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Abstract

In this dissertation, I focus on the study of genotype imputation in population data.

Genotype imputation is a process of inferring missing values for genotype data and

has been extended to predicting “untyped” genotypes for samples in low-density

chips with a reference population assayed using dense marker chips. It has been

successfully and routinely applied to merge genotype datasets of different densities

that arise from various genotyping and sequencing platforms. First, I examine and

compare several influential imputation models that incorporate biological concepts,

mine for associations among genetic markers and explore genetic relatedness. I

further evaluate the effect of imputation on genomic prediction, which combines

dense marker data with phenotypic data for improving quantitative traits. Addi-

tionally we propose a multi-step strategy that can work with any existing genotype

imputation methods to boost the accuracy of imputation from low-density chips to

high-density chips. Finally we describe a new hidden Markov model for genotype

imputation based on an existing framework.

ii



Preface

This thesis is an original work by Yining Wang under the supervision of Dr. Guohui

Lin and Dr. Paul Stothard.

Chapter 2 and Chapter 3 of this thesis has been published as Y. Wang, G. Lin, C.

Li and P. Stothard, “Genotype Imputation Methods and Their Effects on Genomic

Predictions in Cattle,” Springer Science Reviews, vol. 4, issue 2, pp 79-98. I was

responsible for the the literature review in chapter 2, and the design of experiments

and analysis as well as the manuscript composition. C. Li granted permission for

the use of the data and C. Li, G. Lin and P. Stothard contributed to manuscript edits.

Chapter 4 of this thesis has been published as Y. Wang, T. Wylie, P. Stothard, and G.

Lin, “Whole genome SNP genotype piecemeal imputation,” BMC Bioinformatics,

16:340, 2015. I carried out the computational experiments and was responsible for

the manuscript composition of the methods section. T. Wylie participated in the

experiments, the clustering part in particular. G. Lin and P. Stothard conceived of

the study, and participated in its design and coordination and helped to draft and

edit the manuscript. All authors read and approved the final manuscript.

iii



To my parents

For their encouragement, love and support throughput my studies.

iv



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors, Dr. Guo-

hui Lin and Dr. Paul Stothard for their guidance and support throughout my PhD

study. I am also very grateful to Dr. Changxi Li who has provided me with help-

ful comments, advice and kind suggestions on portions of the thesis work. Next, I

would like to thank all dissertation committee members for their valuable time and

effort to read the dissertation.

I benefited tremendously from many discussions with friends and colleagues

whom I would like to thank: Dr. Xiaoping Liao, Dr. Tim Wylie, Dr. Liuhong Chen

and Dr. Chunyan Zhang. I would also like to thank Steve Sutphen and all the kind

staff at the CS Help Desk for their help, quick responses, and regular followups in

troubleshooting technical problems and providing technical support.

Last but not the least, this thesis would not exist without the love and support

of my family. My deepest thanks go to my mom and dad for their continuing

encouragement, endless love and unwavering support.

v



Table of Contents

1 Introduction 1
1.1 Genetics Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Genotypic Data Overview . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation and Definition of Genotype Imputation . . . . . . . . . 6
1.4 Comparative Studies of Imputation Methods and Their Effects on

Genomic Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Piecemeal Imputation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 13
2.1 Imputation Models and Popular Methods . . . . . . . . . . . . . . . 13

2.1.1 The “Product of Approximate Conditionals” (PAC) Model . 14
2.1.2 BLIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Beagle 3.3.2 and Beagle 4.1 . . . . . . . . . . . . . . . . . 20
2.1.4 FImpute . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Genotype Imputation Methods and Their Effects on Feed Efficiency
Genomic Predictions for Beef Cattle using 50K SNP Genotypes 23
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Genomic Predictions . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Genotypes and Phenotypic Records . . . . . . . . . . . . . 26
3.1.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Program Settings . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Accuracy of Genotype Imputation . . . . . . . . . . . . . . 30
3.2.2 Effect of Minor Allele Frequency (MAF) on Accuracy of

Genotype Imputation . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Accuracy of Genomic Predictions Using Actual 50K and

Imputed 50K . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Piecemeal Imputation 45
4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Datasets – Sequence Animals . . . . . . . . . . . . . . . . 50
4.2.2 Genotyped Animals . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 SNP Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 5-fold cross validation . . . . . . . . . . . . . . . . . . . . 52
4.2.5 Independent Testing . . . . . . . . . . . . . . . . . . . . . 54
4.2.6 Multi-Step Imputation: Independent Testing . . . . . . . . . 55

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



4.3.1 Rationale Behind the Two-Step Piecemeal Imputation . . . 56
4.3.2 Marker Clusters and Their Effects . . . . . . . . . . . . . . 58
4.3.3 Imputation Result Sensitivity to the Selected Markers . . . . 58
4.3.4 Target Marker Clusters . . . . . . . . . . . . . . . . . . . . 59
4.3.5 Other Clustering Methods . . . . . . . . . . . . . . . . . . 59
4.3.6 Cattle Genomic Distance . . . . . . . . . . . . . . . . . . . 60
4.3.7 Computational Time . . . . . . . . . . . . . . . . . . . . . 60

5 A Statistical Model for Population Based Genotype Imputation 62
5.1 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Notations and Background . . . . . . . . . . . . . . . . . . 64
5.2.2 Extended HMM for Inferring Untyped Genotypes in SG . . 69
5.2.3 Estimation of Parameters in Localized Haplotype HMM H . 75

5.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion 80
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 85

vii



List of Tables

3.1 Accuracy of genotype imputation from Illumina 6K to Illumina
50K for different methods. It took additional 14 hrs 18 min 14 sec
for MaCH to pre-phase the unphased animals in the reference panel. 31

3.2 Accuracy of genotype imputation from Illumina 6K to Illumina
50K for different methods and different populations . . . . . . . . . 31

3.3 Distribution of SNP genotypes (AB and BB) that carry the minor
allele “B” among MAF classes . . . . . . . . . . . . . . . . . . . . 35

3.4 Across-breed accuracy of genomic estimated breeding values pre-
dicted with actual 6K panel, actual 50K panel, imputed 50K pan-
els from Impute 2, FImpute 2, Beagle 4.1, Beagle 3.3.2, MaCH,
and Bimbam for RFI using GBLUP and BayesB for Angus (AN),
Charolais (CH), Kinsella (KS), Elora (EL), PG1 (PG), TX/TXX
(TX) validation groups. Standard errors of the mean from the five-
fold cross validation follow after and are defined as SEM = σ√

5

where σ is the sample standard deviation. Training groups consist
of 1, 440 animals pooled from all six populations. . . . . . . . . . . 36

3.5 Within-breed accuracy of genomic estimated breeding values pre-
dicted with actual 6K panel, actual 50K panel, imputed 50K pan-
els from Impute 2, FImpute 2, Beagle 4.1, Beagle 3.3.2, MaCH,
and Bimbam for RFI using GBLUP and BayesB for Angus (AN),
Charolais (CH), Kinsella (KS), Elora (EL), PG1 (PG), TX/TXX
(TX) validation groups. Standard errors of the mean from the five-
fold cross validation follow after and are defined as SEM = σ√

5
,

where σ is the sample standard deviation. Training groups consist
of 240 animals from the within breed population while validation
groups contain 60 animals from the same breed. . . . . . . . . . . . 38

4.1 Description of the different SNP chips and the SNP subsets . . . . . 51
4.2 Description of the different SNP chips and the filtered SNP subsets

used in the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



4.3 Accuracy comparisons between the two-step piecemeal and the clas-
sic one-step imputation on the Simmental datasets. Results are for
markers on chromosome 14. Columns 3 through 7 contain the 5-
fold cross validation results on the 82 animals, with the selected
markers and their associated target marker clusters. Independent
testing results on the 367 animals are in columns 8 –10, using the
selected markers and their associated target marker clusters from
the cross validation. In the independent testing from 50K to 660K,
8 markers of the Affymetrix 660K chip were filtered out due to
their genotype disagreeing with the alternating alleles specified by
sequencing, and consequently only 999 target marker clusters were
used. The columns labelled with + show the improvements, in
bold, of the piecemeal imputation over the one-step imputation. . . . 53

4.4 Accuracy comparisons between the two-step piecemeal and the clas-
sic one-step imputation on the Holstein datasets. Results are for
markers on chromosome 27. Columns 3–7 contain the 5-fold cross
validation results on 114 animals, with the selected markers and
their associated target marker clusters. Independent testing results
on the 8 animals are in columns 8–10, using the selected markers
and their associated target marker clusters from the cross validation.
In the independent testing for Beagle 6, 37, and 44 target marker
clusters are empty; for FImpute 7, 58, and 35 target marker clusters
are empty. The columns labelled with + show the improvements,
in bold, of the piecemeal imputation over the one-step imputation. . 54

4.5 Results are on the Holstein datasets for markers on BTA27 and for
the Simmental datasets for markers on BTA14, respectively. 8 Hol-
stein and 367 Simmental genotyped animals are used in the two-
step independent testing (6K→50K→HD), with results in columns
4, 6 and 7. The piecemeal imputation uses the selected markers and
their associated target marker clusters from the training step. Addi-
tional 23 Simmental sequenced and genotyped animals are used in
the two/three-step imputation to sequence (50K→660K→sequence,
6K→50K→660K→sequence). All one-step imputation accuracies
are included in column 3. The last column labelled with + shows
the improvements, in bold, of the piecemeal imputation over the
two- or three-step imputation. . . . . . . . . . . . . . . . . . . . . 56

5.1 Emission probabilities P (SGim|Z(1)
i(m) = k1, Z

(2)
i(m) = k2, H, µ, ρ)

based on mutation rates and the observed genotypes. . . . . . . . . 71
5.2 Comparison of methods measured by “accuracy of imputation” on

the Simmental dataset BTA 14 for imputation from 6K to 50K. Im-
pute 2 is currently the best imputation program and was run with the
effective population size 200 and the default settings under the run
type “Imputation with one unphased reference panel” and HMM
is the statistical model we implemented. The running times are
also reported for Impute 2 and HMM. Majority vote is the base-
line methods that fills untyped genotypes in SG with the most fre-
quently observed genotypes in DG. . . . . . . . . . . . . . . . . . 79

ix



List of Figures

2.1 An illustration of how population based genotype imputation works
for a study sample genotyped in low-density chip. A fine scaled ge-
netic map (part a) is available for looking up how likely recombina-
tions occur between two loci on the population level. The reference
data (part b) consist of a set of haplotypes over a set of dense SNP
markers derived from phasing algorithms. When a study sample
comes in, its genotype is compared to the dense haplotypes in the
reference panel (part b). Tracts of haplotypes in the reference from
which the study sample copies are identified (coloured in red rect-
angles). Missing genotypes in the study sample are then imputed
using those matching haplotypes in the reference panel (part e). . . 15

3.1 Principal component analysis (PCA) for population stratification
using the top two principal components (PCs) obtained from 50K
genotype data of all 1, 800 beef cattle. Individuals are grouped by
their population, as described in Materials and Methods. . . . . . . 32

3.2 Effects of MAF of untyped SNPs on imputing genotypes “AB” and
“BB” carrying the minor allele (MA) “B” . . . . . . . . . . . . . . 33

4.1 A flow chart of the two-step piecemeal imputation framework, in-
cluding both the training phase through a 5-fold cross validation
and independent testing. T is the set of markers in the lower den-
sity chip and T ∪U is the set of markers in the higher density chip;
mi is a marker of U ; S is the set of study samples genotyped on T
and R is the set of references genotyped on T ∪ U . The goal is to
impute the genotype for markers of U for the study samples . . . . . 47

4.2 Untyped SNP genotype piecemeal imputation. Both the SNP set T
of a lower density 6 K chip and the SNP set T ∪ U of a higher den-
sity 50K chip are shown, using their physical loci on BTA14. The
second to the seventh lines plot the SNPs in the first five clusters,
by the k-means algorithm (k = 15) on the marker feature vectors
generated by the add-one two-step imputation using Beagle. The
starred markers are the selected markers, one per cluster, and the
associated target marker clusters are shown in the last five lines in
the figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The Beagle/FImpute-based two-step piecemeal imputation accura-
cies against the number of SNP clusters . . . . . . . . . . . . . . . 57

x



5.1 An illustration of localized haplotype cluster hidden Markov model
for population based genotype imputation over three consecutive
loci m − 1, m and m + 1. Each circle is a hidden state and rep-
resents a localized cluster for either allele “0” or allele “1”. Two
arrows on top/bottom of each hidden state at each SNP represent
the possible emissions. For hidden state that represents the local
cluster for allele “0”, there is a higher chance of emitting allele “0”
(in bold blue) and a lower chance of emitting allele “1” due to mu-
tation. Edges between hidden states from one locus to the next are
transitions of the HMM and the numbers incident on the edges and
nodes count how many haplotypes in DG traverse it. . . . . . . . . 68

5.2 An illustration of the probabilistic graphical model (PGM) for pop-
ulation based genotype imputation. Each arrow indicates a depen-
dency. SG depends on the localized cluster haplotype HMM H ,
mutation rate µ as well as the genetic that specifies recombination
rates ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



Chapter 1

Introduction

1.1 Genetics Background

The genome, organized in chromosomes, is made up of deoxyribonucleic acid

(DNA) molecules composed of bases or nucleotides. There are four possible nu-

cleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). Each nucleotide

can pair up with a complementary nucleotide in a double-stranded DNA molecule,

A with T and C with G, to form base pairs. For diploid species such as cattle and

humans, chromosomes come in pairs. The bovine genome contains 3 × 109 base

pairs across 28 pairs of autosomes and two sex chromosomes, X and Y. Most of the

nucleotides along the genome are identical between individuals of the same species.

For example, human beings are 99.9 percent the same in their DNA makeup [35].

We refer to a position along a chromosome as a locus (plural, loci). A locus where

variation occurs is said to be polymorphic. The alternative forms of sequence that

occur at a polymorphic site in the genome are called alleles. Genetic variations

that involve single nucleotides are called single-nucleotide polymorphisms (SNPs).

Most SNPs are biallelic, meaning that there are only two alleles observed at that

locus as opposed to all four possible forms (from the four types of nucleotides). In

this dissertation, we deal with biallelic SNPs, which are considered to be common

forms of genetic variation. We refer to the most common allele and the second

most common allele at a locus in a given population as “major allele” and “minor

allele” respectively. For any individual, the pair of alleles at a locus is referred to

as the genotype at that locus. If the two alleles are identical, then the individual is
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known as “homozygous”; otherwise, the individual is “heterozygous”. A genotype

at a locus does not specify which allele comes from which one of the two chro-

mosomes. Thus, a genotype at a locus can be denoted as an unordered pair of two

alleles, and the genotype of a pair of homologous chromosomes can be viewed as a

sequence of unordered pairs of SNP alleles. In case of bi-allelic SNPs, the two al-

leles at that locus are sometimes coded as “0” and “1” respectively. As a result, the

genotype at that locus can be represented as 0 for “00”, 1 for “01”, and 2 for “11”.

If the allele “0” is the major allele at a locus in a given population comprised of N

individuals and let c(00), and c(01), and c(11) denote the counts of the three geno-

types at the bi-allelic locus, then “minor allele frequency” (abbreviated as “MAF”),

which is defined as the frequency of the less frequent allele “1”, can be calculated

as f(1) = c(11)/N + 1
2
c(01)/N .

The Mendelian law of segregation states that, for each diploid individual, one

of a pair of homologous autosomes is inherited from the paternal side and the other

from the maternal side. Moreover, a child does not inherit a complete parental chro-

mosome from each parent, as recombination (or crossover) occurs. That is, during

the meiosis process that produces gametes, portions of DNA are exchanged be-

tween the two homologous chromosomes present in each of the parents. As a con-

sequence, a child inherits a mosaic pattern of their parents’ chromosomes. Contrary

to the definition of genotype, we refer to an ordered sequence of alleles that were

inherited together along a chromosome as a haplotype. The parental origin of the al-

leles of genotypes across segments of the genome is not directly observable but can

be inferred using pedigree information, which records biological relationships of in-

dividuals in a population. When genotypes at several loci are heterozygous, several

feasible pairs of haplotypes can be formed given existing genotypes. For example,

when k heterozygous genotypes are observed in an individual’s genotype, there are

2k−1 feasible pairs of haplotypes that could have produced the genotype if no ad-

ditional information is provided. We are interested in inferring haplotypes (termed

“phasing” or “haplotyping”) using SNP genotype data obtained from several in-

dividuals in a population, and a process that exploits correlated (termed “linked”)

loci that tend to be inherited together. Those linked loci are known to be in “linkage

2



disequilibrium” (LD), which is defined as the non-random association of alleles at

different loci. Mathematically, let A1 and A2 be the two alleles at locus 1 and let B1

and B2 be the two alleles at locus 2. We would like to know whether the haplotype

frequency of “A1B1” (denoted f(A1B1)) is equal to the product of the allele fre-

quencies of A1 and B1 at the two loci. If f(A1B1) = f(A1) · f(B1), then it implies

that two loci are independently inherited and also known as “linkage equilibrium”;

otherwise, the given two loci are in LD. The success of population-based genotype

imputation relies on mining LD patterns from the genotype data and uncovering

haplotypes for each individual.

Currently, haplotype phasing can be determined through laboratory based meth-

ods such as sperm typing; however, laboratory methods are prohibitively expensive

in large scale for tens of thousands of individuals. Computational methods are pro-

posed as cost-efficient alternatives to laboratory methods. Phasing is closely related

to genotype imputation because haplotyping identifies blocks of closely “linked”

loci and due to correlation, one can fill in missing alleles of genotypes with the

observed alleles at linked loci. Recombination is a key factor that leads to decay

of LD between alleles at different loci. Mutation, which refers to alteration of

an allele at any locus, is another event that introduces genetic variation into pop-

ulation. Although it is rare, mutation leads to a child inheriting an allele that is

different from her parents. A mutation can be inherited if it is not harmful to cell

viability and eventually may become what is termed a common polymorphism if

it occurs in more than 1 percent of the population. The mutation rate is usually

thought to be low for SNP per generation and is estimated to range between 10−8

and 10−9 [38]. Closely related individuals tend to share long segments of hap-

lotypes, whereas distantly related individuals many generations apart share much

shorter segments. The probability of the occurrence of a recombination event is

not uniform across the genome, and varies region by region. Some regions with

increased recombination rates are more likely to harbour recombination events and

are known to be recombination hotspots, while others may have little or no recom-

bination. The reconstruction of high-density genetic map through studies in both

families and at the population level using genotype and sequencing datasets reveals

3



a mapping between physical loci and recombination rates [54, 58]. With a genetic

map, one can look up the recombination rates between any two loci in a popula-

tion. The distance between two loci in a genetic map is measured in centimorgans

(cM) where 1 cM is defined as 1% chance of observing a recombination in a single

generation.

1.2 Genotypic Data Overview

The Human Genome Project has been successful in accelerating discoveries of hu-

man health related genetic variants and disease genes. The same strategies and tech-

nologies used in human genomics have been applied to livestock animals for uncov-

ering important genetic variations and conducting genetic analyses [106]. In bovine

genomics, the 1000 Bull Genomes Project (http://www.1000bullgenomes.

com/) identified 28.3 million genetic variants including 26.7 million single nu-

cleotide polymorphisms (SNPs) [23]. These dense SNPs that exhibit variations in

regions along the whole genome have become a valuable tool for parental verifica-

tion [71], for identification of potential disease risk genes [70] and for subsequent

genome-wide selection (GWS) studies and genomic selection (GS) in the aim of

improving genetic gains [14, 74].

Both Illumina (https://www.illumina.com) and Affymetrix (http:

//www.affymetrix.com) offer general purpose commercial SNP chips for

genotyping. For example, the BovineSNP50 BeadChip (Bovine50K; Illumina Inc.,

San Diego, USA), a medium density SNP chip containing 54, 609 SNPs, has been

successfully applied in dairy cattle for estimating breeding values [14, 46]. The

high-density bovine SNP chips, the Illumina BovineHD BeadChip (“Illumina 770K”)

containing more than 777, 000 SNPs and the Affymetrix Axiom Genome-Wide

BOS 1 Bovine Array containing more than 640, 000 SNPs (“Affymetrix 640K”),

are available for accurate genetic merit evaluations and comprehensive genome

wide association studies. Although SNP genotyping enjoys a lower typing error

rate due to their bi-allelic nature, denser genomic coverage, lowering cost, and stan-

dardization among laboratories [72, 14], the price of genotyping remains a major
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challenge for large number of candidate animals to be typed for genomic selection,

not to mention the more expensive genome sequencing. A commercially available

“BovineLD Genotyping BeadChip” of 6,909 SNPs (“Illumina 6K”; Illumina Inc.,

San Diego, USA) has been developed as a cost-effective low-density alternative

to the Illumina 50K with selected markers optimized for imputation [5] and was

reported to contain lower genotyping errors than its LD predecessor the Illumina

Golden Gate Bovine3K chip. Also, the Illumina 6K chip can be customized by

adding SNPs. Previously, genotype imputation mostly refers to inferring the spo-

radic missing genotypes in the assays and now the term has been extended to the

scenario in which we would like to infer untyped SNPs that are not directly as-

sayed in a study sample of individuals genotyped in a low-density chip by use of a

high-density SNP genotype dataset as a reference panel [68].

With the development of high-throughput DNA genotyping chips of various

densities and the advance of sequencing technologies [92, 41, 70, 5], numerous ge-

netic variants have become available for use in livestock improvement. Genomic

prediction (GS), which combines high-density genotypic and phenotypic data, has

become a new tool in the selection of above-average candidates that have better

breeding values for traits of interest as parents of the next generation [34, 26]. Com-

pared to traditional evaluations, which solely rely on phenotypic and/or pedigree in-

formation to extrapolate relatedness and identity-by-descent between animals, GS

has revolutionized animal breeding by increasing the accuracy of estimates of ge-

netic merit and shortening the generational interval. Various statistical approaches

have been proposed for GS and differ in their assumptions of marker effects. For ex-

ample, the genomic best linear unbiased prediction (GBLUP) model [36] assumes

all markers contribute to genetic variance of the trait. On the other hand, some

Bayesian alphabet methods including BayesB adopt a Bayesian inference frame-

work for parameter estimation and assume that the trait is influenced by only a

fraction of all markers, while others have no effect [74]. Genotype imputation tra-

ditionally is a procedure of inferring the small percentage of sporadic missing geno-

types in the assays, but it now commonly refers to the process of using a reference

population genotyped at a higher density to predict untyped genotypes that are not
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directly assayed for a study sample genotyped at a lower density [68]. Genotype

imputation is expected to boost the statistical power because it equates the number

of SNPs for datasets genotyped using different chips and leads to an increased num-

ber of SNPs in association studies, which in turn should result in higher persistence

of linkage phase between quantitative trait loci (QTL) and SNPs, and potentially in-

crease the accuracy of genomic predictions. Additionally, dense SNP markers will

more likely contain some causative SNP markers, which can increase the statistical

power for genome wide association studies.

1.3 Motivation and Definition of Genotype Imputa-
tion

Imputation is a well-studied statistical problem and the success of imputation de-

pends on the missing value mechanism. That is, we would like to know under

what circumstances, if any, our inference of missing values would lead to valid

answers as if the data set were fully observed. One of the most stringent assump-

tion one can make about missing values is called “missing completely at random”

(MCAR) [63, 86]. This is equivalently saying that the probability of an observa-

tion being missing is independent of observed or unobserved variables. SNP geno-

types missing because of random failures of laboratory samples can be considered

MCAR. For example, Yu and Schaid [107] evaluated a total of eight imputation

methods for imputing missing values within SNP genotype data from the HapMap

project [22] under the assumption that missing genotypes were MCAR. A more

general assumption under which imputation analyses can be done with observed

data is called “missing at random” (MAR). That is, whether or not a value is missing

is independent of unobserved missing variables and values although it can depend

on observed data (such as allele intensities and neighbouring SNPs). The MAR

hypothesis is considered to be realistic and reasonable if important predictors of the

SNP with missing values are included in the imputation model [63, 37]. When the

missingness depends on unobserved data, missing data are said to be “not missing

at random” (NMAR) [86, 63].
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Genotype calling programs, which convert raw instrument data into genotypes

for downstream analyses, typically use a clustering algorithm to assign the genotype

(“00”, “01” and “11”) to each SNP in each individual. The clustering algorithm is

applied on a per-SNP basis to multiple samples and seeks to assign each sample to

one of the three genotype classes, based on the intensity of signals corresponding

to the two alleles generated by the instrument for each sample. If the clustering

algorithm is unable to find an appropriate genotype class for a sample, then a miss-

ing outcome would be assigned to him at the SNP locus [37]. Both genome wide

association studies (GWAS) for QTL fine-mapping of complex traits and genomic

selection (GS) for livestock improvement require high-density genotypes from a

large number of individuals, which are apt to contain a certain small percentage of

missing values (termed “sporadic”) ranging from 0.05% to 5%. The missing mech-

anism for the small percentage of “sporadic” genotypes that have not been called

is usually assumed to be MAR. Additionally, GWAS and GS tools usually assume

no presence of missing values in genotype data. The most common approach for

dealing with missing data is to remove samples with many missing values and/or

loci with a large percentage of missing SNPs. Addressing missing values using

this approach leads to reduced sample size and consequently power to detect QTL.

Computationally inferring those sporadic missing values, otherwise known as im-

putation, is an alternative to re-genotyping or re-sequencing samples containing

missing values and has advantages of saving both labour and cost. Also, genotype

imputation can be used as a strategy to increase the coverage and resolution of SNPs

beyond the original chips up to a reference panel of dense SNP markers. Thirdly,

missing genotypes arise when we try to combine data from samples genotyped us-

ing different SNP arrays. It is not uncommon to have samples from different labs

genotyped using different chips with only a small percentage of SNPs in common

across the chips. Imputation methods are routinely applied to infer “untyped” SNPs

that are unique in one chip and the missing mechanism in this scenario is usually

assumed to be NMAR.

The population based genotype imputation can be formally defined as follows:

given a reference panel of known, unrelated, and unphased high-density genotype
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data DG, our goal is to impute the untyped markers that are not directly assayed

in a genetically similar data set SG, termed a “study sample,” genotyped on a low-

density chip. Strictly speaking, individuals are “related” to some degree in that

even two distantly related individuals can be traced back to a common ancestor if

we follow genealogy into the past. To clarify the context of “unrelatedness,” we

imagine that unrelated individuals are independent, identically distributed obser-

vations drawn from a population and they are not recently related, not related via

close family relationships in a pedigree [42]. We use SGij to denote the geno-

type of study individual i at marker j, where SGij can be 0, 1, or 2 representing

the number of copies of the alternative allele if observed and SGij =? if untyped.

Likewise, DGij denotes the genotype of individual i at marker j on the reference

panelR. DG and SG share an overlapping set of markers, denoted T , representing

the set of “typed” markers in both low-density and high-density chips. Assume that

all markers of the two datasets are bi-allelic and they fall into two disjoint subsets:

an overlapping set T of markers, typed in both the low-density study sample and

high-density reference panel, and a set U of markers that are typed only in DG but

untyped in SG. Information gain of imputation from low density chips to high den-

sity chips comes not only from linkage disequilibrium of SNPs in low-density study

sample but mainly from haplotype information of reference panel. When unphased

reference data is used, genotype imputation algorithms need to phase individuals

for samples in DG to obtain a set of haplotypes and the quality of haplotypes has

an impact on the imputation of the study sample.

In addressing this problem, I investigated several existing statistical models and

proposed a new statistical hidden Markov model (HMM) based on Li and Stephens’

“Product of Approximate Conditionals” (PAC) framework [61] and the clustering

approach. The running time of HMM-based genotype imputation grows quadrati-

cally with the number of hidden states at each locus, representing available haplo-

types. As a result, when the number of individuals in the reference panel becomes

large, PAC-based HMM becomes slow; additionally, existing programs based on

PAC use heuristic approaches to reduce the number of individuals at each locus for

speeding up the sampling progress.
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The key idea of the existing genotype imputation methods is to explore and

hunt for shared “identical by descend” (IBD) haplotypes that exhibit high LD from

a high-density reference panel of genotypes or haplotypes over a region of tightly

linked markers and use them to fill untyped SNPs of any low-density study samples.

The success of genotype imputation depends on the length of correlated markers in

LD blocks. Markers common to both study samples and reference panels serve

as anchors for guiding genotype imputation approaches imputing any unobserved

haplotypes within the LD block. Because of domestication, selection and breeding

in cattle, Matukumalli et al. [70] reported that the length of LD blocks of correlated

markers in cattle is about three times greater than that of human populations. In hu-

man populations, substantial efforts have been made to produce accurately phased

“haplotype” reference panels, available from the International HapMap project (In-

ternational HapMap Consortium, 2005) [22] and the 1000 Genomes Project [50].

Yet, in cattle and many other livestock species, “unphased” SNPs from sequencing

or in HD genotyping chips and medium-density genotyping chips are commonly

used as reference panels for imputation.

1.4 Comparative Studies of Imputation Methods and
Their Effects on Genomic Predictions

The discovery of millions of SNPs from genome sequencing and dramatic reduction

in the cost of genotyping have enabled the adoption of a form of genomic selection

known as genomic selection (GS) [74] as a popular tool for selecting breeding an-

imals from populations of candidates [34]. Genetic improvement aims to select

above-average candidates as parents of the next generation and to produce proge-

nies with performance above-average of the current generation. In livestock species,

performance of candidates is largely determined by complex traits, which are quan-

titative in nature and are likely controlled by many genes along with the influence

of environmental factors [100, 26, 73]. For quantitative traits, a single locus only

accounts for a limited proportion of the total genetic variance, most genes that con-

tribute to the complex traits (quantitative trait loci or QTL) are still unknown and
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detected QTLs only explain a small fraction of the total genetic variance [73, 26].

As a result, previous marker assisted selections achieved limited successes for traits

controlled by a few major genes. The theory underlying the genomic selection

methods is that genetic effects must exist somewhere along the genome for any trait

with a non-zero heritability and the effects of QTL are expected to be in LD with

some SNP markers, although these common SNPs are unlikely to be causal variants

for functional genetic differences [100, 74]. GS fits all SNPs covering the whole-

genome in a linear prediction equation, estimates the effects of the SNP markers

simultaneously and thus potentially captures all the genetic variance explained by

these SNPs. GS proceeds in two steps. In Step 1, dense SNP markers divide the

entire genome into smaller chromosome segments and GS estimates the effect of

these segments in a training population in which each animal has both genotype

and real-valued phenotype records. In Step 2, GS tries to calculate genomic esti-

mated breeding values (GEBV) for selection candidates that are not in the training

population and have only genotypes but no phenotypes, which can be obtained by

combining their genotypes with the estimated effects (from step 1) of the segments

they carry:

GEBV(~X) =
m∑
j=1

β̂jXj,

where m is the total number of SNP markers across the entire genome, ~X =

(X1, · · · ,Xm) is a vector consisted of coded genotypes (as the counts of allele

“1”) for an individual, and β̂j is the estimated effect of the genotype at locus j

from Step 1. It follows from Step 1 that once the marker effects are estimated they

can be re-used for many selection candidates in a few generations and from Step

2 that GS enables evaluation and selection of candidates without phenotypic infor-

mation and for traits that are expensive or difficult to measure as long as candidates

are genotyped. The other benefits of GS include increasing genetic value predic-

tion accuracies of selection by including DNA markers as additional information

and shortening the generation interval. GS enables us to select animals before they

are of productive and/or reproductive age, select female candidates on male traits

and vice versa. The success of GS requires dense SNP markers because density
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of SNPs affects the LD between the causative QTLs and SNPs. In reality due to

cost constraints usually only low-density or medium-density genotypes are avail-

able; therefore genotype imputation can be used as an approach to convert animals

genotyped in low-density chips up to the high-density. In the comparative studies,

I investigate to what extent the accuracy of imputation affects genomic breeding

values in GS for a beef cattle trait.

1.5 Piecemeal Imputation

An important subproblem in genotype imputation is how to improve accuracies with

existing imputation softwares. Although existing genotype imputation programs

are largely successful in imputing untyped markers for individuals genotyped in

low density chips, they are not perfect. Each imputation program has different as-

sumptions in its model setting and sometimes sacrifices accuracies for efficiency in

running time. Experimental results from several previous studies on bovine geno-

types [97, 60, 55, 47] show that two-step imputation using programs such as Beagle

and Impute 2 from a low density panel (e.g. Illumina 6K) to an intermediate den-

sity panel (e.g. Bovine 50K) and then to high density panel (e.g. Bovine 770K)

yielded higher accuracies than a direct one-step imputation from the low density

panel to the high density panel. One possible reason why there is such increase in

imputation accuracy is related to obtaining accurate phasing of haplotypes in DG.

An explanation offered by van Binsbergen et al. [97] is that imputation algorithm

has problems with selecting the correct haplotypes since there are multiple possi-

ble matches between HD and LD panels, whereas there are fewer possible matches

when an intermediate genotype chips is introduced in between. Our piecemeal strat-

egy tries to evaluate the effect of each untyped marker on the accuracy of imputation

along the genome by creating a pseudo intermediate panel with all the markers in

the low-density chip plus the untyped one, and two-step imputation with any ex-

isting method goes from the low-density panel to the pseudo-intermediate panel,

then to the high-density panel. A feature vector that incorporates the accuracy at

each untyped locus from the two-step procedure is used for clustering intermedi-
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ate pseudo-panels. Intermediate panels that fall into the same cluster have similar

performance in affecting accuracies of markers along the genome. For each cluster,

once we identify regions along the genome where two-step procedures via the as-

sociated intermediate panels unanimously increase the accuracies, it suffices to use

one of the intermediate panel within each cluster for future two-step procedure to

impute the identified “regions”. Final results can be obtained via piecing together

partial results from the two-step imputation and one-step imputation.

1.6 Overview

This dissertation is organized into six chapters. Chapter 2 reviews some impor-

tant models in the development of genotype imputation. In Chapter 3, I evaluate

the performance of several existing genotype imputation methods using beef cattle

data genotypes and examined the effects of imputed results in genomic predictions.

In Chapter 4, I investigate a step-wise strategy that can work with any existing

genotype imputation program for boosting the accuracies of genotype imputation.

In Chapter 5, I present a statistical model derived from an existing framework for

modelling linkage disequilibrium and genotype imputation. In Chapter 6, I summa-

rize my contributions and discuss some possible directions for future work.

The work in Chapter 2 and Chapter 3 was published in Springer Science Re-

views as “Genotype Imputation Methods and Their Effects on Genomic Predictions

in Cattle” [102]. The work in Chapter 4 was published in BMC bioinformatics as

“Whole genome SNP genotype piecemeal imputation” [103]. Chapter 5 contains a

result we have made great efforts in, but turns out not completely successful.
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Chapter 2

Related Work

2.1 Imputation Models and Popular Methods

In this section, we review the most widely used computational models underlying

several population-based genotype imputation methods. An overview of population

based genotype imputation is given in Figure 2.1. Existing methods for genotype

imputation can be categorized computationally into the linear regression model by

Yu and Schaid [107], clustering models [90, 10, 91, 40], hidden Markov models and

expectation-maximization (EM) algorithms [28]. More recent works have included

“BLIMP” by Wen and Stephens [105] based on “Kriging” for imputation from

summary data and “Mendel-Impute” via matrix completion [17]. Alternatively,

imputation methods can be divided into two broad categories: the aforementioned

“population-based” imputation methods that use LD information and the “family-

based” imputation methods that use both pedigree and LD information such as rule-

based AlphaImpute [49] and sampling-based GIGI [16]. In general, family-based

imputation programs using Mendelian segregation rules and LD information result

in higher accuracies than population-based ones for rare variants because pedigrees

record patterns of relationship among individuals and performance of population-

based imputation programs can be weakened by low LD of distant SNPs in sparse

low-density chips [49, 16, 80, 87]. Our review focuses on population-based pro-

grams that do not require pedigree information because of the following three rea-

sons. First, pedigree information is not always available for reasons of privacy or

missing pedigree records. Second, population-based methods yield more accurate
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imputation for common variants than family-based imputation [16]. Thirdly, some

family-based programs require availability of dense genotypes for all immediate

ancestors [49].

There have been several excellent reviews on genotype imputation methods and

applications to human genome wide association studies [9, 45, 68] as well as re-

lated reviews on haplotyping methods [11]. Several studies have investigated the

performance of imputation methods in the context of livestock applications [13] and

evaluated their effects on genomic predictions [76, 13, 79]. In this review, we at-

tempt to survey and categorize various historical and more recent population-based

genotype imputation methods that accept unphased reference panels as input and

then evaluate effects of imputed data on feed efficiency genomic predictions for

beef cattle. We focus on the most important population-based imputation methods

that have been widely adopted and relevant to both human and bovine genomics and

their underlying computational schemes for parameter estimations, including Bea-

gle [10], the “PAC” model of Li and Stephens [61] and its variants [90], and a simple

rule-based method called FImpute [88] inspired by “long range phasing” [59].

All existing population based genotype imputation methods, in essence, try to

find matches of similar haplotypes over a short chromosomal region between the

study sample and the reference panel [51]. That is, the population-based genotype

imputation methods pool information from typed markers that are in linkage dise-

quilibrium with the untyped markers , and due to correlation, untyped markers U

in the study sample SG can be filled with observed genotypes from the reference

genotype DG if there is a match at typed markers T [69, 105]. Most methods not

only perform genotype imputation for the study sample but infer their haplotype

phases as well [69, 51, 10].

2.1.1 The “Product of Approximate Conditionals” (PAC) Model

The statistical model of Li and Stephens [61] for population patterns of linkage dis-

equilibrium (LD) and identification of recombination hotspots is a milestone in the

development of genotype imputation methods, and a number of methods including

Impute 1 [69], Impute 2 [51], MaCH [62] and fastPHASE [90] are all variants based

14



b. Reference	set	of	haplotypes
0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0

1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

c. Study	sample genotyped	in	LD
1 ? ? ? 1 ? 1 ? 0 2 2 ? ? 2 ? 0

d. By	exploring	LD,	study	sample	
is	modelled	as	a	mosaic	of	
reference	haplotype
0 ? ? ? 1 ? 1 ? 0 0 1 ? ? 1 ? 0

1 ? ? ? 1 ? 1 ? 0 1 1 ? ? 1 ? 0

0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

a.	Fine	scale	genetic	map	that
specifies	recombination	rates

e.	Study	sample	is	imputed	
with	observed	reference	
haplotype	tracts	

Figure 2.1: An illustration of how population based genotype imputation works for
a study sample genotyped in low-density chip. A fine scaled genetic map (part a) is
available for looking up how likely recombinations occur between two loci on the
population level. The reference data (part b) consist of a set of haplotypes over a
set of dense SNP markers derived from phasing algorithms. When a study sample
comes in, its genotype is compared to the dense haplotypes in the reference panel
(part b). Tracts of haplotypes in the reference from which the study sample copies
are identified (coloured in red rectangles). Missing genotypes in the study sample
are then imputed using those matching haplotypes in the reference panel (part e).
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on this idea. Li and Stephens proposed “the product of approximate conditionals”

(PAC) model for approximating coalescence with recombination and mutation in a

population. Given n sampled diploid individuals at L markers, there are in total 2L

possible haplotypes. Due to the fact that recombination and mutation are both rare

events, instead of considering the exponential number of haplotypes 2L, one can

narrow down the search list of candidate haplotypes and approximate a new hap-

lotype as an imperfect mosaic of the observed n haplotypes, which represent the

hidden states of a hidden Markov model (HMM). The “PAC” model approximates

the recombination event as a Markov jump process along the genome: the new hap-

lotype can copy from different haplotypes at two consecutive loci. Incorporation of

recombination rates into the HMM significantly simplifies the transition probabili-

ties and allows for transition from one marker to the next independent of the current

hidden state from which the new haplotype copies. There is a chance that an allele

of the new haplotype is close to but not exactly the same as the one from which it

copies, reflecting that a mutation or a genotyping error occurs [61].

Discrete HMM Models – Impute 1, Impute 2 and MaCH

Impute 1 [69], Impute 2 [51] and MaCH [62] can be grouped together as they treat

the observed genotypes as discrete counts of alleles and adopt a sampling scheme

for estimating the posterior probabilities of missing genotypes in SG in a hidden

Markov framework.

Impute 1 [69] assumes the availability of a high-density haplotype reference

panel (denoted DH , which can be thought of as a “phased” version of DG), a

fine-scale recombination map ρ that defines the probability of recombination oc-

curring between two consecutive loci, an effective population size parameter Ne

that is a scaling factor for genetic distance between two consecutive loci. It defines

P (SGi|DH, ρ, λ) in the HMM framework of Li and Stephens [61], where λ is the

mutation rate dependent on the number of individuals in the reference panelR.

P (SGi|DH, ρ, λ) =
∑
Zi

P (SGi|Zi, λ)P (Zi|DH, ρ), ∀i = 1, · · · , n

The hidden state Zim = {k1, k2} where k1 ∈ Z and k2 ∈ Z at each marker m
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is an unordered pair of haplotypes in the reference panel from which two alleles of

SGi receive the copies, and therefore the number of hidden states is quadratic in the

number of the haplotypes inR. Posterior probabilities of untyped or missing geno-

types SGim are expressed via the forward-backward algorithm, and are estimated

in a sampling process, and computation grows linearly in the number of markers

and quadratically in number of haplotypes [69].

MaCH [62] further extends Impute 1’s discrete-valued HMM model to the us-

age of the reference panel R containing unphased genotypes DG. Phasing in DG

is obtained from a Monte Carlo Gibbs sampling precedure P (DGi|DG−i, ρ, λ) and

only a few rounds of updates are needed to obtain accurate consensus haplotype

templates through empirical experiments [62]. The detailed path-sampling proce-

dure of the HMM can be found in Appendix B of Scheet and Stephens [90]. The

phasing procedure takesO(N3) if all individuals in DG are used since each update

needs to sample a path from N2 hidden states and the number of updates grows

linearly in N . The cubic running time for phasing becomes an issue when thou-

sands of individuals are present in DG. To make MaCH scalable to large number

of individuals in DG, Li et al. suggested using a randomly selected subset of DG

for sampling phases of DGi at a small cost of accuracy.

Impute 2 [51, 50] is considered as a major improvement over Impute 1 and is

flexible with either “phased” or “unphased” reference panels. The major contribu-

tion of Impute 2 is a general strategy for HMM-based genotype imputation: first to

resolve phasing in DG and SG then to impute alleles in haplotypes of SG. Com-

putation is allocated more to the phasing step, as the accuracy of phased haplotype

is key in obtaining accurate imputed alleles in U of SG. Impute 2 adopts MaCH’s

“Markov chain Monte Carlo” sampling strategy for phasing with modifications as

follows:

• it initializes a set of haplotypes that are consistent with each individual ofDG

and SG respectively;

• it iteratively updates phasing in DGi conditional on k “closest” haplotypes to

obtain DH from P (DGi|DH−i, ρ, λ);
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• it iteratively updates phasing in SGi at T typed markers conditional on “phased”

DH and current guess of the rest of individuals from P (SGTi |SHT−i, DHT ∪U , ρ, λ);

• it imputes alleles at U untyped markers for SHi,1 and SHi,2 from P (SHi,d|DH, ρ, λ)

via the forward-backward algorithm, where SHi,1 and SHi,2 are the two

phased haplotypes that make up SGi

Unlike MaCH, the phasing routine in Impute 2 is conditional on k closest haplo-

types, which is determined by hamming distance to the current individual and com-

putation burden of phasing grows quadratically with k closest neighboursO(N ·k2)

and increases linearly in the number of markers O(L). As phasing is resolved in

the previous step, imputation step becomes haploid imputation and computation is

linear in the number of individuals in DG and the number of markers L.

Continuous Local Cluster-Based HMM Models – fastPHASE and Bimbam

fastPHASE [90] is another HMM-based method that can estimate phasing and im-

pute sporadic missing genotypes. The model is based upon the observation that

haplotypes over tightly-linked regions tend to cluster into groups of similar pat-

terns [90]. Each unobserved cluster can be viewed as a common haplotype from

which underlying haplotype of genotype data originates. The transition probabili-

ties in the HMM are modelled as a Markov jump process related to recombination

events independent of the current state; however, the emission probabilities are no

longer related to the mutation rate and but captured with regard to the real-valued

“allele frequencies” of each cluster. The total number of clusters K is a parameter

specified by users. We regard the underpinning HMM of fastPHASE as continuous

in that at every marker m, each cluster is associated with a real-valued “relative

frequency” αkm and a real-valued “allele frequency” θkm of allele 1 with the con-

straints
∑K

k=1 αkm = 1 and θkm ∈ [0, 1]. Structure 2.0 [31], a software developed

for inference of population structure, was very similar to fastPHASE’s local clus-

ter HMM model, assumed that each cluster represents a sub-population, and used

computationally-expensive Markov chain Monte Carlo sampling for parameter es-

timations.
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Unlike its predecessors that employ MCMC for phasing and imputation, fast-

PHASE speeds up the process of estimating parameters via a maximum likelihood

(ML) approach. An “expectation-maximization” (EM) algorithm is used for finding

ML estimates of all parameters. It should be noted that Kimmel and Shamir [56]

formalized a similar HMM model (“HINT”) for disease association studies and

proved that the genotype optimization problem is neither convex or conclave, and

their exact form of maximization for updating θkm does not exist. In HINT, Kimmel

and Shamir [56] propose to update θkm via a grid search in the neighbourhoods of 0

and 1 at the maximization step of the EM. In fastPHASE, Scheet and Stephens give

a formula for approximating maximal θkm, which updates the current value with

the value at the previous step in the maximization step.

To obtain better parameter estimates, these authors suggested one set K = 20,

run EM multiple times and take the average of estimates to overcome local maxima

issues. The computational time is in O(n · L ·K2), which increases linearly in the

number of individuals n in the dataset and number of markers L and quadratically

in the number of clusters K. Missing genotypes are imputed by choosing the value

that maximizes P (Gi|α, θ, ρ).

The model was not originally designed for imputation with reference panels

and special care must be taken to ensure the maximum likelihood approach does

not yield higher error rate [68, 40]. When applying fastPHASE for imputation with

a reference panelDG, Guan and Stephens [40] suggested using parameter estimates

obtained from maximizing the likelihood for DG only, P (DG|θ, α, ρ), rather than

the full likelihood function P (SG,DG|θ, α, ρ) as they believed inclusion of SG in

the model fit for parameter estimation would reduce the number of clusters available

to model DG.

The idea of fastPHASE has been incorporated into Bimbam [91, 40], a soft-

ware for Bayesian imputation-based association mapping. Guan [39] extended fast-

PHASE’s idea into a two-layered HMM for inference of population structure and

local ancestry, and proposed an alternative to approximating and updating θkm in

EM by solving a linear system at the cost of O(K3).
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2.1.2 BLIMP

Following the suggestion by Guan and Stephens [40] on fitting the cluster-based

HMM to only DG for estimating parameters and looking into the EM step, if we

treat homozygous genotypes as known alleles and heterozygous genotypes as miss-

ing allele, we can further simplify the genotype-based Bimbam [91], derive EM

updates for the haplotype-based Bimbam (all clusters collapse into identical ones)

and obtain a much simplified linear model. Update for θkm is only dependent on

the frequencies of typed alleles – the summary level data mentioned by Wen and

Stephens [105]. Wen and Stephens [105] developed a linear model called “BLIMP”

based on Kriging by incorporation of recombination rate between two loci in the lin-

ear model. BLIMP requires as input a genetic map for information of recombination

rates and is capable of not only untyped SNP loci frequency inference but individ-

ual level imputation as well. Imputation accuracy with BLIMP that uses summary

data was comparable to that obtained from the current best available method Impute

2 [105].

2.1.3 Beagle 3.3.2 and Beagle 4.1

Beagle 3.3.2 is based on a flexible “localized haplotype-cluster” model [8] that

groups locally similar haplotypes into clusters [10]. Beagle 3.3.2 is capable of im-

puting untyped genotypes, phasing haplotypes and handling multi-allelic markers.

It allows users to incorporate the pedigree information as an option, and supports

family-based genotype imputation. The underlying model of Beagle is an HMM

that does not explicitly model recombination and mutation events, but adapts to

data for local clusters at each marker and transitions [10]. The HMM of Beagle is

a directed acyclic graph that has variable number of hidden states at each marker,

representing local clusters as nodes. Each cluster only emits one possible allele.

Also, Beagle allows at most two transitions coming out of each cluster. Compared

with the HMMs based on the “PAC” model, which have fixed number of hidden

states at each marker, Beagle has few number of hidden states (clusters) and tran-

sitions, which speeds up computations. Beagle achieves fewer number of hidden
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states (clusters) and transition through a pruning procedure. The pruning procedure

detects the length of IBD segments shared among individuals by examing haplotype

frequencies at each nodes Nodes at each level of Beagle’s graph that are IBD are

merged and combined. The other notable difference between Beagle’s model and

the “PAC” model lies in how they use haplotype information among individuals.

Unlike Bimbam that only uses information from reference dataset in the model fit,

Beagle 3.3.2 pools observed haplotypes from all individuals at each marker. The

algorithm starts with randomly phasing genotypes and imputing missing values of

individuals. An iterative EM-style update is repeated in subsequent steps for re-

estimating phases and re-inferring missing values from current sampling of phasing

information.

Browning and Browning (2013) [7] further improved the IBD detection algo-

rithm (termed “Refined IBD”) in Beagle in a two-step manner. In the first step, a

linear time algorithm “GERMLINE” by Gusev et al. is used to find candidate shar-

ing IBD segments. In the second step, Beagle uses a probabilistic approach to refine

the candidate IBD segment to get consensus haplotypes. Such changes have been

reflected in the latest version (4.0) of Beagle. Switch error rate is a commonly used

metric for assessing the accuracy of inferred phases of haplotypes and is defined

as the ratio of the count of possible switches from an inferred haplotype phase to

obtain the true haplotype to the total number of of heterozygote loci in the individ-

ual’s genotype minus one. O’Connell et al. [77] reported in their studies that the

phasing results from Beagle 3.3.2 tended to have a much larger number of switch

errors than SHAPEIT [27].

2.1.4 FImpute

FImpute [88] is an efficient, rule-based, and deterministic method for phasing and

genotype imputation inspired by the idea of “long range phasing” [59]. Kong et

al. [59] reasoned that the length of shared haplotypes reflects the degree of re-

latedness between two individuals. The closer two individuals are, the longer

their shared haplotype is [88]. The algorithm first resolves phasing for homozy-

gous genotypes of each individual, treats heterozygous genotypes as missing or
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wild card, and builds up a library of haplotypes with frequencies. Next, the al-

gorithm iteratively looks for perfect or near perfect (> 99%) matches at currently

phased markers using an “overlapping sliding windows” from the maximum length

of whole genome to the minimum of 2 SNPs, i.e. from close relatives to distant

relatives. If a match is found, FImpute infers phasing for heterozygous genotypes,

merges similar haplotypes in the library and updates their frequencies accordingly.

If more than one match is found, FImpute uses match with higher frequencies for

imputation and phasing. It imputes the remaining genotypes by random sampling

of alleles based on observed frequencies.

22



Chapter 3

Genotype Imputation Methods and
Their Effects on Feed Efficiency
Genomic Predictions for Beef Cattle
using 50K SNP Genotypes

The objective of this chapter is to present experimental results from our compar-

ative studies of different population-based imputation methods and to investigate

for two training scenarios the effects of imputation results on subsequent genomic

predictions. An earlier version of the chapter was published in Springer Science

Reviews [102]. In livestock, one of the direct applications of imputation results

is in genomic predictions (GS) for genetic improvements of economic traits. GS

has revolutionized animal breeding by accelerating the selection process of can-

didates of genetic superiority. It requires availability of dense SNP markers with

known phenotypes for a reference population of selection candidates and exploits

LD between SNPs that cover the entire genome and QTLs. Despite the continuing

reduced costs, genotyping a large number of animals in high-density chips is still

costly and sometimes not feasible. A combination of low, medium and high density

chips can be used for lowering the cost of genotyping and imputation has become

a common practice to bring animals genotyped with low-density chips up to the

medium and high densities. In this study, we are concerned with beef cattle and

a phenotype trait called “residual feed intake” because feed is a major expense for

cattle producers and seeking genetic improvement of traits associated with the feed

efficiency of a beef cattle is of great economic importance [82].
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3.1 Methods

3.1.1 Genomic Predictions

We introduce two popular genomic prediction methods for predicting the genomic

estimated breeding values (GEBV) in validation dataset. including an efficient

GBLUP with a genomic relationship matrix G (VanRaden [99]) and a Bayesian

method (BayesB [74]). Genomic prediction methods assume availability of a train-

ing dataset that have both the genotype data and the associated phenotypic records

for each individual and tries to compute the genomic estimated breeding values

(GEBV) for individuals that only have genotype data available in validation dataset.

The BayesB model proposed by Meuwissen et al. [74] fits all SNP effects si-

multaneously and assumes the following linear model

yi = µ+

p∑
j=1

βjXij + ei, i = 1 · · ·n

where yi is the adjusted RFI for animal i, µ is the overall mean, βj is the regression

coefficient (allele substitution effect) on the jth SNP, Xij is the jth SNP genotype

of animal i defined above, and ei is the random residual effect for animal i, which

is drawn from a normal distribution N (0, σ2
e) and variance σ2

e is drawn from a

scaled inverse chi-squared distribution with the degrees of freedom νe set to 10

and the scale parameter S2
e set to σ2

e(νe − 2)/νe. The regression coefficient βj has

probability π to be exactly 0 (indicating no effect for the marker), denoted as δ(0),

and probability (1− π) to be drawn from the normal distributionN (0, σ2
j ). That is,

a mixture of a normal distribution and point mass at zero was used in the BayesB

for βj as shown below

βj|σ2
j ∼ πδ(0) + (1− π)N (0, σ2

j )

where π is our prior knowledge of the proportion of SNP that has no effects on

the trait. The value of π is specified as an input by the user and the locus specific

variance σ2
j is the unknown and is estimated from the data. Again, the prior for σj

is assumed to be from a scaled chi-squared distribution with the degrees of freedom

νj set to 4 and the scale S2
j set to (νj − 2)σ2

a/νj(1− π)
∑

2pj(1− pj), where σ2
a is
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the additive genetic variance component calculated by the phenotypic variance (af-

ter adjustment for fixed effects) on the training data, multiplied by heritability (h2),

and pj and (1− pj) are the two allele frequencies at SNP j. The unknowns includ-

ing the regression coefficient βj and its associated locus-specific variance σ2
j were

estimated via a Markov chain Monte Carlo (MCMC) sampler. SNP effects were

estimated by averaging all the samples after the burn-in period. The GEBV for ani-

mal i was predicted by adding up SNP effects over all loci: GEBVi =
∑m

j=1 βjXij ,

where m is the total number of SNPs.

The GBLUP method (VanRaden [99]) assumes a linear model that uses a ge-

nomic relationship matrix G derived from the SNP dataset Xn×m for estimating

genomic breeding values (GEBV). The linear model can be written as

y = 1µ+ Za+ e

where y is the vector of adjusted RFI, µ is the overall mean, a is the vector of

breeding values, Z is the incidence matrix relating a to y, and e is the vector of

random residuals. G measures genomic similarity between each pair of individuals

based on allele frequencies. Let p ∈ Rm be a vector whose ith component (denoted

pi) is the frequency of allele A at locus i. Define P = 1n×1p
> to be the matrix of

allele frequencies with n identical rows. Next, let Z = X− 2P+ 1n1
>
m. Then, the

genomic relationship matrix can be obtained via

G =
ZZ>∑m

i=1 pi(1− pi)
.

GEBV are obtained by solving the following set of equations

â = G(G+R)−1(y − 1µ̂)

where R is a diagonal matrix with entries Rii = 1/h2−1, where h2 is the parameter

known as “heritability” and reveals the proportion of the phenotypic variation in a

trait due to variation of the genetic factors. Heritability is a population-specific

parameter, and depends on the allele frequencies, the effect of genetic variants as

well as the environmental factors associated with the study population.
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3.1.2 Genotypes and Phenotypic Records

A total of 1, 800 animals were used in this study, from a pool of 11, 414 beef cattle

genotyped on the Illumina BovineSNP50 BeadChip (Illumina 50K) collated from

various projects and research herds across Canada. Included in this study were an-

imals from several breeds: a purebred Angus; a purebred Charolais; a composite

population sired by Angus, Charolais, or hybrid bulls from the University of Al-

berta’s Roy Berg Kinsella Research Ranch (Kinsella); a population of multibreed

and crossbred cattle mainly Angus with proportions of Simmental, Piedmontese,

Gelbvieh, Charolais, and Limousin from the University of Guelph’s Elora Beef Cat-

tle Research Station (Elora); a population of animals whose sire breeds were Angus,

Charolais, Gelbveih and commercial crossbred from the the Phenomic Gap Project

(PG1); a TX/TXX commercial population that is heavily influenced by Charolais

with infusion of Holstein, Maine Anjou, and Chianina [64]. Quality controls (QC)

were performed considering merged samples of all breeds simultaneously to filter

out SNPs if one of the following holds: SNP (1) with minor allele frequency (MAF)

< 0.01, (2) call rate < 0.90, and (3) heterozygosity excess > 0.15 [64]. A selected

group of animals from the most influential beef cattle breeds and crossbred popu-

lations genotyped with both Illumina 50K and Affymetrix HD were used to further

remove SNPs with conflicting alleles between the two panels. Exclusion of SNPs

with missing, or duplicated coordinates and SNPs on sex chromosomes resulted in

33, 911 remaining SNPs with known physical positions on 29 autosomes for the Il-

lumina 50K panel. Among the 33, 911 SNPs, we identified 5, 088 SNPs shared with

the Illumina BovineLD Genotyping BeadChip (Illumina 6K). The physical map of

the bovine genome used in this work was the UMD 3.1 assembly. From each of

the six populations, 300 animals were randomly selected for our study. We refer

to Kinsella, Elora, PG1 and TX/TXX as crossbred populations. All animals in this

study are taurine breeds.

The phenotypic trait we considered in this study is residual feed intake (RFI),

which is a measure of feed efficiency and is defined as the difference between an

animal’s actual daily feed intake and expected daily feed intake required for main-

tenance of body weight and growth, proposed by Koch et al. [57]. Values of RFI for
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all 1, 800 genotyped animals in the Illumina 50K panel were adjusted for contem-

porary groups including herd-year-sex, age at feedlot test and breed composition.

The animal populations and traits are described in Basarab et al. [3], Chen et al. [15]

and Lu et al. [64].

3.1.3 Scenario

Six imputation methods were investigated in this study, including Impute 2, FIm-

pute 2.2, Beagle 4.1, Beagle 3.3.2, MaCH 1.0 and Bimbam 1.0. The imputation

task was to impute genotypes from the Illumina 6K panel to the Illumina 50K

panel. Five-fold cross validation was performed by randomly partitioning animals

in each population into five non-overlapping groups. Each group consisted of 60

animals from each population, in total 360 across six populations. We simulated

a low-density study sample by masking SNPs that belong to the 50K but not the

6K. About 15% (5, 088/33, 911) of SNPs in a study sample were typed. In turn,

each group was used as a study sample in the Illumina 6K while the rest of the four

groups formed the reference set of Illumina 50K genotypes. That is, in each round

of 5-fold CV, imputation was carried out for low-density target samples across six

populations using a single reference panel composed of the 1, 440 animals across

six populations. The partition of the dataset was used for both imputation and sub-

sequent genomic predictions.

We applied two genomic prediction methods including an efficient GBLUP with

a genomic relationship matrix (VanRaden [99]) and a Bayesian method (BayesB [74])

introduced in Chapter 2, together with imputed 50K genotypes from different meth-

ods and associated phenotypic values to predict the genomic breeding values (GEBV)

in five-fold cross validation. In each round, actual 50K genotypes and associated

adjusted RFI for animals in the reference panel were fit in the model as the training

data, whereas a dataset containing imputed 50K genotypes was held for validation,

assuming unknown phenotypic values. Additionally, we predicted the GEBV using

BayesB and GBLUP based on actual 50K and 6K genotypes for comparisons.
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3.1.4 Evaluation

To assess the qualities of imputed genotypes among various methods, a validation

dataset is held with actual SNP genotypes assayed and by comparing the imputed

genotypes against the actual ones one can get CR (also known as accuracy to the

CS/ML audience). However, as Hickey et al. (2012) pointed out, concordance

rates are allele-frequency dependent and do not reflect the power of any imputation

method to infer rare allele variants with minor allele frequency (MAF) less than

1%. Additionally, Calus et al. [13] demonstrated that use of Pearson correlation

coefficient between true and imputed genotypes is preferred to CR because it is

more sensitive to errors at loci with lower MAF. Alternatively, the squared Pearson

correlation coefficient (r2) between the best guess (dosage) of genotypes and the

actual genotypes can be used for imputation accuracy. The closer to 1 that r2 is,

the more power to detect an imputation method exhibits. We followed the notion

of Howie et al. [50] by assigning undefined to 0 when imputation methods yielded

all identical predictions for all individual at a marker. For programs (e.g. Impute 2)

that report only marginal posterior probabilities P (G = x), the best guess genotype

(or imputed allele dosage) can be computed as
∑2

x=0 x · P (G = x). The accuracy

of the genomic prediction for RFI in the validation population was calculated as

Pearson’s correlation coefficient between the estimated genomic breeding values

(GEBV) using either GBLUP or BayesB and the adjusted phenotypic values of

RFI.

3.1.5 Program Settings

We performed all the imputation experiments on a local computational cluster con-

sisting of 15 identical nodes with dual quad core 64-bit CPUs run at 2.0 GHz and

shared 8 GB memory. We ran all the programs using their population-based con-

figurations without any pedigree information in the model fit. For Impute 2.3.1, we

followed its example commands under the scenario “imputation with one unphased

reference panel”, set the effective population size to 150 for cattle populations, cal-

culated the recombination rates between two consecutive loci using the Haldane
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(1919) recombination model by assuming that 1 million base pair approximately

corresponded to 1 Morgan and used the default total MCMC iterations 30. For Bea-

gle 4.1 (“09Nov15.d2a.jar”) and Beagle 3.3.2, the default numbers of iterations 15

and 10 were used in the study respectively. For MaCH 1.0, we first used MaCH’s

haplotyping option to phase genotypes in the reference panel with two input files

(a MERLIN formatted data file followed by the option “–d” and a pedigree file

followed by the option “–p”) and the flags “–phase” and “–states 200”. It took

14 hours and 18 min on average for phasing the reference panel per fold. We did

not provide with MaCH any map file in the all experiments. After completion of

phasing unphased reference data, we used MaCH for imputing the study samples

without any genetic map. For BimBam 1.0, we set the number of clusters “-c” to 15,

and provided as inputs 1) a physical positions at each marker in each chromosome,

2) two unphased genotype files (one for the reference dataset and the other for the

study sample), 3) default number of EM runs (“-e 10”), and 4) the default steps of

each EM run “-s 1” of 5) the number of warm-up EM step runs (“-w 20”).

In this study for genomic predictions, heritability h2 = 0.2 estimated on this

dataset was used under all scenarios. The value of π in BayesB was set to 0.95.

An implementation of the BayesB method by Fernando and Garrick, known as

“Gensel” [33], was used in this study. Since Gensel requires no missing values

in the Genotypic data Xn×m, Impute 2 with the option “-phase” was used to infer

the small percentage of sporadic missing genotypes. In all BayesB experiments,

we set the total number of iterations running the MCMC sampling to 150, 000 it-

erations and discarded first 20, 000 as burn-in. We examined Gensel’s output file

‘mcmcSample’ for trace plots of the residual variance in all experiments (results

not shown), and confirmed all the chains had good mixings for the chosen chain

length and burn-ins [14]. We used an implementation of GBLUP by Sargolzaei et

al. in the software “GEBV” [66]. In GEBV, the genomic relationship matrix was

efficiently computed using Colleau’s indirect method [20].
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3.2 Results

3.2.1 Accuracy of Genotype Imputation

Table 3.1 shows the mean concordance rates (CR) in Column 2 and the mean

squared correlation coefficients (r2) in Column 3 respectively across all untyped

SNPs for six different methods from the low density Illumina 6K panel to the

medium-density 50K panel in 5-fold cross validation. A huge variance was ob-

served among different methods in accuracies of imputation when a reference panel

made up of composite populations was used. The overall mean CR and mean r2

were the highest when Impute v2 was used for imputation, followed by FImpute 2

and Beagle 4.1 both of which yielded above 91% mean CR and above 66% mean

r2. Beagle 3.3.2 yielded a mean CR 87.38% and a mean r2 0.5556. MaCH 1.0

and Bimbam 1.0 gave mean CRs 80.21% and 71.72% respectively and mean r2 are

0.4180 and 0.2506 respectively.

The fifth column in Table 3.1 shows the average running time per fold for im-

puting 360 animals genotyped in the 6K chip while 1, 440 animals genotyped in

the 50K chip were used as reference animals. In terms of speed, FImpute 2.2 was

the fastest program yet achieved competitive imputation accuracies in terms of CR

and r2 to the currently best performing program Impute 2. FImpute 2.2 finished the

whole-genome imputation only at a fraction of the latter’s run time. Impute 2 was

able to complete whole-genome imputation within a day for 360 animals. Beagle

4.1 had a great improvement over Beagle 3.3.2 in terms of imputation accuracies but

had the longest running time 191 hours. Impute 2 overcame the quadratic running

time with the number of animals by heuristically searching the closest reference

haplotypes (defined by Hamming distances) [50]. However, the model-based im-

putation methods such as Impute 2 and Beagle 4.1 both suffer the scalability issue

once we would like to impute from genotype chips up to the full sequence level. Ta-

ble 3.2 shows the detailed imputation accuracies for each population. In Table 3.2,

each method performed well with pure breed populations Angus and Charolais and

the crossbred population Kinsella. Each method achieved the highest mean con-

cordance rates with Angus, followed by Charolais and Kinsella. Due to differences
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program mean CR (%) mean r2 running time
Impute 2 93.95 0.7545 22 hrs 7 min 41 sec

FImpute 2.2 91.88 0.6626 4 min 12 sec
Beagle 4.1 91.70 0.6655 191 hrs 6 min 5 sec

Beagle 3.3.2 87.38 0.5556 31 hrs 22 min
MaCH 1.0 80.21 0.4180 16 hrs 53 min 46 sec

BIMBAM 1.0 71.72 0.2506 3 hrs 15min 50 sec

Table 3.1: Accuracy of genotype imputation from Illumina 6K to Illumina 50K for
different methods. It took additional 14 hrs 18 min 14 sec for MaCH to pre-phase
the unphased animals in the reference panel.

in their breeding programs, crossbred populations Elora, PG1 and TX/TXX exhibit

high levels of genomic divergence in their population structure as evidenced by the

number of genotypes that carry the minor allele in each class of MAF and as in-

dicated by principal components in Figure 3.1. Impute v2 clearly outperformed

all other methods in both mean CR and mean r2 for the two purebred and four

crossbred populations.

Population
Impute 2 FImpute 2.2 Beagle 4.1 Beagle 3.3.2 MaCH BIMBAM

CR r2 CR r2 CR r2 CR r2 CR r2 CR r2

Angus 97.75 0.7557 96.47 0.7065 96.74 0.7152 94.69 0.6585 87.64 0.5288 77.89 0.3509
Charolais 95.84 0.7523 93.57 0.6616 93.00 0.6526 87.79 0.5207 78.13 0.3259 68.39 0.1543
Kinsella 95.93 0.8458 94.84 0.7875 94.51 0.7827 90.85 0.6787 83.16 0.5105 72.18 0.2895
Elora 91.01 0.747 88.21 0.6151 87.68 0.6091 82.15 0.4685 76.42 0.354 71.07 0.2518
PG1 92.12 0.7738 89.64 0.6595 89.87 0.6722 85.36 0.553 78.98 0.4178 72.17 0.2960
TX/TXX 91.08 0.7319 88.55 0.6132 88.39 0.6167 83.48 0.4962 76.95 0.3645 68.64 0.2068
All 93.95 0.7545 91.88 0.6626 91.70 0.6655 87.38 0.5556 80.21 0.418 71.72 0.2506

Table 3.2: Accuracy of genotype imputation from Illumina 6K to Illumina 50K for
different methods and different populations

3.2.2 Effect of Minor Allele Frequency (MAF) on Accuracy of
Genotype Imputation

We are also interested in the accuracy of each method for imputing genotypes that

carry uncommon or rare variants as much of the causation of complex or quan-

titative traits is due to rare variants [19]. We evaluated imputation methods for

their concordance rates on genotypes “AB” and “BB” carrying the minor allele “B”

at each locus. To investigate the association between MAF and the accuracy of

imputation among different methods, we classified the untyped markers into the
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Figure 3.1: Principal component analysis (PCA) for population stratification us-
ing the top two principal components (PCs) obtained from 50K genotype data of
all 1, 800 beef cattle. Individuals are grouped by their population, as described in
Materials and Methods.

following six classes according to MAF, (0, 1%), [1%, 2%), [2%, 5%), [5%, 10%),

[10%, 20%), and [20%, 50%). Figure 3.2 (3.2a through 3.2f) shows the relationship

between MAF and concordance rates of genotypes “AB” and “BB” for different

methods. As MAF increased, concordance rates of all methods for imputing geno-

types “AB” and ”BB” increased. The trends of imputation accuracy with MAF

classes were consistent with reports from other studies in maize populations [48],

and whole-genome sequencing Holstein Friesian cattle [97]. Greater differences

among different methods were observed across variant MAF classes in the con-

cordance rates of genotypes “AB” and “BB”. FImpute 2.2 outperformed Impute

v2 for extremely rare variants (MAF class (0, 1%)) across both pure and crossbred

populations. For rare variants in MAF class [1%, 2%) and [2%, 5%), Impute v2

outperformed FImpute in purebred populations Angus and Charolais, but did worse

than FImpute in crossbred populations Kinsella, Elora, PG1, and TX/TXX. Impute

v2 had advantages over FImpute 2.2 for MAF greater 10%. The success of FImpute

2.2 was possibly due to their rule-based strategy for keeping haplotypes anchoring
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Figure 3.2: Effects of MAF of untyped SNPs on imputing genotypes “AB” and
“BB” carrying the minor allele (MA) “B”
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the rare allele in their update library. On the other hand, the model-based Impute

v2 may ignore rare variants as mutations or errors when MAF was small. Bea-

gle 4.1 and Beagle 3.3.2 performed worse than FImpute 2.2 and Impute 2 in each

MAF class and were in the second tier. Beagle 4.1 outperformed Beagle 3.3.2 in

each MAF class. MaCH did not yield comparable concordance rates in that we

did not supply with the program an accurate haplotype reference. Although we

applied MaCH’s own phasing options in the first step for the reference data, no

genetic map was provided and MaCH seemed to have difficulty in modelling the

recombination and resolving phasing for the reference genotype data. Inaccurate

haplotype data would have a significant impact on the subsequent genotype impu-

tation process for MaCH as we observed in Figure 3.2e. A possible explanation for

Bimbam’s poor performance in imputation would be its over-generalization of the

reference panel and its MLE for parameter inference. Bimbam was not designed

for dealing with admixed populations and assumed that the reference data can be

generalized through an MLE estimation with a local-clustered HMM. When the

admixed population contained several breeds with distinct patterns of co-ancestry,

the small number of clusters could result in MLE stuck in the local maxima as the

distribution of the admixed data is likely to be multimodal.

The distribution of genotypes “AB” and “BB” in each MAF class for different

populations in Table 3.3 clearly shows crossbred populations Kinsella, Elora, PG1

and TX/TXX in general contained more genetic variants than purebred populations

Angus and Charolais. We can see from Table 3.3 the total number of genotypes that

carry the minor allele across the genome was the fewest with Angus. Even though

concordance rates of genotypes “AB” and “BB” were poorest for Angus with the

MAF class (0, 1%), the number of such rare variants were extremely small and all

methods were capable of imputing well for all MAF classes with Angus.

3.2.3 Accuracy of Genomic Predictions Using Actual 50K and
Imputed 50K

We investigated two strategies of constructing training and validation datasets for

genomic prediction. Across-breed training and validation datasets were constructed
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Population (0, 1%) [1%, 2%) [2%, 5%) [5%, 10%) [10%, 20%) [20%, 50%) all
Angus 40 1429 21000 103384 490788 2792475 3409116

Charolais 226 4489 37597 135664 539437 2742995 3460408
Kinsella 306 4190 38420 134292 533583 2806099 3516890

Elora 444 3903 34136 127569 535479 2822135 3523666
PG1 661 5066 40973 137047 542973 2834610 3561330

TX/TXX 679 6402 49277 150388 559059 2798682 3564487
All 2356 25479 221403 788344 3201319 16796996 21035897

Table 3.3: Distribution of SNP genotypes (AB and BB) that carry the minor allele
“B” among MAF classes

using animals across all six populations, whereas within-breed training and valida-

tions were constructed using animals of the same breed. That is, in the case of ge-

nomic predictions, in each round of 5-fold CV, the across-breed training dataset of

actual 50K genotypes corresponded to our reference panel of 1, 440 animals across

six populations whereas the within-breed training dataset was composed of only

240 animals of the same breed as the within-breed validation dataset.

Table 3.4 shows across-breed accuracies of genomic predictions between GEBV

and adjusted RFI phenotypic values in Angus, Charolais, Kinsella, Elora, PG1,

TX/TXX validation datasets using GBLUP and BayesB for actual 50K/6K SNP

genotypes and imputed 50K genotypes. Columns with “actual 50K” and “actual

6K” show the genomic prediction results using actual 50K and actual 6K datasets as

both training and validation datasets. Columns that have imputation methods-50K

as titles report predication accuracies when using imputed 50K of the imputation

method as validation datasets. A slight increase in Pearson correlation coefficient

or accuracy of genomic prediction was observed for Angus, Charolais, Elora and

TX/TXX via either BayesB or GBLUP when actual 50K training and validation

datasets were compared with the actual 6K ones. However, there were no signifi-

cant differences observed in correlation coefficients between the actual 50K and the

actual 6K datasets for both BayesB and GBLUP methods when the standard errors

were considered.

In comparison of genomic prediction accuracies of 50K to that of imputed 50K

for across-breed genomic prediction, imputed 50K genomic prediction results from

all the imputation methods except for Bimbam gave comparable accuracies to the
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Population
Actual 50K Actual 6K

BayesB GBLUP BayesB GBLUP
AN 0.18± 0.05 0.21± 0.04 0.13± 0.03 0.16± 0.03
CH 0.22± 0.05 0.21± 0.06 0.14± 0.05 0.18± 0.06
KS 0.11± 0.08 0.08± 0.06 0.11± 0.06 0.08± 0.07
EL 0.09± 0.06 0.16± 0.05 0.05± 0.04 0.15± 0.04
PG 0.10± 0.05 −0.04± 0.06 0.12± 0.06 −0.01± 0.06
TX 0.19± 0.04 0.17± 0.04 0.14± 0.01 0.14± 0.04
All 0.15± 0.03 0.12± 0.03 0.11± 0.01 0.12± 0.03

Population
Impute2-50K Fimpute2.2-50K

BayesB GBLUP BayesB GBLUP
AN 0.18± 0.05 0.20± 0.04 0.16± 0.05 0.18± 0.02
CH 0.22± 0.05 0.20± 0.06 0.23± 0.07 0.22± 0.07
KS 0.10± 0.08 0.08± 0.06 0.09± 0.07 0.10± 0.05
EL 0.09± 0.06 0.15± 0.06 0.11± 0.06 0.16± 0.03
PG 0.10± 0.05 −0.04± 0.06 0.12± 0.06 −0.02± 0.07
TX 0.18± 0.04 0.16± 0.04 0.16± 0.03 0.18± 0.06
All 0.14± 0.03 0.11± 0.03 0.14± 0.03 0.12± 0.03

Population
Beagle4.1-50K Beagle3.3.2-50K

BayesB GBLUP BayesB GBLUP
AN 0.18± 0.05 0.20± 0.04 0.17± 0.05 0.20± 0.04
CH 0.21± 0.06 0.20± 0.07 0.22± 0.07 0.20± 0.08
KS 0.11± 0.08 0.08± 0.06 0.10± 0.06 0.07± 0.05
EL 0.07± 0.05 0.14± 0.05 0.07± 0.06 0.15± 0.05
PG 0.11± 0.06 −0.04± 0.06 0.10± 0.05 −0.04± 0.06
TX 0.17± 0.03 0.16± 0.04 0.19± 0.03 0.16± 0.03
All 0.14± 0.03 0.11± 0.03 0.14± 0.03 0.11± 0.03

Population
MaCH-50K Bimbam-50K

BayesB GBLUP BayesB GBLUP
AN 0.16± 0.05 0.19± 0.04 0.13± 0.04 0.15± 0.03
CH 0.24± 0.06 0.21± 0.07 0.18± 0.04 0.18± 0.05
KS 0.11± 0.06 0.08± 0.05 0.08± 0.05 0.05± 0.04
EL 0.05± 0.07 0.14± 0.06 0.06± 0.05 0.15± 0.05
PG 0.12± 0.07 −0.04± 0.06 0.10± 0.06 −0.07± 0.04
TX 0.15± 0.03 0.15± 0.03 0.12± 0.03 0.14± 0.03
All 0.13± 0.03 0.11± 0.03 0.11± 0.02 0.09± 0.03

Table 3.4: Across-breed accuracy of genomic estimated breeding values predicted
with actual 6K panel, actual 50K panel, imputed 50K panels from Impute 2, FIm-
pute 2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam for RFI using GBLUP and
BayesB for Angus (AN), Charolais (CH), Kinsella (KS), Elora (EL), PG1 (PG),
TX/TXX (TX) validation groups. Standard errors of the mean from the five-fold
cross validation follow after and are defined as SEM = σ√

5
where σ is the sample

standard deviation. Training groups consist of 1, 440 animals pooled from all six
populations.
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actual 50K results using both GBLUP and BayesB. For purebred Charolais, the

highest mean correlation coefficients were 0.24 using BayesB on imputed 50K via

MaCH although the mean concordance rate of MaCH was only 78.13%, 0.23 us-

ing BayesB on imputed 50K via FImpute, 0.22 using GBLUP on imputed 50K via

FImpute, 0.22 using BayesB on imputed 50K via Impute 2, and 0.22 using BayesB

on actual 50K genotypes. With Charolais on either imputed or actual 50K panels,

BayesB gave slightly better or similar accuracies compared to GBLUP although the

advantage was not statistically significant. With Angus on either imputed or actual

50K panels, GBLUP tended to give higher accuracies than BayesB and again the

small advantage was not significant. While in crossbred cattle populations Kinsella,

Elora, PG1, TX/TXX, the most highest mean correlation coefficients was 0.19 us-

ing BayesB on imputed 50K TX/TXX from Beagle 3.3.2 and actual 50K. Bimbam

imputed 50K yielded slightly lower prediction accuracies in comparison to that of

actual 50K for purebred Angus and Charolais. For across-breed genomic prediction

based on either actual 50K or imputed 50K SNPs, BayesB and GBLUP had sim-

ilar prediction accuracies for all the breed/populations except for PG1, for which

BayesB yielded significantly higher prediction accuracies than that of GBLUP.

Within-breed accuracies of GEBV predictions for RFI using BayesB and GBLUP

in all six populations are presented in Table 3.5. Similarly, genomic prediction ac-

curacies of actual 50K, actual 6K and imputed 50K are similar. Unlike across-breed

genomic prediction, Bimbam imputed 50K of within-breed genomic prediction had

similar prediction accuracies to that of actual 50K. Moreover, within-breed GBLUP

improved accuracies using either imputed 50K or actual 50K/6K for crossbred pop-

ulation PG1. However, GBLUP still yielded slightly lower prediction accuracies

for Charolais than that of BayesB using either actual 50K, actual 6K and imputed

50K of various methods while for breeds including Angus, Kinsella, Elora, PG1,

and TX/TXX, GBLUP and BayesB had comparable genomic prediction accuracy

for the trait.

In comparison to the results of across-breed genomic predictions, the within-

breed genomic prediction yielded relatively higher accuracies for purebred Angus

under BayesB and for crossbred PG1 under GBLUP. For both across and within-
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Population
Actual 50K Actual 6K

BayesB GBLUP BayesB GBLUP
AN 0.24± 0.03 0.25± 0.01 0.23± 0.05 0.26± 0.02
CH 0.21± 0.06 0.20± 0.06 0.19± 0.06 0.20± 0.05
KS 0.10± 0.06 0.12± 0.06 0.11± 0.07 0.13± 0.06
EL 0.17± 0.05 0.18± 0.05 0.16± 0.02 0.18± 0.04
PG 0.13± 0.06 0.16± 0.08 0.15± 0.03 0.14± 0.07
TX 0.17± 0.04 0.18± 0.04 0.13± 0.05 0.14± 0.04

Population
Impute2-50K Fimpute2.2-50K

BayesB GBLUP BayesB GBLUP
AN 0.25± 0.02 0.25± 0.01 0.24± 0.02 0.24± 0.01
CH 0.21± 0.06 0.20± 0.06 0.21± 0.06 0.21± 0.07
KS 0.11± 0.06 0.12± 0.06 0.10± 0.06 0.12± 0.06
EL 0.15± 0.05 0.16± 0.04 0.14± 0.05 0.17± 0.03
PG 0.13± 0.06 0.15± 0.07 0.14± 0.06 0.15± 0.07
TX 0.16± 0.04 0.18± 0.04 0.15± 0.04 0.18± 0.05

Population
Beagle4.1-50K Beagle3.3.2-50K

BayesB GBLUP BayesB GBLUP
AN 0.24± 0.03 0.25± 0.01 0.24± 0.02 0.25± 0.01
CH 0.21± 0.06 0.20± 0.06 0.21± 0.06 0.20± 0.07
KS 0.14± 0.04 0.12± 0.06 0.11± 0.06 0.13± 0.06
EL 0.04± 0.06 0.16± 0.04 0.13± 0.05 0.15± 0.04
PG 0.11± 0.06 0.16± 0.08 0.14± 0.06 0.16± 0.08
TX 0.16± 0.04 0.17± 0.04 0.15± 0.05 0.17± 0.05

Population
MaCH-50K Bimbam-50K

BayesB GBLUP BayesB GBLUP
AN 0.24± 0.02 0.24± 0.02 0.13± 0.04 0.26± 0.01
CH 0.22± 0.06 0.21± 0.06 0.18± 0.04 0.22± 0.06
KS 0.11± 0.06 0.13± 0.06 0.08± 0.05 0.14± 0.05
EL 0.15± 0.05 0.16± 0.05 0.06± 0.05 0.16± 0.05
PG 0.14± 0.07 0.16± 0.08 0.10± 0.06 0.16± 0.08
TX 0.14± 0.05 0.16± 0.04 0.12± 0.03 0.14± 0.05

Table 3.5: Within-breed accuracy of genomic estimated breeding values predicted
with actual 6K panel, actual 50K panel, imputed 50K panels from Impute 2, FIm-
pute 2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam for RFI using GBLUP and
BayesB for Angus (AN), Charolais (CH), Kinsella (KS), Elora (EL), PG1 (PG),
TX/TXX (TX) validation groups. Standard errors of the mean from the five-fold
cross validation follow after and are defined as SEM = σ√

5
, where σ is the sample

standard deviation. Training groups consist of 240 animals from the within breed
population while validation groups contain 60 animals from the same breed.
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breed genomic predictions based on either actual 50K, actual 6K and imputed 50K

SNPs, purebred populations (Angus and Charolais) had relatively high prediction

accuracies than that of crossbred populations Kinsella, Elora, PG1, TX/TXX.

3.3 Discussion

Factors that affect the accuracy of imputation from previous studies include the

number of genotyped immediate ancestors, the size of the reference panel, the

linkage disequilibrium between typed and untyped SNPs, the composition of the

reference panel, the relationship of individuals between the study sample and refer-

ence population, and minor allele frequencies [53, 45, 68, 6, 48, 13]. Bouman and

Veerkamp [6] showed that combining animals of multiple breeds was preferred to a

small reference panel comprised of animals of the same breed for imputation from

high-density SNP panels to whole-genome sequence, especially for low MAF loci.

In our study, we adopted this strategy to construct reference panels with animals

across six populations, and observed that it was especially beneficial to FImpute

for imputing rare variants. Since rare alleles might be under-represented in a sin-

gle population, as shown in Table 3.3 under the column “(0, 1%)” for Angus for

example, and FImpute relies on observed alleles to build up its haplotype library,

haplotypes carrying the rare variants can be borrowed from other breeds or popu-

lations. As we move from low MAF to high MAF, the accuracy of imputation for

genotypes that carry the minor allele improves for all methods as shown in Fig-

ure 3.2a through Figure 3.2f because imputation methods have higher confidence in

imputing untyped genotypes at higher MAF loci.

Genotype imputation methods such as fastPHASE and Bimbam that adopt max-

imum likelihood estimation (MLE) yielded poor accuracies of imputation likely due

to their model-based estimation of the admixed population structure of our geno-

type data. Compared to Beagle 3.3.2’s haplotype frequency based model, which

builds up clusters based on the current estimates of haplotypes, fastPHASE and

Bimbam derive clusters from the generalization of data. With fastPHASE and Bim-

bam, two haplotypes with two distinct alleles at the current locus could end up in
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the same cluster, whereas with Beagle 3.3.2 they are guaranteed to be in different

clusters [9]. Therefore, at low-MAF loci, fastPHASE and Bimbam tend to cluster

the rare allele and the major allele into the same cluster and mistake heterozygous

genotypes carrying the rare allele as homozygous genotypes carrying the major

allele [51], as evidenced in Figure 3.2f where Bimbam did not make any correct

predictions for genotypes carrying rare alleles (MAF < 1%). Figure 3.1 shows a

plot of the principal component analysis (PCA) using the top two principal com-

ponents (PCs). It has long been known that the MLEs of finite mixtures can lead

to local maxima [84, 104]. Both fastPHASE and Bimbam rely on estimation of

clusters in their model settings via the MLE. Recently, Feller et al. [32] examined

pathological behaviours of the MLEs via a mixture of two normal distributions and

showed the MLEs can wrongly estimate the component means to be equal when the

mixture components are weakly separated and convergence of the parameters in the

MLE setting sometimes can break down.

Previous studies on Holstein dairy cattle for imputation from 6K to 50K show an

overall CR over 93% with Beagle 3.1.0 [4], over 97% with Fimpute [14], over 98%

with Fimpute [89]; from 6K to 50K, our findings with several purebred/crossbred

beef populations (overall mean CR 91.88% with FImpute) were similar to the ones

from beef cattle reported by Piccoli et al. [78], Ventura et al. [101], and Chud et

al. [18]. Accuracies of imputation were in general higher in Holstein dairy breeds

than in beef breeds based on previous reports and our studies, as levels of LD were

higher in Holstein dairy breeds than in beef breeds because Holsteins have a rela-

tively small effective population size [52]. The design of the Illumina 6K chip is

another factor that results in different accuracies of imputation in various breeds and

populations [18]. The SNPs on this panel were selected to provide optimized im-

putation in dairy breeds [5] and thus lower performance in beef breeds is expected,

as is lower performance in indicine breeds relative to taurine breeds.

We observed in this study that the accuracies of genomic prediction of RFI are

not sensitive to imputation errors in general when the 6K SNPs were imputed to

the 50K SNPs except for the Bimbam method, which yields lower genomic predict

accuracies in across-breed genomic prediction. Also, genomic predictions based on
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actual 6K SNPs resulted in similar accuracies to that of actual 50K SNPs. However,

in within-breed genomic prediction Bimbam imputed 50K achieved comparable ge-

nomic predictions to that of the actual 50K. Our results are in line with reports by Li

et al. [12] where a larger number of beef cattle (over 5,000) from the same data pool

as ours were used for evaluation of accuracy of genomic prediction for RFI based

on imputed Affymetrix HD SNPs (428K SNPs used) and 50K SNPs under three

different Bayesian methods. The imputed HD and actual 50K SNP data yielded

similar accuracies under all three methods. van Binsbergen et al. [98] also reported

no improvement in accuracy of genomic prediction was observed when using im-

puted sequence data over BovineHD data, suggesting that increases in density of

imputed genotypes may not necessarily lead to an increase in accuracy of genomic

prediction with the current SNP panel information and statistical methods.

Previous studies [75, 82, 15] have shown evidence that RFI is a complex trait

likely to be controlled by many SNPs with small effects. Therefore, genotype im-

putation errors from 6K to 50K SNP as observed in this study may have minimal

impacts on the accuracy of genomic prediction for RFI. However, when a trait is

influenced by a few of SNPs with major effects, imputation error will likely af-

fect the genomic prediction accuracy as shown in Chen et al.’s studies on genomic

predictions of fat percentage using dairy cattle [14]. For RFI genomic prediction,

FImpute was suggested as an imputation method as it is fast and has advantages

over all other methods in imputing rare variants.

In our study, GBLUP and BayesB methods yielded comparable genomic pre-

diction accuracies for the trait for across-breed and within-breed genomic predic-

tion in most of the breed/populations, which is in agreement with the previous re-

ports [46, 100, 75, 67]. GBLUP is believed to be less sensitive than BayesB to the

genetic architecture of any trait as it relies mainly on pairwise relationship between

individuals across the genome for prediction [96]. However, it was observed that

GBLUP gave lower prediction accuracies than BayesB in the PG1 population for

the across-breed training strategy under all the SNP types (actual 50K, actual 6K

and imputed SNPs), but resulted in comparable prediction accuracies to BayesB

when the within-breed strategy was adopted. PG1 is a crossbred population with
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animals being more widespread in the plot of PCA in Figure 3.1, indicating greater

dissimilarity of animals in the population in comparison to other populations, which

usually lead to a relatively lower prediction accuracy. Lund et al. [65] reported that

there was little or no benefit when combining distantly related breeds such as Jersey

and Holstein using GBLUP. Effects of across-breed genomic predictions have been

studied by De Roos et al. [25] through simulation studies, which conclude that the

across-breed training could lead to suboptimal marker effects for each population

as linkage disequilibrium between markers and QTL would be unlikely to persist

across populations and suggested high density marker set must be needed when

across-breed training is applied. Therefore, the greater dissimilarity of animals in

PG1 may lead to lower prediction accuracies of GBLUP. Moreover, the very low

prediction accuracy of GBLUP in PG1 could also be attributed to a greater sampling

error due to more genetic dissimilarity among animals as shown in Figure 3.1, cou-

pled with a small validation population size (N = 60) in the study.

The level of relatedness between training and validation set has a determinant

role on the accuracy of both imputation and genomic prediction. Previous authors

including Habier et al. [43, 44] and Sun et al. [94] show the genetic relationship

among animals as reflected in LD or linkage phase persistence or co-segregation

(CS) of QTL with SNPs can contribute to accuracy of genomic predictions in SNP-

based models. CS of alleles at two loci indicates that these alleles both originate

from the same chromosome of a parent, and captures more recent close relationship

between individuals. A closer relatedness between training and validation leads to

higher persistency of CS among animals [44, 94], which will improve the accuracy

of both imputation and genomic prediction. CS has advantages over LD because

common SNPs usually have higher MAF whereas most QTLs are rare allelic vari-

ants and LD under such scenario becomes weak. When LD between QTL and

SNPs is weak, which is believed to be the case for multiple beef cattle populations

due to the difference in breeding and selection of different breeds, CS informa-

tion therefore becomes a more dominant factor in affecting accuracy of genomic

predictions for the across-breed strategy. Employing a within-breed training strat-

egy improves the accuracies in purebred populations in that within-breed training
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and validation dataset comprised of more closely related individuals results in an

increase of CS, and its persistence is higher than that of across-breed genomic pre-

diction [94], which was shown by Chen et al. [15] and also is consistent with the

results in this study for the purebred Angus and Charolais populations. Principal

component analysis (PCA) has been widely applied to inferring genetic structure

and exploring the level of relatedness in cattle. For more closely related individu-

als, the expected length of shared haplotypes is larger and population-based impu-

tation methods have higher confidence to predict untyped genotypes if immediate

ancestors are present in the reference panel [59, 48, 13]. From the plot of PCA

in Figure 3.1, purebred Angus and Charolais cattle are positioned distantly from

each other, but tend to have similar major components with animals of the same

breed, and exhibit a greater genetic similarity and a closer relationship within each

breed. However, crossbred animals within the same population are more dispersed,

implying that crossbred animals within the same population are more genetically

divergent. If the study sample is distantly related to the training population or the

reference panel, the average accuracy of imputation and genomic prediction were

lower, which has been demonstrated in previous studies with dairy cattle popula-

tions [43, 65].

The density of DNA markers is expected to affect accuracy of genomic predic-

tions as use of genotypes in a higher-density SNP panel would on average result

in an increase of the level of linkage disequilibrium (LD) between a SNP marker

and a QTL. However, it is not unprecedented to observe no gain or a small gain

between a low density 6K and a higher density SNP panel 50K as observed in this

study in beef cattle, suggesting that increasing density of SNP panels by simply

adding SNPs with high MAF will unlikely improve LD between SNPs and QTL

of rare MAF [95], and further studies are needed to make a better use of existing

higher density SNP panels and design better higher density SNP panels to improve

genomic prediction accuracy. Previous genomic prediction studies of RFI and milk

production traits in dairy cattle by Pryce et al. [82], Erbe et al. [30], and Ertl et

al. [29] showed only a slight gain in accuracy as SNP marker density increased.

However, it may be still worthwhile to investigate the impacts of imputation errors
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on genomic prediction for higher density SNPs or whole genome SNPs on other

traits in larger populations of beef cattle.
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Chapter 4

Piecemeal Imputation

In this chapter, we introduce a strategy called “piecemeal imputation” for boosting

the accuracy of imputation based on existing imputation methods and marker panel

information in a multi-step procedure. A version of this chapter has been published

in BMC bioinformatics [103]. The goal is to improve the accuracy of imputation

from a low-density chip to a high-density chip via an intermediate pseudo-chip.

Usually, a set of animals genotyped in both the high-density (HD) chip and the

low-density (LD) chip are held for validation purposes. In this study, the accuracy

of imputation from LD to HD is computed as the percentage of correctly imputed

genotypes assuming that actual genotypes in high-density are true.

We refer to running an existing imputation method one time to directly impute

from a low density chip to a high density chip as the one-step imputation. Several

studies in bovine genomics showed evidence that two-step imputation is generally

more accurate than the one-step imputation, where the lower density genotyped an-

imals are first imputed to a medium density SNP set and then further impute to

the higher density [55, 47]. For instance, Larmer et al. [60] showed that for Bea-

gle [10], FImpute [88], and Impute v2 [51], the two-step imputation from 6K to

50K then to 777K achieves higher accuracies than the one-step imputation from 6K

directly to 777K. The exact reason why two-step imputation performs better than

the one-step imputation is possibly . One possible explanation would be that some

imputation algorithms (such as Beagle 3.3.2) have to choose from multiple matches

or near matches of haplotypes between low-density and high-density chips for fill-

ing the unphased genotypes, whereas the number of choices could be reduced when
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a medium chip is introduced [97]. We conducted the “add-one” two-step experi-

ments, in which the median density reference panel contains only one extra SNP

than the low density SNP panel. While rotating this extra SNP from the pool of

markers in the high density panel, we observed that a portion of them can individu-

ally boost the imputation accuracy in the add-one two-step experiment compared to

the one-step direct imputation. We present a novel two-step piecemeal imputation

framework, which essentially builds an intermediate pseudo array by mining the

hidden relations between the lower and the higher density arrays. The pseudo array

in the intermediate step is an artificial one derived from a learning procedure, which

evaluates and selects some SNP markers based upon their add-one two-step impu-

tation performance. Moreover, the pseudo-arrays are model-dependent. That is,

different base imputation programs built upon different models could result in dif-

ferent selection of markers for our two-step piecemeal imputation. We demonstrate

that by wrapping either Beagle or FImpute in our two-step piecemeal imputation

framework, we are able to achieve higher genotype imputation accuracies.

4.1 Methods

Figure 4.1 shows a flow chart of our two-step imputation process, with the training

process through the 5-fold cross validation on the left and the independent testing on

the right. For ease of presentation, we use the Illumina 6 K gene chip to represent

the lower density chip and the Illumina 50 K gene chip to represent the higher

density one. Following previous definitions of T and U , in the training process, we

masked SNPs in U for 1-fold of the animals to form study sample denoted S while

keep the remainder of 4 folds of the animals as the reference sample denoted R.

The genotype dataset thus can be represented as (S∪R, T ∪U). The study samples

are genotyped on the 6 K SNP set T , and the reference samples are genotyped on

the 50 K SNP set T ∪ U . The goal is to impute the genotype values on U for the

study samples. The top two lines in Figure 4.2 plot T ∪ U and T , respectively,

using their physical loci on the first half of chromosome 14 (BTA 14). Our goal is

to impute the untyped genotypes in U for the study samples.
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Figure 4.1: A flow chart of the two-step piecemeal imputation framework, including
both the training phase through a 5-fold cross validation and independent testing. T
is the set of markers in the lower density chip and T ∪U is the set of markers in the
higher density chip; mi is a marker of U ; S is the set of study samples genotyped
on T andR is the set of references genotyped on T ∪ U . The goal is to impute the
genotype for markers of U for the study samples
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Figure 4.2: Untyped SNP genotype piecemeal imputation. Both the SNP set T of
a lower density 6 K chip and the SNP set T ∪ U of a higher density 50K chip are
shown, using their physical loci on BTA14. The second to the seventh lines plot the
SNPs in the first five clusters, by the k-means algorithm (k = 15) on the marker
feature vectors generated by the add-one two-step imputation using Beagle. The
starred markers are the selected markers, one per cluster, and the associated target
marker clusters are shown in the last five lines in the figure

48



One-Step Imputation We first present the training process. We chose Bea-

gle and FImpute as our two base programs because of their relative fast speed for

imputation. We ran either program on the simulated dataset (S ∪ R, T ∪ U) and

collected the achieved CV accuracy denoted acc1 as the proportion of genotypes

correctly imputed in U assuming that the masked genotypes have no errors.

Add-One Two-Step Imputation For each untyped marker mi ∈ U , an add-one

two-step imputation from T to T ∪{mi}, then from T ∪{mi} to T ∪U is conducted

to evaluate its potential in imputing other untyped markers. Our goal in the training

process is to select a relatively small portion of SNPs from U , denotedM (in our

caseM = {mi} in each iteration), and append them to T to create an intermediate

pseudo array, in the hope that the subsequent two-step imputation from T to T ∪M,

then to T ∪U yielded higher imputation accuracy than acc1. At the end of the two-

step process, a feature vector vi = (ai1, ai2, · · · , ai|U |) was obtained by calculating

accuracy for each added marker mi at each locus j of U across all study animals as

the proportion of correctly imputed genotypes across 5-fold CVs.

Marker Clustering and Target Marker Cluster Intuitively, two markers of

similar feature vectors have about the same performance to impute other untyped

markers, when they are independently appended to T in 2-step imputation. Thus,

it is sufficient to include only one of them. The k-means clustering algorithm was

applied to cluster feature vectors, where k is the number of clusters that can be

empirically determined. We examined k = 5 to 100 clusters with an increment of

5 when k-means was applied. The resultant clusters denoted C1, C2, · · · , Ck are k

groups of SNPs in U .

For each cluster Ci, if average accuracy at markermj ∈ U is consistently higher

than or equal to the one-step imputation accuracy acc1, then mj would be a target

marker for cluster Ci. The set of all target markers for cluster Ci form the target

marker cluster TCi for cluster Ci. Note that the target cluster associated with a

cluster Ci could be empty and in case of empty target clusters, no markers would

be selected to form the pseudo array; otherwise define the contribution of a marker

mj of Ci as the add-one two-step imputation accuracy from T ∪ {mj} to T ∪ U .

Eventually, we have at most k selected markers M = {m1∗ ,m2∗ , · · · ,mk∗} for
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piecemeal imputation. When an independent dataset is available, we would apply

add-one two-step with mi∗ to impute only untyped markers in TCi. We call the

target marker cluster TCi one piece of final imputation result. Notice that TCi’s

can overlap with each other and an untyped marker may not belong to any target

marker cluster. In case of overlapping pieces TCi’s, majority voting scheme is

used to resolve ambiguities, if any. In case of any untyped marker not belonging to

any target cluster TCi’s, we use one-step imputation result at this particular marker

for imputing. Piecing these tracts from add-one two-step imputation and one-step

imputation together gives the final piecemeal imputation result. The final piecemeal

imputation accuracy from CV is the average over all five folds and is denoted as

accπ.

4.2 Experimental Results

4.2.1 Datasets – Sequence Animals

The Canadian Cattle Genome Project [93] has contributed more than 350 animals

to the 1000 Bull Genomes Project. From these projects we derived two datasets:

a Holstein sequence collection containing 114 animals, and a Simmental sequence

collection containing 82 animals. They were used for the piecemeal imputation

method training through a 5-fold cross validation process (i.e. partitioned into a

subset of study samples and another subset of reference samples). They also served

as reference animals in subsequent independent testing experiments.

4.2.2 Genotyped Animals

From the Canadian Cattle Genome Project, we obtained 390 Simmental animals

genotyped with the Affymetrix 660 K chip. Further investigation showed 23 of

these 390 Simmental animals also appeared in our sequenced Simmental dataset.

The genotyped animals that did not occur in the set of sequenced animals are used

as our study samples in the independent testing experiments from a lower (than 660

K) density to impute their genotypes at the density 660 K. The 23 genotyped and se-

quenced animals were used as study samples in independent testings for imputation
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from a lower density up to their whole sequence.

4.2.3 SNP Sets

We used single chromosomes of small length (BTA 27) or medium length (BTA 14)

in the development of the piecemeal imputation framework. BTA 27 was chosen for

the Holstein data set while BTA 14 for the Simmental data set. The only challenge

to deal with all 29 bovine chromosomes is the requirement for a huge amount of

disk storage, see Discussion.

The numbers of SNPs included in the Illumina 6 K, 50 K, 777 K and the

Affymetrix 660 K are summarized in Table 4.1, where the second column con-

tains their formal chip names that one can look up on the Illumina and Affymetrix

websites.

On BTA 27, the 114 sequenced Holstein animals have genotype values for

529, 674 SNPs. The Illumina 777 K chip contains 10, 219 of them, among which

664 are included in the 50 K chip, and 119 of these 664 SNPs are included in the 6

K chip, as summarized in Table 4.2. On BTA 14, the 82 sequenced Simmental ani-

mals have genotype values for 933, 833 SNPs. Table 4.2 shows that the Affymetrix

660 K chip contains 14, 367 of these 933, 833, among which 1, 618 are included in

the 50 K chip, and a further 219 of these 1, 618 SNPs are included in the 6 K chip.

SNP chip Chip Name No. SNPs
Illumina 6 K Illumina BovineLD BeadChip 6, 909
Illumina 50 K Illumina BovineSNP50 BeadChip 54, 001
Illumina 777 K 777 K BovineHD BeadChip 786, 799
Affymetrix 660 K Axiom Genome-Wide BOS 1 Array 648, 875

Table 4.1: Description of the different SNP chips and the SNP subsets

Chr No. Animals No. SNPs HD 50 K 6 K
BTA 27 114 529, 674 10, 219 664 120
BTA 14 82 933, 833 14, 367 1, 618 219

Table 4.2: Description of the different SNP chips and the filtered SNP subsets used
in the study
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4.2.4 5-fold cross validation

We use 5-fold cross validation to empirically examine our piecemeal imputation

method, also to construct (a.k.a. “train”) the staircase pseudo arrays to impute the

genotyped animals to their whole genome. The cross validation results also suggest

the possible levels of improvement compared with the one-step imputation.

Table 4.3 contains the cross validation results (Columns 3 to 7) on the Sim-

mental datasets of 82 animals, where the lower density is either 6 or 50 K and

the higher density refers to either 50 or 660 K (second column). The third and

the fourth columns hold the one-step (acc1) and piecemeal accuracies (accπ) re-

spectively for 5-fold cross validation, while the eighth and the ninth columns show

the one-step (acc1) and piecemeal accuracies (accπ) respectively on the indepen-

dent testing dataset. The improvement of piecemeal over one-step is shown in the

fifth column. We conducted the statistical significance testing with the null hy-

pothesis that the usual one-step accuracies and the two-step piecemeal imputation

have equal mean accuracies. With Beagle, the p-values for the three 5-fold cross

validation experiments are 0.0215, 0.0005 and 0.0004, respectively, indicating that

the improvements by the two-step piecemeal imputation are statistically significant;

with FImpute, the corresponding p-values are 0.64, 0.49 and 0.61 suggesting sta-

tistically insignificant improvements. Analogous results on the Holstein datasets of

114 animals are presented in Table 4.4. In Table 4.4 Columns 3 through 7 show a

1.5−3.0% improvement net accuracy improvement in cross-validation with Beagle

(the statistical significance testing p-values are 0.00369, 0.00003 and 0.00019, re-

spectively) and a 0.5− 1.0% net accuracy improvement against FImpute (p-values

0.54, 0.38 and 0.31, respectively).

From 6 K to 50 K, 5 to 100 marker clusters, in increments of 5, were exam-

ined and the best piecemeal imputation results are included in the table, while in

Figure 4.3 all of these accuracies are plotted (blue dots). From 6 or 50 K to 660

K, 100 to 1,000 marker clusters, in increments of 100, were examined. We con-

ducted the experiments on bovine two separate sequence datasets of 114 Holstein

animals and 82 Simmental animals respectively in two chromosomes (BTA 14 and

BTA 27) through a 5-fold cross validation training process. They also served as
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reference samples in all the independent testing experiments. BTA 27 was used for

the Holstein data set and BTA 14 for the Simmental data set. On BTA 27, the 114

sequenced Holstein animals have genotype values for 529,674 SNPs. The Illumina

777 K chip contains 10, 219 of them, among which 664 are included in the 50 K

chip, and 119 of these 664 SNPs are included in the 6 K chip. On BTA 14, the

82 sequenced Simmental animals have genotype values for 933, 833 SNPs. The

Affymetrix 660 K chip contains 14, 367 of these 933, 833, among which 1, 618 are

included in the 50 K chip, and a further 219 of these 1, 618 SNPs are included in the

6 K chip. Additionally, 390 Simmental animals from the Canadian Cattle Genome

project genotyped in the Affymetrix 660 K chip were used for independent testing

for the quality of the selected markers from the training process.

We used 5-fold cross validation to empirically examine our piecemeal impu-

tation method, also to train the staircase pseudo arrays to impute the genotyped

animals to their whole chromosome. The cross validation results also suggest the

possible levels of improvement compared with the one-step imputation.

5-fold cross validation Independent testing

Program Imputation acc1 accπ + #Clusters #TClusters acc1 accπ +

Beagle
6K→ 50K 69.35 70.81 1.46 100 100 60.68 61.39 0.71
6K→ 660K 72.37 74.92 2.55 800 800 66.00 67.76 1.76
50K→ 660K 86.61 88.89 2.28 1000 1000 72.83 74.11 1.29

FImpute
6K→ 50K 75.95 76.70 0.75 55 55 61.87 62.16 0.29
6K→ 660K 79.11 80.11 1.00 1000 1000 68.43 68.95 0.52
50K→ 660K 90.31 90.74 0.43 1000 1000 77.11 77.33 0.22

Table 4.3: Accuracy comparisons between the two-step piecemeal and the classic
one-step imputation on the Simmental datasets. Results are for markers on chro-
mosome 14. Columns 3 through 7 contain the 5-fold cross validation results on
the 82 animals, with the selected markers and their associated target marker clus-
ters. Independent testing results on the 367 animals are in columns 8 –10, using
the selected markers and their associated target marker clusters from the cross vali-
dation. In the independent testing from 50K to 660K, 8 markers of the Affymetrix
660K chip were filtered out due to their genotype disagreeing with the alternating
alleles specified by sequencing, and consequently only 999 target marker clusters
were used. The columns labelled with + show the improvements, in bold, of the
piecemeal imputation over the one-step imputation.
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5-fold cross validation Independent testing

Program Imputation acc1 accπ + #Clusters #TClusters acc1 accπ +

Beagle
6K→ 50K 86.98 89.81 2.87 95 89 74.97 76.90 1.94
6K→ 777K 82.35 85.27 2.92 1000 963 71.29 73.25 1.96
50K→ 777K 93.09 95.16 2.07 1000 956 82.27 84.25 1.97

FImpute
6K→ 50K 91.11 91.64 0.53 95 88 81.85 81.40 0.25
6K→ 777K 89.22 90.14 0.92 1000 942 82.80 82.81 0.02
50K→ 777K 95.25 95.61 0.36 800 765 87.72 87.83 0.11

Table 4.4: Accuracy comparisons between the two-step piecemeal and the classic
one-step imputation on the Holstein datasets. Results are for markers on chromo-
some 27. Columns 3–7 contain the 5-fold cross validation results on 114 animals,
with the selected markers and their associated target marker clusters. Independent
testing results on the 8 animals are in columns 8–10, using the selected markers and
their associated target marker clusters from the cross validation. In the independent
testing for Beagle 6, 37, and 44 target marker clusters are empty; for FImpute 7,
58, and 35 target marker clusters are empty. The columns labelled with + show the
improvements, in bold, of the piecemeal imputation over the one-step imputation.

4.2.5 Independent Testing

Independent testing examines the quality of the selected markers and the defined

pieces learned from the training step. The study samples used in the testing are not

involved in the training step. The piecemeal imputation accuracies are again com-

pared to the corresponding one-step imputation accuracies, respectively. Columns

8–10 of Table 4.3 contain independent testing results on the 367 genotyped Sim-

mental animals where the lower density represents either 6 or 50 K and the higher

density refers to either 50 or 660 K (the second column). The 8th and 9th columns

hold the one-step and piecemeal imputation accuracies (acc1 and aacπ), respec-

tively. The improvement of the piecemeal over the one-step is shown in the tenth

column. For each imputation setting, the selected markers and the defined pieces

are taken from the respective cross validation experiment. One exception is that

there are 8 markers in the Affymetrix 660 K chip for which the two alleles (i.e.

nucleotides) do not agree with the alternating alleles identified through genome

sequencing; these 8 markers were excluded and one target marker cluster was dis-

carded in the testing.

Analogous independent results on the 8 genotyped Holstein animals genotyped

on Illumina 777K are shown in Table 4.4. Both tables show an accuracy improve-
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ment in all settings, though the improvement is about 40% lower than the 5-fold

cross validation. 367 Simmental animals genotyped with Affymetrix 660K were

used for the independent testing in Table 4.3.

4.2.6 Multi-Step Imputation: Independent Testing

With the selected markers and their associated target marker clusters from the train-

ing step, we experimented with the usual two-step imputation from 6 K to 50 K to

660 K on the 367 genotyped Simmental animals, and the four-step piecemeal impu-

tation from 6 to 660 K. The four-step piecemeal imputation is a result of replacing

each usual one-step imputation by a potentially promising two-step piecemeal im-

putation. The usual two-step imputation accuracy is denoted as acc2; the four-step

piecemeal imputation accuracy is still denoted as accπ. Similar experiments were

done on the 8 Holstein animals on BTA 27 genotyped using the 777 K chip.

For the 23 genotyped and sequenced Simmental animals, we experimented with

the usual two-step imputation from 50 to 660 K to Sequence and the four-step piece-

meal imputation from 50 K to Sequence, and the usual three-step imputation from

6 K to 50 K to 660 K to Sequence and the five-step piecemeal imputation from 6

K to Sequence. Here “Sequence” refers to all the 529, 674 SNPs on BTA 14. The

usual three-step imputation accuracy is denoted as acc3; the five-step piecemeal

imputation accuracy is denoted as accπ. Note that since we do not have a 660 K

to Sequence training step to select markers (because first the usual one-step im-

putation is very good leaving little room for further improvement and second the

training phase requires storage beyond our capacity), the last step in the five-step

piecemeal imputation is a direct one-step imputation. All these usual two/three-step

imputation accuracies and the corresponding four/five-step piecemeal imputation

accuracies are summarized in Table 4.5, where there is accuracy improvement in all

settings. We note that these 23 animals were used in the training step, and thus the

results reported here could be slightly biased.
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Program Imputation acc1 acc2 acc3 accπ +
Beagle 8 Holstein BTA 27 71.29% 74.25% 74.43% 0.18%
FImpute 6 K→50 K→777 K 82.80% 82.74% 82.92% 0.18%
Beagle 367 Simmental BTA 14 66.00% 65.51% 66.59% 1.08%
FImpute 6 K→50 K→660 K 68.43% 68.54% 68.56% 0.02%
Beagle 23 Simmental BTA 14 84.91% 89.88% 90.17% 0.29%
FImpute 50 K→660 K→Sequence 87.95% 90.47% 90.50% 0.03%
Beagle 23 Simmental BTA 14 81.19% 83.94% 86.26% 2.32%
FImpute 6 K→50 K→660K→Sequence 82.23% 84.58% 84.67% 0.09%

Table 4.5: Results are on the Holstein datasets for markers on BTA27 and for
the Simmental datasets for markers on BTA14, respectively. 8 Holstein and
367 Simmental genotyped animals are used in the two-step independent testing
(6K→50K→HD), with results in columns 4, 6 and 7. The piecemeal imputation
uses the selected markers and their associated target marker clusters from the train-
ing step. Additional 23 Simmental sequenced and genotyped animals are used
in the two/three-step imputation to sequence (50K→660K→sequence, 6K→50K
→660K→sequence). All one-step imputation accuracies are included in column 3.
The last column labelled with + shows the improvements, in bold, of the piecemeal
imputation over the two- or three-step imputation.

4.3 Discussion

4.3.1 Rationale Behind the Two-Step Piecemeal Imputation

Several recent studies in cattle have shown that two-step imputation can be more

accurate than the classic one-step imputation [55, 60, 97]. A possible explanation

for this phenomenon is likely due to frequency-based imputation algorithms for

phasing correct haplotypes when there are multiple possible matches between the

LD and HD panels whereas there are fewer matches once an intermediate panel

is added in between [97]. The role the intermediate panel (in our case, each added

marker) plays is similar to “long range phasing”; that is, markers in the intermediate

panel encourages selecting long range haplotype over short haplotypes in the first

step, reflecting closely related individuals should be considered than distant ones,

thus improving the accuracy of imputation. Also in our preliminary study, we ob-

served that some markers in the add-one two-step imputation experiments are able

to boost the overall accuracy. These results have led us to put efforts into finding

a set of markers that would perform the best in the subsequent two-step imputa-

tion. However, such an optimal set of markers is not assayed in any existing chips,
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Figure 4.3: The Beagle/FImpute-based two-step piecemeal imputation accuracies
against the number of SNP clusters

nor easy to obtain in reasonable computational time. Besides the selection scheme

in our piecemeal imputation framework, we also tried several other approaches in-

cluding sequential forward selection, which did not result in any significant im-

provement. We thus proposed an alternative to partition the higher density SNP

set into multiple pieces, which are learned through the add-one two-step imputation

experiments. Each piece is then imputed by the corresponding add-one two-step im-

putation experiment. This procedure laid the foundation for our two-step piecemeal

imputation strategy. Nevertheless, our partition scheme is not necessarily optimal,

as we adopted the k-means only because it outperformed other clustering methods

slightly. In addition, we also experimented with the linkage-disequilibrium (LD)

blocks produced by Haploview [2] for finding closely linked markers, but again the

increase in accuracy was insignificant and the results are often inferior to those of

the our marker selection scheme (detailed results not shown).
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4.3.2 Marker Clusters and Their Effects

From our 5-fold cross validation results, it seems as though the number of marker

clusters does not affect the final piecemeal imputation accuracy much. For example,

for genotype imputation from 6 to 50 K on the Simmental dataset, the piecemeal im-

putation accuracies of all the 20 different clustering results are plotted in Figure 4.3,

where the dashed blue/red lines are the Beagle/FImpute one-step imputation accu-

racies, and the solid dots represent the two-step piecemeal imputation accuracies.

Despite FImpute performing better than Beagle, the connected dots for both FIm-

pute and Beagle do not vary much with different numbers of clusters. A simple

guideline would be to have an average cluster size of 10 – 100. We also look into

the content of a marker cluster. For example, when k = 15, the first five of the 15

marker clusters are plotted in Figure 4.2 where the x-axis represents the physical

locus. It is interesting to see that the markers of a cluster are not necessarily close to

each other, though they have very similar imputation potentials. The LD between

pairs of these markers, by Haploview, are insignificant.

4.3.3 Imputation Result Sensitivity to the Selected Markers

The imputed genotype for the study samples at a selected marker mi is used in

the second step, of the two-step piecemeal imputation, to impute the other untyped

markers of U − {mi}. Comparing the add-one two-step imputation result to the

usual one-step imputation, we have seen subtle changes at many untyped markers

of U for different selected markers. Indeed, some of them exhibit a gain in accuracy

whereas some have a loss in accuracy and yet others are unaffected. This has led us

to use the overall gain in accuracy to measure the imputation potential of a selected

marker.

By setting up a feature vector for a candidate marker to keep a record of the ac-

curacy gains and losses at each untyped marker, we observed from our preliminary

two-step imputation experiments (results not shown) that the candidate markers

fall into three categories when used for creation of the pseudo-array: 1) those that

yield an accuracy gain over the usual one-step imputation; 2) those that yield a net
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zero gain; 3) those that yield an accuracy loss from the usual one-step imputation.

Through clustering these feature vectors, the impact of selecting different mark-

ers from a cluster is expected to be reduced to the minimum, as evidenced by our

preliminary experiments (we did not re-examine this issue in all the experiments

reported here).

4.3.4 Target Marker Clusters

All the markers from the same cluster have similar effects on accuracies of imputa-

tion at untyped markers when they are used to create the intermediate pseudo-array

and impute in the add-one two-step procedure. Markers along the genome where

the added markers from the same cluster unanimously perform better than the one-

step imputation form the target markers associated with the cluster. We have looked

into the content of such a target marker cluster. Similar to a marker cluster, it is in-

teresting to see that the markers of a target cluster are not necessarily physically

close to each other, nor are the LD between pairs of these markers by Haploview

significant.

It is also interesting to observe that some target marker clusters are overlapping.

Note that target clusters are formed after the marker clusters are determined, that

is, in terms of the feature vectors, the marker clusters are formed using the whole

vectors, but the target marker clusters are formed by using only the vector entries

corresponding to the makers in a marker cluster. Therefore, such a phenomenon of

an untyped marker being imputed with high accuracies by several selected markers

can be explained.

4.3.5 Other Clustering Methods

The main reason for marker clustering is to avoid selecting redundant markers to

form the intermediate pseudo array, here redundant means the similar potential in

imputing the genotype for other SNPs. We had experimented with Haploview to

construct the LD blocks for this purpose, which did not result in any conclusive ac-

curacy increase (detailed results not shown). Other popular feature selection meth-

ods in machine learning, such as SFS and SBS, were also tested. Based on the
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feature vectors, we tried clustering methods other than k-means, with results not

better than k-means. Thus we go with k-means in the final piecemeal imputation

framework.

As discussed in the last paragraph, forming the marker clusters and the as-

sociated target marker clusters is more like a bi-clustering task, and it would be

worthwhile to try some good bi-clustering algorithms. Coming back to the LD-

based marker selection, though multiple experiments with different thresholds in

Haploview did not give good results, we realize that such an approach avoids the

add-one two-step imputation experiments in the training phase, and it can be sub-

stantially faster. This suggests the need for better LD block estimation/prediction

by SNP genotype values.

4.3.6 Cattle Genomic Distance

In our current empirical experiments, we used the population-based option in our

base programs. The underlying assumption for such an option is that individuals

are unrelated. On the other hand, related animals can certainly bias towards the

correct genotype. Therefore, if one would be able to define a degree of related-

ness between two individuals based on their SNP genotype, then using only closely

related sequenced animals to a study animal as references may potentially lead to

more accurate genotype imputation.

Animals from different breeds are deemed more distantly related than the same

breed animals. We therefore separated the datasets by breeds. In fact, earlier re-

search suggests cattle whole genome SNP genotype imputation should be done

breed by breed [60], which is also confirmed by our preliminary testing that inter-

breed imputation has slightly lower performance (detailed results not shown).

4.3.7 Computational Time

The running time of the two-step piecemeal imputation depends on the number of

study animals, the number of reference animals, and the number of SNPs. We were

able to use the high-performance computing facilities and partition, and submit the

experiments in parallel. The most time-consuming stage in the two-step piecemeal
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imputation is the training phasing, when the add-one two step imputation was per-

formed to evaluate and select potential good markers. The major challenge is the

need for a huge disk storage (more than 84 TB) when we were performing whole-

genome SNP genotype imputation for the training phase. We used more than 3TB

for storing all the intermediate data. The imputed SNP genotype values are ex-

pected to be useful in the downstream data analysis, such as genomic predictions,

and thus the increased computation burden in the piecemeal imputation framework

becomes worthy.
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Chapter 5

A Statistical Model for Population
Based Genotype Imputation

In this chapter, we introduce a statistical model based on Li and Stephens’ “PAC”

framework [61] for population based genotype imputation. This chapter contains

a result we have made great efforts in, but turns out not completely successful.

The “PAC” framework laid groundwork for many successful methods applied to a

wide range of problems including phasing haplotypes (SHAPEIT 1 [27], SHAPEIT

2 [77]), inferring population structures (Structure 2.0 [31]), estimating recombina-

tion and ancestry reconstruction in admixed populations (HAPMIX [81], ELAI [39]),

as well as genotype imputation (Impute 1 [69], Impute 2 [51], MaCH [62], fast-

PHASE [90], Bimbam [40] and BLIMP [105]), and it is considered to be ma-

jor breakthrough that incorporates the biological concepts of “mutation” and “re-

combination” into a hidden Markov model (HMM) and used a “copying” process

for approximating construction of a new haplotype from existing observed haplo-

types. Mutations are modelled as copying errors and recombinations correspond to

a switch of hidden states between two linked loci.

In Chapter 2, we reviewed several influential genotype imputation methods built

on the “PAC” model and pointed out computational issues of scalability associated

with the HMM framework. Under the scenario that we have a reference panel con-

sisting of tens of thousands of animals and the “PAC” framework, the number of

hidden states representing the origin of the two alleles of genotypes at each locus

becomes large, and the running time would grow quadratically. Aforementioned

62



continuous HMM-PAC methods including Bibam and fastPHASE that employ the

idea of local clustering and EM for parameter estimations sometimes stuck with

local maxima leading to poor imputation accuracies. We developed a statistical

model that can circumvent the shortcomings of existing “PAC” models. Specifi-

cally, we are interested in developing a statistical HMM model that incorporates the

idea of local clustering to reduce the number of hidden states at each loci, uses dis-

crete genotype values to represent the “copying” process and builds on the existing

“PAC” fundamentals. Our statistical model addresses “population-based” genotype

imputation that uses “unphased” genotype data free of pedigree information as ref-

erence with the goal of imputing study data genotyped in low-density chip up to

medium- (MD) and high-density (HD) levels.

Modern high throughput genotyping and sequencing technologies do not pro-

duce haplotype data directly but the combined sum of alleles (known as “geno-

types”) at tens of thousands of dense loci. Obtaining accurate estimation of hap-

lotypes from high-density reference genotype data is considered to be a key step

for the success of genotype imputation [69, 68]. In humans, the 1000 Genomes

Project [21] and the legacy International HapMap Project [22] provide public ac-

cessible accurate haplotype for reference. These dense haplotypes were obtained

from running softwares such Impute 2 [69, 51, 50]. However, in cattle and other

livestock animals, due to privacy, data ownership and policy governing data shar-

ing, animal data from unphased HD genotyping chips and MD genotyping chips

are usually used as reference panels.

5.1 Hidden Markov models

Since its initial introduction in the 1960s and the 1970s, the HMM has gained

successes in speech signal processing [1], speech recognition [83], image anal-

ysis [85] as well as genetic studies [24, 61]. In genotype imputation, we have

as observed input genotype sequences spanning M loci G = (g1, · · · , gn), where

gi = (gi1, · · · , giM) and gim ∈ {0, 1, 2} and would like to recover a hidden sequence

of “haplotypes” Z = (Z1, · · · , ZM) of the same length as G, which specifies that
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the tagging or the origin of the two alleles of genotypes at each locus. Each hidden

state Zm = (Z1
m, Z

2
m) is a pair, where Zi

m can take a set of values {1, · · · , N}, and

in our example denotes from which haplotype each allele of a genotype is copied.

The hidden sequence follows a Markov chain defined by initial state probabilities

P (Z1 = (i, j)) and the transition probabilities between two successive hidden states

P (Zm+1|Zm) at locus m and locus m+1, where 1 ≤ i ≤ N and 1 ≤ j ≤ N . Addi-

tionally, there is a set of emission probabilities P (Gim|Zm), each of which defines

the probability of observingGim at a particular locusm given the state of the hidden

variable Zim at that time.

Once we have an HMM with its set of parameters (initial probabilities, transition

probabilities and emission probabilities) denoted λ, there are three problems of

interest.

• The Evaluation Problem: Given an HMM λ and a sequence of observations

G, what is the probability that the observations are generated by the model,

P (G|λ)?

• The Decoding Problem: Given an HMM λ and a sequence of observations

G, what is the most likely state sequence in the model that generated the

observations?

• The Learning Problem: Given an HMM λ and a set of observed sequences

G, how do we set the model’s parameters to maximize the probability of

generating those sequences P (G|λ)?

The evaluation and learning problems can be solved using the recursive dynamic

programming (DP) based “forward-backward” algorithms , whereas the decoding

problem can be solved using a DP-based “Viterbi algorithm.”

5.2 Methods

5.2.1 Notations and Background

In order to describe the statistical HMM model, we briefly re-introduce the key

parameters, notations and the problem we attempted to target. Since bi-allelic
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markers are assumed throughout the dissertation, two alleles can be represented

as “0” and “1” arbitrarily at each locus m. We have as input two genotype datasets,

a reference panel R of N individuals genotyped in a high-density chip, denoted

as DG = {DG1, · · · , DGN}, where DGi = (DGi1, · · · , DGiM) defines a vec-

tor of genotypes for individual i over M loci and DGim takes values from the

set {0, 1, 2} if observed or DGim =? if missing or untyped, and a study sample

SG = {SG1, · · · , SGD} of D individuals genotyped in a low-density chip, where

there are many untyped genotypes SGim =? in SG and the task of genotype im-

putation is to infer those “untyped” genotypes for SG. DG and SG share a set

of “typed” markers, denoted T . For a locus m ∈ T , DGim and SGjm are typed

meaning SGjm ∈ {0, 1, 2} and DGim ∈ {0, 1, 2}. We would like to infer untyped

genotypes in a set U = M− T of loci that are typed only in DG but untyped in

SG, whereM is the entire set of M markers.

Additionally, we have as an input a fine-scale genetic map ρ = (ρ1, · · · , ρM−1)

where ρm defines the probability of recombination occurring between two consec-

utive loci (locus m and locus m+ 1). In human species, genetic map can be down-

loaded from the HapMap project and in this dissertation, we used an approximation

to calculate ρm for every two consecutive markers m and m + 1 in our cattle data.

Physical locations of all markers are available and can be looked up in reference

to a genome assembly. In genetics, a centimorgan (cM) is a unit for measuring the

probability of two markers to be inherited together during the meiosis of sexual re-

production. In general, if two markers are distant apart, then it will be more likely

that they get separated by recombination events. Since on average one centimorgan

corresponds to about 1 million base pairs in cattle, how many cMs (termed “genetic

distance”, denoted by dm) two markers are apart can be approximated by the differ-

ence of their physical locations divided by 1, 000, 000. The Haldane model (1919)

is further applied in this study for obtaining the probability of recombination occur-

ring between two loci (also known as the“recombination rate”). Haldane assumes

that recombination follows a Poisson process. That is, recombination takes place

if there is an odd number of crossovers between two loci and no recombination if

there is an even number of crossovers in between. Therefore, the probability that
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recombination takes place can be calculated via the formula

ρm =
1

2
(1− e−2dm),

where d is the genetic distance in cM between marker m and marker m + 1 by

finding the probability of an odd number of crossovers in a given interval length

dm in a Poisson process rate 1. As one can see from the formula, ρm is always a

fraction between 0 and 0.5.

In order to infer missing values in SG, we need to obtain a set of accurate

phased haplotypes DH derived from the reference panel DG and also restrict the

number of values each hidden state can take at each locus. Inspired by the idea of

local clustering in fastPHASE [90], we propose a localized haplotype cluster model

H for representing the phased haplotypes DH derived from DG. H is a connected

graph with following properties, see Figure 5.1:

• The graph is leveled with M levels, one level per locus.

• At each locus m, there are two nodes for representing two local clusters H(0)
m

and H(1)
m , corresponding to the two alleles “0” and “1”.

• There are edges connecting the nodes between two consecutive loci m and

m + 1 and on the edge there are weights keeping track of the number of

estimated haplotypes DH that traverse the edge between nodes H(k1)
m and

H
(k2)
m+1, denoted by cm(k1, k2). Weights on the edges are used to derive the

transition probabilities in HMM.

• Likewise associated with each node (aka cluster) is the cluster frequency

w
(k)
m = cm(k)/(2 ∗ N) at the locus m, where k = 0, 1, keeping track of

the number of haplotypes DH that traverses the node, denoted by cm(k).

• for each estimated haplotype h, there exists a unique path Z = (Zi, · · · , ZM)

traversing on one node at each level and one edge between two consecutive

loci. Each Zm = 0 represents that the allele at locus m for h is copied from

cluster H(0)
m and Zm = 1 represents that the allele at locus m for h is copied

from cluster H(1)
m .
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In Figure 5.1, we have nodes in circles for hidden states, representing the clus-

ters at each loci and edges connecting two adjacent loci where weights indicate

how many haplotypes of DG traverse such an edge. The nodes representing a local

cluster for “allele 0” is also capable of emitting an allele “1” due to mutation with

a small probability. Therefore, each hidden state can emit two alleles shown in two

arrows on top or bottom of the node.

From the “PAC” framework, we can approximate a haplotype P (h|H, ρ) =∑
Z P (h|Z, ρ)P (Z|H, ρ)using an HMM. The underlying assumption is that the al-

lele of hm at each locus m originates from one of the two defined clusters and

Zm specifies the cluster from which the allele hm is copied. Then, the initial state

probability is given by

P (Z1 = k) = w(k)
m =

cm(k)

2Ṅ
, k ∈ {0, 1}

and following SHAPEIT 1 [27], we define the transition probabilities between two

consecutive loci by taking into account recombination events:

P (Zm+1 = k2|Zm = k1) = (1− ρm)
cm(k1, k2)

cm(k1)
+ ρmw

(k2)
(m+1), k1, k2 ∈ {0, 1}.

If no recombination event occurs with probability 1 − ρm, the haplotype h would

traverse the edge connecting nodes H(k1)
m and H(k2)

m+1 and the transition probability

incident on this edge is exactly cm(k1,k2)
cm(k1)

. If a recombination occurs, it happens with

probability ρm and the quantity w(k2)
(m+1) tells us how likely h traverses on the node

H
(k2)
m+1. The emission probability P (hm|Zm = k) at each locus is given by

p(hm|Zm = k) :=

{
µ, hm = H

(k)
m

1− µ, hm 6= H
(k)
m

The term P (hm|Zm = k) concerns how the observed allele hm will be close to

but not exactly the same as the allele H(k)
m in cluster k being copied, and µ is the

mutation rate that models the probability of a mutation that changes the copied

allele H(k)
m to its complementary alleles [69]. Following Impute 1 [69] and the

“PAC” model [61], we assume that the mutations are independent across loci and

the formula for mutation rate is given by µ = θ

2(̇θ+2Ṅ)
, where θ = (

∑2N−1
i=1

1
i
)−1.
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Figure 5.1: An illustration of localized haplotype cluster hidden Markov model for
population based genotype imputation over three consecutive loci m − 1, m and
m + 1. Each circle is a hidden state and represents a localized cluster for either
allele “0” or allele “1”. Two arrows on top/bottom of each hidden state at each SNP
represent the possible emissions. For hidden state that represents the local cluster
for allele “0”, there is a higher chance of emitting allele “0” (in bold blue) and a
lower chance of emitting allele “1” due to mutation. Edges between hidden states
from one locus to the next are transitions of the HMM and the numbers incident on
the edges and nodes count how many haplotypes in DG traverse it.
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Once we have an accurate phasing H derived from DG and the genetic map ρ,

forward-backward algorithms described in Li and Stephens [61] can be employed

for computing P (h|H, ρ) =
∑

Z P (h|Z, ρ)P (Z|H, ρ) with the above defined pa-

rameters. This concludes our introduction to notations and the “PAC” model for

haplotype.

5.2.2 Extended HMM for Inferring Untyped Genotypes in SG

Next, instead of observing haplotype h, we assume that a study sample consisting

of D individuals are observed. We wish to impute the untyped genotypes provided

that we have our localized haplotype cluster model H derived from DG, mutation

rate µ and our genetic map ρ. Since we are dealing with population data, we can

assume that individuals in SG are independent and identically distributed (i.i.d) and

by looking up the dependency structures between different variables in Figure 5.2,

we can express the probability of SG conditional on the untyped reference data

DG, the mutation rate µ and ρ as follows:

P (SG|DG,µ, ρ) =
D∏
i=1

P (SGi|DG,µ, ρ),

and by Bayesian network in directed acyclic graph, one can factor a joint distribu-

tion into a product of conditional distributions,

P (SGi|DG,µ, ρ) =
∑
H

P (SGi, H|DG,µ, ρ)

=
∑
H

P (SGi|H,µ, ρ)P (H|DG,µ, ρ)

The first question we are interested in addressing is how we can compute P (SGi|H,µ, ρ)

efficiently if we obtain a good estimationH derived fromDG using our genetic map

ρ and defined mutation rate µ. The key idea is to extend the HMM for the haplo-

type copying process of the “PAC” model into an HMM for genotype. Each diploid

individual SGi in the study sample carries two copies of alleles (represented as an

unordered pair of “haplotypes”) at each locus, one from each of their parents, to

form a long vector SGi = (SGi1, · · · , SGiM) over M loci. Two sequences of hid-

den states Z(1)
i , Z

(2)
i over M loci can be employed for computing P (SGi|H,µ, ρ)
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in the HMM for genotype as follows

P (SGi|H,µ, ρ) =
∑

Z
(1)
i ,Z

(2)
i

P (SGi, Z
(1)
i , Z

(2)
i |H,µ, ρ)

=
∑

Z
(1)
i ,Z

(2)
i

P (SGi|Z(1)
i , Z

(2)
i , H, µ, ρ)P (Z

(1)
i , Z

(2)
i |H,µ, ρ)

Again, the two hidden states Z(1)
im , Z

(2)
im ∈ {0, 1} indicate the cluster origins of the

two alleles for each genotype SGim. The initial state probabilities for the extended

HMM are given by:

P (Z
(1)
1m = k1, Z

(2)
1m = k2|H,µ, ρ) = w

(k1)
1 w

(k2)
1 .

The transition probabilities for the extended HMM are given by

P (Z
(1)
i(m+1) = k3, Z

(2)
i(m+1) = k4|Z(1)

i(m) = k1, Z
(2)
i(m) = k2, H, µ, ρ)

= P (Z
(1)
i(m+1) = k3, |Z(1)

i(m) = k1, H, µ, ρ)P (Z
(2)
i(m+1) = k4|Z(2)

i(m) = k2, H, µ, ρ),

where the transition probabilities P (Z(1)
i(m+1) = k3, |Z(1)

i(m) = k1, H, µ, ρ) are exactly

the transition probabilities defined for haplotype HMM earlier.

Next, the emission probability P (SGim|Z(1)
i(m) = k1, Z

(2)
i(m) = k2, H, µ, ρ) at

each locus can be looked up in Table 5.1. The initial state probabilities, transi-

tion probabilities, together with emission probabilities complete our definition of

genotype-based HMM parameters H .

Our forward and backward algorithms are variants of the ones documented in

Scheet and Stephens [90]. Let K be the number of clusters at each locus and by

definition H of localized haplotype cluster HMM, K = 2. Our algorithm runs in

O(K4 ·M) as opposed to O(K2 ·M) in fastPHASE’s implementation. However

many individuals there are in DG, in the derived HMM graph representation H ,

K = 2 guaranteed the running quartic in the number of clusters, and it was not an

issue. Also, when genotype imputation was performed with this statistical model,

special care must be taken to remove all homozygous loci from T as our computa-

tion of transition probabilities relied on the counts of haplotypes traversing on any

node and we need to make sure that denominator cm(k1) is non-zero.
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H
(k1)
m SGi(m)

+H
(k2)
m 0 1 2

0 (1− µ)2 2µ(1− µ) µ2

1 µ(1− µ) µ2 + (1− µ)2 µ(1− µ)
2 µ2 2µ(1− µ) (1− µ)2

Table 5.1: Emission probabilities P (SGim|Z(1)
i(m) = k1, Z

(2)
i(m) = k2, H, µ, ρ) based

on mutation rates and the observed genotypes.

In our forward algorithm 1, we try to compute the joint probability

αiH(m, {k1, k2}) = P (SGi1, . . . , SGi(m), Z
(1)
i(m) = k1, Z

(2)
i(m) = k2|H,µ, ρ).

For ease of presentation, we use the following short notations for expressing

emission probabilities, initial state probabilities and transition probabilities.

• Emission probabilities ei(SGim|k1, k2) = P (SGim|Z(1)
i(m) = k1, Z

(2)
i(m) =

k2, H, µ, ρ);

• Initial probabilities pi1(k1, k2) = P (Z
(1)
i1 = k1, Z

(2)
i1 = k2|H,µ, ρ);

• Transition probabilities pim(k1 → k3, k2 → k4) = pm(k1 → k3) · pm(k2 →

k4) which is simply just the term

(P (Z
(1)
i(m+1) = k3, |Z(1)

i(m) = k1, H, µ, ρ)·P (Z(2)
i(m+1) = k4|Z(2)

i(m) = k2, H, µ, ρ).

In our backward algorithm 2, we try to compute the joint probability

βiH(m, {k1, k2}) = P (SGi(m+1), . . . , SGi(M)|Z(1)
i(m) = k1, Z

(2)
i(m) = k2, H, µ, ρ).

In case of encountering a missing genotypes in the execution of either forward or

backward algorithm, use 1 as the value of the emission probabilities.

After running the forward-backward algorithm, for a missing/untyped genotype

SGim =? in SGi, one can obtain the marginal probability of

P (Z
(1)
i(m) = k1, Z

(2)
i(m) = k2|SGi, H, µ, ρ) ∝ αiH(m, {k1, k2})βiH(m, {k1, k2})

with the normalizing constraint

1∑
k1=0

1∑
k2=0

P (Z
(1)
i(m) = k1, Z

(2)
i(m) = k2|SGi, H, µ, ρ) = 1.
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Figure 5.2: An illustration of the probabilistic graphical model (PGM) for popula-
tion based genotype imputation. Each arrow indicates a dependency. SG depends
on the localized cluster haplotype HMM H , mutation rate µ as well as the genetic
that specifies recombination rates ρ.
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Algorithm 1 The Forward Algorithm
Input a localized haplotype cluster HMM H , mutation rate µ and recombination
rates ρ, a study sample SGi

Output a matrix of joint probabilities αiH(m, {k1, k2}) for k1, k2 ∈ {0, 1} and
m = 1, · · ·M .
for k1 = 0 to 1 do

for k2 = 0 to 1 do
initialize αiH(1, {k1, k2}) at the first locus as follows:

αiH(1, {k1, k2}) = P (SGi1, Z
(1)
i1 = k1, Z

(2)
i1 = k2|H,µ, ρ) · P (Z(1)

1m = k1, Z
(2)
1m = k2|H,µ, ρ)

= P (SGi1|Z(1)
i1 = k1, Z

(2)
i1 = k2, H, µ, ρ) · P (Z(1)

1m = k1, Z
(2)
1m = k2|H,µ, ρ)

= ei(SGi1|k1, k2) · w(k1)
1 · w(k2)

1

end for
end for

for m = 1 to M − 1 do
for k3 = 0 to 1 do

for k4 = 0 to 1 do
for k1 = 0 to 1 do

for k2 = 0 to 1 do

αiH(m+ 1, {k3, k4})

= ei(SGi(m+1)|k3, k4)×
[ 1∑
k1=0

1∑
k2=0

pm(k1 → k3) · pm(k2 → k4) · αiH(m, {k1, k2}))
]

end for
end for

end for
end for

end for
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Algorithm 2 The Backward Algorithm
Input a localized haplotype cluster HMM H , mutation rate µ and recombination
rates ρ, a study sample SGi

Output a matrix of joint probabilities βiH(m, {k1, k2}) for k1, k2 ∈ {0, 1} and
m = 1, · · ·M
for k1 = 0 to 1 do

for k2 = 0 to 1 do
initialize βiH(M, {k1, k2}) = 1 at marker M .

end for
end for

for m = M − 1 to 1 do
for k1 = 0 to 1 do

for k2 = 0 to 1 do
for k3 = 0 to 1 do

for k4 = 0 to 1 do

βiH(m, {k1, k2})

= [
1∑

k3=0

1∑
k4=0

ei(SGi(m+1)|k3, k4)× pm(k1 → k3) · pm(k2 → k4) · βiH(m+ 1, {k3, k4}))]

end for
end for

end for
end for

end for
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Therefore,

P (Z
(1)
i(m) = k1, Z

(2)
i(m) = k2|SGi, H, µ, ρ) =

αiH(m, {k1, k2})βiH(m, {k1, k2})∑1
k1=0

∑1
k2=0 α

i
H(m, {k1, k2})βiH(m, {k1, k2})

.

Let g ∈ {0, 1, 2}, and we wish to choose a value g for genotypes SGim in genotype

sequence SGi of individual i that maximizes

P (SGim = g|SGi, H, µ, ρ)

=
1∑

k1=0

1∑
k2=0

P (SGim = g, Z
(1)
i(m) = k1, Z

(2)
i(m) = k2|SGi, H, µ, ρ)

=
1∑

k1=0

1∑
k2=0

P (SGim = g|Z(1)
i(m) = k1, Z

(2)
i(m) = k2, H, µ, ρ)P (Z

(1)
i(m) = k1, Z

(2)
i(m) = k2|SGi, H, µ, ρ)

The first term inside the summation is just the emission probability of observing a

particular genotype g at the locus m and the second term is the result of computing

the conditional distributions in forward-backward algorithms.

5.2.3 Estimation of Parameters in Localized Haplotype HMM
H

Next we demonstrate how to compute the posterior probability P (H|DG,µ, ρ).

Our aim is to estimate all the parameters associated with the localized haplotype

HMM H from the observed high density genotype data DG, That is, we would like

to obtain accurate phasings for our reference panel DG. If an individual’s genotype

sequence overM loci are all homozygous or has exact one heterozygous locus, then

phasing of DG is trivial. For example, the genotype sequence 0020 can be phased

as a pair of identical haplotype sequences in the form ‘0010; the genotype sequence

0012 over four loci can be phased as the pair of haplotypes 0001 and 0011. We say a

pair of haplotypes (h(1), h(2)) is compatible with an observed genotype sequence G

overM loci, where h(i)m ∈ {0, 1} denotes the allele at them-th locus in the haplotype

sequence h(i) and Gm ∈ {0, 1, 2} is the corresponding genotype at the same locus,

if and only if h(1)m + h
(2)
m = Gm. Homozygous genotype “0” or “2” can be phased

with compatible identical alleles “0|0” and “1|1” in the localized haplotype HMM

H . We update the counts in the corresponding nodes in H . Phasing of DG is in
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essence about updating the counts in edges between two consecutive nodes at levels

m and m+ 1.

We achieve this via a Markov Chain Monte Carlo (MCMC) sampling from the

conditional distribution of the haplotype, recombination rates and mutation rate.

Let DHi denote a pair of haplotypes (also known as “diplotype”) that are compat-

ible with DGi. The MCMC sampling procedure starts with some random phasing

DHi that is compatible with DGi. That is, at each heterozygous locus, the ordering

of the alleles is randomly guessed, untyped genotypes (if any) are sampled accord-

ing to the allele frequencies at the locus and weights of the edges are updated.

We then perform a number of MCMC iterations. Each iteration updates phases

of every reference diploid individual i (in some arbitrary order) in two steps: As

we want to obtain P (H|DG,µ, ρ) ∝ P (DG,H, µ, ρ), which cannot be computed

directly, we use the Gibbs sampler. In each iteration, phases DHi of DGi are

Algorithm 3 The Sampling Framework
Input: DG, ρ, µ
Output: H

1. Start with some random phasing DHi that is compatible with DGi for indi-
vidual i = 1, · · · , N .
2. Update the counts on nodes and edges in the localized haplotype HMM graph
H .
for iterations from 1 to 30 do

for i ∈ permutation of {1, · · · , N} do
3. Sample a new pair of haplotypes DHi for reference individual i from the
conditional distribution P (DHi|DGi, H−i, µ, ρ).

end for
end for

updated in arbitrary order. H−i keeps track of the current haplotypes of all individ-

uals except i in the localized haplotype HMM. That is, H−i contains the weights of

the nodes and edges in the graph H by taking into account the current haplotype

guesses of all individuals except i. Since the individuals in DG are assumed to be

i.i.d, and it follows that P (DH|DG,H, µ, ρ) =
∏N

i=1 P (DHi|DGi, H, µ, ρ). It fol-

lows from the fact that diplotype of each individual i can be sampled independently

from P (DHi|DGi, H−i, µ, ρ), which can be computed via the forward-backward
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algorithm introduced earlier. Accurate haplotypes of DG can then be obtained in

small number of iterations typically less than 30 according to Impute 2 [51] and

MaCH [62].

The detailed sampling procedure (“Step 3 in the Sampling framework”) works

as follows:

• sample (Z(1)
iM = k1, Z

(2)
iM = k2) from P (Z

(1)
iM = k1, Z

(2)
iM = k2|DGi, H−i, µ, ρ) ∝

P (Z
(1)
iM = k1, Z

(2)
iM = k2, DGi|H−i, µ, ρ) = αiH−i

(M, {k1, k2}).

• sample (Z
(1)
im = k1, Z

(2)
im = k2) recursively for loci m = M − 1, · · · , 1 from

P (Z
(1)
im = k1, Z

(2)
m = k2|Z(1)

i(m+1) = k3, Z
(2)
i(m+1) = k4, DGi, H−i, µ, ρ) ∝

P (Z
(1)
iM = k1, Z

(2)
iM = k2, DGi1, · · · , DGim|H−i, µ, ρ) · P (Z(1)

im = k1, Z
(2)
im =

k2, |Z(1)
i(m+1) = k3, Z

(2)
i(m+1) = k4, H−i, µ, ρ) = αiH−i

(m, {k1, k2}) · pm(k1 →

k3)pm(k2 → k4).

• sampleDHi from P (DHi|Z(1)
im , Z

(2)
im , DGi, H−i, µ, ρ) =

∏M
i=1 P (DHim|Z(1)

im , Z
(2)
im , H−i, ρ, µ)

where P (DHim|Z(1)
im , Z

(2)
im , H−i, ρ, µ) can be expressed as P (DH(1)

im |Z
(1)
im , H−i, ρ, µ)·

P (DH
(2)
im |Z

(2)
im , H−i, ρ, µ). Recognizing P (DH(1)

im |Z
(1)
im , H−i, ρ, µ) is the ems-

sion probability in the haplotype version of HMM, we have

P (DH
(1)
im , DH

(2)
im |Z

(1)
im = k1, Z

(2)
im = k2, H−i, ρ, µ)

∝ (1− µ)I(DH
(1)
im=H

k1
m )µI(DH

(1)
im 6=H

k1
m )(1− µ)I(DH

(2)
im=H

k2
m )µI(DH

(2)
im 6=H

k2
m ),

where I(·) is the identity function and Hk1
m is the allele (without mutation)

associated with cluster k1.

5.3 Experiments and Discussion

To assess accuracy of imputation, a total of 82 Simmental beef cattle from the 1000

Bull Genomes Project with their sequence data on BTA 14 were used in the simula-

tion study. Through comparisons between the sequence data and Illumina 50K/6K

chips, we identified 1, 618 SNP markers that belonged to Illumina 50K chip and

219 SNPs were shared between the Illumina 6K panel and the Illumina 50K panel.

we further partitioned the 82 animals into two datasets, a reference panel consisting
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of 65 animals with SNPs in the Illumina 50K chip and a study sample of 17 animals

for which only markers in the Illumina 6K panels were kept and the rest of markers

were masked as “untyped”. The imputation task is to predict the “untyped” markers

for the study sample.

Accuracy of imputation is the percentage of correctly imputed genotypes while

assuming the masked genotypes are ground truths in the study sample. Table 5.2

shows the comparisons of accuracies and running time between Impute 2, our HMM

and a baseline method. All experiments were conducted on the same computer with

2.2 GHz core and 4 GB memory. Impute 2 is currently the most accurate genotype

imputation program and the baseline approach uses the most frequently observed

genotypes in DG to fill untyped genotypes in SG. Our HMM model differs from

Impute 2 and fastPHASE in several ways. First, we used the Haldane model to

approximate the recombination rates between two consecutive marker, whereas Im-

pute 2 used the formula ρm−1 = 4 · Ne · rm for obtaining the recombination rates,

where Ne is the effective population size for the population and rm is the genetic

distance between locus m and m − 1. Secondly, our HMM tried to represent the

inferred and phased haplotypes of DG in a localized haplotype structure whereas

Impute 2 did not cluster haplotypes in DG into clusters. Additionally, at each

locus, our HMM used exactly two hidden states to represent the two clusters of al-

leles; however, in the model of fastPHASE/Bimbam, the number of clusters K is a

parameter that can be specified by the user. fastPHASE and Bimbam used allele fre-

quencies not the discrete allele to model clusters. Thirdly, Impute 2 used a heuristic

approach for selecting a subset of closely related individuals for estimating the pa-

rameters in their models. Because of our compact representation of haplotypes in

DG in a graph, our localized haplotype HMM graph took all the information in

DG into account and was fast in forward-backward calculations. Fourthly, Impute

2 tried to resolve phasing in both SG and DG first and once accurate diplotypes

were obtained for SG and DG, Impute 2 carried out haplotype based imputation

based on “PAC” framework. In our HMM model, we only tried to phase haplotypes

in DG.

One possible explanation for the poor accuracy achieved in our HMM model is
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its parsimonious representation of haplotypes in DG in a localized cluster HMM.

For example, note the genotypes sequence “101” over three loci can be phased as

either a diplotype pair “000” and “101” or a diplotype pair “100” and “001”. How-

ever, the two diplotype pairs become indistinguishable in our graph representation.

It implies that phasing in DG plays a vital role in genotype imputation. One pos-

sible way to improve our model is to relax the restriction that there are exactly two

clusters at each locus. We tested a version of the localized cluster HMM model

using the 130 haplotypes from the 65 reference animals to construct 130 clusters

at each cluster in our HMM model. That is, we did not collapse the obtained hap-

lotypes into two clusters but treated the obtained haplotypes from DG as clusters.

The accuracy of imputation can be improved to 77.86% at the cost of much longer

running time 24615.84 seconds. This suggests that one needs to find a balance be-

tween restricting the number of hidden states and retaining the phase information

of DG to make the statistical model accurate and efficient. The phasing software

SHAPEIT 2 [77] used a segmented approach to restrict the number of compatible

haplotypes with ambiguous phases for a given genotypes and split the haplotypes

in segments. A pruning strategy is applied to prune intra-segment edges. Although

the number of clusters is larger than 2 in SHAPEIT 2, within each segment the

number of possible haplotype segments is a constant less than the total number of

individuals in DG. Therefore it is quick to obtain accurate haplotypes.

Program #correctly imputed #untyped genotypes accuracy running time
Impute2 19167 23783 80.59% 95.14 sec
HMM (K = 2) 16182 23783 68.04% 60.12 sec
baseline 13576 23783 57.08% 0.82 sec

Table 5.2: Comparison of methods measured by “accuracy of imputation” on the
Simmental dataset BTA 14 for imputation from 6K to 50K. Impute 2 is currently
the best imputation program and was run with the effective population size 200 and
the default settings under the run type “Imputation with one unphased reference
panel” and HMM is the statistical model we implemented. The running times are
also reported for Impute 2 and HMM. Majority vote is the baseline methods that
fills untyped genotypes in SG with the most frequently observed genotypes in DG.
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Chapter 6

Conclusion

In this dissertation, I investigated genotype imputation for inferring missing geno-

types and untyped markers in population genotype data. I examined a novel way to

improve accuracy of imputation that can work existing genotype imputation meth-

ods in a multi-step procedure. Evaluation of untyped markers in a two-step set-

ting along the genome yielded candidate markers and clustering was employed to

narrow down the candidate list and group markers of similar effects in the two-

step imputation. I studied existing genotype imputation models and categorized

them according to their modelling parameters and the underlying biological con-

cepts. Based on an existing popular and successful framework, I presented an HMM

model that incorporates clustering for genotype imputation.

6.1 Summary of Contributions

In Chapter 2, I reviewed the recent developments in methods for population-based

genotype imputation, and discussed in detail the underlying models for each method.

In comparative studies of genotype imputation methods, I compared six current best

population-based methods that use unphased reference panels for genotype impu-

tation and investigated the effects of imputed 50K genotypes on feed efficiency ge-

nomic predictions for beef cattle data from both purebred and crossbred populations

in Chapter 3. The six genotype imputation methods fall into three major categories:

1) methods based on Li and Stephens’s “PAC” framework [61]; 2) Browning and

Browning’s IBD based HMMs (Beagle 3.3.2 and Beagle 4.0) and 3) a fast, effi-
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cient, and rule-based method called FImpute inspired by Kong et al.’s “long range

phasing” [59]. HMMs based on the “PAC” framework can be further divided into

two categories, one that models genotypes as discrete counts of alleles including

Impute 2, MaCH and ones that use clustering and real-valued allele frequencies

including fastPHASE and Bimbam. For HMM-based imputation methods, either

Markov chain Monte Carlo sampling or EM-based maximum likelihood estimator

is employed for parameter inference. In terms of efficiency, rule-based FImpute is

the fastest method and is capable of yielding comparable accuracies to current best

Impute 2. Computational burdens scale quadratically with the number of hidden

states in “PAC”-based models. Our simulation studies confirmed that minor allele

frequency plays a key role in the accuracy of imputation. As minor allele frequency

increases, accuracies of all imputation methods to impute genotypes carrying the

minor allele increase. Existing imputation methods have limitations in imputing

rare alleles of frequencies less than 1%. FImpute exihited advantages over other

methods in terms of running time and imputing rare alleles. Bimbam’s lower per-

formance is likely due to its use of MLE for cluster inference of the underlying ar-

chitecture of the data. Accuracies of genomic predictions for RFI via either BayesB

or GBLUP were higher on purebred populations than on crossbred populations, and

no significant advantage of usage of 50K panel over 6K panel in genomic predic-

tions was observed. Employing a within-breed training strategy has the potential

to improve accuracies of genomic predictions for both BayesB and GBLUP, as ob-

served in purebred populations because the level of relatedness plays a key role in

the persistence of co-segregation of QTL with SNPs. Imputed 50K genotypes in

the subsequence genomic predictions, via BayesB and GBLUP, in general yielded

similar results for the trait to that using actual 50K genotypes in this study.

In Chapter 4, for genotype imputation from a lower density panel to a higher

density panel, in order to boost accuracies of imputation, I presented a novel two-

step strategy called “piecemeal genotype imputation,” which essentially inserts a

pseudo intermediate array in between the low-density chip and the high-density

chip. I first demonstrated how to identify, evaluate and select untyped SNPs that can

lead to accuracy improvement to construct the pseudo intermediate panel. Subse-
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quently, I identified regions along the genome where accuracy of imputation can be

further improved in a two-step manner with the selected markers, and lastly showed

how the clusters of imputed genotype can be pieced together to form the final impu-

tation result. Using the two-step piecemeal imputation, I showed how a stair-case

of intermediate SNP arrays can be gradually built up for the whole genome SNP

genotype imputation. I applied this strategy to chromosomes 14 and 27 of real cat-

tle SNPs that arise from the whole genome sequencing, by carrying out extensive

experiments using various density levels of bovine SNP chips, up to the sequence

level. The results show preliminary success of our multi-step piecemeal imputa-

tion with an accuracy improvement compared to the classic one-step imputation by

the state-of-the-art methods Beagle and FImpute. From a low-density chip to the

whole sequence, intermediate pseudo-arrays can be computationally constructed by

selecting the most informative SNPs for untyped SNP genotype imputation. Such

pseudo-array staircases are able to boost accuracies of imputation compared to the

classic one-step imputation.

In Chapter 5, I presented a statistical model based on Li and Stephens’ “PAC”

framework [61] for population based genotype imputation. It also incorporates the

“local clustering” as the relative frequencies associated with the hidden states in

the model in an HMM. The proposed method used a Gibbs sampler to estimate

phasing in dense reference panels. It was fast and memory efficient for genotype

imputation. However, compared to currently best performed program Impute 2,

my model yielded lower accuracy of imputation. The poor accuracy of the model

I proposed is likely due to its parsimonious representation of phasing information

in DG. This drawback suggests that phasing plays in key role in the success of

genotype imputation. One needs to find a balance between restricting the number

of hidden states and representing the phasing information in DG properly.

6.2 Future Research Directions

The challenges of the piecemeal imputation strategy include its large disk space

and computation time requirements. The training phase is the most time consuming
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step, when the add-one two-step experiments are conducted to select the good po-

tential markers. The embedded imputation methods and the total number of markers

that need to be evaluated in the add-one two-step training stage also affect the total

running time. One way to speed up the training process is to parallelize tasks and

submit jobs to large, powerful computing facilities. A huge disk storage of inter-

mediate results (more than 84 TB) in the training phase is a major challenge and an

overhead cost when we had to perform full-sequence SNP genotype imputation as

we relied on accuracy-based feature vectors to evaluate and cluster added markers.

Also, the use of mixed reference panels can result in increased imputation accuracy

in all populations shown in previous studies [53]. As more individuals have the

genome data sequenced and genotyped, if we incorporate them for re-training, it

would be expected to increase the accuracies in one-step, two-step, piecemeal im-

putations. Evaluation of imputed SNP genotype along the genome is expected to be

useful in the downstream data analysis, as well as for improvement of chip designs.

From the comparative studies, the experimental results demonstrated that ex-

isting genotype imputation methods all had limits in imputing rare variants. The

problem persists especially for those statistical imputation models as these pro-

grams cannot distinguish a rare allele from genotype errors at loci of extremely low

minor allele frequencies (MAF). The SNPs included in the SNP chips usually have

high MAFs and are generally believed to be unlikely causal variants for complex

phenotypic traits. Linkage disequilibrium between common SNPs and rare causal

loci is not very strong or poor and then this could lead to low accuracy of genomic

predictions as variation generated by the causal variants cannot be fully explained

by the common SNPs. Therefore, sequencing all selection candidates has now been

proposed as an alternative to overcome the mentioned problem because causal vari-

ants are in the data, although it is unlikely to happen in the near future mainly due

to the cost. Also, design of new chips that include more low MAF SNPs is needed

for beef cattle populations. Using imputation, obtaining accurate imputed rare vari-

ants can still be an issue depending on how many animals are sequenced. However,

memory and computation time for sequence data remain an issue. Fast and efficient

genomic prediction methods that can handle sequence data are needed.
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For the development of the statistical model for genotype imputation, one of

the challenges faced by many “PAC”-based methods is the number of individuals

P in the haplotype reference panel. Although more individuals in the reference

can potentially improve accuracies of imputation as shown in previous studies [6],

the running time grows quadratically O(P 2) in terms of the size of the reference

P . MaCH [62] used a subset of individuals chosen in random to condition on in

its MCMC sampling procedures whereas Impute 2 [51] used a heuristic “nearest

neighbour” method to search for closely related samples for imputing study sam-

ples to overcome the quadratic issue. Since bi-allelic markers are considered in

this dissertation, I attempted a parsimonious approach that collapses the number of

haplotypes into two clusters representing the two alleles at each site. Such treat-

ment stores information from the reference panel in a compact way and it is both

efficient and fast in terms of space requirement and running time. However, my ap-

proach yielded poor accuracies of imputation and the cause of it is likely due to its

parsimonious representation of the reference haplotypes. One can investigate more

advanced approach such as “Dirichlet process” for obtaining a cluster of haplotypes

from the genotype reference panel.
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