in the high-MWT group having higher metabolic weight than those in the low-

MWT group across the three populations (Table 5.3).  However, for Angus, the contrasting MWT 

steer groups were only suggestively (P = 0.02) different from each other 
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5.4.3 Differential miRNA expression 

5.4.3.1 ADG 

For Angus, we identified 11 DE-miRNAs, of which five were downregulated and six 

upregulated in the high-ADG animals. In Charolais, 12 DE-miRNAs were identified, seven of 

these were downregulated and five upregulated in the high-ADG steers. For KC, we identified 15 

DE-miRNAs of which eight were downregulated and seven upregulated in high-ADG steers.  The 

majority of the DE-miRNAs were breed specific (Figure 1a), with no DE-miRNA found to be DE 

across all the three breeds. However, bta-miR-2411-3p was common between Angus and KC, it 

was downregulated and upregulated in high-ADG Angus and KC steers respectively. Additionally, 

bta-miR-2284c was common between Charolais and KC, where it was downregulated and 

upregulated in low-ADG Charolais and KC steers respectively. All differentially expressed DE-

miRNAs in Angus, Charolais and KC, P-values and log2Fold changes are presented in Table 5.4. 

5.4.3.2 DMI 

For Angus animals, nine miRNAs were differentially expressed between high and low-

DMI animals, two (bta-miR-96 and bta-miR-200a) of these miRNAs were downregulated in low-

DMI animals, whereas seven were miRNAs upregulated in the same animals. For Charolais, 21 

DE-miRNAs were identified, of which 8 and 13 miRNAs were downregulated and upregulated 

respectively in the low-DMI animals. For KC, we identified 17 miRNAs as differentially 

expressed, of these, 9 were downregulated and 8 upregulated in the low-DMI KC animals. The 

DE-miRNAs were largely breed specific, with none of them common across three breeds, Figure 

1b. One miRNA (bta-miR-424-3p) was common between Angus and KC and was upregulated in 

the low-DMI animals of the two breeds. The identified DE-miRNAs from each of the three breeds 

and presented in Table 5.5. 
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5.4.3.3 MWT 

We identified 13 differentially expressed miRNAs between high and low-MWT Angus 

animals that included 3 and 10 miRNAs that were downregulated and upregulated respectively in 

low-MWT animals. For the Charolais animals, 21 DE-miRNAs were identified, 8 of these 

miRNAs were downregulated, whereas 13 were upregulated in the low-MWT animals. In KC, 18 

miRNAs were differentially expressed, of which 10 and 8 were upregulated and downregulated 

respectively in the low-MWT animals. As for ADG and DMI, also the DE-miRNA identified were 

mainly breed specific, Figure 5.1c, however, one miRNA (bta-miR-10164-3p) was common to all 

the three breeds, it was upregulated in low-MWT animals from Angus and KC populations, 

downregulated in Charolais animals with similar phenotype. Two miRNAs (bta-miR-1246 and 

bta-miR-2411-3p) were common to Angus and KC. All the differentially expressed miRNAs 

between high and low-MWT within each breed are presented in Table 5.6. 

Moreover, comparison of the DE-miRNAs of the three traits together with those of RFI 

reported by (Mukiibi et al. 2019a) within each breed showed that most of the DE-miRNAs were 

associated to a single trait, however, some DE-miRNAs were associated with more than one trait. 

For example, within Angus (Figure 5.2a), bta-miR-11985 was associated with ADG, MWT and 

RFI, and bta-miR-2285bg and bta-miR-424-3p was associated to both DMI and RFI. Within 

Charolais (Figure 5.2b), bta-miR-2415-3p and bta-miR-2284c were associated with ADG, DMI 

and RFI, whereas, bta-miR-2419-5p, bta-miR-AB-2, bta-miR-2285ai-5p, bta-miR-2284ac, bta-

miR-2285i, bta-miR-299 and bta-miR-2346 were all associated with DMI and RFI. Within KC 

(Figure 5.2c), bta-miR-190a and bta-miR-2411-3p were identified as associated to all the four 

traits, and, bta-miR-147, bta-miR-155 and bta-miR-363 were associated with DMI and RFI. 
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5.4.4 qPCR Validation 

We performed qPCR validation for six selected DE-miRNAs. For the Charolais animals, 

of the two validated miRNAs bta-miR-6123 showed significant (P < 0.05) differential expression 

between high and low-ADG animals as shown in Figure 5.3. For KC, of the four miRNAs 

considered for validation, bta-miR-486 showed significantly differentially expressed between the 

trait groups. The other four miRNA did not show significant expression (P > 0.05). However, in 

general there was a high correlation (0.84) between expression profiles from RNAseq and qPCR 

as shown in Figure 5.4. 

5.4.5 DE-miRNAs – DE-targets genes interactions and functional enrichment 

5.4.5.1 Average daily gain 

For ADG, 68, 65 and 55 DE-genes were identified as potential targets for DE-miRNAs 

identified in Angus, Charolais and KC animals respectively. For Angus as shown in Figure 5.5, 

genes that are targeted by the most DE-miRNAs included CD44, MBNL3, FAM13A and HMGCS1 

that were targeted by six DE-miRNAs each, and HMGCR, SERPINE1, PLA2G7, AIF1L, IL20RA, 

SLC25A15, SOCS2 and AK4 which were predicted to be targeted by five DE-miRNAs each. The 

novel DE-miRNA bta-miR-AB-47 (upregulated in high-ADG animals) was predicted to target the 

most DE-genes (i.e. targeting 30 genes). Of these targets, 17 and 13 DE-genes were downregulated 

and upregulated in low-ADG Angus animals. bta-miR-2411-3p was predicted to target 24 DE-

genes, and then bta-miR-12001 and bta-miR-34c were predicted to target 21 DE-genes each. The 

DE-miRNAs bta-miR-363 and bta-miR-487a were predicted to target 18 DE-genes each. 

Additionally, the six upregulated (in high-ADG animals) DE-miRNAs identified in the current 

study were predicted to target 59 of the DE-genes, and 30 of these predicted targets were identified 

as downregulated in high-ADG animals, whereas 29 were downregulated in the same animals. The 
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identified 68 targets are mainly involved in cellular movement, cell-to-cell signaling and 

interaction, cellular development, cellular function and maintenance and cellular growth and 

proliferation.  

For Charolais, SOCS2 was identified as the most targeted gene (targeted by nine DE-

miRNAs), followed by MBOAT2 that was targeted by seven DE-miRNAs, and FKBP5, CCDC80 

and FAM13A that were predicted to be targeted by six DE-miRNAs each as shown in Figure 5.6. 

On the other hand, bta-miR-2284c was identified to target the most DE-genes (27 genes), bta-miR-

2285cp was predicted to target 21 DE-genes, and bta-miR-2415-3p and bta-miR-AB-47 were 

predicted to target 20 DE-genes each. The four upregulated (in the liver tissue of high-ADG 

animals) DE-miRNAs including bta-miR-6123, bta-miR-655, bta-miR-95 and bta-miR-376b were 

predicted to target 31 DE-genes, and 18 of these genes were identified as downregulated in the 

liver tissue of Charolais animals with high-ADG phenotype. Functional analysis revealed that the 

identified 65 targets are majorly involved in lipid metabolism, molecular transport, small 

molecular biochemistry, amino acid metabolism and protein synthesis. 

For KC, the top targeted DE-genes included FKBP5 and FOSL2, which were predicted to 

be targeted by 14 and 11 DE-miRNAs respectively as shown in Figure 5.7. DE-genes SLC4A4 and 

TAT were predicted to be targeted by eight miRNAs each, whereas CYP7A1, SCD and ARRDC3 

were predicted to be targets of six DE-miRNAs each. As shown in Figure 5.7, some DE-miRNAs 

were predicted to target more DE-genes than the others. For example, bta-miR-2285aj-5p 

(upregulated in high-ADG animals) was predicted to target 24 DE-genes. Of the 24 targets, 20 

were identified as downregulated in high-ADG KC animals, and four upregulated in the animals 

with the same phenotypes in the same population. Three DE-miRNAs including bta-miR-424-5p, 

bta-miR-6523a and bta-miR-7 were predicted to target 19 DE-genes each, and bta-miR-AB-228 
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was predicted to target 16 genes. The seven upregulated DE-miRNAs were predicted to target 43 

DE-genes, of which 30 were downregulated in high-ADG animals. Additionally, the 55 DE-genes 

identified as targets are mainly involved in amino acid metabolism, small molecule biochemistry, 

lipid metabolism, molecular transport and cell death and survival. All DE target genes predicted 

for ADG DE miRNAs in Angus, Charolais and KC are provided in the Supplementary Data S15. 

5.4.5.2 Dry matter intake 

For DMI, 65, 135 and 105 DE-genes were identified as potential targets for DE-miRNAs 

identified in Angus, Charolais and KC animals respectively. As illustrated in the DE-miRNA-DE 

target interaction of Figure 5.8 for Angus. ZFAND5, FKBP5, SCD and PTGER3 were the most 

targeted genes with each predicted to be targeted by five DE-miRNAs. The DE-miRNA bta-miR-

2285u was predicted to target the highest number of DE-genes (30 genes), followed by bta-miR-

200a which was predicted to regulate 29 genes. bta-miR-455-5p and bta-miR-424-3p were also 

predicted to target a relatively high number of DE-genes, with each predicted to target, 19 and 17 

DE-genes respectively. Of the 30 genes predicted to be targets of bta-miR-2285u, 11 and 19 were 

identified as downregulated and upregulated respectively in low-DMI animals. The seven DE-

miRNAs identified as upregulated in low-DMI animals were predicted to target 56 DE-genes of 

which 26 and 30 were identified as downregulated and upregulated respectively in the liver tissue 

of Angus animals with the same phenotype. Functional analysis revealed that the 65 DE-genes 

(targets) are mainly involved in carbohydrate metabolism, amino acid metabolism, small molecule 

biochemistry, lipid metabolism and molecule transport. 

DE-target genes and DE-miRNAs interactions for the Charolais are illustrated in Figure 

5.9. The top targeted genes included TTPAL was predicted to be the most targeted gene (i.e. 

targeted by 14 DE-miRNAs), STRIP2 and FKBP5 were both predicted by 13 DE-miRNAs, and 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/9551cb62-4448-4321-8bf2-6770bddf49d7/Supplementary%20Data%20S15.xlsx
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SLC16A10 and PAQR3 which were each predicted to be targeted by 12 DE-miRNAs. Among the 

miRNAs that were predicted to target the most DE-genes included bta-miR-495 (predicted to target 

57 DE-genes), bta-miR-2284c (predicted to target 55 DE-genes), bta-miR-2285ai-5p (predicted to 

target 53 DE-genes), bta-miR-10167-3p (predicted to target 48 DE-genes), bta-miR-2285n 

(predicted to target 46 DE-genes), and bta-miR-2284ac and bta-miR-AB-47 both targeted by 42 

DE-miRNAs. Of the 57 DE-genes predicted to be targeted by bta-miR-495, 28 and 29 were 

downregulated and upregulated respectively in the liver of low-DMI Charolais animals. 

Additionally, the 13 DE-miRNAs identified as upregulated in low-DMI animals were predicted to 

target 45 downregulated and 83 upregulated DE-genes in low-DMI animals. The IPA results 

showed that the major molecular and cellular functions enriched by the identified 135 targets 

included cellular movement, lipid metabolism, molecular transport, small molecule biochemistry, 

and cell-to-cell signaling and interaction. 

For KC, as illustrated in Figure 5.10, the most targeted DE-genes included, RRM2, 

predicted to be targeted by seven DE-miRNAs, MPZL2, GPRIN3, SGK1, AK4, PDE9A and 

HEBP2 all of which are predicted to be regulated by six DE-miRNAs each. On the other side, the 

DE-miRNA predicted to target the most DE-genes included bta-miR-424-5p and bta-miR-4286, 

both of which were predicted to target 32 DE-genes. bta-miR-10164-3p and bta-miR-490 were 

both predicted to target 27 DE-genes and bta-miR-2411-3p predicted to target 24 genes. Twelve 

of the predicted targets of bta-miR-424-5p, which was upregulated in low-DMI animals, were 

downregulated in the same animals, whereas 20 of these genes were upregulated in the same 

animals. Of the 72 DE-genes predicted to be targeted by at least one of the upregulated DE-

miRNAs in low-DMI animals in the current study, 26 and 46 DE-genes were downregulated and 

upregulated respectively in the same animals. Moreover, the 105 identified targets are majorly 
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involved in cellular function and maintenance, cellular development, cellular growth and 

proliferation, cell death and survival and cell morphology. All DE target genes predicted for DMI 

DE miRNAs in Angus, Charolais and KC are provided in the Supplementary Data S16. 

5.4.5.3 Metabolic weight 

We identified 52, 50 and 52 DE-genes as potential targets for the miRNAs that were 

differentially expressed between high and low-MWT animals from Angus, Charolais and KC 

populations respectively. For Angus, the DE-genes that were predicted to be targeted by the most 

DE-miRNAs included FAM13A and IGF1 each of which were predicted to be targeted by seven 

miRNAs, and, AIF1L, YR61, HMGCR, HMGCS1, DLK1 and CKAP4 that were each predicted to 

be targeted by six DE-miRNAs as shown in Figure 5.11 The DE-miRNAs predicted to target the 

most DE-genes included bta-miR-677 (predicted to target 27 genes), bta-miR-449a (predicted to 

target 17 genes), bta-miR-10164-3p (predicted to target 16 genes), bta-miR-2285u (predicted to 

target 16 genes) and bta-miR-362-5p (predicted to target 13 genes). In total the 10 upregulated 

miRNAs in low-MWT animals were predicted to target 49 DE-genes including 22 and 27 genes 

that were respectively downregulated and upregulated in the liver tissue of low-MWT steers. The 

52 identified targets are mainly involved in amino acid metabolism, small molecule biochemistry, 

DNA replication, recombination and repair, cellular movement and cellular development. 

For Charolais, some of the genes predicted to be targeted by the most DE-miRNAs 

included FADS1 and COL8A1 which were both predicted to be targeted by eight DE-miRNAs, 

and KCTD12 and GAS2 that were predicted to be targeted by seven miRNAs each as shown in 

Figure 5.12. For the miRNAs, bta-miR-7, bta-miR-11991 and bta-miR-2285as were identified as 

the miRNAs that targeted the most DE-genes, with each targeting 18, 14 and 13 DE-genes 

respectively. Forty-four genes were identified as targeted by 11 DE-miRNAs (upregulated in liver 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/1934b777-d710-4fa6-8d73-45d1d27ac2a8/Supplementary%20Data%20S16.xlsx
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tissue of low-MWT animals), and seven of these were downregulated and 37 upregulated in low-

MWT animals. The major molecular and cellular functions enriched by the 50 targets included 

cellular movement, cell-to-cell signaling and interaction, cellular development, cellular growth 

and proliferation and cell death and survival. 

For KC, PHLDA1 (targeted by 13 DE-miRNAs), REEP5 (targeted by 10 DE-miRNAs), 

MYCL (targeted by 9 DE-miRNAs), SGK1 (targeted by 8 DE-miRNAs), IFRD1 (targeted by 8 

DE-miRNAs) and CDH11 (targeted by 7 DE-miRNAs) were identified as the most targeted genes 

as shown in Figure 5.13. The miRNAs predicted to target the genes included bta-miR-7, which 

was predicted to target 20 DE-genes. bta-miR-2285bc and bta-miR-2285bt were predicted to target 

17 DE-genes each, and bta-miR-7859 and bta-miR-AB-185 were predicted to target 15 DE-genes. 

Of the 44 DE-genes predicted to be targeted by the 11 upregulated DE-miRNAs (in low-MWT 

animals), 27 were downregulated and 17 upregulated in low-MWT KC animals. Cellular 

movement, cell morphology, cell-to-cell signaling, and interaction, molecular transport and 

cellular function and maintenance were identified as the major molecular and cellular functions 

enriched by the 52 targets. All DE target genes predicted for MWT DE miRNAs in Angus, 

Charolais and KC are provided in the Supplementary Data S17. 

5.5 Discussion 

MicroRNAs are principle post transcription gene regulators in cells, which have been 

implicated in modulation of several important biological processes (Stroynowska-Czerwinska et 

al. 2014). The liver is a major metabolic organ in the body whose differential gene expression has 

been previously associated to feed intake or growth rate and metabolic weight. It is plausible to 

hypothesize that these genes are at least partially differentially modulated by miRNAs. The 

differential gene modulation consequently results into antagonistic metabolic activity in tissues, 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/76f90211-12eb-4970-99db-2a7a755bb5c7/Supplementary%20Data%20S17.xlsx
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and hence leads to divergence in observable phenotypes between animals. Therefore, in the current 

study we investigated the liver tissue differential miRNA expression between beef steers with 

divergent ADG or DMI or MWT phenotypes from Angus, Charolais and KC populations through 

RNAseq profiling.  

In general, the animal groups considered for differential miRNAs expression for the 

respective trait within the three populations on average had the most significant contrasting 

phenotypes, offering confidence for the differential expression analyses for the trait under 

investigation although other traits also showed significant differences to some extent between the 

trait groups due to their correlation (Table 5.1, 5.2, 5.3). With the data, we identified 11, 12 and 

16 miRNAs as associated with ADG in Angus, Charolais and KC populations respectively. 

Regarding DMI, 9, 21 and 17 DE-miRNAs were identified for Angus, Charolais and KC 

populations respectively. For MWT, we identified 10, 19 and 18 DE-miRNAs for Angus, 

Charolais and KC animals respectively. With population comparison of the DE-miRNAs among 

the three traits and RFI reported previously (Mukiibi et al. 2019a), the results showed some overlap 

of the DE-miRNA between the traits, implying that these are pleotropic miRNAs modulating 

multiple traits. Additionally, bta-miR-486, identified as associated to ADG and MWT in KC and 

Charolais respectively, was also reported to be differentially expressed in the Longissimus muscle 

of high and low-RFI in Nellore cattle (De Oliveira et al. 2018). Of the six validated DE-miRNAs 

identified by RNAseq, two were found to show significant differential expression level between 

high and low-ADG steers using qPCR. However, both the RNAseq and qPCR methods showed a 

high similarity in terms of expression direction for all the six miRNAs with a Pearson’s correlation 

of 0.84. The inability of qPCR to detect significant differences revealed by RNAseq could be due 

to the detection/profiling resolution differences between the two methods. Indeed, RNAseq offers 
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a way higher profiling resolution than qPCR, especially for those miRNAs with generally low 

expression in the samples (Motameny et al. 2010). 

Target-prediction results revealed that the identified DE-miRNAs targeted 55% to 75% of 

the previously identified DE-genes by Mukiibi et al. (2019b). We observed that many genes were 

predicted to be targeted by more than one DE-miRNA, and some of the DE-miRNAs were 

predicted to target multiple genes. This observation demonstrates the target-miRNA regulatory 

interaction, as target 3’ UTRs have been reported to have binding sites for multiple miRNAs, and 

a single miRNA through its seed region can modulate several targets that possess binding sites for 

that miRNA(Creighton et al. 2009; Lu & Clark 2012; Pritchard et al. 2012; Hashimoto et al. 2013; 

Hartig et al. 2015). These characteristics enable miRNAs to regulate large numbers of genes 

despite their small number. Also, some miRNAs show cooperative activity to effectively co-

regulate a gene they target (Hashimoto et al. 2013). Our results also showed that large number of 

the target genes predicted to be regulated by at least one of the upregulated DE-miRNAs, had low 

(downregulated) expression in the liver tissue of animals in the same phenotype group. 

Nevertheless, some target genes maintained high expression in the liver tissue despite being 

predicted to be targeted by upregulated DE-miRNAs in the liver tissue of animals with the same 

phenotype. These observations could be attributed to the major modes of actions through which 

mammalian miRNAs modulate expression of their targets, i.e. promoting mRNA deadenylation 

consequently resulting into increased mRNA degradation, and mRNA translation repression 

(Fabian et al. 2010; Stroynowska-Czerwinska et al. 2014). The ultimate effect of the two modes 

of action is a reduced final protein product of the targeted mRNA or gene (Baek et al. 2008; Lu & 

Clark 2012). The first mode of action (mRNA degradation) results in decreased concentration of 

the target mRNA in the cytoplasm, and the difference in the level of mRNA concentration or 
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expression can be detected through transcriptomic studies like our current study (Creighton et al. 

2009). However, for the second mode of action (mRNA translation repression) the 

modulation/regulation effect can only be studied or detected through transcriptomic studies as the 

concentration of mRNA in the cell would not be antagonized by the modulating miRNA 

(Creighton et al. 2009). It is also interesting to note that some target genes that were predicted to 

targeted by only downregulated DE-miRNAs, also had low expression levels. Downregulation of 

such targets could be by other pre-translational gene expression mechanisms including epigenetic 

control of transcription and regulation of transcription by transcription factors (Lackner & Bähler 

2008). We recommend further molecular experimental validation of these regulatory interactions 

as bioinformatic target-miRNA prediction might yield multiple false positives (Stroynowska-

Czerwinska et al. 2014).  

In general, the major biological functions enriched by DE target genes for each of the traits 

within each population were largely similar to those identified for all the DE-genes (Mukiibi et al. 

2019b), which was expected since large portions of the DE-genes were predicted as targets of the 

DE-miRNAs. This implies that probably the identified DE-miRNAs modulate the associated traits 

through differential modulation of functions such as lipid metabolism, molecule transport, amino 

acid metabolism, cell death and survival, cellular movement, cellular function and maintenance 

and small molecule biochemistry. Additionally, some other functions such as cellular growth and 

proliferation were also identified among the most enriched cellular and molecular functions by 

some of the identified DE-target gene sets. Cellular growth and proliferation are important 

processes of the liver that contribute to constant liver tissue regeneration to replace damaged tissue 

and maintain the tissue at optimal metabolic state (Song et al. 2010). 
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One of the most important discovery is that the differentially expressed miRNAs were 

majorly breed specific, and only MWT had a DE-miRNA (bta-miR-10164-3p) that was common 

to all the three breeds. This finds concur with the results of RNA transcriptome analyses for the 

same traits in the same breed populations, where the DE genes were also largely breed-specific 

(Mukiibi et al. 2019b), indicating that the feed efficiency and related traits are likely regulated by 

different sets of genes across the different beef breeds.  

5.6 Conclusions 

We identified 26, 46 and 46 miRNAs associated with ADG, and, DMI and MWT 

respectively. Most of these identified DE-miRNAs for each trait were majorly breed specific. 

Target gene prediction showed that majority (55% to 75%) of the previously identified DE-genes 

of the respective traits within the populations were targeted by the DE-miRNAs. Additionally, 

those target genes that were predicted to be targeted by at least one upregulated DE-miRNA 

generally showed contrasting expression profile, however, a substantial number of the DE-genes 

did not show contrasting expression as compared to their predicted regulators. These findings 

could be related to the different regulatory mechanisms through which miRNAs regulate their 

targets, such as augmentation of mRNA degradation and transcription repression. RNAseq can 

only detect miRNA differential gene modulation through augmentation of target mRNA 

degradation. Transcription repression could be the mode of regulation for the targets whose 

expression remained high despite being predicted to be targeted by upregulated DE-miRNAs and 

can only be confirmed through proteomic studies. Our results provide further insights about the 

molecular regulation of growth rate, feed intake and metabolic weight in beef cattle.  
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5.8 Figures and Tables 

 

 Figure 5.1.  Venn diagrams showing between breed DE-miRNA comparisons for: (a) ADG; (b) 

DMI and (c) MWT. 

 

 

 Figure 5.2. Venn diagrams showing between traits DE-miRNA comparisons for: (a) Angus, (b) 

Charolais and (c) KC. 
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Figure 5.3. Bar plot showing expression profile of the six validation DE-miRNAs by qPCR and RNAseq in the liver tissue of high-

ADG steers. (P = P-value) 
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Figure 5.4. Correlation plot showing the correlation between Log2(Fold-Change) for RNAseq and 

qPCR for the six validation DE-miRNAs by qPCR and RNAseq in the liver tissue of high-ADG 

steers. 
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue of high-ADG Angus steers relative to low-ADG Angus animals. 

Figure 5.5. DE-miRNA-DE-genes predicted interaction network for average daily growth (ADG) 

for Angus steers.  
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue of high-ADG Charolais steers relative to low-ADG Charolais animals. 

Figure 5.6. DE-miRNA-DE-genes predicted interaction network for average daily growth (ADG) 

for Charolais steers.  
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue of high-ADG Kinsella Composite steers relative to low-ADG Kinsella 

Composite animals. 

Figure 5.7. DE-miRNA-DE-genes predicted interaction network for average daily growth (ADG) 

for Kinsella Composite steers.  
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue low-DMI Angus steers relative to high-DMI Angus animals. 

Figure 5.8.  DE-miRNA-DE-genes predicted interaction network for dry matter intake (DMI) for 

Angus steers.  
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue low-DMI Charolais steers relative to high-DMI animals. 

Figure 5.9. DE-miRNA-DE-genes predicted interaction network for dry matter intake (DMI) for 

Charolais steers. 
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue low-DMI Kinsella Composite steers relative to high-DMI Kinsella Composite 

animals. 

Figure 5.10. DE-miRNA-DE-genes predicted interaction network for dry matter intake (DMI) for 

Kinsella Composite steers.  
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue low-MWT Angus steers relative to high-MWT Angus animals. 

Figure 5.11. DE-miRNA-DE-genes predicted interaction network for metabolic weight (MWT) 

in Angus steers. 
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Red and blue indicate increased and reduced expression respectively of the gene or micro RNA in 

the liver tissue low-MWT Charolais steers relative to high-MWT Charolais animals. 

 Figure 5.12. DE-miRNA-DE-genes predicted interaction network for metabolic weight (MWT) 

in Charolais steers. 
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 Red and blue indicate increased and reduced expression respectively of the gene or micro RNA 

in the liver tissue low-MWT Kinsella Composite steers relative to high-MWT Kinsella Composite 

animals. 

Figure 5.13. DE-miRNA-DE-genes predicted interaction network for metabolic weight (MWT) 

in KC steers.  
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Table 5.1. Phenotypic differences between steers with divergent average daily gain (ADG) phenotypes, tested by two sample t-tests. 

  Angus 
  

Charolais  
  

KC 

  

Trait L_ADG±SE H_ADG±SE P-value L_ADG±SE H_ADG±SE P-value L_ADG±SE H_ADG±SE P-value 

ADG/kg/day 1.54±0.02 1.99±0.1 3.98E-03 1.48±0.03 1.92±0.05 3.15E-05 1.23±0.04 1.88±0.09 4.80E-05 

RFI/kg/day 0.63±0.35 -0.19±0.42 0.17 0.36±0.39 0.02±0.34 0.53 -0.65±0.3 -0.06±0.56 0.33 

DMI/kg/day 12.2±0.34 12.84±0.41 0.25 11.43±0.43 11.3±0.42 0.84 9.57±0.31 11.12±0.78 0.1 

MWT/kg 115±2.33 122.52±3.06 0.08 121.86±2.21 116.67±2.14 0.12 98.45±1.66 103.53±3.02 0.17 

FUREA/cm2 83.08±2.89 81.69±2.34 0.72 95.46±4.95 89.64±3.01 0.34 65.34±1.62 74.45±1.49 0.002 

FUFAT/mm 10.57±0.93 10.02±0.8 0.66 5.9±0.63 5.96±0.43 0.93 8.28±0.94 8.83±0.32 0.59 

HCW/lb 752.95±21.68 810.7±27.48 0.13 860.83±20.69 822.67±14.94 0.17 657.67±20.83 703.33±26.7 0.21 

AFAT/mm 12±1.13 11.83±1.22 0.92 96±3.27 86.83±4.3 0.12 11.17±1.78 9.83±0.95 0.52 

CREA/cm2 73.17±2.87 72.33±3.18 0.85 6.17±0.65 7.33±0.49 0.19 66.83±3.33 77.17±2.98 0.04 

LMY/% 55.08±1.17 54.32±1.45 0.69 62.48±0.89 60.27±0.8 0.1 55.55±1.36 58.02±0.94 0.17 

Marbling score 448.33±24.95 391.67±21.97 0.12 381.67±19.39 371.67±28.68 0.78 372.5±9.64 380±18.08 0.72 

Slaughter age/days 491.67±7.52 500.5±2.54 0.29 525.33±1.33 504.5±9.05 0.05 470.83±8.35 448.5±6.14 0.06 

Bolded = significant differences (Bonferroni correction of P-value < 0.0042). 
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Table 5.2. Phenotypic differences between steers with divergent average dry matter intake (DMI) phenotypes, tested by two sample t-

tests. 

 Angus Charolais Kinsella Composite 

Trait L_DMI±SE H_DMI±SE P-value L_DMI±SE H_DMI±SE P-value L_DMI±SE H_DMI±SE P-value 

DMI/kg/day 10.88±0.21 13.27±0.26 2.87E-

05 

10.01±0.08 12.4±0.15 7.06E-08 8.83±0.16 12.8±0.32 6.47E-07 

RFI/kg/day -0.7±0.03 0.57±0.45 0.02 -1.01±0.11 1.1±0.18 1.90E-06 -1.18±0.14 1.4±0.17 3.77E-07 

ADG/kg/day 1.72±0.03 1.91±0.13 0.2 1.65±0.08 1.6±0.06 0.63 1.39±0.11 1.61±0.08 0.14 

MWT/kg 110.29±2.8 120.11±2.17 0.01 117.98±1.72 122.98±2.21 0.1 96.28±1.43 106.11±1.88 1.94E-03 

FUREA/cm2 84.24±1.3 82.11±3.02 0.53 97.28±3.83 93.23±1.96 0.37 68.78±3.26 74±1.64 0.74 

FUFAT/mm 9.06±1.01 9.65±0.85 0.72 5.58±0.58 6.46±0.66 0.34 9.39±0.83 9.07±0.46 0.18 

HCW/lb 721.87±22.91 792.03±15.36 0.03 834.83±14.71 863.5±17.24 0.23 624.33±7.85 701.17±22.54 1.16E-06 

AFAT/mm 11.17±1.47 12±1.46 0.7 96.33±3.74 93.83±1.3 0.54 13.17±1.62 9.67±0.49 0.06 

CREA/cm2 76.17±2.75 74.17±3.99 0.69 6.5±0.76 7±0.58 0.61 65.83±2.89 75.83±2.51 0.03 

LMY/% 56.66±1.55 54.81±1.67 0.43 62.62±0.86 61.42±0.72 0.31 54.35±1.09 57.89±0.53 0.02 

Marbling 423.33±28.47 410±20.97 0.71 386.67±36.75 405±26.17 0.69 373.33±21.09 361.67±12.5 0.64 

Slaughter age 505.83±5.77 495.17±4.08 0.16 518.33±6.85 528±1.21 0.2 461.17±5.45 446.67±2.83 0.04 

Bolded = significant differences (Bonferroni correction of P-value < 0.0042). 
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Table 5.3. Phenotypic differences between steers with divergent metabolic weight (MWT) phenotypes, tested by two sample t-tests.  

 Angus Charolais Kinsella Composite 

Trait L_MWT±SE H_MWT±SE P-value L_MWT±SE H_MWT±SE P-value L_MWT±SE H_MWT±SE P-value 

MWT/kg 110.1±3.05 121.8±3.73 0.04 114.57±0.83 125.56±1.08 1.05E-05 94.24±0.72 107.93±1.47 7.97E-06 

RFI/kg/day 0.61±0.42 -0.37±0.41 0.12 0.24±0.36 -0.11±0.44 0.55 -0.07±0.51 0.57±0.53 0.41 

DMI/kg/day 12±0.52 12.43±0.57 0.59 11.22±0.38 11.42±0.47 0.75 9.75±0.54 12.22±0.62 2.93E-08 

ADG/kg/day 1.63±0.05 1.9±0.12 0.07 1.8±0.07 1.63±0.06 0.1 1.56±0.13 1.64±0.07 0.57 

FUREA/cm2 83.4±2.97 81.18±2.11 0.55 86.81±3.67 96.33±1 0.03 8.26±0.36 9.16±0.39 0.12 

FUFAT/mm 9.26±0.34 10.64±1 0.22 5.97±0.43 7.01±0.85 0.3 68.52±2.35 73.94±1.54 0.08 

HCW/lb 720.32±25.85 804.4±33.02 0.07 803.33±6.97 898.17±14.31 1.40E-04 641.17±17.59 727.67±16.62 5.07E-03 

AFAT/mm 11.5±1.2 12.17±1.49 0.74 88.17±3.74 96.5±3.92 0.15 10.67±0.71 8.83±0.6 0.08 

CREA/cm2 75±2.83 72.67±3.62 0.62 7.33±0.61 8.17±1.14 0.53 69±3.51 78.5±1.63 0.03 

LMY/% 56.21±0.98 54.23±1.83 0.36 60.78±0.77 60.71±1.04 0.96 56.54±0.59 58.69±0.56 0.02 

Marbling 426.67±14.53 376.67±14.98 0.04 353.33±17.44 363.33±26.28 0.76 372.5±22.05 375±6.71 0.92 

Slaughter 

age 

486.17±4.43 505.17±4.77 0.02 503±8.22 525±4.42 0.04 460.17±11.3 448.67±3.4 0.35 

Bolded = significant differences (Bonferroni correction of P-value < 0.0042). 
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Table 5.4. Differentially expressed known micro RNAs between high and low-ADG animals, with 

a differential expression threshold of P-value < 0.05 and Fold-change > 1.5. 

Angus MicroRNA Log2FC P-value 

1 bta-miR-11985 -1.633 1.97E-05 

2 bta-miR-12001 0.903 1.84E-03 

3 bta-miR-2411-3p -0.902 3.13E-03 

4 bta-miR-1246 -0.622 3.69E-03 

5 bta-miR-2332 -0.724 4.49E-03 

6 bta-miR-487a 1.155 8.31E-03 

7 bta-miR-96 0.691 9.89E-03 

8 bta-miR-34c 1.165 0.012 

9 bta-miR-363 0.801 0.013 

10 bta-miR-AB-47  0.621  0.014 

11 bta-miR-2285bh -0.962 0.044     

Charolais MicroRNA Log2FC P-value 

1 bta-miR-2415-3p -1.287 7.38E-08 

2 bta-miR-AB-148  -0.826 6.49E-04 

3 Bta-miR-AB-47 -0.901 1.32E-03 

4 bta-miR-767 -1.217 3.80E-03 

5 bta-miR-376b 0.866 0.019 

6 bta-miR-2284c -1.012 0.021 

7 bta-miR-95 0.752 0.025 

8 bta-miR-2285br -0.82 0.03 

9 bta-miR-2285cp -0.996 0.035 

10 bta-miR-6123 0.638 0.035 

11 bta-miR-12004 -0.798 0.041 

12 bta-miR-655 0.639 0.041     

KC MicroRNA Log2FC P-value 

1 bta-miR-AB-225 2.287 1.85E-09 

2 bta-miR-486 -0.717 1.25E-07 

3 bta-miR-6523a -1.497 1.86E-04 

4 bta-miR-424-3p -1.207 2.61E-03 

5 bta-miR-2887 -1.183 2.69E-03 

6 bta-miR-AB-10 -0.614 3.09E-03 

7 bta-miR-7 -0.631 6.76E-03 

8 bta-miR-424-5p -0.621 7.18E-03 

9 bta-miR-190a -1.026 0.012 

10 bta-miR-2284c 1.108 0.016 

11 bta-miR-AB-63 0.719 0.020 
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logFC = log2(Fold-change) and he sign of logFC shows the direction of miRNA expression in  

high-ADG steers relative to low-ADG animals. 

 

Table 5.5. Differentially expressed known micro RNAs between high and low-DMI animals, with 

a differential expression threshold of P-value < 0.05 and Fold-change > 1.5. 

12 bta-miR-2285aj-5p 0.659 0.025 

13 bta-miR-490 0.627 0.03 

14 bta-miR-2411-3p 0.679 0.035 

15 bta-miR-AB-185 0.912 0.042 

Angus MicroRNA Log2FC P-value 

1 bta-miR-455-5p 0.61 1.22E-04 

2 bta-miR-96 -1.025 1.78E-04 

3 bta-miR-2285bg 1.415 1.04E-03 

4 bta-miR-200a -0.608 1.40E-03 

5 bta-miR-424-3p 1.196 1.53E-03 

6 bta-miR-AB-15 0.859 6.37E-03 

7 bta-miR-2285u 0.727 0.019 

8 bta-miR-2431-3p 1.001 0.023 

9 bta-miR-2285ak-5p 0.964 0.036 

        

Charolais MicroRNA Log2FC P-value 

1 bta-miR-2415-3p 1.194 2.27E-07 

2 bta-miR-2419-5p 0.788 5.78E-07 

3 bta-miR-AB-2 0.866 6.24E-05 

4 bta-miR-2284c -1.731 2.57E-04 

5 bta-miR-2346 -1.483 4.75E-04 

6 bta-miR-144 0.754 5.37E-04 

7 bta-miR-2285i -0.98 8.48E-04 

8 bta-miR-10167-3p -1.098 1.71E-03 

9 bta-miR-654 0.937 1.83E-03 

10 bta-miR-495 0.666 4.88E-03 

11 bta-miR-AB-47 -0.719 5.08E-03 

12 bta-miR-493 0.616 7.87E-03 

13 bta-miR-299 0.863 9.91E-03 

14 bta-miR-2285n -0.966 0.014 

15 bta-miR-2285ai-5p 0.65 0.017 

16 bta-miR-2285c -1.022 0.018 

17 bta-miR-2284ac 0.635 0.021 



199 

 

 

logFC = log2(Fold-change) and he sign of logFC shows the direction of miRNA expression in  

low-DMI steers relative to high-DMI animals. 

 

Table 5.6. Differentially expressed known micro RNAs (miRNAs) between high and low-MWT 

animals, with a differential expression threshold of P-value < 0.05 and Fold-change >1.5. 

18 bta-miR-362-3p -0.94 0.022 

19 bta-miR-6123 0.63 0.027 

20 bta-miR-4449 0.628 0.028 

21 bta-miR-2285cf 0.664 0.033 

        

KC MicroRNA Log2FC P-value 

1 bta-miR-190a -1.868 2.05E-10 

2 bta-miR-155 0.883 2.30E-05 

3 bta-miR-424-5p 0.951 3.01E-05 

4 bta-miR-AB-63 -0.9521 2.17E-04 

5 bta-miR-490 -1.046 4.66E-04 

6 bta-miR-363 1.009 1.01E-03 

7 bta-miR-4286 -1.304 1.80E-03 

8 bta-miR-10164-3p 0.832 2.22E-03 

9 bta-miR-AB-225 1.43194 2.27E-03 

10 bta-miR-2411-3p -0.938 3.39E-03 

11 bta-miR-AB-185 -1.134 8.37E-03 

12 bta-miR-411c-3p -0.829 0.015 

13 bta-miR-2474 0.953 0.015 

14 bta-miR-2332 -0.612 0.025 

15 bta-miR-147 0.681 0.027 

16 bta-miR-6521 -0.604 0.042 

17 bta-miR-424-3p 0.74 0.048 

Angus MicroRNA log2FC P-value 

1 bta-miR-1246 0.959 2.22E-06 

2 bta-miR-4449 0.967 1.13E-04 

3 bta-miR-2285ar 0.945 1.72E-04 

4 bta-miR-449a 1.233 2.23E-04 

5 bta-miR-11985 1.217 4.98E-04 

6 bta-miR-2285bd 0.894 2.37E-03 

7 bta-miR-12001 -0.825 4.67E-03 

8 bta-miR-2411-3p 0.759 8.10E-03 

9 bta-miR-10164-3p 0.69 9.02E-03 

10 bta-miR-425-3p -0.616 9.68E-03 
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11 bta-miR-677 0.93 0.017 

12 bta-miR-2285u 0.668 0.034 

13 bta-miR-362-5p -0.662 0.034  
      

Charolais MicroRNA log2FC P-value 

1 bta-miR-10b 2.19 1.01E-19 

2 bta-miR-99a-5p 0.646 1.71E-04 

3 bta-miR-451 0.616 2.16E-04 

4 bta-miR-10a 0.827 3.03E-04 

5 bta-miR-379 0.819 8.54E-04 

6 bta-miR-99b 0.627 1.40E-03 

7 bta-miR-486 0.709 2.47E-03 

8 bta-miR-7 0.722 4.45E-03 

9 bta-miR-10172-5p 0.756 5.72E-03 

10 bta-miR-449a -1.002 8.57E-03 

11 bta-miR-AB-15 -0.7661 8.84E-03 

12 bta-miR-144 0.645 9.11E-03 

13 bta-miR-AB-145 0.7143 0.010 

14 bta-miR-11991 -0.792 0.016 

15 bta-miR-147 -0.772 0.016 

16 bta-miR-2285aj-5p -0.661 0.035 

17 bta-miR-2285as -0.964 0.038 

18 bta-miR-592 -0.705 0.039 

19 bta-miR-10164-3p -0.639 0.039     

KC MicroRNA log2FC P-value 

1 bta-miR-190a -2.102 7.47E-09 

2 bta-miR-10225a -0.748 5.10E-06 

3 bta-miR-2419-5p 0.814 8.33E-06 

4 bta-miR-7 -0.839 8.18E-05 

5 bta-miR-1246 -0.752 3.16E-04 

6 bta-miR-2285t 0.646 3.83E-04 

7 bta-miR-2332 -0.832 1.71E-03 

8 bta-miR-2474 1.063 3.79E-03 

9 bta-miR-1343-3p 0.711 4.19E-03 

10 bta-miR-2415-3p 0.626 9.59E-03 

11 bta-miR-2411-3p -0.75 0.015 

12 bta-miR-2285bt 0.791 0.017 

13 bta-miR-10164-3p 0.639 0.02 

14 bta-miR-29d-3p -0.587 0.021 

15 bta-miR-7859 0.856 0.03 
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logFC = log2(Fold-change) and he sign of logFC shows the direction of miRNA expression in  

low-MWT steers relative to high-MWT animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 bta-miR-10182-3p 1.022 0.032 

17 bta-miR-411c-3p -0.799 0.032 

18 bta-miR-2285bc 0.845 0.039 
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Chapter 6. Evaluation of genomic prediction accuracy of feed efficiency and 

the related traits with integration of differentially expressed gene SNPs 

6.1 Abstract  

Due to the costs and time required to individually measuring feed intake phenotypes for 

traditional genetic evaluation and selection, genomic selection has been implemented as a method 

of choice for genetic evaluation for feed efficiency and its related traits. Improving genomic 

prediction accuracy is among the principle ways of increasing the rate of genetic improvement in 

the breeding programs. In the current study we investigated the potential of improving genomic 

prediction accuracy for residual feed intake (RFI), dry matter intake (DMI), average daily gain 

(ADG), and metabolic weight (MWT) of beef cattle through utilization of a functionally enriched 

SNP panel. We used a total of 7,372 beef animals from six populations including Angus (n = 

1148), Charolais (n = 700), Kinsella Composite or KC (n = 1477), PG1 (n = 1868), Elora (n = 729) 

and TX (n = 1450). We employed genomic best linear unbiased prediction (GBLUP) for genomic 

prediction with three SNP panels including the Illumina 50K Bovine BeadChip SNP chip (50K 

panel), functional gene SNP panel (Functional panel), and randomly selected SNP panel (Random 

panel). The Functional gene SNP panel was mined from candidate genes associated with RFI or 

DMI or ADG or MWT identified through transcriptomic differential gene analyses. We conducted 

GBLUP within each breed and across combined breeds (pooled data from all the 6 breeds). All the 

three SNP panels captured considerably large additive genetic variances of the traits. In general, 

the 50K and the Random panels captured similar amount of additive variance while the Functional 

panel accounted for slightly less amount of additive variance except for RFI within the Charolais, 

within Elora, and within TX populations, for which the Functional panel led to greater estimates 

of genomic heritability. The Functional panel also yielded a slightly greater accuracy for ADG, 
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DMI, MWT, and RFI for within Charolais genomic prediction, but generally had a slightly lower 

genomic prediction than the 50K and the Random Panel in other populations or genomic prediction 

scenarios. However, the genomic prediction accuracies of the three SNP panels were similar for 

all the traits under all the genomic prediction scenarios (within-breed or across breeds) when the 

standard errors were considered, indicating that the Functional panel did not lead to tangible 

improvement in genomic prediction for the feed efficiency and the related traits in the beef cattle 

populations investigated. The results also suggest the need to employ multiple omics tools to 

identify all and refine genes associated with feed efficiency and the related traits across different 

breeds to enable establishing a more comprehensive functional SNP panel for genomic prediction 

for the traits. 

6.2 Introduction 

Feed and feeding related costs are major beef production costs for the beef industry as they 

account for up to 75 percent of the total production costs (Ahola & Hill 2012). Therefore, 

improvement of feed efficiency can significantly improve the production returns for the producers. 

Feed efficiency can be defined as residual feed intake (RFI), which is the difference between the 

actual feed intake of the animal and the expected feed intake of the animal based on its growth rate 

and body weight (Koch et al. 1963). Additionally, improving beef cattle’s feed efficiency could 

also reduce the carbon footprint of beef animals to the environment since a number of studies have 

reported positive genetic correlations between feed efficiency measured as residual feed intake and 

methane emission, implying that genetic selection for low RFI animals can consequently produce 

animals with reduced methane emission (Nkrumah et al. 2006; Hegarty et al. 2007). 
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Traditional genetic evaluation and selection for feed efficiency requires measurement of individual 

animals feed intake, which is still an expensive process (Chen et al. 2013; Khansefid et al. 2014) 

and/or recording acurate pedigree information, hence making genomic selection a method of 

choice for selective breeding and improvement of feed efficiency. Genomic selection involves 

utilization of a reference population of animals with phenotype and genome wide SNP genotype 

information to predict genetic merit of selection candidates with only genotypic information 

(Meuwissen et al. 2001). The accuracy of the prediction of the genomic merit of the candidates is 

one of the major factors that affect the progress rate of genetic improvement (Georges et al. 2018). 

The accuracy of genomic prediction is influenced by a number of factors including DNA marker 

density, informativeness of the SNP panel, heritability of the trait, size of the reference population, 

genetic relationship between the reference and selection candidates, and the statistical model used 

for genomic evaluation (Goddard & Hayes 2009; Meuwissen et al. 2013; Snelling et al. 2013; 

Zhang et al. 2019).  

Currently, industrial genomic evaluation in beef cattle for the various economic traits is 

largely based on genotype data from the commercially available medium density panels such as 

the Illumina 50K Bovine BeadChip SNP chip (Matukumalli et al. 2009), that relies on linkage 

disequilibrium (LD) between the SNPs and the quantitative loci (QTLs) or genes to capture the 

additive genetic variance accounted for by these QTLs or genes (Snelling et al. 2013). This LD 

dependency likely contributes to a relatively lower genomic prediction accuracy, due to LD break 

down especially for the across breed genomic predictions (Goddard 2009; Snelling et al. 2013). 

With respect to feed efficiency and the related traits in beef cattle, different attempts including 

different strategies of constructing the training and validation populations, increasing the reference 

population size, and increasing SNP densities have been investigated as approaches to improve 
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genomic prediction accuracy (Mujibi et al. 2011; Chen et al. 2013; Khansefid et al. 2014; Lu et 

al. 2016). However, the genomic prediction accuracy still remains low. Therefore, inclusion of 

biological or functional information or causative DNA variants into the SNP panels or in the 

statistical models provides an opportunity to improve genomic prediction as the causative DNA 

markers does not involve the LD issues (Snelling et al. 2013; Fang et al. 2017). Additionally, 

identification of functional genes and markers associated with important traits and their utilization 

in genomic prediction are expected to yield higher genomic prediction accuracies for outbred or 

crossbred industrial animals whose representation in the reference populations are generally low 

(Snelling et al. 2013; Edwards et al. 2016; Fang et al. 2017). 

Functional genomics provides several tools including genome wide association studies, 

transcriptomics studies and epigenomic studies to identify functional genomic regions or genes 

associated with complex traits, and these regions/genes can be integrated into genomic evaluations 

to augment prediction accuracy for such traits (Snelling et al. 2013; Edwards et al. 2016; Spindel 

et al. 2016; Fang et al. 2017; Lozano et al. 2017; Gebreyesus et al. 2019). Currently transcriptomic 

studies through RNAseq analyses for both protein coding and non-coding RNAs has been 

identified as a viable tool to identify functional genes that contribute to variability of economically 

important traits such as feed efficiency and the related traits, and these genes can be used to 

enhance genomic prediction accuracy of those associated traits (Snelling et al. 2013; Lozano et al. 

2017). Therefore, in the current study we utilized the differentially expressed (DE) genes that were 

identified in previous studies as associated with feed efficiency and its related traits and assembled 

a functional SNP panel in which SNPs are located within or close to the DE genes, with the aim 

of improving genomic prediction of these traits in beef cattle. 
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6.3 Materials and Methods 

6.3.1 Animal populations 

In the current study the genotype and phenotype data beef animals were collected through 

various research projects across Canada. In total we used 7,372 animals (steers and heifers) from 

six breed populations including two pure breeds, Angus (1148 animals) and Charolais (700 

animals), and four cross breeds, KC (1477 animals), Elora (729 animals), PG1(1868 animals) and 

TX (1450 animals). The Angus, Charolais and Kinsella Composite herds are maintained at the 

University of Alberta’s Roy Berg Kinsella Research Ranch. Angus and Charolais cows are bred 

with artificial insemination, followed by purebred Angus and Charolais bulls respectively, whose 

pedigree information is kept by the Canadian Angus and Charolais breed associations respectively. 

The KC population descended from the crossings between Angus, Charolais, or Alberta Hybrid 

bulls and the University of Alberta’s hybrid dam line that was generated through crossing of 

multiple composite cattle lines as described by (Goonewardene et al. 2003). Elora were a 

crossbreed population from the University of Guelph’s Elora Beef Research Center, and was 

mainly composed of Angus, Simmental and other breeds (Schenkel et al. 2005). PG1 population 

was composed of crossbred animals from the Phenomics Gap Project and the animals were raised 

at the Agriculture and Agri-Food Canada Lacombe Research and Development Centre (Lu et al. 

2016). The beef cattle of TX population were terminal crossbred animals from multiple 

commercial herds with Angus, Charolais, Hereford, Simmental, Limousin, and Gelbvieh being the 

major breeds used in the beef production.  

6.3.2 Phenotypic data collection and calculations  

Since the animals were from different research projects, the phenotypic records were 

collected at different time points. Data were collected between 2004 and 2014 for the Angus and 
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Charolais animals, between 2002 and 2014 for KC, between 1998 and 2006 for Elora, and between 

2008 and 2011 for both PG1 and TX animals. Individual feed intake of each animal was measured 

at a finishing stage using GrowSafe Systems® (GrowSafe Systems Ltd., Airdrie, Alberta, Canada) 

located at the respective research centers. Animals were tested for feed intake for period ranging 

between 76 and 112 days. Average dry mater intake (DMI) of each animal was calculated as the 

average of the feed intakes measured through the test period. DMI was standardized to 12 MJ ME 

per Kg of dry matter for steers and 10 MJ ME per Kg of dry matter for heifers based on the energy 

content of the diets. Initial body weight and average daily gain (ADG) for each animal were 

obtained from a linear regression of serial body weight (BW) measurements that were recorded on 

two consecutive days at the commencement, at approximately 14-day intervals during the feedlot 

test, and on two consecutive days at the end of test or on the day at the commencement, at 

approximately 14-day intervals during the feedlot test, and on the day at the end of test depending 

on the day of test. Metabolic weight (MWT) was calculated as midpoint BW0.75, where midpoint 

BW was calculated as the sum of initial BW of the animal and the product of its ADG multiplied 

by half the number of days under the feed intake measurement test. To estimate the expected feed 

intake of the animals based on their body weight and growth, actual DMI was regressed on MWT 

and ADG, and RFI was calculated as the difference between the actual DMI, and the expected 

DMI as shown in equation 1 below.  

𝑅𝐹𝐼 =  𝐷𝑀𝐼 − (𝛽0 + 𝛽1𝐴𝐷𝐺 + 𝛽2𝑀𝑊𝑇)              [1] 

Where RFI is the residual feed intake, DMI is the actual dry matter intake, β0 is the regression 

intercept, β1 and β2 are the regression coefficients of average daily gain (ADG) and metabolic 

weight (MWT) on DMI respectively. The R2 of the regression model ranged between 0.50 and 

0.78 (Mao et al. (2013). 
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6.3.3 Genotyping, phenotype adjustment and imputation 

All the animals with phenotypes were genotyped on either version 2 or 3 of the Illumina 

BovineSNP50 DNA Genotyping BeadChip (Illumina, San Diego, CA, USA). Raw genotypes of 

all the animals were merged and consolidated resulting in 54,609 SNPs retained across all the 

animals. Quality control assessments were performed on the SNP genotypes as follows: SNPs with 

minor allele frequency less than 0.05, SNPs with missing genotype call rate > 0.05, SNPs that 

deviated from Hardy-Weinberg equilibrium (HWE) by P < 0.001. After all the quality control, 

33,321 SNPs were retained. These SNP genotypes were used to estimate the genetic structure of 

the studied animals through principle component analysis (PCA) using PLINK version 1.9 (Purcell 

et al. 2007). Additionally, using the same SNPs, breed compositions of the animals were estimated 

using ADMIXTURE (Alexander & Lange 2011), with K (assumed ancestral populations) of six 

(K = 6). Consequently, phenotypic records were adjusted for animal birth year, sex type, 

contemporary group of feedlot test location and pen, breed composition of the six ancestral breed 

composition and the test age of the animal. 

6.3.4 Genotype imputation for full genome 

Imputation processes from 50K genotypes of 7,372 animals to whole genome variants used 

in the current study has been extensively reported in our previous studies (Wang et al. 2019; Zhang 

et al. 2019). Briefly, Imputation was performed using Fimpute 2.2 software (Sargolzaei et al. 

2011). Firstly, 7,372 animals were imputed from 30,155 SNPs of Illumina 50K bovine BeadChip 

to 428,895 SNP marker genotypes on the Axion TM Genome-Wide BOS 1 Bovine Array high 

density (HD) panel from Affymetrix (Affymetrix, Inc., Santa Clara), using 4,059 animals 

genotyped on the HD panel as the reference. Thereafter, using a reference population of 1,570 
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animals with full genome sequence genotypes for the 1,000 Bull Genomes Project (Daetwyler et 

al. 2014), animal genotypes were imputed from 428,895 SNP genotypes to 38,318,974 (38M) 

whole genome sequence variants (SNPs and INDELs). Imputation accuracy for the genotypes was 

evaluated using a total of 240 animal samples that had both 50K and whole genome genotype 

information. The 240 animals were randomly assigned to 5 groups (N=48 for each group). Each 

group of animals was then used as a validation group in turn where their whole genome sequence 

variants were masked, and the rest of individuals were merged into the whole genome sequence 

reference population to impute WGS genotypes for all animals in the validation group. The 

accuracy of imputation was then calculated as the average proportion of whole genome sequence 

variant genotypes of the animals in the validation group that were correctly imputed assuming that 

the real genotypes of WGS variants genotypes had no errors (Wang et al. 2019). The DNA variants 

with imputation accuracy of less than 95%, minor allele frequency less than 0.005, significantly 

deviated from HWE by P < 0.00001 were removed from the 38M variants leaving 7,853,211 

(7.8M) variants for further analyses. 

6.3.5 Functional and random SNP panel designing 

A total of 3735 autosomal candidate genes, including 3,642 protein coding genes and 93 

miRNA precursors identified as associated with feed efficiency traits were compiled from our own 

transcriptomic studies (Mukiibi et al. 2017; Mukiibi et al. 2018a; Mukiibi et al. 2018b; Mukiibi et 

al. 2019a, b; Mukiibi et al. 2019c), and other published literature (Chen et al. 2011; Paradis et al. 

2015; Kern et al. 2016; Kong et al. 2016; Lindholm-Perry et al. 2016; Weber et al. 2016; Foote et 

al. 2017; Keel et al. 2018). Protein coding genes included genes directly identified as differentially 

expressed between divergent phenotypes of feed efficiency or related traits, and differentially 

expressed miRNAs’ targets of 99th percentile context score that were not among the identified 
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differentially expressed genes. The chromosome-wise distribution of the candidate genes is 

illustrated in Figure 6.1. From the 7.8M whole genome variants, a total of 432,170 SNP markers 

were extracted for the 3,735 autosomal candidate genes, within a window of 1,000bp from the 

transcription start and end sites of the coding genes to include SNPs in proximal gene regulatory 

regions. All the 3,735 autosomal candidate genes and their chromosomal positions are provided in 

the Supplementary Data S18. To maintain the SNP number close to that from 50K panel, linkage 

disequilibrium pruning was performed on the 411,591 SNPs using a threshold of SNP 

independent-pairwise squared correlation of 0.2, within a 50 SNP window, and a stepwise shift of 

5 SNPs within a window in PLINK. After LD pruning, 33,147 SNPs were retained as the functional 

panel. Additionally, for comparison 33,147 SNPs were randomly selected from the rest of 7.8M 

variants that excluded the SNPs in the functional panel to form what we termed a random panel in 

this study. 

6.3.6 Genomic prediction and accuracy calculations 

Genomic prediction was performed through genomic best linear unbiased prediction 

(GBLUP) method using GCTA software (Yang et al. 2011) for the three SNP panels (Functional, 

Random and 50K). The linear mixed model shown as equation 2 below was used for evaluation, 

where y is the vector of adjusted phenotypes (RFI, ADG, DMI or MWT), µ is the overall 

phenotypic mean, g is the vector of the random breeding values of the animals, Z is the incidence 

matrix linking the random breeding values in g to the phenotypic records in y.  

𝑦 = 1µ + 𝑍𝑔 + 𝑒 , g ~ N(0, Gσg
2), e ~ N(0, Iσe

2)             [2] 

The expanded mixed model equations (MME) used in the genomic evaluation was as equation 3.                

[
µ̂
�̂�

] = [
1′𝑛1 1′𝑛𝑍

𝑍′1𝑛 𝑍′𝑍 + 𝐺−1]
−1

[
1′𝑛𝑦

𝑍′𝑦
]                   [3] 

https://era.library.ualberta.ca/items/be7d39d9-9561-4485-a6f2-0f69f8084f83/view/fd9d028a-bf32-4881-bbcf-16af3939af4f/Supplementary%20Data%20S18.xlsx
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G-1 was the inverse of the inverse of the genomic relationship matrix (GRM) calculated using 

equation 4, where Ajk was the genomic relationship between animals j and k, N is the total number 

of SNPs, xij was the number of copies of the reference allele of the SNP i for the animal j, xik was 

the number of copies of the reference allele of the SNP i for the animal k, and pi was the allelic 

frequency of the reference allele of the ith SNP marker (Yang et al. 2011). 

𝐴𝑗𝑘 =  
1

𝑁
∑

(𝑥𝑖𝑗  − 2𝑝𝑖 )(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1− 𝑝𝑖)

𝑁
𝑖=1                   [4] 

Genomic prediction was performed within each of the six breeds (i.e. using animals within breed 

as the training population) and pooled data (i.e. using all animals in the study as the training 

population).Within each breed, animals were randomly divided into five cross-validation groups 

according to sire families. In each genomic prediction analysis for each breed, phenotypes of 

animals in the cross-validation group were masked and their genomic breeding values (GEBV) 

were consequently estimated using other animals within the breed or all animals combined as the 

training population. The accuracy of genomic prediction was then calculated as the ratio of the 

Pearson’s correlation between the adjusted phenotypes and the GEBVs of the validation 

individuals, divided by the square root of the genomic heritability (Meuwissen et al. 2013) of the 

respective trait, as shown in equation 5 for each validation group. Thereafter, the genomic 

prediction accuracy and its standard error were obtained from the five cross validation accuracies. 

𝑮𝑬𝑩𝑽 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝐶𝑜𝑟(𝑃𝑎𝑑𝑗,𝐺𝐸𝐵𝑉)

√ℎ2
                 [5] 
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The heritability estimates were estimated from the 7.8M single nucleotide variants for each trait 

(RFI = 0.25, ADG = 0.26, DMI = 0.39, and MWT = 0.52), (Zhang et al. 2019a) and they were 

mantained constant for all the evaluation scenarios.  

6.4 Results 

6.4.1 Genomic heritability estimates 

Genetic relationships based on 50K panel genotypes among the six populations used in the 

current study are illustrated by a PCA plot in Figure 6.2. Genomic heritability estimates from 

GCTA --reml run for RFI, DMI, ADG and MWT for within and pooled data analyses for the three 

SNP panels are provided in Table 6.1. Generally, MWT had the highest heritability estimates 

across the tested scenarios ranging from 0.21 ± 0.091 to 0.61 ± 0.049, whereas RFI generally had 

the lowest heritability estimates (0.15 ± 0.078 to 0.46 ± 0.066). ADG and DMI had heritability 

estimates ranging from 0.19 ± 0.061 to 0.45 ± 0.102 and 0.2 ± 0.04 to 0.58 ± 0.065 respectively. 

Additionally, heritability estimates under within-breed analyses were generally higher than pooled 

data evaluations. In general, the 50K and the Random panels captured a similar amount of additive 

variance while the Functional panel accounted for slightly less amount of additive variance except 

for RFI within the Charolais, within Elora, and within TX populations, for which the Functional 

panel led to greater estimates of genomic heritability. However, when the standard errors of the 

heritability estimates are considered, all the SNP panels accounted for a similar amount of additive 

genetic variance for the traits investigated.  

6.4.2 Genomic prediction accuracy 

Genomic prediction accuracies for the four considered traits for within breed and using 

pooled data as reference evaluations are summarized in Table 6.2. For RFI, the highest accuracy 

(0.58 ± 0.06) was observed under within Angus prediction using 50K panel, whereas lowest 
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accuracy (0.20 ± 0.05) was observed using the pooled data (all animals as reference) with the 

Functional panel in the same population. For ADG, 0.44 ± 0.06 was the highest accuracy we 

obtained, which was for the pooled data evaluation for Elora with the Random panel, and 0.2 ± 

0.06 was the lowest observed accuracy which was under within TX using the same Random panel. 

For DMI, 0.55 ± 0.06 was observed as the highest accuracy, and was obtained when we utilized 

the pooled data as reference for Angus genomic evaluation with the 50K panel, and 0.23 ± 0.05 

was the lowest which was observed under pooled data evaluation for Elora using the Functional 

panel. We observed, 0.68 ± 0.03 as the highest accuracy for MWT and this was under the pooled 

data evaluation for PG1 using the Random panel, whereas 0.21 ± 0.04 was the lowest accuracy for 

this trait and was observed under within Elora analysis with the Functional panel. 

Using the 50K and the Random panel, the genomic prediction accuracy for ADG, DMI and 

MWT were generally higher using the pooled data as reference than within breed evaluation across 

the six breeds, with the highest (increased by 0.16 points) observed in KC for MWT. However, for 

the Functional panel using pooled data yielded relatively lower genomic prediction than within 

breed evaluations for ADG, DMI and MWT for Charolais, Elora, PG1 and TX animals, but not for 

Angus and KC animals. Interestingly, for RFI, within breed evaluations generally resulted into 

higher genomic accuracy than using the pooled data for the three panels.  Compared with the other 

two SNP panels in this study, a slightly greater genomic prediction accuracy for ADG (0.42 ± 

0.10), DMI (0.37 ± 0.09), MWT (0.36 ± 0.08), and RFI (0.44 ± 0.05) for within Charolais genomic 

prediction was obtained when the Functional SNP panel was used (Table 6.2 and Figure 6.3). 

However, on average the Functional panel had a slightly lower genomic prediction than the 50K 

and the Random Panel under most of the genomic prediction scenarios considered in the current 

study. Nevertheless, the genomic prediction accuracies of the three SNP panels were similar for 
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all the traits under all the genomic prediction scenarios (within-breed or across breeds) when the 

standard errors were considered, indicating that the Functional panel did not lead to tangible 

improvement in genomic prediction for the feed efficiency and the related traits in the beef cattle 

populations investigated.  

6.5 Discussion 

In the current study we investigated the potential usage of functional information obtained 

through transcriptomic analyses to enhance genomic prediction accuracy in beef cattle. We 

compared three SNP panels including a commercially available 50K SNP panel, a Functional panel 

of SNPs from candidate genes identified through transcriptome analyses, and a Random SNP panel 

composed of randomly selected SNPs from the whole genome DNA variants. The genomic 

prediction analyses for feed efficiency (RFI) and its component traits were performed within each 

of the six breed populations and with pooled genotype and phenotype data of all the six breed 

populations as the training population.  

Our results showed that in general the 50K panel had relatively better genomic prediction 

accuracy for RFI, ADG and DMI across populations we studied than the Functional and the 

Random panels for within breed and pooled data evaluations. These results imply that even though 

the Functional panel SNPs were mined from genes identified to be associated with the traits under 

study, some genetic variance remains uncounted for by these SNPs. However, it should also be 

noted that in some scenarios, the Functional panel performed slightly better than both the 50K and 

the Random panels, for example within Charolais evaluation for all the four traits, the Functional 

panel had higher genomic prediction accuracy than the 50K and the Random panel by points 

ranging between 0.4% to 6.1%. Additionally, for within Elora and PG1 evaluation, the Functional 

panel had slightly higher accuracy than the 50K and the Random panels for both RFI and DMI. 
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However, these results are not consistent across the evaluated breed populations to show the 

potential of improving genomic prediction accuracy through utilization of this functionally 

enriched SNP panel. For traits that are majorly controlled by a few genomic regions or genes with 

larger effects across different populations, such as milk fatty acids, it is possible to improve their 

genomic accuracy through utilization a single genomic tool like GWAS to identify the genomic 

regions associated with those traits (Gebreyesus et al. 2019). However, for feed efficiency and its 

component traits, genome-wide association studies have identified multiple genomic regions 

associated with feed efficiency or the component traits but have not found genomic regions or 

genes with larger effects on the traits (Abo-Ismail et al. 2014; de Oliveira et al. 2014; Saatchi et 

al. 2014; Seabury et al. 2017; Zhang et al. 2019a). As a new gene expression technique, global 

transcriptome studies via RNAseq have identified a number of genes associated to feed efficiency 

or its components (Chen et al. 2011; Alexandre et al. 2015; Paradis et al. 2015; Tizioto et al. 2015; 

Kong et al. 2016; Tizioto et al. 2016; Weber et al. 2016; Khansefid et al. 2017; Mukiibi et al. 

2018b; Mukiibi et al. 2019a, b; Mukiibi et al. 2019c). The identification of these multiple genes 

associated with the feed efficiency or its component traits implies that these are more complex 

traits that are controlled by many genes that are involved in various metabolic networks. Although 

it was expected that the Functional SNP panel would lead to greater genomic prediction accuracy 

for the traits as the SNPs in the panel are from the DE genes associated with the traits. However, 

the Functional SNP panel did not result in better genomic prediction accuracies for most of the 

traits under most of the genomic prediction scenarios in comparison to the 50K and Random 

panels. This is likely due to the reason that the Functional panel is just part of all the genes or 

genomic regions controlling feed efficiency or its component traits. Moreover, the DE genes were 

compiled from studies of various beef breeds and were identified via gene expression analyses of 



216 

 

 

limited tissues at a snapshot of animal development stage, which might not be able to capture a 

good set of functional genes and hence causative DNA variants for the traits. Furthermore, multi-

populations/breeds GWAS (Saatchi et al. 2014) and transcriptomic studies (Mukiibi et al. 2018b; 

Mukiibi et al. 2019a, b; Mukiibi et al. 2019c), have shown that the genes that regulated feed 

efficiency and its component traits are largely population or breed specific. Therefore, to optimise 

utilization of functional gene information from the genome for a complex trait to enhance genomic 

prediction, one would require employing multiple omics tools including transcriptomics of 

multiple tissues (such as muscles, adipose tissue and digestive tract) at key development stages, 

genome-wide association studies, proteomics, metagenomics, metabolomics and epigenomics to 

identify key genes and metabolic gene networks associated with the traits across different beef 

breeds. Indeed, combination of function information from multiple functional genomic tools 

improves genomic prediction accuracy in a crop species as reported by (Lozano et al. 2017). 

Genomic feature BLUP (GFBLUP) is a promising and recently proposed method of 

integrating genomic functional information into genomic prediction, by allowing fitting of 

multiple genomic random effects of SNPs from different functional genomic regions. This method 

has previously yielded reasonable enhancement of genomic prediction accuracy than GBLUP 

(Edwards et al. 2016; Fang et al. 2017; Gebreyesus et al. 2019). However, its application to very 

complex traits like feed efficiency (with many genomic regions of small effects) is likely to be 

limited by their intensive computational demands to fit the vast number of genomic features into 

the model (Fang et al. 2017). Therefore, attempts could further be made to develop less 

computationally intensive strategies for feed efficiency and the related traits genomic evaluation 

using GFBLUP or other genomic prediction methods, especially when many SNPs from several 

genomic regions are to be modeled. 



217 

 

 

6.6 Conclusions 

In this study we explored the possibility of enhancing the accuracy of estimating the 

genomic merit of beef animals for feed efficiency and its component traits through utilization of 

transcriptomic functional gene information. Our findings showed that on average the commercial 

50K SNP panel performed slightly better than the Functional SNP panel for within breed 

evaluations, as well as for the pooled data evaluations. However, in some considered scenarios the 

Functional SNP panel had slightly higher accuracy than both the 50K and Random SNP panels. 

The lack of consistencye in the improvement of genomic prediction accuracy across the 

populations and across the traits by the Functional SNP panel could be dues to partial discovery 

of the genomic regions or genes affecting these traits in beef cattle. We therefore recommend 

further studies involving multiple omics tools in different breed populations to identify key 

genomic functional regions/gene variants regulating the traits across different beef cattle breeds. 

We also believe that utilization of genomic feature BLUP or other statistical methods to integrate 

functional information of key or causative DNA variants into genomic prediction has the potential 

to yield higher genomic prediction accuracies for feed efficiency and the related traits. 
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6.8 Figures and Tables 

 

Figure 6.1.  Bar chart showing the genomic distribution of the 3,735 candidate genes (coding 

and miRNAs) from which a Functional panel was compiled. 
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 Figure 6.2. Genetic relationships between the beef cattle populations used in the current study as 

revealed through Principle Component Analysis, PC1 = 1st Principle component (accounting for 

58% of the variability) and PC2 = 2nd Principle component (accounting for 20% of variability).  
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 Figure 6.3. Bar chart showing genomic prediction accuracy results for Charolais animals for, a) 

using pooled data as reference/training population, b) within Charolais (using Charolais as 

reference/training population). 
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Table 6.1. Genomic heritability estimated (± Standard error) for feed efficiency and the related 

traits estimated using the three SNP panels (50K, Functional and Random). 

  Panels 

Breed Within/Pooled data Trait 50K Functional Random 

Angus Pooled data ADG 0.23±0.019 0.21±0.019 0.23±0.020 

    DMI 0.32±0.020 0.30±0.020 0.33±0.020 

    MWT 0.44±0.020 0.40±0.020 0.45±0.020 

    RFI 0.22±0.019 0.20±0.018 0.21±0.019 

  Within Angus ADG 0.26±0.062 0.24±0.061 0.25±0.062 

    DMI 0.57±0.063 0.52±0.067 0.58±0.065 

    MWT 0.56±0.061 0.56±0.065 0.57±0.064 

    RFI 0.46±0.066 0.40±0.067 0.46±0.067 

Charolais Pooled data ADG 0.22±0.019 0.21±0.019 0.23±0.019 

    DMI 0.33±0.020 0.31±0.020 0.34±0.020 

    MWT 0.44±0.019 0.41±0.020 0.46±0.020 

    RFI 0.22±0.018 0.20±0.018 0.22±0.019 

  Within Charolais ADG 0.39±0.090 0.45±0.102 0.44±0.097 

    DMI 0.37±0.092 0.44±0.105 0.38±0.097 

    MWT 0.48±0.092 0.56±0.105 0.53±0.099 

    RFI 0.31±0.088 0.34±0.099 0.30±0.092 

KC Pooled data ADG 0.22±0.019 0.21±0.019 0.23±0.020 

    DMI 0.33±0.020 0.31±0.020 0.34±0.020 

    MWT 0.45±0.020 0.41±0.020 0.46±0.020 

    RFI 0.23±0.019 0.20±0.018 0.22±0.019 

  Within KC ADG 0.25±0.057 0.23±0.058 0.26±0.060 

    DMI 0.34±0.061 0.34±0.064 0.34±0.063 

    MWT 0.44±0.062 0.42±0.064 0.46±0.063 

    RFI 0.24±0.056 0.25±0.058 0.25±0.057 

Elora Pooled data ADG 0.22±0.019 0.21±0.019 0.23±0.019 

    DMI 0.33±0.020 0.31±0.020 0.35±0.020 

    MWT 0.45±0.019 0.41±0.020 0.46±0.020 

    RFI 0.23±0.019 0.21±0.018 0.23±0.019 

  Within Elora ADG 0.34±0.094 0.36±0.102 0.37±0.099 

    DMI 0.20±0.081 0.22±0.09 0.20±0.084 

    MWT 0.21±0.091 0.22±0.098 0.22±0.095 

    RFI 0.15±0.076 0.18±0.087 0.15±0.078 

PG1 Pooled data ADG 0.23±0.019 0.22±0.020 0.23±0.020 

    DMI 0.33±0.020 0.30±0.020 0.34±0.020 

    MWT 0.44±0.020 0.40±0.020 0.45±0.020 
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    RFI 0.22±0.019 0.20±0.018 0.22±0.019 

  Within PG1 ADG 0.25±0.050 0.22±0.049 0.26±0.052 

    DMI 0.46±0.054 0.43±0.055 0.45±0.055 

    MWT 0.61±0.049 0.60±0.051 0.61±0.050 

    RFI 0.26±0.051 0.28±0.054 0.26±0.052 

TX Pooled data ADG 0.23±0.019 0.21±0.019 0.24±0.020 

    DMI 0.33±0.020 0.31±0.020 0.34±0.020 

    MWT 0.44±0.020 0.40±0.020 0.45±0.020 

    RFI 0.23±0.019 0.20±0.018 0.22±0.019 

  Within TX ADG 0.19±0.061 0.23±0.068 0.20±0.064 

    DMI 0.40±0.064 0.44±0.07 0.42±0.066 

    MWT 0.56±0.061 0.57±0.068 0.59±0.064 

    RFI 0.26±0.059 0.25±0.061 0.25±0.060 

Within = using animals of the respective breed as training population for evaluation, Pooled data 

= using data of all the six breeds pooled together as a reference for evaluation. ADG = average 

daily gain, DMI= dry matter intake, and MWT= metabolic weight and RFI = residual feed 

efficiency. 

 

Table 6.2. Genomic prediction accuracy (± Standard error) for feed efficiency and the related traits 

estimated using the three SNP panels (50K, Functional and Random). 

                  Panels 

  

Breed Within/Pooled data Trait 50K Functional Random 

Angus Pooled data ADG 0.42±0.05 0.35±0.04 0.38±0.03 

  
 

DMI 0.55±0.06 0.42±0.04 0.54±0.05 

  
 

MWT 0.41±0.02 0.38±0.06 0.48±0.05 

  
 

RFI 0.51±0.11 0.32±0.06 0.44±0.08 

  Within Angus ADG 0.38±0.07 0.27±0.06 0.30±0.05 

  
 

DMI 0.50±0.07 0.38±0.07 0.47±0.09 

  
 

MWT 0.35±0.08 0.29±0.09 0.33±0.10 

    RFI 0.58±0.06 0.42±0.08 0.52±0.07 

Charolais Pooled data ADG 0.35±0.10 0.37±0.08 0.33±0.11 

  
 

DMI 0.36±0.04 0.31±0.10 0.35±0.06 

  
 

MWT 0.37±0.06 0.35±0.07 0.39±0.09 

  
 

RFI 0.46±0.04 0.37±0.09 0.41±0.05 

  Within Charolais ADG 0.41±0.10 0.42±0.10 0.36±0.08 

  
 

DMI 0.34±0.09 0.37±0.09 0.33±0.09 

  
 

MWT 0.33±0.09 0.36±0.08 0.34±0.09 
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    RFI 0.41±0.03 0.44±0.05 0.41±0.05 

KC Pooled data ADG 0.31±0.07 0.31±0.06 0.35±0.08 

  
 

DMI 0.36±0.05 0.34±0.04 0.40±0.07 

  
 

MWT 0.40±0.04 0.35±0.01 0.50±0.06 

  
 

RFI 0.35±0.04 0.33±0.06 0.37±0.05 

  Within KC ADG 0.24±0.07 0.20±0.05 0.21±0.04 

  
 

DMI 0.29±0.02 0.26±0.01 0.29±0.03 

  
 

MWT 0.32±0.03 0.28±0.02 0.33±0.02 

    RFI 0.37±0.03 0.35±0.02 0.36±0.02 

Elora Pooled data ADG 0.41±0.04 0.33±0.08 0.44±0.06 

  
 

DMI 0.30±0.05 0.23±0.05 0.27±0.05 

  
 

MWT 0.30±0.05 0.23±0.05 0.31±0.07 

  
 

RFI 0.27±0.05 0.20±0.05 0.23±0.05 

  Within Elora ADG 0.41±0.04 0.36±0.05 0.33±0.04 

  
 

DMI 0.28±0.05 0.28±0.03 0.26±0.04 

  
 

MWT 0.22±0.05 0.21±0.04 0.23±0.03 

    RFI 0.27±0.07 0.30±0.06 0.26±0.06 

PG1 Pooled data ADG 0.38±0.03 0.32±0.03 0.40±0.04 

  
 

DMI 0.49±0.03 0.45±0.03 0.50±0.02 

  
 

MWT 0.59±0.03 0.52±0.04 0.67±0.03 

  
 

RFI 0.33±0.03 0.29±0.02 0.35±0.03 

  Within PG1 ADG 0.37±0.04 0.36±0.03 0.30±0.04 

  
 

DMI 0.48±0.02 0.49±0.01 0.46±0.02 

  
 

MWT 0.53±0.04 0.52±0.04 0.53±0.04 

    RFI 0.33±0.05 0.37±0.05 0.32±0.05 

TX Pooled data ADG 0.32±0.07 0.34±0.06 0.30±0.09 

  
 

DMI 0.37±0.05 0.35±0.03 0.39±0.03 

  
 

MWT 0.45±0.03 0.39±0.04 0.57±0.02 

  
 

RFI 0.31±0.04 0.30±0.03 0.24±0.05 

  Within TX ADG 0.24±0.06 0.29±0.07 0.20±0.06 

  
 

DMI 0.36±0.07 0.38±0.05 0.38±0.06 

  
 

MWT 0.46±0.06 0.42±0.06 0.48±0.05 

    RFI 0.39±0.05 0.33±0.05 0.36±0.06 

Within = using animals of the respective breed as training population for evaluation, Pooled data 

= using data of all the six breeds pooled together as a reference for evaluation. ADG = average 

daily gain, DMI= dry matter intake, and MWT= metabolic weight and RFI = residual feed 

efficiency. 
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Chapter 7. General discussion and recommendation for further research 

Feed efficiency (measured as residual feed intake or RFI) and its component traits 

including dry matter intake (DMI) and average daily growth (ADG) are important production traits 

in the beef industry with direct impacts on production returns (Fox et al. 2001). Indeed, farmers 

would want to raise an animal that consumes less feed per unit gain and with a faster growth rate, 

and it has been clearly demonstrated that production profits can significantly increase (18- 43%) 

even with minimal (of 10%) improvement of either gain or feed efficiency (Fox et al. 2001). 

Although several studies have endeavored to genetically characterize RFI and its component traits 

through quantitative trait loci (QTL) linkage mapping, DNA marker association studies, and more 

recently transcriptome studies, their genetic and molecular architecture remains largely 

unidentified, especially when different breeds are considered. Given the significant economic 

importance of feed efficiency to the beef industry, RFI and its component traits have started to be 

included into breeding programs in different countries through genomic selection (Brandebourg et 

al. 2013). However, greater genomic prediction accuracy for the feed efficiency traits are still 

required for wider adoption of the genomic selection tool. It is expected that knowledge about 

genomic influence of feed efficiency would help design more effective genomic selection 

strategies to improve the accuracy of predicting genetic merit of selection candidates for these 

traits, and hence to improve the rate of response to genomic selection for the traits (Brandebourg 

et al. 2013). Although other gene expression analyses tools are available, RNAseq is a powerful 

functional genomic method with the ability to simultaneously profile thousands of expressed 

(coding and noncoding) genes for investigation of associations between the expressed genes and 

the traits of interest. RNAseq also can profile genes even at a very low level of expression with a 
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high resolution in a tissue (Marioni et al. 2008; Van Den Berge et al. 2018). In this thesis project, 

we employed RNAseq to molecularly characterize residual feed intake and its component traits 

using steers from three beef populations that were born and raised under similar environmental 

conditions. We further explored potential of enhancing genomic prediction accuracies of RFI and 

its component traits through utilizing functional SNP information from transcriptome differential 

gene expression studies. The thesis included five studies, each with a specific objective. The major 

results, implications, limitations and recommendation for further research are discussed in this 

chapter. 

7.1 Identification of genes associated with residual feed intake in beef cattle 

Through the published literature, it is clear that numerous transcriptomic studies have 

identified genes associated with residual feed intake (RFI) in beef cattle. However, comparing the 

identified differentially expressed (DE) genes across the studies, the overlap is low. We 

hypothesized that this low concordance of DE genes among the studies could be due to the 

differences in breeds, sex type, age of the animals, the studied tissue, and maybe the environments 

(including feeds and management) under which animals are raised. In chapter 2, we minimized 

most of these sources of variation by studying the liver tissue differentially expressed genes 

between efficient and inefficient steers that were born, raised and tested on the same experimental 

farm from three beef cattle breed populations. These animals received the same treatments 

throughout the experiment, and they were on average of similar age at slaughter (i.e. at the time of 

tissue collection).  

 

We identified multiple genes as associated with RFI within each breed. However, the 

identified genes were predominantly breed specific. These results implied that the genes that 
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regulate feed efficiency are probably breed specific. Only five genes including SCD, LPIN1, 

TP53INP1, LURAP1L and ENSBTAG00000047029 were identified as DE in all the three studied 

breed populations, and four of these genes (SCD, LPIN1, TP53INP1 and LURAP1L) were 

downregulated in the efficient animals. SCD and LIPIN1 are key genes involved in lipid synthesis 

(SCD and LIPIN1) and accumulation or storage (LIPIN1) (Ntambi & Miyazaki 2004; Csaki et al. 

2013). Therefore, these results highlighted potential significant influence of hepatic lipid synthesis 

and accumulation on feed efficiency of beef steers across breeds. Functional enrichment analyses 

in this study identified liver lipid metabolism as one of the major molecular functions associated 

with RFI. Metabolic processes such as lipid synthesis and accumulation were predicted to be 

downregulated in more efficient animals, implying that probably more efficient animals prioritize 

their energy spending away from lipid synthesis (energy costly processes) and spend it more 

towards protein synthesis and deposition in the muscle. These results are supported by results from 

some of previous similar studies in the liver tissue and other tissues (Alexandre et al. 2015; Weber 

et al. 2016) that identified the association of lipid metabolism with feed efficiency.  

 

We selected the liver as an organ of interest in this thesis project because of its central 

physiological and metabolic functions in the body (Häussinger 1996), and hence its expected roles 

to play in regulation of feed efficiency and its component traits. However, we appreciate the fact 

that there are other important organs/tissues (such the adipose tissue, skeletal muscle, and the 

digestive tract) in the body whose metabolism potentially influences feed efficiency of the animal. 

Therefore, further transcriptome studies should be pursued considering these organs and tissues. 

In the current study we profiled liver tissues collected at one time point, which was at slaughter 

after the feed intake test period, we recommend that future studies should consider sampling of 



234 

 

 

tissue at multiple developmental stages of the animal. As highlighted above functional enrichment 

analysis predicted downregulation of lipid synthesis and accumulation in efficient animals. 

However, these predictions should have been validated through proteomic, lipid profiling and 

quantification studies. Despite the highlighted limitations, our results provide further enrichment 

of our understanding of the molecular basis of feed efficiency in beef cattle. 

7.2 Identification of genes associated with growth, dry matter intake, and metabolic 

weight in beef cattle 

Previously several studies have attempted to identify genes associated with growth rate and 

feed intake through transcriptome studies of different tissues, such as the adipose tissue, rumen 

epithelia, the duodenum epithelia and jejunum epithelia (Kern et al. 2016; Foote et al. 2017; 

Lindholm-Perry et al. 2017; Reynolds et al. 2017). These studies have identified multiple genes 

associated with growth or/and feed intake, and some of the enriched biological functions include 

immune responses, carbohydrate metabolism, lipid metabolism, and amino acid metabolism 

However, by the time of starting this thesis project no investigation of the liver’s differential gene 

expression as related to body weight gain or feed intake in beef cattle had been reported. Therefore, 

in chapter three we sought to identify genes associated to average daily gain (ADG), dry matter 

intake (DMI), and metabolic weight (MWT) and their biological functions through RNAseq 

analyses of the liver transcriptome of beef steers from the same three breed populations.  Within 

each breed and for each trait, we identified multiple DE genes. As observed in the RFI study in 

chapter two, the DE gene overlap for each trait between breeds was low, which implied that the 

growth, feed intake and body weight traits are probably controlled by different genes in different 

breeds. Results from functional enrichment analyses showed that lipid metabolism was among the 

top biological functions associated with growth, feed intake, and metabolic weight. These results 
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suggested a strong relationship between growth, feed consumption and metabolic weight with the 

animal’s lipid metabolic activities. Interestingly in this study key genes involved in cholesterol 

biosynthesis including SQLE, PMVK, IDI1, HMGCS1, HMGCR, PMVK, and SQLE were 

identified as associated with ADG, DMI or MWT in at least one of the breeds, which revealed the 

potential to alter beef cholesterol content through genetic selection of these traits as meat 

cholesterol content is a major health concern of many beef consumers (Li 2017). Additionally, 

genes involved in different immunological processes were also identified in this study as 

associated with ADG, DMI or MWT. With these it is hypothesized that differences in the 

expression of immune related genes in the liver tissue of the animal could be a revelation of the 

physiological adaptation differences towards feedlot challenges. Nevertheless, differential gene 

expression analyses in this study were limited by the number of animals to construct divergent 

phenotypes, as we only had 20 animals per population that were initially selected based on their 

RFI phenotypes instead of ADG, DMI or MWT , although we lowered the threshold to obtain a 

substantial number of DE genes. Nevertheless, our results contribute substantially to the molecular 

characterization for average growth rate, feed intake and metabolic weight in beef cattle. However, 

future studies with more phenotyped animals should be pursued. Additionally, other tissues (such 

as the skeletal muscle and adipose tissue) related to direct energy usage and growth should also be 

studied.  

7.3 Identification of MicroRNAs associated with RFI and its component traits 

MicroRNAs (miRNAs) are key principle post transcription modulators of gene expression, 

which have been implicated in regulation of important traits in beef cattle including tenderness, 

intramuscular fat, fatty acid content and meat yield (Lee et al. 2017; Li et al. 2018; De Oliveira et 

al. 2019; Kappeler et al. 2019). Regarding feed efficiency, only three studies have investigated the 
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involvement of miRNAs in regulating RFI in beef cattle so far (Al-Husseini et al. 2016; De 

Oliveira et al. 2018; Carvalho et al. 2019). In the study by Al-Husseini et al. (2016) they only 

profiled two cDNA libraries composed of pooled RNA of high and low-RFI groups, hence 

ignoring the individual animal’s variability in miRNA expression (Al-Husseini et al. 2016). For 

the study by Carvalho et al. (2019), differential expression of only six miRNAs was investigated 

through qPCR (Carvalho et al. 2019). With respect to the component traits of RFI, only one study 

that investigated the association of two miRNAs (bta-miR-133b and bta-miR-27a) with growth 

has been reported (Martin 2017). Therefore, these few studies provide limited knowledge about 

miRNA molecular control of RFI or its component traits in beef cattle. Therefore, in chapter 4 we 

aimed to profile hepatic miRNA expression of beef cattle to identify miRNA associated with RFI 

in beef cattle through RNAseq analyses in the three breed populations. Furthermore, in chapter 5, 

we explored association of miRNA expression with ADG, DMI and MWT in the liver tissue of 

beef steers from the same three beef breed populations. We were able to profile expression of the 

already known miRNAs as well as novel bovine miRNAs expressed in the liver. Results from 

differential miRNA expression between high and low-RFI steers identified known and novel 

miRNAs that were associated with RFI and its component traits in each breed. Comparison of the 

DE miRNAs among the breeds showed that most of the DE miRNAs were breed specific, which 

corresponded with differential gene (coding) expression results in the RNA sequence analyses, 

hence, further reaffirming the proposition that the genes regulating RFI in beef cattle are breed 

specific. Also, for ADG, DMI and MWT we identified multiple differentially expressed miRNA 

associated with either ADG, DMI or MWT.  Similarly, the results showed that majority of the DE 

miRNAs were breed specific. However, within breed comparison of the DE miRNAs for the four 



237 

 

 

traits revealed some DE miRNA overlap between the traits, which indicate that these miRNAs 

play pleotropic effects on the traits. 

Prediction of target genes of the identified DE miRNA showed that the majority (55 to 

76%) of the DE genes identified in RNAseq analyses (i.e. Chapter two and Chapter three) were 

potential targets of the DE miRNAs, henceforth providing a link on how the DE miRNA probably 

regulate RFI or the component traits via influencing target gene mRNAs. In general, most of the 

DE genes were predicted to be targeted by more than one DE miRNA. Also, for most of the 

miRNAs, one miRNA was predicted to target more than one gene, which is a characteristic of the 

complex miRNA-mRNA regulatory interaction (Hashimoto et al. 2013). Intuitively, it would be 

expected that a gene predicted to be targeted by upregulated miRNA should be downregulated in 

the same tissue. However, we observed that several genes were upregulated despite being predicted 

to be targeted by multiple upregulated miRNAs. We hypothesized these results could be explained 

by the difference in the modes regulation miRNAs effect expression of their target genes including 

translation repression and promoting mRNA degradation (Guo et al. 2010). Gene deregulation 

through increased mRNA degradation can be investigated through abundance profiling of mRNA 

expression in the tissue through RNAseq analysis as performed in study 2. However, deregulation 

through translation repression can only be investigated through proteomic studies, since mRNA 

concentrations remain unaltered by the targeting miRNA (Guo et al. 2010). Therefore, we 

recommend further proteomic based investigation of the regulatory effect of the identified 

miRNAs on the DE genes. Additionally, we used TargetScan, a popular bioinformatic tool, to 

predict the potential targets of the DE miRNAs. However future studies should endeavor to 

validate these target genes through molecular experiments such transfection experiments 

(Krützfeldt et al. 2006; Jin Jung & Suh 2012). Overall, the results in these two chapters provide 
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more insights into miRNA regulation of RFI and its related traits and contribute to the growing 

number of the bovine miRNAs in the miRBase database.   

7.4 Integration of functional SNPs into genomic prediction of residual feed intake and 

its component traits 

It has been proposed in multiple species that it is possible to improve genomic prediction 

accuracy with functional enrichment of prediction DNA marker panels (Snelling et al. 2013; 

Lozano et al. 2017; Gebreyesus et al. 2019). Given the economic importance of RFI and its 

component traits such as growth rate and feed intake, in chapter 6 we sought to enhance genomic 

prediction accuracy of these traits through integration of transcriptome analyses results from the 

four studies of this thesis project (i.e. Chapters: 2, 3, 4 and 5) and those from available literature. 

We compiled a panel of SNPs from 3753 candidate genes identified through transcriptomic 

studies, which we called Functional panel, and we compared it to a commercial 50K SNP panel 

and randomly sampled (Random) SNP panel. Genomic prediction accuracy results showed that in 

general the three SNP panels did not differ in their prediction accuracy. This implied that on 

average the Functional panel did not show substantial improvement of the genomic prediction 

accuracy for the traits. However, in some scenarios, i.e. within Charolais genomic prediction, the 

Functional panel performed slightly better than both the 50K and Random panel. These results 

indicate the possibility of improving genomic prediction accuracy of RFI and its component traits 

through functional enrichment of the SNP panels. However, to make the Functional panel more 

effective it would require integration of different omics tools (Snelling et al. 2013) to identify 

genes that truly control these traits instead of using all candidate genes that are subjective to false 

positives. Furthermore, the SNPs used to compile the functional panel in this study were mined 

from within the candidate genes and 1000bp from the start or end sites of the gene, which implies 
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that our Functional panel was limited to mainly to within gene SNPs and those in the proximal 

regulatory regions. However, there is growing evidence that the variants that affect complex traits 

do not actually reside within genes but rather in distal regulatory regions far from the genes. 

Genomic information (annotation) of these distal regulatory regions in cattle is currently 

unavailable, and this is one of the core aim of the Functional Annotation of Animal Genomes 

(FAANG) project (Andersson et al. 2015). It is expected that the research results from the FAANG 

project will lead to better SNP functional annotation, which in turn will lead to development of 

better functional SNP panels to improve genomic prediction of complex traits in beef cattle. In this 

regard, epigenetics studies including DNA methylation studies via Methyl-Seq or bisulfite 

sequencing and chromatin modification studies through chromatin immunoprecipitation 

sequencing or ChIP-Seq and transposase-accessible chromatin sequencing or ATAC-Seq (Dirks 

et al. 2016) may further aid in identification of genomic transcription regulatory regions or genes  

associated with feed efficiency and its component traits. 

Also, it should be noted that we used imputed genotypes (with imputation error < 5%) to 

compile the functional SNP panel which we compared against the 50K panel with real genotypes. 

The possible imputation errors of gene SNPs may compromise the accuracy of genomic prediction 

of the functional SNP panel. With the emergence of the newly refined bovine reference genome 

combined with the decreasing costs of whole genome sequencing it is our recommendation that 

future research should be directed towards more accurate imputed genotypes or real genotypes 

from sequence data. Additionally, all the four transcriptome studies indicate that the genes 

controlling RFI and its component traits are majorly breed specific. These results concur with that 

in a multi-breed feed efficiency and component traits QTL identification study by Saatchi et al. 

(2014), in which QTLs for the traits are largely breed specific. Therefore more QTL mapping, 
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eQTL mapping, transcriptome, and SNP functional studies involving multiple beef breeds should 

be pursued to pinpoint genes and gene SNPs that have common effects across breeds, and genes 

and gene SNPs that have effects on the trait with a specific breed, which will enable to designing 

of a more effective DNA marker panel and optimal genomic prediction strategies to improve the 

prediction accuracy for the traits. In terms of statistical modeling of the SNP marker effects of feed 

efficiency, methods such as BayesA (Hayes & Goddard 2001), BayesB (Hayes & Goddard 2001), 

BayesR (Erbe et al. 2012) and BayesRC (MacLeod et al. 2016) should be investigated for 

integrating transcriptome information into genomic prediction for feed efficiency and its 

component traits in beef cattle.  

In conclusion, future integration of functional information from multiple omics sources 

into genomic prediction should be pursued to improve genomic prediction accuracy for feed 

efficiency traits, which would enhance responses to genetic selection of these traits in beef cattle. 

Accelerated responses to selective breeding for these traits will improve production profitability 

of beef as well as reduce the negative environmental impacts of beef cattle. 
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