[LL]]

University of Alberta

&

0
C

o)

a 7N
5

Polygon Graph Recognition

by

E.S. Elmallah and L.K. Stewart

Technical Report TR 95-03
February 1995

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Polygon Graph Recognition

E.S. Elmallah and L.K. Stewart
Department of Computing Science
University of Alberta
Edmonton, Alberta, T6G 2H1
CANADA

Abstract

For any fixed integer & > 2, define the class of k-polygon graphs as the intersection
graphs of chords inside a convex k-polygon, where the endpoints of each chord lie on
two different sides. The case where & = 2 is degenerate; for our purpose, we view
any pair of parallel lines as a 2-polygon. Hence, polygon graphs are all circle graphs.
Interest in such graphs arises since a number of intractable problems on circle graphs
can be solved in polynomial time on k-polygon graphs, for any fixed %k, given a polygon
representation of the input graph. In this paper we show that determining whether
a given circle graph is a k-polygon graph, for any fixed k, can be solved in O(4%n?)
time. The algorithm exploits the structure of a decomposition tree of the input graph
and produces a k-polygon representation, if one exists. In contrast, we show that

determining the minimum value of k is NP-complete. !

Keywords: graph algorithms, graph theory

!This research is partially supported by NSERC Operating Grants

1. Introduction

This paper investigates the complexity of the following class of recognition problems: given
an undirected graph ¢ = (V, V), and an integer k, k > 2, is (G a k-polygon graph? That
is, does there exist a one-to-one mapping between V and chords of a k-polygon such that
(v;,v;) € E if and only if their corresponding chords intersect? The case where k = 2 is
degenerate but important; for our purpose we view any pair of parallel lines as a 2-polygon.
If the answer is positive, then we are interested in generating the corresponding intersection
diagram. We henceforth let |V| = n and |F| = m.

Two important cases of the above problem are well-solved. At one extreme, the problem
for k = 2 calls for recognizing permutation graphs, defined also as follows: a graph G =
(V,F) on n vertices is a permutation graph if there is a labelling {vy, v, -+, v,} of the
vertices and a permutation 7 of {1,2,---,n} such that for every possible i < j, (v;,v;) € E
if j appears before 7 in 7. Equivalently, [6] shows that G is a permutation graph if and only
if both G and its complement are comparability graphs. Using the above characterization,
[6] devised a recognition algorithm based on computing transitive orientations. The fastest
algorithm, however, for recognizing such graphs, and constructing associated permutation
diagrams, is due to Spinrad [12] and runs in O(n?) time.

At the other extreme, the problem for & > n is essentially that of recognizing circle
graphs (overlap graphs). The first known polynomial time recognition algorithms for this
class are due to Bouchet [1], and independently Naji [11]. Subsequent improvements of
the running time to O(nm) and O(n?) are due to Gabor, Supowit and Hsu [7] and Spin-
rad [13], respectively. The interested reader may find several other algorithmic aspects of
permutation graphs and circle graphs in Golumbic [9].

Our interest in solving the above problem for any arbitrary k arises since a number
of combinatorial optimization and enumeration problems that appear to be intractable on
circle graphs admit polynomial time solutions on k-polygon graphs, given a polygon diagram
of the input graph (see for example [4] and [5]). Some such combinatorial problems arise in
real-world applications, with VLSI routing problems being a good case in point.

Our contribution in resolving the above problem is two-fold. We first devise an O(4%n?)
time algorithm for solving the problem, for any fixed k. The algorithm takes as input a
special tree representation of the input circle graph, as will be mentioned shortly, and an
integer k; it produces a k-polygon representation of 7, if one exists (Theorem 5.1). Second,
we show that computing the minimum value k(G) for which G is a k(G)-polygon graph is
NP-complete (Theorem 7.1). The former result is the first known asymptotic upper bound
for solving the above general problem. The running time depends exponentially on k&, and
hence the algorithm appears to be practical only for small k. Nevertheless, the algorithm

admits speedup using parallelization techniques. The NP-completeness result, on the other

hand, shows that such asymptotic behaviour is probably unavoidable. Finally, we conclude
by showing that if G = (Ji_; G; is a disconnected circle graph with r components then
KG) = (S K(G2) = 2(r— 1),

The recognition algorithm has two main ingredients (mentioned below): Theorem C82
due to Cunningham [2], and Theorem GSH89 due to Gabor, Supowit, and Hsu [7]. To start,
we need to reproduce from [2] some basic definitions and results related to the following
notion of graph decomposition: let G = (V, F) be a finite undirected graph, and let {V7,V3}
be a partition of V. Call {V1,V,} a split of V' if:

(i) [Vi],| Vol > 2, and

(ii) there exist Wp C Vi and Wy C V3 such that the subset of edges {(v1,v2) € F|
vy € Vi,va € Va} is precisely the set of all pairs {(v1,v2)| vy € Wy, vy € Wi}, We
henceforth call Wy and W5 the interface vertices of the partition {V7,V5}.

Graphs that do not admit such a split are called prime. If {V1,V5} is a split, then let
C €V be a new vertex (called a marker). The simple *-decomposition of G associated with
the split {Vy,V5} is a set {G, G2} of graphs where, for ¢ = 1,2, (; is obtained from the
induced subgraph G[V;] by adding the marker ¢ and making it adjacent to every vertex

in W;. A decomposition of G is defined inductively to be either {G}, or a set of graphs
obtained from a decomposition M of G by replacing a member Gy of M by the members
of a simple *-decomposition of G1, where the marker of this simple decomposition is not
an element of any member of M. As mentioned in [2], it is then possible to associate a

x-decomposition tree T" with any decomposition M. The vertices of T" are the members of

M, and the edges correspond to the markers of M; each edge joins in T" the two graphs of
M of which the corresponding marker is a vertex.

Two partitions {X, X} and {Y,Y} of V cross if each of the four possible intersections
between the X’s and the Y’s is non-empty. A split is said to be good if it is crossed by no

other split of G. Using the theory of decomposition frames developed in [3], Cunningham
showed in [2] that the set of all good splits of a diconnected graph G (note: G is diconnected
if for every ¢ C A C V there exists an arc (vy,v2) with v € A and v ¢ A) generate a unique
decomposition (the standard *-decomposition) each of whose members has no good split.
In addition, [2] characterizes diconnected graphs that have no good splits. As a special
case, the following characterization applies to undirected graphs (a similar characterization

applies to symmetric diconnected graphs):

Theorem C82 [2]: Each connected undirected graph has a unique standard *-decomposition,

each of whose members is prime, complete, or a star.

Several algorithms for computing such a standard *-decomposition exist in the literature.
The first algorithm, due to Cunningham, runs in O(n>) time and applies to undirected and
symmetric diconnected graphs. In the special case of undirected graphs, the bound has
been improved in [7] to O(nm), and subsequently reduced to O(n?) in [10]. Our recognition
algorithm requires the standard x-decomposition tree T of the input graph, and hence, we
may assume that 7T is computed using the latter algorithm. Note that each node in T
corresponds to a circle graph, since G is a circle graph.

To present the second ingredient, we recall the following notion of uniquely representable
circle graphs from [7]. Let D be a circle diagram of G = (V, F), |V| = n, described by
a sequence ™ = (ai,ag,---,a,) of the 2n endpoints of chords in a clockwise traversal
of the circle (starting at an arbitrary point). A shift of = results in the new sequence
(azn,a1,az, -+, a2,-1), and a reversal of 7 results in the sequence (agy,---,as,a1). A circle

graph G is uniquely representable if for any two distinct diagrams of G one can be obtained

from the other by a sequence of shifts and reversals. Thus, a uniquely representable graph
has essentially one diagram that can be described by sequences that are equivalent under the
order-preserving rewriting rules mentioned above. In our present context, it is important
to note that if G is uniquely representable then the parameter k(G') can be computed from
such a unique diagram of G (as described, for example, in Section 6.2). Gabor et al. [7]

proved the following elegant result:

Theorem GSHB89 [7]: Let G be a circle graph with at least five vertices. Then G' is prime

(with respect to the x-decomposition) if and only if it is uniquely representable.

2. The Basic Model

Throughout the paper, let T" be the standard x-decomposition tree of a connected input
circle graph G = (V, F'). Fach node z of T'is a circle diagram, denoted D,, that corresponds
to either a prime graph, a star, or a clique, and each edge (z,y) is identified with a marker
{3y, that corresponds to a split of V. Hence, {,, appears in both D, and D,. Denote by
T(z) the subtree containing z in the forest T\ (z,y). Let Gy = (Vr(2), Er(s)) denote
the graph whose *-decomposition tree is T'(z), and let D7 (z) be any circle representation
of Gr(y). Define T(y), Gr(y)> and Dr(y) in a similar way, with respect to the other node y.
Finally, if £is a chord in a circle diagram D then ¢ splits the circle into two closed regions,
called semicircles henceforth, each region contains £ and an arc of the circle bounded by the

two endpoints of £.

3. Noncrossing Splits and Circle Layouts

The main result in this section (Theorem 3.1, below) shows that if (z,y) is an edge in T,
and D) and Dr(,) are as defined above, then the chords in Dp(,y and Drp(,) can only
intersect in a limited way in any possible circle diagram D of . The result is described
using the following colouring scheme. First, set B = Vp(;)\(;, and assume that each chord
in B is coloured blue. Similarly, set R = VT(y)\ny and assume that each chord in R is
coloured red. Now, the marker (., is associated with the split {B, R} of V. In D, call a
maximal arc that contains only red (or only blue) endpoints a zone of type red (or blue).
Also, let By C B (and R; C R) be the set of interface chords for the split {B, R} of V.
Since |By|,|R7| > 1, it follows that D has at least 2 blue zones, say 3y and i, and at
least two red zones, denoted pg and py, such that the sequence (fg, po, 51, p1) appears in a

circular listing of D. An important fact then is:

Theorem 3.1: Let (G and D be as defined above, then the above colouring scheme induces

exactly 4 zones.

The following definitions will be used. If a; and a; are arcs in D, then a; ; denotes the set
of chords with one endpoint in a; and the other in a;. If a; and a; are two disjoint arcs (or
zones) in D then let a; .12 = a;;Jos j Jaj,;. For any arc a, first(a) and last(a) denote the
counterclockwise and clockwise endpoints, respectively, of a. Two distinct monocoloured
zones, a; and «;, are said to be conjugates if every chord that has exactly one endpoint in
one of these two zones has its other endpoint in the other zone.

The proof is broken into lemmas 3.1 - 3.4 below. To start, we derive a simple sufficient

condition for the existence of an interface chord in certain arcs of the diagram.

Lemma 3.1: Let ag be a zone of colour C' € {B, R} and let af be any arc that contains
g but does not contain all chord endpoints of D. Furthermore, suppose that no chord of
colour C' has exactly one endpoint in ay. Then O N ag o # ¢, where €7 denotes the set of
interface chords of colour C.

Proof:

For simplicity, we may assume that «g is a red zone (then ag and «f correspond to pg
and pj, respectively, in Figure 3.1). Consider the red chords of a670 and their connections
to the rest of the chords of D. In particular, since GG is connected, there must be a path
connecting a red chord r € agq to any chord £ having one or both endpoints outside of
aj. Such a path must contain a blue chord having exactly one endpoint in af. Consider
traversing this path from r to £, and let b be the first blue chord encountered. Since b is

the first blue chord encountered, it must have at least one endpoint in af, and it must cross

a red chord, 7/, its predecessor on the path under consideration. All chords preceding b
on the path are in a670, since no red chord has exactly one endpoint in a670. Therefore,
r' € C1Nagg. This completes the proof of Lemma 3.1.

|

Lemma 3.2: Let (' € oy be a chord, where ag and oy are two distinct zones. Then ag
and «q are conjugates.
Proof:
To prove the lemma, we need to show that if ¢ (¢ # (') is a chord that has exactly one
endpoint in ag (respectively aq), then it has the other endpoint in ay (respectively ag).
We may assume, without loss of generality, that ag = g and a; = 31 are two blue zones,
as in Figure 3.1. To derive a contradiction, let (" € By 2 where By # (o, /1 # [2. Then
there exist at least 3 red zones {p;|i = 0,1,2} such that the sequence (8;,p;] ¢ = 0,1,2)
appears in a circular listing of the diagram D. For each zone p;, i < 2, let p! be the arc
(last(3;), first(fit1)) (modulo 3) that includes p; as a proper subinterval, as shown in Figure
3.1.

Figure 3.1 An impossible configuration

Observe that all of the following must hold, by the definition of interface chords:
(a) RN pgy = ¢or ({' € Brand (" ¢ By),
(b) RN ply=0dor (' ¢ By and (" € By),
(c) RNpyy = or (U’ € By and " € By).

We consider all possible configurations of ¢/ and (", with respect to Bj.
Case (i): (', (" € By.

Then RN py, = ¢ and RN pj, = ¢ by (a) and (b). That is, there is no red chord with

exactly one of its endpoints in p}. Therefore, applying Lemma 3.1 to p} leads to a contra-

diction, since any interface chord of p} ; must cross ', (" € By.

Case (ii): neither ¢/ nor ¢ is in Bj.
Then all of RN ppy, RN pY 5, and RN p; 5 are empty. By Lemma 3.1, we find a red interface
chord in each of p g, py 4, and py 5. But no blue chord can cross three such red interface

chords, contradicting their existence.

Case (iii): exactly one of ¢/, (" is in Bj.
Suppose without loss of generality that (' € By and (" ¢ Br. Then RN pj, = ¢ and
RNpgy = ¢ by (b) and (c), and therefore, by Lemma 3.1, Ry N py, # ¢. But any red

interface chord in pj , does not cross £’ € By, a contradiction.

This completes the proof of Lemma 3.2.

Roughly speaking, the above lemma implies that if ¢’ € ag; is a chord then all possible
“clusters” of chords in ago and a;; are linked to each other and the rest of the graph by
a “bundle” of chords in the set ag;. Moreover, removing such a bundle disconnects each
possible cluster from the remaining graph. It also follows that conjugation partitions the

set of zones into equivalence classes, where each class has exactly two zones.

To complete the proof of the theorem, consider any two monocoloured chords, say {¢', ("} C
B. Then either ¢/ and ¢’ have their endpoints in one zone, in exactly two zones, or in four
zones ({" and (" having their endpoints in exactly three zones is ruled out by Lemma 3.2);

in the latter case, one of the following configurations occurs:

1. an X-configuration where ¢/ and (" cross but have no zone in common, or

2. a ||-configuration where ¢’ and (" do not cross and have no zone in common.

We now show that neither of the above configurations occur.

Lemma 3.3: X-configurations are impossible.
Proof:

Assume to the contrary that ¢/ € B induces an X-configuration with some other chord
(" € B. Let ! € Byo and (" € [3, as in Figure 3.2. Then there exist at least 4 red
zones {p;| ¢ = 0,---,3} such that (5;,p;| ¢ =0,---,3) appear in a circular listing of D. For
0 <7< 3, let pi be the arc (last(;), first(Bi11)) (modulo 4), that includes p; as a proper

subinterval.

Figure 3.2 An X-configuration

We observe that all of the following must hold:

(a) (RN ppy = ¢ and RN ph5=¢)or ("¢ By and {" € By),
(b) (RN pyz=¢and RNpj,= o) or (' € Br and (" ¢ By),
() (RNppy=¢and RNp|3=0¢)or ({'€ Brand (" € By).

We consider all possible configurations of ¢/ and (", with respect to Bj.

Case (i): (', (" € By.

For 0 <@ < 3, each of the four sets RNp} ., (modulo 4) is empty, by (a) and (b). Therefore,
it must be that [R N pp,l, [R N p]s| > 1; otherwise, by Lemma 3.1, we find red interface
chords in pg o and ph,, or in pf y, and pg 5, that do not cross ' and £”, a contradiction.

Thus, we may assume that the set {p;| ¢ = 0,---,3} is selected so that |pg 2|, |p1,3] > 1.

Suppose that the two sets ﬂ{o 27 and Po2p interchange their colours, and let

B/ - B \ ﬁ{072}2 U p{072}2
R/ - R \ p{072}2 U ﬁ{072}2

Claim: {B’,R'} is a split of V' with interface chords B} = By \ fo2 U po2 and R} =

R\ po2 U Boo.
Proof: The claim follows from the following observations.

1. {B’, R’} is a partition of V and |B’|,|R'| > 2.

2. Forall ¥ € B', ' € R', b’ crosses r’ if and only if ¥’ € B} and ' € R/.

The “only if” part is easy to verify. For the “if” part, we show that if ' € By \ ﬂ{o 232
and ' € 89,212 then they cross. (The proof is similar for the case where o’ € P07

and ' € Ry)\ Plo2)> and all other cases are easy to verify.)

Suppose that o and r’ do not cross. Then both endpoints of b’ are on the arc
(last(Bo), first(82)) or both are on the arc (last(fz), first(8y)). Suppose, without loss
of generality, that &’ € 3; ; and that the zones under consideration appear in a clock-
wise circular listing of D in the order: o, 3, po, 1, p1, B;, B2. Consider the arc
Bo,; = (last(Bo), first(5;)). There must be a red zone contained in fg;, and fy; cannot
contain exactly one endpoint of any red chord (since such a chord would cross some
but not all of the blue interface chords, a contradiction), so by Lemma 3.1, there must
be a red interface chord contained in g ;. However, such a chord does not cross (' or

" and thus it existence leads to a contradiction.

The above observations complete the proof of the claim. O

The two splits {B’, R’} and { B, R} cross each other, contradicting the goodness of the latter

split. Hence, Case (i) is impossible.

Case (ii): neither ¢/ nor (" is in Bj.
Then, from (a), (b), and (c) above, and by Lemma 3.1, we find a red interface chord in
each of pg g, P11, P32, and pg 3. But no blue chord can cross four such red interface chords,

contradicting their existence. Thus, Case (ii) is impossible.

Case (iii): exactly one of ¢/, (" is in Bj.

Suppose without loss of generality that (' € By and £ ¢ B;. Then RNpg, = &, RNpy 5 = ¢,
RN ppq=¢,and RN p| 5= ¢, by (a) and (c). Therefore, RN pp 5 # ¢ and RN p} 5 # o,
else, by Lemma 3.1 we find red interface chords in pj o and p3 5, or in pf ;, and pj 5, that
do not cross (' € By, a contradiction. Thus, we may assume that the set {p;| it = 0,---,3}

is selected so that |pg 3|, |p12] > 1.

Suppose that the two sets ﬁ{l 32 and o3P exchange colours, and let

B/ - B \ ﬁ{173}2 U p{073}2
R/ - R \ p{073}2 U ﬁ{173}2

Claim: {B’, R'} is a split of V with interface chords By = Br and R} = R\ po3 U b1 3.

Proof: The claim follows from the following observations.

1. {B’, R’} is a partition of V and |B’|,|R'| > 2.

2. Forall ' € B', " € R', b’ crosses ' if and ounly if b’ € B} and r' € R/,

It is easy to verify that, for all ' € By, ' € Ry \ po3 U f13, b’ and ' cross. Now,
let ¥ € B’ and v € R’ such that ' and r’ cross. We will show that o' € By and

"€ Ry \ pozU B3
If ¥ € Band v’ € Rthen ¥ € Byand v/ € RiNR = Ry \ posVU pr13. bV € B

and ' ¢ R then ' € R\ R = ﬁ{1,3}2' Now, since 7’ crosses some blue chord, it
must be that v’ € §; 3. Now, ' € Br; otherwise, b’ € B\ By and ' € B\ By form an
X-configuration in B that is ruled out by Case (ii). If b’ ¢ B then b’ € B'\ B = p, o2.
Since b’ crosses ' € R', b € po3 C Ry and ' € R. If ¥/ € Ry then Case (i) forbids
this configuration. Thus, we may suppose that v’ ¢ R; and therefore, r' € pg or
" € pj 3. Suppose, without loss of generality, that 7' € p; ; C pj . Now, i # 0, j # 0,
and ¢ # j, since poo N R’ = ¢. Then there must be two blue zones, §; and ; such
that the zones under consideration appear in clockwise order: 3y, p:, 5i, po, 5;, pj,
Bi. Let B[; be the arc (last(p;), first(p;)) that includes 3;, po, and 3; as subintervals.
Now, ﬁz/',j cannot contain exactly one endpoint of any blue chord, since 7’ is not an
interface chord. Therefore, by Lemma 3.1, ﬂz/',j must contain both endpoints of a blue
interface chord. But such a chord cannot cross the red interface chord that we know

exists in py 2. Thus, we have a contradiction.

This completes the proof of the claim. O

The two splits { B’, R’} and {B, R} cross each other, contradicting the goodness of the split
{B, R}. Hence, Case (iii) is impossible.

This completes the proof of Lemma 3.3.

Lemma 3.4: ||-configurations are impossible.
Proof:

Again, to derive a contradiction suppose that ¢/ and ¢ induce a ||-configuration, where
{t/,0"} C Br. Let {! € By3 and (" € 19, as in Figure 3.3. Then there exist at least 4 red
zones {p;| ¢ = 0,---,3} such that (8;,p;| ¢ =0,---,3) appear in a circular listing of D.

10

Figure 3.3 A ||-configuration

We observe that all of the following must hold:

(a) (RN ppy = ¢ and RN ph,=¢)or ("¢ By and {" € By),
(b) (RN phs=¢and RNpsy= o) or (' € Br and (" ¢ By),
(c) RNpisy=¢or(l'€ Byand ("€ By).

As in Lemma 3.3, we consider all cases.

Case (i): (', (" € By.

For 0 < < 3, each of the four sets RN p!, ., (modulo 4) is empty, by (a) and (b). As in
Lemma 3.3, Lemma 3.1 implies that the set {p;| ¢ = 0,---,3} can be selected so that |pg 2/,
|p1,3] > 1. But then any chord of pg 2 and any chord of py 5 form an X-configuration, which

is impossible by Lemma 3.3. Thus, Case (i) cannot occur.

Case (ii): neither ¢/ nor ¢ is in Bj.
Then, from (a), (b), and (c) above, and by Lemma 3.1, we find a red interface chord in
each of py ; and p3 5. Therefore, all blue interface chords must cross both " and ", forming

X-configurations, contradicting Lemma 3.3. Thus, Case (ii) is impossible.

Case (iii): exactly one of ¢/, ¢" is in By.

Suppose without loss of generality that (' € By and (" ¢ By. Then RNpg, = ¢, RNpf 5 = ¢,
and RN p} 3= ¢, by (a) and (c). Now, Lemma 3.1 implies the existence of a red interface
chord in pj ;. But such a chord does not cross {' € By, a contradiction. Therefore, Case

(iii) cannot occur.

This completes the proof of Lemma 3.4 and the proof of Theorem 3.1.

11

4. Basic Operations on Circle Diagrams

Let T be the standard *-decomposition tree of the connected circle graph . Three types of
geometric operations on circle diagrams of T are now introduced. First, consider the circle
diagram in Figure 4.1(a), where the shaded area A corresponds to a set of chords, and the
dotted line (p,p’) corresponds to a marker vertex associated with some hypothetical split
of V. In this diagram, the area A can be rotated in two basic ways, while keeping the two
points p and p’ fixed on the page. Namely, after a WE-rotation we obtain Figure 4.1(b),
and after a NS-rotation we obtain Figure 4.1(c).

N l I ———
% ag é ’ ’ ‘ ya
——— S —— ~— —

Figure 4.1 Rotations of polygon diagrams

For a circle diagram D, representing a clique node z, a permutation of D, is any dia-
gram obtained from arbitrarily permuting its chords. Similarly, if D, represents a star then
a permutation is any diagram obtained by permuting its leaves.

In addition to the above geometric operations, we need the following concepts. Let D
be a circle diagram of G. A partial polygon diagram of ' can be obtained by adding a
set K of corners to the circumference of the circle. In the resulting diagram (D, K') each
section of the circle between two consecutive corners corresponds to a side of a polygon.
The resulting partial diagram constitutes a (complete) polygon representation of G if no
side of (D, K') contains the two endpoints of one chord. As such, permutation graphs are
exactly those circle graphs which have a circle diagram to which the addition of just two
corners results in a diagram with the endpoints of each chord on different sides. Note that
a circle diagram with two corners has only two sides and thus does not form a polygon;
nevertheless, we refer to this degenerate case as a 2-polygon.

A kernel of a circle diagram D is a minimum cardinality set of corners K such that
the diagram (D, K') is a polygon representation of GG. Recall that each line segment ¢ of D
splits the circle into two closed regions called the (-semicircles of D (cf. Section 2). We say
that £ is deficient in D if at least one of the {-semicircles does not contain a corner. In the
same vein, define the deficiency of a diagram (D, K'), denoted 6(D, K'), to be the minimum

number of corners that must be added to obtain a complete polygon representation.

12

Next, let (z,y) be an edge incident to a leaf node y in the standard *-decomposition tree
T of GG, and consider the neighbours of the vertex corresponding to the marker (., in G .
We say that y is active if there exists at least one vertex not adjacent to {,, in G,,. That is,
there exists at least one chord not intersecting (,, in any diagram D, of G,. This particular
chord forces any recognition algorithm to add a corner, regardless of the structure of other
nodes in 7.

Roughly speaking, the recognition algorithm processes each node x by computing a
partial diagram (DT(x), KT(x)) of Gr(,), where K, is a minimum set of required corners.
The computed diagram (DT(x), KT(x)) may not be a complete polygon diagram (i.e. more
corners may be added), nevertheless, it provides a basis for solving the problem. Applying
the same argument to the complementary graph Gy (;), we obtain a second partial diagram
(DT\T(x)v KT\T(x))- A straightforward but useful observation then is: the deficiency of one
diagram, say Dr(,), can be reduced by the corners Kpy(y) of the other diagram in any
partial polygon diagram (Dr(uy* Dy (), K1) U K1) of G-

Now, suppose that 7" is rooted at an arbitrary vertex r. Then the above complementary
support situation may occur if # r. In this case, let w be 2’s parent in T, and let {,,,, € D,
be the marker corresponding to the edge (w,z) of T. Here, we use the “conditional”
optimality definition given below to capture any possible support to (DT(x)aKT(x)) from
(Dnr(e) Kn\r(e))- The definition is formalized with the help of two (imaginary) corners
a and o', placed immediately next to the two endpoints of £,, in Dr(y), such that the
hypothetical chord (a,a’) intersects exactly the set €, |J N ({y:), where N({,,) denotes
the set of chords that intersect {,,.. More specifically, we define 1-optimal diagrams as

follows:

L. Call a diagram (Dp(y), K7(5;)) 1-supported (relative to the distinguished marker £,)
if (D7(a), K7(z) U {e,a'}) is a complete polygon representation of Gip(y).

2. If (DT(x), KT(x)) is a 1-supported diagram with a smallest possible set of corners I(T(x),
then K7, is called a 1-supported kernel. Note that, §(Dy (., K(r)) < [{a, o'} = 2.

3. If Kg(z) is a l-supported kernel such that 6(DT(1,),KT(1,)) is minimum among all
possible diagrams using 1-supported kernels then (DT(x), KT(x)) is called a 1-optimal

diagram.

As an example, Figure 5.1(a) illustrates a circle diagram of a node y whose parent is denoted
z. A l-optimal diagram for y (relative to the distinguished marker {;,) has a 1-supported
kernel of size 2, and deficiency equals 2.

In the special case where # = r, we have T'(z) = T, and there is no complementary
support to account for. For uniformity, however, we call a (complete) polygon diagram of

G a 0-supported diagram. Likewise, we call a kernel of G' a 0-supported kernel, and call an

13

optimal solution of G' a 0-optimal solution. Using the above convention, and the following

simple 0/1 indicator

o) = { 0 if 2 = r (the root)

1 otherwise

we can refer to n(z)-supported and 7(z)-optimal diagrams, for any node x.

5. The Main Algorithm

We now show a simple upper bound on recognizing k-polygon graphs, for any fixed k.

Theorem 5.1: Given a standard *-decomposition tree T of a circle graph G = (V, F),
|V| = n, and an integer k, there exists an O(4*n?) algorithm for deciding whether G is a

k-polygon graph, and producing a corresponding polygon diagram, if one exists.

In proving the above theorem we may assume that all degree-1 nodes of T" are active. If
not, then pruning any inactive leaf from T results in a smaller problem instance that has
the same kernel size. Moreover, any polygon diagram for the reduced problem can be easily
extended to one for the original problem. The above pruning step can be repeatedly applied
until the remaining tree satisfies the above assumption. This process can be done in O(n)
time, and hence, we may proceed further with the above assumption in mind.

In the recognition algorithm, described below, an arbitrary node r is designated as the
root node. Nodes of T" are then stored in a stack & in postorder ; that is, if y is a descendant
of x then y appears somewhere on top of z in §. Processing of T proceeds next from the
leaves to the root r, according to the ordering in §. Fach node is processed by computing a
n(x)-optimal diagram (D (), K7(y)) for the graph G(;,). To maintain a polynomial running
time, the algorithm terminates with failure if |KT(1,)| > k, for any node z. Otherwise, it
returns an optimal solution (Dp(y, Kr(y))-

Processing a node z is carried out by executing one of three merge functions, depending
on z’s type. FEach function takes as input pointers to a target node x, and the set Y of z’s
children, and returns an optimal diagram for G7(;). These elements are combined in the

following function:

function main (7,r k) {

input: a standard #-decomposition tree 7 of (G in which each degree-1
node is active, a root node r, and an integer k

output: a polygon diagram (Dp(), Kp(;)) of G with the smallest possible
number of sides, if |Kp()| <k

S = the nodes of 7T stored in postorder #r is at the bottom of S

14

while (8§ is not empty) {

v = pop(S)
#let Y be the set of x’s children

primeMerge(x,Y) if r is a prime node
(DT(x),KT(x)) = cliqueMerge(x,Y) if x is a clique node
starMerge(x,Y) otherwise

if (|Kp@)| > k) { return(nil,¢) }

1

return (Dr(), Kp))

To prove the main theorem it suffices to show that

Theorem 5.2: Function main() computes an n(x)-optimal diagram (Dy (., K7 (,)) for any

node z in O(4kn%(x)) time.

The proof is broken into lemmas 5.1-5.3 below. First, we show in Lemma 5.1 the sufficiency
of using 1-optimal diagrams {(Dy, K7(,))| y € Y} to compute that of G (,y. To shorten
and simplify the notation, we abbreviate any partial polygon diagram, say (DT(x), KT(Z,)),
with Pr(,, and let 6Py = 6(Dr(s), K7(r)). Furthermore, we use Dyx 37 cy Dy to
denote the *-composition of D, with all diagrams in {Dp,|y € Y}.

The main strategy is to show that if P:’F(x) is a n(x)-optimal diagram of Gy, then one
can factor the corners of K'7(,) into disjoint subsets, denoted {K'7(,|y € Y} and Ky,
such that for any arbitrary node y € Y, replacing K’T(y) by a set of corners Kr(,) of a 1-
optimal diagram Pr(,) (as computed by function main()) results in an extendible diagram;
that is, one that can be extended to an 7n(z)-optimal diagram for Gr(r) by possibly adding

some new corners. More specifically, we factor P:’F(x) such that:

D%(l’) = Dx* Z;/Daw(yl), and
yi€

I(/T(ac) = Kpew U](/T(y,')v
yi€Y

where D, is a circle diagram of GG, and for each y; € YV, Di[(yi) is a circle diagram of Gy,
obtained by adding a suitable marker (, ,,. Factoring I(/T(x) is done as follows: first, assume
that chords in each diagram Di[(yi) are assigned a unique colour. By Theorem 3.1, each
colour induces exactly two zones in any possible diagram of G'r(,). We next assign a corner

of K'7(y) to the set K'p(,,y if it lies inside a zone of colour Di[(y) (hence, each such corner lies

on an arc between two monocoloured endpoints). The remaining corners, if any, are assigned

15

to K e A simple but important fact then is: for each y; € Y, P:’F(yi) = (Di[(yi), I(/T(yi)) is

a l-supported (but not necessarily 1-optimal) diagram of G-

Lemma 5.1: Let P:’F(x) = (Di[(x),K’T(x)) be an n(z)-optimal diagram for G, factored
as above. In addition, let y be any arbitrary selected node in Y, for which function main()
has computed a 1-optimal diagram Pr(,) = (DT(y),KT(y)). Then the new diagram Pr(,)
defined by

Dr@y = Do *Drgyx Y D,
vi €Y \{y}

Ky = KuewUKrg) U E'ra
yi €Y\{y}

is extendible.

Proof: We consider the following disjoint cases:

Case 1: 6Pp(,) < 6P:’F(y). Since Pr(, is 1-optimal, it follows that [K7 (| < [K'7(y)l. So,
the new diagram Pr(,, (with Pr(,) oriented so that if it is deficient on a side then P:/r(y) is
deficient on that side in P:’F(x)) certainly satisfies | K7 ()| < |K'7|, and 6 Pp(,y < 6P:’F(x).
Hence, Pr(;) is a n(x)-optimal diagram.

Case 2: 6Pp(,) > 6P:’F(y). By assumption, Pr(,) is l-optimal, hence, it must be the case
that [Kp(y,)| < [K'7(y)| (that is, equality does not hold, otherwise Pr(,) violates optimality
in that é Pp(,) is not the smallest possible). Let

6diff = 6PT(y) — 5P1/«(y) (> 0), and
kaisr = |K'r)| = Kzl (>0).

Note that 64,55 < 6PT(y) < 2. The claim follows easily if 04;7y < K45y since the 1-optimal
diagram Pr(,) can be augmented with 4,55 new corners to reduce its deficiency to 6P:’F(y),
while keeping the total number of corners in the augmented diagram < |K’T(y)|. The
above augmentation step can also take place in P, (instead of PT(y)), and hence Pr(,) is
extendible.

The remaining case where 2 > 04;¢y > kg; 5 occurs when: 6PT(y) =2, 6P:’F(y) =0, and
kgigs = 1. Here, it is sometimes impossible to nullify é Pp(,y by just adding a new corner,
as illustrated by the example of Figure 5.1. We therefore consider the effect of Pr(, in
the target diagram Pr(;). To this end, define the restriction of Py to Pr(,) to be the
subdiagram of Pr(,) obtained by keeping all corners in K'r(,), and deleting all chords not
in Pp,.

16

S

=
RS

C

(a) PT(y) (b) P:/r(y)

Figure 5.1 An example where 6 Pp(,) = 2, 6P:’F(y) =0, and kgipp = 1.

We now distinguish the following cases:

Case 2.A: Pr(,) receives complementary support from Pr(,). That is, the restriction of
Pr(z) to Pr(y) contains a corner not in Kr(,). Then one can add a new corner to Pr()
so as to nullify the deficiencies of all chords of Pr(,) in the modified diagram of Py ().
Hence, Pr(,) is extendible.

Case 2.B: Else, Pr(,) receives complementary support only from some ancestor of « in T'.

This implies the following properties of node z:

P1. 2 # r, and by definition n(z) = 1. So, let w denote 2’s parent in 7.

P2. K., = ¢ (recall that K,., contributes to PT(y)’s support). Hence, in the
diagram D, any chord {, (,,, # { # {(;,, intersects at least one of the two

markers {,,, or {y,.

P3. Y = {y} (since all possible children of & are active, and any active child con-

tributes at least one corner). That is, Pp(yy is simply ((Dz*Dr(y))s K1)
We next distinguish the following subcases:

Case 2.B.1: (,,, does not intersect (s, in D, (see Figure 5.2(b) and (c) for two examples).
To show that Pr(,) is extendible, it suffices to show that a new corner can be added
to it so as to make the modified diagram 1-supported with deficiency < 6P:’F(x). To
this end, recall the following facts about 6P:’F(x):

1. 5P:/r(x) > 1: to see this, recall that property P2 implies that exactly one of the
Lpz-semicircles of D, does not contain the two endpoints of any chord. Conse-

quently, {,,; appears deficient in any l-optimal diagram of Dy .

2. By assumption, P:’F(x) is 1-optimal. Hence, its deficiency can be nullified by

adding one or two corners from a set {a, o'}, where a and o' are placed immedi-

17

ately next to the two endpoints of the marker £,,,. so that the hypothetical chord

(a, a’) intersects Cy;.

AN L A

) K K |
| e Skt

(a) Pr(y) (b) Prz (c) another Pr(,)

Figure 5.2 Examples of case 2.B.1

To show the above sufficient condition, let ¢ be any corner in Pr(,) (c exists since all
leaves of T'(y) are active), and note that one can add a new corner ¢’ to Pr(z) such
that

1. the hypothetical chord (¢, ¢’) crosses all chords that intersect {,, in D, and some

of the interface chords intersected by (, in Pr(,, and

2. if « nullifies 5P:/r(x) then the hypothetical chord (¢, a) crosses the remaining
interface chords intersected by (., in Pr(,), and the marker (,, (as in Figure
5.2b),

3. else it must be the case that {a,a’} nullifies 6P:’F(x). Then the hypothetical

chords (¢, @) and (¢,a’) cross the remaining interface chords intersected by £,

in Pr(y), and the marker £, (as in Figure 5.2¢).

Thus, Pr(;) with the added corner ¢ is 1-supported with deficiency < 6P:’F(x). This

proves the sufficient condition.

Case 2.B.2: Else, {,,; intersects {;y in D,. For convenience, we say that the diagram Pr(,)
(or P:/r(y)) is of type (a|a), abbreviated Py, € (ala), if each of the {,,-semicircles of
Pr(y) contains at least one corner. On the other hand, if exactly one of the two
semicircles is corner-free then we write Pr(,) € (a|—). Note that P:/r(y) € (ala), since

6P:’F(y) = 0. We now deal with the following cases.

Cases 2.B.2": Py, € (aa). Then Pr(, is a l-supported diagram with a smaller kernel
than P:’F(I)7 contradicting the assumption that P:’F(x) is 1-optimal.

Cases 2.B.2": Pr(, € (a|—). Then the following distribution of the [K'p(,)| = [Kr(y,)|+1

corners in P:/r(y) € (a]a) must hold true:

18

1. Exactly [K'7(,)| corners appear in one of the {;,-semicircles of P:’F(y). This follows
since P:/r(y) is a 1-supported diagram (but not necessarily 1-optimal, as described
in factoring K'p(,y), and in addition, all of the | K'p(,)| corners are required (since

Pr(y) is 1-optimal).

y
2. Exactly one non-required corner exists in the other semicircle of P:’F(y). That

is, this particular semicircle does not contain the two endpoints of any chord

{ # {,. Call this corner c.

Deleting ¢ from P:/r(y) results in a 1-supported diagram with [Kp(,)| corners and defi-

ciency = 1, contradicting the assumption that P is 1-optimal (since 6 P =2).
y) g P T(y) P T(y)

The above exhausts all possible cases, and completes the proof of Lemma 5.1 [|

Second, we show the sufficiency of using the geometric operations, discussed in the last

section, to generate 0/1-optimal diagrams:

Lemma 5.2: There exists an assignment of orientations to 1-optimal diagrams in {DT(y)| yeY},
and permutation of chords in D, (if z is a clique or a star node), such that D 3", cy Dy
is extendible to an n(a)-optimal diagram by possibly adding some new corners.
Proof:

This follows easily from Lemmas 3.1 and 5.1 above, by taking into account all possible
degrees of freedom for the markers in D, and the l-optimal diagrams of the nodes in Y.

|
Third, we provide performance guarantees for the functions called in the while-loop:

Lemma 5.3: Given a set {(Dy, K7(,))| y € Y} of precomputed 1-optimal diagrams, then

the above merge functions compute an n(z)-optimal diagram of Gr(z) in

O(n%(l,)) if is a prime leaf node
te O(4knT(x)) if « is an internal prime node

O(ny(z)) if « is a clique node or a star node

where ny(;) is the number of nodes in Gr(y).
Proof:

See the details in the next section. []

To complete the proof of Theorem 5.2 above, we note that:
The timing mentioned in Lemma 5.3 assumes that 1-optimal diagrams for nodes in Y

have been precomputed. Summing over all nodes in T'(z), it is easy to verify that the total

19

time required to process all prime leaves in T'(z) is O(n%(x)), and the time required to
process the remaining nodes in 7T'(z) is O(4kn%(l,)). Adding the two terms together gives
the stated bound. This completes the proof. [|

6. Optimal Diagrams

We now focus on computing a 0/1-optimal diagram for any arbitrary node z in the pruned
tree T'. The following few notations will be used throughout the section. Let r denote the
root node of T', w denote z’s parent (if z # r), and Y denote the set of z’s possible children.
In addition, let n, and ny(,) denote the number of nodes in G, and Gr(,), respectively.

It is also worthwhile recalling the following facts. First, the algorithm considers pro-
cessing a node x only after computing a set of l-optimal diagrams {DT(y)| y € Y}. Second,
in the pruned tree T', every child y € Y is active with respect to the marker ¢,,. Third, the
definition of a 1-optimal diagram of Gr(,) uses two hypothetical corners o and o', placed
immediately next to the two endpoints of the distinguished marker £,,;, such that the hy-
pothetical chord (a,a’) intersects Ly |J N (Lyy) (cf. Section 4), where N({,,;) is the set of

chords intersecting £,,,.

6.1 Function Fill-In

A core function that will be used subsequently calls for solving the following restricted-
corners assignment problem: given a partial polygon diagram (D, K'), where K is a required
set of corners, find a complete polygon diagram (D, KUK,), such that K., is as small as
possible. That is, I, equals the deficiency 6(D, K'). In the context of evaluating a node
with a set Y of children, the diagram D stands for any arbitrary diagram D 3, cy Dry)
obtained by permuting and orienting the markers in D,. The required set K stands for the
set Uyey Kr(y) of precomputed 1-supported kernels.

In this context, the problem admits a simple O(1) time solution if z is a leaf node
corresponding to a clique or a star. We now devise a solution when z is an internal node of

T; here K # ¢ and there exists a corner 3 at which one can start traversing the diagram.

function £illIn (D, K) {

input: a partial polygon diagram (D, K)

output: a set Kpey of new corners such that (D, KU K,ey) is a

complete polygon diagram, and K,., is as small as possible
notation: let () be the set of endpoints of chords in D

Kpew = ¢

0= any corner in K

20

for (e in @) { side(e) = nil }
currentSide = 1
for (¢ in QUK) { #e is encountered in a clockwise traversal of D
#beginning just after the selected corner § and
#ending just before [
if (e in @) {
let ¢ be the other endpoint of the chord with endpoint e
if (side(e’) == currentSide) {
currentSide = currentSide + 1
Kpew = KnewU { a corner just counterclockwise of ¢ }

1

side(e) = currentSide

1

elseif (e in K) { currentSide = currentSide +1 }

1

return (Kpew)

The above algorithm requires O(nT(l,)) time to process the graph Gr(,) corresponding
to the internal node x. Correctness of the above function is straightforward and deserves
no further comment.

The remaining case occurs if z is a leaf node corresponding to a prime graph G,.. Here,
K = ¢ and there is no corner § at which to start the above process. Nevertheless, one
can find a chord ¢ that splits D, into two semicircles {W, W} such that no other chord
lies completely in W. Clearly, there exists a solution in which W contains exactly one
corner, denoted § hereafter. If W contains n’ endpoints (where n’ < n, — 2, if z is a
leaf that does not correspond to a clique or a star) then § can be placed in any of n’ + 1
possible arcs in W. Function £i11In() can then be executed n’ + 1 times to compute
Ky = min {£i11In(D,{4})| B in W}. The set K., U{3} is a solution to £i11In(D, ¢).

This special case requires O(n?2) to process a prime leaf node x.

6.2 Prime Nodes

We now consider computing a 0/1-optimal diagram for a node z that corresponds to a prime
graph G,. This can be achieved using a brute-force algorithm that examines all possible

orientations of 1-optimal diagrams in {Dy(,| y € Y}, as described below.

function primeMerge(x,Y) {

21

input: r, Y, Dy, and {Drp)|y €Y}, as described above
output: a 7(x)-optimal diagram (D, K) of Grpy), and

a minimum fill-in F'; that is, |F|=46(D,K)
notation: D and K stand for Dyr), Kyp(:), respectively
step 1: 1initialize the set of all external-support corners

H B B #®

~ {a, e} if ¢ #r (the root)
[Xsupport = .
0] otherwise
step 2: initialize D, |K| and |F| to some out-of-range values
D =nil; |K|=|F|=oc
step 3: search for a 0/1-optimal solution
for (Koup C Koupport) { #iterate < 4 times

for (every possible orientation of orientable diagrams in {Dp,)|y €Y} {
Dipp = Dx*Zer Dry)

Kimp = Ksup Uer Krey)
[(new = fillln (Dtmpa [(tmp)

K' = (Ktmp U EKpew) \ Ksup #now, (Dimp, K') is a partial
F' = Koup #diagram of deficiency |F|
if ((JK'| < |K]) or (JK'| == |K| and |F'| < |F))
{ D=Dypp; K=K'; F=F}
}
}
(DK, F) if v #7r #return a l-optimal diagram
return
(D,KUF,¢) otherwise #return a O-optimal diagram

Besides its role in processing prime nodes, function primeMerge() will be called by
cliqueMerge() and starMerge() in a context where a small distinguished subset of nodes
in Y will be marked orientable (for the rotations done in the for-loop in step 3); the remaining
nodes will be treated as fized points. In this respect, function primeMerge() will act as a

“rotation manager” for the other two functions.

Timing: Suppose that primeMerge() is called with a subset Y’ C Y of orientable nodes
(Y =Y if 2 is a prime node), then function £i11In() will be called 4 x 4Pl times. Several
straightforward observations can be used to speed-up the above function. For instance, if
D7),y €Y,is a l-optimal diagram that has at least one corner in each of its two possible
{;y-semicircles then y need not be subjected to a V.S-rotation. Likewise, if 6(DT(y), I(T(y)) =
0 then Dp(,) need not be subjected to a W E-rotation when processing x. Nevertheless, the
worst case running time remains the same, and hence no further effort will be expended on

improving the algorithm.

22

6.3 Clique Nodes

The underlying problem in processing a clique node z lies in considering all possible permu-
tations and orientations of the markers in D,. Fortunately, it is possible to take advantage
of the symmetry of D, to quickly identify an optimal permutation for each problem instance,
as will be shown next.

To introduce the algorithm, however, we need to examine a new level of detail in polygon
diagrams. Specifically, for a child node y € Y, let I, be the set of interface chords in the
precomputed l-optimal diagram (DT(y), I(T(y)); that is the set of chords that intersect the
marker {,,. In addition, let W be any one of the two semicircles induced by the marker
lyy in Dy, and let WKy, C Kr(,) be the subset of corners that lie in W. We focus on
the distribution of WK,y around the interface chords I, in the diagram. To this end,
we define the semicircle deficiency of I, in W, denoted 6(DT(y),WKT(y),Ixy), to be the
deficiency of I, in the partial diagram (DT(y), WKT(y)), assuming that all corners not in
W K1,y have been erased.

Furthermore, we say that W is a big-end of Dy (or simply, a big-end of the node y)
it WKy, # ¢ and 6(Dryyy, WKy, Ley) < 6(Dryeyy WEp(y), Lny), where WKy, is the
subset of corners in the other semicircle. We now introduce a (redundant) notation that
may help in a better visualization of the distribution of corners in y’s big-end. Namely,
we say that the diagram Dr(, (or, the node y itself) is of type [1,1], [0, 1], or [0, 0] if the
semicircle deficiency of y’s big-end is 0, 1, or 2, respectively. Figure 6.1 gives an example

layout for each of the three types mentioned above.

Figure 6.1 Examples of semicircle deficiences of I,

Step 1 of function cliqueMerge(x,Y) operates on (at most) three key elements of Y
(equivalently, markers in D), denoted ¥, 31, and y2. To introduce the definitions, we need
the following concept: for any subset Y’ C Y, call an element y € Y’ a leader of Y' if s
big-end has the smallest possible semicircle deficiency among all nodes in Y'. The first key

element 7 is chosen to be a leader of Y. In addition, if |Y| > 2 then let y; be a leader of

23

Y\ {yo}, else y; = nil. Similarly, if |Y'| > 3 then y, is a leader of Y \ {yo, y1}, else yo = nil.
In Figure 6.2, the big-end of each key element is marked with a filled circle. To present the

algorithm, we start with the case where # r (hence, n(z) = 1).

function cliqueMerge(x,Y) {
input: r, Y, Dy, and {Dp)ly €Y}, as described above
output: a 1-optimal diagram (D, K) of Gr(,), and
a minimum fill-in F'; that is, |F'|=46(D,K)
step 1: identify an extendible diagram of G,

if ([Y|==1) { D; = any possible diagram of G, }
elseif (|Y|==2) {
D, = a diagram where y; and y; are placed next
to each other as in Figure 6.2(a)
1
elseif (|Y|>3) {
D, = a diagram where the markers corresponding to
Yo, Y1, and y» are ordered as in Figure 6.2(b),

and all other chords are ordered arbitrarily

}
step 2: if |Y|# 2 mark all nodes in Y fized; else if |Y| == 2 mark y, and y;
orienlable and mark the remaining nodes in Y \{yo,v1} fized; extend D,
to a l-optimal solution

(D,K,F)= primeMerge(z,Y)
return (D, K, F)

\/

Figure 6.2 Processing a clique node «

Lemma 6.1: Let D, and (D, K) be as computed above. Then (D, k) is a l-optimal

solution.

24

Proof:

That (D, K) is a l-supported diagram of Gr(r), with respect to the marker (,;, is
immediate. To see that K is a 1-supported kernel, note that the call to primeMerge(x,Y)
does not introduce any new corner. Hence, the computed set K is exactly the required
set Uyey K1(y). It then remains to show that the computed partial diagram (D, K) has
the smallest possible deficiency é(D, K') among all possible diagrams having exactly |K|

corners. This is done by exhausting all possible cases, as follows:
1. For |Y| = 1, the claim follows by symmetry of D,.

2. For |Y| = 2, the arrangement of Figure 6.2(a) implies that every possible marker
in D, \ {y0,y1} has a zero deficiency. One may then verify that yo and y; admit
WE-rotations that yield

0 if Yo, y1 have type € {[1,1],[0,1]}

1 otherwise

§(D,K) = {

3. For |Y| = 3, the claim follows easily since (D, K') = 0.

Moreover, in all of the above cases, (D, K') has the smallest possible value. [|
The above algorithm does not require any modification to compute a 0-optimal diagram
(D,KUVF)if x = r. In this case, however, the marker {,, illustrated in Figure 6.2 does

not exist.

Timing: the above function calls primeMerge() once with no orientable markers; this

results in at most 4 calls to £111In(), and hence the O(ny () time bound.

6.4 Star Nodes

Similar to the situation for clique nodes, it is possible to identify a winning permutation
for each input instance if z is a star node. The process is equally straightforward, however,
the analysis requires more cases to be considered. On middle ground, we present key
ingredients of a less efficient, but shorter, algorithm that has the same worst-case order of
running time as the core function £111In(). The devised function is a refinement of the

following brute-force algorithm:

function starMerge(x,Y) { #inputs and outputs are as in cliqueMerge()
D =nil; |K|=|F|=oc #some out-of-range values
for (each permutation of the leaves in D) {

(D', K',F') = primeMerge(x,Y)

25

if ((|K' K|) or (|K' K

<

and |F/|<|FI) { D=D; K=K'; F=F"}

}
return (D, K, F)

The refined algorithm operates on (at most) two key elements of Y, denoted yo and y;.
As in the previous section, the key elements are leaders of the set Y. Specifically, if the
distinguished marker £, is the center ¢ of the star then yo and y; are as defined in the last
section. Else (if {,,, # ¢), then yo and y; are defined as leaders of the two sets Y \ {¢} and
Y\ {c, 90}, respectively.

Revising the function to to achieve O(ny(,)) running time for Y| = 1 is straightforward.
It then remains to discuss the case when [Y| > 2. In this case, let (D, K7(;)) be any
n(z)-optimal diagram for Gr(r)- The diagram Dr,) then corresponds to some permutation
of the markers in D,. Traversing this permutation from one end to the other, let y; and
ye be the first and last elements, respectively. We now observe that the size of the n(x)-
supported kernel [K7p(,)|, and the deficiency 6(Dy (y), K(y)) are entirely determined by the

following factors:

1. if £, exists and (., # c¢: the semicircle deficiences of the two ends of the center chord

¢, and the location of {,,, relative to the extreme chords y; and y,, and

2. if yy # Ly (or, by symmetry, y, # () the semicircle deficiency of y;’s big-end
(respectively, y,’s big-end).

The structure of the remaining chords in the set Y \ {c,yy, ys, liys} is irrelevant. Since yo
and y; are the best elements with respect to (2) above, it is easy to see that there exists a
winning permutation in which yo and y; appear in place of y; and y,.

The above observations can be put in force by incorporating the following changes: (i)
the for-loop is changed to deal with the existing elements of the set {yo, y1, ¢, (-} as the only
permutable elements, all other elements will be declared fized and will be placed contiguously
surrounded by some two elements in the above set, and (ii) function primeMerge() is

signaled that the above four elements are the only orientable elements.

Timing: To show that the revised function executes function £i11In() a constant num-
ber of times note first the for-loop iterates at most 3! times. In each iteration, function
primeMerge() generates at most 4 x 4% diagrams, and calls £i11In() for each of the gen-
erated diagrams. It is possible to further refine the function so that £i11In() is called at
most 4 times for each input instance, as in cliqueMerge(); however, we do not describe

the refinement as it does not affect the order of the worst-case running time.

26

7. Complexity of the k-Polygon Problem

We now show that

Theorem 7.1: Given a circle graph G, determining the minimum integer &k such that & is

a k-polygon graph is NP-complete.

The proof reduces the 3-satisfiability problem where each variable occurs at most 5 times
(see, for example, [8] problem [LO2]) to the k-polygon problem. Let F' = A, C; be
an instance of the above restricted satisfiability problem with m clauses {Cy,C5,---,C,,}
and n variables {x{,29,---,2,}. Without loss of generality, we may assume that every
variable appears in both positive (uncomplemented) and negative (complemented) forms. In

addition, we may assume that F’is indecomposable; that is F' can not be written as Iy A\ F3

with no common variables between F; and F;. The proof constructs a circle diagram D
for a circle graph G' having a standard *-decomposition tree T isomorphic to a star with
a central node 7, and 1 + 3m + A(F) leaves, where A(F) is a number derived from the
formula F.

More precisely, T has a distinguished leaf z corresponding to the circle diagram illus-
trated in Figure 7.1(a), called the equator gadget. (The figure shows also two corners that
will be explained shortly.) In addition, 7" has 3m leaves {uy,ug, - -, U3 }, each correspond-
ing to a circle diagram, called a literal gadget, as illustrated in Figure 7.1(b) for an arbitrary
leaf w. The remaining A(F') leaves are called link structures. Each such structure has a

circle diagram similar to that of Figure 7.1(b) and will be explained shortly.

4 AN

Figure 7.1

At this point, it is important to observe that each of the abovementioned gadgets corre-
sponds to a prime graph. Moreover, each gadget (with the indicated corners now taken
into account) forms a 1-optimal diagram (cf. Section 4) with respect to the unique marker
({y, or L.,) in the gadget. Hence, at least as many corners will be introduced by each such
gadget in a (complete) polygon diagram of the circle graph G. In describing the structure

of the center node r below, we find it convenient to draw a marker £, representing a literal

27

gadget with an arrow at one endpoint to signal the existence of at least one corner in its
corresponding 1-optimal diagram. Likewise, it is convenient to draw the marker £., in D,
with an arrow at each endpoint to signal the existence of at least one corner in each of the
{,,-semicircles of D,.

We now consider the center node r. Roughly speaking, the corresponding circle diagram
D, can be viewed with the “bidirected” marker (,. placed horizontally (see, Figure 7.3(a),
for an example), and two special sets of chords: a set of clause gadgets, placed in the
upper £,..-semicircle, and a set of variable gadgets, placed in the lower semicircle. In D,
each “directed” marker that represents a literal gadget intersects a clause gadget (at one
end), the marker (,. (at the middle), and a variable gadget (at the other end). Figure
7.1(c) illustrates a typical clause gadget. The gadget has exactly one chord; the three other
directed chords correspond to markers of three literals that occur in that particular clause.

Variable gadgets are slightly more complex than the previous ones. The exact structure
of the gadget associated with variable z; that appears p times in a positive form and ¢ times
in a negative form (p + ¢ < 5), depends on p and ¢. It suffices, however, to outline the
structures for p < ¢. Figure 7.2 (a) illustrates a typical variable gadget for p = 2 and ¢ = 3.
In the diagram, chords drawn as undirected solid lines are called clusters. Here, clusters
R_4 (1 chord), R_y (2 chords), R, (2 chords) and R; (2 chords) are incident with literal
gadgets (directed solid lines) and link structures (directed dashed lines - link structures are

mentioned above as having circle diagrams identical to that of literal gadgets).

o b

Figure 7.2 Possible structures of variable gadgets

A configuration of a variable gadget is an orientation of the directed solid chords (the
literals), and the directed dashed chords (the link structures).

Thus, in a typical configuration some of the directed solid chords are oriented to-
wards the diagram while the remaining chords are oriented away from the diagram to-
wards the clause gadgets. Some of the configurations are well-covered in that each chord
in Ry UR-UR_1U R_2 “straddles” at least one arrow. The NP-completeness reduction
assigns a 0/1 value to each variable z; in F' from a well-covered configuration of the cor-

responding variable gadget as follows. First, suppose that the arrow associated with the

28

middle dashed line in the control cluster R, lies inside that cluster. To cover Ry, the pos-

itive literal arrows must then lie inside that cluster. Consequently, one or more negative
literal arrows may then be used to reduce the deficiency of some clauses, and hence we set
xz; = 0. Conversely, if that particular control arrow is placed inside R4 then all negative
arrows must lie inside R_q |J R_5 and the positive arrows can be directed towards the clause
gadgets, and hence we set z; = 1.

Variable gadgets for other distributions of p and ¢, p < ¢, can be constructed in a
similar way. For p = 1 (and ¢ > 3) the cluster R, is replaced with one similar to R_y. For
q = 4, the cluster R_y is replaced with one similar to R_,. For [p,q] = [2,2] the control
cluster R, has only one solid chord with two incident link structures. In simpler situations,
where [p, ¢] =[1, 1] or [1, 2] we use the gadgets shown in Figures 7.2(b) and (c), respectively.
Clearly, gadgets used to represent cases where p > ¢ are similar to the above. Finally, A(F)
is defined to be the number of link structures in the overall diagram of D,.. That is, if we
let N, be the number of variables that appear p times in a positive form and ¢ times in a
negative form, and let m,, be the number of link chords in a typical gadget associated with
any such variable then A(F) = Zp-l-qSS MpgNpg. By inspection, my 1 = my2 = mey = 0,

ma 2 = 2 and m, , = 3 for all other possible values.

F=CiANCy3NCs
C I(l‘l\/l‘z \/53), Cy = (51\/902\/904), C3 = (fz\/l‘g\/f;})

| [¢*] [®

| [

[

Figure 7.3 An example of a formula F and the associated diagram D,

Finally, the set V(G) of vertices is the union of four disjoint sets: V, = {{,.}, the set
of clause markers Vo = {C4,---,C}, }, the set of literal gadgets Vir = {uy,- -, usn}, and a
family of n sets of vertices Vx = {Xy,---, X,,}, where X; corresponds to all chords in the
variable gadget associated with x;. For two sets of vertices, say V4 and Vp, let F4p denote

the set of edges with one end in V4 and the other in Vg. Using the above notation, one can

29

write E(GT) =FuoUPcvUFovUFoxUFExx.

Figure 7.3(a) gives an example of D,, where solid chords with single arrows represent
positive literals and dashed chords represent negative literals. Here, A(F') = 0 and the
diagram leads to an embedding of the entire graph GG in an 11-gon; the corresponding 0/1
assignments are: z1 = x4 = 1, 2 = 0 and 23 = don’t care. Figure 7.3(b) illustrates the
graph G, with all edges in Fyiy omitted. To prove that T is a standard *-decomposition

tree, it then remains to show that:

Lemma 7.1: G, is prime.
Proof:

To derive a contradiction, assume that V(G,) has a split {Vi, V2}, for which Wy C Wy
and Wy C V; are the interface vertices, as defined in Section 1. First, observe that the
indecomposable formula F' yields a 2-connected graph G,. Consequently, |Wy|, |W3| > 2.
We next assert the following claims in order. To simplify the presentation, however, we
sometimes use the same symbol (or simply, the word “literal”) to refer to any particular
binary literal in F and the corresponding vertex in /.. A similar remark applies for any

clause in F.

Claim 7.1A: No vertex of Vi appears as an interface vertex.

Proof: Assume to the contrary that some vertex C' € Vo appears as an interface vertex,
say C' € Wy. Since |Wq| > 2, there exists another interface vertex w € W7\{C'}. We remark
that C' € Wy implies that W, consists of two or all of the three literals that occur in the

binary clause €. The following observations then hold true for w:

1. w ¢ Vi, since no two clause vertices of V¢ share a common literal of V.
2. w ¢ Vx, since C' shares at most one literal with any vertex in any variable gadget.

3. If w € Viy then £,, is an interface vertex, since £, is adjacent to w € Wy and all vertices
of Wy. In this case, {,, must lie in Wy, and not in Wy (since ({,,,C) ¢ FE(G,)). We

may then choose w = {,, (instead of w € Vi), and deal only with the next case.

4. w = L, then all vertices in (Vi \W3) must lie in V; (since {,, € Wj). Choose any
arbitrary literal u” € Wy (recall from the above remark that u” occurs in the binary
clause C'). By assumption, each variable occurs at least twice in F'. Hence, F' contains
another literal «’ that is associated with the same binary variable as u”; this literal
corresponds to a vertex that lies in V; (since (ViAW3) C Vi, as mentioned above).
Now consider the variable gadget X corresponding to the binary variable of which «’
and u” are two literals. By the construction of X, there exists a path from u’ to u”

passing through the vertices of X only. This implies that at least one vertex z € X

30

appears as an interface vertex. Nevertheless, it is impossible to have x € W since Wy

has at least two literals corresponding to two different binary variables. On the other

hand, « ¢ W since ({,.,2) ¢ E(G,). Thus, w # {,,.

The above argument exhausts all possible choices of w, and completes the proof. O

Claim 7.1B: No vertex of Vx appears as an interface vertex.
Proof: Similar to the above proof, assume to the contrary that some vertex, say x, of a
variable gadget X appears in Wy. The strategy is to exhaust all possibilities for a second

interface vertex w € Wi\{z}, using the following observations:

1. w ¢ Vi by the previous claim.

2. w ¢ Vx, since no two vertices of Vx share two or more neighbours (note: this remark
applies for any possible structure of the variable gadget X). We may then conclude

that no two vertices of Vy appear in Wy.

For the remaining cases, we remark that (2) above implies (by symmetry) that no two

vertices of Vy appear in W5. Hence, at least one literal, say u”, appears in Wj.

3. If w € Vy then each of Wy and Wy contains a literal. Consequently, £., must be one
of the interface vertices. Hence it must be the case that ¢,, € Wy, and not in Wy

(since ({,,,2) ¢ E(G,)). Again, we may choose w = {,,, and deal with the next case.

4. w = L,,: here we have {(,,,2} C Wiy; this implies that all vertices of W, are literals
of the same binary variable that X represents. The remaining literals (Vi \Ws) must
then appear in V;. Recall from the above remark that «” € W,. Denote by C the
binary clause in which «” occurs, and note that the other two literals of C' must lie

in V1. This implies that C' is an interface vertex; a contradiction by Claim 7.1A.

This completes the proof of the claim. O

Now suppose (without loss of generality) that V; contains a clause vertex C'. Then C €
Vi\W; (by Claim 7.1A), and hence all literals in C lie in V4. Claim 7.1B then implies that
all variable gadgets corresponding to these literals appear in Vi)\W;. A similar note holds if
Vi\W{ contains any vertex of a variable gadget X. Here, Claim 7.1B implies that all of the
remaining vertices of the gadget X must lie in V{\I¥/y, since the subgraph of G, induced on
X is connected. Consequently, all literals of the binary variable represented by X appear in
V1, and hence all clauses in which these literals occur appear in V4\Wy (by Claim 7.1A). The
above observations, combined with the assumption that £ is indecomposable, imply that if
a clause vertex (' lies in Vy then all vertices in Vo |J Vi Vx lie in Vy. That is, |Vo| < 2; a

contradiction. Hence, no such split {Vy, 52} exists and Lemma 7.1 follows. [|

31

We are now ready to prove Theorem 7.1:

It is routine to check that F can be validated and that G can be constructed in poly-
nomial time. Lemma 7.1 ensures that T is a valid *decomposition tree of G and hence
any optimal diagram of GG can be obtained by assigning orientations to the circle diagrams
associated with nodes in T" and evaluating the tree. A lower bound on the cardinality of an
optimal kernel of G'is 3m + A(F') + 2. In fact, it is easy to verify that [is satisfiable if and
only if G is a (3m + A(F') + 2)-polygon graph. Both directions are straightforward using
the above rules of mapping configurations of variable gadgets to 0/1 values of the variables

in F. []

8. Disconnected Polygon Graphs

Up to this point, our main emphasis has been on connected circle graphs. A need may
exist, however, for computing optimal polygon representations of arbitrary disconnected
circle graphs, and hence, a word should be said in this respect. To this end, we recall the
following notation: for any circle graph G, k(G') denotes the size of the smallest polygon
required to represent . We also allow k(G) = 2 if G is a permutation graph. In addition,
if P is a polygon then let k(P) denote P’s size. Now, let G = |Ji_; GG; be a disjoint union

of 7 connected circle graphs {G;| 1 < ¢ < r}; the main result of this section is:

Lemma 8.1: k(G) = (3" k(Gy)) — 2(r —1).
Proof:

We first describe a simple iterative construction to show that k(G) < (301, k(Gy)) —
2(r—1). For 1 <@ <r,let P; be a k(G;)-polygon representation of G;. The construction
performs r — 1 iterations. At the ith iteration, we construct a polygon representation of
U;ill G/j by merging a polygon diagram P’ representing U;‘:1 G with P” = P;44. The new
polygon representation has k(P’) + k(P”) — 2 sides, and hence the final polygon diagram
for GG has size equal to the right-hand side of the inequality. To merge P’ with P”, we first
identify a corner ¢ € P’ with a corner ¢ € P”, as sketched in Figure 8.1(a), and call the
new double-corner point c¢. In P’, let ¢’ and b’ be the two sides incident with ¢/, so that the
sequence (a',c',b’) appears in a clockwise traversal of P’. Similarly, let (", ¢”,a”) be the
corresponding sequence in P”. Next, split the double-corner point ¢ into two new points ¢,
and cg, where ¢, is incident with the two sides ¢’ and a”, and c4 is incident with &' and b”.
Finally, remove ¢, and ¢4, and unify ¢ with «” (also, b’ with ") into a single side. This

completes the construction.

32

Figure 8.1 Merging and splitting of polygon diagrams

We next induct on 7 to show that k(G) > (3/_; k(G)) — 2(r — 1). The inequality
holds trivially for » = 1. So, let r > 2 and assume that it holds for all circle graphs with
at most r — 1 components, and let G = |J;_; G; be an arbitrary circle graph. In addition,
let P be a k(G)-polygon representation of . Call a side of P shared if it contains the
endpoints of chords associated with two or more components of G. Note that chords of
each component of G can be identified with a closed region inside P, as sketched in Figure
8.1(b). Moreover, no two regions intersect each other. It then follows that at least two
regions in P are peripheral in that each one has at most two shared sides. Without loss of
generality, we may assume that the region corresponding to G/ is peripheral. Denote by a
and ¢ the first and last sides of P that are incident with endpoints of chords in G4. It is
then possible to split P into two polygons:

1. P’ (representing (1) obtained by deleting all chords not in /1, and all sides not used
by G, and subsequently joining the two special sides a and ¢ at a new corner point,

and
2. P" (representing G\ G1) obtained in a similar way by deleting all chords of Gj.

We then have k(G) = k(P') + k(P”) — 2. The inequality then follows since, by definition,
E(P") > k(Gy), and k(P") > k(G \ G1) > (30—, k(Gi)) — 2(r — 2), by the induction
hypothesis. [|
Acknowledgment

The authors gratefully acknowledge financial support from the Natural Sciences and Engi-

neering Research Council of Canada.

33

References

[1] A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinatorica,
7:243-254, 1987.

[2] W.H. Cunningham. Decomposition of directed graphs. SIAM J. Alg. Disc. Meth.,
3(2):214-228, 1982.

[3] W.H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian
Journal of Mathematics, 22:734-765, 1980.

[4] E.S. Elmallah. Algorithms for k-terminal reliability problems with node failures. Net-
works, 22:369-384, 1992.

[5] E.S. Elmallah and L.K. Stewart. Independence and domination in polygon graphs.
Discrete Applied Mathematics, 40:65-77, 1993.

[6] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive graphs. J.
ACM, 19:400-419, 1972.

[7] C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Recognizing circle graphs in polynomial
time. J. ACM, 36:435-473, 1989.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

[9] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

[10] T.-H. Ma and J. Spintad. An O(n?) algorithm for the undirected split decomposition.
J. of Algorithms, 16:145-160, 1994.

[11] W. Naji. Reconnaissance des graphes de cordes. Discrete Math., 54:329-337, 1985.

[12] J. Spinrad. On comparability and permutation graphs. SIAM J. Comput., 14(3):658-
670, 1985.

[13] J. Spinrad. Recognition of circle graphs. J. of Algorithms, 16:264-282, 1994.

34

