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Abstract

For any �xed integer k � �� de�ne the class of k�polygon graphs as the intersection

graphs of chords inside a convex k�polygon� where the endpoints of each chord lie on

two di�erent sides� The case where k � � is degenerate� for our purpose� we view

any pair of parallel lines as a ��polygon� Hence� polygon graphs are all circle graphs�

Interest in such graphs arises since a number of intractable problems on circle graphs

can be solved in polynomial time on k�polygon graphs� for any �xed k� given a polygon

representation of the input graph� In this paper we show that determining whether

a given circle graph is a k�polygon graph� for any �xed k� can be solved in O�	kn�


time� The algorithm exploits the structure of a decomposition tree of the input graph

and produces a k�polygon representation� if one exists� In contrast� we show that

determining the minimum value of k is NP�complete� �
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�� Introduction

This paper investigates the complexity of the following class of recognition problems� given

an undirected graph G � �V�E�� and an integer k� k � �� is G a k�polygon graph� That

is� does there exist a one�to�one mapping between V and chords of a k�polygon such that

�vi� vj� � E if and only if their corresponding chords intersect� The case where k � � is

degenerate but important	 for our purpose we view any pair of parallel lines as a ��polygon


If the answer is positive� then we are interested in generating the corresponding intersection

diagram
 We henceforth let jV j � n and jEj � m


Two important cases of the above problem are well�solved
 At one extreme� the problem

for k � � calls for recognizing permutation graphs� de�ned also as follows� a graph G �

�V�E� on n vertices is a permutation graph if there is a labelling fv�� v�� � � � � vng of the

vertices and a permutation � of f�� �� � � � � ng such that for every possible i � j� �vi� vj� � E

if j appears before i in �
 Equivalently� �
� shows that G is a permutation graph if and only

if both G and its complement are comparability graphs
 Using the above characterization�

�
� devised a recognition algorithm based on computing transitive orientations
 The fastest

algorithm� however� for recognizing such graphs� and constructing associated permutation

diagrams� is due to Spinrad ���� and runs in O�n�� time


At the other extreme� the problem for k � n is essentially that of recognizing circle

graphs �overlap graphs�
 The �rst known polynomial time recognition algorithms for this

class are due to Bouchet ���� and independently Naji ����
 Subsequent improvements of

the running time to O�nm� and O�n�� are due to Gabor� Supowit and Hsu ��� and Spin�

rad ����� respectively
 The interested reader may �nd several other algorithmic aspects of

permutation graphs and circle graphs in Golumbic ���


Our interest in solving the above problem for any arbitrary k arises since a number

of combinatorial optimization and enumeration problems that appear to be intractable on

circle graphs admit polynomial time solutions on k�polygon graphs� given a polygon diagram

of the input graph �see for example ��� and ����
 Some such combinatorial problems arise in

real�world applications� with VLSI routing problems being a good case in point


Our contribution in resolving the above problem is two�fold
 We �rst devise an O��kn��

time algorithm for solving the problem� for any �xed k
 The algorithm takes as input a

special tree representation of the input circle graph� as will be mentioned shortly� and an

integer k	 it produces a k�polygon representation of G� if one exists �Theorem �
��
 Second�

we show that computing the minimum value k�G� for which G is a k�G��polygon graph is

NP�complete �Theorem �
��
 The former result is the �rst known asymptotic upper bound

for solving the above general problem
 The running time depends exponentially on k� and

hence the algorithm appears to be practical only for small k
 Nevertheless� the algorithm

admits speedup using parallelization techniques
 The NP�completeness result� on the other
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hand� shows that such asymptotic behaviour is probably unavoidable
 Finally� we conclude

by showing that if G �
Sr
i��Gi is a disconnected circle graph with r components then

k�G� � �
Pr

i�� k�Gi�� � ��r� ��


The recognition algorithm has two main ingredients �mentioned below�� Theorem C��

due to Cunningham ���� and Theorem GSH�� due to Gabor� Supowit� and Hsu ���
 To start�

we need to reproduce from ��� some basic de�nitions and results related to the following

notion of graph decomposition� let G � �V�E� be a �nite undirected graph� and let fV�� V�g

be a partition of V 
 Call fV�� V�g a split of V if�

�i� jV�j� jV�j � �� and

�ii� there exist W� � V� and W� � V� such that the subset of edges f�v�� v�� � Ej

v� � V�� v� � V�g is precisely the set of all pairs f�v�� v��j v� � W�� v� � W�g
 We

henceforth call W� and W� the interface vertices of the partition fV�� V�g


Graphs that do not admit such a split are called prime
 If fV�� V�g is a split� then let

� � V be a new vertex �called a marker�
 The simple ��decomposition of G associated with

the split fV�� V�g is a set fG�� G�g of graphs where� for i � �� �� Gi is obtained from the

induced subgraph G�Vi� by adding the marker � and making it adjacent to every vertex

in Wi
 A decomposition of G is de�ned inductively to be either fGg� or a set of graphs

obtained from a decomposition M of G by replacing a member G� of M by the members

of a simple ��decomposition of G�� where the marker of this simple decomposition is not

an element of any member of M
 As mentioned in ���� it is then possible to associate a

��decomposition tree T with any decomposition M
 The vertices of T are the members of

M� and the edges correspond to the markers of M	 each edge joins in T the two graphs of

M of which the corresponding marker is a vertex


Two partitions fX�Xg and fY� Y g of V cross if each of the four possible intersections

between the X �s and the Y �s is non�empty
 A split is said to be good if it is crossed by no

other split of G
 Using the theory of decomposition frames developed in ���� Cunningham

showed in ��� that the set of all good splits of a diconnected graph G �note� G is diconnected

if for every � � A � V there exists an arc �v�� v�� with v� � A and v� �� A� generate a unique

decomposition �the standard ��decomposition� each of whose members has no good split


In addition� ��� characterizes diconnected graphs that have no good splits
 As a special

case� the following characterization applies to undirected graphs �a similar characterization

applies to symmetric diconnected graphs��

Theorem C�� ���� Each connected undirected graph has a unique standard ��decomposition�

each of whose members is prime� complete� or a star
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Several algorithms for computing such a standard ��decomposition exist in the literature


The �rst algorithm� due to Cunningham� runs in O�n�� time and applies to undirected and

symmetric diconnected graphs
 In the special case of undirected graphs� the bound has

been improved in ��� to O�nm�� and subsequently reduced to O�n�� in ����
 Our recognition

algorithm requires the standard ��decomposition tree T of the input graph� and hence� we

may assume that T is computed using the latter algorithm
 Note that each node in T

corresponds to a circle graph� since G is a circle graph


To present the second ingredient� we recall the following notion of uniquely representable

circle graphs from ���
 Let D be a circle diagram of G � �V�E�� jV j � n� described by

a sequence � � �a�� a�� � � � � a�n� of the �n endpoints of chords in a clockwise traversal

of the circle �starting at an arbitrary point�
 A shift of � results in the new sequence

�a�n� a�� a�� � � � � a�n���� and a reversal of � results in the sequence �a�n� � � � � a�� a��
 A circle

graph G is uniquely representable if for any two distinct diagrams of G one can be obtained

from the other by a sequence of shifts and reversals
 Thus� a uniquely representable graph

has essentially one diagram that can be described by sequences that are equivalent under the

order�preserving rewriting rules mentioned above
 In our present context� it is important

to note that if G is uniquely representable then the parameter k�G� can be computed from

such a unique diagram of G �as described� for example� in Section 

��
 Gabor et al
 ���

proved the following elegant result�

Theorem GSH�� ���� Let G be a circle graph with at least �ve vertices
 Then G is prime

�with respect to the ��decomposition� if and only if it is uniquely representable


�� The Basic Model

Throughout the paper� let T be the standard ��decomposition tree of a connected input

circle graph G � �V�E�
 Each node x of T is a circle diagram� denoted Dx� that corresponds

to either a prime graph� a star� or a clique� and each edge �x� y� is identi�ed with a marker

�xy that corresponds to a split of V 
 Hence� �xy appears in both Dx and Dy
 Denote by

T �x� the subtree containing x in the forest T n�x� y�
 Let GT �x� � �VT �x�� ET �x�� denote

the graph whose ��decomposition tree is T �x�� and let DT �x� be any circle representation

of GT �x�
 De�ne T �y�� GT �y�� and DT �y� in a similar way� with respect to the other node y


Finally� if � is a chord in a circle diagram D then � splits the circle into two closed regions�

called semicircles henceforth� each region contains � and an arc of the circle bounded by the

two endpoints of �
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�� Noncrossing Splits and Circle Layouts

The main result in this section �Theorem �
�� below� shows that if �x� y� is an edge in T �

and DT �x� and DT �y� are as de�ned above� then the chords in DT �x� and DT �y� can only

intersect in a limited way in any possible circle diagram D of G
 The result is described

using the following colouring scheme
 First� set B � VT �x�n�xy and assume that each chord

in B is coloured blue
 Similarly� set R � VT �y�n�xy and assume that each chord in R is

coloured red
 Now� the marker �xy is associated with the split fB�Rg of V 
 In D� call a

maximal arc that contains only red �or only blue� endpoints a zone of type red �or blue�


Also� let BI � B �and RI � R� be the set of interface chords for the split fB�Rg of V 


Since jBI j� jRIj � �� it follows that D has at least � blue zones� say �� and ��� and at

least two red zones� denoted �� and ��� such that the sequence ���� ��� ��� ��� appears in a

circular listing of D
 An important fact then is�

Theorem ���� Let G and D be as de�ned above� then the above colouring scheme induces

exactly � zones


The following de�nitions will be used
 If �i and �j are arcs in D� then �i�j denotes the set

of chords with one endpoint in �i and the other in �j 
 If �i and �j are two disjoint arcs �or

zones� in D then let �fi�jg� � �i�i
S
�i�j

S
�j�j 
 For any arc �� �rst��� and last��� denote the

counterclockwise and clockwise endpoints� respectively� of �
 Two distinct monocoloured

zones� �i and �j � are said to be conjugates if every chord that has exactly one endpoint in

one of these two zones has its other endpoint in the other zone


The proof is broken into lemmas �
� � �
� below
 To start� we derive a simple su�cient

condition for the existence of an interface chord in certain arcs of the diagram


Lemma ���� Let �� be a zone of colour C � fB�Rg and let ��� be any arc that contains

�� but does not contain all chord endpoints of D
 Furthermore� suppose that no chord of

colour C has exactly one endpoint in ���
 Then CI � ����� �� �� where CI denotes the set of

interface chords of colour C


Proof�

For simplicity� we may assume that �� is a red zone �then �� and ��� correspond to ��

and ���� respectively� in Figure �
��
 Consider the red chords of ����� and their connections

to the rest of the chords of D
 In particular� since G is connected� there must be a path

connecting a red chord r � ����� to any chord � having one or both endpoints outside of

���
 Such a path must contain a blue chord having exactly one endpoint in ���
 Consider

traversing this path from r to �� and let b be the �rst blue chord encountered
 Since b is

the �rst blue chord encountered� it must have at least one endpoint in ��� and it must cross
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a red chord� r�� its predecessor on the path under consideration
 All chords preceding b

on the path are in ������ since no red chord has exactly one endpoint in �����
 Therefore�

r� � CI � �
�
���
 This completes the proof of Lemma �
�


Lemma ���� Let �� � ���� be a chord� where �� and �� are two distinct zones
 Then ��

and �� are conjugates


Proof�

To prove the lemma� we need to show that if ��� ���� �� ��� is a chord that has exactly one

endpoint in �� �respectively ���� then it has the other endpoint in �� �respectively ���


We may assume� without loss of generality� that �� � �� and �� � �� are two blue zones�

as in Figure �
�
 To derive a contradiction� let ��� � ���� where �� �� ��� �� �� ��
 Then

there exist at least � red zones f�iji � �� �� �g such that the sequence ��i� �ij i � �� �� ��

appears in a circular listing of the diagram D
 For each zone �i� i 	 �� let ��i be the arc

�last��i�� �rst��i���� �modulo �� that includes �i as a proper subinterval� as shown in Figure

�
�


Figure �
� An impossible con�guration

Observe that all of the following must hold� by the de�nition of interface chords�

�a� R � ����� � � or ��� � BI and ��� �� BI ��

�b� R � ����� � � or ��� �� BI and ��� � BI��

�c� R � ����� � � or ��� � BI and ��� � BI�


We consider all possible con�gurations of �� and ���� with respect to BI 


Case �i�� ��� ��� � BI 


Then R � ����� � � and R � ����� � � by �a� and �b�
 That is� there is no red chord with

exactly one of its endpoints in ���
 Therefore� applying Lemma �
� to ��� leads to a contra�






diction� since any interface chord of ����� must cross �
�� ��� � BI 


Case �ii�� neither �� nor ��� is in BI 


Then all of R������� R��
�
���� and R��

�
��� are empty
 By Lemma �
�� we �nd a red interface

chord in each of ������ �
�
���� and �����
 But no blue chord can cross three such red interface

chords� contradicting their existence


Case �iii�� exactly one of ��� ��� is in BI 


Suppose without loss of generality that �� � BI and ��� �� BI 
 Then R � ����� � � and

R � ����� � � by �b� and �c�� and therefore� by Lemma �
�� RI � ����� �� �
 But any red

interface chord in ����� does not cross �
� � BI � a contradiction


This completes the proof of Lemma �
�


Roughly speaking� the above lemma implies that if �� � ���� is a chord then all possible

�clusters� of chords in ���� and ���� are linked to each other and the rest of the graph by

a �bundle� of chords in the set ����
 Moreover� removing such a bundle disconnects each

possible cluster from the remaining graph
 It also follows that conjugation partitions the

set of zones into equivalence classes� where each class has exactly two zones


To complete the proof of the theorem� consider any two monocoloured chords� say f��� ���g �

B
 Then either �� and ��� have their endpoints in one zone� in exactly two zones� or in four

zones ��� and ��� having their endpoints in exactly three zones is ruled out by Lemma �
��	

in the latter case� one of the following con�gurations occurs�

�
 an X�con�guration where �� and ��� cross but have no zone in common� or

�
 a jj�con�guration where �� and ��� do not cross and have no zone in common


We now show that neither of the above con�gurations occur


Lemma ���� X�con�gurations are impossible


Proof�

Assume to the contrary that �� � B induces an X�con�guration with some other chord

��� � B
 Let �� � ���� and ��� � ����� as in Figure �
�
 Then there exist at least � red

zones f�ij i � �� � � � � �g such that ��i� �ij i � �� � � � � �� appear in a circular listing of D
 For

� 	 i 	 �� let ��i be the arc �last��i�� �rst��i���� �modulo ��� that includes �i as a proper

subinterval


�



Figure �
� An X�con�guration

We observe that all of the following must hold�

�a� �R � ����� � � and R � ����� � �� or ��� �� BI and ��� � BI��

�b� �R� ����� � � and R � ����� � �� or ��� � BI and ��� �� BI ��

�c� �R � ����� � � and R � ����� � �� or ��� � BI and ��� � BI �


We consider all possible con�gurations of �� and ���� with respect to BI 


Case �i�� ��� ��� � BI 


For � 	 i 	 �� each of the four sets R���i�i�� �modulo �� is empty� by �a� and �b�
 Therefore�

it must be that jR � �����j� jR � �����j � �	 otherwise� by Lemma �
�� we �nd red interface

chords in ����� and ������ or in ������ and ������ that do not cross �� and ���� a contradiction


Thus� we may assume that the set f�ij i � �� � � � � �g is selected so that j����j� j����j � �


Suppose that the two sets �f���g� and �f���g� interchange their colours� and let

B� � B n �f���g� 
 �f���g�

R� � R n �f���g� 
 �f���g�

Claim� fB�� R�g is a split of V with interface chords B�
I � BI n ���� 
 ���� and R�

I �

RI n ���� 
 ����


Proof� The claim follows from the following observations


�
 fB�� R�g is a partition of V and jB�j� jR�j � �


�
 For all b� � B�� r� � R�� b� crosses r� if and only if b� � B�
I and r� � R�

I 


�



The �only if� part is easy to verify
 For the �if� part� we show that if b� � BI n�f���g�

and r� � �f���g� then they cross
 �The proof is similar for the case where b� � �f���g�

and r� � RI n �f���g� � and all other cases are easy to verify
�

Suppose that b� and r� do not cross
 Then both endpoints of b� are on the arc

�last����� �rst����� or both are on the arc �last����� �rst�����
 Suppose� without loss

of generality� that b� � �i�j and that the zones under consideration appear in a clock�

wise circular listing of D in the order� ��� �i� ��� ��� ��� �j� ��
 Consider the arc

���i � �last����� �rst��i��
 There must be a red zone contained in ���i� and ���i cannot

contain exactly one endpoint of any red chord �since such a chord would cross some

but not all of the blue interface chords� a contradiction�� so by Lemma �
�� there must

be a red interface chord contained in ���i
 However� such a chord does not cross �� or

��� and thus it existence leads to a contradiction


The above observations complete the proof of the claim
 �

The two splits fB�� R�g and fB�Rg cross each other� contradicting the goodness of the latter

split
 Hence� Case �i� is impossible


Case �ii�� neither �� nor ��� is in BI 


Then� from �a�� �b�� and �c� above� and by Lemma �
�� we �nd a red interface chord in

each of ������ �
�
���� �

�
���� and �����
 But no blue chord can cross four such red interface chords�

contradicting their existence
 Thus� Case �ii� is impossible


Case �iii�� exactly one of ��� ��� is in BI 


Suppose without loss of generality that �� � BI and �
�� �� BI 
 Then R��

�
��� � �� R������ � ��

R � ����� � �� and R � ����� � �� by �a� and �c�
 Therefore� R � ����� �� � and R � ����� �� ��

else� by Lemma �
� we �nd red interface chords in ����� and ������ or in ������ and ������ that

do not cross �� � BI � a contradiction
 Thus� we may assume that the set f�ij i � �� � � � � �g

is selected so that j����j� j����j � �


Suppose that the two sets �f���g� and �f���g� exchange colours� and let

B� � B n �f���g� 
 �f���g�

R� � R n �f���g� 
 �f���g�

Claim� fB�� R�g is a split of V with interface chords B�
I � BI and R�

I � RI n ���� 
 ����


Proof� The claim follows from the following observations


�
 fB�� R�g is a partition of V and jB�j� jR�j � �


�



�
 For all b� � B�� r� � R�� b� crosses r� if and only if b� � B�
I and r� � R�

I 


It is easy to verify that� for all b� � BI � r
� � RI n ���� 
 ����� b

� and r� cross
 Now�

let b� � B� and r� � R� such that b� and r� cross
 We will show that b� � BI and

r� � RI n ���� 
 ����


If b� � B and r� � R then b� � BI and r� � RI � R� � RI n ���� 
 ����
 If b� � B

and r� �� R then r� � R� n R � �f���g� 
 Now� since r� crosses some blue chord� it

must be that r� � ����
 Now� b� � BI 	 otherwise� b� � B nBI and r� � B nBI form an

X�con�guration in B that is ruled out by Case �ii�
 If b� �� B then b� � B� nB � �f���g� 


Since b� crosses r� � R�� b� � ���� � RI and r� � R
 If r� � RI then Case �i� forbids

this con�guration
 Thus� we may suppose that r� �� RI and therefore� r� � ����� or

r� � �����
 Suppose� without loss of generality� that r
� � �i�j � �����
 Now� i �� �� j �� ��

and i �� j� since ���� � R� � �
 Then there must be two blue zones� �i and �j such

that the zones under consideration appear in clockwise order� ��� �i� �i� ��� �j � �j�

��
 Let ��i�j be the arc �last��i�� �rst��j�� that includes �i� ��� and �j as subintervals


Now� ��i�j cannot contain exactly one endpoint of any blue chord� since r� is not an

interface chord
 Therefore� by Lemma �
�� ��i�j must contain both endpoints of a blue

interface chord
 But such a chord cannot cross the red interface chord that we know

exists in ����
 Thus� we have a contradiction


This completes the proof of the claim
 �

The two splits fB�� R�g and fB�Rg cross each other� contradicting the goodness of the split

fB�Rg
 Hence� Case �iii� is impossible


This completes the proof of Lemma �
�


Lemma ��	� jj�con�gurations are impossible


Proof�

Again� to derive a contradiction suppose that �� and ��� induce a jj�con�guration� where

f��� ���g � BI 
 Let �� � ���� and ��� � ����� as in Figure �
�
 Then there exist at least � red

zones f�ij i � �� � � � � �g such that ��i� �ij i � �� � � � � �� appear in a circular listing of D


��



Figure �
� A jj�con�guration

We observe that all of the following must hold�

�a� �R � ����� � � and R � ����� � �� or ��� �� BI and ��� � BI��

�b� �R� ����� � � and R � ����� � �� or ��� � BI and ��� �� BI ��

�c� R � ����� � � or ��� � BI and ��� � BI�


As in Lemma �
�� we consider all cases


Case �i�� ��� ��� � BI 


For � 	 i 	 �� each of the four sets R � ��i�i�� �modulo �� is empty� by �a� and �b�
 As in

Lemma �
�� Lemma �
� implies that the set f�ij i � �� � � � � �g can be selected so that j����j�

j����j � �
 But then any chord of ���� and any chord of ���� form an X�con�guration� which

is impossible by Lemma �
�
 Thus� Case �i� cannot occur


Case �ii�� neither �� nor ��� is in BI 


Then� from �a�� �b�� and �c� above� and by Lemma �
�� we �nd a red interface chord in

each of ����� and �
�
���
 Therefore� all blue interface chords must cross both �

� and ���� forming

X�con�gurations� contradicting Lemma �
�
 Thus� Case �ii� is impossible


Case �iii�� exactly one of ��� ��� is in BI 


Suppose without loss of generality that �� � BI and ��� �� BI 
 Then R������ � �� R������ � ��

and R � ����� � �� by �a� and �c�
 Now� Lemma �
� implies the existence of a red interface

chord in �����
 But such a chord does not cross �� � BI � a contradiction
 Therefore� Case

�iii� cannot occur


This completes the proof of Lemma �
� and the proof of Theorem �
�


��



�� Basic Operations on Circle Diagrams

Let T be the standard ��decomposition tree of the connected circle graph G
 Three types of

geometric operations on circle diagrams of T are now introduced
 First� consider the circle

diagram in Figure �
��a�� where the shaded area A corresponds to a set of chords� and the

dotted line �p� p�� corresponds to a marker vertex associated with some hypothetical split

of V 
 In this diagram� the area A can be rotated in two basic ways� while keeping the two

points p and p� �xed on the page
 Namely� after a WE�rotation we obtain Figure �
��b��

and after a NS�rotation we obtain Figure �
��c�


Figure �
� Rotations of polygon diagrams

For a circle diagram Dx representing a clique node x� a permutation of Dx is any dia�

gram obtained from arbitrarily permuting its chords
 Similarly� if Dx represents a star then

a permutation is any diagram obtained by permuting its leaves


In addition to the above geometric operations� we need the following concepts
 Let D

be a circle diagram of G
 A partial polygon diagram of G can be obtained by adding a

set K of corners to the circumference of the circle
 In the resulting diagram �D�K� each

section of the circle between two consecutive corners corresponds to a side of a polygon


The resulting partial diagram constitutes a �complete� polygon representation of G if no

side of �D�K� contains the two endpoints of one chord
 As such� permutation graphs are

exactly those circle graphs which have a circle diagram to which the addition of just two

corners results in a diagram with the endpoints of each chord on di�erent sides
 Note that

a circle diagram with two corners has only two sides and thus does not form a polygon	

nevertheless� we refer to this degenerate case as a ��polygon


A kernel of a circle diagram D is a minimum cardinality set of corners K such that

the diagram �D�K� is a polygon representation of G
 Recall that each line segment � of D

splits the circle into two closed regions called the ��semicircles of D �cf
 Section ��
 We say

that � is de�cient in D if at least one of the ��semicircles does not contain a corner
 In the

same vein� de�ne the de�ciency of a diagram �D�K�� denoted 	�D�K�� to be the minimum

number of corners that must be added to obtain a complete polygon representation


��



Next� let �x� y� be an edge incident to a leaf node y in the standard ��decomposition tree

T of G� and consider the neighbours of the vertex corresponding to the marker �xy in Gy


We say that y is active if there exists at least one vertex not adjacent to �xy in Gy
 That is�

there exists at least one chord not intersecting �xy in any diagram Dy of Gy
 This particular

chord forces any recognition algorithm to add a corner� regardless of the structure of other

nodes in T 


Roughly speaking� the recognition algorithm processes each node x by computing a

partial diagram �DT �x�� KT �x�� of GT �x�� where KT �x� is a minimum set of required corners


The computed diagram �DT �x�� KT �x�� may not be a complete polygon diagram �i
e
 more

corners may be added�� nevertheless� it provides a basis for solving the problem
 Applying

the same argument to the complementary graph GTnT �x�� we obtain a second partial diagram

�DTnT �x�� KTnT �x��
 A straightforward but useful observation then is� the de�ciency of one

diagram� say DT �x�� can be reduced by the corners KTnT �x� of the other diagram in any

partial polygon diagram �DT �x��DTnT �x�� KT �x�
S
KTnT �x�� of G


Now� suppose that T is rooted at an arbitrary vertex r
 Then the above complementary

support situation may occur if x �� r
 In this case� let w be x�s parent in T � and let �wx � Dx

be the marker corresponding to the edge �w� x� of T 
 Here� we use the �conditional�

optimality de�nition given below to capture any possible support to �DT �x�� KT �x�� from

�DTnT �x�� KTnT �x��
 The de�nition is formalized with the help of two �imaginary� corners

� and ��� placed immediately next to the two endpoints of �wx in DT �x�� such that the

hypothetical chord ��� ��� intersects exactly the set �wx
S
N��wx�� where N��wx� denotes

the set of chords that intersect �wx
 More speci�cally� we de�ne ��optimal diagrams as

follows�

�
 Call a diagram �DT �x�� KT �x�� ��supported �relative to the distinguished marker �wx�

if �DT �x�� KT �x� 
 f�� �
�g� is a complete polygon representation of GT �x�


�
 If �DT �x�� KT �x�� is a ��supported diagram with a smallest possible set of cornersKT �x��

then KT �x� is called a ��supported kernel
 Note that� 	�DT �x�� KT �x�� 	 jf�� ��gj � �


�
 If KT �x� is a ��supported kernel such that 	�DT �x�� KT �x�� is minimum among all

possible diagrams using ��supported kernels then �DT �x�� KT �x�� is called a ��optimal

diagram


As an example� Figure �
��a� illustrates a circle diagram of a node y whose parent is denoted

x
 A ��optimal diagram for y �relative to the distinguished marker �xy� has a ��supported

kernel of size �� and de�ciency equals �


In the special case where x � r� we have T �x� � T � and there is no complementary

support to account for
 For uniformity� however� we call a �complete� polygon diagram of

G a ��supported diagram
 Likewise� we call a kernel of G a ��supported kernel� and call an

��



optimal solution of G a ��optimal solution
 Using the above convention� and the following

simple ��� indicator


�x� �

�
� if x � r �the root�

� otherwise

we can refer to 
�x��supported and 
�x��optimal diagrams� for any node x


�� The Main Algorithm

We now show a simple upper bound on recognizing k�polygon graphs� for any �xed k


Theorem 
��� Given a standard ��decomposition tree T of a circle graph G � �V�E��

jV j � n� and an integer k� there exists an O��kn�� algorithm for deciding whether G is a

k�polygon graph� and producing a corresponding polygon diagram� if one exists


In proving the above theorem we may assume that all degree�� nodes of T are active
 If

not� then pruning any inactive leaf from T results in a smaller problem instance that has

the same kernel size
 Moreover� any polygon diagram for the reduced problem can be easily

extended to one for the original problem
 The above pruning step can be repeatedly applied

until the remaining tree satis�es the above assumption
 This process can be done in O�n�

time� and hence� we may proceed further with the above assumption in mind


In the recognition algorithm� described below� an arbitrary node r is designated as the

root node
 Nodes of T are then stored in a stack S in postorder 	 that is� if y is a descendant

of x then y appears somewhere on top of x in S
 Processing of T proceeds next from the

leaves to the root r� according to the ordering in S
 Each node is processed by computing a


�x��optimal diagram �DT �x�� KT �x�� for the graphGT �x�
 To maintain a polynomial running

time� the algorithm terminates with failure if jKT �x�j � k� for any node x
 Otherwise� it

returns an optimal solution �DT �r�� KT �r��


Processing a node x is carried out by executing one of three merge functions� depending

on x�s type
 Each function takes as input pointers to a target node x� and the set Y of x�s

children� and returns an optimal diagram for GT �x�
 These elements are combined in the

following function�

function main �T� r� k
 f

� input� a standard ��decomposition tree T of G in which each degree��

� node is active� a root node r� and an integer k

� output� a polygon diagram �DT �r��KT �r�
 of G with the smallest possible

� number of sides� if jKT �r�j � k

S � the nodes of T stored in postorder �r is at the bottom of S

��



while �S is not empty� f

x � pop�S


�let Y be the set of x�s children

�DT �x��KT �x�
 �

���
��

primeMerge�x� Y
 if x is a prime node

cliqueMerge�x� Y
 if x is a clique node

starMerge�x� Y
 otherwise

if �jKT �x�j � k� f return�nil��� g

g

return �DT �r��KT �r�


g

To prove the main theorem it su�ces to show that

Theorem 
��� Function main�� computes an 
�x��optimal diagram �DT �x�� KT �x�� for any

node x in O��kn�
T �x�� time


The proof is broken into lemmas �
���
� below
 First� we show in Lemma �
� the su�ciency

of using ��optimal diagrams f�DT �y�� KT �y��j y � Y g to compute that of GT �x�
 To shorten

and simplify the notation� we abbreviate any partial polygon diagram� say �DT �x�� KT �x���

with PT �x�� and let 	PT �x� � 	�DT �x�� KT �x��
 Furthermore� we use Dx�
P

y�Y DT �y� to

denote the ��composition of Dx with all diagrams in fDT �y�j y � Y g


The main strategy is to show that if P �
T �x� is a 
�x��optimal diagram of GT �x� then one

can factor the corners of K �
T �x� into disjoint subsets� denoted fK�

T �y�j y � Y g and Knew�

such that for any arbitrary node y � Y � replacing K�
T �y� by a set of corners KT �y� of a ��

optimal diagram PT �y� �as computed by function main��� results in an extendible diagram	

that is� one that can be extended to an 
�x��optimal diagram for GT �x� by possibly adding

some new corners
 More speci�cally� we factor P �
T �x� such that�

D�
T �x� � Dx�

X
yi�Y

D�
T �yi�

� and

K�
T �x� � Knew

�
yi�Y

K�
T �yi��

where Dx is a circle diagram of Gx� and for each yi � Y � D�
T �yi�

is a circle diagram of GT �yi�

obtained by adding a suitable marker �x�yi 
 Factoring K
�
T �x� is done as follows� �rst� assume

that chords in each diagram D�
T �yi�

are assigned a unique colour
 By Theorem �
�� each

colour induces exactly two zones in any possible diagram of GT �x�
 We next assign a corner

ofK�
T �x� to the setK

�
T �yi� if it lies inside a zone of colourD

�
T �yi�

�hence� each such corner lies

on an arc between twomonocoloured endpoints�
 The remaining corners� if any� are assigned

��



to Knew 
 A simple but important fact then is� for each yi � Y � P �
T �yi�

� �D�
T �yi�

� K�
T �yi�� is

a ��supported �but not necessarily ��optimal� diagram of GT �yi�


Lemma 
��� Let P �
T �x� � �D�

T �x�� K
�
T �x�� be an 
�x��optimal diagram for GT �x� factored

as above
 In addition� let y be any arbitrary selected node in Y � for which function main��

has computed a ��optimal diagram PT �y� � �DT �y�� KT �y��
 Then the new diagram PT �x�

de�ned by

DT �x� � Dx � DT �y��
X

yi�Y nfyg

D�
T �yi�

�

KT �x� � Knew

�
KT �y�

�
yi�Y nfyg

K�
T �yi�

is extendible


Proof� We consider the following disjoint cases�

Case �� 	PT �y� 	 	P �
T �y�
 Since PT �y� is ��optimal� it follows that jKT �y�j 	 jK �

T �y�j
 So�

the new diagram PT �x� �with PT �y� oriented so that if it is de�cient on a side then P �
T �y� is

de�cient on that side in P �
T �x�� certainly satis�es jKT �x�j 	 jK�

T �x�j� and 	PT �x� 	 	P �
T �x�


Hence� PT �x� is a 
�x��optimal diagram


Case �� 	PT �y� � 	P �
T �y�
 By assumption� PT �y� is ��optimal� hence� it must be the case

that jKT �y�j � jK�
T �y�j �that is� equality does not hold� otherwise PT �y� violates optimality

in that 	PT �y� is not the smallest possible�
 Let

	diff � 	PT �y� � 	P �
T �y� �� ��� and

kdiff � jK�
T �y�j � jKT �y�j �� ���

Note that 	diff 	 	PT �y� 	 �
 The claim follows easily if 	diff 	 kdiff since the ��optimal

diagram PT �y� can be augmented with 	diff new corners to reduce its de�ciency to 	P �
T �y��

while keeping the total number of corners in the augmented diagram 	 jK�
T �y�j
 The

above augmentation step can also take place in PT �x� �instead of PT �y��� and hence PT �x� is

extendible


The remaining case where � � 	diff � kdiff occurs when� 	PT �y� � �� 	P �
T �y� � �� and

kdiff � �
 Here� it is sometimes impossible to nullify 	PT �y� by just adding a new corner�

as illustrated by the example of Figure �
�
 We therefore consider the e�ect of PT �y� in

the target diagram PT �x�
 To this end� de�ne the restriction of PT �x� to PT �y� to be the

subdiagram of PT �x� obtained by keeping all corners in KT �x�� and deleting all chords not

in PT �y�


�




�a� PT �y� �b� P �
T �y�

Figure �
� An example where 	PT �y� � �� 	P �
T �y� � �� and kdiff � �


We now distinguish the following cases�

Case ��A� PT �y� receives complementary support from PT �x�
 That is� the restriction of

PT �x� to PT �y� contains a corner not in KT �y�
 Then one can add a new corner to PT �x�

so as to nullify the de�ciencies of all chords of PT �y� in the modi�ed diagram of PT �x�


Hence� PT �x� is extendible


Case ��B� Else� PT �y� receives complementary support only from some ancestor of x in T 


This implies the following properties of node x�

P�� x �� r� and by de�nition 
�x� � �
 So� let w denote x�s parent in T 


P�� Knew � � �recall that Knew contributes to PT �y��s support�
 Hence� in the

diagram Dx any chord �� �wx �� � �� �xy � intersects at least one of the two

markers �wx or �xy


P�� Y � fyg �since all possible children of x are active� and any active child con�

tributes at least one corner�
 That is� PT �x� is simply ��Dx�DT �y��� KT �y��


We next distinguish the following subcases�

Case ��B��� �wx does not intersect �xy in Dx �see Figure �
��b� and �c� for two examples�


To show that PT �x� is extendible� it su�ces to show that a new corner can be added

to it so as to make the modi�ed diagram ��supported with de�ciency 	 	P �
T �x�
 To

this end� recall the following facts about 	P �
T �x��

�
 	P �
T �x� � �� to see this� recall that property P� implies that exactly one of the

�wx�semicircles of Dx does not contain the two endpoints of any chord
 Conse�

quently� �wx appears de�cient in any ��optimal diagram of DT �x�


�
 By assumption� P �
T �x� is ��optimal
 Hence� its de�ciency can be nulli�ed by

adding one or two corners from a set f�� ��g� where � and �� are placed immedi�

��



ately next to the two endpoints of the marker �wx so that the hypothetical chord

��� ��� intersects �wx


�a� PT �y� �b� PT �x� �c� another PT �x�

Figure �
� Examples of case �
B
�

To show the above su�cient condition� let c be any corner in PT �y� �c exists since all

leaves of T �y� are active�� and note that one can add a new corner c� to PT �x� such

that

�
 the hypothetical chord �c� c�� crosses all chords that intersect �xy in Dx� and some

of the interface chords intersected by �xy in PT �y�� and

�
 if � nulli�es 	P �
T �x� then the hypothetical chord �c� �� crosses the remaining

interface chords intersected by �xy in PT �y�� and the marker �wx �as in Figure

�
�b��

�
 else it must be the case that f�� ��g nulli�es 	P �
T �x�
 Then the hypothetical

chords �c� �� and �c� ��� cross the remaining interface chords intersected by �xy

in PT �y�� and the marker �wx �as in Figure �
�c�


Thus� PT �x� with the added corner c� is ��supported with de�ciency 	 	P �
T �x�
 This

proves the su�cient condition


Case ��B��� Else� �wx intersects �xy in Dx
 For convenience� we say that the diagram PT �y�

�or P �
T �y�� is of type �aja�� abbreviated PT �y� � �aja�� if each of the �xy�semicircles of

PT �y� contains at least one corner
 On the other hand� if exactly one of the two

semicircles is corner�free then we write PT �y� � �aj��
 Note that P �
T �y� � �aja�� since

	P �
T �y� � �
 We now deal with the following cases


Cases ��B���� PT �y� � �aja�
 Then PT �x� is a ��supported diagram with a smaller kernel

than P �
T �x�� contradicting the assumption that P �

T �x� is ��optimal


Cases ��B����� PT �y� � �aj��
 Then the following distribution of the jK �
T �y�j � jKT �y�j��

corners in P �
T �y� � �aja� must hold true�

��



�
 Exactly jKT �y�j corners appear in one of the �xy�semicircles of P �
T �y�
 This follows

since P �
T �y� is a ��supported diagram �but not necessarily ��optimal� as described

in factoring K�
T �x��� and in addition� all of the jKT �y�j corners are required �since

PT �y� is ��optimal�


�
 Exactly one non�required corner exists in the other semicircle of P �
T �y�
 That

is� this particular semicircle does not contain the two endpoints of any chord

� �� �xy 
 Call this corner c


Deleting c from P �
T �y� results in a ��supported diagram with jKT �y�j corners and de��

ciency � �� contradicting the assumption that PT �y� is ��optimal �since 	PT �y� � ��


The above exhausts all possible cases� and completes the proof of Lemma �
�

Second� we show the su�ciency of using the geometric operations� discussed in the last

section� to generate ����optimal diagrams�

Lemma 
��� There exists an assignment of orientations to ��optimal diagrams in fDT �y�j y � Y g�

and permutation of chords in Dx �if x is a clique or a star node�� such that Dx�
P

y�Y DT �y�

is extendible to an 
�x��optimal diagram by possibly adding some new corners


Proof�

This follows easily from Lemmas �
� and �
� above� by taking into account all possible

degrees of freedom for the markers in Dx and the ��optimal diagrams of the nodes in Y 


Third� we provide performance guarantees for the functions called in the while�loop�

Lemma 
��� Given a set f�DT �y�� KT �y��j y � Y g of precomputed ��optimal diagrams� then

the above merge functions compute an 
�x��optimal diagram of GT �x� in

t �

����
���

O�n�
T �x�� if x is a prime leaf node

O��knT �x�� if x is an internal prime node

O�nT �x�� if x is a clique node or a star node

where nT �x� is the number of nodes in GT �x�


Proof�

See the details in the next section


To complete the proof of Theorem �
� above� we note that�

The timing mentioned in Lemma �
� assumes that ��optimal diagrams for nodes in Y

have been precomputed
 Summing over all nodes in T �x�� it is easy to verify that the total

��



time required to process all prime leaves in T �x� is O�n�
T �x��� and the time required to

process the remaining nodes in T �x� is O��kn�
T �x��
 Adding the two terms together gives

the stated bound
 This completes the proof


�� Optimal Diagrams

We now focus on computing a ����optimal diagram for any arbitrary node x in the pruned

tree T 
 The following few notations will be used throughout the section
 Let r denote the

root node of T � w denote x�s parent �if x �� r�� and Y denote the set of x�s possible children


In addition� let nx and nT �x� denote the number of nodes in Gx and GT �x�� respectively


It is also worthwhile recalling the following facts
 First� the algorithm considers pro�

cessing a node x only after computing a set of ��optimal diagrams fDT �y�j y � Y g
 Second�

in the pruned tree T � every child y � Y is active with respect to the marker �xy 
 Third� the

de�nition of a ��optimal diagram of GT �x� uses two hypothetical corners � and ��� placed

immediately next to the two endpoints of the distinguished marker �wx� such that the hy�

pothetical chord ��� ��� intersects �wx
S
N��wx� �cf
 Section ��� where N��wx� is the set of

chords intersecting �wx


��� Function Fill�In

A core function that will be used subsequently calls for solving the following restricted�

corners assignment problem� given a partial polygon diagram �D�K�� where K is a required

set of corners� �nd a complete polygon diagram �D�K
Knew�� such thatKnew is as small as

possible
 That is� Knew equals the de�ciency 	�D�K�
 In the context of evaluating a node x

with a set Y of children� the diagram D stands for any arbitrary diagram Dx�
P

y�Y DT �y�

obtained by permuting and orienting the markers in Dx
 The required set K stands for the

set
S
y�Y KT �y� of precomputed ��supported kernels


In this context� the problem admits a simple O��� time solution if x is a leaf node

corresponding to a clique or a star
 We now devise a solution when x is an internal node of

T 	 here K �� � and there exists a corner � at which one can start traversing the diagram


function fillIn �D�K
 f

� input� a partial polygon diagram �D�K


� output� a set Knew of new corners such that �D�K �Knew
 is a

� complete polygon diagram� and Knew is as small as possible

� notation� let Q be the set of endpoints of chords in D

Knew � �

�� any corner in K

��



for �e in Q
 f side�e
 � nil g

currentSide � �

for �e in Q �K
 f �e is encountered in a clockwise traversal of D

�beginning just after the selected corner � and

�ending just before �

if �e in Q
 f

let e� be the other endpoint of the chord with endpoint e

if �side�e�
 �� currentSide� f

currentSide � currentSide � �

Knew � Knew� f a corner just counterclockwise of e g

g

side�e
 � currentSide

g

elseif �e in K
 f currentSide � currentSide � � g

g

return �Knew


g

The above algorithm requires O�nT �x�� time to process the graph GT �x� corresponding

to the internal node x
 Correctness of the above function is straightforward and deserves

no further comment


The remaining case occurs if x is a leaf node corresponding to a prime graph Gx
 Here�

K � � and there is no corner � at which to start the above process
 Nevertheless� one

can �nd a chord � that splits Dx into two semicircles fW�Wg such that no other chord

lies completely in W 
 Clearly� there exists a solution in which W contains exactly one

corner� denoted � hereafter
 If W contains n� endpoints �where n� 	 nx � �� if x is a

leaf that does not correspond to a clique or a star� then � can be placed in any of n� � �

possible arcs in W 
 Function fillIn�� can then be executed n� � � times to compute

Knew � min ffillIn�D� f�g�j � in Wg
 The set Knew 
f�g is a solution to fillIn�D� ��


This special case requires O�n�x� to process a prime leaf node x


��� Prime Nodes

We now consider computing a ����optimal diagram for a node x that corresponds to a prime

graph Gx
 This can be achieved using a brute�force algorithm that examines all possible

orientations of ��optimal diagrams in fDT �y�j y � Y g� as described below


function primeMerge�x�Y� f

��



� input� x� Y � Dx� and fDT �y�j y � Y g� as described above

� output� a ��x
�optimal diagram �D�K
 of GT �x�� and

� a minimum fill�in F	 that is� jF j � ��D�K


� notation� D and K stand for DT �x�� KT �x�� respectively
� step �� initialize the set of all external�support corners

Ksupport �

�
f�� ��g if x �� r �the root�

� otherwise

� step 
� initialize D� jKj and jF j to some out�of�range values

D � nil	 jKj � jF j � �

� step �� search for a �
��optimal solution

for �Ksup � Ksupport� f �iterate � 	 times

for �every possible orientation of orientable diagrams in fDT �y�j y � Y g� f

Dtmp � Dx�
P

y�Y DT �y�

Ktmp � Ksup

S
y�Y KT �y�

Knew � fillIn �Dtmp�Ktmp


K� � �Ktmp �Knew
 nKsup �now� �Dtmp�K
�
 is a partial

F � � Ksup �diagram of deficiency jF �j

if ��jK�j � jKj� or �jK �j �� jKj and jF �j � jF j��

f D � Dtmp	 K � K �	 F � F � g

g

g

return

�
�D�K�F 
 if x �� r �return a ��optimal diagram

�D�K � F� �
 otherwise �return a ��optimal diagram

g

Besides its role in processing prime nodes� function primeMerge�� will be called by

cliqueMerge�� and starMerge�� in a context where a small distinguished subset of nodes

in Y will be marked orientable �for the rotations done in the for�loop in step ��	 the remaining

nodes will be treated as �xed points
 In this respect� function primeMerge�� will act as a

�rotation manager� for the other two functions


Timing� Suppose that primeMerge�� is called with a subset Y � � Y of orientable nodes

�Y � � Y if x is a prime node�� then function fillIn�� will be called ���jY
�j times
 Several

straightforward observations can be used to speed�up the above function
 For instance� if

DT �y�� y � Y � is a ��optimal diagram that has at least one corner in each of its two possible

�xy�semicircles then y need not be subjected to aNS�rotation
 Likewise� if 	�DT �y�� KT �y�� �

� then DT �y� need not be subjected to a WE�rotation when processing x
 Nevertheless� the

worst case running time remains the same� and hence no further e�ort will be expended on

improving the algorithm


��



��� Clique Nodes

The underlying problem in processing a clique node x lies in considering all possible permu�

tations and orientations of the markers in Dx
 Fortunately� it is possible to take advantage

of the symmetry ofDx to quickly identify an optimal permutation for each problem instance�

as will be shown next


To introduce the algorithm� however� we need to examine a new level of detail in polygon

diagrams
 Speci�cally� for a child node y � Y � let Ixy be the set of interface chords in the

precomputed ��optimal diagram �DT �y�� KT �y��	 that is the set of chords that intersect the

marker �xy 
 In addition� let W be any one of the two semicircles induced by the marker

�xy in DT �y�� and let WKT �y� � KT �y� be the subset of corners that lie in W 
 We focus on

the distribution of WKT �y� around the interface chords Ixy in the diagram
 To this end�

we de�ne the semicircle de�ciency of Ixy in W � denoted 	�DT �y��WKT �y�� Ixy�� to be the

de�ciency of Ixy in the partial diagram �DT �y��WKT �y��� assuming that all corners not in

WKT �y� have been erased


Furthermore� we say that W is a big�end of DT �y� �or simply� a big�end of the node y�

if WKT �y� �� � and 	�DT �y��WKT �y�� Ixy� 	 	�DT �y��WKT �y�� Ixy�� where WKT �y� is the

subset of corners in the other semicircle
 We now introduce a �redundant� notation that

may help in a better visualization of the distribution of corners in y�s big�end
 Namely�

we say that the diagram DT �y� �or� the node y itself� is of type ��� ��� ��� ��� or ��� �� if the

semicircle de�ciency of y�s big�end is �� �� or �� respectively
 Figure 

� gives an example

layout for each of the three types mentioned above


Figure 

� Examples of semicircle de�ciences of Ixy

Step � of function cliqueMerge�x�Y� operates on �at most� three key elements of Y

�equivalently� markers in Dx�� denoted y�� y�� and y�
 To introduce the de�nitions� we need

the following concept� for any subset Y � � Y � call an element y � Y � a leader of Y � if y�s

big�end has the smallest possible semicircle de�ciency among all nodes in Y �
 The �rst key

element y� is chosen to be a leader of Y 
 In addition� if jY j � � then let y� be a leader of

��



Y n fy�g� else y� � nil
 Similarly� if jY j � � then y� is a leader of Y n fy�� y�g� else y� � nil


In Figure 

�� the big�end of each key element is marked with a �lled circle
 To present the

algorithm� we start with the case where x �� r �hence� 
�x� � ��


function cliqueMerge�x�Y� f

� input� x� Y � Dx� and fDT �y�j y � Y g� as described above

� output� a ��optimal diagram �D�K
 of GT �x�� and

a minimum fill�in F	 that is� jF j � ��D�K

� step �� identify an extendible diagram of Gx

if �jY j �� �
 f Dx � any possible diagram of Gx g

elseif �jY j �� �� f

Dx � a diagram where y� and y� are placed next

to each other as in Figure ��
�a�

g

elseif �jY j � 
� f

Dx � a diagram where the markers corresponding to

y�� y�� and y� are ordered as in Figure ��
�b��

and all other chords are ordered arbitrarily

g

� step 
� if jY j �� � mark all nodes in Y �xed	 else if jY j �� � mark y� and y�

� orientable and mark the remaining nodes in Y nfy�� y�g �xed	 extend Dx

� to a ��optimal solution

�D�K�F 
 � primeMerge�x� Y 


return �D�K�F 


g

Figure 

� Processing a clique node x

Lemma ���� Let Dx and �D�K� be as computed above
 Then �D�K� is a ��optimal

solution


��



Proof�

That �D�K� is a ��supported diagram of GT �x�� with respect to the marker �wx� is

immediate
 To see that K is a ��supported kernel� note that the call to primeMerge�x�Y�

does not introduce any new corner
 Hence� the computed set K is exactly the required

set
S
y�Y KT �y�
 It then remains to show that the computed partial diagram �D�K� has

the smallest possible de�ciency 	�D�K� among all possible diagrams having exactly jKj

corners
 This is done by exhausting all possible cases� as follows�

�
 For jY j � �� the claim follows by symmetry of Dx


�
 For jY j � �� the arrangement of Figure 

��a� implies that every possible marker

in Dx n fy�� y�g has a zero de�ciency
 One may then verify that y� and y� admit

WE�rotations that yield

	�D�K� �

�
� if y�� y� have type � f��� ��� ��� ��g

� otherwise

�
 For jY j � �� the claim follows easily since 	�D�K� � �


Moreover� in all of the above cases� 	�D�K� has the smallest possible value


The above algorithm does not require any modi�cation to compute a ��optimal diagram

�D�K
S
F � if x � r
 In this case� however� the marker �wx illustrated in Figure 

� does

not exist


Timing� the above function calls primeMerge�� once with no orientable markers	 this

results in at most � calls to fillIn��� and hence the O�nT �x�� time bound


��� Star Nodes

Similar to the situation for clique nodes� it is possible to identify a winning permutation

for each input instance if x is a star node
 The process is equally straightforward� however�

the analysis requires more cases to be considered
 On middle ground� we present key

ingredients of a less e�cient� but shorter� algorithm that has the same worst�case order of

running time as the core function fillIn��
 The devised function is a re�nement of the

following brute�force algorithm�

function starMerge�x�Y� f �inputs and outputs are as in cliqueMerge��

D � nil	 jKj � jF j � � �some out�of�range values

for �each permutation of the leaves in Dx� f

�D��K�� F �
 � primeMerge�x� Y 


��



if ��jK�j � jKj� or �jK�j �� jKj and jF �j � jF j�� f D � D�	 K � K�	 F � F � g

g

return �D�K�F 


g

The re�ned algorithm operates on �at most� two key elements of Y � denoted y� and y�


As in the previous section� the key elements are leaders of the set Y 
 Speci�cally� if the

distinguished marker �wx is the center c of the star then y� and y� are as de�ned in the last

section
 Else �if �wx �� c�� then y� and y� are de�ned as leaders of the two sets Y n fcg and

Y n fc� y�g� respectively


Revising the function to to achieve O�nT �x�� running time for jY j � � is straightforward


It then remains to discuss the case when jY j � �
 In this case� let �DT �x�� KT �x�� be any


�x��optimal diagram for GT �x�
 The diagram DT �x� then corresponds to some permutation

of the markers in Dx
 Traversing this permutation from one end to the other� let yf and

y� be the �rst and last elements� respectively
 We now observe that the size of the 
�x��

supported kernel jKT �x�j� and the de�ciency 	�DT �x�� KT �x�� are entirely determined by the

following factors�

�
 if �wx exists and �wx �� c� the semicircle de�ciences of the two ends of the center chord

c� and the location of �wx relative to the extreme chords yf and y�� and

�
 if yf �� �wx �or� by symmetry� y� �� �wx�� the semicircle de�ciency of yf �s big�end

�respectively� y��s big�end�


The structure of the remaining chords in the set Y n fc� yf � y�� �wxg is irrelevant
 Since y�

and y� are the best elements with respect to ��� above� it is easy to see that there exists a

winning permutation in which y� and y� appear in place of yf and y�


The above observations can be put in force by incorporating the following changes� �i�

the for�loop is changed to deal with the existing elements of the set fy�� y�� c� �wxg as the only

permutable elements� all other elements will be declared �xed and will be placed contiguously

surrounded by some two elements in the above set� and �ii� function primeMerge�� is

signaled that the above four elements are the only orientable elements


Timing� To show that the revised function executes function fillIn�� a constant num�

ber of times note �rst the for�loop iterates at most �� times
 In each iteration� function

primeMerge�� generates at most � � �� diagrams� and calls fillIn�� for each of the gen�

erated diagrams
 It is possible to further re�ne the function so that fillIn�� is called at

most � times for each input instance� as in cliqueMerge��	 however� we do not describe

the re�nement as it does not a�ect the order of the worst�case running time


�




�� Complexity of the k�Polygon Problem

We now show that

Theorem ���� Given a circle graph G� determining the minimum integer k such that G is

a k�polygon graph is NP�complete


The proof reduces the ��satis�ability problem where each variable occurs at most � times

�see� for example� ��� problem �LO��� to the k�polygon problem
 Let F �
Vm
i�� Ci be

an instance of the above restricted satis�ability problem with m clauses fC�� C�� � � � � Cmg

and n variables fx�� x�� � � � � xng
 Without loss of generality� we may assume that every

variable appears in both positive �uncomplemented� and negative �complemented� forms
 In

addition� we may assume that F is indecomposable	 that is F can not be written as F�
V
F�

with no common variables between F� and F�
 The proof constructs a circle diagram D

for a circle graph G having a standard ��decomposition tree T isomorphic to a star with

a central node r� and � � �m � ��F � leaves� where ��F � is a number derived from the

formula F 


More precisely� T has a distinguished leaf z corresponding to the circle diagram illus�

trated in Figure �
��a�� called the equator gadget
 �The �gure shows also two corners that

will be explained shortly
� In addition� T has �m leaves fu�� u�� � � � � u�mg� each correspond�

ing to a circle diagram� called a literal gadget� as illustrated in Figure �
��b� for an arbitrary

leaf u
 The remaining ��F � leaves are called link structures
 Each such structure has a

circle diagram similar to that of Figure �
��b� and will be explained shortly


Figure �
�

At this point� it is important to observe that each of the abovementioned gadgets corre�

sponds to a prime graph
 Moreover� each gadget �with the indicated corners now taken

into account� forms a ��optimal diagram �cf
 Section �� with respect to the unique marker

��rz or �ru� in the gadget
 Hence� at least as many corners will be introduced by each such

gadget in a �complete� polygon diagram of the circle graph G
 In describing the structure

of the center node r below� we �nd it convenient to draw a marker �ru representing a literal

��



gadget with an arrow at one endpoint to signal the existence of at least one corner in its

corresponding ��optimal diagram
 Likewise� it is convenient to draw the marker �rz in Dr

with an arrow at each endpoint to signal the existence of at least one corner in each of the

�rz�semicircles of Dz 


We now consider the center node r
 Roughly speaking� the corresponding circle diagram

Dr can be viewed with the �bidirected� marker �rz placed horizontally �see� Figure �
��a��

for an example�� and two special sets of chords� a set of clause gadgets� placed in the

upper �rz�semicircle� and a set of variable gadgets� placed in the lower semicircle
 In Dr�

each �directed� marker that represents a literal gadget intersects a clause gadget �at one

end�� the marker �rz �at the middle�� and a variable gadget �at the other end�
 Figure

�
��c� illustrates a typical clause gadget
 The gadget has exactly one chord	 the three other

directed chords correspond to markers of three literals that occur in that particular clause


Variable gadgets are slightly more complex than the previous ones
 The exact structure

of the gadget associated with variable xi that appears p times in a positive form and q times

in a negative form �p � q 	 ��� depends on p and q
 It su�ces� however� to outline the

structures for p 	 q
 Figure �
� �a� illustrates a typical variable gadget for p � � and q � �


In the diagram� chords drawn as undirected solid lines are called clusters
 Here� clusters

R�� �� chord�� R�� �� chords�� Rc �� chords� and R� �� chords� are incident with literal

gadgets �directed solid lines� and link structures �directed dashed lines � link structures are

mentioned above as having circle diagrams identical to that of literal gadgets�


Figure �
� Possible structures of variable gadgets

A con�guration of a variable gadget is an orientation of the directed solid chords �the

literals�� and the directed dashed chords �the link structures�


Thus� in a typical con�guration some of the directed solid chords are oriented to�

wards the diagram while the remaining chords are oriented away from the diagram to�

wards the clause gadgets
 Some of the con�gurations are well�covered in that each chord

in R�
S
Rc

S
R��

S
R�� �straddles� at least one arrow
 The NP�completeness reduction

assigns a ��� value to each variable xi in F from a well�covered con�guration of the cor�

responding variable gadget as follows
 First� suppose that the arrow associated with the

��



middle dashed line in the control cluster Rc lies inside that cluster
 To cover R�� the pos�

itive literal arrows must then lie inside that cluster
 Consequently� one or more negative

literal arrows may then be used to reduce the de�ciency of some clauses� and hence we set

xi � �
 Conversely� if that particular control arrow is placed inside R� then all negative

arrows must lie inside R��
S
R�� and the positive arrows can be directed towards the clause

gadgets� and hence we set xi � �


Variable gadgets for other distributions of p and q� p 	 q� can be constructed in a

similar way
 For p � � �and q � �� the cluster R� is replaced with one similar to R��
 For

q � �� the cluster R�� is replaced with one similar to R��
 For �p� q� � ��� �� the control

cluster Rc has only one solid chord with two incident link structures
 In simpler situations�

where �p� q� ���� �� or ��� �� we use the gadgets shown in Figures �
��b� and �c�� respectively


Clearly� gadgets used to represent cases where p � q are similar to the above
 Finally� ��F �

is de�ned to be the number of link structures in the overall diagram of Dr
 That is� if we

let Npq be the number of variables that appear p times in a positive form and q times in a

negative form� and let mpq be the number of link chords in a typical gadget associated with

any such variable then ��F � �
P

p�q��mpqNpq
 By inspection� m��� � m��� � m��� � ��

m��� � � and mp�q � � for all other possible values


F � C� �C� �C�

C� � �x� 	 x� 	 x�
� C� � �x� 	 x� 	 x�
� C� � �x� 	 x� 	 x�


Figure �
� An example of a formula F and the associated diagram Dr

Finally� the set V �Gr� of vertices is the union of four disjoint sets� Vz � f�rzg� the set

of clause markers VC � fC�� � � � � Cmg� the set of literal gadgets VU � fu�� � � � � u�mg� and a

family of n sets of vertices VX � fX�� � � � � Xng� where Xi corresponds to all chords in the

variable gadget associated with xi
 For two sets of vertices� say VA and VB� let EAB denote

the set of edges with one end in VA and the other in VB
 Using the above notation� one can

��



write E�Gr� � EzU

S
ECU

S
EUU

S
EUX

S
EXX


Figure �
��a� gives an example of Dr� where solid chords with single arrows represent

positive literals and dashed chords represent negative literals
 Here� ��F � � � and the

diagram leads to an embedding of the entire graph G in an ���gon	 the corresponding ���

assignments are� x� � x	 � �� x� � � and x� � don�t care
 Figure �
��b� illustrates the

graph Gr with all edges in EUU omitted
 To prove that T is a standard ��decomposition

tree� it then remains to show that�

Lemma ���� Gr is prime


Proof�

To derive a contradiction� assume that V �Gr� has a split fV�� V�g� for which W� � V�

and W� � V� are the interface vertices� as de�ned in Section �
 First� observe that the

indecomposable formula F yields a ��connected graph Gr
 Consequently� jW�j� jW�j � �


We next assert the following claims in order
 To simplify the presentation� however� we

sometimes use the same symbol �or simply� the word �literal�� to refer to any particular

binary literal in F and the corresponding vertex in Gr
 A similar remark applies for any

clause in F 


Claim ���A� No vertex of VC appears as an interface vertex


Proof� Assume to the contrary that some vertex C � VC appears as an interface vertex�

say C � W�
 Since jW�j � �� there exists another interface vertex w � W�nfCg
 We remark

that C � W� implies that W� consists of two or all of the three literals that occur in the

binary clause C
 The following observations then hold true for w�

�
 w �� VC � since no two clause vertices of VC share a common literal of VU 


�
 w �� VX � since C shares at most one literal with any vertex in any variable gadget


�
 If w � VU then �rz is an interface vertex� since �rz is adjacent to w � W� and all vertices

of W�
 In this case� �rz must lie in W�� and not in W� �since ��rz� C� �� E�Gr��
 We

may then choose w � �rz �instead of w � VU�� and deal only with the next case


�
 w � �rz� then all vertices in �VUnW�� must lie in V� �since �rz � W��
 Choose any

arbitrary literal u�� � W� �recall from the above remark that u�� occurs in the binary

clause C�
 By assumption� each variable occurs at least twice in F 
 Hence� F contains

another literal u� that is associated with the same binary variable as u��	 this literal

corresponds to a vertex that lies in V� �since �VUnW�� � V�� as mentioned above�


Now consider the variable gadget X corresponding to the binary variable of which u�

and u�� are two literals
 By the construction of X � there exists a path from u� to u��

passing through the vertices of X only
 This implies that at least one vertex x � X

��



appears as an interface vertex
 Nevertheless� it is impossible to have x � W� since W�

has at least two literals corresponding to two di�erent binary variables
 On the other

hand� x ��W� since ��rz� x� �� E�Gr�
 Thus� w �� �rz


The above argument exhausts all possible choices of w� and completes the proof
 �

Claim ���B� No vertex of VX appears as an interface vertex


Proof� Similar to the above proof� assume to the contrary that some vertex� say x� of a

variable gadget X appears in W�
 The strategy is to exhaust all possibilities for a second

interface vertex w � W�nfxg� using the following observations�

�
 w �� VC by the previous claim


�
 w �� VX � since no two vertices of VX share two or more neighbours �note� this remark

applies for any possible structure of the variable gadget X�
 We may then conclude

that no two vertices of VX appear in W�


For the remaining cases� we remark that ��� above implies �by symmetry� that no two

vertices of VX appear in W�
 Hence� at least one literal� say u
��� appears in W�


�
 If w � VU then each of W� and W� contains a literal
 Consequently� �rz must be one

of the interface vertices
 Hence it must be the case that �rz � W�� and not in W�

�since ��rz� x� �� E�Gr��
 Again� we may choose w � �rz � and deal with the next case


�
 w � �rz � here we have f�rz � xg � W�	 this implies that all vertices of W� are literals

of the same binary variable that X represents
 The remaining literals �VUnW�� must

then appear in V�
 Recall from the above remark that u�� � W�
 Denote by C the

binary clause in which u�� occurs� and note that the other two literals of C must lie

in V�
 This implies that C is an interface vertex	 a contradiction by Claim �
�A


This completes the proof of the claim
 �

Now suppose �without loss of generality� that V� contains a clause vertex C
 Then C �

V�nW� �by Claim �
�A�� and hence all literals in C lie in V�
 Claim �
�B then implies that

all variable gadgets corresponding to these literals appear in V�nW�
 A similar note holds if

V�nW� contains any vertex of a variable gadget X 
 Here� Claim �
�B implies that all of the

remaining vertices of the gadget X must lie in V�nW�� since the subgraph of Gr induced on

X is connected
 Consequently� all literals of the binary variable represented by X appear in

V�� and hence all clauses in which these literals occur appear in V�nW� �by Claim �
�A�
 The

above observations� combined with the assumption that F is indecomposable� imply that if

a clause vertex C lies in V� then all vertices in VC
S
VU
S
VX lie in V�
 That is� jV�j 	 �	 a

contradiction
 Hence� no such split fV�� V�g exists and Lemma �
� follows


��



We are now ready to prove Theorem �
��

It is routine to check that F can be validated and that G can be constructed in poly�

nomial time
 Lemma �
� ensures that T is a valid ��decomposition tree of G and hence

any optimal diagram of G can be obtained by assigning orientations to the circle diagrams

associated with nodes in T and evaluating the tree
 A lower bound on the cardinality of an

optimal kernel of G is �m���F ���
 In fact� it is easy to verify that F is satis�able if and

only if G is a ��m � ��F � � ���polygon graph
 Both directions are straightforward using

the above rules of mapping con�gurations of variable gadgets to ��� values of the variables

in F 


	� Disconnected Polygon Graphs

Up to this point� our main emphasis has been on connected circle graphs
 A need may

exist� however� for computing optimal polygon representations of arbitrary disconnected

circle graphs� and hence� a word should be said in this respect
 To this end� we recall the

following notation� for any circle graph G� k�G� denotes the size of the smallest polygon

required to represent G
 We also allow k�G� � � if G is a permutation graph
 In addition�

if P is a polygon then let k�P � denote P �s size
 Now� let G �
Sr
i��Gi be a disjoint union

of r connected circle graphs fGij � 	 i 	 rg	 the main result of this section is�

Lemma ���� k�G� � �
Pr

i�� k�Gi�� � ��r� ���

Proof�

We �rst describe a simple iterative construction to show that k�G� 	 �
Pr

i�� k�Gi�� �

��r � ��
 For � 	 i 	 r� let Pi be a k�Gi��polygon representation of Gi
 The construction

performs r � � iterations
 At the ith iteration� we construct a polygon representation ofSi��
j��Gj by merging a polygon diagram P � representing

Si
j��Gj with P �� � Pi��
 The new

polygon representation has k�P �� � k�P ��� � � sides� and hence the �nal polygon diagram

for G has size equal to the right�hand side of the inequality
 To merge P � with P ��� we �rst

identify a corner c� � P � with a corner c�� � P ��� as sketched in Figure �
��a�� and call the

new double�corner point c
 In P �� let a� and b� be the two sides incident with c�� so that the

sequence �a�� c�� b�� appears in a clockwise traversal of P �
 Similarly� let �b��� c��� a��� be the

corresponding sequence in P ��
 Next� split the double�corner point c into two new points cu

and cd� where cu is incident with the two sides a� and a��� and cd is incident with b� and b��


Finally� remove cu and cd� and unify a� with a�� �also� b� with b��� into a single side
 This

completes the construction


��



Figure �
� Merging and splitting of polygon diagrams

We next induct on r to show that k�G� � �
Pr

i�� k�Gi�� � ��r � ��
 The inequality

holds trivially for r � �
 So� let r � � and assume that it holds for all circle graphs with

at most r � � components� and let G �
Sr
i��Gi be an arbitrary circle graph
 In addition�

let P be a k�G��polygon representation of G
 Call a side of P shared if it contains the

endpoints of chords associated with two or more components of G
 Note that chords of

each component of G can be identi�ed with a closed region inside P � as sketched in Figure

�
��b�
 Moreover� no two regions intersect each other
 It then follows that at least two

regions in P are peripheral in that each one has at most two shared sides
 Without loss of

generality� we may assume that the region corresponding to G� is peripheral
 Denote by a

and c the �rst and last sides of P that are incident with endpoints of chords in G�
 It is

then possible to split P into two polygons�

�
 P � �representing G�� obtained by deleting all chords not in G�� and all sides not used

by G�� and subsequently joining the two special sides a and c at a new corner point�

and

�
 P �� �representing G nG�� obtained in a similar way by deleting all chords of G�


We then have k�G� � k�P �� � k�P ��� � �
 The inequality then follows since� by de�nition�

k�P �� � k�G��� and k�P ��� � k�G n G�� � �
Pr

i�� k�Gi�� � ��r � ��� by the induction

hypothesis
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