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ABSTRACT

This thesis consists of a study of the diamonds and their mineral inclusions
from the A154 South pipe of the Diavik Diamond Mine, Northwest Territories,
Canada. This study incorporated the characterization of the diamonds based on
morphology, carbon isotopic composition, nitrogen concentration and aggregation
state, and the inclusion mineral chemistry. The results are intended to provide
additional insight into the characteristics of the diamond source regions beneath the
central Slave craton.

Results show that diamond formation at Diavik occurred in a moderately-
depleted, dominantly peridotitic mantle, under lithospheric conditions. Trace element
studies have revealed a history of depletion and subsequent re-enrichment of the
peridotitic diamond source regions. The obtained narrow distribution of the carbon
isotopes may indicate that diamond formation resulted from an unfractionated
fluid/melt carrying primordial carbon. The low aggregation states obtained for the

diamonds further suggest mantle residence at fairly low temperatures.
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Chapter 1: Introduction

1.1. Introduction
Diamonds have typically been sought as gemstones, or for their physical

properties (i.e. hardness, heat conductivity and capacity) utilized for industrial
purposes. Beyond these conventional uses, diamonds represent pristine samples of
the Earth’s mantle. An abundance of information can be obtained from in depth
studies of diamonds. They provide information regarding diamond formation
processes, regional, chemical and thermal conditions of the diamond source region
and they aid in our understanding of the composition and evolution of the subcratonic
lithospheric mantle. However, limited information regarding these conditions can be
gained from the direct study of diamonds themselves owing to the fact that diamonds
are composed of essentially pure carbon with minimal impurities. Fortunately, some
diamonds contain inclusions of mantle minerals that can be used to ascertain
additional information regarding the origin of the diamond. These inclusions are
isolated within the diamond matrix and are unable to interact with the inert diamond,
or its host rock. The diamond serves to protect the inclusion from re-equilibration
and metasomatic influences. The inclusions, therefore, represent chemically
unaltered samples, and may be used to obtain considerable information regarding the
composition and evolution of the mantle.

Diamonds are typically associated with kimberlite or lamproite diatremes,
dikes and sills and the distribution of these intrusions are, for the most part, confined
to old, stable cratonic areas (Figure 1.1). It is important to note that there is no
genetic link between the diamond and the host rock. The kimberlite or lamproite is
simply the transport mechanism of the diamond to the surface of the Earth.
Compilations of the eruption ages of the host rocks have shown that diamond has
intermittently been transported to the surface throughout extended periods of geologic
time (Meyer, 1987). It can be reasonably inferred that both young and old diamonds
must exist in the mantle. The most convincing evidence for the antiquity, of at least

some diamonds, is the presence of diamonds in volcanics that erupted 2.7 Ga ago (i.e.
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Wawa, Ontario; Stott et al., 2002). Furthermore, since diamonds are xenocrysts in the
kimberlite, some diamonds must have remained behind in the mantle, available for
later sampling. The most commanding evidence for the young age of some other
diamonds is illustrated by the occurrence of Type Ib diamonds, with single nitrogen
centres, and the young ages obtained for inclusions in such diamonds. For example, a
Type Ib diamond from Koffiefontein, South Africa was found to have a Re-Os age of
68 = 30 Ma, which is within error of the pipe emplacement age of 90 Ma (Pearson et
al., 1998). Peridotitic diamonds, for the most part, appear to have older ages (>2 Ga), -
while eclogitic diamonds span a broader range from young ages, within the error of

pipe emplacement ages, up to approximately 2.4 Ga (Pearson and Shirey, 1999).

1.2. Petrological and Geochemical Background

1.2.1. Inclusion Petrology
Mineral inclusions within diamond are not uncommon. There are

approximately twenty minerals that have been identified as proto- or syngenetic
inclusions, with an additional ten or so other minerals occurring as epigenetic (i.e.
secondary or altered) inclusions (Meyer, 1987). If inclusions are syngenetic, they can
be analyzed for their major, minor and trace element compositions to provide
information regarding the chemical and mineralogical characteristics of source region
at the time of diamond genesis. Assuming diamond formation is rapid, when certain
pairs of non-touching (chemically isolated) inclusions occur within a stone,
calculations can be made regarding the pressure and temperature conditions during
diamond formation (Harris, 1992). Polyminerallic inclusions of touching minerals,
also exist in diamond and they may have re-equilibrated to changing pressure and
temperature conditions (Harris, 1992).

Three major diamond source regions have been identified in the mantle: (1)
the lithospheric upper mantle, (2) the asthenosphere and transition zone, and (3) the

lower mantle (Harris, 1992).

1.2.1.1. Lithospheric Diamonds
Diamond inclusion studies have shown that most diamonds form within the
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lithospheric mantle beneath Archean cratons at depths of 150 to 200 km (Boyd and
Gurney, 1986; Meyer, 1987), up to a maximum depth of approximately 250 km
(Stachel et al., 1997). These diamonds have been classified into two suites,
peridotitic and eclogitic, on the basis of the mineralogy and chemistry of their mineral
inclusions (Meyer and Boyd, 1972; Meyer, 1987; Gurney, 1989). A third
paragenesis, the websteritic suite, has been suggested as an intermediate between the
peridotitic and eclogitic suites and is comprised of orthopyroxene, clinopyroxene and
garnet (Gurney et al., 1984). Inclusion studies have shown that the majority of
diamonds are sourced from peridotite, which is the most common rock in the Earth’s
upper mantle. Eclogitic source material appears to be more heterogeneously
distributed in the mantle and is chemically similar to basaltic compositions (Kirkley,
1991).

The inclusion minerals of the peridotitic suite include olivine, Cr-rich garnet,
orthopyroxene, Mg-chromite, and Cr-rich clinopyroxene. The peridotitic suite can be
further subdivided into the lherzolitic and harzburgitic parageneses, based in the
presence of Cr-diopside in lherzolitic mineralogies (Meyer, 1987). The eclogitic suite
contains inclusions of Cr-poor grossular-almandine-pyrope garnet, omphacitic
clinopyroxene (Na-rich) and rare kyanite, rutile, sanidine and/or coesite (Meyer,
1987). Sulphides are common inclusions in diamond and are not restricted in terms
of paragenesis, however, they may be distinguished based of their Ni content, which

is significantly higher for peridotitic sulphides (Yefimova et al., 1983).

1.2.1.2. Asthenosphere and Transition Zone Diamonds
Sublithospheric diamond formation in the asthenosphere (upper mantle) and

transition zone has been recognized based on the presence of majoritic garnet
inclusions in diamond. Experimental studies have found that the dissolution of
pyroxene into the garnet structure, forming the majoritic garnet end-member, begins
at depths greater than 250 km (Ringwood, 1967; Akaogi and Akimoto, 1977; Irifune,
1987), reaching completion at about 450 km depth (Irifune, 1987) for a pyrolitic bulk
composition. At depths exceeding 550 to 600 km, majoritic garnet will begin to
exsolve CaSi-perovskite (Irifune and Ringwood, 1987b; Wood, 2000). Stachel
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(2001) has noted that nearly all majoritic diamond inclusions are eclogitic and have
basaltic source chemistry. Different models have been proposed to explain the
eclogitic source rock of majoritic garnets at depth, and include (1) formation in
subducting oceanic slabs (Ringwood 1991; Stachel et al., 2000a; Stachel 2001,
Tappert et al., 2005), (2) in plumes ascending from the core-mantle boundary
(Hoffman and White, 1982) or the lower mantle (Griffin, 1999a), (3) precipitation
from alkaline melts at depth (Moore et al., 1991), and (4) formation from 200 km
thick eclogite layer in the Earth’s upper mantle (Gasparik, 2002). Stachel (2001)
used MORB-like trace element signatures and occasionally observed negative Eu
anomalies (Kankan; Stachel et al., 2000a, Jagersfontein; Tappert et al., 2005) in

majoritic gamets as evidence for a subduction related formation.

1.2.1.3. Lower Mantle Diamonds
A second group of sublithospheric diamonds exists, being sourced from the

lower mantle at depths exceeding 660 km (Ringwood, 1982; Harris, 1992).
Recognition of ferropericlase inclusions in diamonds led to the suggestion that
diamonds may form at great depths in the lower mantle (Scott-Smith et al., 1984).
However, the occurrence of ferropericlase is not sufficient evidence to indicate a
lower mantle origin (Stachel et al., 2000b; Brey et al., 2004). The ferropericlase
stability field also extends into the upper mantle where it could form if Si activity and
SO, is low (Stachel et al., 2000b). Later studies have identified inclusions of
ferropericlase coexisting with inclusions of tetragonal almandine pyrope phase
(TAPP), MgSi-perovskite, CaSi-perovskite and SiO, which indicates a lower mantle
origin (Stachel et al., 2000b and references therein). Ringwood (1991) and Stachel et
al. (2000b) again employ a subduction related formation for lower mantle diamonds
to explain extreme enrichment in LREE (200 to 2000 times chondritic) and Sr (70 to

1000 times chondritic) and positive and negative Eu anomalies in CaSiOs.

1.2.2. Diamond Geochemistry
The host diamond can be analyzed to ascertain its carbon isotope composition

and nitrogen concentration and aggregation. The worldwide distribution of carbon

isotope values (8'°Cppg) covers a broad range from -34.4 to + 2.7%o (Kirkley et al.,
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1991). There are marked differences, as shown in Figure 1.2, in the 8"C values
between the peridotitic and eclogitic parageneses. Generally, most peridotitic
diamonds have a restricted range of 8'°C values, ranging between -10 to -1%o with a
mean of -5%o (Kirkley et al., 1991). This range also correlates to the peak in the 8'*C
distribution of diamonds worldwide, which is not surprising as the majority of
diamonds belong to the peridotitic suite. It is the diamonds of the eclogitic
paragenesis that are responsible for the broad range in 5'°C values observed.
Eclogitic diamonds have a similar mode at -5%o but they cover the entire range of
8'°C values and are skewed significantly towards the isotopically lighter values. As
pointed out by Kirkley et al. (1991), there is no single deposit that has been found to
contain the entire range of §'°C values, and the §'°C distribution has been found to be
unique for each individual locality.

Whereas the relatively limited ranges in 8'°C values of the peridotitic suite,
which represent normal mantle values, have been interpreted as indicating a
primordial source of carbon, debate exists regarding the explanation of the variance
observed in the eclogitic values. The typical composition of organic matter (6'°C of
approximately -35 to -20%o) and marine carbonates (8'>C of approximately - 2 to
+2%o) fall within the range of the 8">C values of the eclo gitic paragenesis (Kirkley et
al., 1991). This has resulted in models that postulate that the genesis of eclogitic
diamonds is related to the subduction of oceanic crust that contains organic matter
and marine carbonates. The models imply that the oceanic crust would recrystallize
to eclogite upon subduction and the formation of eclogitic diamonds would occur
from the conversion of the carbonaceous material from the subducting slab (Kirkley
et al., 1991). However, nitrogen isotope data has been shown to be inconsistent with
a model of diamond formation from subducted biogenic carbon, based on a study of
combined 8"°C-8"°N variations in eclogitic diamonds by Cartigny et al. (1998a).
Alternate models have attributed the variations seen in the §"°C values to isotopic
fractionation within the mantle. Cartigny et al. (1998a) suggested that carbonatitic
fluids/melts percolating through eclogite may release CO, and that this degassing
causes isotopic fractionation that is sufficiently strong to explain the observed range

in 8°C.
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Nitrogen is the most common substitutional impurity in diamond and is
typically present in concentrations ranging from <10 ppm to 2500 ppm (Bibby, 1992),
but may, in some instances, exceed 0.5 wt% (Sellechopp et al., 1980). The presence
or absence of nitrogen in diamond has been shown to have effects on diamond colour
(Harris, 1987). The kinetics of the nitrogen aggregation may also be used to
determine the residence time or the residence temperature of the diamond in the
Earth’s mantle.

Nitrogen is present in most diamonds, but the aggregation of the nitrogen has
been found to vary. The nitrogen content has been used to classify diamonds into two
groups: Type I diamonds where nitrogen is present and Type II diamonds where
nitrogen is absent, or below the level of detection (approximately 10 ppm) for
infrared spectroscopy (Gurney, 1989). These classifications can be further
subdivided on the basis of the nitrogen aggregation state of the diamond into: Type 1b
where diamonds contain nitrogen in a single substitution and Type la, where
aggregated nitrogen is in the form of pairs (Type IaA), rings of four nitrogens
surrounding a vacancy (Type IaB) or both (Type IaAB) (Evans and Qi, 1982).

Nitrogen occurs in most natural diamonds. When nitrogen is initially
incorporated into the diamond lattice, it occurs as dispersed, single substitutional
atoms (Type Ib) (Evans and Qi, 1982). However, only in rare cases is nitrogen
observed as a single substitutional atom. In most occurrences, the nitrogen forms
aggregates of two or more nitrogen atoms. This is attributed to the formation of more
complex types of nitrogen aggregation due to the slow migration of the single
nitrogen atoms during the long residence time of the diamond, at elevated
temperatures, in the Earth’s mantle (Evans, 1992).

Due to the fact that the aggregation characteristics of a diamond are
temperature controlled, the thermal history of the diamonds studied can be
constrained. Under normal geothermal gradients, after 200 to 2000 Ma in the mantle
a diamond will be a Type IaB diamond, with all of its nitrogen in the B-centre
(Gurney, 1989). A diamond may retain nitrogen in the non-aggregated, single

substitution state (Type /b) only if the residence time in the mantle, at temperatures of
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1000 - 1400°C, after crystallization but prior to kimberlitic eruption, was less than 50

years (Gurney, 1989).

1.3. Thesis Intent
This study of the diamonds from the Diavik Diamond Mine will provide

additional information regarding the thermal and chemical evolution of the
lithospheric mantle beneath the central Slave Craton. This information would
predate, by billions of years, the kimberlite emplacement events and the time-slices
represented by the xenoliths and xenocrysts. Most importantly, the study will also
clarify what the principal diamond source rock in the Earth’s mantle is in the case of
the Diavik Mine. So far the question if the A154 South diatreme contains a
predominantly peridotitic or eclogitic diamond population has not been addressed.
One hundred inclusion-bearing diamonds from the A154 South pipe were
examined and classified based on diamond morphology, carbon isotopic composition,
nitrogen concentration and aggregation state, and inclusion mineral chemistry. These
results are intended to provide further insight into the characteristics of the diamond

source region in the central Slave craton.
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Figure 1.1. Map showing the locations of cratons worldwide
(red outline) and their associated diamond deposits (blue
diamonds). Modified from Gurney (1989).
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Figure 1.2. Histogram showing the distribution of the carbon
isotopic data for diamonds worldwide. The data is subdivided
based on inclusion mineralogy into the peridotitic and eclogitic
suites.
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Chapter 2: Geologic Background

2.1. The Archean Slave Province

2.1.1. Introduction
The Slave Province (Figure 2.1) is a small (~190,000 km?) Archean craton,

located within the larger North American craton, and is comprised of rock
assemblages ranging from 4.05 to 2.55 Ga (Armstrong and Kjarsgaard, 2003). The
Slave craton contains granite-greenstone terranes that are comprised of volcano-
sedimentary successions which overly older sialic basement and juvenile basement
rocks (Armstrong and Kjarsgaard, 2003). The Slave craton has been intruded by
granitoid rocks and the Archean assemblages are frequently cut by Proterozoic mafic
dykes (Armstrong and Kjarsgaard, 2003).

The Slave craton is structurally bounded by Thelon Tectonic Zone (2.02 to
1.91 Ga) to the east and the Wopmay Orogen (1.91 to 1.84 Ga) to the west. In the
south the Slave is bounded by the Taltson Magmatic Zone (1.99 to 1.91 Ga), the
Great Slave Lake Shear Zone (1.98 to 1.93 Ga), and in the southeast, the McDonald
Fault (Armstrong and Kjarsgaard, 2003). The Slave craton extends northward to
Victoria Island, where it is, in part, bounded by the Bathurst Fault (Armstrong and

Kjarsgaard, 2003).

2.1.2. Generalized Geology of the Slave Province

The Slave craton has been divided into eastern and western terranes, based on
the presence of Mesoarchean basement in the west and the absence of this basement
in the east (Kusky, 1989; Davis and Hegner, 1992; Thorpe et al., 1992; Bleeker et al.,
1999b). This boundary broadly agrees with the Pb isotopic boundary (Figure 2.1) of
Thorpe et al., (1992), which was defined using Pb-isotope data from volcanogenic
massive sulphide (VMS) deposits within the Yellowknife Supergroup. To the west of
this boundary, Pb from VMS deposits and galena from later gold deposits shows a
significantly more radiogenic signature, indicating derivation from older felsic crust.

To the east of the boundary, the Pb compositions show more juvenile isotopic
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signatures. Davis and Hegner (1992) have reported a similar Nd isotopic boundary,
seen in granites, approximately 100 km to the east (Figure 2.1) of the Pb line.

Kusky (1989) further subdivided the Slave into four terranes; the Anton
Terrane, the Sleepy Dragon Terrane, the Contwoyto Terrane and the Hackett Rive
Arc, shown in Figure 2.2. Bleeker et al. (1999b) has proposed a new basement
terrane, the Central Slave Basement Complex (CSBC), which incorporates the Anton
Terrane, the Sleepy Dragon Terrane and the Jolly Lake Complex (Thompson et al.,
1995), stating that these terranes merely represent different parts of the CSBC.

The western Slave terrane, which basically consists of the Central Slave
Basement Complex of Bleeker et al. (1999b), is dominantly underlain by
Mesoarchean basement gneisses that are older than ca. 2.8 Ga (Armstrong and
Kjarsgaard, 2003). The rocks of the CSBC show evidence of multiple stages of
crustal growth, deformation and plutonism from 4.05 to 2.85 Ga (Armstrong and
Kjarsgaard, 2003). The Anton terrane is generally comprised of metamorphosed
granodiorite and quartz diorite (Henderson, 1985). In the west, the Anton terrane dips
under the Proterozoic rocks of the Wopmay orogen (King, 1986) and to the east it is
marked by a thick, near-vertical mylonite zone (Kusky, 1989). The Sleepy Dragon
Terrane is comprised of intermediate to mafic quartzofeldspathic gneiss complexes
(i.e. the 2.8 to 2.7 Ga Sleepy Dragon Complex of Henderson, 1985), banded and
magmatic gneisses near Beniah Lake (Covello et al., 1988) and a 3152 + 2 Ma
(Krogh and Gibbins, 1978) chloritic granite on Point Lake (Easton, 1985). Isolated
dioritic to gabbroic bodies are also observed in the Sleepy Dragon Terrane (Kusky,
1989).

The eastern terrane, defined based on the lack of Mesoarchean basement, is
primarily comprised of intermediate to felsic, calc-alkaline volcanic rocks, greenstone
belts and turbidite sequences or shelf assemblages (Armstrong and Kjarsgaard, 2003).
The Contwoyto terrane and the Hackett River Arc of Kusky (1989) make up the
eastern terrane. The Contwoyto terrane is dominantly composed of laterally
continuous greywacke-mudstone turbidites but also contains tectonic slivers of
ophiolite-like rocks and oceanic sedimentary rocks (i.e. shales and iron formations)

that are exposed in a series of westward-verging folds and thrusts (Kusky, 1989).
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This sequence of rocks was later intruded by a series of granitoids (Kusky et al.,
1989). The Hackett River Arc is dominated by felsic volcanic rocks observed as a
series of northwest-striking volcanic piles and syn-volcanic granitoid rocks to the
south (Kusky, 1989). These volcanic piles are distinctly different from the greenstone
belts further to the west which are dominantly mafic volcanic and plutonic rocks
(Padgham, 1985).

The Central Slave Basement Complex is unconformably overlain by a thin
(generally <200m thick), discontinuous, locally deformed sequence that is comprised
of ultramafic, mafic and minor felsic volcanic rocks, conglomerates, quartzites and
banded iron formations. Bleeker et al. (1999a) have grouped these rocks into a single
lithostratigraphic group, namely, the Central Slave Cover Group (2.90-2.93 Ga;
Bleeker, 1999a). The Central Slave Cover Group is the lowermost member of the
Neoarchean supracrustal rocks of the Yellowknife Supergroup which dominate the

surface geology in the Slave craton (Bleeker, 2003).

2.1.3. Plutonism and Deformation
The final stabilization of the craton is marked by intrusions of voluminous

plutonic rocks. Davis et al. (1994) has divided the plutonism into three groups:
Group 1 is comprised of 2689 — 2650 Ma trondhjemites and diorites. Group 2
consists of 2610 — 2600 Ma syn-to-late deformational monzodiorite-granodiorite and
trondhjemite, while Group 3 is marked by 2599 — 2580 Ma post-deformational
micaceous granites. Davis et al. (1994) note that Groups 1 and 2 typically have calc-
alkaline chemistries, and trace element patterns similar to that of modern subduction-
related igneous rocks. The Group 3 rocks are comparable to many Phanerozoic post-
orogenic K-U-Th-rich granite suites (Davis et al., 1994).

A more detailed summary of plutonism and deformation in the Slave is
provided by Bleeker (2003). Bleeker (2003) notes that the overall stratigraphy and
granitoid geochronology is similar across the Slave craton, and summarized these
events as follows: Widespread basaltic volcanism, along with minor komatiitic rocks,
occurred at 2730 to 2700 Ma across the basement complex. Towards the top of the

pile, local intercalations of rhyolite, tuff and reworked volcaniclastics rocks occur.
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This was followed by a transition to more intermediate, felsic, or bimodal volcanism
around 2700 to 2660 Ma. These volcanics are characterized by dacite-rhyolite
complexes, abundant volcaniclastic material and widespread tonalite-trondhjemite-
granodiorite (TTG) plutons. Widespread turbidite sedimentation occurred across the
craton from 2670 to 2650 Ma. The first major folding event occurred within the
Burwash Formation turbidites at 2645 — 2635 Ma, resulting in a northwest-southwest
trending F, fold belt. Abundant tonalite-granodiorite + diorite plutons intruded from
2630 to 2610 Ma. From 2605 to 2590 Ma the more evolved two-mica granites
(Group 3 of Davis et al., 1994) intruded in areas of downfolded turbidite sedimentary
rocks. These intrusions were coeval with the craton-wide deformation that resulted in
the north to northwest trending F; fold, which also refolded the F; fold belt. The
stabilization of the Slave craton occurred after the termination of the 2590 to 2580 Ma

“granite bloom” which is observed across the entire craton.

2.1.4. Proterozoic Diabase Dykes
At least six Proterozoic diabase dyke swarms are recognized in the Slave

province (Kjarsgaard, 2001) with LeCheminant and van Breeman (1994) listing a
seventh, the Hearne swarm. The oldest dykes in the Slave are the Malley dykes at
2.23 Ga (LeCheminant et al., 1996). These dykes, which have a 45° strike, intrude
the Archean basement but do not crosscut Goulburn Supergroup (1.97 to 1.90 Ga)
sediments (LeCheminant et al., 1996). Both the MacKay and Dogrib dykes have a
similar orientation of 080-110°, but were found of have different petrological
characteristics and different ages of 2.21 Ga and 2.19 Ga, respectively (Kjarsgaard,
2001). The ca. 2038 Ma Hearne swarm dykes are northeast striking dykes
(LeCheminant et al., 1996), while the 2023 — 2030 Ma Lac de Gras dyke swarm has
an overall trend of approximately 10° (LeCheminant and van Breeman, 1994). The
later Mesoproterozoic dyke swarms include the Mackenzie and ‘305’ dykes. The
Mackenzie dyke swarm (1.27 Ga) is the largest known radiating dyke swarm and
trends north-northwest (LeCheminant and Heaman, 1989). The ‘305°- trending
dykes, which are believed to be related to the Mackenzie dyke swarm, are observed in
the central and north-central Slave (Armstrong and Kjarsgaard, 2003). It has been
suggested that the Paleoproterozoic Malley, MacKay, Dogrib, Lac de Gras and
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Hearne diabase dykes may indicate the progressive breakup of a larger Archean

craton (LeCheminant and van Breeman, 1994; Bleeker, 2003).

2.1.5. Formation Models for the Slave Province
Tectonic models for the formation of the Slave Province can be divided into

two main types, (1) intracratonic rift models, and (2) subduction and accretionary
models. Intracratonic rifting models propose that the Slave Province developed
within an extensional basin in an older craton (Davis et al., 1994, and references
therein). The models invoking formation via subduction and accretionary processes
include those of Kusky (1989) and references therein. Bleeker (2003) proposes a
third model whereby accretion and collisional tectonics led to the formation of a late
Archean supercontinent “Sclavia”, which included the Slave craton. Sclavia later
experienced subsequent rifting and breakup in the Paleoproterozoic, resulting in
multiple distinct cratons.

Intracratonic extension models for the Slave province included those of
Henderson (1981) and Easton (1985) whereby volcanics and sediments filled normal
fault-bounded linear troughs formed on pre-existing sialic crust during continental
extension. Alternately, Helmstaedt et al. (1986) and Fyson and Helmstaedt (1988)
have proposed models whereby volcanics and sediments were deposited in backarc
basins that subsequently closed.

In the accretionary tectonic model of Kusky (1989), high strain zones separate
four distinct terranes, namely the Anton terrane, the Sleepy Dragon terrane, the
Contwoyto terrane and the Hackett River volcanic terrane. Kusky’s model
hypothesized that the four terranes were then juxtaposed during collisonal orogenesis.
The Anton terrane has been interpreted as an Archean microcontinent, while it is
believed that the Sleepy Dragon terrane may represent an exhumed, more eastern part
of the Anton terrane (Kusky, 1989). The Contwoyto terrane has been interpreted as a
westward-verging fold and thrust belt that contains slivers of greenstone volcanics
and the Hackett River volcanic terrane has been interpreted as an Archean island arc
(Kusky, 1989). The Contwoyto and Hackett River terranes are believed to represent a

paired accretionary prism and island-arc system that was formed above a subduction
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zone dipping to the east (Kusky, 1989). These terranes then collided with the Anton
microcontinent during the main accretion event in the Slave, producing a basement
nappe, the Sleepy Dragon terrane (Kusky, 1989). The resultant tectonic assemblage
was later intruded by granitoid bodies during the final stages of cratonic stabilization.
In the more recent model of Bleeker (2003) the presence of three to four rifted
margins was taken to indicate that the current Slave craton is only a small fragment of
a much larger ancestral supercraton Sclavia. Along with the Slave, Bleeker (2003)
groups the Dharwar craton, the Zimbabwe craton and the Wyoming craton into the
supercontinent Sclavia based on their similar basement complexes, Meso- to
Neoarchean successions, and similar progressions of late Archean granitoids suites,
all culminating at 2.6 Ga or shortly thereafter. Sclavia is believed to have
amalgamated at ca. 2.6 Ga. The breakup of Sclavia is believed to have occurred
between 2.2 and 2.0 Ga based on ages of marginal dyke (i.e. the Malley, Mackay and
Dogrib) swarms (LeCheminant et al., 1997) and marginal sedimentary sequences
(Bleeker, 2003). The Slave craton then drifted individually for approximately 200
Ma before it was amalgamated by 2.0 to 1.8 Ga into Laurentia, the present day core

of North America.

2.2. The Lithospheric Mantle Beneath the Slave Craton

2.2.1. Overview
The Slave craton has been subdivided into three compositionally distinct

northeast-trending lithospheric domains (Figure 2.3) by Griitter et al. (1999) based on
compositional data from more than 13, 000 till sampled garnets. The southern Slave
garnets are dominated by lherzolitic and eclogitic compositions (Griitter et al., 1999).
The southern Slave was also contains a high-Cr,O3; garnet population that have CaO
contents of >1.8 wt%. The southern domain has been further subdivided by Carbno
and Canil (2002) into a southwest and southeast terrane. Carbno and Canil (2002)
note that the till samples used by Griitter et al. (1999) to define the southern
lithospheric domain only contained garnets from the southeastern portion of the
domain. The southeast garnets have a high proportion of high-Cr harzburgitic

garnets, these garnets are absent from the southwest portion (Carbno and Canil,
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2002). The north-trending Pb isotopic line of Thorpe et al. (1992) is used by Carbno
and Canil (2002) to separate the southwest garnet populations from those in the
southeast (Figure 2.3). The ~ 150 km wide central Slave domain, which includes the
Lac de Gras area, contains evidence for an ultradepleted lithosphere, as indicated by
the high proportion of subcalcic garnets with CaO contents <1.8 wt% (Griitter et al.,
1999). The northern Slave domain is dominated by a moderately depleted lithosphere
with a garnet population derived from lherzolitic and eclogitic lithologies (Griitter et

al., 1999). Occurrences of sub-calcic garnets are rare in the northern Slave (Griitter et

al., 1999).

2.2.2. The Lithospheric Domains of the Slave
Mantle xenolith studies are commonly used to investigate the composition,

structure and thermal state of the lithosphere. These samples are transported to the
surface within kimberlitic magmas. Mineral compositions within these xenoliths
provide data for models that combine rock type, ambient temperature and pressure
conditions at the time of entrainment and petrophysical properties (Pearson et al.,
1999). All three of the lithospheric domains of the Slave show evidence of chemical
stratification. However, the composition, depth and geothermal gradients have been

found to vary across the three domains (Figure 2.4).

2.2.2.1. The Northern Slave
Mantle xenoliths from the Jericho kimberlite have been used to characterize

the northern Slave domain. The Jericho pipe xenoliths are chiefly comprised of
peridotite (67%), with lesser eclogite (25%) and pyroxenites (8%) (Kopylova et al.,
1999b). Peridotites from the northern Slave have the most undepleted, lherzolite rich
compositions in the Slave craton (Kopylova and Caro, 2004).

Kopylova et al. (2001 and 2003) using analyses of Re-Os isotopic
compositions and chrondrite-normalized PGE patterns have noted that the mantle of
the northern Slave is also stratified with respect to age (Figure 2.4). The shallow
layer represents Archean mantle and the deeper layer is Archean-Proterozoic mantle

(Kopylova et al., 2001). Additionally, a thin layer of fertile peridotite enriched in
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clinopyroxene and garnet and an underlying magmatic pyroxenite layer are believed

to have formed later during the Phanerozoic (Kopylova et al., 2001). Kopylova et al.
(1999b) also note a major petrological boundary at depths of 160-190 km which they
infer to be the lithosphere-asthenosphere boundary. Geothermal gradients at the time

of kimberlite eruption have been determined to be 37-38 mW/m? for the Jericho

kimberlite (Kopylova et al., 1999b).

2.2.2.2. The Central Slave and Lac de Gras Area
A two-layered lithosphere has been recognized beneath the central Slave

craton (Griffin et al., 1999a; Griffin et al., 1999b; Pearson et al., 1999; O’Reilly et al.,
2001, Menzies et al., 2004) which consists of a shallow “ultra-depleted” harzburgite-
rich layer and a deeper, less-depleted layer (Figure 2.4). Garnet compositions and
xenolith data have revealed that the shallow layer is more magnesian, having olivine
with forsterite contents of 92-94, while the deeper layer has forsterite contents of 91-
92 (O’Reilly et al., 2001). Garnet compositions indicate that the shallow layer is
comprised of approximately 60% harzburgite and 40% highly depleted lherzolite
(O’Reilly et al., 2001). The lower layer is dominated by 80-85 % comparatively less
depleted lherzolite and 15-20 % harzburgite (O’Reilly et al., 2001). The eclogites are
concentrated near the bottom of the section (O’Reilly et al., 2001). A sharp boundary
between the two layers occurs at depths of 140 to 150 km and this boundary is
geochemically reflected in both olivine compositions (see above) and Zr, Y and Ti
contents of concentrate garnets (O’Reilly et al., 2001). The thickness and depth of
the two-layered structure has been found to vary across the central Slave domain.
The maximum thicknesses and depth occur in the central part of the central Slave,
while in the southern, northern and western parts of the craton the deeper more fertile
layer raises to depths of <100 km and the shallower ultra-depleted layer is thinned or
absent (O’Reilly et al., 2001).

Griffin et al. (1999a) defined the base of the lithosphere in the Slave as the
temperature above which depleted garnets are no longer present. These “depleted”
garnets are defined by Griffin et al. (1999a) as containing <10 ppm Y. At higher
temperatures the garnets have undepleted trace-element signatures that are attributed

to the interaction with asthenosphere-derived melts (Griffin et al., 1999a, and
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references therein). As such, the depth of the lithosphere-asthenosphere boundary in
the central Slave has been estimated to lie at depths of 200-220 km, which is in
agreement with seismic data of Cook et al. (1999).

The xenolith and xenocryst studies have indicated the occurrence of two
different paleogeotherms in the central Slave and the Lac de Gras area. A cooler
paleogeotherm of 35-37 mW/m? exists for the upper layer of the lithosphere,
compared to a 40 mW/m” paleogeotherm for the lower layer. Pearson et al. (1999)
and Griffin et al. (1999b) have proposed a stepped paleogeotherm with a low
geothermal gradient below temperatures of 900°C and an abrupt boundary at ~900 to
1000°C, with a higher geothermal gradient at greater depth coinciding with the more
fertile layer. More recent studies (Doyle et al., 2003; Griitter and Moore, 2003;
Menzies et al., 2004) report a continuous transition, rather than an abrupt stepped
transition, from the lower geotherm in the upper layer to the higher geotherm in the

deeper layer.

2.2.2.3. The Southern Slave
In a xenolith study of the Gahcho Kué kimberlite cluster, Kopylova and Caro

(2004) revealed that the southeastern Slave is dominated by coarse peridotite (61%),
eclogite (18%), deformed peridotite (17%), and orthopyroxenite (4%). The Cr-
pyropes from the peridotitic xenoliths plot along the lherzolitic trend on a Ca-Cr
diagram (Kopylova and Caro, 2004), reflecting the common presence of
clinopyroxene in southern Slave peridotites, which is in agreement with the till
sample analyses of Griitter et al. (1999).

Kopylova and Caro (2004) concluded that peridotite from the Gahcho Kué
kimberlite cluster in the southeastern Slave formed within a deep, cold cratonic
mantle at temperatures of 600-1300°C and pressures of 25-80 Kb. The minimum
lithospheric thickness was determined to be 220-250 km, which is greater than that of
the central Slave (~200 km; Pearson et al., 1999) and the northern Slave (160-190
km; Kopylova et al., 1999b).

The southwestern Slave domain was characterized by Carbno and Canil
(2002) using garnet xenolith geochemistry from the Drybones Bay kimberlite. The

high-Cr harzburgitic garnets seen in the southeastern domain are absent in the
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southwestern domain (Carbno and Canil, 2002). The southwestern domain is
characterized by ultra-depleted harzburgite at shallow depths which is then underlain
by a moderately depleted mantle (Carbno and Canil, 2002). The ultradepleted
Drybones Bay garnets show geochemical similarities (Cr203, Zr, Y and Ti) to that
observed for the shallow “harzburgite” layer from the central Slave domain, but the
Drybones Bay garnets are much more calcic (Carbno and Canil, 2002). This led
Carbno and Canil (2002) to hypothesize that the layered structure of the central Slave
mantle lithosphere extends into the southwestern Slave domain where is it has been
severely overprinted due to subsequent heating and metasomatic events as suggested
by the Drybones Bay garnet chemistries (i.e. elevated Ca, Zr and LREE). Another
contrasting feature between the southwestern and southeastern domain is the
thickness of the mantle lithosphere, at the time of kimberlite emplacement. For the
539 Ma (Heaman et al., 1997) 5034-Kennady pipe of the Gahcho Kué kimberlite
cluster, Kopylova and Caro (2004) have reported a minimum of thickness of 220-250
km, while the ~ 450 Ma Drybones Bay kimberlite recorded a thickness of 160 km

(Carbno and Canil, 2002).

2.3. Kimberlites of the Slave Craton
Kimberlite age determinations have revealed that within the Slave craton,

over relatively small distances, kimberlite fields of Eocene, Cretaceous, Jurassic,
Permian, Siluro-Ordovician and Cambrian age exist (Davis and Kjarsgaard, 1997,
Heaman et al., 2003). The oldest pipes in the Slave are the Precambrian (613 Ma)
Anuri kimberlite located in the northern Slave (Masun et al., 2003) and the Cambrian
(542 Ma) Kennady Lake 5034 pipe in the southeastern Slave (Heaman et al., 2003;
Masun et al., 2003). The youngest pipes occur in the Lac de Gras kimberlite field and
are Eocene (47.0 to 56.0 Ma) in age (Davis and Kjarsgaard, 1997, Graham et al.,
1999; Creaser et al., 2004). Heaman et al. (2004) also note that, excluding the
northern Slave kimberlites, many kimberlite clusters proximal (~150 km) to Lac de
Gras have emplacement ages which span most of the Phanerozoic. Heaman et al.

(2004) have compiled age determinations for 58 Slave kimberlites, which at the time
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represented approximately 17% of the known kimberlites from the Slave. From these
age determinations, they have subdivided the Slave craton into four domains, which
are shown on Figure 2.5. Domain I is located in the southwestern Slave and is
characterized by Siluro-Ordovician kimberlite ages. Included within this domain are
the Orion (435 Ma), Drybones Bay (441 Ma), Cross (450 Ma) and Ursa (459 Ma)
kimberlites (Figure 2.6) (Heaman et al., 2004). Domain 11 is located in the
southwestern Slave craton and contains Cambrian kimberlite magmatism. The 542
Ma Kennady Lake 5034 kimberlite and the 523-535 Ma Snap Lake dyke (Agashev et
al., 2001) are located in this domain (Figure 2.6). Domain III is located within the
central Slave and it is comprised primarily of Cretaceous and Eocene aged
kimberlites. The 48 to 74 Ma kimberlites of the Lac de Gras area are included within
this region. Domain IV is a mixed domain having Jurassic kimberlites in the
Contwoyto field, including the ~ 173 Ma Jericho pipe (Heaman et al., 2002), a
Permian kimberlite field located on Victoria Island having ages of ~256 to 286 Ma
(as reported in Heaman et al., 2004), and the Precambrian Anuri kimberlite.

From the resulting domain distribution, Heaman et al. (2004) found no simple
explanation for the observed pattern. They do, however, note that the N-S trending
boundary that separates Domain I from the other domains is broadly coincident with
the boundary used to separate the east and west terranes of the Slave Province,
namely the exposed eastern margin of the Anton terrane or the Central Slave
Basement Complex. This boundary was based on the occurrence of pre-2.8 Ga
basement rocks (Bleeker, et al., 1999b, and references therein) and broadly coincides
with the Pb isotopic boundary of Thorpe et al. (1992), as previously discussed.

Within the central Slave (Domain IIT), the Eocene to Cretaceous kimberlite
magmatism has occurred within a relatively small area of 50 km” around Lac de Gras.
Emplacement ages range between 45.2 and 74.7 Ma, based on 47 age determinations
(Heaman et al., 2004). The large number of age determinations from this one domain
is due to the observation that within the Slave the most economically significant pipes
are Eocene in age. Heaman et al. (2004) also point out that although less than 5 km
separate the ~55 Ma A154 pipes and the 74 Ma C13 pipes, it is only A154 that has a
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high diamond grade. Creaser et al. (2004) further report that the highest diamond
grades for the Lac de Gras kimberlites are restricted to narrow periods of kimberlite

magmatism from 51 to 53 and 55 to 56 Ma.

2.4. The Lac De Gras Area

2.4.1. The Lac Des Gras Kimberlite Field
The Lac de Gras kimberlite field, which hosts >236 kimberlites (Kjarsgaard,

2001), is part of an assemblage of Archean and Proterozoic rocks of the Slave
Province. The Diavik project pipes are located immediately to the east of East Island,
on the eastern edge of Lac de Gras, adjacent to the Ekati Island shoreline (Figure 2.6).
The geology of the project area is described by Bryan and Bonner (2003). The pipes
are associated with the three main Archean rock units of East Island, a greywacke-
mudstone metaturbidite, tonalite-quartz diorite, and a two-mica granite. The
greywacke-mudstone turbidites are steeply dipping, trending northwest-southeast,
through the centre of East Island. These metaturbidites have been intruded by the ca.
2610 — 2600 Ma tonalite —quartz diorite that dominates the southern portion of the
island and hosts the A21 kimberlite. Much of the northern part of East Island is
underlain by a ca. 2590 — 2580 Ma two-mica granite that forms a dyke and sheet
complex and hosts the A154 South, A154 North and A418 kimberlites. Three
Proterozoic diabase dyke sets, the Malley (ca. 2.23 Ga), Lac de Gras (ca. 2.02 Ga)
and the Mackenzie (1.27 Ga), cut the Archean stratigraphy. The area is variably
covered by Quaternary till, glaciofluvial and glaciolacustrine deposits which, in some
places, exceed 30 m. The Diavik kimberlite diatremes are small (<2 ha), steep-sided
pipes that appear circular in plan view. The kimberlites contain crater and hypabyssal
facies rocks, with pyroclastic and re-sedimented volcaniclastic rocks being the
dominant lithologies. The kimberlites are roughly aligned, having an approximate

trend of 30 degrees.
The ages of the pipes in the Lac de Gras kimberlite field range from Eocene

(47 Ma) to Cretaceous (86 Ma) (Heaman et al., 1997). The Diavik pipes have been

dated, using Rb-Sr in mica, to obtain isochron ages of pipe emplacement of 55.5 + 0.5
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Ma for A154 South, 56.0 + 0.7 Ma for A154 North, 55.2 + 0.3 Ma for A418 and 55.7
+ 2.1 Ma for A21 (Amelin, 1996).

2.4.2. Diavik Exploration History
The Diavik Diamond Mine is an unincorporated joint venture between Aber

Diamond Mines Ltd. and Diavik Diamond Mines Inc. (DDMI, a wholly owned
subsidiary of Rio Tinto plc). The Diavik Mine is located 295 km northeast of
Yellowknife, NWT on the eastern end of Lac de Gras (Figure 2.4).

Project kimberlites in the Lac de Gras area were staked in late 1991, during
the early stages of the Canadian diamond rush that eventually encompassed much of
the Slave Province. Exploration at Diavik involved the integration of remote sensing
and airborne geophysical techniques, combined with the results of kimberlite
indicator mineral analyses from glacial till collected down ice from the more
prospective targets. These methods were then followed by ground surveys and
further geophysical studies, with targets still remaining prospective being confirmed
by drill testing. By the spring of 1995 the current Diavik resource, kimberlites A154
South, A154 North, A418, and A21, had been discovered. As of June 2003, the
Diavik project included sixty-three kimberlite occurrences, with approximately 50%

of them being diamondiferous (Bryan and Bonner, 2003).
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Figure 2.1. Map showing the generalized geology of the Slave
craton, the Pb isotopic boundary of Thorpe et al. (1992) and the
Nd isotopic boundary of Davis and Hegner (1992). Map is
from Hoffman and Hall (1993).
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Figure 2.2. Map illustrating the boundaries of the Anton
Terrane, the Sleepy Dragon Terrane (SDT), the Contwoyto
Terrane and the Hackett River Arc Terrane. Map from Kusky

(1989).
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Figure 2.3. Subdivisions of the lithospheric domains of the
Slave, based on differing compositions, mantle stratigraphy
and thermal state. Map from Griitter et al. (1999). Southeast
and southwest subdivisions are from Carbno and Canil (2002).
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Figure 2.6. Map of the central and southern Slave domains in
the Northwest Territories showing the location of diamond
exploration projects. Map after Carins and Goff (2005).
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Chapter 3: Diamonds and their Mineral Inclusions from the Diavik

Diamond Mine, Northwest Territories, Canada

3.1. Introduction
Mineral inclusions in diamonds are generally regarded as representing pristine

samples of the Earth’s mantle, as they are protected from metasomatic influences and
re-equilibration with the surrounding environment inside the diamond. As such, they
have commonly been used a means to investigate the lithospheric mantle. The
majority of inclusion-based studies have been performed on diamonds from the
Kalahari and Siberian cratons. However, in the early 1990’s, diamondiferous
kimberlites were discovered on the Slave craton and this has since led to the
availability of inclusion-bearing diamond samples from Canada. Studies by Chinn et
al. (1998), Stachel et al. (2003) and Tappert et al. (2004) have shown that diamonds
from the Ekati kimberlites in the central Slave craton (Figure 3.1) were dominantly
derived from peridotitic sources with a minor eclogitic component. An investigation
of the diamonds from the Snap Lake/King Lake kimberlite dyke, in the southern part
of the Slave Craton, also yielded an abundance of peridotitic inclusions (Pokhilenko
et al., 2001 and 2004). However, a study from pipe DO27 (Davies et al., 1999),
located in the Tli Kwi Cho kimberlite cluster on the south-eastern side of Lac de
Gras, revealed a dominance of eclogitic diamonds (~50%) and a significant number
of “ultradeep” inclusions (~25%) with a sublithospheric origin. A later study by
Davies et al. (2004a) on microdiamonds from seven kimberlites, from the Lac de
Gras region, including DO27, reported similarly high abundances of eclogitic and
sublithospheric diamonds. Recently, Stachel et al. (2003) completed a comparison
study of major element data for peridotitic inclusions from the Slave and Kaapvaal
cratons, from which they concluded that the diamondiferous subcratonic lithospheric
mantle beneath the Slave was chemically less depleted.

The present paper examines 100 inclusion-bearing diamonds from the A154

South pipe of the Diavik Diamond Mine. The Diavik Mine is located 295 km
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northeast of Yellowknife, NWT on the eastern end of Lac de Gras (Figure 3.1, insert).
The current Diavik property in the Lac de Gras area was staked in late 1991, during
the early stages of the Canadian diamond rush that eventually encompassed much of
the Slave Province. The Diavik pipes are located immediately to the east of East
Island, on the eastern edge of Lac de Gras, adjacent to the Ekati Island shoreline. The
Lac de Gras kimberlite field, which hosts >236 kimberlites (Kjarsgaard, 2001), is part
of an assemblage of Archean and Proterozoic rocks of the Slave Province. By the
spring of 1995 the current Diavik resource, comprising kimberlites A154 South,
A154 North, A418, and A21, had been discovered. As of June 2003, the Diavik
project included sixty-three kimberlite occurrences, with approximately 50% of them
being diamondiferous (Bryan and Bonner, 2003). The ages of the pipes in the Lac de
Gras kimberlite field range from Cretaceous (86Ma) to Eocene (47 Ma) (Heaman et
al., 1997). The Diavik pipes have been dated, using Rb-Sr in mica, to obtain isochron
ages of pipe emplacement of 55.5 + 0.5 Ma for A154 South, 56.0 + 0.7 Ma for A154
North, 55.2 + 0.3 Ma for A418 and 55.7 + 2.1 Ma for A21 (Amelin, 1996).

For the A154 South pipe we examined the major and trace element
compositions of syngenetic mineral inclusions. Further studies were performed on
the host diamonds to determine the carbon isotopic composition (8'°C) and the
nitrogen content and aggregation characteristics. The results of this study will clarify
what the principal diamond source rock is in the case of the Diavik mine and these
results will be compared to previous inclusion studies from other Slave kimberlites.
As well this study will provide additional information regarding the thermal and

chemical evolution of the lithospheric mantle beneath the central Slave Craton.

3.2. Analytical Methods
For this study, 100 inclusion-bearing diamonds have been selected from more

than 10,000 carats (+9 to -11 and +11 sieve sizes) from the A154 South pipe of the
Lac de Gras kimberlites. The diamond characteristics including morphology, colour,
surface features and evidence of plastic deformation were documented and are

summarized in Table 3.1.
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The diamonds were cracked to release the inclusions using a steel crusher.
Initially, 157 inclusions were recovered from 100 diamonds, subsequently one
inclusion was lost during sample preparation. The inclusion size ranged from 20-375
um, with an average size of about 70 um. Three magnesio-chromite “inclusions”
were not completely enclosed within the host diamond, which may have allowed for
re-equilibration at depth in the mantle, or by metasomatism from the kimberlitic
magma upon kimberlite ascent. However, these exposed inclusions showed no
compositional differences when compared to inclusions completely encapsulated by
the diamond, and have been included within the data set.

The recovered inclusions were embedded in brass rings using Araldite® resin
and were polished for microprobe analysis on a JOEL 8900 Electron Microprobe at
the University of Alberta. An accelerating voltage of 20 kV and a beam current of 20
nA (30 nA for spinels) was used. Natural and synthetic silicate, oxide and metal
standards were used. Count times ranged from 20 to 100 seconds for the elemental
peaks and 20 to 100 seconds for the background. Between three and five analytical
points were measured on each sample and then averaged. Detection limits were less
than 200 ppm for all silicates, oxides and metals, excepting TiO, (207 ppm) for
silicate analyses, TiO, (231 ppm), and Cr,O3 (643 ppm) for spinel analyses, and Cr
(575 ppm) and Zn (257 ppm) for sulphide analyses.

Inclusions from all twelve garnet-bearing diamonds from this study were
analyzed to determine selected rare earth element (REE: La, Ce, Nd, Sm, Eu, Dy, Er
and Yb) and additional trace element (Ti, Y, Zr and Sr) concentrations using
Secondary Ion Mass Spectrometry (SIMS). Measurements were performed on a
Cameca IMS 3f Ion Microprobe at Woods Hole Oceanographic Institute. For
analysis, the inclusions were coated with a thin layer of gold to obtain electrical
conductivity. The samples were bombarded with a beam of negatively charged
oxygen ions with a focused spot size (diameter of the primary ion beam) of
approximately 20 pm for REE analyses and 3-5 pm for other trace elements. To
suppress molecular interferences, an energy offset of 60 V and 90 V for REE and
other trace elements, respectively, was applied (Shimizu and Hart, 1982). Elemental

abundances were calculated using empirical relationships between concentration and
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secondary ion yields for well-established standards (working curves) and
normalization to silicon as internal standard. The results were further verified by
comparative analyses of secondary mineral standards. Analytical uncertainties based
on counting statistics range from 10-25 % (relative) for the REE and 5-15% for other
trace elements.

The carbon isotopic composition of the diamonds was determined at the
University of Alberta using a Finnigan Mat 252 Mass Spectrometer. For carbon
isotopic analysis 0.5-1.5 mg of inclusion-free diamond fragments were combined
with 1-2 g of purified copper oxide and combusted for ~12 h at 980°C. The CO, gas
was extracted under vacuum using nitrogen traps and a mixture of dry ice and ethanol
to remove impurities. The data are reported with respect to the Peedee belemnite
standard.

The nitrogen concentration and aggregation characteristics of the host
diamonds were determined on transparent, inclusion-free cleavage chips by Fourier
transform infrared spectroscopy (FTIRS) using a Thermo-Nicolet Fourier Transform
Infrared Spectrometer combined with an infrared microscope. Background
measurements were performed approximately every three hours. Sample spectra
were collected for 200 seconds. A pure Type II diamond spectrum was subtracted,
removing the diamond two phonon absorbance, and simultaneously the sample
spectrum was converted to absorption coefficient (i.e. normalized to a sample
thickness of 1 cm). Spectra were then deconvoluted into A, B and D components
using deconvolution software provided by David Fischer (Research Laboratories of
the Diamond Trading Company, Maidenhead, UK). The concentrations of nitrogen,
in atomic ppm, were calculated from absorption coefficient values at 1282 cm™ for
the A-centre and B-centre, using the factors derived by Boyd et al. (1994) and Boyd
et al. (1995). The detection limits were typically on the order of 10-20 ppm and were
largely dependent on the quality of the sample. Concentration and aggregation state

errors were generally between 10-20% relative.
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3.3. Database
A reference database of inclusion analyses from worldwide sources was

compared to the results of this study. The database is comprised of published and
unpublished analyses referenced in Stachel and Harris (1997) and Stachel et al.
(1998a, 2000a). The database was later expanded in Tappert et al. (2004). To this,
the results of Davies et al. (2004a and 2004b), Deines & Harris (2004), Appleyard et
al. (2004), McKenna et al. (2004), Promprated et al. (2004), Sobolev et al. (2004) and
Tappert et al. (2004) have also been added.

3.4. Major Element Compositions

3.4.1. Peridotitic Paragenesis
The major element composition of diamond inclusions from A154 South

indicate most diamonds are peridotitic, consisting of 83% of the diamonds from this
study (Table 3.1). Chromite and olivine were, by far, the most commonly occurring

peridotitic inclusions, followed by gamet, Fe-Ni sulphides and clinopyroxene.

3.4.1.1. Garnet
Peridotitic garnets occur in seven A154 South diamonds. Six garnet-bearing

diamonds contain nine garnets of harzburgitic composition, while one diamond
contains two garnets plotting in the Ca-saturated field in a Ca-Cr diagram, indicative
of a lherzolitic paragenesis (Figure 3.2). The gamet inclusions range in Cr,O3; content
from 7.0 wt% up to relatively high values of 15.7 wt% (Table 3.2). The CaO content
ranges from 2.6 wt% to 6.0 wt%, with an average value of 4.2 wt%. Most
harzburgitic garnets from the Slave craton are chemically less depleted than the
worldwide average plotting close to the lherzolitic trend. The A154 South garnets
have slightly lower CaO contents than the average for the Slave, with two garnets
showing Ca contents less than 3 wt%. The Mg-number of the garnet inclusions
ranged from 86—88, with a mean of 87. This distribution is similar to that observed

for other Slave localities, as described by Stachel et al. (2003, their Figure 3).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.1.2. Olivine
Fifty-four olivine inclusions were recovered from thirty-two diamonds.

Additionally, one touching olivine-clinopyroxene pair was found. The forsterite
contents range from 90.6 to 93.6 and excluding one diamond (ddmi-49a) this range is
narrowed to 91.8 to 93.6 (Figure 3.3). These values coincide with the lower half of
the Mg-numbers of the worldwide database. The CaO content of the olivine
inclusions range from 0.02 to 0.07 wt% (Table 2.2 and Figure 3.3). The compositions
of the A154 South olivines are similar to those of the Slave, which completely
overlap with the worldwide database. However, the A154 South diamonds show less
compositional variation than that seen for the rest of the Slave.

Stachel et al. (2003) noted a chemical distinction between Panda and DO27
olivine inclusions where Panda had high Ni contents and DO27 was low in Ni. This
Ni discrepancy was not observed for orthopyroxene inclusions from these localities,
which led Stachel et al. (2003) to propose that the low Ni in olivine was reflecting the
modal olivine/orthopyroxene ratio of the source regions. In olivine inclusions from
A154 South, this Ni discrepancy is not observed (Figure 3.4), as olivine Ni
compositions overlap both those of Panda and DO27. No orthopyroxene inclusions

were found in this study.

3.4.1.3. Clinopyroxene
Two diamonds were found to contain peridotitic clinopyroxene inclusions,

one of which was an olivine-clinopyroxene touching inclusion pair. The distinction
between peridotitic and eclogitic clinopyroxene (Figure 3.5) was determined after
Meyer (1987) using Na,O, Al,O3, and Cr,Os contents. The clinopyroxene inclusion
(ddmi-140) and touching inclusion pair (ddmi-141) had Mg-numbers of 93.8 and 91.2
and Ca-numbers [100Ca/[Ca+Mg+Fe' '] of 43.3 and 44.8 (Table 3.2). Both
inclusions had similar Cr,O; contents of 1.1 wt%. The Mg-numbers are typical for

peridotitic clinopyroxenes but they are slightly more Ca rich than the worldwide

average.
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3.4.1.4. Mg-chromite
Mg-chromite is the most commonly occurring inclusion at A154 South, with

fifty-six inclusions recovered from thirty-five diamonds. Some diamonds contained
as many as fifteen individual chromite inclusions. One diamond contained a chromite
and olivine inclusion pair (see Table 3.2) and another contained a chromite and
sulphide inclusion pair (Table 3.3). Fe-contents range from 13.8 to 15.8 wt%
(FeOrotat). A154 South, along with most of the Slave is characterized by overall high
ferric iron in Mg-chromites when compared to worldwide sources (Figure 3.6). The
Cr-number [100Cr/(Cr+Al)] is generally about 87, but reaches up to 91.5. An
additional chromite inclusion from an A154 South microdiamond was studied by
Davies et al. (2004a) and they report a comparatively low Cr-number of 72. Six
diamonds had exposed chromite inclusions on the diamond surface. When analyzed,
these inclusions revealed no compositional differences (Figure 3.6) when compared
to true inclusions that were completely enclosed within the same diamond, which
may indicate diamond breakage during production, rather than prior to, or during,

kimberlite eruption.

3.4.1.5. Fe-Ni Sulphides
Eight diamonds were found to contain peridotitic Fe-Ni sulphides (Table 3.3).

The designation to the peridotitic suite is based on the high Ni contents of the
inclusion, but for three diamonds the paragenetic distinction was further confirmed
based on the presence of co-existing inclusions of Mg-chromite (ddmi-150), olivine
(ddmi-179) and lherzolitic garnet (ddmi-199). The Fe contents of peridotitic sulphides
range widely from 23.59 to 47.61 wt% and Ni contents also show a wide range from
9.97 t0 55.99 wt%, but were typically on the order of 20 wt% (Figure 3.7). Cuis
present in these inclusions in relatively minor amounts (0.2 to 1.99 wt%), as is Co

(0.37 to 0.96 wt%) and Cr (< 0.06 to 0.68 wt%).

3.4.2. Eclogitic Paragenesis
Eclogitic inclusions were found in 12 diamonds which contained sulphide (six

diamonds), garnet (three), clinopyroxene (two) and “coesite” (one).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.2.1. Garnet
Seven garnet inclusions, released from three diamonds, plot within the

eclogitic field, having Cr,03 contents of less than 2 wt% (Gurney, 1984). Two
diamonds (ddmi-166 and ddmi-208) contained >10 individual garnet inclusions per
stone. No significant compositional variations were found to exist between garnets
from the same stone. The Mg-number of the eclogitic garnets varies from 63.2 to
69.5 and the CaO content from 13.7 to 14.6 wt%. These values fall towards the upper
limit of the worldwide database and existing data for the Slave craton (Figure 3.2).
Compositionally, the eclogitic garnets from the A154 South (Table 3.2) range from
0.05 to 0.08 wt% Cr,03, 0.12 to 0.16 wt% Na,O and 0.30 to 0.36 wt% TiO..

3.4.2.2. Clinopyroxene
Four eclogitic clinopyroxene inclusions were recovered from two diamonds.

The clinopyroxene compositions differ between the two diamonds (ddmi-48 and
ddmi-186), but are homogenous within the individual host. Inclusions from one
diamond have Mg-numbers of 83 (ddmi-48), while for the other, Mg-numbers of 90
(ddmi-186) are observed. The high Mg-numbers obtained from ddmi-186 are
atypical of eclogitic clinopyroxenes, as normal basaltic bulk rock compositions have
Mg-numbers closer to 80. The low Mg-number inclusions contained higher CaO

contents relative to the high Mg-number group, but were lower in Na,O and Al,O3

(Figure 3.5).

3.4.2.3. 5i0;
A SiO; inclusion was found as a single phase inclusion in one diamond (ddmi-

193). No visible fractures or alteration were associated with the inclusion, as such the
SiO; inclusion was likely included as coesite. Analysis of the inclusion revealed no

notable elemental impurities.
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3.4.2.4. Fe Sulphides
Eight eclogitic sulphide inclusions were recovered from six diamonds and

were found to be Fe-monosulphides (Table 3.3). Two sulphides (ddmi-37 and ddmi-
93) had slightly elevated Cu (~2 wt% and 5 wt%) contents. The Fe contents ranged
from approximately 54 to 60 wt%, with minor amounts of Ni (0.35 to 1.6 wt%) and
Co (0.17 to 0.37 wt%) and variable amounts of Cu (0.49 to 5.0 wt%).

3.4.3. Uncertain Paragenesis

3.4.3.1. Diamond
A colourless octahedral diamond inclusion, showing no surface features or

evidence of deformation, was found within a colourless triangular macle (spinel twin)
(Figure 3.8). The included diamond was of sufficient size to allow for a comparative
carbon isotope and nitrogen concentration and aggregation study to be performed on
both the host and included diamond. The host diamond had a '*C value of -4.6 %o,
while the included diamond was isotopically lighter at -6.1 %o. The host diamond
was a Type [aA diamond with nitrogen concentrations of 863 ppm. The included
diamond was also a Type [aA diamond, but had lower nitrogen concentrations of 334
ppm. Diamond inclusions from other Slave localities were reported by Davis et al.
(2004a) and they observed inclusions with cubo-octahedral morphologies and
variable colours, relative to their host diamond. Diamond can occur as an inclusion in

either the peridotitic or eclogitic paragenesis.

3.4.3.2. Ferropericlase
Six ferropericlase inclusions were found in three faintly brown diamonds,

having either irregular or high resorbed octahedral morphologies. A fourth diamond
(ddmi-2) including ferropericlase was found to contain an additional mineral phase,
pyrite (Table 3.3), which was determined to be eclogitic based on a very low Ni
content. The ferropericlase inclusions are characterized by relatively high Mg
numbers (81.3 to 87.0) and high NiO contents (0.98 to 2.03 wt%), when compared to

the worldwide database, as shown in Table 3.4 and Figure 3.9. Notable impurities
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include Cr,O3 (0.36 to 0.60 wt%), Na,O (0.13 wt% to 0.34 wt%) and MnO (0.15 wt%
to 0.22 wt%), which are normal ranges for ferropericlase inclusions.

The occurrence of ferropericlase is not restricted to a lower mantle origin as
the ferropericlase stability field also extends into the upper mantle (Stachel et al.,
2000b; Brey et al., 2004). In the absence of additional inclusion phases such as
tetragonal almandine pyrope phase (TAPP), MgSi-perovskite, CaSi-perovskite or
Si0,, which would indicate formation in lower mantle, the paragenetic designation of

the four diamonds containing ferropericlase remains uncertain.

3.5. Trace Element Compositions
Nine peridotitic garnets and three eclogitic garnets have been analyzed for

rare earth elements (REE), Ti, Zr, Y and Sr. Eight of the peridotitic garnets belong to
the harzburgitic suite and one to the lherzolitic suite. The rare earth element
concentrations are normalized (REEy) to the C1-chrondrite composition of
McDonough and Sun (1995).

Six of the harzburgitic garnets are characterized by sinusoidal REEy patterns
with a crest in the light REE (LREEY) and a trough in the middle REE (MREEy)
(Figure 3.10). Such patterns are typical for harzburgitic garnets worldwide (see
Stachel et al., 2004, for a recent review). Two harzburgitic garnets released from the
same diamond (ddmi-216) have REE\ patterns that are only slightly sinusoidal,
having depleted LREEj, a positive slope in the LREEy and enrichment in the MREEy
and HREEy (Figure 3.9), with a peak at Eu. Such “normal” REEy patterns are more
commonly observed for lherzolitic garnets. The two ddmi-216 garnets have low Sr
contents of <2 ppm whereas the remaining harzburgitic garnets have Sr contents that
range from 3 ppm to 11 ppm with an average of 5 ppm. The Y contents of the
harzburgitic garnets range between 1 ppm and 7 ppm with an average of 3 ppm,
values which are typical for harzburgitic garnets worldwide. The Zr contents for the
harzburgitic garnets range from 5 ppm to 66 ppm with an average of 35 ppm, which
is double the worldwide average. The lherzolitic garnet has Sr and Zr of 1 ppm and 9
ppm, respectively, which are similar to lherzolitic garnets worldwide. However, the

lherzolitic garnets have low Y and Ti contents at 1 ppm and 473 ppm.
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The three A154 South eclogitic garnets analyzed have REEy patterns that are
similar to other eclogitic garnets worldwide, but the MREE and HREE concentrations
are considerably lower (Figure 3.11). One eclogitic garnet inclusion (ddmi-205) has a
positive Eu anomaly, another (ddmi-208) shows a negative anomaly. In the absence
of Gd data the significance of these small anomalies cannot be assessed and may
relate to analytical uncertainty in the determination of Sm and Eu. Eclogitic garnet
inclusions typically have REEy patterns with LREEy about 1 times and HREEY at
about 30 times chondritic abundances (Stachel et al., 2004). The A154 South
eclogitic garnets have about 0.5 times chondritic abundances of LREEy and 5 times
chondritic abundances of HREEyN. The trace elements Ti, Y and Zr of the A154
South eclogitic garnets also show lower concentrations then those observed for
eclogitic garnets worldwide. The Ti contents range from 1568 to 2169 ppm with an
average value of 1920 ppm, which is less than half the worldwide average of 4330
ppm. Similarly, the Y (11 to 12 ppm) and the Zr contents (8 to 27 ppm) are
considerably lower than the worldwide averages of 38 and 53 ppm, respectively. Sr
contents are comparable to those observed worldwide and range from 3 to 6 ppm.
Beard et al. (1996) have suggested that eclogitic garnets with high CaO and the low
REE contents may be related to a protolith having a significant plagioclase or

clinopyroxene cumulate component.

3.6. Geothermometry
The composition (see Table 3.2) of two olivine-garnet pairs (ddmi-154 and

ddmi-167) was used to estimate the temperatures of diamond formation using the Fe-
Mg exchange between these two minerals (O'Neill and Wood, 1979; O'Neill, 1980).
Temperatures of 1220 and 1230°C were calculated at an assumed pressure of 5 GPa
(Figure 3.12). Additionally, one olivine-magnesio-chromite inclusion (Table 3.2)
pair yielded a temperature of 1170°C based on the Fe-Mg exchange thermometer of
O’Neill and Wall (1987). The non-touching inclusion pairs have an average
temperature of 1200°C, which is slightly higher than the average garnet-olivine
temperatures of 1180°C from DO27 (Davies et al., 2004a), 1180°C from Ekati (Chinn
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et al., 1998), 1140°C from Panda (Stachel et al., 2003), and 1130°C from Snap Lake
(calculated by Stachel et al., 2003, using the data of Pokhilenko et al., 2001).

The inclusion temperatures for the 56 magnesio-chromite inclusions analyzed
in this study produced an uncommonly low range of values from 790 to 1020°C,
yielding an average temperature of 940°C, using the empirical thermometer of Ryan
et al. (1996) for Zn in spinel. A huge discrepancy (250°C), well beyond the errors of
both thermometers, was observed for diamond ddmi-183 where temperatures of
920°C (Zn in spinel) and 1170°C (olivine-magnesio-chromite inclusion pair) were
obtained for the same diamond. Possible explanations for this variance include that
possibility that the chromites are sourced from a zone in the mantle that has a low
modal abundance of olivine, such that the assumption that there is an inexhaustible
reservoir of olivine does not apply. Another possibility is that the assumed constant
Zn composition of mantle olivine of ~52 £+ 14 ppm from Ryan et al. (1996) does not

hold true for Diavik.

3.7. Physical and Geochemical Characteristics of the Host Diamonds

3.7.1. Morphology and Colour
Four separate population surveys were conducted on Diavik diamonds in the

+9 to -11 and the +11 size range, with samples ranging from 520 to 1020 stones.
These surveys characterized the diamonds based on colour, morphology,
presence/absence of coating and inclusion content. Diamond descriptions and
preliminary classification of the included minerals was conducted based on the
methodology outlined in Robinson (1979). The Diavik population in the +9 to -11
and the +11 size range is dominated by resorbed forms, particularly resorbed
octahedral or dodecahedral morphologies. The Diavik production also contains an
unusually high percentage (~12%) of diamonds having cubic morphologies, when
compared to the estimate of <1% cubic diamonds (Harris, 1992) for southern African
diamonds. These cubic stones are dominantly re-entrant cubes, but some flat-faced
cubes and rounded cubes were also observed. Relatively sharp-edged octahedra,
spinel twin triangular macles, and aggregates of three or more stones were also
present. A high proportion of diamond fragments is attributed to breakage during

production. It was noted that with increasing diamond size (1, 3 and 5 carat stones),
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the quality of the production greatly improved, yielding more octahedral stones at the
expense of cubes and dodecahedral morphologies.

The dominant body colour of diamonds from Diavik is colourless. Brown
stones are relatively abundant and yellow, pink and grey stones were observed, but
are rare. In addition, fibrous coats, ranging from thin, nearly transparent layers to
partial or complete opaque cover of the diamond, occur throughout all size ranges.
The fibrous coats range from grey to dark grey-black and in several cases, this
coating is almost completely covered with triagonal etch pits.

The suite of 100 inclusion-bearing diamonds for this study is comprised of
octahedra (39%), dodecahedroids (23%), irregular/fragments (21%), macles (10%)
and aggregates (7%). The sample suite is dominated by brown stones (58%),
followed by colourless (34%), pink (4%), yellow (2%) and grey (2%) stones. Plastic
deformation lines were observed, but were not common. However, the high

proportion of brown diamonds indicates the plastic deformation has occurred

(Robinson et al., 1979).

3.7.2. Carbon Isotopes
The carbon isotopic values (8"*C) of the 100 A154 South diamonds,

summarized in Table 3.1 and shown in Figure 3.13, ranged from -10.5%o to +0.7%o,
with an average value of -5.1%o. The observed mode of -5.0%o is consistent with that
observed for diamonds worldwide of both the eclogitic and peridotitic suite. When a
few outliers are removed, a narrow distribution with 94% of the diamonds having
8'3C values between -6.3%o and -4.0%o becomes apparent. Such a narrow distribution
of carbon isotopic values is rarely observed for diamonds from other localities
(Kirkley et al., 1991). The two isotopically heaviest values are from ferropericlase-
bearing diamonds, while the two isotopically lightest values represent diamonds with
eclogitic inclusions. There is no correlation between the carbon isotopic composition
of the diamonds and the inclusion chemistry as was shown e.g. for Snap Lake by
Pokhilenko et al. (2004). No correlations were observed with respect to diamond

colour, morphology, or nitrogen content.
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3.7.3. Nitrogen Contents and Aggregation Levels

Nitrogen is a common substitutional impurity in diamond and is present in
most natural diamonds. The nitrogen content has been used to classify diamonds into
two groups: Type I diamonds where nitrogen is present and Type II diamonds where
nitrogen is absent, i.e., below the level of detection (approximately 10 ppm) for
infrared spectroscopy (Gurney, 1989). These classifications can be further
subdivided on the basis of the nitrogen aggregation state of the diamond into: Type 16
where diamonds contain nitrogen in a single substitution and Type la diamonds
where nitrogen is aggregated in the form of pairs (Type IaA), rings of four nitrogens
surrounding a vacancy (Type [aB) or both (Type [aAB) (Evans and Qi, 1982). Only
in rare cases does nitrogen occur as a single substitutional atom, as the aggregation
into pairs occurs rapidly at mantle temperatures (Evans and Harris, 1989 and
references therein). The aggregation from Type IaA to Type IaB occurs at a much
slower rate. The experimentally determined kinetics of the nitrogen aggregation
(Evans and Harris, 1989; Taylor et al., 1990) can be used to constrain either the
residence time or the time averaged residence temperature of the diamond in the
mantle and is useful in characterizing diamond population groups.

The concentration and aggregation of the nitrogen impurities in the A154
South diamonds was determined using micro-FTIR spectroscopy (Table 3.1 and
Figure 3.14). The nitrogen contents range typically range from <10 ppm (detection
limit) to ~ 1200 ppm. Two Type IaA diamonds were found to have slightly elevated
nitrogen contents at ~1800 ppm and two yellow, unresorbed octahedral Type IaAB
diamonds, each containing >10 eclogitic garnet inclusions, had elevated nitrogen
contents of 1800 and 3800 ppm. The nitrogen aggregation levels of the A154 South
diamonds reflect predominantly (65%) poorly aggregated Type IaA diamonds (<10%
B-centre aggregation), but also range to fully aggregated Type IaB (>90% B-centre
aggregation) diamonds (5%). The intermediate Type laAB diamonds comprise 25%
of the population, with the remaining 5% being Type II nitrogen-free diamonds.
When all diamonds showing evidence of plastic deformation (brown body colour or

presence of deformation lines) are removed, this scatter greatly reduced, with all but
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seven of the remaining diamonds having less than 25% of the nitrogen aggregated to

B-centres.

3.8. Discussion and Conclusions

3.8.1. The Diamond Source Region at A154 South
The relatively high CaO content of the harzburgitic garnets and the

comparatively low Mg numbers of the olivine inclusions indicate that diamond
formation at A154 South occurred in a moderately depleted peridotitic environment.
This is in agreement with that observed for the nearby Ekati (Chinn et al., 1998;
Stachel et al., 2003; Tappert et al., 2004) and the Snap Lake/King Lake (Pokhilenko
et al., 2004; Promprated et al., 2004) kimberlites, which are also dominated by
peridotitic diamond populations. Pipe DO27 in the Lac de Gras area appears to be an
exception in the central Slave as eclogitic diamonds dominate (Davies et al., 1999 and
2004a).

Trace element data from this study of A154 South, as well as Panda (Tappert
et al., 2004) and Snap Lake/King Lake (Promprated et al., 2004) indicate that the
diamond source rock has experienced an early depletion event, followed by a later
metasomatic enrichment event characterized by high LREE/HREE in the re-enriching
agent. The A154 South harzburgitic garnets typically have sinusoidal REEy patterns,
while the lherzolitic garnet has a normal REEy pattern, consistent with worldwide
data (Stachel et al., 2004). Two harzburgitic garnet inclusions from diamond ddmi-
216 have low Sr contents and normal REEy patterns more typical of lherzolitic
garnets. Stachel et al. (2004) attribute the transition from sinusoidal towards more
normal REEy patterns in harzburgitic garnets to be a result of a shift from fluid
dominated to melt dominated metasomatism (Figure 3.15). Stachel et al. (2004) note
that harzburgitic garnets that have undergone “lherzolitic style” metasomatism (i.e.,
showing normal REEy patterns) also have refertilized major element compositions, as
seen by the low molar Cr-numbers [100Ct/(Cr + Al)] of less than 30. This
observation holds true for the two harzburgitic garnets with normal REEy patterns

released from diamond ddmi-216 which have Cr-numbers of less than 25.
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Xenolith and xenocryst studies (Griffin et al., 1999b; Pearson et al., 1999;
MacKenzie and Canil, 1999; Doyle et al., 2003; Griitter and Moore, 2003; Menzies et
al., 2004) from the Lac de Gras area also agree with the inclusion data from this
study, indicating a moderately-depleted, dominantly harzburgitic source rock
composition. These studies also indicate that the lithosphere in the central Slave
craton is stratified, consisting of two layers. The xenolith studies investigating the
thermal regime of the lithosphere at Lac de Gras have revealed that the shallow
lithospheric layer has a lower geothermal gradient corresponding to 35-37 mW/m*
surface heat flow while the deeper layer is higher at 40 mW/m?. Stachel et al. (2003)
obtained a geothermal gradient of 37 mW/m? from two touching garnet-
orthopyroxene inclusion pairs whereas a higher geotherm of 40 mW/m?* was obtained
for two non-touching garnet-orthopyroxene pairs from Snap Lake (calculated by
Stachel et al., 2003, using the data of Pokhilenko et al., 2001). The A154 South
diamonds have an average estimated formation temperature of ~1200°C (Figure
3.12), as determined from non-touching inclusion pairs. These temperatures are
slightly higher than the average of 1180°C from Ekati (Chinn et al., 1998) and from
D027 (Davies et al., 2004a), 1140°C from Panda (Stachel et al., 2003), and 1130°C
from Snap Lake (calculated by Stachel et al., 2003, using the data of Pokhilenko et
al., 2001). These temperatures correspond to formation along a 40-42 mW/m?
geotherm, which is consistent with estimates worldwide (Stachel et al., 2003, and
references therein).

Nitrogen aggregation can be used to constrain either the residence time or the
residence temperature of diamonds in the mantle. Time averaged mantle residence
temperature estimates are relatively insensitive to the choice of mantle residence time.
Under normal geothermal gradients, after 200 to 2000 Ma in the mantle a diamond
will be a Type IaB diamond, with all of its nitrogen aggregated into the B-centre
(Gurney, 1989). A diamond may retain nitrogen in the non-aggregated, single
substitution state (Type /b) only if the residence time at normal mantle temperatures,
after crystallization but prior to kimberlitic eruption, was less than 50 years (Gurney,
1989). It has been noted that plastic deformation enhances the aggregation of

nitrogen in diamond (Evans, 1992). When diamonds showing evidence of plastic
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deformation, recognized by brown body colour or the occurrence of plastic
deformation lines on the diamond surface, are excluded the overall number of
diamonds with higher aggregation levels (Type IaAB or Type [aB) is significantly
reduced. The high proportion of diamonds with poorly aggregated nitrogen is not
unique to A154 South but appears to be common feature in the central Slave, being
recognized at Ekati (Westerlund et al., 2001; Stachel et al., 2003; Westerlund, 2003a;
Tappert et al., 2004) and DO27 (Davies et al., 1999; Davies et al., 2004a).

Low nitrogen aggregation levels as observed at A154 South have
conventionally been taken to indicate a young age for the diamond population.
Alternatively, if the diamonds are older, the abundance of Type [aA diamonds may
indicate storage in the mantle at low temperatures, approximately between 1000-
1100°C (Figure 3.14). To date, the only published diamond inclusion age from A154
is a Re-Os sulphide inclusion age from an eclogitic diamond which yielded a Re-
depletion age of 3.03 £ 0.18 Ga and a model age of 3.35 + 0.40 Ga (Pearson et al.,
2002). Additionally, peridotitic sulphide inclusions from a Panda diamond yielded a
similar isochron age 3.41 = 0.28 Ga (Westerlund et al., 2003b). Combining old
inclusion ages and low nitrogen aggregation states would argue for shallow storage in
the mantle at lower temperatures.

A possible sub-population is indicated by two A154 South diamonds (ddmi-
166 and ddmi-208). Both diamonds are unresorbed octahedra, each containing >10
eclogitic garnet inclusions and are the only yellow stones in this study. They have
elevated nitrogen contents of 1800 and 3800 ppm and similar aggregation levels of 34
and 36 %B, respectively. Additionally, some of the A154 South diamonds have very
high aggregation levels (Figure 3.14), which for the typical diamond formation
temperatures calculated for the Slave (Figure 3.12), would yield unreasonably long
residence times in the mantle. This suggests that these diamonds have experienced
more intense plastic deformation or were exposed to higher temperature conditions,
perhaps forming at greater depth, or proximal to a magmatic intrusion.

The diamond formation temperatures for A154 South diamonds (~1200°C
based on non-touching inclusions) are inconsistent with the observed low

temperatures of diamond residence in the mantle obtained from the nitrogen
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aggregation levels. However, these aggregation temperature estimations are in
agreement with touching inclusion pairs from Panda (see Stachel et al., 2003). To
explain the observed nitrogen aggregation distribution, Stachel et al. (2003) and
Tappert et al. (2004) have proposed rapid cooling of about 100-150°C of the diamond
source region following diamond formation. They propose that the elevated
temperatures (40-42 mW/m? geotherm) during diamond formation represent only a
short-lived event, possibly related to magmatic intrusions, and that during the
Archean a stable 35-37mW/m’ geotherm was already established. Such a model is in
agreement with the data from A154 South which would require cooling of the
diamond source region on the order of 100-200°C to reconcile inclusion and nitrogen
based thermometry.

Further information regarding the diamond source region can be gained from
an investigation into the carbon isotopic composition of the diamonds. The bulk of
the A154 South diamonds (94%) fall within a narrow range of typical mantle values
of -6.3%o and -4.0%o, irrespective of paragenesis. Such a narrow distribution is
uncommon for most diamond localities worldwide (with few exception such as the
Akwatia diamonds in Ghana, Stachel et al., 1997) but appears to be a commonality in
the Slave craton with Snap Lake (Pokhilenko et al., 2004) and Panda (Westerlund et
al., 2001 and 2003a) each having a limited range in §"°C values. In a study of
diamonds from the Ekati pipes Misery, Jay and Sable, Chinn et al. (1998) found a
similarly narrow distribution for peridotitic diamonds, but eclogitic diamonds from
these locations covered a wide range of isotopically lighter compositions (up to -
27.4%0). At DO27 a large range in 8'3C values was observed (-35.8%o to +0.2%o)
reflecting the dominance of eclogitic diamonds (Davies et al., 2004). The narrow
distribution seen at A154 South may be suggestive of diamond formation, irrespective

of paragenesis, from an unfractionated fluid/melt carrying primordial carbon.

3.8.2. Ferropericlase-bearing Diamonds: An Uncertain Paragenesis

The presence of lower mantle diamonds in the Lac de Gras area has been
identified by Davies et al. (1999 and 2004a) and Tappert et al. (2004) based on the
assemblage of ferropericlase inclusions coexisting with MgSi0O3, CaSiOs, and/or

SiO,. Four A154 South diamonds contained inclusions of ferropericlase but lacked
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sufficient inclusions pairs (with pyrite present as the only co-existing inclusion pair)
to confidently assign them to a lower mantle paragenesis. More than half of the
ultradeep microdiamonds from the study of Davies et al. (2004a) were assigned a
lower mantle origin based on inclusions of ferropericlase alone. However, the
occurrence of ferropericlase as an inclusion in diamond is not conclusive evidence for
a lower mantle origin (Stachel et al., 1998 and 2000b; Brey et al., 2004).
Ferropericlase can form as an inclusion in diamond in the upper mantle if Si activity
and fO, are sufficiently low, conditions that would be met in a reduced dunitic source
(Stachel et al., 1998). Hence, besides the lower mantle, ferropericlase-bearing
diamonds at Lac de Gras could also be the sourced in lithospheric dunites identified
in several xenolith studies in the central Slave (Griffin et al., 1999a; Pearson et al.,
1999; O’Reilly et al., 2001; Mengzies et al., 2004).

It has been noted by Hutchinson et al. (1999) that diamonds from the lower
mantle typically have irregular or dodecahedral morphologies and are dominantly
Type II diamonds, or when nitrogen is present it is highly aggregated >94 %B. This
observation holds true for the lower mantle diamonds from Panda, where all lower
mantle diamonds were Type II diamonds having irregular morphologies. While
Davies et al. (2004) reported that >80% of the ferropericlase-bearing diamonds from
D027 were Type Il diamonds, resorbed octahedral morphologies were observed. The
ferropericlase-bearing diamonds from A154 South had either resorbed octahedral or
irregular morphologies. Two of the A154 South ferropericlase-bearing diamonds
were Type II diamonds, while the other two were highly aggregated (59 and 82 %B)
Type IaAB diamonds that had low nitrogen concentrations (<110 ppm). In addition
to the lack of lower mantle inclusion pairs, the observed octahedral morphologies and
nitrogen content may provide supporting evidence of a lithospheric origin for the
ferropericlase-bearing diamonds.

If diamond ddmi-2 containing ferropericlase and a sulphide of eclogitic
paragenesis was in fact formed in the lower mantle, this basaltic association would be
in agreement with the observations of Stachel et al. (2000a and 2000b) where the bulk
of diamonds from the asthenosphere/transition zone (majoritic garnet-bearing) and

some lower mantle diamonds (Eu anomalies, high LREE and Sr contents) are linked

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to some form of recycled oceanic crust. While the carbon isotope distribution of the
A154 South diamonds is, on a whole, exceptionally narrow, the ferropericlase-
bearing diamonds typically are outliers of this distribution. The ferropericlase-
bearing diamonds are isotopically heavier (average -2.8%o) with two diamonds ddmi-
114 and ddmi-2 having 6"°C values of -2.9 and +0.7%, respectively. These heavy
carbon isotopic compositions may indicate a genetic link to subducted marine
carbonate (Kirkley et al., 1991), which has 6"°C values near zero, supporting models

involving subducted oceanic crust.

3.8.3. Models for Diamond Sources in the Slave
As more age determinations become available for the subcratonic lithospheric

mantle beneath the central Slave (Aulbach et al., 2001; Pearson et al., 2002; Gurney
et al., 2003; Westerlund et al., 2003b; Aulbach et al., 2004) they provide mounting

evidence for the existence of an Archean (>2.6 Ga) diamondiferous mantle keel.

A two-layered lithosphere has been proposed for the central Slave craton
(Griffin et al., 1999a; Griffin et al., 1999b; Kopylova et al., 1999b; Pearson et al.,
1999; O’Reilly et al., 2001, Carbno and Canil, 2002; Kopylova and Caro, 2004;
Menzies et al., 2004) which consists of a shallow (<140-150 km) ultra-depleted
olivine-rich layer and a deeper, less-depleted layer. Griffin et al. (1999a) proposed
that the deeper layer represents accreted plume material and that this plume also
provided the transport mechanism for the lower mantle diamonds in the central Slave
(Davies et al., 2004a). However, the high Cr contents of the peridotitic garnet
inclusions from Ekati, DO27, Snap Lake/King Lake, and those of this study at A154
South, cannot be explained by the model of Griffin et al. (1999a), which led Stachel
et al. (2003) to propose an alternative model. Stachel et al. (2003) embrace the model
of Kesson and Ringwood (1989), whereby both of the lithospheric layers in the Slave
represent depleted, former oceanic lithosphere that was imbricated beneath the Slave
during the subduction of hot, young slabs during the Archean. Stachel et al. (2003),
cited experimental evidence in support of their model which shows that the bulk rock
high Cr/Al ratio, implied by the high Cr garnets, could only be achieved by partial

melting at relatively low pressures, in the spinel stability field. In their model,
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Stachel et al. (2003) attribute the less depleted nature of the lower lithospheric layer
to be the result of later metasomatic re-enrichment. The results of this study of the
A154 South diamonds are more consistent with the latter model based on the high Cr
contents observed in the harzburgitic garnets (Figure 3.2), as well as indications of

metasomatic influences seen in the REE data.
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Table 3.1. Summary of the physical and geochemical characteristics of the A154 South diamonds and their mineral inclusions.

Sample _ Assembiage Paragenesis Shape Colour Deformation d13C Type NT (at. ppm) Auﬂallon (%8) |
ddmi-001 2chr Peridotitic D Brown No -45 laAB 526 15
ddmi-002 fper,s Uncertain o) Brown No 0.7 laAB 125 69
ddmi-003 ol Peridotitic 0 Brown No 55 laA 49 4
ddmi-004 2chr Peridotitic I Gray No -5.0 laAB 377 12
ddmi-005 al Peridatitic D Colouriess No 6.3 laAB 86 65
ddmi-006 chr Peridotitic o Colourless No -5.0 1aAB 344 76
ddmi-008 gnt Peridotitic ™ Brown No 5.7 laA 250 4
ddmi-013 ol Peridotitic o Brown Yes -3.9 laA 44 0
ddmi-014 ol Peridotitic o] Brown Na 4.6 laAB 55 38
ddmi-025 2chr Peridotitic (s Colouriess No 51 laA 232 0
ddmi-034 2chr.s Peridotitic I Brown No 45 laA 333 3
ddmi-036  chr,3chr{exp) Peridotitic I Brown No -4.5 laA 247 ]
ddmi-037 Ss Eclogitic D Colourless No 886 laA 270 9
ddmi-040 2chr Peridctitic 0 Brown No -4.3 laAB 142 80
ddmi-043 2chr Peridctitic 0 Colouriess No -4.8 1aAB 179 22
ddmi-044 3chr Peridotitic D Brown No -5.0 laA 245 0
ddmi-D46 chr Peridotitic 0 Colourless No -4.0 laAB 385 65
ddmi-047 chr Peridotitic I Brown No -4.6 laA 435 2
ddmi-048 4cpx Eclogitic D Colourless No -10.5 laAB 165 81
ddmi-049 ol Peridatitic D Brown No -4.2 laB 118 97
ddmi-058 chr Peridotitic 1 Colourless No -51 laA 511 2
ddmi-078 2 Eclogitic D Colourless No -5.2 laA 560 0
ddmi-093 8 Eclogitic D Colourless No 5.1 laA 724 0
ddmi-088 2chr Peridotitic o) Colouriess No -4.3 laA 318 o
ddmi-100  chr,3chr{exp) Peridotitic D Brown No -4.4 laA 19.5 1]
ddmi-101 ol Peridotitic ! Brown No 8.0 faB 410 o8
ddmi-103 chr Peridotitic I Colourless No -5.1 1aAB 178 48
ddmk-108 chr Peridotitic I Colouriess No -5.3 laA 432 4
ddmi-110 ol Peridotitic | Brown No 4.8 laA 481 3
ddmk-111 30l Peridotitic 0 Colouriess No 6.3 laA 195 8
ddmk-112 s Peridatitic (o) Brown Yes 54 laA 366 0
| ddmi-114 fper Uncertain I Brown No =29 1] - -

Abbreviations Shape — O: octahedra, D: dodecahedroid, I: irregular, TM: triangular macel, A: aggregate.

Abbreviations Assemblage — gnt: garnet, ol: olivine, chr: magnesio-chromite, fper: ferropericlase, s: sulphide, cpx: clinopyroxene, coe: coesite, dia: diamond,
(exp): exposed mineral on surface, (alt): altered mineral, comma: non-touching inclusion pair, Ayphen: touching-inclusion pair, number: number of inclusions.
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Table 3.2. Major and trace element compositions of selected inclusions from A154 South diamonds. Major element compositions
(EPMA-analyses) are reported as wt%.

Mineral Garnet Garnet olivine Garnet olivine Gamet Garnet ollvine chromite  chromite olivine clinopyroxene  Gamet Garnet
Sample ddmi-8a ddmi-1564a ddml-154c ddmi-167a ddml-167b ddmi-1998 ddmi-216a ddmi-183a ddmi-183d ddmi-176 ddmi-141b ddmi-141a  ddmi-166a ddmi-206a
emblage ant ant, 2ot ant, 2ol ant, 2ol ant, 20l 2gnt, s 2gnt ol,chr ol,chr chr ol-cpx ol-cpx fognt 2gnt

Suite P P P P P P {therz) P P P P P P E E
0.3 0.03 =0.01 0.02 0.01 <0.01 <0.04 <0.01 - - <0.01 <0.01 0.06 0.08
41.33 41.04 4160 42.07 41.20 41.45 41.32 40.86 0.22 0.10 41,07 54.60 4117 38.72
0.12 0.08 <0.02 =0.02 <0.02 0.068 <0.05 =<0.02 0.29 0.13 =0.02 0.09 0.36 0.36
1417 11.53 <0.02 18.47 50.02 17.69 17.50 =0.02 4.84 587 £0.02 1.02 2277 22.17
10.85 15.68 0.04 8.97 0.04 7.15 7.99 0.05 65.57 64.20 <0.02 1.14 0.08 0.05
0.05 0.05 <0.01 0.04 <0.01 0.05 0.05 =0.01 0.25 0.26 =0.01 0.02 .02 0.02
585 5.82 7.34 5.50 647 6.95 594 7.3 16.13 15.44 6.78 287 9.78 11.20
0.23 0.26 0.11 0.21 0.10 0.29 D.25 0.1 0.09 0.11 0.09 0.10 021 0.19
=<0.01 =0.01 a3 <0.01 0.03 <0.01 <003 0.31 0.08 0.09 0.32 0.06 =0.01 <0.01
2291 19.88 49.93 22,70 50.50 19.52 2180 50.63 1372 13.50 50.45 16.80 11.84 10.79
289 5.91 0.04 3.73 0.04 6.03 434 0.03 - - 0.03 20.80 14.08 13.63
£0.01 0.02 <0.01 0.02 0.02 0.02 0.02 0.02 - - =0.01 1.29 0.14 0.12
<0.01 <0.01 <0.01 =0.01 <0.01 =0.01 =0.02 <0.01 - =0.01 0.02 =0.01 <0.01

- - - 0.09 0.08 - - - -

8844 10030 9945 99.78 85.46 99.24 98.77 99.69 101.27 __ 99.79 98.84 98.83 10056 9833 |
210 473 31 2034 1568
10.79 377 0.86 1.87 6.15 263
1.14 1.36 6.70 12.78 11.32
4988 459 8.52 65.54 27.05 8.41
0.71 022 0.04 0.12 0.10
362 0.81 0.24 0.91 0.83
3.27 0.49 0.67 1.74 161
034 0.15 0.44 1.10 1.05
0.17 002 032 0.50 031
0.13 009 098 1.68 115
0.07 007 0.43 1.19 099
0.30 0.20 035 1.22 085
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Table 3.3. Major element composition (EMPA-analyses, wt%) of selected sulphide inclusions.

Mineral Fe-Ni Sulphide Fe-Ni Sulphide Fe-Ni Sulphide Fe-NiSulphide Fe.Sulphide  Fe-Suiphide  FeSulphide  Fe-Sulphide
Sample ddml-156 ddmi-179 ddmi-199 ddmi-202 ddmi-002 ddmi-037 ddmi-083 ddmi-127
Assemblage sulph ol, sulph 2 gnt, suilph 2 sulph fper, sulph sulph sulph sulph
Peridotitic Paridotitic Peridotitic Peridotitic Eclogitic Eclogitic Eclogitic Eclogitic ;
0.04 0.05 0.03 0.03
<0.06 <0.06 =<0.06 <0.06
45.76 56.47 56.35 56.35
=0.02 =0.02 =0.02 =0.02
=0.01 1.10 1.56 1.56
=0.01 =0.01 =0.01 =0.01
0.36 233 1.33 1.33
0.05 0.27 0.34 0.34
. 0.05 0.03 0.05 0.05
8 36.94 36.85 33.75 37.76 52.91 38.54 38.95 38.95
Total 99.54 99.19 08.74 09.03 99.18 98.80 98.60 98.60
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Table 3.4. Major element composition (EPMA-analyses, wt%) of ferropericlase inclusions of uncertain paragenetic association.

Ferropericlase Ferropericlase Ferropericlase Ferropericlase
ddmi.2 ddmi-114 ddmi-153 ddmi-173
fper, s fper 3fper 2fper
=0.01 =<0.01 <0.01 =<0.01
0.10 0.02 0.13 0.10
=0.02 =0.02 =<0.02 =0.02
=0.02 <0.02 =<0.02 <0.02
0.60 0.36 0.486 0.45
=0.01 =0.01 =0.01 <0.01
21.56 28.53 26.41 20.79
0.15 0.16 0.20 0.15
1.09 203 1.02 1.11
77.22 69.44 71.47 78.26
Ca0 =0.01 <0.01 =<0.01 <0.01
NazO 0.33 0.34 0.22 0.22
KO =0.01 =0.01 =0.01 =0.01
Total 101.13 100.96 £9.99 101.17




- Archean Slave craton

Figure 3.1. Map of the Slave craton and the central Slave
(inset), modified from Bleeker and Davis (1999b) and Davies
et al. (2004a). North, central and south subdivisions for the
Slave are from Griitter et al. (1999).
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Figure 3.2. CaO vs Cr,0O3 (wt%) for gamet inclusions from
A154 South diamonds, other Slave localities and worldwide
sources. The lherzolitic compositional field is taken from
Sobelev et al. (1973).
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Figure 3.3. CaO (wt%) versus molar Mg number for A154
South olivine inclusions, compared to olivines from the Slave
craton and worldwide sources.
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Figure 3.4. NiO (wt%) versus molar Mg number for A154
South olivine inclusions (squares). Note the distinct groupings
for Panda and DO27. The A154 South diamonds, as well as
Snap Lake, overlap both groupings.
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Figure 3.5. Cation proportions (based on 6 oxygens) for clinopyroxenes from A154 South, the Slave craton and
worldwide sources. The shaded area represents clinopyroxenes of websteritic paragenesis (after Davies et al,,

2004b) and separates Cr poor eclogitic clinopyroxenes from the worldwide less abundant, peridotitic Cr-
diopsides.
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Figure 3.6. Cr number versus ferric iron ratio for magnesio-
chromite inclusions from A154 South, Panda, Snap Lake and
worldwide sources. Fe** calculated after Droop (1987).
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Figure 3.7. Composition diagram showing eight eclogitic Fe-
monosulphide inclusions and eight peridotitic Fe-Ni sulphides
from A154 South diamonds, the Slave craton and worldwide
sources in the Fe-Ni-Cu system in elemental wt%.
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Figure 3.8. Photograph of diamond ddmi-200, a colourless
triangular macle (top) containing a colourless, octahedral
diamond inclusion (bottom).
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Figure 3.9. NiO (wt%) versus Mg# for ferropericlase inclusions
from A154 South, the Slave craton, and worldwide localities.
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average normalized to C1 after McDonough and Sun (1995).
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Figure 3.12. Histogram showing the calculated equilibration temperatures (at
assumed pressures of 5 GPa) for coexisting garnet and olivine inclusions (O’Neill and
Wood, 1979; O’Neill, 1980) from A154 South, the Slave craton and worldwide

sources. Touching olivine-garnet inclusions from Panda yielded equilibration
temperatures of 1000 to 1100°C (Stachel et al., 2003; Tappert et al., 2004).
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Figure 3.13. Histograms showing the carbon isotopic composition (8'>Cppg) of diamonds from worldwide
sources (Figure 3.13a) and from A154 South (Figure 3.13b, shown on a more detailed scale). Figure 3.13a
shows diamonds from this study (blue), other Slave kimberlites and worldwide sources. Most of the
isotopically light values observed for the Slave craton are from the dominantly eclogitic DO27 pipe (Davies et
al., 1999 and 2004a). When the DO27 diamonds are removed, the 8'3C values for the Slave range from -16.8 to
-2.1 %o. The carbon isotopic distribution seen for the A154 South pipe is comparatively narrow, with 94% of
diamonds having 8"°C values between -6.3%o and -4.0%o.



10000

N (atomic ppm)

0 20 40 60 80 100
% B

Figure 3.14. The log of the total nitrogen concentration (atomic ppm) versus
the aggregation level (percentage of aggregation into the B-centre). Isotherms
for time averaged (1 and 3 Ga) residence temperature after Taylor et al.

(1990).
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Figure 3.15. Illustration of the metasomatic re-enrichment
event affecting harzburgitic garnets ddmi-216a and ddmi-216¢
from A154 South. Most harzburgitic garnets from A154 South
have sinusoidal REEy patterns typical for harzburgitic garnets
worldwide. The single lherzolitic garnet from this study has a
positive slope in the LREEy and enrichment in the MREEy and
HREEy. Two harzburgitic garnets from diamond ddmi-216
show evidence of metasomatic re-enrichment event with
refertilization towards “normal” REEy patterns typically
observed among lherzolitic garnets. Stachel et al. (2004)
attribute this style of re-enrichment as resulting from melt
metasomatism, since it involves an agent with only moderately
fractionated LREE/HREE. The rare earth element
concentrations are normalized to a garnet from a primitive
mantle bulk rock composition (J-4 garnet peridotite xenoliths
from Jagersfontein) studied by Jagoutz and Spettel.
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Chapter 4: Discussion and Conclusion

4.1. Introduction
Diamonds from the A154 South pipe of the Diavik Diamond mine in the

central Slave craton have been characterized by combined studies of the
morphological characteristics, carbon isotopic composition, nitrogen impurities, and
mineral inclusion chemistry. This provides information for characterizing the
diamond source regions and mantle storage environments, as well as the timing of
diamond growth relative to kimberlite emplacement.

Until recent years, the bulk of information regarding diamond formation
processes has come from diamond inclusion studies mainly from southern Africa and
Siberia. The discovery of high-grade diamondiferous kimberlite pipes on the Slave
craton in Canada has since led to a surge in diamond exploration. Canada’s first
diamond mine, Ekati, began production in 1998 and was followed by Diavik in 2003.
The Jericho pipe in the northern Slave craton is on track to be the Slave’s next
diamond mine with production scheduled to begin in 2006 and Snap Lake is expected
to start production in 2007. With increased exploration and the opening of new
mines, comes the availability of research samples and the opportunity to study the
lithospheric mantle of a comparatively uncharacterized craton. While limited
diamond inclusion studies have been conducted in the Slave craton i.e. Chinn et al.
(1998), Davies et al. (1999), Pokhilenko et al. (2001), Stachel et al. (2003), Davies et
al. (2004a), Pokhilenko et al. (2004), and Tappert et al. (2004), similar studies are

ongoing.

4.2. The Diamonds from A154 South
The diamonds discussed in this study were selected from the +9 to -11 and

+11 sieve-size fraction of the run-of-mine production from A154 South at the Diavik
Production Splitting Facility (PSF) in Yellowknife, Northwest Territories. This
allowed for an opportunity to compare and contrast the inclusion-bearing diamond

population with the remaining A154 South production in these size ranges. While the
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Diavik mine is well known for producing high quality colourless, octahedral stones, it
was found that the Diavik population, within the smaller diamond sizes studied, was
actually dominated by resorbed morphologies. The dominant morphology observed
was dodecahedral, while octahedral stones comprised 14% of the population and
sharp-edged octahedra accounted for only 5% of the diamonds (see pages 162-164).
Cubic morphologies (14%), twins (11%) and aggregates (3%) were also observed. A
large proportion of the diamonds (30%) were found to have irregular shapes, or were
partial diamond fragments that lacked distinguishing crystal faces. At larger diamond
sizes (1, 3 and 5 carat stones), it was noted that the quality of the production greatly
improved, yielding more octahedral stones at the expense of cubes and dodecahedral
morphologies.

However, this morphological distribution was not observed within the
inclusion-bearing diamond population. Inclusion-bearing stones were dominated by
octahedra (39%), followed by dodecahedroids (23%) and irregular/fragmented (21%)
stones. Twins (10%) and aggregates (8%) were also found to contain inclusions,
however, the cubic stones were inclusion-free. Inclusion-bearing diamonds
comprised <5% of the production within the +9 and +11 size range, and at larger
diamond sizes the proportion of inclusion-bearing stones was found to be even
considerably lower.

The dominant body colour of the Diavik production was colourless (63%),
followed by brown (23%) (see page 163). Yellow, pink and grey stones were
observed, but were rare. Conversely, the inclusion-bearing diamonds were dominated
by brown stones (58%), followed by colourless (34%), pink (4%), yellow (2%) and
grey (2%) stones.

While clear differences between the inclusion-bearing and non-inclusion-
bearing populations were observed, there were no distinct correlations between the
inclusion content, colour and morphology of the inclusion-bearing stones, excepting
the observation that all ferropericlase-bearing diamonds were all faint brown in

colour.
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4.3. Diamond sources beneath the Diavik Mine and the central Slave
Davies et al. (1999) reported in their initial study of diamonds from pipe

DO27 that the majority of diamonds were eclogitic (50%), with less abundant
peridotitic (25%) diamonds and an abnormally large proportion (25%) of diamonds
from super-deep sources. Mineral inclusions from DO27 revealed high Mg-numbers
for olivine inclusions (average of 93.3) and a sole harzburgitic garnet showed high
Cr,0; and CaO contents of 14.76 and 5.00 wt%, compared to the worldwide averages
of about 8 and 2 wt%, respectively (Davies et al., 1999). Subsequent studies (Chinn
et al., 1998; Pokhilenko et al., 2001; Stachel et al., 2003; Pokhilenko et al., 2004;
Tappert et al., 2004) have revealed that the diamond source regions in the Slave are
not as anomalous as was initially indicated by the study of DO27. These later studies,
as well as the data presented in this study of A154 South, found that the diamonds
were dominantly (around 80%) peridotitic, with lesser eclogitic and rare
sublithospheric diamonds.

The relatively high CaO content of the harzburgitic garnets and the
comparatively low Mg numbers of the olivine inclusions from A154 South, as well as
other Slave localities (Chinn et al., 1998; Davies et al., 1999; Pokhilenko et al., 2001;
Stachel et al., 2003; Davies et al., 2004a; Pokhilenko et al., 2004; Tappert et al.,
2004) indicate that diamond formation in the central Slave occurred in a moderately
depleted peridotitic environment, compared to that of the Kaapvaal (Stachel et al.,
2003, and references therein) or Siberian cratons (Griffin et al., 1993). The REE data
from garnet inclusions in diamonds from A154 South, Panda (Tappert et al., 2004)
and Snap Lake (Promprated et al., 2004) indicate that this less depleted nature of the
diamond source regions may, in part, reflect metasomatic influences. The
harzburgitic garnets in the Slave typically have sinusoidal REEy patterns that are
enriched in LREE, providing evidence for a depletion event followed by later re-
enrichment in the Slave craton. This study also revealed that a more complex history
is recorded by some of the A154 South garnets. The clear division in harzburgitic
and lherzolitic REEy patterns found at Panda (Tappert et al., 2004) and Snap Lake
(Promprated et al., 2004) does not hold true for A154 South, as observed in the

transitional harzburgitic garnets from diamond ddmi-216. Additionally, the eclogitic
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garnets from A154 South are also anomalous, having REEy concentrations and Ti, Y
and Zr contents that are considerably lower than that observed for eclogitic garnets
worldwide.

Inclusion based pressure-temperature estimates from the Slave craton indicate
that diamond formation in the Slave occurred along a 40-42 mW/m” geotherm which
is similar to diamond formation from other cratons (Stachel et al., 2003, and
references therein). Touching-inclusion estimates reveal equilibration at lower
temperatures, plotting closer to the 37 mW/m? geotherm (Stachel et al., 2003).
Diamond formation temperature estimates from the A154 South diamonds, as
determined from non-touching inclusion pairs, support these observations as the
obtained temperatures of ~1200°C for A154 South correspond to formation along a
40-42 mW/m’ geotherm.

Given the Archean Re-Os ages obtained for sulphide inclusions in diamonds
from the Lac de Gras area (Pearson et al., 2002 and Westerlund et al., 2003b), the
dominance of diamonds having low nitrogen aggregation states (Davies et al., 1999;
Westerlund et al., 2001; Stachel et al., 2003; Westerland, 2003a; Davies et al., 2004a;
Tappert et al., 2004 and this study) would indicate that the temperature decrease
indicated by the touching-inclusion pairs must have occurred shortly after diamond
formation. For this study of the A154 South diamonds, 65% of the diamonds were
Type IaA diamonds with less than 10% of the nitrogen aggregated into the B-centre.
Inclusion-based formation temperatures indicate formation at ~1200°C would then
require cooling of the diamond source region on the order of 100-200°C to reconcile
the inclusion and nitrogen based temperatures.

The amount of diamonds of sublithospheric origin in the Slave also appears to
be considerably less than initially thought. Tappert et al. (2004) reported that 5% of
diamonds from Panda contained mineral inclusion pairs of definitive lower mantle
origin and Pokhilenko et al. (2004) reported that four garnets from Snap Lake
contained a majoritic component (but likely still represent lithospheric sources). All
of the diamonds containing inclusions of ferropericlase in this study of A154 South
and the bulk of the ferropericlase-bearing diamonds from DO27 (Davies et al., 1999

and Davies et al., 2004a) lack the necessary inclusion pairs to unequivocally confirm
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a lower mantle origin. A possible lithospheric origin for the ferropericlase-bearing
diamonds from this study of the A154 South diamonds is further supported by the
observed resorbed octahedral morphologies of the host diamonds, and the Type IaAB
ferropericlase-bearing diamonds.

The diamond source regions in the Slave are also characterized by an
uncommonly narrow carbon isotopic distribution of the diamonds. Carbon isotopic
analyses have revealed that all of the A154 South diamonds from this study fall
within a narrow range of -10.5%o to +0.7%o, with 94% of these diamonds having
typical mantle values of -6.3%o and -4.0%eo, irrespective of paragenesis. Similar
narrow 8'°C distributions are also observed at Snap Lake (Pokhilenko et al., 2001 and
2004) and Panda (Westerlund et al., 2001 and 2003a). However a small number of
eclogitic diamonds from Ekati (Chinn et al., 1999) and the bulk of the eclogitic
diamonds from DO27 (Davies et al., 2004a) have isotopically lighter values. The
narrow 8'"°C distribution corresponding to typical mantle values observed in the A154
South diamonds may indicate that diamond formation resulted from an unfractionated
fluid/melt carrying primordial carbon.

It has been proposed that a two-layered lithospheric structure exists in the
central Slave (Griffin et al., 1999a; Griffin et al., 1999b; Pearson et al., 1999;
O’Reilly et al., 2001; Menzies et al., 2004) and it has also been suggested that this
lithosphere may also extend into the southwestern Slave (Carbno and Canil, 2002).
Locally, within the Lac de Gras area, xenolith studies have shown no significant
compositional variability (Pearson et al., 1999; Griffin et al., 1999a; Griffin et al.,
1999b, Mengzies et al., 2004) between individual kimberlite pipes. This suggests that
the dominantly eclogitic mantle sample contained in the DO27 pipe is an anomaly in
the central Slave and that this variance may be related to sampling by the kimberlite.
Similar paragenetic associations, inclusion mineral chemistry, estimated P-T
conditions of formation, narrow ranges of carbon isotopic composition of the
diamonds and comparable nitrogen characteristics are observed among diamonds

from the pipes at Ekati, Snap Lake/King Lake and A154 South.
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Appendix A: Analytical Methods
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A.1. Diamond Cleaning
After receiving samples from the Diavik Product Splitting Facility (PSF) in

Yellowknife, the diamonds were thoroughly cleaned in the laboratory of Dr. Larry
Heaman. Samples were placed in SmL PFA Teflon vials which were filled with ~
4mL of 48% reagent grade hydrofluoric acid. The vials were placed on a hot plate
and heated at ~70°C overnight. The vials were removed from the hotplate and placed
in an ultrasonic bath for 5 minutes. The hydrofluoric acid was diluted and decanted
using distilled water. The samples were then rinsed and decanted three times with
distilled water and a further three times using ethanol. The diamonds were dried at
room temperature on weigh paper and placed in their respective sample containers.

Prior to analysis, each stone was cleaned using an ultrasonic bath with ethanol for

~10 minutes.

A.2. Diamond Crushing and Polishing

Following detailed microscopic examination to document inclusion content
and all distinguishing features, the diamonds were cracked using a steel piston
crusher. After breakage, the inclusions were recovered and individually mounted in
~5 mm long brass rings, having an inside diameter of 5 mm, using Araldite® epoxy
resin. The brass rings were then placed on a hot plate at ~45°C and left to harden for
48 hours. After hardening of the resin, the samples were polished on 600 and 800 grit
plates. A final polish was performed using a silk-screen plate and 1/4 pm diamond

paste. The samples were then cleaned for ~5 minutes using an ultrasonic bath with

purified ethanol.

A.3. Electron-Probe Microanalysis (EMPA)
A.3.1. Introduction

The concentrations of major and minor elements of the mineral inclusions in
the A154 South diamonds were quantitatively determined using electron microprobe
(EMPA) techniques. For analysis, a beam of electrons was used to bombard the
sample, resulting in the emission of characteristic X-rays. When the incident

electrons interact with the atoms of the sample they do not penetrate in a linear
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fashion, but rather become scattered. Two different types of scattering occur, elastic
and inelastic. During elastic scattering the kinetic energy and velocity remain
constant, but the trajectory changes, resulting in a process known as electron
backscattering. During inelastic scattering, there are only slight changes in the
trajectory, however there is energy lost due to interactions with the orbital electrons

of the sample. This inelastic interaction will result in the following phenomenon:
a) photon excitement (heating)
b) cathodoluminescence
¢) continuum radiation (bremsstrahlung radiation)
d) production of secondary electrons
e) production of backscattered electrons
f) ejection of outer shell electrons (Auger electron production)

g) emission of characteristic x-rays (WDS and EDS)

If electrons of sufficient energy strike the sample, each element present in the
sample will emit characteristic X-rays having wavelengths unique to that particular
element. The intensities of X-ray production at these wavelengths can then be
detected and measured. A quantitative measure may then be obtained, after

comparison to standards and matrix corrections are applied.

A.3.2. Instrumentation
The JXA-8900 SuperProbe at the University of Alberta is equipped with 5

wavelength dispersive X-ray spectrometers (WDS). In a WDS spectrometer, the X-
rays impinge upon a diffracting crystal that is set at a particular angular position
designed to diffract only the characteristic X-ray of interest. The diffracted X-rays
will then enter a gas-filled proportional counter and are counted. Several elements
can be measured on a single spectrometer, as the position of the diffracting crystal
and the associated counter can adjusted to accept a range of characteristic
wavelengths.

The electron microprobe at the University of Alberta is also equipped with an

energy dispersive spectrometer (EDS). For EDS, the entire X-ray spectrum is
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acquired simultaneously, allowing for a prompt qualitative assessment of the sample.
While EDS can be also be used for the analysis of some major elements, the WDS
method used in this study provided precise measurement of major and minor
elements.

The JXA-8900 SuperProbe also contains a backscatter electron detector (BSE)
which is used for sample imaging during this study. The backscatter efficiency is a
function of the atomic number of the sample, thus the image contrasts seen are due to

the differences in the atomic number of the various phases in the sample.

A.3.3. Sample Preparation
Each sample was cleaned for ~5 minutes in an ultrasonic bath using ethanol,

followed by an additional ~5 minutes in petroleum ether. Samples were then carbon
coated, to attain electrical conductivity, by combusting carbon rods in a vacuum

chamber.

A.3.4. Analytical Settings
Wavelength dispersive X-ray spectrometers (WDS) were used for quantitative

analyses. Analyses were conducted using a 20 kV acceleration voltage and a 20 nA
beam current with a beam size of 1-3 um. Spectrometer settings for silicate phases,
spinels and sulphides are summarized in Table B.1, showing (1) X-ray line, (2)
detector crystal, (3) background measurement position relative to the peak position,
(4) background and peak counting times, (5) measurement mode, and (6) secondary
standards.

Natural and synthetic silicate, oxide and metal standards were used. Detection
limits (Table B.2) were calculated at 99% confidence (exceeding 3 standard
deviations of the background, 3o}) using the following equation, where I, and I, are

the peak and background count rates (cps), respectively, and ty is the time of

DL =31,t, /(1 t, - 1,t,)

background counting.
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Detection limits were less than 200 ppm for all silicates, oxides and metals,
excepting TiO, (207 ppm) for silicate analyzes, Ti (231 ppm), and Cr,O3 (643 ppm)
for spinel analyses, and Cr (575 ppm) and Zn (257 ppm) for sulphide analyses.

A 4. Secondary Ion Mass Spectrometry (SIMS)
A.4.1. Introduction

The concentrations of selected rare earth elements (REE: La, Ce, Nd, Sm, Eu,
Dy, Er and Yb) and additional trace elements (Ti, Sr, Y, and Zr) of 12 garnet
inclusions were determined using Secondary Ion Mass Spectrometry (SIMS).
Measurements were conducted at the Northwest National Ion Microprobe Facility
(NENIMF) at the Woods Hole Oceanographic Institute by Dr. Nobumichi Shimizu
using a CAMECA IMS-3f ion microprobe.

For analysis, negatively charged oxygen ions are accelerated onto a clean,
gold coated surface (providing electrical conductivity). This energetic bombardment
causes atoms of the sample to be ejected in a spluttering process. Thus, the surface of
the sample becomes a source of secondary ions which represent the elements or
isotopes found in the near surface region of the sample. The resulting secondary ions
are accelerated into the mass spectrometer where they are separated according to their
mass and are counted at the detector.

The SIMS technique is considered “destructive” as it generally creates a pit on
the order of 10 to 20 um in diameter, having a depth of a few microns. However,
with large enough grains, or additional polishing, repeat analyses are possible.
Another key advantage of the SIMS technique is that it can provide sensitivities near

parts per billion.

A.4.2. Sample Preparation
Each polished sample was cleaned for ~5 minutes in an ultrasonic bath using

ethanol, followed by an additional ~5 minutes in petroleum ether. Samples were then

coated with gold to attain electrical conductivity.
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A.4.3. Analytical Settings
Secondary ions were sputtered by bombardment of the sample with a beam of

negatively charged oxygen ions. The nominal impact energy of the primary beam on
the sample surface was 14.5 keV. The primary beam size used was 20 pm for the
determination of the REE concentrations and ~5 um for the trace element
determination of Ti, Sr, Y, and Zr. An energy offset of -60V for REE and -90V for
trace elements (Ti, Sr, Y and Zr) was applied to suppress molecular interferences
(Shimizu and Hart, 1982). Count rates for each element and the background were
collected for 50 seconds. Elemental abundances were calculated using empirical
relationships between concentration and secondary ion yields for well-established
standards (working curves) and normalization to an internal silicon standard. The
results were further verified by repeat analyses of secondary mineral standards (PN1
and PN2). Analytical uncertainties were on the order of 10-25% (relative) for REE

and 5-15% for other trace elements.

A.S. Carbon Stable Isotope Analysis
A.5.1. Sample Preparation

For carbon isotope analysis, 1-2 g of purified copper oxide (CuO), as a
oxygen source, was combined with 0.5-1.5 mg of diamond fragments (clear,
transparent single fragments where available) in a ~ 25 cm long quartz glass tube,
with a 5 mm diameter. The tube was evacuated overnight and was then cut and
sealed using a blow torch to remove it from the vacuum line. The sealed tube was
then heated for ~10 hours at 980°C to combust the diamond fragments and allow for
the formation of CO;, gas. After slow cooling (2-3 hours) the quartz tube was then
broken under vacuum. The CO, gas was extracted under vacuum, using nitrogen
traps and a mixture of dry ice and ethanol to remove impurities. The volume of
sample gas was measured during the extraction to assure that there was complete

combustion of the sample. The sample gas was transferred to glass sample tubes.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.5.2. Sample Analyses
Measurements of the carbon isotopic composition of the diamonds were

determined in the Stable Isotope Laboratory at the University of Alberta by Dr. Karlis
Muehlenbachs, using a Finnigan Mat 252 Mass Spectrometer. Eight analytical cycles
were performed for each sample to ensure high accuracy. For calibration, a
laboratory-standard CO, gas was measured simultaneously.

The carbon isotopic composition is expressed using delta () notation, where 6
is the difference in the isotopic ratio between the sample and a standard, expressed in
parts per thousand or per mille (%o). The 8'2C are reported relative to the PDB

(belemnite from the Peedee Formation) standard.

1B3C/ 12Csample - 3C/ 12Cstandard
sample = x 1000
13Cy12C

d13C

standard

Three diamonds were selected for a reproducibility study (Table B.3),
whereby four separate measurements per stone revealed a maximum variation of
0.18%o. The observed variation may be related to slight differences in the combustion
and/or extraction process, or to isotopic heterogeneities within the diamond.

Analytical precision is on the order of £0.1%eo.

A.6. Fourier Transform Infrared (FTIR) Spectroscopy
A.6.1. Introduction

The concentration and aggregation state of the nitrogen impurities in the A154
South diamonds were determined using Fourier Transform Infrared (FTIR)
Spectrometry. Nitrogen is the most frequently occurring impurity in diamond and
can be present in concentrations exceeding 1000 ppm. Nitrogen is present in most
diamonds, but the aggregation of the nitrogen has been found to vary. Diamonds are
classified into the following categories, based on the presence or absence of nitrogen

and its aggregation state:
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Type I: Diamonds that contain detectable nitrogen; subdivided into:
Type Ia: Diamonds containing aggregated nitrogen (A-centres, B-
centres, N3-centres and platelets), further subdivided into:
Type IaA: Diamonds having ( =90%) of the nitrogen in A-
centres
Type [aB: Diamonds having (=90%) of the nitrogen in B-
centres
Type IaAB: Diamonds with nitrogen in both A- and B-centres
Type Ib: Diamonds with single substitutional nitrogen
Type II: Diamonds that do not contain nitrogen, or concentrations of nitrogen
below the level of detection; subdivided into:
Type Ila: Nitrogen free diamonds

Type IIb: Diamonds with boron as the major impurity

A.6.2. Sample Preparation
Analyses were conducted on transparent, inclusion-free diamond cleavage

chips recovered from the initial diamond breaking. Between two and five analyses
were performed for each diamond, with reported concentrations representing an

average. The cleavage chips were individually placed onto a sample holder under the

IR microscope.

A.6.3. Analytical Settings
Measurements were conducted at the University of Alberta using a Thermo

Nicolet Nexus 470 FT-IR spectrometer coupled with a Continuum IR microscope that
was equipped with a KBr beam splitter.

The system was continuously purged with nitrogen gas to maintain a stable
environment and prior to analysis a background measurement was performed.
Additional background measurements were conducted every two to three hours.
Measurements were collected in transmission mode using an aperture size ranging
between 50 and 100 um, as determined by sample size. Spectra were collected in the

range of 650 to 4000 cm™' for 200 seconds, at a spectral resolution of 4 cm’™.
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In order to determine the nitrogen concentration and aggregation state of a
sample quantitatively, the spectra of the sample diamond were background corrected,
normalized to a thickness of 1cm and the resulting spectra were then deconvoluted.

The normalization was accomplished by measuring the absorption spectrum
of'a Type II (nitrogen free) diamond standard and performing baseline correction.
The absorbance at 1995 cm™ was then determined and normalized to 11.94, the
experimentally determined intrinsic absorbance in diamond.

During the measurement of an unknown sample, the sample spectra were
baselined and then the normalized Type II spectrum was “subtracted” (involving a
normalization process), removing the pure diamond spectrum from the nitrogen
spectrum. Spectral deconvolution, using the deconvolution software CAXBOS7
developed by David Fischer (Research Laboratories of the Diamond Trading
Company, Maidenhead, UK), was used to determine nitrogen contents and
aggregation states. The deconvolution program separated the sample spectrum into
A-, B- and D-components and calculated the absorption coefficient values for each
component. Examples of Type laA, IaB and 1aAB spectra are shown in Figure B.1.

Nitrogen concentrations (atomic ppm) were calculated from absorption
coefficient values at 1282 cm™' using experimentally derived conversion factors for
the A-centre (Boyd et al., 1994) and the B-centre (Boyd et al., 1995). Detection
limits and analytical errors are variable as they are highly dependant on sample

quality. Detection limits and analytical errors are typically on the order of 10 - 20
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Table A.1. Settings for the quantitative electron microprobe analysis (EMPA) of major and minor elements using wavelength

dispersive spectrometers (WDS).

Minerals; Silicates

Element X-Ray Crystal Backaround Position Count Times PHA Standard
Lower Upper Peak Backgr. Mode

K Ke PET 2.500 2.500 20 10 Differential Qrthoclase
\ Ka LiIFH 3.000 3.000 a0 15 Intergral V-metal
P Ka PETH 1.800 1.500 20 10 Differential Apatite
Na Ka TAPJ 3.000 3o 30 Differential Albite
Ni Ka LIFH 1.500 1.800 50 25 Intergral Ni-metal
Ti Ko PET 2.000 2.000 50 25 Differential Rutile
Al Ka TAP 2.600 2.000 20 10 Differential Pyrope
Ca Ko PETH 2.000 2.000 20 10 Intergral Diopside
Si Ka TAPJ 2.000 20 10 Differential Diopside
Fe Ka LiFH 2.600 1.500 20 10 Differential Fayalite
Cr Ka PET 1.831 2.000 20 10 Differential Chromite
Mn Ko LIFH 2.000 2.000 K1) 15 Intergral Mn,O,
Mg Ka TAP 3.000 30 30 Differential Fog;
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Table A.2. Electron microprobe analyses (EMPA) detection limits calculated at 99% confidence.

Minerals: Silicates

Element Peakintensity Background Peak Background No.Averaged DetectionLimit Standard Detectionlimit Detection Limit
{cps) intensity (cps) Time(s) Time (s) Analyses {relative wit%) (wt %) {wt %) {ppm)
K0 27459 37.3 20 20 5 0.00068 14.920 0.0101 101
MgQ 738.5 118 30 20 5 0.00116 8.600 0.0100 100
P20s 3875.5 50.5 35 a5 5 0.00042 40.870 00172 172
Na:0 10281 9.1 30 30 5 0.00073 11.590 0.0084 84
NiO 39015.6 286.3 25 25 5 0.00012 127.253 0.0149 149
TiO2 215738 268.85 25 25 5 0.00021 100.000 0.0207 207
203 1872.3 72 20 20 5 0.00141 12.600 0.0178 178
Ca0 9210.4 90.8 30 30 5 0.00026 25.740 0.0066 66
Si0, 11909 54.9 10 10 5 0.00027 55370 0.0147 147
FeQ 16743.7 102.6 15 15 5 0.00021 €7.550 0.0142 142
Cr 0 7484.8 115.25 20 20 5 0.00044 40.700 0.0178 178
MnQ 20327.4 97.45 15 15 5 0.00017 89.866 0.0152 152
s 495621 115.65 15 15 5 0.00008 147.114 00111 111
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Table A.2. (cont.)

Minerals: Spinels

[Oxide Peak intensity Background Peak Background No.Averaged DetectionLimit Standard DetectionLimit Detection Limit
(cps) intensity (cps) Time(s) Time (s) Analyses {relative wt%) {wt %) (wt %) {ppm)
MpQ 7624 .4 185 30 0 4 0.00015 51.630 0.0080 80
NIiO 39015.6 286.0 50 25 4 0.00013 127.253 0.0167 167
TiO: 215738 268.9 50 25 4 0.00023 100.000 0.0231 231
Zn) 5261.4 128.85 100 100 4 0.00033 42.500 0.0141 141
A0y 1951.9 35.7 20 10 4 0.00148 12.600 0.0186 186
Si02 12512.0 423 20 10 4 0.00025 55.370 0.0137 137
FeQ 16835.9 108.2 20 10 4 0.00029 67.550 0.0199 199
Cr204 7554 .4 544.7 20 10 4 0.00158 40.700 0.0643 643
MnO 20327.4 97.5 30 15 4 0.00019 89.866 0.0170 170
208 49562.1 115.7 30 15 4 0.00008 147.114 0.0124 124




"uoissiwad noyum pauqiyosd uononpoudas Joyung “Jsumo 1ybuAdos sy jo uoissiuad yum paonpoiday

IT1

Table A.2. (cont.)

Minerals: Sulphides

[Element Peak intensity Background Peak Background No.Averaged DetectionLimit Standard DetectionLimit Detection Limit
(cps) Intensity (cps) Time(s) Time (s) Analyses {relative wi%) {wt %) {wt %) {ppm) |
Cr 7554 .4 544.7 20 10 5 0.00141 40.700 0.0575 575
IM\ 4555.5 16.2 100 50 5 0.00017 100.000 0.0168 168
Si 12512.0 16.2 30 15 5 0.00011 25.884 0.0029 29
|Fe 16835.9 108.15 20 10 5 0.00026 52.508 0.0138 138
S 5438.9 376 40 20 5 0.00034 53.447 0.0182 182
Mg 8707.1 8.1 3o 15 5 0.00011 31.137 0.0035 35
Co 36708.0 2534 30 15 5 0.00015 100.000 0.0151 151
Ni 378226 290.7 50 25 5 0.00012 100.000 0.0122 122
Cu 727 3025 40 20 5 0.00015 100.000 0.0154 154
n 11154.9 168 40 20 5 0.00039 66.800 0.0257 257




Table A.3. Results of three reproducibility experiments used to examine the
variability of the obtained carbon isotopic values.

Sample

No. Fragments _ Weight (mg) 87°C (%)

ddmi-269(1)
ddmi-269(2)

ddmi-269(3)
ddmi-269(4)

1

1
2
1

1.2 -5.420
08 -5.452
0.8 -5.471
1.6 -5.418

Average = -5.44OI
Standard Deviation = 0.026
Maximum Variability = 0.051

ddmi-44(1)
ddmi-44(2)
ddmi-44(3)
ddmi-44(4)

— o e

Sample No. Fragments _ Weight (mg) s‘-"cw

1.0 -5.020
13 -4.923
08 -5.014
1.2 -4.971

Average = -4 982
Standard Deviation = 0.045}]
Maximum Variability = 0.097

ddmi-1(1)
ddmi-1(2)
ddmi-1(3)
ddmi-1(4)

4
4
1
3

Sample No. Fragments _ Weight (mg) _ 8"°C (%)

1.0 -4.480
0.8 -4.504
06 -4.435
0.7 -4.322

112

Average = -4.435|

Standard Deviation = 0.081
Maximum Variability = 0.182
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Figure A.1. Examples of infrared spectra of Type IaA, Type
IaB, and Type [aAB diamonds collected from A154 South
samples ddmi-7, ddmi-129, and ddmi-213, respectively.
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Appendix B: Diamond Photographs

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.1. Morphologies

Octahedra

Figure B.1. Examples of representative octahedral crystals. (a)
Flat-faced octahedron. (b) Tabular octahedron. (c-¢) Slightly
resorbed octahedron. (f) Elongated, slightly resorbed
octahedron. Photographs (a-f) are from diamonds ddmi-157,
ddmi-143, ddmi-202, ddmi-206, ddmi-141, and ddmi-46.
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Cubes

Figure B.2. Examples of cube morphologies. Photographs (a-d)
are from diamonds ddmi-218, ddmi-178, ddmi-219, and ddmi-
220.
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Twins

Figure B.3. (a) Octahedral macle (spinel twin). (b) Octahedral
contact twin. (¢) Tetrahexahedral twin. Photographs (a-c) are
from diamonds ddmi-221, ddmi-129, and ddmi-189.
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Tetrahexahedra

Figure C.B. Representative dodecahedroid shapes, classified
based on >50% respotion to dodecahedral faces. (a-f) Scale of
increasing degree of resorption, from 50% to 90%. (g-h) Fully
resorbed dodecahedra crystals. Photographs (a-h) are from
diamonds ddmi-134, ddmi-48, ddmi-201, ddmi-129, ddmi-136,
ddmi-127, ddmi-222, and ddmi-223.
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Aggregates

Figure B.S5. Aggregates of three or more stones. (a-c)
Octahedral aggregates. (d) Aggregate of three cubes. (e-f)
Tetrahexahedra aggregates. Photographs (a-f) are from
diamonds ddmi-162, ddmi-135, ddmi-177, ddmi-217, ddmi-
198, and ddmi-189.
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Irregular

Figure B.6. Examples of diamonds having irregular shapes.
These stones lack distinguishing crystal faces that would allow
for the classification into one of the other morphological
subdivisions. Photographs (a-d) are from diamonds ddmi-160,
ddmi-47, ddmi-203, and ddmi-44.
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Fragments

Figure B.7. Characteristic diamond fragments. (a-d) Show
examples of diamonds with fresh breaks, having no evidence of
etching or resorption. (e-f) Examples of old breaks (prior to
kimberlite eruption), which have experienced resorption.
Photographs (a-f) are from diamonds ddmi-125, ddmi-152,
ddmi-130, ddmi-190, ddmi-158, and ddmi-161.
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B.2. Colour

Colourless

Figure B.8. Examples of colourless diamonds. Photographs (a-
f) are diamonds ddmi-224, ddmi-98, ddm-141, ddmi-198,
ddmi-103, and ddmi-108.
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Brown

Figure B.9. Diamonds showing increasing intensity of brown
body colours. (a-b) Faint brown body colours. (c-d)
Intermediate brown body colours. (e-f) Strong brown body
colours. Photographs (a-f) are from diamonds ddmi-147, ddmi-
100, ddmi-170, ddmi-13, ddmi-123, and ddmi-107.
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Pink

Figure B.10. Diamonds showing a range of pink body colours.
(a-b) Faint pink body colours. (c-e) Intermediate pink body
colours. (f) Strong pink body colour. Photographs (a-f) are
from samples ddmi-205, ddmi-124, ddmi-117, ddmi-139,
ddmi-226, and ddmi-225.
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Yellow and Grey

Figure B.11. (a-b) Diamonds with yellow body colours. (c-d)
Diamonds with grey body colours. Photographs (a-d) are from
diamonds ddmi-227, ddmi-228, ddmi-159, and ddmi-229.
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B.3. Surface Features

Terraces

Figure B.12. Terraces are raised triangular plates/growth layers
on octahedral crystal faces. Photographs (a-d) are diamonds
ddmi-205, ddmi-6, ddmi-211, and ddmi-179.
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Shield and Serrate Laminae

Figure B.13. Shield and serrate laminae are resorption features
that are observed on the diamond surface as thin, raised lines
that are parallel to octahedral growth. (a-c) Examples of shield
laminae. (d) Example of serrate laminae. Photographs (a-d)
are from diamonds ddmi-205, ddmi-10, ddmi-144, and ddmi-
181.
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Herringbone Line

Figure B.14. Herringbone lines are planes of contact twinning
where the “spine” marks the plane of twinning. Photographs
(a-c) are from diamonds ddmi-117, ddmi-216, and ddmi-151.
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Trigons

Figure B.15. Negatively-oriented trigonal etch pits (trigons).

(a) Shows an example of pyramidal (pointed-bottomed) and
terraced trigons. (b-c) Flat-bottomed trigons. (d-f) Examples of
trigons with positive relief. Photographs (a-f) are from
diamonds ddmi- ddmi-120, ddmi-167, ddmi-194, ddmi-27,
ddmi-155, and ddmi-29.
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Hexagons

Figure B.16. Hexagonal pits (hexagons) are flat-bottomed etch
pits which represent a combination of positive and negative
trigons and are indicative of changing mantle conditions. (a-b)
Fully developed hexagons. (c) Partly developed hexagons.
Photographs (a-c) are from diamonds ddmi-14, ddmi-170, and
ddmi-164.
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Tetragons

Figure B.17. Tetragonal etch pits (tetragons) on cube faces. (a-
c¢) Examples of tetragons with positive relief. (d) Tetragons
with negative relief. Photographs (a-d) are from diamonds
dmi-151, ddmi-230, ddmi-231, and ddmi-178.
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Hillocks

Figure B.18. Hillocks are resorption features observed on
tetrahexahedral faces, often observed forming along octahedral
growth planes. (a) Broad, rounded, high relief ellipsoidal
hillocks. (b) Example of a pyramidal hillock having a rounded,
triangular-pyramidal form. Pyramidal hillocks are typically
isolated or scattered occurrences on tetrahexahedral faces. (c)
Rounded ellipsoidal hillocks (blue arrow) and the most
frequently observed type of hillock, fine, narrow, elongate
hillocks (red arrow). Photographs (a-c) are from diamonds
ddmi-37, ddmi-136, and ddmi-121.
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Inclusion Voids

Figure B.19. Inclusion voids are the sites of pre-existing
mineral inclusions that have fallen out, or have dissolved out
of, their host diamond. (a) Inclusion void that has experienced
resorption. (b) Inclusion void that experienced minor resorption
but still preserves the inclusion shape. (c) Pristine, unresorbed
inclusion void. Photographs (a-c) are from diamonds ddmi-
208, ddmi-140, and ddmi-123.
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Plastic Deformation

Figure B.20. Plastic deformation is observed as a series of
fine, parallel, laminations on dodecahedral faces or as linear
orientations of trigons on octahedral faces. (a) Shows plastic
deformation in one direction. (b) Plastic deformation in two
directions, with associated lines of trigons. Photographs (a)
and (b) are from diamonds ddmi-207 and ddmi-188.
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Frosting

Figure B.21. Representative diamond frosting. (a-b) Fine
frosting superimposed onto other surface features, including
trigons. (c) Coarse frosting which typically has etch pits on the
outer surface. The etch pits range from irregular to trigonal
and hexagonal shapes, with negative relief. Photographs (a-c)
are from diamonds ddmi-174, ddmi-46, and ddmi-47.
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Coats

Figure B.22. Representative diamond coats. (a-c) Partially
coated diamonds. (d) Fully coated diamond. Photographs (a-d)
are from diamonds ddmi-267, ddmi-184, ddmi-257 and ddmi-

266.
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Internal Fractures

Figure B.23. Internal fractures in diamonds. (a-b) Examples of
internal fractures. (c-d) Internal fractures that have been lined
by graphite. Photographs (a-d) are from diamonds ddmi-206,
ddmi-155, ddmi-106, and ddmi-132.
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B.4. Inclusion Content

Peridotitic Garnet

Figure B.24. Peridotitic garnet inclusions. (a-b) Diamond
ddmi-8 contained one harzburgitic garnet inclusion. (c-d)
Diamond ddmi-199 contained two lherzolitic garnet inclusions.
(e) Six harzburgitic garnet inclusions in sample ddmi-175. (f)
Harzburgitic garnet and olivine inclusion pair from ddmi-154.
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Olivine

Figure B.25. Olivine inclusions in diamonds. Photographs (a-
f) are from diamonds ddmi-165, ddmi-123, ddmi-174, ddmi-
101, ddmi-210, and ddmi-187.
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Chromite

Figure B.26. (a-d) Chromite inclusions encapsulated in
diamonds. (e-f) Exposed chromite inclusions on the diamond
surface. Subsequent analyses revealed no compositional
differences between enclosed and exposed inclusions.
Photographs (a-f) are from diamonds ddmi-121, ddmi-169,
ddmi-46, ddmi-119 (included), ddmi-119 (exposed) and ddmi-
36.
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Clinopyroxene

Figure B.27. (a) Four eclogitic clinopyroxene inclusions with
faint green colouration. (b) Colourless peridotitic
clinopyroxene inclusions and stacked graphite inclusions. (c)
Touching peridotitic clinopyroxene-olivine inclusion pair.
Photographs (a-c) are from diamonds ddmi-48, ddmi-186, and

ddmi-141.
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Sulphides

Figure B.28. Sulphide inclusions in A154 South diamonds
typically occur as thin smears on internal cleavage surfaces
which radiate out from distinct sulphide crystals. Photographs
(a-f) are from ddmi-37 (diamond), ddmi-37 (inclusion), ddmi-
211, ddmi-97, ddmi-122, and ddmi-198.
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Eclogitic Garnet

Figure B.29. Eclogitic garnet inclusions. Photographs (a-f) are
from diamonds ddmi-205 (diamond), ddmi-205 (inclusion),
ddmi-102 (diamond), ddmi-102 (inclusion), ddmi-208, and
ddmi-166.
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Other Inclusions

Figure B.30. Rare inclusions in A154 South diamonds. (a-c)
Ferropericlase inclusions of uncertain paragenetic association.
(d) Eclogitic coesite inclusion. (e-f) Octahedral diamond
inclusion enclosed within a triangular macle. Photographs (a-f)
are from diamonds ddmi-173, ddmi-114, ddmi-154, ddmi-193,
ddmi-200 (diamond), and ddmi-200 (inclusion).
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Graphite

Figure B.31. Representative graphite inclusions. (a-b) Stacked
graphite inclusions. (¢) Wispy graphite inclusions.
Photographs (a-c) are from diamonds ddmi-37, ddmi-63, and

ddmi-98.
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Altered Inclusion

Figure B.32. Examples of altered inclusions from A154 South
diamonds. Altered inclusions are typically orange or white in
colour and are associated with fractures. Photographs (a-c) are
from diamonds ddmi-213, ddmi-171, and ddmi-207.
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Supplementary Data

Appendix C
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C.1. Microprobe Data

Table C.1. Inclusion abundance table for the 100 diamonds (161 inclusions) from A154 South studied.

Perldotitic (83 Diamonds)
Pyrope garmet

Olivine

Chromite

Cr-diopside

NiFe-suiphide

Altered pyrope gamet

Eclogltic (12 Diamonds)
Pyrope-almandine garnet

Omphacitic clinopyroxene
Coesite

Fe-sulphide

Uncertain (5 Dlamonds)
Ferropericlase

Diamond

(133 inclusions)
"
54
56

N ON

(20 inclusions)
7

4
1
8

(8 inclusions)

7
1
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Table C.2. Electron microprobe analyses of garnet inclusions from A154 South diamonds. Major element compositions (EPMA-
analyses) are given as wt%

Sample ddmi-8a ddmi-133a ddmi-133b ddmi-154a ddmi-166a ddmi-186b ddmi-166¢
Assemblage ant 2ant 2gnt ant, 2ol 10gnt 10gnt 10gnt
Suite P P P P E E E
P20y 0.03 0.03 0.02 0.03 0.06 0.04 0.04
SiO, 41.33 42.33 41.95 41.04 41.17 41.67 41.76
TiO; 0.12 0.1 0.12 0.08 0.36 0.30 0.30
AlyO, 14.17 15.00 14.75 11.53 2277 22.44 22.76
Cr,0, 10.85 10.87 10.83 15.68 0.08 0.08 0.08
V205 0.05 0.06 0.06 0.05 0.02 =0.01 0.02
FeQ 685 6.07 6.31 5.82 9.75 9.35 9.42
MnO 023 0.24 0.27 0.26 0.21 0.18 0.17
NIO =0.01 =0.01 =<0.01 =0.01 =0.01 =0.01 =0.01
MgO 2291 23.44 2328 19.88 11.94 11.87 12.09
Ca0 2.89 264 2.66 581 14.08 14.57 14.43
Na;O =<0.01 =0.01 =<0.01 0.02 0.14 0.14 0.14
K,0 =0.01 =0.01 =<0.01 =0.01 =<0.01 <0.01 =0.01
|Oxide Total 98.44 100.84 100.28 100.30 100.58 100.68 101.24
P 0.003 0.002 0.005 0.003 0.007 0.005 0.005
Si 6.078 6.067 6.056 6.066 5.999 6.058 6.035
Ti 0.013 0.012 0.013 0.009 0.039 0.033 0.033
Al 2.455 2534 2.510 2.008 3.909 3.845 3.877
Cr 1.261 1.232 1.236 1.832 0.009 0.010 0.009
all 0.005 0.007 0.006 0.006 0.002 0.002 0.002
Fe* 0.719 0.728 0.762 0.719 1.188 1.137 1.139
Mn 0.028 0.029 0.033 0.033 0.026 0.022 0.021
Ni 0.001 0.001 0.002 0.001 0.000 0.001 0.001
Mg 5.023 5.009 5.010 4 380 2.583 2.573 2.606
Ca 0.456 0.406 0.411 0.935 2198 2.270 2.234
Na 0.004 0.002 0.000 0.005 0.039 0.040 0.039
K 0.000 0.002 0.002 0.001 0.001 0.000 0.000
[Cation Total 16.045 16.032 16.047 15.999 16.010 15.994 16.000
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Table C.3. Electron microprobe analyses of olivine inclusions from A154 South diamonds. Major element compositions

(EPMAanalyses) are given as wt%.

ddmi-3a ddmi-5b ddmi-13a ddml-14a ddmi-48a ddmi-101a ddmi-111a
ol ol ol ol ol ol 3ol
P P P P P P p
0.02 0.02 =0.01 <0.01 0.02 =0.01 =0.01
4075 40.51 39.67 41.11 40.45 4057 41.32
=0.02 =0.02 =0.02 =0.02 =0.02 =0.02 =0.02
=0.02 <0.02 <0.02 <0.02 =0.02 <0.02 =0.02
0.04 0.05 0.04 0.04 0.05 0.04 0.04
=0.01 =0.01 =0.01 =<0.01 <0.01 <0.01 =0.01
6.25 8.77 6.87 7.00 9.00 7.52 6.96
0.08 0.09 0.08 0.09 0.1 0.11 0.10
0.31 0.31 0.30 0.30 0.20 0.33 0.36
51.31 50.33 §1.70 50.26 48.97 50.51 50.23
0.03 0.03 0.02 0.03 0.07 0.05 0.04
=0.01 =0.01 =0.01 =0.01 0.03 0.02 0.02
=0.01 =0.01 =0.01 =0.01 0.02 =0.01 =0.01
98.87 98.19 88.77 98.90 98.97 89.22 99.13
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.986 0.999 0.976 1.006 0.999 0.994 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.128 0.140 0.141 0.143 0.186 0.154 0.142
0.002 0.002 0.002 0.002 0.002 0.002 0.002
0.006 0.006 0.008 0.008 0.004 0.007 0.007
1.869 1.850 1.895 1.833 1.803 1.845 1.828
0.001 0.001 0.001 0.001 0.002 0.001 0.001
0.001 0.000 0.001 0.000 0.002 0.001 0.001
0.000 0.000 0.000 0.000 0.001 0.000 0.000
[Cation Total 3.003 3.000 3.024 2.993 3.001 3.005 2.991
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Table C.4. Electron microprobe analyses of magnesio-chromite inclusions from A 154 South diamonds. Fe*" is calculated after
Droop (1987). Major element compositions (EPMA-analyses) are given as wt%.

Sample ddmi-1a ddmi-ic ddmli.da ddmi-6a ddmi-25b ddmi-25¢ ddmi-34a
Assemblage 2chr 2chr 2chr chr 2chr 2chr 2chr
Suite P P P P P P P
Si0, 0.12 0.45 0.21 0.36 o 0.08 0.38
TiO, 0.08 0.07 0.04 0.08 0.08 0.08 0.04
AlaOy 6.29 7.08 6.79 4.08 6.25 6.13 8.36
jCr0 63.75 62.64 63.24 66.04 63.74 63.68 61.45
Vi0s 0.29 0.24 0.24 0.21 0.26 0.28 0.22
Fe,O, 378 4.74 298 3.56 3.47 333 283
FeQ 11.87 10.08 11.78 10.99 11.66 11.95 11.40
MnQ 0.1 0.10 0.11 0.1 0.1 0.11 0.10
NIO 0.08 0.10 0.09 0.10 0.00 0.08 0.09
MgoO 13.86 15.54 13.83 14.31 13.86 13.57 14.38
0 0.08 0.08 0.08 0.11 0.08 0.08 0.09
|Oxide Total 100.31 101.11 99.40 99.95 99.71 99.40 95.33
Si 0.030 0.114 0.056 0.095 0.030 0.025 0.099
Ti 0.016 0.013 0.008 0.016 0.015 0.015 0.007
Al 1.937 2133 2.103 1.267 1.936 1.808 2.560
iCr 13.168 12.653 13.132 13.762 13.234 13.291 12.628
v 0.061 0.049 0.051 0.044 0.056 0.059 0.045
Fe* 0.743 0.910 0.586 0.705 0.685 0.662 0.554
Fe* 2.592 2183 2.588 2.423 2.561 2.638 2477
Mn 0.024 0.022 0.024 0.023 0.024 0.025 0.022
Ni 0.017 0.020 0.019 0.022 0.018 0.018 0.018
Mg 5.399 5918 5416 5.622 5.426 5.342 5.571
0.015 0.015 0.016 0.020 0.015 0.017 0.018
I’Catlon Total 24.000 24.000 24.000 24.000 24,000 24.000 24.000
0] 32.000 33.000 34.000 35,000 36.000 37.000 38.000

* denotes an exposed surface inclusion.
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Table C.5. Electron microprobe analyses of clinopyroxene inclusions from A154 South diamonds. Major element compositions

(EMPA-analyses) are given as wt%.

Sample ddmi-48a ddmi-48b ddmi-140c ddmi-141a ddmi-186a ddmi-186b
Assemblage 4 cpx 4 cpx cpx ol-cpx 2 epx 2 cpx
Suite E E P P E _E
P30; 0.04 0.02 <0.01 <0.01 <001 <0.01
Si0; 55.06 54.62 5547 54.60 54,78 5523
TIO, 0.27 027 0.03 0.09 0.08 0.07
Al O 498 4.91 1.04 1.02 17.71 17.51
1Cr0, 0.12 0.12 L4 1.14 0.04 0.03
V,0, 0,04 0.03 0.02 0.02 <0.01 0.02
FeO 5.02 505 2.11 287 1.17 1.22
MnO 0,07 0.07 0.09 0.10 <0.02 <0.02
NiO £0.01 £0.01 0.06 0.06 0.08 0.09
MgO 14.00 13.82 17.85 16.80 6.20 6.03
Ca0 16.80 16.90 2027 20.80 12.74 12.86
Na,0 2,63 2.59 0.78 1.29 591 5.73
KO 0.28 0.27 0.02 0.02 0.18 0.19
[oxide Total 9931 98.67 98.87 98.83 98.91 98.98
0.00 0.00 0.00 0.00 0.00 0.00
2.00 2.00 201 2,00 1.92 1.94
0,01 0.01 0.00 0.00 0.00 0.00
0.21 0.21 0.04 0.04 0.73 0.72
0.00 0.00 0.03 0.03 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.15 0.15 0.06 0.09 0.03 0.04
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.76 0.75 097 0.92 032 0.32
0.65 0.66 0.79 0.82 0.48 0.48
0.18 0.18 0.06 0.09 0.40 0.39
0.01 0.01 0.00 0.00 0.01 0.01
|Cation Total 3.98 3.99 3.97 4.00 3.91 3.90
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Table C.6. Electron microprobe analyses of sulphide inclusions from A154 South diamonds. Major element compositions (EPMA-

analyses) are given as wt%.

Sample ddmi-2¢c ddmi.37a ddmi.78a ddmi-93b ddmi-112a ddmi-115a ddmi-127a ddmi-130b
Assemblage fper, sulph 3 sulph 2 sulph sulph sulph sulph sulph sulph
Suite E E E E p P E p
Si 0.04 0.05 0.03 0.03 0.06 0.23 0.03 0.01
cr =0.068 =0.06 <0.06 =<0.08 0.35 =0.068 =0.06 =0.06
Fe 45.76 §6.47 60.09 53.87 38.10 12.00 56.35 4761
Mn =0.02 =0.02 =0.02 =0.02 =0.02 =0.02 =0.02 =0.02
NI =0.01 1.10 1.05 0.983 21.93 65.99 1.56 9.97
Mg =<0.01 <0.01 =0.01 =0.01 =0.01 0.13 =<0.01 =0.01
Cu 0.36 233 0.49 4.99 0.58 0.07 1.33 0.63
Co 0.05 0.27 0.37 0.29 0.48 1.10 0.34 0.52
Zn 0.05 0.03 0.05 0.06 0.05 0.06 0.05 0.09
8 52.91 38.54 36.28 38.87 36.79 28.71 38.95 40.65
E:tal 09.18 98.80 98.37 99.03 08.34 98.29 98.60 99.47
Sample ddmi-150b ddmi.156a ddmi-179a ddmi-186a ddmi-196b ddmi-198a ddmi-199d ddmi-202b
Assemblage 2 chr, sulph sulph ol, sulph 2 sulph 2 sulph sulph 2 gnt, sulph 2 sulph
Suite P P P E E E p P
Sl 0.02 0.03 0.02 0.01 0.05 0.02 0.02 0.02
cr 0.27 0.28 0.68 =<0.06 <0.06 <0.06 <0.06 0.22
Fe 46.84 38.83 39.64 57.89 58.36 58.07 2389 36.85
Mn =0.02 =<0.02 <0.02 =0.02 =<0.02 =<0.02 =0.02 =0.02
NI 13.02 2232 21.19 0.44 0.28 0.59 39.85 2268
Mg =0.01 =0.01 =0.01 =0.01 =0.01 =0.01 =0.01 =0.01
Cu 0.29 0.57 0.31 1.15 0.83 0.64 0.20 =0.04
Co 0.45 0.51 043 0.22 0.15 0.17 0.96 0.50
Zn 0.05 0.07 0.07 =0.03 0.06 0.07 0.07 0.04
S 37.13 36.94 36.85 38.30 38.66 38.57 33.75 37.76
Total 98.06 99.54 99.19 98.01 98.39 98.13 98.74 98.07
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C.2. Ion Probe Data

Table C.8. Concentrations of major (wt%) elements (EMPA) and trace (wt% ppm) elements (SIMS) from A154 South garnet

inclusions in diamond.

Sample ddmi-008a  ddmi-133a  ddmi-133b  ddmi-154a ddmi-166a  ddmi-167a
Assemblage gnt 2gm 2gnt gnt, 2ol 10gnt gnt, 2ol
Suite P P p p E P
P305 0.03 0.03 0.02 0.03 0.06 0.02
8i0; 41.33 42,33 41.95 41.04 41.17 4207
TiOy 0.12 0.11 0.12 0.08 0.36 50.02
Al O 14.17 16.00 14.75 11.53 22.77 18.47
Crz0. 10.85 10.87 10.83 15.68 0.08 6.97
V0, 0.05 0.06 0.08 0.05 0.02 0.04
FeO 585 6.07 6.31 582 9.75 550
MnO 0.23 0.24 0.27 0.26 0.21 o1
NIO =0.01 <0.04 =001 =0.01 <0.01 =0.01
MgoO 2291 23.44 23.28 19.88 11.84 22.70
Ca0 289 2,64 268 5.91 14.08 3.73
Na;0 s0.01 <001 <0.01 0.02 0.14 0.02
K0 <0.01 =0.01 <0.01 <0.01 =0.01 =0.01
Oxide Total 08.44 100.84 100.28 100.30 100.58 £9.78
Ti {ppm) 988 858 1058 680 2034 210
Sr (ppm) 418 6.26 439 10.79 6.15 3.77
Y (ppm) 225 198 223 2.04 12,78 1.14
Zr {(ppm) 29.02 15.77 26.76 49.88 27.05 4.59
La {ppm) 0.26 0.32 0.14 1.19 0.12 0.71
Ce (ppm) 440 398 279 9.81 0.91 3.62
Nd (ppm) 343 264 5.10 7.82 1.74 3.27
Sm (ppm) 0.70 0.24 0.84 1.44 1.10 0.34
Eu {(ppm) 0.18 0.10 0.15 0.34 0.50 0.17
Dy {ppm) 044 012 0.47 0.40 1.68 0.13
Er (ppm) 0.22 0.04 0.25 0.31 1.19 0.07
Yb (ppm) 0.18 0.06 0.10 0.27 1.22 0.30
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C.3. Diamond Characteristics

Table C.9. Results of a random population survey of 200.29 carets (850 diamonds) from the +9 size range from the Diavik Product
Sorting Facility (PSF) in Yellowknife.

Frequency Percentage (%)

Morphology

Octahedra 123 14.47
Dodecahedroids 257 30.24
Cube 105 12,35
Twinned 247 29.06
Iregular/Fragments 1 10.71
Aggregates 27 3.18
Colour

Colourless 533 62.71
Faint Brown 127 14,94
Intermediate Brown 56 6.59
Strong Brown 12 1.41
Faint Yellow 3 0.35
Intermediate Yellow 2 0.24
Strong Yeliow 0 0.00
Grey 84 9.88
Pink 33 3.88
Coats

Uncoated 786 I 92.47
Coated 64 7.53

linclusions | 10 | 1.18 1
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Figure C.1. The colour distribution of 100 inclusion-bearing diamonds (a) and a random population sample (b) of 850 diamonds from

the Diavik Product Sorting Facility (PSF) in Yellowknife.
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Figure C.2. The morphological distribution of 100 inclusion-bearing diamonds () and a random population sample (b) of 850
diamonds from the Diavik Product Sorting Facility (PSF) in Yellowknife.
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C.4. Carbon Isotope Data

Table C.10. Carbon isotopic composition of A154 South diamonds, reported in per mille (%o).

Sample a1C Sample dBC Sample o1C Sample d13C
ddmi-001 -4 535 ddmi-101 -5.880 ddmi-147 -5.182 ddmi-180 -6.311
ddmi-002 0.656 ddmi-103 -5.129 ddmi-148 -6.120 ddmi-182 -5.137
ddmi-003 -5.462 ddmi-108 -5.279 ddmi-150 -4.790 ddmi-183 -5.264
ddmi-004 -4.963 ddmi-110 -4.803 ddmi-151 -6.330 ddmi-184 -5.443
ddmi-005 -5.299 ddmi-111 -6.264 ddmi-152 -5.044 ddmi-186 -4.876
ddmi-006 -4.950 ddmi-112 -6.431 ddmi-153 -4.223 ddmi-187 -4.579
ddmi-008 -5.660 ddmi-114 -2.928 ddmi-154 -4 823 ddmi-188 -5.145
ddmi-013 -3.889 ddmi-115 -5.474 ddmi-155 -5.256 ddmi-190 -5.634
ddmi-014 -4 552 ddmi-118 -4.929 ddmi-156 -4.901 ddmi-193 -5.074
ddmi-025 -5.071 ddmi-120 -4.526 ddmi-159 -5.006 ddmi-185 -6.068
ddmi-034 -4.457 ddmi-123 -6.251 ddmi-161 6.107 ddmi-196 -5.074
ddmi-036 -4 487 ddmi-124 -5.458 ddmi-162 -8.623 ddmi-198 -5.273
ddmi-037 -8.578 ddmi-126 -4.958 ddmi-165 -5.241 ddmi-199 5174
ddmi-040 -4.276 ddmi-127 -5.288 ddmi-166 -4.772 ddmi-200 -4.577
ddmi-043 -4 830 ddmi-128 -5.808 ddmi-167 -4.777 ddmi-202 -5.037
ddmi-044 -4 982 ddmi-130 -5,367 ddmi-168 -5.611 ddmi-203 -4.318
ddmi-046 -4.028 ddmi-133 -5.350 ddmi-169 -5.205 ddmi-205 -4.786
ddmi-047 -4 644 ddmi-135 -4 402 ddmi-170 ~5.364 ddmi-206 -5.151
ddmi-048 -10.521 ddmi-138 -6.218 ddmi-172 -4.995 ddmi-207 -5.511
ddmi-049 -4.200 ddmi-140 -4.590 ddmi-173 -4.809 ddmi-208 -5.022
ddmi-058 -5.058 ddmi-141 -5.107 ddmi-174 4304 ddmi-210 -5.351
ddmi-078 -5.238 ddmi-142 -4.577 ddmi-175 -4 435 ddmi-213 -5.178
ddmi-093 -5.060 ddmi-144 -4.549 ddmi-176 -5.204 ddmi-214 5018
ddmi-008 -4.341 ddmi-145 -5.203 ddmi-177 -5.165 ddmi-215 -5.042
ddmi-100 -4.427 ddmi-146 -4.368 ddmi-179 -5.642 ddmi-216 -5.690
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C.5. Nitrogen Data

Table C.11. Summary of the nitrogen concentration and aggregation states of the A154 South diamonds.

Paragenesis Numberof  Average Nitrogen
Diamonds Concentration {ppm)
Peridotitic
Type I 2 -
Type laA 56 365
Type l1aAB 20 213
Type laB 5 450
Eclogitic
Type I 1 -
Type laA 8 685
Type laAB 3 1928
Type laB 0 -
Uncertain
Type Il 2 -
Type laA 1 863
Type laAB 2 83
Type laB 0 -

Type II= nitrogen free; Type IaA <10 %B; Type IaB >10 %B
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Table C.12. Nitrogen concentration and aggregation states for the A154 South diamonds.

— Sample Type “NA Ne NT YA
ddmi-001 laAB 445 82 526 15
ddmi-002 laAB 38 87 125 89
ddmi-003 laA 47 2 49 4
ddmi-004 laAB 333 44 377 12
ddmi-005 laAB 31 56 86 65
ddmi-006 laAB 83 261 344 76
ddmi-008 laA 241 9 250 4
ddmi-013 laA 44 0 44 0
ddmi-014 laAB 34 21 55 38
ddmi-025 laA 232 0 232 0
ddmi-034 laA 322 11 333 3
ddmi-036 laA 247 0 247 0
ddmi-037 laA 247 24 270 9
ddmi-040 laAB 29 113 142 80
ddmi-043 laAB 139 40 179 22
ddmi-044 laA 245 0 245 0
ddmi-046 laAB 135 250 385 65
ddmi-047 laA 426 9 435 2
ddmi-048 laAB 32 133 165 81
ddm}-049 laB 4 115 118 97
ddmi-058 laA 502 ) 511 2
ddmi-078 laA 560 0 560 0
ddmi-093 laA 724 0 724 0
ddmi-098 laA 318 0 318 0
ddm}-100 laA 20 0 20 0
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C.6. Inventory

Table C.13. Inventory of all diamonds selected for this study from the Product Splitting Facility in Yellowknife.

Sample #

Size

TS: Thomas Stachel, CD: Cara Donnelly; AB: Anetta Banas; PSF: Product Splitting Facility.

Lot # Seal # Sorter Sample#  Size Lot # Seal # Sorter
ddmi-1 +9 23666 2004003013 TS ddmi-26 +9 23684 2004003013 T8
ddmi-2 +9 23666 2004003013 TS ddmi-27 +9 23654 2004003013 TS
ddmi-3 +g 23666 2004003013 TS ddmi-28 +9 236864 2004003013 TS
ddmi-4 +9 23666 . 2004003013 TS ddmi-29 +9 23664 2004003013 TS
ddmi-& +9 23666 2004003013 TS ddmi-30 +9 23664 2004003013 T5
ddmi-6 +9 23666 2004003013 TS ddmi-31 +9 23669 2004003013 CcD
ddmi-7 +9 23666 2004003013 TS ddmi-32 +9 23669 2004003013 CD
ddmi-8 +9 23666 2004003013 T8 ddmi-33 +9 23669 2004003013 CD
ddmi-9 +9 23666 2004003013 TS ddmi-34 +9 23689 2004003013 CD
ddmi-10 +9 23666 2004003013 TS ddmi-35 +9 23669 2004003013 cD
ddmi-11 +8 23666 2004003013 TS ddmi-36 +9 23669 2004003013 Cch
ddmi-12 +4 23666 2004003013 T8 ddmi-37 +9 23669 2004003013 CcD
ddmi-13 +9 23666 2004003013 TS ddmi-38 +9 23669 2004003013 CcD
ddmi-14 +Q 23666 2004003013 TS ddmi-39 +€ 23689 2004003013 CD
ddmi-15 +9 23666 2004003013 T8 ddmi-40 +9 23669 2004003013 CD
ddmi-16 +9 23666 2004003013 TS ddmi-41 +9 23669 2004003013 CD
ddmi-17 +9 23666 2004003013 s ddmi-42 +9 23669 2004003013 CD
ddmi-18 +4 23666 2004003013 TS ddmi-43 +9 23669 2004003013 CD
ddmi-19 +9 23666 2004003013 TS ddmi-44 +9 23669 2004003013 CD
ddmi-20 +9 23666 2004003013 TS ddmi-45 +9 23669 2004003013 CD
ddmi-21 +9 23670 2004003013 CD ddmi-46 +9 23669 2004003013 CD
ddmi-22 +9 23670 2004003013 cD ddmi-47 +9 23669 2004003013 CD
ddmi-23 +9 23664 2004003013 TS ddmi-48 +9 23669 2004003013 CD
ddmi-24 +9 23664 2004003013 T8 ddmi-49 +9 23669 2004003013 cD
ddmi-25 +9 23670 2004003013 cD ddmi-50 +9 23669 2004003013 CD
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Table C.13. (cont.)

[Sample®  Size

Sample®# Size Lot# Seal # Sorter
ddmi-51 +9 23669 2004003013 cD ddmi-76 +9 23669 2004003013 CD
ddmi-52 +9 23669 2004003013 CcD ddmi-77 +9 23669 2004003013 CcD
ddmi-53 +9 23669 2004003013 cD ddmi-78 +9 23669 2004003013 CD
ddmi-54 +9 23669 2004003013 CcD ddmi-79 +9 23669 2004003013 CcD
ddmi-55 +9 23669 2004003013 CcD ddmi-80 +9 23669 2004003013 CcD
ddmi-56 +9 23669 2004003013 cD ddmi-81 +9 23669 2004003013 CD
ddmi-&67 +9 23669 2004003013 CcD ddmi-82 +9 23668 2004003013 cD
ddmi-58 +4 23669 2004003013 CcD ddmi-83 +9 23668 2004003013 CcD
ddmi-59 +9 23669 2004002013 CcD ddmi-84 +9 23568 2004003013 CD
ddmi-60 +9 23669 2004003013 CcD ddmi-85 +9 23668 2004003013 CcD
ddmi-61 +9 23669 2004003013 CcD ddmi-86 +9 23668 2004003013 cD
ddmi-62 +9 23664 2004003013 T8 ddmi-87 +9 23668 2004003013 CD
ddmi-83 +9 23664 2004003013 T8 ddmi-88 +9 23668 2004003013 CcD
ddmi-64 +9 23664 2004002013 TS ddmi-89 +9 23668 2004003013 CcD
ddmi-85 +9 23669 2004003013 CD ddmi-90 +9 23668 2004003013 CD
ddmi-66 +9 23669 2004003013 cD ddmi-91 +9 23668 2004003013 CD
ddmi-67 +9 23669 2004003013 CcD ddmi-92 +9 23568 2004003013 CD
ddmi-68 +9 23669 2004003013 cD ddmi-93 +9 19049 2004001029 PSF
ddmi-69 +9 23869 2004003013 CcD ddmi-94 +9 19049 2004001029 PSF
ddmi-70 +9 23669 2004003013 CcD ddmi-85 +9 19049 2004001029 PSF
ddmi-71 +9 23669 2004003013 cD ddmi-96 +9 28120 2004005069 CD/AB
ddmi-72 +9 23669 2004003013 CcD ddmi-97 +11 28125 2004005069 CD/AB
ddmi-73 +9 23669 2004003013 CcD ddmi-98 +11 28125 2004005069 CD/AB
ddmi-74 +9 23669 2004003013 cD ddmi-99 +11 28125 2004005069 CD/AB
ddmi-75 +9 23669 2004003013 CD ddmi-100 +9 28120 2004005069 CD/AB
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Table C.13. (cont.)

ddmi-107
ddmi-108
ddmi-109

ddmi-114
ddmi-115
ddmi-116
ddmi-117
ddmi-118
ddmi-119
ddmi-120
ddmi-121
ddmi-122

+8
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9

Sample# Sirxe Lot# Seal # Sorter
ddmi-126 +9 28120 2004005069 CD/AB
ddmi-127 +9 28120 2004005069 CD/AB
ddmi-128 +9 28120 2004005069 CD/AB
ddmi-129 +9 28120 2004005069 CD/AB
ddmi-130 +9 28120 2004005069 CD/AB
ddmi-131 +9 28120 2004005069 CD/AB
ddmi-132 +9 28120 2004005068 CD/AB
ddmi-133 +9 28120 2004005069 CD/AB
ddmi-134 +9 28120 2004005069 CD/AB
ddmi-135 +9 28120 2004005069 CD/AB
ddmi-136 +9 28120 2004005069 CD/AB
ddmi-137 +9 28120 2004005069 CD/AB
ddmi-138 +9 28120 2004005069 CD/AB
ddmi-139 +9 28120 2004005069 CD/AB
ddmi-140 +9 28120 2004005069 CD/AB
ddmi-141 +9 28120 2004005069 CD/AB
ddmi-142 +3 28120 2004005069 CD/AB
ddmi-143 +9 28120 2004005069 CD/AB
ddmi-144 +9 28120 2004005069 CD/AB
ddmi-145 +9 28120 2004005069 CD/AB
ddmi-146 +9 28120 2004005069 CD/AB
ddmi-147 +9 28120 2004005069 CD/AB
ddmi-148 +9 28120 2004005069 CD/AB
ddmi-149 +9 28120 2004005069 CD/AB
ddmi-150 +9 28120 2004005069 CD/AB
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Table C.13. (cont.)

Sample # Size Lot # Seal # Sorter Sample#  Size Lot# Seal # Sorter
ddmi-201 +11 28125 2004005069 CD/AB ddmi-226 +4 23667 2004003013 TS

ddmi-202 +11 28125 2004005069 CD/AB ddmi-227 +9 23667 2004003013 TS

ddmi-203 +1 28125 2004005069 CD/AB ddmi-228 +3 23667 2004003013 T8

ddmi-204 +11 28125 2004005069 CD/AB ddmi-229 +9 28121 2004005069 CD/AB
ddmi-205 +11 28125 2004005069 CD/AB ddmi-230 +9 28121 2004005069 CD/AB
ddmi-206 +11 28125 2004005069 CD/AB ddmi-231 +9 28121 2004005068 CD/AB
ddmi-207 +11 28125 2004005062 CD/AB ddmi-232 +9 28121 2004005069 CD/AB
ddmi-208 +11 28125 2004005069 CD/AB ddmi-233 +9 28121 2004005069 CD/AB
ddmi-203 +1 28125 2004005069 CD/AB ddmi-234 +9 28121 2004005069 CD/AB
ddmi-210 +11 28128 2004005069 CD/AB ddmi-235 +9 28121 2004005068 CD/AB
ddmi-211 +11 28125 2004005069 CD/AB ddmi-236 +9 28121 2004005068 CD/AB
ddmi-212 +11 28125 2004005062 CD/AB ddmi-237 +9 28121 2004005069 CD/AB
ddmi-213 +11 28125 2004005069 CD/AB ddmi-238 +9 28121 2004005068 CD/AB
ddmi-214 +11 28125 2004005069 CD/AB ddmi-239 +9 28121 2004005062 CD/AB
ddmi-215 +11 28125 2004005069 CD/AB ddmi-240 +9 28121 2004005069 CD/AB
ddmi-216 +11 28125 2004005069 CD/AB ddmi-241 +9 28121 2004005068 CD/AB
ddmi-217 +11 28126 2004005069 CD/AB ddmi-242 +9 28121 2004005069 CD/AB
ddmi-218 +11 28126 2004005069 CD/AB ddmi-243 +9 28121 2004005069 CD/AB
ddmi-219 +11 28126 2004005069 CD/AB ddmi-244 +3 28121 2004005069 CD/AB
ddmi-220 +11 28126 2004005062 CD/AB ddmi-245 +9 28121 2004005069 CD/AB
ddmi-221 +11 28126 2004005069 CD/AB ddmi-246 +9 28121 2004005069 CD/AB
ddmi-222 +11 28126 2004005069 CD/AB ddmi-247 +9 28121 2004005069 CD/AB
ddmi-223 +11 28126 2004005069 CD/AB ddmi-248 +3 28121 2004005069 CD/AB
ddmi-224 +11 28126 2004005069 CD/AB ddmi-249 +9 28121 2004005069 CD/AB
ddmi-225 +9 23667 2004003013 TS ddmi-250 +9 28121 20040050682 CD/AB
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