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ABSTRACT  ° SR

We:cons%ﬁfzwthe field theory of barotropic, inviécid
t

hydrodynamf@s uc1ng the Clebsch transformatlon, we’

2

are able to obtain the cla551cal hydrodynamlc equatlons

ftom a Lagranq1an, through a varxatlonal principle. ’U51n§
tig geﬁohical guantization p;ocedure, we*quantlze the hydro-
dynamic field equations. We find conserved.currents.freﬁ
invariant transforﬁations and the Noether theorem._.We carn

N . : : B ¢ !
obtain the results of previdus authors concerninéethe
'sbectrum of elementary excitations. %inelly4 we oObserve thet

spontaneous breakdown of symmetry in hydrodynamlcs, and

determine the origin of the resultlng Goldstone boson

_—
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/&ﬁAPTER_I : .

INTRODUCTION ©

’

The theory of fluids can be formulated from two
general viewpoints; the microscopic and the/macroscopic

‘viewpoints. The microscopic theory attempts to explain

T, . . »
.

.the behaviour of the fluid from the dynamics and interac-
s 3 . S, < . -
tlonsnef the individual, constituent particles, quantum or

elassical, that make up the fluid. Although such a:descrip—'

tion caﬁ yield, if exactly solved, .the complete descrlpty’h
of the flUld it w(ll always be snec1allzed to the partlcular

’syatem under consideration. One must spec1fy thevdynamlcs
- Ve

~and lnteractlons of the constltuent partlcles completely

Indepehdently of the nature of the constltuents”,the fluld

.

must;satlsfy the macroscoblc balance equatlons; and Ehe two
‘lowest order of these are commonly called the hydrodynamlc.vu
'equatlpns. The relatlonshlp between equlllbrlum statlstlcal
mechanics and tpermodynamLcs,'ls the most obvious examole’of

thlS situation. Any miCIOSCOpiC theory must ot contradict
> L . »
the results of a purely macroscoplc theory.

This the51s progect is on the hydrodynamic equations.

We will study these equatlons from the field theoretical
viewpoint, both classical and quantum. These equations are
usually the two lowest brdep macroscopic balance’equations,

representing mass conservation, and the conservation of the

three components of momentum. Thus we have four equations



s

between the flve fleld quantltles, the den51ty, the three

components of ve1001ty, and the Dressure To-close thlS

>

system of equatlons, we must externally out in a constltu—
tive relatlon For. this entlre the51s, we w111 assume that
preSsure is a known functlon of den31ty alone This is the

(4
condltlon of barotropy Even though S,*

condition severely

"restrlcts the appllcablllty of, the th‘ “nV"WithOUt such a

simplification, the. fleld theory of the“equatlons is almost
/ .
impossible. We still have some’ freedom under this constraint

since the functional dependence of pressure .on densrty is not
B I
spec1f1ed

We will consider the hydrodynamlc equatlons as field

i

equatlons and the hydrodynamlc variables as field gquantities. -
The equatlons of hydrodynamlcs have two different forms,.the
Euler equatlons and the Lagrange equations. The Lagrange
equatlons.consider the'motion’of infinitesimal mass eiements,
and give the behaviour of the system as a functlon‘of 1n1t1al
'coordlnates and time. Such adrepresentatlon, though equiva-

lent to the Euler representation, is not amenable to the

field<theoretical view, as it contains. reference to initial
coordinates. The'Eu1er'equations~are relationsubetween the
. . - - . \

density, velocity and pressure,'con31dered as funCtlons of
space ‘and tlme coordlnates, ‘SO are exactly in the form

-requlred for a fleld theory. We w111 con51der the fleld'

theory of hydrodynamlcs in the- Buler formallsm g



We will first consider the claSSical field thegry of
hydrodynamics. We will then quantlze under the procedure
fof canonical quantlzatlon Vie can famlllarlze ourselves with
the quantum fleld theoret1c§l technlque through studylng thlS.
system as a spec1f1c example. U51ng the Noether theorem
we can construct many conserved currents due to invariant
transformatlons of the equations. 'Studying the generators
of the transformatlons, and the transformatlon propertles of
field quantltles, we find some cases of Spontaneously broken
symmetry. .Thus we have a'chance to‘study”the technique of
'spontaneous symmetry'breakdown. Studyiné the spectral repre-—
"sentatlons of the two point functions associated w1th the
uspontaneous symme%ry breakdown; we can establlsh the orlgln
of the Goldstone‘boson. »Flnally, we close w1th a dlscu551on
. of the transverse exc1ted mode, and Kubo type expressions for

transport coeff101ents such as v150051ty and future problems.

|



CHAPTER II-

CLASSICAL FIELD:THEORY OF-ﬁYdRODYNAMICS

o
.

The Hydrodynamic Equations ‘

The'usual equations ofvhydtodynamice, it the ﬁuien
formalism, are,expressions of‘the conservation Of mass and
' conservation of momentum; They are derlved from the’ stralght—,‘
;forward appllcatlons of these prlnC1ples, to a contlnuous;_.f
medium, where p(x,t) and-v(x,t) are_the density andjVelooity

of the medium.at position % and time t.f The conseryatioﬁﬁof

mass is in the form of a continuity equation,

¥

Lo+ 3 v = 0 ) . (2.1)

L R . t 35 . P
The equation resulting from conservation_of.gimentum is

|l

ggf.f (vjaj)vi = _'E aip(p) - J'=lﬁ2'3' ‘(2.2)/

p(p) is the pressure, where we have assumed it is a function

opr alone, but the explicit dependence ie not speoified, and
is’ to be supolled externally |

To obtaln\these equatlons from a Lagranglan one must
modlfy them somewhat by 1ntegrat1ng the equatlon of conser—
vation of’ momentum, and 1ntroduc1ng new hydrodynamlc varlables

The first successful demonstratlon of a Lagranglan whlch gave

the equatlons of hydrodynamics,’ under the constralnt of

. -



n ‘.c ' ‘ ’ | E “.-\.\
ba;pﬁrOPY} was by Batemanl. Following the work of. Hill2 -

« ! . DY
: C-lebsch3 and Lamb4, Bateman supplled the Lagrangian fof a

. -

barotr0pic, inviscid fluid C:uc1ai to this Lagranglan, is’
. b

the’ Clebsch’ transformation of hydrodynamic variables

' -The Clebsch transformation is given by
]

v, = —'a.¢(§,t)+-x(§,t)aﬁ VE e . (2.3)
h e h ) . 1 . ) ) - o

A totally arbitrary velocity may be expfeséea in ﬁerms of the °

Clebsch’potentials ¢(; t), A(; t), and'w(z.t) as long as the

lines of the curl 0f that veloc1ty are integrable as the inter— ©

:'section of two surfaces “So 1if .

e+
i
<y
X
<+

(2.4)

o

and the lines of z.are'integrated as theé intersection of

G(Q,tf :foOnstsnt and g(;;t)v= constant, we havé

‘;.‘:“P‘(‘;,.t).(;—V*d x - Vg) .. e - "'<2.‘5)
éut, A' ‘ . 1 | )‘:.'

Tb= Tre (Fa x Ta) = 0o . o (2.6)"' )
tplies ;

§%§§§f%% =0 . . i "'A | i(2.7§

X '
- N . |
&

- which is just the condition



P =r(a,B)
If A and ¥ are functions of a and 8, that is
Vo= A (a,R)
po=w(a,3) |
then
VA< Tuo= ggk:g) (T x Ta)

So we need to solve

9 (A, )
3 (a,’d)

e

.

Pla,n) =

]

“which has an infinity of solutions, to guarantee

find X and ' so that

-~ > >
w = VA x ¥y

Now it is an easy matter to find v, since

and we know this equation is consistent since the curl

~both sides vanishes.

we simply have a Poisson equation for ¢, and

$(X,t) = J(dBX' G, xN) T (A(x', )7 y(x',t) —\‘/’(x',tnj

N
"where G(x,x')

/
e

. SO taking the divergence of both

(2.9a)

(2.10)

(2.11)

tha§ we can
9

(2.12)

(2.13)

of

sides,

j

(2.14)

is the Green's function flor the Poisson equation.



Then replacing the Clebsch potentials in the velo-

city, in the momentum conservation equation, we get

3 > > > . 1 .
TE (U0 AVY) + (= T+ aTy) V) (<03 + 2 Ty) == (p(p)
J .
f‘,//Simplifying
,\
“\
| . . - - .« o> - o 2
SOV =h ) =~ (V) AT +% V(=T + 2Ty)
< L op
-. - (T Ty o (T dg)) = B | L2 S
O, J
‘where o
> > > 1 > > - - - >
(A-V) A = 5 9(A-A) - Ax (VxA)
&

R
~.

(2.15)

(2.16)

(2.17)

was - used, and g is a space and time independent constant.

~m~==.50 finally we get
Y .

8] : ¢
5. 1, » . > > [ 13 \
Vo= 0= 5(=Fe +270) (=T 20 0u) -5 5% dpl
Yo
a
e M > > - > l
= = VAU AVE = (=Vh + AV0) x (VA x 7o)
Now the right hand side of this expression is equal to

9]
Il
|

= - Ta(d+ (=Us +a0y) -

>

Vi

= = > e > -+
VAU + AV = (VAL=V4 + A

)

- > > > - >
Vip) sV = Vi (=T + ATy) -VA)

> . > e
+ V(A4 (=Vo + AVy) - V)

(2.18)

(2.19)



)

where

D _ 29 > > ‘ ) N
E—S—E+V'v (2-20)\

the Lagrangebdetivative orlderivétive following the motion.
Now it can‘be.proved that fhe flux of the curl of the
velocity'through aﬁy surface which movés with the fluid is
constants. ’Thus since the curl of ‘the velocity was givén by
the intersection ofktwo sﬁrfaces if we allow these surfaces
to move with the liquid, tﬁey will continue to give the curl
of the velocity for all time. Thus we can put the constraint

equations, on the Clebsch potentials which give @,

Dy 31 3 2 '

i S = i . i, = .

5t oy + V.V 0 (2.21a)

DA XN 2

—— = — - g 7

5t 3t + V-VA 0 (2.21b)
Thus the right hand side of equétion (18) is zero. . Then we

can integrate‘the left hand side of equation (18}, which will

X
give
‘ 0 ,
. . > > 2
¢-MU—%(—V¢>+>\W)) _J( (é g—g—) dp = 0 (2.22)
B OO

where the arbitrary‘constant of integration is absorbed into
b by putting ¢+ ¢ + ct, where ¢ is the constant of integration,
since this still leaves the velocity invariant. We will call

.

this equation the Berhéulli equation.




agranglan and Hamlltonlan Formalism )

Now we have four field equatlons namely the contlnulty
equatlon the Bernoulli eguation, and: the two constralnt

equatlons (2.21a) and (2.21b) We w1sh to obtaln these

'hydrodynamlc equations through a Lagranglan and variational

principle. The Lagrangian orlglnally given by Bateman6 is
L::Jd3x-‘f(x) = fd3x [p{é - AU - %( }} (2.23)
-where
i plp) - Pq :
wlp) = J‘ C~—-———5——)dp . (2.24)
3 0 :
°o
and
— / R
P, = p(po) . (2.25)

v in the above Lagrangian is to pe considered short hand fer
—§¢+-A$w. Varying with ¢ gives the continuity equation and
varylng w1th 0 gives the Bernoullj equation. The two cons-
lralnt equatlons come  from varying with respect to X and y.

If we use the Bernoulli equation we can replace in

the expression for the Lagrangian density, giving

. o
; plp) - p(p ) _
LX) = p { j (% gg)ckx - j (—————~§——e—4 dp } (2.26)
0
°q fg

integrating the second integral by parts, we get the

simple expression



10

>

L(x) = plp) - plpy) - (2.27)
This is very mgeful, from the physical point of view; as it
‘gives the meaning that the Lagrangian ié'the pressure flﬁc—
tuation. Through the variationai principle we areg minimizing
the pressure.fluctﬁation.

Considering p and A as canoniqql_coorainates has its
drawbacké, since. the momenta conjugate to £hese variables
vaniSh identically. On the other hand coﬁéidering $ and w
as canonical coordinates, and tﬁe'Lagrangian as having*been
obtained from a Hamiltoniaﬁ vié a Legendre transfdfmation,
with the explicit aependence»oﬁ the canonically conjugate
momenta, on the time deriVatives of fhe cahoniéal coordinates,

not yet replaced, is a much more consistent view, since the

!,
conjugate momenta are given by
T = _3_<_f_.—- o]
¢ 3 /
7 zf(’%:- 5\ | (2.29)
A - '

>

which tan be used to just eliminate p and A. Then'definihg

the Hamiltonian in the usual way, we get-
A ‘

H

JdBX Hix) = Jd3x (O$V+(—DX)¢-£)
~ .

JdBX[% p(§)2 + pwlp)) - . (2.30)



11

where we

L
v

(2.31)
and : , ' ; o | ‘ ;&
o= L ( ’ | Y (2.32)
The - Hamlltonlan denSLty p051t1ve deflnlte if pw(p) 1is

p051t1ve deflnlte. From the form of’w(p), thlS can be
ensured by restrlctlng p(p)- to be a monotone increasing func-
tion of p otrer the p051tlve real axis, however this 1s not a
necessary restrf&tlon, although it is phy51cally reasonable
So written in terms of the canonlcal coordinates and

conjugaté momenta, the Hamiltonian density 1is

‘
a3 - el . .

H(x) =

N|

”

5 > > > 2 > . 7 (p) =P}
oVd-Vo + VoomVy + —j;_— % W-vwoj L—————O} dp
' P

0 ,
o (2.33)

The canonical equations yield the fdur hydrhdynamic eguations

(3>=g—%=—gxb ;\7)2+)[ ég—g—)d | (2,348
_ o |
o = - g—f; = - V() < L '(*2.34b)
\'\ ¥ =g—%= Y. vy | * “ o . (2.34¢)
wo= - g—ﬁf':'}- 2RC 2 N (2.344)
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where

8 9 3 Vo
=7 ) . - (2.35)

o
Hh
b
If
@
|
@
}_l
@
@
Fh
-

\

. The 1ndependent vay{/hles th&n\are ® and w W1th canonfEETi

conjugate momen ta p and T respectlvely Then thlS System is

4

consistent, there is no dlfflculty when going to the quantum

.theory with vanlshlng conjugate momenta. {

\

‘

‘Conserved Currents o - .3
Now since the equations for p and™ appear as conS&r--

vation laws one would expect these to arise as Noether currents

from invariant transformations; Using the form of ‘the Noether

£

theorem which uses jUSt the Hamlltonlan formulation; we have
thezLagranglan,,wrltten in terms of the canonical Coordinates

and momenta as independent variables, is invariant under the.
transfoymatign . . '

SO AL A I | (2.36)
. -,A‘ . v
Q. _ s
where ¢O is a constant.s: The conserved Noether current then is

N_ = - p(39)

“o - = o eoy, 1 L _. :
.. .o ' T s ‘ (2-37)
_ BH« . , -
Ny = 53,9 8¢ = - pVid,

and

5 N _ o . . : s . '«:’,: . (2.38) .
S o ’ .
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gives the continuity equation

~

-+ -
p+ V-(pV) =0 . (2.39)
: | 1
Furthermore,rthe tfansformation’? s ,
‘ . — \ ‘ - .
| N " (2.40)
> L ) . . }

S
where wo is a constant, gives the Noether current

L

LS

(2.41)

J / . : ,
“ and -the equafion-% ' . ' o v
- ' | %

N. = -1V,
AN

-

s - . > > o .
- w4 Ve (mv) = 0. _ S (2.42)
-resultS\from the conservation equation.
- The equation for ¥ also can be obtained as a continuity

equation, since

S (py) + T (py¥) O (2.43)
v . 3T oY) (pyv) =0 . | .
This equation can be obtained-by considering the transforma-
_ tion ‘ ' .
) | $ >0t = b+ e ) | AN
' L . , I , : (2.44)
1 L . A ' o .
ioa K _ﬁ'+yw' = -+ e%, ‘ . :




. [N s " -
where ¢ is an infinitesimal parameter. Then the Noether
current obtained is,” ﬁ? % A y//’
) = - I \
N, pewv . . ;
P R , (2.45)
L= = pVeU
Ny P ;Ew .

and the corresponding conservation equation leads to

o+ vevy =0 . . | (3.46)

e

; ¥
. One transformation under which the Lagrangian fails to
show invariance is the scale transformation. One would expect

any theory to be 1nvar1ant under a_ scale transformation, since

phy51calf§ the theory should be lnvgrlant of the ch01ce of

a

unit dimension taker. However due to the existence of
" constants in the theory, which.are not dimensionless,

explicitly p_, the Lagrgngian fails to be invariant under
Y Po ¥ ‘

B

the theory. The infinitésimal scale transformation is

x > x' = (1 + ) x
|} H . H
‘(2.47)

£ an infinitesimal

constant
/o
we must impose the transformation of the field variables as

to their dimension, in units h=c=1, so



;
v

b (%, t) S (R, ) = (14 eyo(x,t)

P&, > (R = (14 e)n (%, 0) | |
/ | o C(2.48)
p(X,t) » (X', t') = (1-de)p(%,t) : |

(X, E) > X, ) = (- de) r(X,t)

Q
Then, the Lagrangiah is tfansfor%;% as ~the

ax 20%,0)+a% LGt =a (14 de) o (3, 6) (L= ey

<G TR 0 2 2R, 0 - w1 - 400 (R 00 )
=4 x[ﬁ(&tHAE a%gﬂ Dz(z,tﬂ
- a'x (L0 +4e (o (o) - plo_))) (2.49)

- : . Y .
We can see ‘the ‘scale deficiency is given by

. 4
'd4x, L(E,6) ~d x £(%,t) = d4x_(4'€(p(o)—p(oo))}.

@

(2.50)

Now using. the équation of motion, we have shoWﬁ.({(x).:

p(piX))-p(po).’ Thus

a .,

a'x' LG e ~atkliE o —atk (ee 2200 2oy

15



The Noether'cﬁrfent is. defined 558 A
| f o
S = (e o =% 20 +m(y-x3 1)) - £ L% ¥, 0,m)
(2.52)

5. == (o (8- 53,00 4 oy, T v x 3,00) - % £6,8,0,m))

=

‘and the conservation‘equatibn is'modified by the scale

deficiency,

BUSU=,—4[p(p)—‘p(o'o))=-4dé/.(x,t)v . (2.53)

1_6’
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‘CHAPTER III
N,
QUANTUM FIELD THEORY OF HYDRODYNAMICS

¢ I
] L,

Tran51tlon to the Quantum VleprLnt

In- the previous sectlon, we have obtained a cla551cal
Lagranglan and Hamlltonlan formulatlon of the hydrodynamlc
egquations. In as much as these equatlons truly represent
the'clasSiCal behaviour of ohy51cal system, we can formulate
the quantum behav;our of the system through . canonlcal quantl—

zation. Canonlcal quantlzatlon is not the only way of

'formulatlng the quantum behav1our of a hydrodynamlc system,

for example,vLandau9 formulated quantum hydrodynamlcs through
an appllcatlon of gquantum mechanlcs to the equatlons of
hydrodynamlcs and relnterpretlng the varlables of den51ty,
velocity;‘etc in terms of. partlcle quantum mechanlcal

operators. However, although there is ‘no proof that canoni-

‘cal quantlzatlon will actually descrlbe ‘the quantum behav1our

of a system, it will- glve a logical and- consrstent method for;

quantlzatlon of the system.
In the quantum formulatlon, we wish to reinterpret

the classical field variables as quantum field theoretical

~

‘operators.  In doing so with a classical system, there are

-

"certain ambiguities'which surfacelo. If the classioal_equa—

tions contaln products of field variables, then- from the

“~guantum viewpoint,'we do not know which order to take_the

product: There is no rule which satiSfactorily.resolves

17
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this ambiguity. In certain cases we can apply gemeral
rules to guide us in choosing the apprépriate.orderyOf
 factors. For example, ge can insist ‘that the Hamiltonian be

hermitean and lead.to the correct equations of mqtidn;

o

'HoweVet;"in ﬁost cases, We.hust compromise,between symmét;i—“
zation of the ciassieal'eXpressions, and‘inereaSingvcomple—v g
xity with'symmetrization. Another aspect “of the cla551cal
equatlons are analytlc and sometimes non- analytlc_Kat
certain points) functions of the field Variables which'may
'occur;7vIn.such‘casea; we must use the Taylo;‘expans;on of
these functlbns, and then formaily assoc1ate the quantum
field operator w1th the Taylor expansion.- qu points of
;ingularity, we simply asgume neither‘the claesidal or
quantum expre551on have meanlng at such points.
| The - flrst cla551cal expreSSLOn we w1ll consider is
the velocity. Classically,
O, s | L
V= - v¢,—~5 v .".' | SR N  ' S (3.1) \\\;
NOw'the'variables:¢, o, ¥, and m can straightferwardly be
interéreted‘askquantum mechanicai opetatdre. 'Then the
function l/phhasaa Taylor’expansion at every point except
P =.d,rthus'%t will be interpreted in terms of its Taylor
e#pansion aboutfthe ngilibrium density.po; taken as a,g?

number. So we take -
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(3.2)

£4=~—'l—,l+( . ‘
P Oo, o ] 'DO i J L  =

’

and (po-p) will be a. g-number. Since we are going to use .

canonical quantization, p will commute with all ex-

" )

pressions except those containing ¢, thus we will expect

1l/p to commute with the other variébles'in the_secondqterm.‘

B 1Y . . ] . ) E ‘ , Y
Thus we put forward the veldcity in terms ofeﬁugntum field
operators,

(@) + @Gprn) . o (3.3)

o

This will of coﬁrse reduce to the claSSical-gxpféssion\if wei 
.allow the operators to dommﬁte,

'Next wé‘wi;h to consider the Hgmiltonian. Thé second
term in the Hémiltonian density is'a function of p only so

we will assume that we stay only in ‘its domain éf'analyticity,

and use its Taylor expansion for the quantumvviewpoiht. The
>first term in the‘Hamiltonianvdensity, which fequires;modifié;

cation,iS'%p(§)~. As all the fields are'réal, the condition of

hermiticity implies the eXpres$ion-beisymmetricJin,terms of
.1l k20 2 e .

"real fields.. We could take.j(f(p(v) L+ (V) p)); +hdwever this

‘kind of term unduly dbmplicates'the equations of motion. It
B . 1 > ' '

is better to take,% V7p§, ds this is symmetric, and leads to
‘" natural generalizationS‘of the classical equatiOn. Thus we

will take as the quantum field theoné%ﬁcal Hamiltoniani
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Px(2V.0.V + cwle)) C(3.4)

where V is taken as the quantum velocity defined above.

Canonical Equations and Quantization

We find upon. variation with the canonical variables,

the quantum field theoretical equations,

o1 =2 1{1 > > AT E
: :5 (V) + 5{% [TT(VLD) -+ (vlb)ﬂ') .V+V.E(W(\‘/I:;Q“+ (v;»)?f).
? .
+ J dp () (3.5a)
p
OO
1l = -+ > ’
P 5 Ve (pV + Vp) (3.5b)
. 1 - - > ;
vo= =3 (V) v o+ Ve (V) (3.5¢)
1 > -+ >
T= -5 Ve(mV + V) (3.54)

Again, these equations will reduce to the"classical:expres—
sions if we allow the variables to commute.

To formally complete thq}quahtization of the hydro-
dynamic equations, we assume thé canonical commutation

relations, at equal  time

I

TEG, ), e (X, 0)] = 18 (k- x). S (3.6a)

>

(0 (k58) 71X, £)] = i8¢

<+
|
X

" (3.6Db)
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and all other commutators zero.

IWe note that sinéé 4, p, v and 7 are real, there is no
ambiguity with the statistics of the corresponding quantéf
we must use commutators; hot anti-commutators, and the

particles will obey Bose statistics.

Physical Commutators

With these canonical commutators, we can derive certain

commutation relations between operators representing more

physical quantities. Theée commutators were first derived by
Landau, using his form of guantum hydrodynamics. These commu-
tators are useful in further work. Firstly,
> >, . > >,
[o(x,8),V, (x', )] = - i3, (S (x-x )) (3.7)

(3.8)
where : -
" which requires congideragléréalcula#ion.

A Y : - o

Conserved Currents

We can obtain conserved quantities via the Noether

theorem, similarly to how we obtained these in the classical

/
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case. The obvious invariances, omitted fér the classical
formulation, Space~time_translation, Sspace rotation, will
be discussed now, and can easily be applied to the classical
Case. First we will redefiﬁe the Lagrangian, as a function
of the cahbnical coordinates, their tiﬁe derivatives, and
conjugate momenté, by a symmetrized Legendre transformation

of the Hamiltonian,

A

L - J.'(d‘)’xi(x) < Jy(d3x[%(~i‘o +09) + 30T+ ) - H(x))
9 _ Jd3x(%(éo&-oé)4—%(@Wﬁ-ﬂi)—-% §-p§-pm(p)] . (3.10)‘

Now this Lagrangian is obviously invariant under space-time

translation

x > ox' = x4 ¢ | | (3.11)

where eu are infinitesimal parameters. The conserved Noether -

! - b
. current is -the energy'momentqm’tensop,,Tuvv-and is given'by

- where the sum over o is over all canonical coordinates.

Explicitly



Too = M (3.13a)
T o= - YoV, + V.p) (3.13b)
oi 2 i i ) '
1,1 - .1 : 1 soal :
Tio = 5[7(pvi+vip)¢+¢§(pvi+vip)+§(wvi+vin)y+¢§(nvi+viw))
(3.13c)
1,1 1 1 .
= | = a o —_ =\T LT 3.’
T 2(2(pvi+vip)aj¢+(éj¢)2(pvi+vip)+2(‘vi+vl ) ()
b R +v ) =5 (Sereh v (e —H) L (3.134)
j 2 i i ij 2 1 h hg 2 hd T i

If we replace the expression for vi in‘Tij, we can show that.

Tij is symmetric in i and j. We can show,

( | |
Tiy=-% H{D'aiw'ajd”} + {f”'eiﬁ*’”'?j"f*’} +{*{'ﬂ"ai¢}faj#)}

l4

T (0 0 L
+ 2?{t,n,_.t.w,aiw}.},aj,,vjj + §iji[ . - j’K/(.B.lzl.)

| .
‘Now obsérvipg eaéh:;erm\initbis,expansLon andvnoting Qﬁich
variables commuﬁe, we can sée‘tﬁé-éxpréséién is éymmetric‘
in'i and j. " The cénSerVatiOﬁ law associated with this Noether
current 1is

\

pe

3T =0 . ‘ o (3.15)
u

.We also expect the theory t@\béwinvariantwunder=spacé.

rotation,
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t o>t o=t Space rotation . © (3.16)
aed » Eij = e Eij
Eij is infinitesimal and antisymmetric. Now the conserved
current is‘given by

M = x.T . - x.T . ’ (3.17)

iju 1 uj Joui

Q A
where TU' is the energy-momentum tensor above. The conserva- .
. .

tion eqguation is

3 M., =10 . o (3.18)

uoiju _ o , N S

One other tfansformation under which We-expect the
-‘Lagranglan to be 1nvar1ant is the GalllEl transformatlon

This is since- the cla351cal hydrodynamic equations were

derived from the pr1nc1ple of conseryatlon of mass and momentum,
these'aretboth Galilei invariant concepts. We get the hint of

3

the transformation properties.of the fields from knowing how the
Schrédihger field is transformed under the Galilei. transforma-
tion, and knowing'the Schrodinger field is equivalent to an
.1rrotatlonal hydrodynamlc veloc1ty fleld where the "pressure"

term may depend on the density and its derlvatlves, Thus,

for the Gallle1 transformation,



£t > t' =t - | B - (3.19)

w(§,t),w(§,t), and p(;,t) unchanged,

we can show that the Lagrangian is invariant; So we have

a conserved Noether current, for each independent direction

V..,
1 N
> o > ’ 1 > . > > » ->
Noipx't)::xip(x’t)_'tz-(D<X't)vi(x't)+vi(x't)0<x'tﬂ
' (3.20)
N, (%, t) =x, & (p G0V, (R, 8)4V. (X, 8)p (X, 1)) +ET. (%,
Jji i2 3 o J . . J1

and the expfession'for T, . wéz found previously. The current

3N . =0 . N (3.21)

i
UVH_ . ‘ v : el

conservation law is of course,

We find the Galilei t;ansformation important to gpontaneous
, £

LY

symmetry breakdown. ' ' P
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‘ Spectrum'ef Elementarz EXcitations

The HamlltonLQ\ (Ts_glven by

#?_va+_pw(p)

N =

= E(‘—Vcb “ 55 (W-Vnp+ijr_))‘p:(-.:v.¢ 35 (TTVIb+V\,UTr) )+ o‘m'(p)- ) (322) -

. ©
A= %(%-p% + Vo (nVy+Tym) + %(n_\?wﬁww) (rVy+Tym) )

2 p(p)‘-p-o o o ” o
fo| e a Ly sy

o - , S

po
&*
e 3

Now in as much p is'épprdximately 0o the equilibrium’
density, and all p dependence may. be expanded even in terms

‘of operators, about po; we can write p = poﬂﬂ6p ,
oL ToTs) 4+ L (9P Y2 (T “(©
]#—,2 oo((V¢)<V¢)') + 2—%(80 (po))\ﬁd‘n{ +(V<b)-(6o)‘ (Vo)

(5 .
[a—p(o

Q|

+ (Vo) (nFp)+Fom) +

| =
5]
[

v g () - (rGonion) + 4
(] ‘ .

e higher order terms . . (3.24)
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‘Such a decomposition of the Hamiltondgn was‘firet given by
11 ‘ -
-Landau and Khalatnikov™ ", Now we -can designate the various

- terms-<in.-the Hamilton;an, the second order terms are

D21 aa 101 ap 0y e

45 = 5 p.v¢fv¢e+‘5(5— 5= (0 )] (8p) (3.25

~which 1is the contribution to the phonon or longitudinal wave
SBQCtrum7”T'»AAlT;“f:” L e

)

“Ip 3
A 3.
8p))_po,(é,o) - (3.26) EEREREPNOS N

m]f‘—a

f,é_
{a

UJ

are third order terms, which contribute to phonon-phonon
and phonon-roton terms, where roton identifies transverse

excitations.

CH = BTy (rPpedgn) 5 (25 (L OBy (5,8 (3.27)
. 4. 24 2'p 3p .

Here we idenrify the firstvrerm as'the contribution of the

‘roton energy, the eeCQnd as some higher order process..
Now we can obviously‘not totaily aiagonalize this

Hamiltonian, so we must 1ntu1t1vely ple out terms of

importance. We can make the assumptlon that terms of hlgher'

order are of less 1mportance

Then to lowest order thafliéfrO'seéend'order/"l7“'

5 ;“ 1 1‘3 2 C e

Co
“a T
S
MEN S I
o
M“e
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Now this can be'totally-diago@alized, since ¢ and D”are'conju—
o »

gate variables, the solution is simply the harmonic oscilla-

tor spectrum. - - R o ~ﬁ<

We can define annihilation and creation operators

as
SR P : . ‘ e . . -
,ak::/“* VK 'pk'kl Po k’k-qkz" oL (3’30b2'
where
: - + R 4.
la,,a, ,1=8,., (a,,a,,1=0=[a ,a, ,] , (3.31)
k' "k kk k' "k k' 7k
and
>
ol - g_% () (3.32)
and_
\
1 ik.x + o o 2ay
V2 k : ‘ '
> >
1 ik.x - B
qb = —1—/2 ]Z qk e q—k = qk ’ . (3.34)
v :

and we have chosen boxXx normalization of volume V. Then

. [3p ;__:f o1 o
o ’E‘_fv ij(pO)‘E‘/k'k Kakék_+.2) K | - (3.35)



{
+

. so w(k) = /%g(pé)’/k-k is the energy Spéctfum[>whf¢h is |

the standard spectrum oﬁ’hafméhié exéitatiéns;ﬂi'
Now if we look at the roton enefgy term, we have
. . ) _
Foton“: E%— (ﬁ§w§-$WW)-(ﬂ6w-?§ww) P (3.36Y
) o .

-~ This* cannot be diagonalized easily withQUt furthep\transforf

mations at the classical level, so'féilowingﬂzimanl?,‘define

T S . Lo
sl =] ly . - T = — . o - . .
Y’ » f}l/V2 r . il 2 I1’J2 s . . (3.37)
or b= W2 ;= VZm (3.38)

This transformation can be demonstrated as. canonical, since

(o, (%, 0) 0 (%', 8))  =6(x-x') . (3.39)
v 2 :
‘Them. ’;';»};g -
> . T _. > > CoL T
Further define
vo= Lo Ty o ENENs 2
/2‘
yr :.i_ (wl - iw2 ) . . : . | | (3.41b).
/7 Lo - |
Then
Ty = %A(w*$w - YTy . (3.42)
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Vo= -Ue - (wrTy - wiyr) o (3.43),

which is‘Hefmitéan~é1reédy. That is, we do not need to symme- .
trize between w'and §w for a quantum mechanical veloCity. Now

the roton hamiltonianvis

B een = tEpm (FUY - vy © = (3.44)
- o] .
With . e
1 %7
¥o= ] d et - (3.452)
v? Kk : o
L > . : )
vx = 27 d}: gmik T : - .(3.45Db)
V? k- o v .

we have the commutators

o e .
' whichhgiVQS"’
. . . ) ] . . ﬁ\
H - &% K - 5 57 (k+n) - (2+m) § ddaa
roton * Soton ™ Bp V nite M7 Oy 4y, m+nm n ok &
A o k,2,m,n .
T (ke a- a B
+ ng k._-k+ geg)ay dp oL o 7(3‘.4_7)

Now thlS expreSSLOn is 1nherently divergent for any

exc1ted state, thus we must 1ntroduce some - way of restrlct—

ing the values attalnable by the-wave vector, a cut off. .
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Physicellyg:a:yery lerge waveloeetor is‘meahingleSS"if the>m
r.medium"is hét—d7ooﬁtinpom;'eslis thé case with any real
liguid. : A7Qay of‘intfbducihg_such a cut off,ahalogous

to the»Dehye theory of specific“heats, we lnslst for N
lpartlcles that we requlre only 6N dynamlcal varlables to:f
;SOGley the state of the system. The momenta of the atomsﬂe~~
come from ¢,vW,_and W*, thus if we allot 3N dynamlcal

variables to these three potentlals,‘we can have-the 3N \

spatial coordinates of the system depending only on p. This
. 2T T .
. = max dm 3 L
provides a kmax (v)l/3 where 7?—nmax_73N’ countlng the
p01nts in wave number space inside a- sphere of radius- n_axe
Then 1ntegrat1ng 1n51de the sphere We get ‘
, S max . A 2 . -
1 (e-2) = 4ni » g4dzl= AT (2T 3 n . (3.48)
» 5 1/3 max = - .
g l 0 JoooTs Ve g e :

or.the energy of a One'rotohfstete\islane number k is given

by o
E. = §\£3.+ (7. i) 2/3 ’5/3 N (3‘49)l>:
k g m < "
where m is the mass of the eonstituent-atom}_giVen by
PV s : S , ’ ’
_ o . a , _
melelo L es

. - ' | 3
Now thls 1s exactly the - spectrum postulated by Landaul , Since

'the momentum of a one roton state is glven by

(
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<1 \Jd x - 3 (YUY - YTy *)| = k. (3.51)
o8
- o A .
Ty . P = - 2m (3. ‘
E(p) o + EO - u 3 ‘ (3.52)
where Eé = (7°K).(kB)} which is in good agreement with speci-

fic heat data.

This above reductlon of the Hamiltonian into phonon,
rotonz and interactlon terms, and subsequent expre551ons for
the energy spectrum cannot be considered completely satisfac-
tory. Primarily because we have just selected certaln spec1al
"ééfhé7f£oﬁ7£hé"Hamiltonian, even to the extent of rejectlnc
‘terms of lower order in the fleld varlables, to get the phonon
and roton spectrum alone : However, we should realize that- at‘”
: extremely low states of exc1tatlon, ‘the . system WIll essen—

tlally'COHSlSt of non- lnteractl 3 quantum exc1tatlons, “thus

‘for low enough temperaturesnthe Dhononiand roton - energy

:soectrum as calculated above, must be appllcable{'

~
S



CHAPTER IV

SPONTANEQUS BREAKDOWN OF SYMMETRY IN HYDRODYNAMICS

Generators of Invariant Transfbrmation

lFfom the classical and gquantum théory of the hydrqf
.dynamic fields, we have seen that the hy@godynamic equétions
are invariant undér‘a number of contianUS_tranéformations.

Using the infinitesimal versions of these transformations,

L F

we\have obtained the conserVatioﬁ laws associated with these
symmetries of the eéuations. But, we have not yet discussed
'the.génerators of fhe'tfansformations.

Thé generator of a tranéfoimationfcan'be COnQErﬁctéd
.througﬂ"éOnéidering the fransforﬁétion propefties of the
Lagrahgian..,Fér.aﬁ.inyariant transformation, the generator

can be constructed from the Noether .current. One should

. . -t .
transformation. - For a non-invariant transformation, the --

stress that this is not always true for a non-invariant

o

generator may be totally unrelated to the Noether current.

For an invariant transformation, the generator is

-~

related to the Noether current by

c(t) = a3 § (1) . | (4.1
. J @] . \

The Lie derivative of the field Variable”6L¢a, defined as

v, N
. A}

It
©
<+
t
|
a
b 4
o+

ESL¢G(;,t)V (4.2)

33



is given by the generator,

) (>+<,t) = i[fbu(;,t),G(t)] . : (4.3)

‘The overall internal consistency of the guantization is

checked by this relation, since the left hand side is purely

a transformationsproperty, whereas the right hand side is

fundamentally related to tMe canonical commutation relations,

and the transformation properties of the Lagrangian. We can

show the generator -is independent of time, for an invariant

transformation, since
d -
— = 3 = - a . =
It G(t) Jd x[ N (x,t)] Jd x[ lNi(x,t)] 0 (4.4)

where we assume the integration of the divergence vanishes

when changed to a surface integral. Therefore from now on

we will write just G for the generato®of an invariant trans-

formation.

Spontanedus Breakdown of Symmetry and the Goldstone Theorem

34

The Goldstone theorem, first proved by Goldstone, Salam,

i
and Weinbergl4, concerns relativistic quantum-field  theory.

It states that if the vacuum expectation value of the Lie

derivative of a field variable, under an invariant transfor-

mation, does not vanish, then there ex1s§s aLm&SSleaﬁwpigflcle

Vle can show for the non-relativistic theory ‘also that

such a particle must exist for a spontaneousfy .broken symme-
R VP

try.

o
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The generator of an invariant transformation is
important for the spontaneous breakdown of symmetry.

Suppose the vacuum expectation value of the Lie derivative’

of a field variable does not vanish. Then,
. i
' 3
. JTL“: - l | > ' w
- 1<0]¢ ‘,ru(x,t)io> = <O[[¢/Y(x,t),G]JO>#O . (4.5)

-
Now 1if we use the Ward-Takahashi identityl{, we hawve

35

L Rs l -> -+ 1
SIS (xpt) = —patxk Al T (%, ), N (X)) - T(+ (x,t),3'N (x',t')ﬂ
2t J {u a y G B
(4.6)
where
- - - -
T{o(x, ), ¥ (X', £ ))=0(t-t)o (X, )y (X', e') +
Bl -E)¥ (X', £ 0 (X, t) (4.7)
for any Heisenberg boson operators i(;,t) and W(;',t'). The

second term vanishes due to BQNH(;',t ) = 0. So,

)

- i<O;6L¢a(§,t)iO>=—Jd4x LB}:<O{T(¢ (x,t),N (§',t')]]0>1.
: J

(4.8)

)

Now we must use the spectral representation of the vacuum

expectation value of the time ordered product of the two



field dperators. This is equivalent to assuming that the
Fourier decomposition of this two point function exists. - So,
> > i [ 4 ip(x-x') >

<ofT(¢ (x,t),N (x',t")) 0> = d'pe G (p,p) .

o ol L H o A : . u o

3 (2ﬂ') . ’ -
(4.9)
Gu(p,po) is given by
y: L3 2 (v,p)
> . 3 f OU vV,P OU v, P 3
= , : - , 4.
Gu(p’po) (2m) Jdvt(p -v+1i8) (p_+v-18)) (4.10)
0 o o

wherc

1 , ’ o

- -3 >
o (v,p) = ) <014 (0)|p,vy,X><p,v,A|N (0)]0> (4.11a)
M X Q ' H
- T ! > > I

g (v,p) =, <O|NU(O)I—p,v,x><—p,v,xl¢a(0)f0> , (4.11b)

A

and ¢a(0) and NU(O) are related to the Heisenberg fields by,

s 05,0 = TIPX 40y P
-+ -1iPx 1iPx

= N (D

Nu(x,t) U()

where P is the energy momentum four vector operator.

The index X denotes all other observables characterizing the
basic states. Taking the derivative with respect to x&, will

bring down a fipu, and integrating over the'primed Spatial

36

coordinates will cause a four dimensional delta function in pu.

That is,
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. L, ,» (4 3 >
i<0]8 ‘bd(x,t)}0>=‘)d p 6 (p)é(po) P Gu(p,po). " (4.12)

We have assumed the left hand side does not vanish, thus the
right hand 'side, which' is just ppép(ﬁ,po) evaluated”ét”puz 0,
must not vanish. Now if we look at the same quantity, in a
rotated coordinate system, and if we assume rotational invar-
kiance( the result édd;(g;,éé) must be invariant. Therefore
we may conclude

> 2., )

o, (4.13)

'Theﬁ if this is not to vanish, at pU==O, then eiﬁher 9, must
have a pole singularity of the form l/(p)2 at po==0,>or 9,

must have a pole singularity of the form l/pg at 5:=O, or a
combination of "these. We cannot get the exact dispersion rela- .
tion from this alone, however we can see the energy must vanish
for zero momentum,”the spectrum is gapless.

Now if we look at the original condition, that the °?
vacuum expectation Qalue of the Lie derivative of the fiéld
variable does not Vanish, we can see this implies thaf the
vacuum is not invariant under the‘transformation; the vacuum
is degenerate, the symmetr& is broken. Since G 1s the generator
of the transformation, we can define the unitary operatdr for
an infinitesimal transformation,

U =1+ 1€G (4.14)

‘

where ¢ is an infinitesimal parameter. Then
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PR S [ L - + >
, = : =y’ 4.15
ba(x,t) ba(x,t)+-ed ¢a(x,t) U ¢u(X,t)U' : (. )
using the relation ; -
¢)a XI = 1 ‘b@ Xl 14 . . . . - ‘.
But now if
<0fls (x,8),61]0> #0 , | (4.17)
this implies,
. y ' . L . " . ’
Glo> #0 , ' S o (4.18)
hence
U' 0> = |0>=-1ieG|0> # |0> . (4.19)

\
!
!

. kg .
Thus obviously, the vacuum is not invariant under the trans-

Ra
formation, the symmetry is broken. However, U |0> must behave

as the vacuum in the transformed system. Thus we can say the

-vacuum is degenerate.

Examples of Spontaneous Symmetry Breakdown in Hydrodynamics
We can find examples oflspontageius symmetry breaking
~in hydrodynamics. Since we can fofmﬁlhte the field theory so
that the vacuum expectation value corresponds tovthe temp%ra—
ture equal to zero, equilibrium state of the systeml6, we

must be able to $olve the equations so that certain expecta-

tion values are determined.. We must expect that the density,
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energy density, and pressureAbe ﬁon4vanishing for aﬂsystem

at equilibrium, even at'zeroﬂtemperature.'ATherefore we will .

assume

R T T DR

<0{p[0> = ¢
<O{ v ’O) = g
lo]o] o}
1 | -
<O4le|0> = po§lj

. These relations are useful later.

A

(4.20)
k4;21);‘

(4.22)

B

First consider,the trans- .

formation discussed in the classical theory chapter,

S(X,t) » ' (X', ') =

5 a constant

(%, 8) + o }

~

} . (4.23)

%ﬁJ-

.In the quantum field theory, this will of course be an invar-

iant transformation, but the conservation-equation will be

o+ V-(%(p§ + §p)] =

(4.24)

~

the continuity équatioh in the quaht%m field theory. The -

generator of this transformation will be

Gy = (dBX(p(Q,t)) :

O

(4.25)
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" Now 1if we wféh to look for symmetry bféékingl'wéiconsider

‘o

o

S0k, = 6 (X, 0),6,-) = ii= -1 o - (4.26)
‘ . o : v
‘i-Thérefore “
<Of67plx, 810> = -1 # 0 . (4.27)

'This,is exactly‘thé{required relation for spontaneously broken
Symmetry. Thus we know there exists a gapless bbéoh Whiéh
appearslﬁhféﬁgh g'pole“singularity_at zéro enérgy and momentum,
in the sp&ctral représentatidn of the two point.function,

o NS
<0fT(o(x,t), NUO

(§Y,t'))]0>( where Nuo_is the Noether current
‘associated with the transformatioﬁ. Similarly we can ioék at
the éfhEr fransformation conside:edjipAthé élassical field
theofy, |
VG wG, e = u(E ) oy
(4.28)
Ut constant

* o

This will of course be an invariant transformation in the

.
V3

quantum field theory, with the current conservation eduation

”modified to -

2 > 1 l
T+ V-é—(TrV + V’n’) =0 . - ‘ (4.29)
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The generator of this transformation“is

. Now if we .consider

e R P
§7 (% ,t) ='1[w(x,t),Gw ] =11 =-1-,

O

exactly ‘as in the previous case,
N

’ ) . ‘ . - - .‘7‘7 T

<0]sTylo> = -1 % 0,

(4.

and we have another spontaneously broken symmetry, which

results in the existence of another gapless boson, which

30)

.31)

appears as a pole. singularity at zero energy and momentum

RE : : : L 1l)o >
in the spectral representation of <O]T(¢>(x,t),NU (x',t')]

w R

| 0>,

where Nuo 1s the Noether current associated with the trans-

formation.

These two broken symmetries have arisen from the

structure of the equations and the canOnical.quantization

32)
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conditions that we impose._ They can only lead to mathematical

identities necessary for the internal consistency of the theory.

waever; there should be some broken symmetries which we can
< postulate on physical grounds. In the case of a crystal, the

periodic lattice structure indicates a broken space-transla-

tional symmetry. Or, in the case of a ferromagnet the aligned

spins in a ferromagnetic state seem to indicate a broken

‘s



é?in—rotational symﬁet;y. What can we expect for the sygféﬁ
of hydrodynamic equations, wh;ch‘describe a continuous media?
Considering a real gas or liquid Whiqh behaves approximately
hydrodynamically, we kno& there is some properﬁy of . the

substance which is not Galilei invariant, since the velocity

o% sound changes between different Galilei frames of reference.

Ahd as we haye shown, the equations of hydrodynamics. are
Galilei invariant. This seems like an ideal plaée to look
for a broken symmetry. Indeed, if we éalcuiate the Lie
'deriVétiGe of thé matter \CJ;rént and,the enerqgy current,
under Galilei transformation, we find these vacuum expectétioﬁ-
values do not vanish.

We have calculated the Noether current in the gquantum
‘field theory chapter, thus we can construct the generaﬁor of

the transformation

= Jd3x(x-o<§,t> —t2(o (G, 0V, (R ) +vi(?<,t>p<§,t)ﬂ

& 5 (4.33)

~——
.

Then using the commutation relations found in the last
chapter, we can evaluate the Lie derivative of the matter

e

current,

.41"_, > -+ Lo —>- , >
4877, (x,t) = [J.(x,t),G, 1 =-16, .p(x,t) +ita,J.(x,t) (4.34)
177 3 i 173 i3 .

el o
L%y
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where

. J.(§,t)==%[p(§,t)vi(§,t)¥+vi(i}k>p(§,t)) X (4.35)

“Now taking the vacuum expectation value, we can see,

<0lsbr (%, 0) 105 =5, <nlo (% )]0 - £<0(3.J.(X,£) 0>, (4.36)
17 17 1]

1

The first term is Gijpo' ' Since we may take the derivative

outside of the vacuum expectation value, and the vacuum

expectatiOn value is space translatiodally invariant, - the

second term vanishes. Sd;
<OI§§%.(§,t)IO> =&8..p0_ #0 . ' (4.37)
i3 i o '

\-,

Therefore we caﬁ see the Galilei symmetry is spoﬁtaneously
broken. This relation gives us information about the longi-
tudinal excitations which exisﬁs‘aé a résult of the Goldstone
theorem. These of course must/be gapless, and correspond to
the phonons predicted by any JYinearized theo;y'of the hydro-
dynamic equations.
We. can also gain information about the spectral

functions by considering the variation of the energy current

Tjo under the Galilei transformation..

~i87T. (%,t) = [T. (%,t),G.]
i”jo jo i



SO we can see

9.

colslT. (%, e |05 =0, .<0|T_ (%,8)]0> =<0{T, . (,t)[0>~
Y TiTjo0 0 ij 00 \ ij

&

£<0]3.T, (%,t)[Q> . . (4.39)
1 1

The last term vanishes, for the same reason as before, that
" the vacuum éexpectation value is space translationally invar-
iant. The other two terms have the values assumed at the
beginning of this section, thus,

' L -

<0|8TT. (x,t)0>=8..(e _+p ) #0 . (4.40)
_ i"jo ij "o o

The angular momentum generator density

M., (%,£) = x.T_.(X,t) - x.T . (x%,t) . (4.41)
ijo Ui o7 j oi.

also yields a Goldstone type commutator under Galilei trans-

formation, but this is due to the relation of Mijo to the

matter current, and leads to.no new information.

Spectral Representations

‘We take the following spectral representations:

0

3

(2m)

N N o) . . _ ' .
<O}p(x,t)p(x',t')|0> _ o Jd4kelk(x X ){Jdm(s(k,m)é(kd—wﬂ ,

0 .

(4.42)

44
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01T (K, ) (R, t1) 0> =—F 3{d4kelk(x—x )
. J . R (27) :
[ { dm(kjol(k,w)é(ko—w)]) ' (4.43)
0
<0l7.(Z, 03, &, |05 = —= 3Jd‘lkelk(x_x )
J i (27)
o0 k. k. . kK . N »
dw{{ (5, - —=D)yo (k,w) + —2L0 (k,0)}8(k —w) || (4.44)
J. L 13 > 20T > 2 "L o J
0 (k) - (k)
Now since p is a real field we get from taking the complex
conjugate of the first expression,
r dw‘[s%(—iz ©) S (-k_-w)) - | dw (S (=K, 0)8.(~k -w)) (4.45)
j , ' o | (-k, S N .
0 0
since the complex conjugate simply reverses to order of the
field. Or integrating and changing the sign of the variables,

S*(k,w) = S(k,w) . ‘ : (4.46)
Furthermore, if we assume space reflection invariance, we get
: :
‘ - * - ) .
S(k,e) = s(-k,w)y . (4.47)

The two poini_function <O‘Jj(§,t)p(§',t')|O>“will change sign
under space reflection, if we assume the matter current re-

verses sign under the same. Since the spectral representation



.contains a. factor kj outside the spectral function-oi(ﬁ,m),
) o
the spectral function satisfies
o
> ’ : -
o) Kew) = oy (-R,0) . : L (4.48)
If we assume time reversal invariance, we can show,
(k,0) = ¥ (-K,w) | Q (4.49)
Gl y @ v" gl - s @ ::R ¥ -
the'dalculation is in the appendix. Then these two relations
imply,
o (K,0) = of(K,0) . o (4.50)
The two point function <O[Jj(§,t)Ji(§',t')[O> has a
contribution from the transverse spectrum Oops and the longi-
tudinal spectrum, Oy - Taking the divergence ofvthe expression

with either index,‘separates out the longftudinal part. We

show in the appendix, assuming invariance under space reflection

'implies;
> ' > : -
OT(k,w) = oT(—k,m) _ : (4.51a)
> > o -
GL(k,w) = OL(_k'w)~ ' : | (4.$lb)

> - I » '
OT(k,m) = op(=k,w) " (4.52a)
o (K,w) = oI’:(—E,m) -(4.52b)



Combining,these two results yields

o (K, ®) = on(K,w) : ' v (4.53a)

op Kow) = ol (K,0) . o -;A: B | (4.53b)
‘T?}s ensures

<O][Ji(§,t),Jj(§", F)][o$= 0 . '} - : (4.54)

=

Using the conservation equations we can get relations

between the spectral funetions. 'Také“the.continuity equation

o(x,t) +3, %[p(i,t)vi(§,t)4-v (X, t)p(X,£))= 0. (4.55)

Multiplying by"b(z',t'ﬁ-and taking the vacuum éxpectation
value-leads to,

g%,<01p(§,t)p(§’,t'){O>+—ai<0fqi(;,t)p(;'ft'L402¥=0 (4.56)

.y

&

0,68 (K,0) "= Ko, (K,w) . T (4.s7)
 Multiplying by Jj(§’,t'), taking vacuum expectation vafﬁesf

and using the spectral representations yields

wol(i,m) =0, (K,u) R o (4.58)

47
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for E;éo. This shows that o

1 is related only to the longitu-

dinal spectrum.

+

Now if we look at the Goldstone type commutatofs, we

get
: L“ > i .3 s
<0 —16iJ.(x,t)10>—<O|[J (x,t),c1 10> = Jd x1<0\[,Jj(x,t)\,
. {
X Q(i',t)]\O>+~<01[J](X,t),*f 7“%',t)]|0>} {4.59)
®,
We have shown,
<0l [T.(%,8),3, (x',£)]}0> =0 | (4.60)

thus

( > '
deol(k,m)ij)xiJ
0

(4.62)

Using integration by parts, and then integrating over x' and

k, we get
1] © B

-1i8. .p_ = —2i6i. J dwOl(B,m) ; (4.63)
0

-

Therefore



( dwo, (o0, w) = QO/Q ) - (4.64)
J . .
0

This shows the origin of the Goldstone boson is in the

longitudinal spectrum.

Sum Rule
Using the first spectral function, we can derive

a sum rule,

L 120 S N
<Oplelx,t),0(x",t)],0> = S jd%{élk (-x f dw wS (k, w)
(2m) /
- 0
(4.65)
But
-> -, ' -+ 1 >, >, , -+
[o(x,t),p(x",t)] =—aif (x,£) 5l )V, (', £)+v (X', ) p (X', 1)
= —Bi{MX’,t)(—a (- 16(x~x')))}
= i{(-3 0 (%"t 5(;~;')-p(X',t)Siai§(§—x')) (1.66)
Thus
<0l lp (%, £), 5 (X', £)1]0> = - 1 o726 (%-%")
= - i L Jd3keik'(x_x')(—k2) :  (4.67)

Therefore,
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I’dm wS (K,w) = . (4.68)
|

(]

. )
Then following Takahashil7, if we assume,

S(K,w) = 2(k)§ (w-w (K)) +'sC(K,m> (4.69)

with 1im w(£)=:0, and Sc(i,m) the contribution of the con-
o>
k-0 v _ ‘

tinuum, we get

[ (%) 2
Z(k)w(k) + J dw wSC(k,w) = = (4.70)
0
or
22 i .
w(k) = (kl - 'i det&%}k,w) S (4.71)
22 (k) Z (k) 0

which has as its first term, the Feynman expression, except
for a factor of 1/m which is missing because of the difference
in the definition of S(K,w). The second term 1s the contribu-

‘tion of the continuum, which always lowers the spectrum.

Asymptotic Field

The Ward-Takahashi identity reduced to,

i<0[<SIiJJj(§,t)[o>:J 4X'all<OiT(Jj(§,t),N (x',t") ) ]o>, (4.72)

u
therefore the vacuum expectation value, differentiation and
subsequent integration singles out the contribution of the

Goldstone particle . Thus if we put



aL<01T(Jj(x,t),Nu(x';t'))i0>==nBA(a')<o|T(Jj(x,t),s(x'AﬂU$o>

»
44444
«

+ (term vanishing when integrated),, (4.73)
Je, |4

. e

then B(x',t') is the interpolatipng fiecld of the massless

boson, and A(3') is the equation satisfiéd by the asymptotic

field. A(d') is of the form

AR = CcXedy v, e , (4.74)
N s ; ! .
since the equation must describe a gapless boson, and this
equdtion will give a dispersion relation such that the fre-
gquency vanishes for vanishing wave vector; As shown by
Takahashilg, er the Nambu—Jona—Lasinio ;odel, the asymptotic
fieid of the Goldstone boson carries the original transfor-

mation. Ve have not done this for'tgis model, but one should

be able to do so following the same method.

Deviation from Ideal Gas Law

We have assumed

<o1Too(§,t)lo> = ¢ <0 (%v-pV + ow(p))|0> . (4.75)

(]
~

Now

o =p_ + Sp > (4.76)

where §¢ is a first order quantity, with

"

-~
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<0|8p|0> =10 .- : : C(4.77)

Then if we also consider V a first order guantity with

<0lvio> = 0 , " (4.78)

—

[
the energy density is a second order guantity given b

1 G 2 I 3 20
£, = é-po<0|(V) iO>+»[gg 5%(00ﬂ<0{(6o) [ 0> . (4.79)
Now looking at
<0fT, . {0> = -~ p 5. ' T (4.80)

j o i

and putting in the explicit form of Tij,'using the above con--

sideration, we find

<OiTij|

0>==-(p <0[V,V.[0>+6, <0L|0>) 4. - (4.81)
"o i3 ij f
5;
Now assuming the correlations between diffen%nt components of
r . :

velocity are of highef order, we get,

o
<O{T,.|0> = -p &..==6..(p -£<o](§)2|o>~+<oﬁilo>). (4.82)

Comparing the expressions for the equilibrium energy density

and pressure,
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1 3p | 2 ‘
oo p(po))<ol(5p) 10> . (4.83)

'g
0
WIS

5 2
eot <Q|£[O>g-§(
Therefore the system deviates from the iaeal gaé behaviour by
the vacuum expectation value of the Lagrangian, and 3n amount
broportional to the mean square density fluctuation, which

' . \ S
must correspond to a virial expansion. This deviation allows
us to hope that the theory can include informati9n about
transport coefficients, such as viscosity, arising ouf of
quantum corrections, even though the original classical equa-
tions describe an inviscid fluid.

A generalization of the theory tolfinité temperatures

will allow the use of the Kubol®/20s21

type formulas for the -
viscosity. For example, the coefficients of ‘viscosity n and g

may be obtained from

.k, k K, P k k
ﬂ(6i.-% féj;)+-cf§—1¢:§ lim lim Jdﬂ<e—l(k x—wt){ Z 2 ? x -\w/
- (k)< (k)< wr0 k>0 n,m (k)
,
<o (T, (x,8)T. (5,0) +T. (3,007, (%,t))]0> (4.84)
) ' im jn ' jn im0 )

where n 1s the shear viscosity, and ¢ the bulk viscosity.



CHAPTER V

SUMMARY, CONCLUSIONS AND FUTURE OUTLOOK

s

Classical hydrodynamics describes the motion of a
massive continuous medium, whose dynamips are governed by
Sewton's laws, and the principle of conservation of mass.
The state of the system is Speéified by the hydrodynamic
variables, the density, velocity, and pressure; and since
it 1s a continuous medium, it is meaningful to speak of
these'va;iables as space and time dependent functions. In
the Euler forﬁalism of hydrddynaﬁics, we can consider the
hydfodynamics variables as fields, and the hydrodynamic
"equations as field equations.

The hydrodynamic equations for an inviscid fluig,

—.N ‘ -

> R
3V > > 1 > 4
— 4+ . = - — 4
T (v.v) v 5 Vp (5.1)
0 4 T (oV) = 0 | (5.2)
3t o B a ' :

express the conservation of momentum and the'consqr&ation of %
méss; four equations amgng five variables. To close this
system of équations we assume the condition of barotropy,

that the pressure is a function of density alone. Such a
condition severely restricts the appliéability of our theory,
howevér we do leave some freedom, since we do not specify the

functional dependence of the pressure on the density, except

54 N
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to the extent that it be analytic. The condition ofcbarotrOpy
allows\us to write the right hand side of equation (5.1) as
the gradient of a function of p.

To obtain the equations of barotropic inviscid hydro-

dynamics from a Lagrangian, through a variational principle,

we modify the equations with the Clebsch transformation,
Vo= - Vb + AV . (5.3)

Us%@@ the theorem, which applies to an inviscid barotropic

.

fluid, that the flux of the curl of the velocity, through

any surface which moves with the fluid, does not change in
time; we get two equations, on the variables A and i, which

' escfibe the curl of the velocity, that their derivatives
(iéving witﬂ the fluid vanish. Then eqﬁatioh (S.If, with the
Clebsch variables, may be integrated over the spatial coor-
dinates to give ‘the Bernoulli equation. These three equations

. . Moo . .
and the continuity equation are obtained from a Lagrangian,

- .1 > 2 i plp)-ple )
I (x) = p{¢-xw-§bvv¢-+wi>- —J ( *7—W—Jdp} (5.4)
0 o -
e

by varying with respect to i, w; p} and ¢.
Considering p and X as canonical codrdinates is not

advantageous, since their canoﬁically conjugate momenta

vanish identécally. This is incompatiable with canonical

quantization, since this procedure assumes the commutator
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between a canonical coordinate,and its conjugate momentum,

is'non—vanishing. As we use canonical quantization,.we

’
e

interpret. thls Lagriﬁglan as-having been,obtalﬁéﬁ erm a

P
.. ‘\‘4‘,\3 ,N """r’

<

Hamiltonlan, w1th the dependence of the conjugate momenta

on the canonical coordinates, not yet replaced. With this 4
view, % and arg the canonical coordinates, with conjugate
momenta ¢ and 7 = - o\, respectively. Using the Lagrangian,

and Noether's tbeorem, we show that the continuity equation,
and the equations for 7 and 1, may'be obtained from transfor-
mations of the field variables which iéave the Lagrangian
invariant. | | o

The Hamiltonian is seen to be positive definite if
p(p) is a monotone inc;easing function of p, although this
condifion 1s not necessafy,Ait is physically reasonable. The
field equations now féllow from the Hamiltonian, varying with
@, v, p and . |

We next proceed to the quantum field theory of hydro-
dynamics. This involves reinterpfeting the hy&;odynamic
field Qariables as quantum field theoretical operators, which
do not necessarily éémmute. Then, the classical expression
fomthe velocity is ambiguous, since it contains the product
of non-commuting operato;s, and we do not know which order to

take in the quantum theory. We resolve this by taking the

symmetrized expression for the velocity,

Vo= - U - = (1Vy + Vyn) . (5.5)

13
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We do not have to symmetrize with respect top, since we know

w

thét pwill commute with the ofher variables 7 and U, and.their
derivaﬁives. With this expressigé for the velocity, we can
.determine .the Hamiltonian, which should belﬁermitean, and
yield the correct equations of motion. The equations of

motion themselves contain products of various non-commuting

operators,and the Hamiltonian

AN (x) =’% V.oV + pwlp) 4, | (5.6)
.prOQides us with a hermitean form, which generalizes the
eqdad@n; of motion, :so that they are no longer ambiguous as
to order of operators, witﬁ the least amount of complexity-ig
These"equatiéns of motion are obtained through the usﬁal

canonical variational procedure, but when we complete the

quantization by assuming the canonical commutation relations,

(5.7a)

> > : ——
[0({x,t),p(x', )] = lS(X—X'H
) : >
[y (%, ), m{x",t)] = 18 (x=X") (5.7b)
and all other commutators zero,
>the equations follow from the Heisenberg equation,

i-$ = [¢_,H] (5.8)

where ¢a stands for ¢, ¥, p, and 7.



58

With the quantized system, we.may use the Lagrangian,
and the Noether theorem to obtéin conservation laws from
invariant transformations. It is here we obtain the conserved
currents frqm spacé and time translation, whicﬁ yvields the
energy momeﬁ%ﬁm tensor, and the orbital angular momentum,. from
space rotation. These conserved currents may be taken directly
into the claésical thquy,land simplify considerably when we
allow the operators to @ommute; One‘other transformation we
consiaer is tﬂe Galilei transformation. We show the Lagrangian
is invariant for a finite velocity in the Galilei transforma-
tion: Then taking the infinitesimal limit by dropping second

order terms, we use the Noether theorem to obtain the conserved

current. Again this current may be taken classically.

)

Next we consider the Spontaneous bréakdown of symmetry.
The spontaneous breakdown of symmetry occurs when there is a
transformation which leaves the Lagrangian invariant, but the
vacuum 1is nat in&ariaﬁt under the transformation. If the
vacuum is not invariant v ¥ the transformation, the genera-
tor of the trans JUination does n~t annihilate the vacuum. If
the vacﬁum exroctation value of the Lie derivative of a field

variable 1 10t zero, the generator -f the transformation

does not aanihilate the vacuum, sin
Ny l55L¢an> = <0l .,61l0> o | (5.9)

where G 1s the generatcr of + transformation, ¢a a field

variable. ©Now using the .. i-Takahashi iﬁéntity and the
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spectral representation, we show.that there must exist a
gapless boson, the Goldstone boson, if the symmetry 1is
spontaneously broken.

We show three,examples of the spontaneous breakdown
of symmetry in hydrodynamics, The two field translation
invariances of ¢4and Y, ar - s -ontaneously broken. More
importantly, the G#lilei transformation is spontaneously
broken, when we assume certain pﬁysical values for the vacuum
expectation values of p, Too'.and,Tij' The non—vanishing‘Lie
derivative of the matter current under the transformation
gives the Coldstone boson, which has its origin‘in the'longi—
tudinal spectrum.

_ We use fhe spectral representations of the t&o point
functions <01Jj(§,t)p(§‘,t'){0> and <O|Jj(§,t53i(§'/t')i0>
and assuﬁing space‘reflection and time.reverséL invariance to
obtain information about the spectrai funC£ions,}to show the
origin of the GQldstone boson in the longitudinal spectrum.
We do not prove thié, but we should be able to show that the
asymptotic field of the Goldstone boson carries the original

Galilei transformation.

The spectral function of <O\p(;,t)p(§‘,t')i0> satisfies
a sum rule, which we can show. This‘spectral function. is
directly related to the dynamic structure factor. Using the

sum rule, and assuming a form for the dynamic structure
L
. g8
factor, we obtain an expr@ﬁSLOn for the freguency spectrum,

&
which agrees qualitativqig with the Feynman expression,



ot

60

except for the factor of/1/m, and a contribution from the
continuum, which lowers the spectrum.
Finally we show the system deviates from ideal gas

behaviour characterized by the relation,
e . , (5.10)

Thus there éxists a virial expansion, and we can hope that
the transverse §pec£rum exists as a result of quantum
cofrections; even though.the orijinal'classicai equations
describe an inviscid fluid.”

We may.conclude from the field théory of hydrod;namics,
that the hydrodynamic equatiOns-describing a.barotropic'
inviscid fluid may be consistently formuiated as field

equations, obtainable from a Lagrangian and Hamiltonian,

through a variational principle. Invariant t?énsﬁormations

. ~ .
and the Noether theorem readily allow us to obtain conserved

currents. Following the usual canonical guantiéation proce-

i

~\3’ "

.dure, yields the quantum field theoryﬂgﬁ tﬁé hydrodyhamic

A
equations in a logical aLd consistent,manner. We are faced

with ﬁhe ambiguity of order of operators ko be taken, when
interpreting a classical product of nen-commu ting variables
in the quantum theory. However, we can suitably generalize
the tlassical expressions by symmetfizing the ampigious*
products,.- and we .can obtain these geﬁeraiized'equagioﬁs

consistently from a hermitean Hamiltonian.
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Finally the spontaneous breakdown of Galilei invariance

&

.gives us a Goldstone™boson,-which originates in, the longitu-
dinal spectrum,
/

Future work-in the £ield théory of*hydrbdynamicé should
involve ﬁhreé major diregtions; complete éxamiﬁation of the
transverse excitéd‘mode{ interacting field, and superfluid.

The transverse excitattons shouiducbntribute to the trahsbort
coefficients, which may be ébtained from the Kubo_type~for—
mulas. There is always the problem of.time,revensal asyﬁmetry,
how can a>quantum field theory,.which is éssﬁmedbtime reversal
7invariant, predict macroscopically observed coefficients which
ioccur in ihherently tiﬁe reversal non—inﬁariant expressions?

A detailed.examination of the linear response theory would be

necessary to answer the guestion.

T
B

The mbst useful interaction.po coﬂéider would be the
electromagnetic interaction. .Thiéﬁméy-wéll be ihpofta;t EO'
hydrodynémic plaémas.

Finally the successful application of quantuﬁ hydro-
dynamicé to superfluids would be tremendously important. At
low enough temperatures, the thermal wavelength of;the‘par—
ticles easily extends over many'étomic'distances. Considering
"such medium as a hyarodynamic s?sfe& is plausible. However

it is not obvious how one would have to modify the equations,

to incorporate thebrole of statistics in superfluidity.

-



APPENDIX

Parity . . .

5

The hydrodynamic equations and commutation relations

are invariant under space reflection,

> > -5
X > x' = =X
space reflection (A D)
t >t =t
if we impose
> P .- - . ’
b (x,t) = ¢ (x',t;) = ¢ (x,t) (A.2)
o o o
> > -+ > ->
where ¢&(x,t) stands for o(x,t), ¢(x,t), p(x,t) and W(x,t}.

The equations are invariant, is easily seen, since the

derivatives transform as

3. ~ 3. = - 3,
1 1
(A.3)
T T 9 T Ay
g
Thus, -
v, (%, t) > vlij(?v,t') =3P (%, e —%—}—‘— x
. ZQP(X',t')
Low
{n?('é',t'>(aiwp(§',t'))+ (afle(?(',t'ﬂnp(;',tf')}
ES 1 > - > ->
= -—{—ai(b(x,t) "‘m["ﬂ'(X,t)aid)(X,t»)+aiw(X,t)ﬂ'(X,t))}
= - v, (x,t) . ' ‘ (A.4)
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Then if we inspect the hydrodynamic equations, we see that
the only combinations that involve Vi or ai always have a
product of these two quantities, thus the hydrodynamic equa-
tions are invariant under spa&e réflection. Now since the

hydrodynamic equations are invariant, we may quantize the

field in the space reflected world, giving.commutation

relations

(47 e oP e = 18 (x'-y") (A.5a)
Yo prog
Xy
P - P - . -> > ‘
'+ 'lt')l ',t' = 6 P! (A.Sb
(v ( ol m(y y)]t;(:t' 18 (x"=y") ~)

and all other commutators zero.

>

But these must be valid for all values of §', v', so we may

vary % to -2'::2. The right hand sides are unchanged, and

t'=t , t'=t , thus

X ox" Ty Ty

137G, e ), 0P (3,6 )] = 16(x-y) = [0(%,t ), 0(3,¢ )]

Yot =t X Y ot o=t
X Ty Xy
(A.6a)
5 Gt 7T (T, e ) ) = 16 0e-y) = [ (X, t ) 0 (¥, t )}
- Y ot o=t Yt =t

X 'y Xy

14
all all other commutators are zero.
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Therefore the commutation relations are invariant, which
implies the existence of a unitary transformation Gp such
~ that . .
P, > - ’

¢a(x,t) =G_."¢ (x,t)G = ¢ (-x,t) (A.7)

> - - ! + -+

where ¢a(x,t) stands for ¢(x,t), Pp{x,t), po(x,t) and n(x,t),
and the vacuum is invariant under GP'

Then,

<01I. (%, ) (%', t) o> =<0lclty. (X, )6 6 o (X', )G |
J P 3 p

pCp o) 0>

P

<01J§(§,t)p (x',t')]0>

- <OI%(QP(;,t)V§)(_}Z,t) +V?(§,t)p (x,t))p (x',t")]0>
{
= > M

= —<O|Jj(—x,t)p(~x',t')|0> ) _(A.8)

So
L (et 0o [y o @06 () = - —i [algemike GEY
el 5oy R kgmo) = = s |
(2m) 0 {2m)
-ik_(t-t") . ~
x e © J k.o, (K, § (k_~w) . (A.9)
j 1l o .
0

Equating Fourier coeffieients after changing kK-> 2k in the

right hand side, we get

ol<§,m) = ol(-i,w9 i : (A.10)
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The third spectral function gives

> > . _ -1 _l . 'V
<OIJj(X,t)Ji(X £ 0> = <0G 7T (X, 8)GGLTT. (X7, £')G,|0>
N &
, - = <0]a% (X, )3t (X, £ |o>
j b
, = <o|Jj(—§)t)Ji(—§',t')iO> : (A.11)
£ S
Replacing with the spectral representation,
1[4 ik(x-x") | kiky > kiky
d'ke dw < (6. .—-f;—l)c (K, w) +<——710'(1,m)6(k -w)
3 | J ij 2 T > L o
(2m) 5 (k) (k)

1 4 ik (xex) [ kil L kyky
= 3(d ke Jdm{(d.:~:3§06TGkAM+;:71%f¥§m%60&;m)
(2m) ! 5 1w (K

(A.12)

where k -+ -k has already been done in the right hand side.
Equating Fourier coefficients, then multiplying by ki and

summing over i, gives

o, (k,w) = oL(—ﬁ,m) . , (A.13)

k.k. k.k. :
(6,.-—=5Do (K,w) = (5,.- =510 (-k,a) (A.14)
i 2 L T2 T ! !
RS ) 5
as the second term cancels from both sides. Taking the trace

of this, over i and j, gives
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o (k,w) = ¢ (-kK,w) . (A.15)

Time Reversal

-

Time reversal is the transformation

> - >
X + X' = x

_time reversal , ' o (A.16)
t > t' = -t

and the hydrodynamic equations are invariant, if we impose

¢(§,t) > ¢R(§',t') = - ¢T(§,t) . (A.i7a)
P, - NG, e = - T ) (A.17b)
o (%, t) » oR(§',t‘> = pT(§,t) (A.17c)
m(E, 8 - aR(E, ) = at (ke b C (a.17d)
where T stands for the transpose. This is readily seen if we
notice
3. + 3! =2, )
i i i
: 1
r (A.18)
Iy 7 at = —at)

and
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v e - VE G, e =3 e (R t)-—ﬁ—%———x
. _,_,\/4—\ ' '
2p (x',t")

PR e (i e ))4-[8;@R(§‘,t'))ﬂR(;',t')}

]

= —[-8-¢T(X,t)-————~—(wr(;,t)(8.tpT (%, t))+3, 0 (X, )T (;:,t)))
1. T > 1 1
2p7 (%, t) :
= Vi) (A.19)
The Bernoulli eqguation . - o
1 ) " dp (p)
_l > 1 L > > ;—>- -r.L - > .
=5V +2[2 TV + VyYT) -V + V 2p[n(v1p)+(vw)n)}|+j o
Po
(A.20)
taking the transpose,
2 .
s (woT) = LT e (T T T ) (T
t 2 2 2pT ) ( . o
T .
o ‘
1 (T2, T > Ty T dp_(pT) '
T(ﬂ (V(=p7)) +AV(=y))m j|+ J I (p.21)
2p P
Po
where minus signs have been inserted. Now_repiacing
> -> - '
X > X' =X 9. = 3. = 3
1 1 1 .
% - (A.22)
3 Y ' - -
t > t' = -t oy 7 94 St

and using the impbsed transformation properties of the field,

we find
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t'>-t'=1t, and replace §', ;' with x

68

(fB G, e (TG, en) + (FroR G, en)) R G, e) - TR G, e

A LA A AT AE D
. 20 (xl,tl)
v QR(}E|,t|)
>1 R ,> v R, >, d (QR)
+H{ VT (k) (x',tW)} +J ==E S (A.23)
5 (™)

Therefore the Bernoulli equation 1s invariant under time

reversal. .The remaining equations can be verified to be
invariant in just as straightforward a manner. Then we
may quantize the system in the time reversed coordinate system,

thus we et the commutation relations

ToR G, e NG, ) = 18§(X'=-y") (A.24a)
x Y piogo
Xy
R G, e, e, e = 16(X'=v")  (A.24b)
X Y tl:tl
X Y

all other commutators zero.

Now these are valid for all times t§:=t =t', so if we vary

, since these are

equal, we obtain

heY



R, )., o8 (T, £ )] = 1§ (%~v) (A.25a)
X Y b —¢ ;
Xy
R, ) R, )] = 18 (%-y) . (A.25Db)
: X v _
t =t - =
Xy
Then
R > > o - >
[Cb ( ltx)lo (YIt )] :ld(x"y) = [ﬁ(x,t ),Q(y,t )]
y t =t Y t =t
Xy X Y
(A.26a)
- R -, > 5
R, e ), 08 (g, e )] =18(X-y) = [V (x,t ) ,0(y,t )]
Y ¢ =t t =t
X 'y Xy
(A.26b)
the equal time commutation relations are invariant. 6o there

exists a -unitary transformation_GR, such that

~3T (X, -t) (A.27a)

=
el
x+
o+
|

-1 >
\ Go <t>(x,t)GR =
wR(Q,t)==G;lw(§,t)GR = T (% -0  (A.27Db)
o (%, 1) =T (R, 006, = T (X, -8) (A.27¢)
G =etr ke, = 1t (%, -0) (A.274d)
) .
~and -GR{0> = |0o>

Now looking at the two point function,

69
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/
! 2> T vy ! -1,= -1 ' 1
<0|Jj(x,t)p§x  t )|O>::<O|GR (%, £) GG o (x", t )GR[O>
=<0|J (x,t)@(x',t')iw
:—<O[J§(x,—t)pT(§',—£‘)IO>
> T,
=—<O[[p(x',—t')Jj(x,—t)) 0>
' > I
=—<o[p(x',—t')Jj(x,—t)10>
v -
*
=—<0|Jj(§,—t)p(§',—t')10> . (n.28)
Replacing with the spectral representation|
L ot etk )J( duk oy (K, 0)8 (k_-w)
(2m) -
3 g -ike(R=X') -k (t-t') T N
= - 3Jd k e e © J dmk.ol(k,m)d(ko—w)
(2m) ™ 5 ] .
- (A.29)

Changing E—*—ﬁ in the right hand side, and equating Fourier

coefficients, we get

f,”<'k’,w> = ¢¥ (=K, w) ) (A.30)

Now - ng the result from space reflection invariance, we

obtain
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’

o (k,w) = o (k,0) . | (A.31)

The third spectral function

<o]Jj(§,t)J.(

T 1y | — -1 > - T ' ~
Jxt )10>=<0[Gy Jj(X,t)GRGR Ji(X 1) GR1 0
<ol ¥, & e o>
B 1
=<O[JT(§,—t)J?(§',—tWJO>
¥ J L
T
=<0l (T, (X', -t") T, (x,~t)) |0>
L ]
\
, =<0|Ji(§',—t')J (x,-t)]0>
=<o|Jj(2,—t)Ji(§-,—t'>¢0>* . (A.32)
Using the spectral representations,
. P ‘k.k k. k
4 -x' i
L 7| 4% L (e=x ) de{(@i.——i—%) o (Row) + = 20L(k,m)}6(k - )
(2m) 5 I (k) (k)
CiR L %-%' -ik (t-t') T )
1 { 4 o}
= 3 d'ke e {dw X
2 J J
(2m) ) 5
kik. . > kik, .
{(Gij-?%7§)oT(k,m)4-?§;£0L(k,m)}6(ko—w) . (An.33)

Changing k>~ -k on the right hand side, then equating Fourier

coefficients,
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-9

(n.34)

multiplying by ki and summing over 1, the loﬁgitudinal part

separates, giving

oL(K,d) = o (=K, , (A.35)

then‘this drops out of the equation, and taking the trace
yields, <

: \
o (K,w) = o;(—ﬁ,w) ) (A.36)

f
Now applying the results of space reflection invariance, we

get . - ~
oL(i,w) = Gz(i,m) » o (A.37a)
oT<§,h) - g;(i,m) l é;.37b)
Now we can easily show
<0 1J.(X,t),J. (x*,£)1]0>  =<0]J.(%x, )T, (x',t)|0>
] 1 t-:t' j 1 S
- <olJ.(§,t)J.(§',t)|O>*
] € .
o < [ .
= 1 [d%<elk(x X )J dmi —j—l)oT(k m)+~——%6 U(&ké(k —)
(2m) (k) (k)
1 & iR | CoRgk e KK
_ 3Jd ke J dw{(éi.——-—gﬁOT(k,mY+—:7% (k m)fé —m)
(2m) 5 I (k) (k)

(A.38)
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-+

changing K+ -k in the second term,

> K.k, K.k
1 J 4. ik. (x-x') | ( i > i
= d ke dwq{ (3§ .——%—+ Yo, (k,w)+—=—o. (k,w)
(2m)°> é 144 (k)2 T (k)2 T .
k k. k. )
- (8, -2 o¥(-k,w)+—H0g (—k,m)}é(k -w) (A.39)
13 @2 T (k)2 L

this obviously vanishes from the above results.



1)

3)

4)

9)

10)

11)

12)

13)

14)

15)

16)

17)

'REFERENCES

Bateman, H., Proc. Roy. Soc. Lond. A 125, 598 (1929).

Hill, M.J.M., Phil. Trans. A 185, 213 (1894).

Clebsch, A., J. reine angew. Math. 56, 1 (1859).

Lamb, H., Hydrodynamics, 6th ed., Cambridge University

Press (1932).

Sommerfeld, A., Mechanics of Dgformable Bqdies, Academic
Press (1950).

Same as ref. 1.

Takahashi, Y., Phys.*Revz D 3, No. 2, 622 (1971) .
Takahashi, Y., Proceedings of the Royal Irish Academy
71, Section A, No. 1 (1971) . :

Landau, L., Journal of Physics 5, No. 1, 71 (1%41).

Allcock, G.R. and Kuper, C.G., Pro¢c. Roy. Soc. A 231,

226 (1955).

Landau, L. and Khalatnikov, I., Jour. exp. theor. Phys.

U.S.S.R. 19, 637, 709 (1949).

Ziman, J.M., Proc. Roy. Soc. A 219, 257 (1953).

Same as ref. 9).

Goldstone, J., Salam, A. and Weinberg S., Phys. Rev. 127,

. No. 3, 965 (1962).

Takahashi, Y., Phys. Rev. D 15, No. 6, 1589 (1977).
Takahashi, v. and Umezawa, H., Collective Phenomena 2,
55 (1975).

Takahashi, Y., Phys. Letters 67A, No. 5,6, 385 (1978).



18)

19)

20)

21)

75

Same as réf. 15).

Kubo, R., Jdurnal of the Phys. Soc. of Japan 12,

No. 6, 570 (1957). | | |
Luttinger, J.M., Phys. Rev. lgé,'ﬁo. 6A, 1505 (1964). .
Kadanoff, L.P. and Martin, P.C., Ann. Phys. (N.Y;) 24;

419 - (1963) .



