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ABSTRACT 

Masonry, as a conventional construction material, is widely used due to its durability, strength, 

hygrothermal performance, and aesthetics. However, the behaviour of masonry structures is not 

fully comprehended, especially in the face of uncertainty. This lack of understating on the 

behaviour of masonry structures is usually compensated by imposing overly conservative design 

provisions. Inherent uncertainties in the material and geometric properties of masonry structures 

result in large scatter in the experimentally or analytically predicted behaviour. Thus, 

understanding the influence of these uncertainties on the structural behaviour of masonry 

structures is of paramount importance to lay down the basis for reliable structural design.  

This thesis focuses on the uncertainty analysis of the out-of-plane behaviour of reinforced 

concrete masonry walls using mechanics-based finite element (FE) models and experimental 

testing data. Specifically, this thesis includes three main phases. In the first phase, the 

probabilistic behaviour of reinforced concrete masonry walls is investigated, employing 

mechanics-based macro FE models in conjunction with Monte Carlo simulations (MCS). The 

effect of the inherited uncertainties in the material and geometric properties on different response 

quantities (e.g., load capacity and deformation capacity) is also investigated through a variance-

based global sensitivity analysis. Additionally, the model uncertainty in FE-predicted load 

capacity is quantified to characterize the model error, which is found to be influential compared 

to geometric and material uncertainties, though FE models are commonly used for numerical 

studies.      

The second phase focuses on assessing the reliability of reinforced concrete masonry walls 

loaded out-of-plane with the limit state functions formulated employing the developed macro FE 

models. In this phase, the importance of model uncertainty on the reliability assessment is 
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revealed. The reliability assessment conducted considering different global and local failure 

criteria provides insights into their effect on the safety levels of walls. The reliability assessment 

is found to be sensitive to the adopted failure criteria. In addition, different factors are found to 

influence the reliability assessment of the walls designed according to the masonry design code; 

specifically, walls with different slenderness ratios and load eccentricities show inconsistent 

reliability levels.   

The model errors associated with the out-of-plane load capacity provided in masonry design 

codes in North America (i.e., CSA S304-14 and TMS 402-16) are investigated in the third phase. 

FE-based and experimental data are used to quantify the model error associated with design 

code-based models. In addition, the sensitivity of the model error to the variations associated 

with different design parameters is investigated. It is found that CSA S304-14 is overly 

conservative for highly slender walls with low load eccentricities, while TMS 402-16 gives more 

reasonable capacity predictions for such walls. However, TMS 402-16 is found to overestimate 

the capacities of highly slender walls with relatively high reinforcement ratios and load 

eccentricities. The code-based models are employed in reliability assessment to investigate the 

influence of the accuracy of the behavioural model on the reliability of the masonry walls. It is 

found that using the code-based models in the reliability assessment without considering their 

model error results in significantly biased reliability results. This highlights the need and 

potential room for design code model improvement.  
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CHAPTER 1: Introduction 

1.1 Background 

Masonry is one of the ancient building materials used by humans to build magnificent structures 

that withstand a variety of loads for thousands of years.  In the meantime, masonry is still widely 

used as a building material for its durability, strength, hygrothermal performance, and aesthetics. 

However, understanding the behaviour of masonry walls loaded out-of-plane is still considered 

to be a challenging task. Due to the complex behaviour of masonry attributed to the inherited 

heterogeneity and complex interaction between different components (i.e., unit, mortar, grout, 

and steel reinforcement). In addition, the behaviour of masonry walls is highly affected by the 

inherent uncertainties associated with their material and geometric properties. Such uncertainties 

are typically neglected, or at most implicitly considered, within the scope of deterministic 

analysis and design. Specifically, this problem is often addressed by adopting a conservative 

approach and increasing the safety margins in the design codes. In addition to the uncertainties in 

material and geometric properties, the simplified design code models and numerical models used 

to predict the behaviour of masonry structures are not accurate. In fact, every model is associated 

with a model error. However, this error is typically neglected without its importance quantified, 

although it can be relatively significant compared to other uncertainties. To this end, considering 

the different uncertainties in material and geometric properties as well as the model uncertainty 

is essential to comprehend the uncertain behaviour of masonry structures. Without rigorous 

quantification and incorporation of the aforementioned uncertainties, the decision-making in the 

design and analysis process of masonry structures can be misinformative. 
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1.2 Problem Statement and Motivation 

Different numerical models and simplified analytical models (e.g., design code equations or 

procedures) were developed to predict the behaviour or load-bearing capacities of masonry 

structures. The error associated with the prediction model in addition to the uncertainties 

associated with the material and geometric properties should be considered to support the design 

and analysis process. As such, this thesis aims to understand the effect of the aforementioned 

uncertainties on the probabilistic behaviour and reliability assessment of masonry structures, 

emphasizing model uncertainty.  

Inherent uncertainties in the material and geometric properties of masonry structures result in 

large scatter in the experimentally or analytically predicted behaviour. Thus, understanding the 

influence of these uncertainties on the structural behaviour of masonry structures is of paramount 

importance to lay down the basis for reliable structural design, instead of imposing unduly 

conservative provisions by the design codes. The aforementioned uncertainties can be 

incorporated into the behavioural model (e.g., finite element (FE) models) to perform 

probabilistic structural analysis or reliability assessment. However, the uncertainty associated 

with the predictions can affect the reliability of the aforementioned analyses.  Accordingly, this 

necessitates the rigorous consideration of the model uncertainty in the uncertainty analysis 

framework (e.g., probabilistic structural analysis and reliability assessment).  

1.3 Objectives, Methods, and Scope 

This thesis aims to investigate the effect of different uncertainties on the probabilistic behaviour 

and reliability of reinforced concrete masonry walls under out-of-plane loading. To do so, the 
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following sub-objectives are identified. In addition, the scope and methods corresponding to each 

sub-objective are illustrated as follows.  

• Investigating the probabilistic structural behaviour of reinforced concrete masonry walls 

loaded out-of-plane  

o A mechanics-based macro FE element model is developed to predict the global 

behaviour of the reinforced masonry walls.  

o The pertinent material and geometric uncertainties are incorporated into the FE 

models and propagated to different response quantities (e.g., load capacity and 

ductility) using Monte Carlo simulations (MCS). 

o The uncertainty associated with the FE models prediction of load capacity is 

quantified using an experimental database compiled from the literature. Hence, 

the effect of the model uncertainty on the probabilistic capacity is investigated.  

o The relative importance of the considered uncertainties with respect to the load 

capacity and ductility is quantified using variance-based global sensitivity 

analysis.  

• Assessing the reliability of reinforced concrete masonry walls loaded out-of-plane  

o The developed macro FE models are used to formulate the limit-state function for 

the reliability problems for walls subjected to different out-of-plane loads (e.g., 

eccentric vertical loads and wind loads) considering slenderness effects. 

o The reliability assessment is conducted using the efficient subset simulations 

algorithm in conjunction with Polynomial-Chaos-Kriging (PCK) surrogate 

models. 
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o The influence of the model error and the different failure criteria on the reliability 

assessment is investigated. 

• Examining the model error associated with the masonry design codes 

o The error of the North American codes, CSA S304-14 and TMS 402-16, is 

quantified probabilistically using well-validated FE-based data. 

o The sensitivity of the model error to the variations of different design parameters 

(e.g., load eccentricity, slenderness ratio, masonry compressive strength and 

reinforcement ratio) is investigated. 

o The design codes are used to conduct reliability assessment to assess the influence 

of the accuracy of the behavioural model on the reliability of the masonry walls. 

1.4 Organization of Thesis 

The thesis includes six chapters, and these chapters are organized as follows:  

• Chapter 1 introduces the research background, problem statement, research motivation, 

objectives, methods, and scope of this thesis work.  

• Chapter 2 presents a comprehensive literature review, including existing experimental 

testing of concrete masonry walls, numerical models, uncertainty analysis, probabilistic 

structural analysis methods and applications to masonry walls, relevant aspects specified 

in masonry design codes, as well as structural reliability analysis methods and 

applications to masonry structures.  

• Chapter 3 focuses on the probabilistic structural analysis of reinforced concrete masonry 

walls under out-of-plane loading based on FE models. Uncertainties considered include 

those in material and geometric properties, as well as the uncertainty associated with the 
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FE-prediction of load-bearing capacity of masonry walls, which is quantified using an 

experimental database compiled from the literature. Furthermore, variance-based global 

sensitivity analysis is also presented to show the relative importance of material and 

geometric properties, as well as the model uncertainty. 

• Chapter 4 provides FE-based reliability analysis of reinforced concrete masonry walls 

considering slenderness effects. This shows the importance of model uncertainty on the 

reliability assessment and relative conservatism associated with different failure criteria 

that can be used in the design process.  

• Chapter 5 examines the design code models and quantifies the error associated with these 

codes in a probabilistic manner. It is found that reliability assessment results can be 

significantly biased when assuming design code models are accurate without model error.  

• Chapter 6 summarizes the findings of this thesis, conclusions, limitations, and 

recommendations for future work. 
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CHAPTER 2: Literature Review 

2.1 Introduction  

Considerable research efforts were devoted to investigate and comprehend the out-of-plane 

(OOP) behaviour of reinforced concrete masonry walls under eccentric vertical loads or lateral 

loads (e.g., wind). For instance, different experimental tests were conducted to investigate the 

behavioural characteristics of masonry walls, such as the second-order effects, the effect of 

boundary conditions, and the effective flexural rigidity (e.g., Yokel et al. 1970, Hatzinkolas et al. 

1978, ACI-SEASC 1982, Suwalski 1986, Aridru 1997, Liu and Dawe 2001, Mohsin 2005). 

Among these tests, very few focused on highly slender walls (i.e., with height-to-thickness ratio, 

or slenderness ratio (h/t) >30). The lack of understanding of the behaviour of such walls due to 

the scarcity of experimental data is compensated, hopefully by overly conservative design code 

provision (Mohsin 2005). As complementary to the experimental studies, several researchers 

have worked on developing mechanics-based numerical models or empirical models to study or 

predict the behaviour of masonry structures. However, the accuracy of the aforementioned 

models is a key aspect of any subsequent analysis. In that sense, special attention is given in this 

study to the significance of model uncertainty for mechanics-based finite element (FE) models 

and design codes-based models, which are commonly used for the OOP behaviour and load 

capacity prediction.  In the face of uncertainty, countable studies considered the uncertainties 

inherent in the material and geometric properties of masonry structures. Thus, this thesis will 

mainly focus on uncertainty analysis of masonry walls under OOP loading mainly including four 

types of problems. They are: (1) probabilistic structural behaviour analysis, (2) variance-based 

global sensitivity analysis, (3) model uncertainty quantification or statistical model error 
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assessment using experimental data, and (4) structural reliability analysis of masonry walls using 

FE models and design code modes.  

This chapter provides a brief review of the relevant research on masonry walls, mainly in terms 

of experimental testing, numerical modelling, model error quantification, probabilistic structural 

analysis, structural reliability analysis, and the investigation of the relative conservatism 

associated with the design codes. 

2.2 Experimental Studies 

To understand the behaviour of masonry structures, several experimental programs were 

conducted to study reinforced concrete masonry walls under out-of-plane (OOP) loading such as 

(e.g., Yokel et al. 1970, Hatzinkolas et al. 1978, ACI-SEASC 1982, Suwalski 1986, Aridru 1997, 

Liu and Dawe 2001, Mohsin 2005). The aforementioned experimental programs were conducted 

with different aims such as understanding the behaviour of highly slender walls (e.g., Yokel et al. 

1970, ACI-SEASC 1982), evaluating the effective flexural rigidity (e.g., Hatzinkolas et al. 1978, 

Aridru 1997, Liu and Dawe 2001), evaluating the effect of the load eccentricity on the load-

bearing capacity and failure modes (e.g., Hatzinkolas et al. 1978, Suwalski 1986), and the effect 

of the support conditions (e.g., Mohsin 2005). The aforementioned experimental programs are 

further discussed in this section.  

2.2.1 Yokel et al. (1970)  

In this experimental program, a total of 60 concrete masonry walls were tested under vertical 

loads applied at different eccentricities.  The tested walls had various slenderness ratios (h/t) 

ranging from 21 to 43 and the same boundary conditions which were designed to resemble a 

fixed-roller state. The findings of this study revealed that the failure mode was highly sensitive to 
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the slenderness ratio (h/t) because walls with lower slenderness ratios (e.g., h/t = 21) tended to 

fail due to masonry crushing under compression while highly slender walls (e.g., h/t = 43) were 

noticed to exhibit flexure failure with excessive deformation accompanied by stiffness 

degradation. It was found that the load capacity of the slender concrete masonry walls can be 

conservatively predicted by the moment magnifier method, which is a simplified approach to 

account for second-order effects.    

2.2.2 Hatzinkolas et al.  (1978) 

A total of 68 concrete masonry walls were tested under vertical loads applied at different 

eccentricities.  The slenderness ratio (h/t) of the tested walls ranged from 14 to 24. All of the 

walls were tested in pinned-roller conditions.  The experimental program was designed to 

investigate the effect of different factors (e.g., load eccentricity (e), slenderness ratios) on the 

behaviour of masonry walls. It was found that the axial load capacity decreased with increasing 

eccentricity and/or slenderness ratios. This trend was attributed to the effect of the eccentricity 

and slenderness ratios on the effective flexural rigidity. Other factors were also reported to be 

influential regarding the effective flexural rigidity, such as stress distribution and intensity on the 

cross-section, and tensile bond strength between the mortar and the block.    Incorporating the 

aforementioned factors in the moment magnifier method led to more realistic predictions when 

compared to the experimental results.  

2.2.3 ACI-SEASC (1982) 

To investigate the behaviour of highly slender reinforced masonry walls, a total of 30 walls were 

tested with slenderness ratios (h/t) varying from 30 to 51. All the walls were tested in pinned-

roller boundary conditions. Loading-wise, an eccentric vertical load was applied to simulate the 
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gravity loads, followed by lateral loads slowly applied with increasing magnitude. The 

experimental load-deflection curves of the tested walls indicated the ability of highly slender 

masonry walls to efficiently withstand lateral loads in a ductile manner, even after steel bars 

yielding. Additionally, walls showed no evidence of lateral instability within the range of the 

applied vertical load (i.e., less than 10% of the axial load capacity). Intuitively, second-order 

effects were most pronounced in thinner walls. The findings of this study inspired the later 

design provisions in different aspects, such as the limitations on the minimum and maximum 

reinforcement ratios and the maximum permissible vertical loads.  

2.2.4 Suwalski (1986) 

A total of 14 concrete masonry walls were tested under vertical loading with various eccentricity 

ratios and pure bending. All the walls had a slenderness ratio (h/t) of 17 and were tested in 

pinned-roller conditions.  The experimental findings indicated that the axial load capacity was 

affected by the load eccentricity and the slenderness of the walls, which conformed to the 

findings reported in (Hatzinkolas et al. 1978). 

2.2.5 Aridru (1997)  

Aiming to develop a rigorous approach for evaluating the effective flexural rigidity of masonry 

walls, a total of 73 concrete masonry walls were tested under vertical loading applied axially and 

at various eccentricities. The slenderness ratio (h/t) of the tested walls ranged from 7 to 9.5. The 

walls were all tested in pinned-roller conditions. Different aspects were investigated within the 

scope of this experimental program, such as the effect of load eccentricities, grouting and 

reinforcement configuration. Conforming to the findings of the aforementioned experimental 

programs, the load eccentricity was shown to affect the failure pattern substantially. The walls 
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associated with lower eccentricities failed mainly by crushing of the masonry units in 

compression. As eccentricity increased, the failure mode shifted from compression to flexural. 

However, in the case of partially grouted cores, the failure was attributed to diagonal splitting 

cracks. Finally, the effective flexural rigidity was reported to be influenced mainly by the non-

linearities associated with the stress-strain behaviour of masonry for walls with lower load 

eccentricities. On the contrary, the flexural tensile cracking was most influential for the effective 

flexural rigidity of walls with higher load eccentricities.  

2.2.6 Liu & Dawe (2001) 

As an extension to the experimental work presented in (Adridu 1997), a total of 36 reinforced 

masonry walls were tested under different combinations of axial and lateral loads. In addition, 

this study focused on the effect of the pre-compression level on the flexural rigidity and out-of-

plane load capacity. The experimental findings of this study revealed that the failure pattern was 

influenced by the axial pre-compression level. The walls loaded with lower pre-compression 

levels (i.e., less than 30% of the axial load capacity) were found to fail due to tensile cracking 

along the mid-height bed joints. However, for very high pre-compression levels (i.e., more than 

60% of the axial load capacity), the failure pattern shifted to explosive crushing accompanied by 

web splitting. Most importantly, the experimental results revealed that the effective flexural 

rigidity was correlated to the pre-compression levels and the load eccentricity. Finally, the 

Canadian design provisions (CSA S304-94) were found to produce very conservative predictions 

for the effective flexural rigidity for walls loaded with relatively low load eccentricities 

(e.g.,  𝑒 𝑡⁄ < 0.4). On the contrary, slightly un-conservative predictions were associated with 

walls loaded with larger eccentricities (e.g., 𝑒 𝑡⁄ > 0.4).  
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2.2.7 Mohsin (2005) 

To investigate the behaviour of slender reinforced concrete masonry walls considering the 

rotational stiffness of the support conditions provided by the strip footings, a total of 8 walls 

were tested under eccentric vertical loads. The experimental findings showed that incorporating 

the rotational stiffness at the support substantially increased the out-of-plane load capacity. 

Additionally, walls with higher support rotational stiffness were less vulnerable to the 

slenderness effect as they were associated with higher effective flexural rigidity. Based on these 

observations, the study concluded that ignoring the support stiffness for highly slender walls 

(i.e., h/t > 30) was not justified. Furthermore, the study found that the Canadian design 

provisions (CSA S304-04) significantly underestimate the effective flexural rigidity for all the 

tested walls, even those tested without base support stiffness.  

2.3 Numerical Studies 

As complementary to experimental studies, various numerical modelling approaches have been 

developed to predict the behaviour of reinforced concrete masonry walls. The modelling 

approaches can be mainly categorized into two main families: micro and macro modelling. The 

micro modelling approach explicitly accounts for the material heterogeneity (i.e., unit, mortar, 

and/or unit-mortar interfaces) and the actual texture of masonry composites. Thus, this approach 

allows to capture local failure in mortar joints and provides detailed insight into the behaviour of 

masonry walls. On the contrary, the macro modelling approach ignores the inhomogeneity of 

masonry walls and offers a simpler and more efficient alternative to capture the global behaviour 

of masonry walls. The previous research on the aforementioned two modelling approaches is 

discussed in this section. 
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2.3.1 Micro models 

One of the first implementations of the micro modelling approach was presented in (Page 1978). 

In this study, elastic plane-stress continuum elements were used to model the masonry units, 

whereas the mortar joints were defined using non-linear linkage elements. However, the model 

was not able to account for the non-linearities associated with the masonry units. In addition, the 

model was not able to predict the ultimate load capacity due to the absence of defined failure 

criteria for the masonry (e.g., compression cap for the units or the joints, shear strength). 

Afterwards, Ali et al. (1986) developed a non-linear micro FE model and incorporated different 

local failure criteria (e.g., bond failure), resulting in a relatively good match between the FE 

simulations with the experimental tests.  After that, the micro modelling approach was used to 

predict complex failure mechanisms such as web-splitting, as reported in (Sayed-Ahmed and 

Shrive 1994). The well-known interface-based micro modelling approach was first introduced by 

Lotfi and Shing (1994). The mortar layers were modelled as zero-thickness interface elements, 

while the masonry units were modelled based on a smeared crack approach. The use of the 

interface elements was shown to be efficient in accounting for different local failure 

mechanisms. Afterwards, Lourenco and Rots (1997) extended the interface-based modelling 

approach by developing a multi-surface interface element. In that sense, all the non-linearities 

related to the mortar joints and bonding between mortar and units and the compressive failure of 

masonry were incorporated in the zero-thickness interface elements. The aforementioned multi-

surface interface approach was later used to model the behaviour of partially grouted masonry 

walls, accompanied by a smeared crack model for masonry units (Shing and Cao 1997). 

However, the aforementioned developed models were more suited to walls subjected to in-plane 

(IP) loading (Mohsin 2005).  
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The interface-based micro modelling approach was introduced to model masonry walls under 

out-of-plane loadings in (Martini 1997). However, this study reported considerable discrepancies 

between the experimental tests and numerical simulations. These discrepancies were attributed to 

the lack of information on different modelling parameters and the negligence of the non-linear 

properties of the masonry units. The study also concluded that the proposed model was 

computationally intensive, and the same level of accuracy can be obtained using simpler and 

more efficient models. Recently, more accurate micro models were developed to model the out-

of-plane behaviour of masonry walls. For instance, Kuang and Yuen (2013) accurately captured 

the non-linear behaviour and failure modes of masonry-infilled reinforced concrete frames under 

different combinations of IP and OOP loads. D’Altri et al. (2018) developed a detailed micro 

model that was employed to predict the behaviour of masonry walls subjected to IP and OOP 

loads. In this study, the mortar joints were modelled explicitly while the bonding between the 

mortar joints and the masonry units was modelled using a zero-thickness rigid-cohesive-

frictional interface.  

However, all the introduced micro models were not suited to applications that require numerous 

simulations (e.g., reliability analysis of masonry walls) due to their computational expense. In 

addition, they were more applicable to unreinforced masonry walls and more advanced 

modelling strategies are required for reinforced masonry walls (Koutromanos et al. 2011). 

Alternatively, the macro modelling approach can be efficiently employed to predict the 

behaviour of masonry structures, especially for cases when global behaviour is of interest.  
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2.3.2 Macro models 

An early application of the macro modelling approach was introduced by Lourenco et al. (1995). 

In this model, the masonry units and joints were smeared out in a 2D anisotropic homogenous 

continuum based on the average stress/strain relationships of the composite material. In that 

sense, the model neglected the interactions between the different constitutes. However, the 

model was proved to be capable of capturing the global behaviour of sufficiently large 

unreinforced masonry walls. Similar work can be found in Lopez et al. (1999).  

In the context of masonry walls under OOP loading, the beam-based approach was proved well-

suited to sufficiently tall walls subjected to OOP loading with negligible edge effects (Ganduscio 

and Romao 1997). In that sense, the beam-based macro modelling approach was considered a 

viable alternative for modelling slender unreinforced masonry walls. For instance, Lu (2003) 

adopted this approach to predict the global behaviour of slender unreinforced masonry walls 

considering the material and geometric non-linearities. The beam-based macro modelling 

approach was proven to successfully reproduce the entire load-deflection curve for the 

considered experimental tests.   

Similarly, the beam-based macro modelling approach provides a viable and efficient alternative 

for modelling reinforced slender masonry walls. For instance, Wang et al. (1997) developed a 

beam-based macro model to model the behaviour of slender masonry cavity walls under 

eccentric vertical loads.  In this model, the modelling parameters of masonry were derived based 

on the corresponding prism tests. Afterwards, they were fed into a predefined concrete material 

model in Abaqus. The model was able to reproduce the experimental results in an accurate and 

computationally efficient way. Similarly, Liu (2002) developed beam-based macro models to 
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predict the OOP behaviour of reinforced masonry walls considering different parameters (e.g., 

eccentricity ratios and slenderness ratios). The developed models were validated against 

experimental simulations, and they were shown to be providing predictions with acceptable 

accuracy and sufficient efficiency. After that, the beam-based macro modelling approach was 

widely used by other researchers (e.g., Mohsin 2005, Pettit 2020, Bilotta and Cruz 2021) for 

reinforced masonry walls with different aims, such as evaluating the flexural rigidity and the 

effect of the different boundary conditions. 

In this thesis, the beam-based macro modelling approach is employed to study the probabilistic 

behaviour and the reliability of reinforced concrete masonry walls subjected to OOP loading. 

This modelling approach is well-suited to the considered applications as it provides predictions 

with sufficient accuracy at relatively reasonable computational cost, which is of paramount 

importance for such computationally intensive applications.  

Although many efforts were conducted to develop numerical models of masonry walls, the 

masonry wall behaviour is highly affected by different uncertainties (e.g., geometrical and 

material uncertainties) that remain outside of the capability of deterministic prediction models 

(D'Altri et al., 2019). The inherent uncertainty is typically treated in the design provisions 

conservatively by increasing the safety margin to a certain degree. Accordingly, to lay down the 

basis for a reliable structural design, rigorous evaluation of the uncertainty in the behaviour of 

masonry structures in a probabilistic manner is of paramount importance.  

2.4 Probabilistic Structural Analysis  

Different methods were developed to propagate the input uncertainties (e.g., uncertainties in 

material and geometric properties) into output uncertainties in response quantities (e.g., load 
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capacity of masonry walls). These methods include approximate methods such as first-order 

second-moment (FOSM) (Barbato et al. 2010), and stochastic sampling methods such as crude 

Monte Carlo simulation (MCS) (Metropolis and Ulam 1949, Dimov and Georgieva 2010, 

Barbato et al. 2014). FOSM is widely adopted in the literature due to its relative simplicity 

(Athmani et al. 2018). However, it is associated with several drawbacks that can emerge from the 

embedded assumptions, such as the linearization mapping between the response quantities and 

the input parameters and the inability to fully incorporate input parameters distributions 

information (Barbato et al. 2010). On the contrary, the stochastic sampling method (e.g., MCS) 

allows incorporating the non-linearities associated with complex systems in the probabilistic 

analysis and is considered more accurate than the approximate methods.  More importantly, it is 

very easy to use, which often makes it the first choice of engineers.  

Specific to applications to probabilistic analysis of masonry structures, several studies were 

conducted to investigate the effect of different uncertainties on the probabilistic behaviour of 

unreinforced masonry walls by employing MCS. For instance, (Li et al. 2014) investigated the 

probabilistic behaviour of unreinforced masonry walls loaded in vertical bending. In this study, 

probabilistic analysis was used to quantify the statistical characteristics of different behavioural 

characteristics (e.g., base cracking load, mid-height cracking load, and the peak load capacity). 

In addition, the effect of the unit-to-unit spatial variability of the flexural bond strength on the 

aforementioned behavioural characteristics was also considered. Afterwards, the same authors 

conducted a similar analysis on unreinforced masonry walls loaded in horizontal bending (Li et 

al. 2016).  Similarly, Zhu et al. (2017) developed a stochastic micro FE model for hollow 

concrete masonry wallets loaded in compression. The uncertainties associated with different 
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material parameters were incorporated in the FE model, and thus the probabilistic compressive 

strength was obtained. More recently, Isfeld et al. (2021) developed a stochastic micro FE model 

for unreinforced walls of different heights subjected to OOP loading. The outcomes of this study 

revealed that the narrow unreinforced walls were more sensitive to the variations associated with 

material parameters and spatial variabilities.  

To the best of the author’s knowledge, no previous studies investigated the probabilistic 

behaviour of reinforced concrete masonry walls. The probabilistic structural analysis of 

reinforced masonry walls can be carried out by incorporating the inherited uncertainties in micro 

or macro FE models. However, the computational cost of the micro FE modelling approach 

constitutes a significant challenge for such an application, and the probabilistic characterization 

of the basic random variables (e.g., mechanical properties of the reinforcement-grout bond) in 

the micro FE model is rarely available. Alternatively, the macro FE modelling approach is more 

appropriate for such an application and thus will be used in this thesis.    

In addition to the probabilistic structural analysis, variance-based global sensitivity analysis can 

be carried out to get a deeper insight into the effect of the variations of the uncertain parameters 

on the considered response quantities (e.g., load capacity).  

2.5 Variance-based Global Sensitivity Analysis   

Sensitivity analysis is categorized into two main categories: local and global. In the local 

sensitivity analysis, the effect of input parameters on the considered response is assessed on a 

one-factor-at-a-time basis employing gradient-based techniques or finite difference method by 

perturbation analysis. In contrast, global sensitivity analysis quantifies the output variance by 

simultaneously accounting for the uncertainty of all input parameters, which allows a global 



18 

 

 

assessment of their relative contribution, including interaction effects (Su et al. 2018,  Sudret 

2008). Although global sensitivity analysis provides more reliable measures for the relative 

influence of input parameters, it is often associated with a high computational expense (Dimov 

and Georgieva 2010). A common way to overcome this problem is to adopt a fast-to-evaluate 

surrogate model constructed from a feasible number of evaluations of the original computational 

model. Hence, the constructed surrogate model substitutes the original computational model, 

which is time-consuming, with enhanced computational performance (Su et al. 2017). To this 

end, different surrogate models have been developed, such as polynomial chaos expansion (PCE) 

(Sudret 2008), Gaussian process regression (kriging) (Su et al. 2017) and high dimensional 

model representation (HDMR) (Mukherjee et al. 2011). Surrogate model-based global sensitivity 

analysis has been employed in several past studies (Li et al. 2014, Li et al. 2016, Sudret 2008, 

Bastug et al. 2013).  

 In the context of masonry structures, previous studies attempted to employ the local sensitivity 

analysis technique. For instance, Lourenco (1998) assessed the influence of variations of 

different material parameters on the response of unreinforced masonry shear walls. Similarly, 

Bhosale et al. (2016) conducted a local sensitivity analysis to identify the most influential 

parameters with respect to the seismic performance of masonry infilled frames. However, the 

local sensitivity analysis approach adopted in these studies did not consider the interactions 

between different parameters. In addition, the variance attributed to the variabilities associated 

with the uncertain parameters cannot be rigorously quantified within its framework.  These 

drawbacks can be avoided when the global sensitivity approach is adopted.  
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Different studies conducted a global sensitivity analysis to quantify the contribution of the 

different parameters to the variance associated with the behaviour of masonry structures. For 

instance, Mukherjee et al. (2011) conducted an HDMR-based global sensitivity analysis using a 

micro model of unreinforced masonry shear walls. The analysis revealed that the collapse load 

was most sensitive to the friction coefficient of mortar joints. Zhu et al. (2017) carried out a 

PCE-based global sensitivity analysis based on a micro FE model to identify the most influential 

parameters on the compressive strength of concrete masonry wallets. The analysis revealed that 

most of the variance (i.e., >75%) was attributed to the tensile strength of the blocks. Tubaldi et 

al. (2020) carried out a kriging-based global sensitivity analysis using a micro model of 

backfilled masonry arch bridge. Different uncertainties related to the backfill and the masonry 

properties were considered. In addition, the sensitivity of different responses (e.g., peak load 

capacity and secant stiffness) to the considered uncertainties was investigated. The analysis 

revealed that the peak capacity was mainly affected by the backfill properties, whereas the secant 

stiffness mainly depended on the block parameters.   

However, to the best of the author's knowledge, no similar work is reported for reinforced 

masonry walls subjected to out-of-plane loading. This gives rise to the need for global sensitivity 

analysis to determine the influential parameters that dominate the behaviour of such walls. In 

that sense, different response quantities can be considered, such as peak load capacity and 

deformation capacity (e.g., ductility).  

However, the reliability of the aforementioned analyses (e.g., probabilistic structural analysis and 

sensitivity analysis) relies significantly on the accuracy of the adopted numerical (FE) model. 

Accordingly, special attention should be devoted to the error associated with the numerical 
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model predictions.  Although the aforementioned mechanics-based FE models are known to be 

more reliable compared to empirical models, they are not error-free. The error in the model 

predictions can arise from various sources such as model simplification, assumptions, or 

approximations used to represent the physical reality, as well as the variability of experimental 

conditions and random measurement error (Jiang et al. 2013). In that sense, the rigorous 

quantification of the model error is necessary to support the analysis and design process of 

masonry structures.  

2.6 Model Error Quantification 

The model error should resemble the observed disparity between the model predictions and 

experimental results. Typically, this error is quantified using a database of reference data (e.g., 

experimental test data or high-fidelity data) by comparing the experimental-based and model-

based predictions. The systematic correlation between the model parameters and the model error 

is then investigated (Holický et al. 2016). If there is no systematic correlation between the model 

parameters and the model error, the model error is typically modelled as an independent random 

variable. Otherwise, the dependency between the model error and the model parameters can be 

modelled using stochastic regression models such as Gaussian process regression (GPR) (Jiang 

et al. 2013) and Bayesian linear regression (BLR) (Gardoni et al. 2002).  

However, the previous studies on probabilistic analysis or global sensitivity analysis of masonry 

structures did not account for model uncertainty. Namely, they ignored the influence of the 

modelling error on the probabilistic behaviour and thus neglected the variance contribution 

attributed to model uncertainty with respect to the variance attributed to other material and 

geometrical parameters (Mukherjee et al. 2011, Li et al. 2014, Li et al. 2016, Zhu et al. 2017, 
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Tubaldi et al. 2020, and Isfeld et al. 2021).  In the author’s opinion, the effect of the model error 

on the probabilistic behaviour is worthy of investigation. In addition, incorporating the modelling 

error was proven to be of paramount importance to have a more confident assessment of 

reliability levels. This is based on the findings of different studies that investigated the reliability 

analysis of unreinforced masonry walls subjected to different loading conditions. For instance, 

Zhai et al. (2012) conducted a reliability analysis for unreinforced masonry walls loaded in shear. 

It was shown that the reliability indices were highly sensitive to the statistical properties of the 

model error parameters. Similar findings were reported in other studies (Stewart and Lawrence 

2007, Mojsilović and Stewart 2015). 

2.7 Reliability Analysis 

The structural resistance (i.e., load capacity) of a structural member is essentially uncertain due 

to the variabilities inherent in the material and geometric properties. Likewise, the demand (i.e., 

load effects) is also uncertain due to the randomness in the loads applied to the structural 

member.   Accordingly, the actual values of the resistance (i.e., load capacity) and the demand 

(i.e., load effects) can be different from their corresponding nominal or design values (Mirza 

1996). In that sense, the probability that the demand exceeds the resistance (i.e., the probability 

of failure Pf.) is investigated through structural reliability analysis.  

The simplest reliability analysis method is the Monte Carlo simulation (MCS). In this method, 

the limit state function (G) is evaluated numerous times until a converged probability of failure 

(Pf) is achieved. However, this approach is not practical for cases where the evaluation of the 

limit state function is computationally expensive. As such, different methods have been 

developed to assess the reliability of structures in a computationally efficient manner. These 
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methods can be categorized into two main categories: approximate analytical methods and 

advanced simulation-based methods (Jiang et al. 2013). Approximate analytical methods such as 

first- and second-order reliability methods (FORM and SORM) approximate the non-linear limit 

state function G at the most probable failure point, referred to as the design point, by a first- or a 

second-order Taylor expansion in the transformed probability space (standardized normal) of 

random variables (Hu et al. 2011).   However, there are some limitations associated with the 

approximate analytical methods. For instance, they fail to predict an accurate probability of 

failure when the considered limit state function is highly nonlinear in the transformed probability 

space. Furthermore, FORM and SORM require the derivative information of the response 

quantities with respect to the input parameters, which is usually a challenge for reliability 

problems with implicit limit state functions (e.g., formulated based on FE models). 

Alternatively, advanced simulation-based methods offer a middle ground between the MCS and 

the approximate analytical methods. In that sense, advanced simulation-based methods provide 

more accurate estimates of Pf in a relatively computationally efficient manner. Two well-

acknowledged methods are Importance sampling (IS) (Melchers  1989) and Subset Simulations 

(SS) (Au et al. 2007). Although IS and SS significantly increase the computational efficiency, 

their applicability is still limited for certain applications in which obtaining a sufficient number 

of samples remains computationally expensive. To tackle this problem, methods based on 

surrogate models have been introduced. 

As mentioned previously, a Surrogate model is a fast-to-evaluate model that mimics the original 

numerical model with enhanced computational efficiency. The surrogate model is constructed 

from a limited number of evaluations of the original numerical model, which are performed to 
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learn the functional relationship between input variables and the output response. Given that the 

mentioned relationship is established, the surrogate model can be used to define or approximate 

the limit stat function. Hence, the reliability of the considered structural system can be evaluated 

employing the aforementioned methods (e.g., FORM, SORM, MCS, IS and SS) in an extremely 

efficient manner (Su et al. 2017).  

Previous studies (Turkstra and Ojinaga 1980, Ellingwood and Tallin 1985, Stewart and 

Lawrence 2007, Zhai and Stewart 2010, Zhai et al. 2012, Moosavi and Korany 2014) 

investigated the reliability of masonry structures subjected to different loading conditions (e.g., 

concentric compression, flexure, and shear). However, these studies were based on the empirical 

design codes models or simplified analytical models, which can be associated with significant 

model error. However, the reliability assessment can be susceptible to the accuracy of the 

adopted behavioural model (Holický et al. 2016). Thus, the negligence of the model error in the 

reliability assessment can lead to significantly biased results.   In order to assess the effect of 

considering model uncertainty on the reliability assessment, the reliability assessment is 

conducted with and without considering model uncertainty in this thesis.  

Furthermore, in design practice, different failure criteria (e.g., structural member failure, cross-

section failure, and material fibre failure) can be used. Thus, the corresponding formulations of 

limit state function can be influential on the reliability assessment results (Frangopol et al. 1996, 

Milner et al. 2001). Reliability assessment of masonry walls loaded under eccentric compression 

and lateral loads is also conducted to reveal the relative conservatism associated with different 

failure criteria, when walls are designed according to the design codes. 
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2.8 Relevant Design Provisions of Masonry Walls Against OOP Loading  

This section describes the code-based models of CSA S304-14 and TMS 402-16 for reinforced 

concrete masonry walls loaded out-of-plane. In addition, a brief side-by-side comparison 

between the two codes is provided. More detailed comparisons can be found in (Erdogmus et al. 

2021, Sustersic et al. 2021). It should be noted that only provisions for reinforced concrete 

masonry walls are considered.  

2.8.1 Comparison between CSA S304-14 and TMS 402-16 

o Stress block parameters: Both codes adopt the widely known equivalent stress-block 

approach to account for the stress distribution along the cross-section. Additionally, both 

codes assume the depth of the compression block equals (0.80𝑐), where 𝑐 is the depth of 

the neutral axis. However, the uniform masonry stress along the depth of the stress block 

is taken as 0.85𝑓𝑚
′  and 0.80𝑓𝑚

′ , where 𝑓𝑚
′  is the masonry characteristics compressive 

strength, for CSA S304-14 and TMS 402-16, respectively.  

o Maximum usable compression strain (𝜀𝑚𝑢): CSA S304-14 adopts a value of 0.003 for the 

maximum usable strain at the critical fibre, while a value of 0.0025 is adopted in the TMS 

402-16. 

o Modules of elasticity of masonry (𝐸𝑚): CSA S304-14 relates the modulus of elasticity of 

masonry 𝐸𝑚 to the characteristics masonry compressive strength 𝑓𝑚
′   with the following 

expression (𝐸𝑚 = 850 𝑓𝑚
′ , 𝐸𝑚 ≤ 20 𝐺𝑃𝑎), whereas TMS 402-16 proposes the expression 

(𝐸𝑚 = 900 𝑓𝑚
′ ).  

o Material resistance and strength reduction factors: CSA S304-14 imposes two different 

material resistance factors (𝜙𝑚 = 0.60  and 𝜙𝑠 =0.85) for masonry and steel 
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reinforcement bars, respectively. Conversely, TMS 402-16 imposes a strength reduction 

factor (𝜙 = 0.90) on the resistance of the structural member. However, this resistance 

factor is well-suited for tension-controlled sections only. Accordingly, other 

modifications are proposed for the planned 2022 edition. These modifications include 

different resistance factors for the compression-controlled and transition sections 

(Chrysler et al. 2021).  

o Maximum permissible axial load: CSA S304-14 limits the maximum permissible axial 

load to 0.80(0.85𝜙𝑚𝑓𝑚
′ 𝐴𝑒 ). While TMS 402-16 adopts a gradual upper bound that 

depends on (h/r) where (h) is the wall height and (r) is the radius of gyration. 

Specifically, for walls with (h/r ≤ 99),  the axial load capacity is limited to 

0.80[0.80 𝑓𝑚
′ (𝐴𝑛 − 𝐴𝑠𝑡 )+𝑓𝑦𝐴𝑠𝑡][1 − [

ℎ

140 𝑟
]2] , where 𝐴𝑛  is the net area of the cross-

section, 𝐴𝑠𝑡  is the reinforcement bars area and 𝑓𝑦  is the yield strength of the 

reinforcement bars. While for walls with (h/r> 99) an upper bound of 0.80[0.80𝑓𝑚
′ (𝐴𝑛 −

𝐴𝑠𝑡)+ 𝑓𝑦𝐴𝑠𝑡][
70𝑟

ℎ
]2] is applied. 

o Cracked neutral axis: CSA S304-14 determines the location of the cracked neutral axis 

(c) based on an assumption of linear stress distribution along the cross-section while 

neglecting the effect of the applied axial loads. On the contrary, TMS 402-16 adopts a 

non-linear stress distribution and considers the effect of the axial load in such an 

application.  

o Cracked moment of inertia (𝐼𝑐𝑟): a major difference between the two considered design 

codes is the inclusion of the axial load in the calculations of the cracked moment of 

inertia (𝐼𝑐𝑟) . To illustrate, in CSA S304-14, 𝐼𝑐𝑟 depends only on the cross-sectional 
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properties, and the applied axial loads are neglected. This is not the case with TMS 402-

16 as it considers the axial loads when calculating 𝐼𝑐𝑟 and cracking moment  𝑀𝑐𝑟 (Pettit et 

al. 2020). The considered codes (i.e., CSA S304-14 and TMS 402-16) determine the 

cracked moment of inertia 𝐼𝑐𝑟 as follows:  

𝐼𝑐𝑟(𝐶𝑆𝐴 𝑆304) =
𝑏𝑐3

3
+ 𝑛𝐴𝑠𝑡(𝑑 − 𝑐)2                               (2 − 1) 

         𝐼𝑐𝑟(𝑇𝑀𝑆 402) =
𝑏𝑐3

3
+ 𝑛 (𝐴𝑠𝑡 +

𝑃

𝑓𝑦
) (𝑑 − 𝑐)2                     (2 − 2) 

In the formulas above, 𝑏 is the wall width, 𝑐 is the cracked neutral axis depth,  𝑛  is the modular 

ratio, 𝐴𝑠𝑡 is the area of reinforcement bars, 𝑑  is the reinforcement bar depth, and 𝑃 is the axial 

load. 

However, the second-order effects typically dominate the design of slender masonry walls. 

Accordingly, special care should be devoted to each code approach in determining the second-

order effects. CSA S304-14 and TMS 402-16 account for the second-order effects through the P-

delta or moment magnifier methods. In the context of this thesis, the widely used moment 

magnifier method is of interest. The moment magnifier method involves magnifying the 

maximum applied primary moment (Mp) on the structural member (e.g., concrete masonry wall) 

by a factor (ψ) to calculate the magnified moment (Mu) due to second-order effects. The 

following formulas introduce the moment magnifier method in its primal form. The moment 

magnifier factor is defined as follows: 

  ψ =
𝐶𝑚

1 −
𝑃

𝑃𝑐𝑟

   , in which 𝑃𝑐𝑟 =  
𝜋2𝐸𝐼𝑒𝑓𝑓

(𝑘ℎ)2
                (2 − 3)        
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Here, 𝐶𝑚  is the moment diagram factor, 𝑃  is the axial load acting on the wall,  𝑃𝑐𝑟   is Euler 

buckling load of the wall, 𝐸𝐼𝑒𝑓𝑓  is the effective flexural rigidity, 𝑘   is the effective length 

coefficient depending on the boundary conditions (e.g., k = 1.0 for simply supported), and ℎ  is 

the clear unsupported wall length. 

However, various differences exist between the two codes in consideration of the second order-

effect and the implementation of the moment magnifier method. These differences can be 

summarized as follows:  

o Design for second-order effects: CSA S304-14 divides reinforced concrete masonry walls 

into three main categories; each of them has its distinct requirements. These categories 

are defined by the ratio (𝑘ℎ
𝑡⁄ ), where 𝑘  is the effective length coefficient, ℎ  is the wall 

height and t is the thickness of the wall. 

▪ Walls with 𝑘ℎ
𝑡⁄  < (10 – 3.5 

𝑒1
𝑒2

⁄  ), where 𝑒1 and 𝑒2 are the end eccentricities, 

the second-order effects are ignored, and the walls are assumed to fail in crushing 

upon reaching a specified crushing strain for the extreme masonry compression 

fibre. 

▪ Walls with 𝑘ℎ
𝑡⁄  > (10 – 3.5 

𝑒1
𝑒2

⁄  ) and  𝑘ℎ
𝑡⁄  < 30, CSA S304-14 requires the 

consideration of the second-order effect using the aforementioned P-delta or 

moment magnifier methods.  

▪ Walls with 𝑘ℎ
𝑡⁄  >30, CSA S304-14 imposes more restrictive requirements such 

as assuming pinned-pinned boundary conditions  for all walls, limiting the 
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permissible axial stress to 0.06𝑓𝑚
′   and limiting the flexural reinforcement ratio to 

ensure a ductile failure.  

On the other hand, TMS 402-16 requires the consideration of second-order effects for 

all walls regardless of the slenderness ratio. However, TMS 402-16 also assumes 

pinned-pinned boundary conditions for the highly slender walls.  

o Maximum permissible axial load: CSA S304-16 limits the axial load for highly slender 

walls (i.e., 𝑘ℎ
𝑡⁄  > 30) to (0.1𝜙𝑚𝑓𝑚

′ 𝐴𝑒), where 𝐴𝑒 is the effective cross-setion area.  On 

the other hand, TMS 402-16 adopts a limit of (0.05𝑓𝑚
′ 𝐴𝑔) for the same walls, where 𝐴𝑔 is 

the cross-sectional area.  

o Effective flexural rigidity: In both provisions, the effective flexural rigidity (𝐸𝐼𝑒𝑓𝑓) is 

highly influenced by the cracked moment of inertia (𝐼𝑐𝑟). The differences between the 

two provisions regarding (𝐼𝑐𝑟) is discussed earlier in this chapter. However, TMS 402-16 

conservatively adopts the cracked inertia for the entire wall height when the applied 

moment (𝑀𝑃) exceeds the cracking moment (𝑀𝑐𝑟). On the other hand, CSA S304-14 

penalizes (𝐸𝐼𝑒𝑓𝑓) with a stiffness reduction factor (𝜙𝑒𝑟 = 0.75) regardless of the applied 

moment. 

The considered codes (i.e., CSA S304-14 and TMS 402-14) determine the effective flexural 

rigidity 𝐸𝐼𝑒𝑓𝑓 as follows: 

𝐸𝐼𝑒𝑓𝑓(𝐶𝑆𝐴 𝑆304) = 𝐸𝑚𝐼𝑐𝑟 ≤ 𝐸𝑚 [0.25𝐼𝑜 − (0.25𝐼𝑜 − 𝐼𝑐𝑟) (
𝑒 − 𝑒𝑘

2𝑒𝑘
)] ≤ 0.25𝐸𝑚𝐼𝑜     (2 − 4) 

𝐸𝐼𝑒𝑓𝑓(𝑇𝑀𝑆 402) = {
0.75𝐸𝑚𝐼𝑜

𝐸𝑚𝐼𝑐𝑟   

                    𝑀𝑝 <  𝑀𝑐𝑟

                    𝑀𝑝 ≥  𝑀𝑐𝑟
}                     (2 − 5) 
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In the formulas above, 𝐸𝑚  is the masonry modulus of elasticity, 𝐼𝑜  is the gross moment of 

inertia, 𝐼𝑐𝑟 is the cracked moment of inertia, 𝑒 is the eccentricity which is defined as the ratio 

between  the primary moment (𝑀𝑝) and the axial load (P), 𝑒𝑘 is the kern eccentricity which is 

defined between the ratio between the section modulus (𝑆𝑒) and the effective mortared area 𝐴𝑒,  

and 𝑀𝑐𝑟 is the cracking moment. 

A summary of the differences between the considered codes (i.e., CSA S304-14 and TMS 402-

16) is provided in Table 2-1.  

 

Table 2-1 Summary of the comparison between CSA S304-14 and TMS 402-16 

Parameter CSA S304-14 TMS 402-16 

𝜀𝑚𝑢 0.003 0.0025 

𝐸𝑚 850𝑓𝑚
′  

Upper bound: 20 𝐺𝑃𝑎 

900𝑓𝑚
′  

Stress block uniform stress 0.85𝑓𝑚
′  0.80𝑓𝑚

′  

Resistance factors 𝜙𝑚 = 0.65 

𝜙𝑠 = 0.85 

𝜙𝑒𝑟 = 0.75 

𝜙 = 0.9 

 

Maximum permissible axial 

load 
0.80(0.85𝜙𝑚𝑓𝑚

′ 𝐴𝑒) 0.8[0.8𝑓𝑚
′ (𝐴𝑛 − 𝐴𝑠𝑡) +𝑓𝑦𝐴𝑠𝑡][1 −

[
ℎ

140 𝑟
]2], (h/r ≤ 99) 

0.8[0.8𝑓𝑚
′ (𝐴𝑛 − 𝐴𝑠𝑡)+ 𝑓𝑦𝐴𝑠𝑡] [

70𝑟

ℎ
]

2

] 

(h/r >99) 

 

𝐼𝑐𝑟 𝑏𝑐3

3
+ 𝑛𝐴𝑠𝑡(𝑑 − 𝑐)2 

𝑏𝑐3

3
+ 𝑛(𝐴𝑠𝑡 +

𝑃

𝑓𝑦
)(𝑑 − 𝑐)2 
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Maximum permissible axial 

load for highly slender walls 
0.1𝜙𝑚𝑓𝑚

′ 𝐴𝑒 0.05𝑓𝑚
′ 𝐴𝑔 

𝐸𝐼𝑒𝑓𝑓 𝐸𝑚[0.25𝐼𝑜 − (0.25𝐼𝑜 − 𝐼𝑐𝑟)(
𝑒 − 𝑒𝑘

2𝑒𝑘
)] 

Lower bound: 𝐸𝑚𝐼𝑐𝑟 

Upper bound: 0.25𝐸𝑚𝐼𝑜 

0.75𝐸𝑚𝐼𝑜 , (𝑀𝑝 <𝑀𝑐𝑟) 

𝐸𝑚𝐼𝑐𝑟  , (𝑀𝑝  ≥ 𝑀𝑐𝑟) 

 

2.8.2 Investigation of the design codes 

The inaccuracy in the considered design codes (i.e., CSA S304, TMS 402) has been examined by 

other researchers (Liu and Dawe 2003, Mohsin 2005, Isfeld et al. 2019, Pettit et al. 2021, Bilotta 

and Cruz 2021). The findings of the mentioned studies indicated that the design codes are 

associated with systematic errors. For instance, CSA S304-14 can be overly conservative for 

highly slender walls loaded with low load eccentricities. For instance, Isfeld et al. (2019) 

investigated the provisions of using a broad set of available experimental data for unreinforced 

and reinforced masonry walls. It was found that CSA S304 provides a very conservative design 

for highly slender walls. Similar observations were reported in Mohsin (2005). On the other hand, 

TMS 402-16 is shown to produce significantly unconservative results for walls with low 

compressive strength (𝑓𝑚) and high reinforcement ratio (𝜌𝑠).   

However, none of these studies investigated the modelling error of the design provisions in a 

probabilistic manner. Instead, they emphasized specific aspects, and the conclusions drawn were 

based on a limited number of experimental simulations or simple parametric studies. In this 

study, the model error associated with design code-based models is quantified probabilistically 

using a combination of numerical and experimental simulations. After that, the original design 

code-based models are corrected and employed in reliability assessment.  
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CHAPTER 3: Probabilistic Behaviour and Variance-based Sensitivity Analysis of 

Reinforced Concrete Masonry Walls under Out-of-plane Loading 

Inherent uncertainties associated with masonry structures result in large scatter in the 

experimentally or analytically predicted behaviour. Rigorous investigation of the uncertainties in 

the structural behaviour of masonry structures is of paramount importance to lay down the basis 

for reliable structural design. In this study, the probabilistic behaviour of reinforced masonry 

walls under out-of-plane (OOP) loading is investigated. Uncertainties in material and geometric 

properties are incorporated in finite element (FE) models for probabilistic structural analysis.  

The individual and combined effect of different uncertain input parameters on the overall 

probabilistic behaviour is evaluated. Furthermore, the relative importance of uncertain variables 

to the load and deformation capacities is assessed using variance-based sensitivity analysis. The 

model uncertainty in FE-predicted load capacity is also quantified to characterize the model 

error, which is found to be non-negligible compared to geometric and material uncertainties.      

3.1 Introduction 

Masonry provides a competitive alternative compared to other construction materials for its 

durability, strength, hygrothermal performance, and aesthetics. However, masonry walls exhibit 

complex structural behaviour with relatively large scatter due to the inherited heterogeneity and 

complex interaction between different components (i.e., unit, mortar, grout, and steel 

reinforcement). To understand the complex behaviour, several experimental programs were 

conducted to study reinforced concrete masonry walls under out-of-plane (OOP) loading with 

different testing objectives (e.g., Yokel et al. 1970, Hatzinkolas et al. 1978, ACI-SEASC 1982, 

Mohsin 2005). In spite of these great efforts, experimental data generated for reinforced concrete 
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masonry walls under OOP loading remains limited to understand the wall behaviour from a 

probabilistic perspective considering inherent uncertainties associated.  

As complementary to experimental studies, various analytical and numerical models have been 

developed to predict the load capacity or overall structural behaviour of reinforced masonry 

walls. Specifically, the behaviour of masonry walls under OOP loading can be predicted to 

various degrees of accuracy using the micro finite element (FE) modelling approach (Abdulla et 

al. 2017, Bui et al.  2017, D'Altri et al. 2018), macro FE modelling approach (Pluijm 1999), and 

simplified analytical procedures (e.g., Dawe and Liu 2003). The micro-FE modelling approach 

explicitly accounts for the material heterogeneity (i.e., unit, mortar, and/or unit-mortar interface). 

Thus, this approach allows to capture local failure in mortar joints and provides detailed insight 

into the behaviour of masonry walls. However, it is computationally expensive (Minga et al. 

2019), and its prediction accuracy heavily depends on the calibration of various parameters in 

advanced three-dimensional constitutive models, which are used to describe the materials and 

interfaces. Alternatively, the macro FE modelling approach ignores the inhomogeneity of 

masonry walls and offers a simpler and more efficient solution to capture the global behaviour of 

masonry walls. For example, the nonlinear fibre-section-based beam approach is widely used to 

model the OOP behaviour of walls with negligible effect of lateral edge restraints, by 

considering the masonry material (unit plus mortar) as a homogenized continuum (Chen and 

Atsuta 1973, Ganduscio and Romano 1997). Compared with other simplified analytical methods 

and design code methods, nonlinear fibre-section-based beam approach considers the 

geometrical nonlinearity rigorously, instead of using the moment magnifier method (CSA 2014), 
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which has been widely used in the masonry literature for its efficiency and accuracy (Liu and 

Dawe 2003, Mohsin 2005, Bilotta and Cruz 2021).  

However, due to model assumptions as well as geometric and material uncertainties that can 

dominate the behaviour of masonry walls (D'Altri et al. 2019), the development of a reliable 

behaviour prediction model remains a challenging task. To address this problem in engineering 

practice, a conservative approach is typically taken to increase the safety margin in design. 

However, to lay down the basis for reliable structural design as implied by the limit-state design 

philosophy, rigorous evaluation of the uncertainty in the behaviour of masonry walls is of 

paramount importance.   

In recent years, researchers (Li et al. 2014, Li et al. 2016, Zhu et al. 2017) started to investigate 

the effect of uncertainties on unreinforced masonry walls by incorporating the randomness in 

material and geometric properties to assess the effect of spatial variability within a wall using 

micro FE models. Nevertheless, the micro FE modelling approach for probabilistic analysis is 

considered to be computationally challenging, and probabilistic characterization of spatial 

variability and uncertainty in variables of the micro FE model is rarely available. In contrast, the 

mechanics-based macro FE models (e.g., nonlinear fibre-section-based beam models) of 

masonry walls are more appropriate for probabilistic structural analysis and probabilistic 

characterization of the important material and geometric parameters can be readily found 

(Moosavi 2017). Thus, the pertinent material and geometric uncertainties can be incorporated 

into macro FE models and propagated to the load capacity and ductility of masonry walls, by 

stochastic sampling methods such as Monte Carlo simulation (MCS).  



44 

 

 

MCS is an accurate and robust technique to perform probabilistic structural analysis without 

intervening the FE simulation (Buonopane 2008, Barbato et al. 2010, Barbato et al. 2014, 

Grubišić et al. 2019). The simulated samples stochastically generated from MCS also allow 

conducting the variance-based sensitivity analysis, in which the variance in the FE model output 

is decomposed into contributions from individual parameters or parameter groups (Su et al. 

2018). Eventually, this leads to further insight into the relative importance of different uncertain 

variables on a response of interest (e.g., load capacity, deformation capacity). Note that previous 

work on variance-based sensitivity analysis typically neglected modelling error, while in this 

study, the analysis of the variance in the load capacity prediction will be conducted with and 

without model uncertainty to reveal the importance of model uncertainty. 

To summarize, this paper aims to study the probabilistic behaviour of reinforced masonry walls 

by integrating macro FE models with MCS to (1) perform probabilistic behaviour analysis and (2) 

variance-based sensitivity analysis with and without model uncertainty. To evaluate the accuracy 

of the macro FE models in predicting the load capacity, experimental data of masonry walls tests 

under OOP loading available from the literature is collected and used to quantify the model 

prediction accuracy by comparing FE predictions with the corresponding experimental data. The 

probabilistic behaviour considering the individual and combined effect of uncertain input 

parameters is investigated using MCS. A confidence envelope (5th percentile and 95th percentile) 

of the load-displacement curves is obtained, in addition to the probability distribution of load and 

deformation capacities. Additionally, variance-based global sensitivity analysis is performed to 

quantify the contribution from each uncertain variable to the variance of load and deformation 

capacities of reinforced concrete masonry walls under OOP loading.  
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3.2 FE models of Reinforced Concrete Masonry Walls 

3.2.1 Masonry walls 

The reinforced concrete masonry walls studied in this paper were tested in 1982, aiming to 

investigate the behaviour of slender masonry walls when subjected to eccentric axial and lateral 

loads (ACI-SEASC 1982). These walls are of the same size, 7300 mm in height (h) and 1200 

mm in width (b), and were tested with pinned-roller boundary conditions. The walls are 

categorized into three groups according to the nominal thickness (t) and the corresponding 

slenderness ratio, defined as the height-to-thickness ratio (h/t). Among the nine concrete masonry 

walls tested in this experimental program, three walls with different slenderness ratios are 

considered here, including wall#2 with h/t = 30 in group 1, wall #5 with h/t = 38 in group 2, and 

wall #9 with h/t = 51 in group 3, respectively (see Table 3-1). All walls were reinforced with five 

#4 bars of grade 60, which were designed to be located at half wall thickness (i.e., dn =0.5t). 

Loading-wise, the walls were loaded first by axial compression (P) at an eccentricity e, equal to 

7.62 cm plus half of the wall thickness (t) and then by uniform lateral pressure (q) using air-bag. 

The lateral pressure was monotonically increased until the walls deformed excessively with 

extensive stiffness degradation during the tests (ACI-SEASC 1982). The wall configuration is 

shown in Figure 3-1(a). Readers of interest for more details are referred to the experimental 

program report (ACI-SEASC 1982).  
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Table 3-1 Summary of reinforced concrete masonry walls studied 

GP 

# 

Walls  Wall 

thickness  

t, in (cm) 

Slenderness 

ratio 

h/t 

Masonry 

compressive 

strength 

𝑓𝑚 , MPa 

Young’s 

modulus 

E0, MPa 

Axial 

load  

P, N 

Steel 

yield 

strength  

𝑓𝑦 , MPa 

Steel 

modulus 

E, MPa 

1 #2 10 (25.4) 30 17.0 14962 15250 482 197000 

2 #5 8 (20.3) 38 17.9 11859 15250 482 197000 

3 #9 6 (15.2) 51 22.0 10963 5670 482 197000 

  

 

(a) 

 

 

(b) 

Figure 3-1 Reinforced concrete masonry walls studied: (a) test specimen, and (b) schematic 

view of the FE model 

3.2.2 FE model development and validation 

The reinforced concrete masonry walls considered are modelled using displacement-based fibre 

beam-column elements in an open-source FE software framework OpenSees (Mckenna et al. 
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2010). The schematic view of the FE model is shown in 3-1(b). According to a mesh 

convergence study, the wall is discretized into 14 displacement-based beam elements, and each 

element has five Gaussian-Legendre integration points with fibre sections to represent the cross-

sectional behaviour. The cross-section is discretized into 20 masonry layers and 5 steel fibres, for 

which realistic uniaxial nonlinear material models are assigned to represent the stress-strain 

relationship for the corresponding material. Specifically, masonry fibres are represented by a 

uniaxial concrete material model (i.e., Concrete02), which has a linear elastic pre-cracking 

behaviour in tension before the peak tensile strength (𝑓𝑡), followed by a linear tension softening 

branch until the maximum tensile strain (𝜀𝑡𝑢) (Pluijm 1999). In compression, it has a parabolic 

pre-peak behaviour with the initial elasticity modulus (𝐸0), the peak compressive strength (𝑓𝑚) 

with the corresponding strain (𝜀0 = 2𝑓𝑚/𝐸𝑜), followed by a linear softening branch up to the 

ultimate crushing strain (𝜀𝑢) with a residual compressive strength (𝑓𝑚𝑢). Steel bars are modelled 

using the bilinear steel material model (i.e., Steel01) with kinematic hardening. It remains elastic 

with Young’s modulus (E) until reaching the yield strength (𝑓𝑦), followed by a linear strain-

hardening branch characterized by the post-yield strain-hardening ratio (b = 0.1 according to test 

results).   

Among the abovementioned model parameters, 𝑓𝑚 , 𝜀0,  𝑓𝑦 𝑎𝑛𝑑 𝐸 are determined based on the 

tested values listed in Table 3-1. In contrast, other parameters, such as 𝑓𝑚𝑢, 𝜀𝑢, are defined based 

on literature findings due to the lack of information in this experimental program (ACI-SEASC 

1982). Specifically, 𝑓𝑚𝑢 (= 0.2 𝑓𝑚) and 𝜀𝑢 are determined according to the models proposed in 

(Priestley and Elder 1983) for homogenous masonry in the same way as used in existing studies 

(e.g. Liu and Dawe 2003, Moosavi 2017. Pettit 2020, Bilotta and Cruz 2021). On the other hand, 
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the peak tensile strength (𝑓𝑡) is taken as 0.5 MPa (Drysdale and Hamid 2005, Mohsin 2005) and 

the maximum tensile strain (𝜀𝑡𝑢) is taken as 0.004 (Wang et al. 1997).   

Loading-wise, the axial compression (P) with the eccentricity (e) is modelled by means of 

equivalent axial compression and moment combination (P, M = P×e) as shown in Figure 3-1(b). 

While the lateral pressure induced by the air-bag is modelled as a uniform lateral load along the 

length of walls. Figure 3-2 shows the comparison of the FE-predicted and experimental load-

displacement curves for the masonry walls considered. The results show that the FE models 

achieve reasonable accuracy in predicting the overall load-displacement behaviour (e.g., elastic 

behaviour, cracking capacity, post-cracking stiffness, peak load capacity). The modelling 

accuracy for these walls is considered acceptable in view of the variability of experimental 

conditions and random measurement errors. Instead of improving the model accuracy (e.g., peak 

load capacity) further through calibration by adjusting unknown model parameters, the FE 

models developed here are considered validated with sufficient credibility for their subsequent 

use in uncertainty analysis. The model error for predicting the peak load capacities will be 

further quantified later in this paper.  
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Figure 3-2 Comparison of the FE-predicted and experimental load-displacement curves 

for:  wall #2, wall #5 and wall #9  

3.3 Probabilistic Structural Behaviour Analysis  

The macro FE model strategy validated above is used in conjunction with MCS for probabilistic 

structural analysis, aiming to study the effects of random properties on the behaviour of 

reinforced concrete masonry walls. To this end, both material and geometric uncertainties are 

propagated through the FE model to load-displacement curves, which reflect the uncertain 

structural behaviour, including load capacity, deformation capacity, etc. Specifically, this section 

considers three nominal walls, referred to as 10-inch wall, 8-inch wall, and 6-inch wall 

corresponding to wall #2, #5 and #9. It is worth noting that the specified masonry compressive 

strength  𝑓𝑚
′  is taken as 13.5 MPa, five steel bars are of grade 60 with the characteristic yield 

strength fyn = 414 MPa (60 ksi) and located at half wall thickness (i.e., the nominal steel bar 

location dn = 0.5t). To consider the natural variation of relevant properties, their statistical 

description is provided in the following section.   
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3.3.1 Statistical description of random variables  

The following important properties of the reinforced concrete masonry walls are modelled as 

random variables: masonry compressive strength  (𝑓𝑚 ) and the corresponding strain ( 𝜀𝑜) , 

masonry tensile strength (𝑓𝑡), yield strength of steel reinforcement (𝑓𝑦), Young’s modulus of 

steel reinforcement (𝐸), and steel bar location (𝑑). Their statistical descriptors, including the 

mean value, coefficient of variations (COV), and probability distribution type, are provided in 

Table 3-2. Note that these random variables are assumed statistically independent as a common 

assumption used in the literature (Zhu et al. 2017).  

Table 3-2 Statistical characterization of random variables considered 

Random 

variable 

Mean  

(μ) 

Coefficient 

of variation 

Probability 

distribution 

Reference 

fm 1.6  𝑓𝑚
′  0.24 Gumbel Moosavi and Korany 2014, Moosavi 2017 

εo 0.002 0.20* Normal* Drysdale et al. 2005 

ft 0.69 MPa 0.4 Normal Melander 1993, Hatzinkolas et al.  1978 

fy 1.14 fyn 0.07 Normal Moosavi 2017 

E 200 GPa 0.033 Normal Mirza, 1998 

D dn 4.0 𝑚𝑚
𝑑𝑛

⁄  Normal Moosavi 2017 

*Assumed due to lack of information. 

3.3.2 Probabilistic FE analysis  

Note that the robustness and computational efficiency of the macro FE models developed allows 

probabilistic structural analysis using MCS, as summarized in Figure 3-3. In MCS-based 

probabilistic structural analysis of masonry walls, model parameter set samples, x(j) = {x1
(j), x2

(j), 

…, xi
(j), …,  xn

 (j)} (j = 1, 2, …, N) are firstly randomly generated in Step I according to the 
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probability models of basic random variable set X = {X1, X2, …, Xn}, where n is the number of 

basic random variables considered and N is the number of samples. Feeding each parameter set 

into the macro FE model of masonry walls (Step II), nonlinear FE analyses are performed in Step 

III, resulting in an ensemble of load-displacement curves.  They can be used to reveal the overall 

probabilistic behaviour, as well as uncertainty in the histogram of a response quantity of interest 

(e.g., lateral load capacity) in Step IV and the fitted probabilistic density function (PDF) in step 

V. This procedure will be used first by considering a single random variable at a time (referred to 

as case 1, n = 1), aiming at studying the effect of each input variable uncertainty to provide 

insights into its individual role. Then the probabilistic behaviour of masonry walls is examined 

by considering all the above-mentioned random variables simultaneously (referred to as case 2, n 

= 6).  
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Figure 3-3 Probabilistic structural analysis procedure for reinforced concrete masonry 

walls 

3.3.2.1 Case 1: considering a single random variable at a time 

This section investigates the effect of the uncertainty in each individual variable on the global 

behaviour of reinforced concrete masonry walls considered.  For this purpose, each time, only 

one of the six random variables considered is randomly generated with a large number (i.e., 2000 

samples) according to its probabilistic distribution, while all the other variables are kept at their 

mean values. The analysis results for the 6-inch wall only are presented here, as similar 

observations can be made for the other two walls. Figure 3-4 presents the cluster of simulated 

load-displacement curves of the 6-inch reinforced concrete masonry walls, together with mean, 

5th and 95th percentiles.  
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As observed in Figure 3-4, the uncertainty of each individual variable plays different roles on the 

wall behaviour. It is noticed that the pre-cracking behaviour is least affected, only by the 

randomness in tensile strength 𝑓𝑡 . In contrast, the post-cracking (pre-yielding) behaviour is 

affected by the uncertainty in all variables except the yield strength of steel 𝑓𝑦. The uncertainty in 

the lateral load capacity and the post-peak behaviour of the masonry wall is significantly 

influenced by the randomness in the bar location d, the yield strength of steel  𝑓𝑦 , and the 

masonry compressive strength 𝑓𝑚. It is worth noting that the randomness in the bar location d, 

which is mainly related to the construction quality control, significantly contributes to the scatter 

of the probabilistic behaviour. On the other hand, the deformation capacity is shown to be mainly 

affected by the masonry compressive strength  𝑓𝑚, as indicated by the 5th and 95th percentiles 

curves in Figure 3-4(a).  

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 3-4 Probabilistic behaviour of the 6-inch wall when considering a single random 

variable: (a) 𝒇𝒎, (b) 𝜺𝟎, (c) 𝒇𝒕, (d) 𝒇𝒚, (e) E, and (f) d 

3.3.2.2 Case 2: considering all random variables simultaneously 

This section aims to examine the uncertain behaviour of masonry walls after considering the 

aforementioned uncertainties in all six basic random variables. A similar approach to the earlier 

section is taken, but all random variables are simulated accordingly. Figure 3-5(a), (b), and (c) 

show the probabilistic structural analysis results for the three masonry walls considered, 

respectively, including the cluster of randomly simulated load-displacement curves together with 

mean, 5th and 95th percentiles. Additionally, the histograms and fitted probability distributions of 

the load capacity and deformation capacity are presented, together with the mean (μ) and 

coefficient of variation (COV).  Note that the deformation capacity is measured by ductility, 

which is defined as the ratio between the maximum displacement without strength degradation of 

more than 20% and the corresponding displacement at the onset of steel yield.  A large scatter in 

the cluster of load-displacement curves, which are associated with the behaviour of masonry 

walls, is observed as shown by the 5th and 95th percentiles. Additionally, the scatter is larger for 

the 6-inch wall that has a higher slenderness ratio (h/t = 51). Specifically, the COV of the load 
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capacity increases from 0.11 for the 10-inch wall to 0.13 for the 6-inch wall when the 

slenderness ratio (h/t) increases from 30 to 51.  

In contrast, the ductility is shown to decrease with increasing slenderness. Specifically, the 10-

inch wall has a mean ductility of 4.07, while the 6-inch wall is associated with a noticeably less 

ductile behaviour with a mean of 2.33. This reveals the importance of considering pertinent 

uncertainties to comprehend the probabilistic behaviour of reinforced concrete masonry walls. 

Note that the experimental curves for the masonry walls with the same nominal properties are 

also included in Figure 3-5, and a few of the randomly simulated load-displacement curves (as 

indicated by the pink curves) behave close to the experimental ones.   

  

 

(a) 

 

(b) 
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(c) 

Figure 3-5 Probabilistic behaviour of masonry walls when considering all random 

variables: (a) 10-inch wall, (b) 8-inch wall, and (c) 6-inch wall 

3.4 Model Uncertainty Quantification for Load Capacity Prediction  

In addition to the model parameter uncertainty considered above, model error is another form of 

important uncertainty, arising from various sources such as simplification, assumptions, or 

approximations used to represent the physical reality, as well as the variability of experimental 

conditions and random measurement errors (Jiang et al.  2013). Mechanics-based FE models, 

though believed to be more reliable than empirical models or simplified design code-based 

models, are no exception. Nevertheless, the model error in FE models is typically neglected 

without quantifying the model error or assessing its relative importance compared to model 

parameter uncertainty. To address this issue for the macro FE model of reinforced concrete 

masonry walls under OOP loading, the FE model uncertainty for predicting the load capacity is 

quantified by evaluating the FE-predictions against the experimental test results. It is noteworthy 

that only the model uncertainty in determining peak capacity is considered in this study because 
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the experimental deformation capacities are unavailable for those walls tested under load control 

protocols.     

In this study, an experimental database for reinforced concrete masonry walls tested under OOP 

loading (i.e., eccentric axial compression and lateral loading) is compiled from five testing 

programs in the literature (Yokel et al. 1970, Hatzinkolas et al. 1978, ACI-SEASC 1982, 

Suwalski 1986, Mohsin 2005). A total of 69 walls are included (Table 3-3), after eliminating the 

first two reinforced concrete masonry walls tested in (Mohsin 2005) due to their premature local 

failures. This dataset covers a wide range of slenderness ratios, with h/t ranging from 14 to 51, 

and eccentricity-to-thickness ratio with e/t ranging from 0.17 to 1.03 for walls subjected to 

eccentric axial loading. Among these walls, the pin-roller boundary condition was used for all 

walls considered, except that fixed-roller was used for the walls in (Yokel et al. 1970) and 

partially-fixed-roller was used for the walls in (Mohsin 2005). These walls are modelled using 

the aforementioned macro FE approach, while the boundary conditions are adjusted accordingly. 

Specifically, the partially-fixed condition for walls in (Mohsin 2005) is represented by explicitly 

modelling the boundary beam used in the test.  

Table 3-3 Experimental database of reinforced concrete masonry walls under OOP loading 

Experimental program  

(Reference) 

No. of 

walls 

OOP 

Loading 

Slenderness ratio 

h/t 

Eccentricity 

ratio e/t 

Yokel et al. 1970 18 Eccentric axial [21, 43] [0.17, 0.33] 

Hatzinkolas et al. 1978 28 Eccentric axial [14, 24] [0.17, 0.46] 

ACI-SEASC 1982 9 Eccentric axial & lateral [30, 51] [0.8, 1.03] 

Suwalski 1986 – R Series 6 Eccentric axial 17 [0.17, 0.75] 

Suwalski 1986 – S Series 2 Lateral 17 - 

Mohsin 2005 6 Eccentric axial [29, 34] 0.33 
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The comparison between the experimental and FE-predicted capacities is shown in Figure 3-6. 

Note that the capacities are measured by the maximum axial load for eccentrically axially loaded 

walls and the maximum lateral load pressure (normalized by the wall area with a scale factor of 

10 for plotting) for laterally loaded walls, respectively. The comparison shows that the FE 

models achieve reasonable accuracy with the trend line almost coinciding with the unit line (i.e., 

without severe bias). Thus, the commonly used test-to-prediction ratio (Holický et al. 2016) is 

evaluated for all 69 walls considered and used to quantify the model error (ME) probabilistically.  

 

Figure 3-6 Comparison of the experimental and FE-predicted capacities for reinforced 

concrete masonry walls considered 

To estimate the statistical parameters of ME, the cumulative distribution function (CDF) is fitted 

to the histogram. To this end, a normal distribution with a mean of 𝜇𝑀𝐸 = 1.02 and coefficient 

of variation 𝐶𝑂𝑉𝑀𝐸 = 0.17 is found to be the best fit to represent the statistical nature of the 

model error, as shown in Figure 3-7. This reveals that the FE model slightly under-predicts the 

load capacity with a bias factor of 1.02 for the mean prediction. 
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Figure 3-7 Histogram and fitted probability density function (PDF) for the model error 

distribution 

When the model uncertainty is considered, the probabilistic load capacities can be obtained by 

applying a random multiplier ME to the load capacities obtained earlier from the FE model with 

uncertain model parameters only. Figure 3-8 shows the comparison between the load capacities 

obtained for 10-inch, 8-inch and 6-inch walls with and without considering model error. It is 

shown that incorporating model error leads to a slightly shifted mean and significantly higher 

variance in load capacities. Specifically, the COVs of the load capacity for 10-inch, 8-inch and 6-

inch walls almost doubled due to additional uncertainty arising from ME. The relative 

contribution of ME to the uncertainty in the load capacity will be assessed rigorously with 

comparison to the contributions from other uncertain parameters in the next section.  
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(a) (b) (c) 

Figure 3-8 Comparison of probabilistic load capacities with and without considering model 

uncertainty: (a) 10-inch wall, (b) 8-inch wall, and (c) 6-inch wall 

3.5 Variance-based Sensitivity Analysis 

As revealed from the stochastic simulation results, the variance in the global behaviour of the 

masonry walls arises from the uncertainties in the basic (e.g., material, geometric) random 

variables. It is essential to quantify the relative importance of uncertain input variables based on 

their contributions to the variance of the response of interest, such as the lateral load capacity and 

the ductility, through variance-based global sensitivity analysis. In particular, it is imperative to 

examine the relative importance of model uncertainty (ME) compared to parameter uncertainties 

reflected in basic random variables. As such, variance-based global sensitivity analysis is 

conducted in this section for the FE-predicted load capacity with and without considering model 

uncertainty. To this end, this section adopts the polynomial Chaos expansion (PCE)-based Sobol’ 

indices (Sudret 2008), which has been previously employed as sensitivity measures in different 

fields such as geotechnical earthquake engineering (Abbiati et al. 2021) and structural dynamics 

(Ardebili et al. 2021).  

3.5.1 PCE-based Sobol’ index approach 

The basic idea behind Sobol’ indices is to expend a function 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛), e.g., FE 

model in this paper, into a summation of functions of increasing dimension. 

𝑌 =  𝑓𝑜 + ∑ 𝑓𝑖(𝑋𝑖)

1≤𝑖≤𝑛

+ ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)

1≤𝑖<𝑗≤𝑛

+ ⋯ + 𝑓1,2,…,𝑛(𝑋1, 𝑋2, … , 𝑋𝑛 )     (3 − 1) 

in which,  

𝑓𝑜 = 𝔼(𝑦)                        
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𝑓𝑖(𝑥𝑖) = 𝔼(𝑦|𝑥𝑖) − 𝔼(𝑌)                      

𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝔼(𝑌|𝑥𝑖, 𝑥𝑗) − 𝑓𝑖 − 𝑓𝑗 − 𝔼(𝑦)                    (3 − 2) 

For the case with statistically independent variables 𝑋𝑖(1,2, … , 𝑛), the variance of the output 

response 𝑌, 𝕍(𝑌) = 𝐷, can be written as 

𝐷 =  ∑ 𝐷𝑖 

1≤𝑖≤𝑛

+ ∑ 𝐷𝑖,𝑗 +

1≤𝑖<𝑗≤𝑛

∑ 𝐷𝑖,𝑗,𝑘 +

1≤𝑖<𝑗<𝑘≤𝑛

… +  𝐷1,2,…,𝑛                          (3 − 3) 

where  

𝐷𝑖 =  𝕍(𝔼(𝑌|𝑋𝑖)) 

𝐷𝑖,𝑗 =  𝕍 (𝔼(𝑌|X𝑖, X𝑗)) − 𝐷𝑖 − 𝐷𝑗  

𝐷𝑖,𝑗,𝑘 =  𝕍 (𝔼(𝑦|X𝑖, X𝑗 , X𝑘)) − 𝐷𝑖 ,𝑗 − 𝐷𝑖 ,𝑘 − 𝐷𝑗 ,𝑘 − 𝐷𝑖 − 𝐷𝑗 − 𝐷𝑘    

…              (3 − 4) 

where 𝕍(. ) and 𝔼(. ) denote the variance and expectations operators, respectively.  

To this end, the total output variance 𝕍(𝑌) = 𝐷   is decomposed into contributions of the 

individual parameters and their interactions of various orders. Consequently, their fractional 

contributions can be measured by the ratios between the partial variance and the total variance, 

leading to Sobol’ sensitivity indices given by:  

𝑆𝑖 =
𝐷𝑖

𝐷
, 𝑆𝑖,𝑗 =

𝐷𝑖,𝑗

𝐷
, . . . , 𝑆1,2,…,𝑛 =

𝐷1,2,…,𝑛

𝐷
                                                   (3 − 5)  
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Among the terms in Eq. (3-5), the first-order index 𝑆𝑖 evaluates the amount of partial variance 

attributed to one variable alone (e.g., 𝑋𝑖 ). In contrast, the higher-order indices (𝑆𝑖 ,𝑗, 𝑆𝑖 ,𝑗,𝑘) 

account for the partial variance due to the interaction of one variable (e.g., 𝑋𝑖) with the others.  

To this end, the derived Sobol’ indices can indicate the relative importance of different input 

variables in predicting the output response (y). In this study, up to second-order indices are used 

to consider the effect of the latent interaction between different input variables. Sobol’ indices 

are traditionally determined by Monte Carlo simulations, but the required number of samples can 

be extremely large and thus impractical for the FE model of masonry walls. As such, a fast-to-

evaluate surrogate model based on PCE is adopted in this study since it allows the analytical 

derivation of Sobol’ indices (Sudret 2008).   

3.5.2 Results for load capacity prediction with & without model uncertainty  

The variance associated with the load capacity of masonry walls due to the uncertainties 

associated with input parameters is firstly examined in this section.  To this end, the 2000 

samples used in the probabilistic structural analysis with and without considering model 

uncertainty are used. The sensitivity analysis results are shown in Figure 3-9 and Figure 3-10 for 

the cases without and with model error considered.  

Figure 3-9 shows that the variance of the lateral load capacity is mainly attributed to the 

uncertainties associated with the three important parameters 𝑑, 𝑓𝑦, and 𝑓𝑚. It is shown that the 

first-order indices from these three important parameters contribute to a significant amount of the 

total variance of load capacity (i.e., 88%, 93% and 99% for 10-inch, 8-inch and 6-inch walls, 

respectively). Similar observations can be made based on the probabilistic structural analysis 
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results when considering a single random variable at a time (see Section 3.3.2). In contrast, the 

interactive effect among the input parameters, indicated by higher Sobol’ indices, is found to be 

negligible for all the considered walls. Comparing the sensitivity results for the three walls, the 

effect of the parameter 𝑑 increases with the decreasing wall thicknesses. It turns to be the most 

influential parameter for 8-inch wall and 6-inch wall.  

Figure 3-10 shows that model uncertainty in FE prediction has a substantial effect on the total 

variance of the lateral load capacity, when ME is considered. The first-order sensitivity indices 

for ME show that ME contributes to 71%, 70%, and 63% of the total variance for 10-inch, 8-

inch, and 6-inch wall, respectively. This implies the significant role of model uncertainty (ME), 

compared with other parameter uncertainties (e.g., material and geometric variables) that are 

commonly considered for FE-based probabilistic analysis. 

 

.                     

             

 

(a) (b) (c) 

Figure 3-9 Variance decomposition for load capacity when no model error is considered: 

(a) 10-inch wall, (b) 8-inch wall, and (c) 6-inch wall 
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(a) (b) (c) 

Figure 3-10 Variance decomposition for load capacity when model error is considered: (a) 

10-inch wall, (b) 8-inch wall, and (c) 6-inch wall 

3.5.3 Results for ductility prediction without model uncertainty  

Similar sensitivity analysis is performed for the deformation capacity (i.e., ductility) of the three 

masonry walls considered. The sensitivity results are shown in Figure 3-11. It is found that the 

uncertainties in masonry compressive strength 𝑓𝑚  and masonry tensile strength 𝑓𝑡  contribute 

most to the ductility variance. The contribution of 𝑓𝑚  increases with increasing slenderness, 

while the contribution of 𝑓𝑡 decreases with increasing slenderness. It is worth mentioning that the 

interactive effects among the input parameters possess a considerable contribution to the 

variance of ductility, which is contrary to the observation made for the lateral load capacity.  
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(a) (b) (c) 

Figure 3-11 Variance-based sensitivity analysis results for ductility: (a) 10-inch wall, (b) 8-

inch wall, and (c) 6-inch wall 

3.6 Conclusions 

In this study, macro finite element (FE) models were developed and validated for three 

reinforced concrete masonry walls under out-of-plane (OOP) loading. Based on the developed 

macro FE models, probabilistic structural analysis was conducted by propagating material and 

geometric uncertainties to the load-displacement curves of masonry walls. It revealed the 

influence of the random material and geometric parameters on the overall structural behaviour, 

as well as the specific responses of interest such as load capacity and deformation capacity. 

Among the three walls considered, the behaviour of the highly slender wall was found to be 

associated with larger scatter. Based on the experimental database compiled, the model error 

(ME) for FE-predicted load capacity was quantified, and it was found that incorporating ME led 

to a substantial increase in the variance of load capacity. To quantify the contribution of different 

random variables to the variance in the load and deformation capacities, variance-based global 

sensitivity analyses were conducted for walls with different slenderness or thicknesses. When the 

model error was ignored, the load capacity variance was mostly attributed to the uncertainty 
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associated with the masonry compressive strength  𝑓𝑚, the yield strength of steel 𝑓𝑦, and steel bar 

location 𝑑. In contrast, the deformation capacity variance is mostly attributed to the uncertainty 

associated with the masonry compressive strength 𝑓𝑚, and the masonry tensile strength 𝑓𝑡. When 

the model error was considered, a significant portion of the load capacity variance was 

contributed by the uncertainty associated with model error. This highlights the importance of 

considering model error for probabilistic structural analysis, particularly in FE-based reliability 

analysis.   
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CHAPTER 4:  Finite Element-based Reliability Analysis of Reinforced Concrete Masonry 

Walls under Out-of-Plane Loading Considering Slenderness Effects 

 

This paper presents finite element (FE)-based reliability analysis of reinforced concrete masonry 

walls under out-of-plane (OOP) loading considering slenderness effect. The main purpose is to 

(1) examine the importance of model uncertainty and (2) investigate the effect of different failure 

criteria on the reliability assessment of masonry walls. To achieve this goal, two representative 

walls with different slenderness ratios are selected for the reliability analysis. Finite element 

models of masonry walls are used to formulate the limit-state function for the reliability 

problems considered. Subset simulation algorithm in conjunction with Polynomial-Chaos-

Kriging (PCK)-based surrogate models is used to address the computational cost involved in FE-

based reliability analysis. It is found that the reliability assessment results are highly dependent 

on the model error. In addition, it is found that the local failure criteria are not always more 

conservative compared to global (wall) failure criteria due to the stability failure, particularly for 

slender walls or walls designed with vertical loads at low eccentricities. Furthermore, it is found 

that other factors are found to influence the reliability assessment, such as the slenderness ratios, 

which leads to reliability-inconsistent designs according to the current design codes. 
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4.1 Introduction 

The structural resistance (i.e., load capacity) of the reinforced concrete masonry walls is 

essentially uncertain due to the variabilities inherent in the material and geometric properties. 

Likewise, the demand (i.e., load effects) is also uncertain due to the randomness in the loads 

applied to masonry walls. Accordingly, the actual values of the resistance (i.e., load capacity) 

and the demand (i.e., load effects) can be different from their corresponding nominal or design 

values, which can be computed in accordance with relevant design code (Mirza 1996). The 

structural reliability analysis can be performed to investigate the probability that the actual value 

of the load effect exceeds the resistance according to a certain failure criterion, namely, the 

probability of failure Pf. Structural design codes aim to ensure that the designed structures satisfy 

a target reliability level (i.e., to serve their intended function within a predetermined acceptable 

probability of failure).  

Previous studies (Turkstra and Ojinaga 1980, Ellingwood and Tallin 1985, Stewart and 

Lawrence 2007, Zhai and Stewart 2010, Zhai et al. 2012, Moosavi and Korany 2014) 

investigated the reliability of masonry structures subjected to different loading conditions (e.g., 

concentric compression, flexure, and in-plane shear). However, these studies were based on the 

empirical design codes models or simplified analytical models, which can be associated with 

significant model error. Accordingly, Zhai and Stewart (2010) developed probabilistic models to 

incorporate the model error in the reliability assessment of masonry walls under in-plane shear 

loading by comparing the predictions of the adopted strength models with the available 

experimental results and selecting the best fit probability distribution. It was found that the 

reliability assessment is very sensitive to the model error.  
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As an alternative to reliability assessment using the design code models for the capacity or 

demand calculations, reliability assessment can be conducted using more accurate mechanics-

based finite element (FE) models. This approach was previously used for other structures, such 

as reinforced concrete structures and steel structures (Grubišić et al. 2019, Yan et al. 2020). 

Nevertheless, in these studies, the model error associated with the FE models was neglected in 

the reliability assessment. Although the mechanics-based FE models are believed to be more 

reliable than simplified design code-based models, they are also associated with prediction error. 

In that sense, it is essential to incorporate the model uncertainty of the FE models in the 

reliability assessment and assess the importance of considering modelling uncertainty in 

reliability evaluation.  

Generally, the reliability of a given structure is measured by the probability that this structure can 

fulfill its design purpose in the face of inherent uncertainties. For reliability analysis, the failure 

criteria can be defined mathematically through a limit state function (G), such that G <= 0 

indicates a state in which the structure does not satisfy its design function (Grubišić et al. 2019, 

Zhai and Stewart 2010, Moosavi 2017). Emphasizing on the ultimate limit state for safety 

concerns, the structure is considered to fail if the applied load effects (i.e., demand) exceed its 

load capacity (i.e., load resistance). In that sense, global (i.e., wall) or local (i.e., section or 

material) failure criteria can be used to define the ultimate limit state depending on the 

engineering acceptance criteria. The adopted failure criteria can have a substantial effect on the 

reliability assessment (Frangopol et al. 1996, Milner et al. 2001). As indicated by other 

researchers (Moosavi and Korany 2014, Moosavi 2017), the transformation of CSA S304 from 

working stress to limit state design approach was not supported by comprehensive structural 
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reliability analysis. Therefore, Moosavi (2017) indicated the need for a comprehensive reliability 

analysis to support the limit-state-based provisions introduced in CSA S304 and thus performed 

a reliability assessment of non-slender reinforced masonry walls under OOP loading. In the 

mentioned study, the reliability assessment was performed for a limit state function formulated 

based on section check using simplified analytical models, which is assumed error-free.   

To facilitate better reliability assessment of reinforced concrete masonry walls under OOP 

loading, slenderness effect is considered. To this end, finite element (FE) models that rigorously 

consider geometrical and material nonlinearities, together with model uncertainty, are used for 

limit state function formulation in reliability assessment. Without performing a comprehensive 

reliability-based code evaluation, this study focuses on FE-based reliability analysis, mainly to 

(1) examine the importance of model uncertainty and (2) investigate the effect of different failure 

criteria on the reliability assessment of masonry walls when considering the slenderness effect. 

However, FE-based reliability analysis can be computationally expensive, especially for cases 

when a large number of simulations is required to capture low probabilities of failure. To tackle 

this problem, this study employs surrogate models (i.e., Polynomial-Chaos-Kriging (PCK) 

(Schobi et al. 2015)) in conjunction with subset simulation (SS) (Au et al. 2007) for their 

efficiency and accuracy (Zuev et al. 2015). 

4.2 Masonry Walls and Slenderness Effects 

Masonry structures are becoming more competitive with other construction materials due to their 

strength, durability and ease of construction with the improvement of the relevant design codes 

(Isfeld et al. 2019). However, this is not the case for the relatively high (i.e., slender) walls as the 

design of such walls is still facing challenges due to the stringent design requirements imposed 
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by the design codes (e.g., CSA S304). The stringent requirements are attributed to the high 

vulnerability of highly slender walls to second-order effects, which is considered a critical and 

highly uncertain behavioural aspect (Pettit 2020). However, the design codes adopt the 

approximate moment magnifier method to account for second-order effects, which can be overly 

conservative (Bilotta and Cruz 2021). In that sense, it is important to rigorously consider the 

second-order effects (e.g., using mechanics-based FE models) in the reliability analysis.  To this 

end, two reinforced fully grouted concrete masonry walls with different slenderness ratios (h/t) 

are considered in this paper, namely wall S with h/t = 16, and wall H with h/t = 42. The nominal 

material and geometric properties of the considered walls are summarized in Table 4-1. The 

walls configuration is shown in Figure 4-1(a). Note that the steel bars are designed to be located 

at mid-thickness of the walls, with reinforcement ratio (ρs) of 0.0019 representing a mid-range 

value between the minimum permissible reinforcement ratio (0.0013) by CSA S304-14 and the 

balanced reinforcement ratio (0.0025) (i.e., the steel ratio in which the yielding of the bars occurs 

simultaneously with the critical fibre in the cross-section reaches the crushing strain) for pure-

bending case (Moosavi, 2017). It should be noted that higher reinforcement ratios (e.g., ρs > 

0.0025) are prevented for walls with h/t > 30 because only ductile failure mode is permissible 

according to CSA S304-14 Therefore, only lightly reinforced walls are considered for 

comparison.   

Table 4-1 Nominal properties of the walls considered  

Wall  Height 

(h) 

(mm) 

Thickness  

(t) 

(mm) 

Slenderness 

ratio  

(h/t) 

Masonry nominal 

compressive 

strength 

 𝒇𝒎
′  

Reinforcement 

ratio 

𝝆𝒔 

Reinforcement 

bars yield 

strength 

𝒇𝒚,𝒏𝒐𝒎𝒊𝒏𝒂𝒍 

Reinforcement 

bars location 

𝒅 

(mm) 
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(MPa) (MPa) 

Wall S 3000 190 16 10 0.0019 400 95 

Wall H 8000 190 42 10 0.0019 400 95 

 

Due to natural variation of material and geometric properties, their values for reinforced concrete 

masonry walls are uncertain and can be modelled as resistance random variables. The relevant  

statistical information is listed in Table 4-2, including the mean, coefficient of variation (COV), 

and probability distribution types for the most important and uncertain variables such as masonry 

compressive strength (𝑓𝑚) and the corresponding strain (𝜀𝑜), masonry tensile strength (𝑓𝑡), yield 

strength of steel reinforcement (𝑓𝑦), Young’s modulus of steel reinforcement (𝐸), and steel bar 

location ( 𝑑) . Note that these random variables are assumed statistically independent as a 

common assumption used in the literature due to lack of information (Zhu et al. 2017). 

Table 4-2 Statistical characterization of random variables considered 

Random 

variable 

Mean  

(μ) 

Coefficient 

of variation 

Probability 

distribution 

Reference 

fm 1.6  𝑓𝑚
′  0.24 Gumbel Moosavi and Korany 2014, Moosavi 2017 

εo 0.002 0.20 Lognormal Drysdale et al. 2005, Barbato et al. 2014 

Mirza et al. 1979 

ft 0.69 MPa 0.4 Normal Melander 1993, Hatzinkolas et al.  1978 

fy 1.14 fy,nominal 0.07 Normal Moosavi 2017 

E 200 GPa 0.033 Normal Mirza, 1998 

D dn 4.0 𝑚𝑚
𝑑𝑛

⁄  Normal Moosavi 2017 
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In order to study the structural behaviour considering slenderness effect, the macro FE modelling 

approach using fibre-based beam element in OpenSees is adopted. In this model, geometric 

nonlinearity is taken into account effectively through corotational transformation. The wall is 

modelled as a number of displacement-based fibre beam elements (e.g., 16 for wall S and 40 for 

wall H) with 5 Gaussian Legendre integration points. Each integration point is assigned with a 

generalized fibre section consisting of masonry and steel fibres and discretized from the cross-

section of masonry walls. Each fibre is modelled by a material constitutive law to represent the 

uniaxial stress-strain behaviour of masonry or steel. Accordingly, the nonlinear behaviour of the 

reinforced masonry section can be integrated from the adopted nonlinear constitutive law of each 

fibre. In this study, Concrete02 and Steel01 in OpenSees are adopted for modelling the masonry 

and steel fibres, respectively. In the material model adopted for masonry (i.e., Concrete02), 

𝑓𝑚, 𝜀0 𝑎𝑛𝑑 𝑓𝑡  are the masonry compressive strength, the corresponding strain and the masonry 

tensile strength, respectively, determined based on their random characteristics as provided in 

Table 4-2. While  𝑓𝑚𝑢 , 𝜀𝑢𝑎𝑛𝑑 𝜀𝑡𝑢 , which represent the residual compressive strength, the 

corresponding strain and the ultimate tensile strain, respectively, are deterministic quantities 

deduced based on literature findings. Specifically, 𝑓𝑚𝑢, 𝜀𝑢 are determine based on the models 

proposed in (Priestley and Elder 1983) for homogenous masonry, wheras 𝜀𝑡𝑢 is taken as 0.004 

(Wang et al. 1997).  On the other hand, the parameters of the material model Steel01 such as 𝑓𝑦 

and E, which represent the yield strength of steel reinforcement and corresponding Young’s 

modulus, respectively, are defined based on their random characteristics provided in Table 4-2, 

whereas b, which is the strain hardening ratio, is taken as 0.01 (Wong et al. 2013). The 

configuration of the walls and the schematic view of the FE model used for walls loaded in 

eccentric compression are shown in Figure 4-1. In the model, the eccentric loading is applied 
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through a rigid beam with a length equals to the load eccentricity (𝑒𝑛) . Note that such a 

modelling approach is commonly validated and used to efficiently predict the loading behaviour 

of reinforced concrete masonry walls by the authors in (Metwally and Li 2021) and other 

researchers (e.g., Bilotta and Cruz 2021).  However, it should be noted that the adopted 

modelling approach does not consider the effect of creep in the resistance calculations, which 

can affect the long-term resistance of masonry walls.  

 

 

(a) 

 

 

 

(b) 
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Figure 4-1 Reinforced concrete masonry walls studied: (a) test specimen, and (b) schematic 

view of the FE model   

As mentioned previously, the slenderness effects (i.e., geometric non-linearities) are considered 

within the developed FE model. It is found that the slenderness effects have a substantial effect 

on the global behaviour of the reinforced concrete masonry walls, especially those with high 

slender ratios (e.g., Wall H) in terms of load capacity (Figure 4-2). Note that this phenomenon is 

exemplified by the two walls with the load eccentricity-to-thickness ratio (
𝑒𝑛

𝑡⁄ = 0.1), and a 

similar trend is observed for higher eccentricity-to-thickness ratios though the effect can 

eventually diminish when 
𝑒𝑛

𝑡⁄  increases. In that sense, it is essential to consider the slenderness 

effect to get a realistic perspective into the behaviour and the reliability of reinforced concrete 

masonry walls.  

 

Figure 4-2  FE-based load-deflection curves for Walls S and H with 
𝒆𝒏

𝒕⁄ = 𝟎. 𝟏 

4.3 Uncertainty in Load Capacity 

The load capacity Pc can be predicted using the aforementioned FE models, by extracting the 

peak axial load when the masonry wall is subjected to eccentric axial loading. Naturally, when 

the load applied to the wall is larger than the capacity, the wall would fail due to insufficient load 
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capacity. However, the FE model is by no means free of model error when compared with the 

experiments, and thus FE-predicted load capacity is inherent with model uncertainty. As such, 

the prediction-to-test ratio is introduced as a correction factor, to consider the model error (ME), 

and it is quantified using an experimental database consisting of 69 reinforced concrete masonry 

walls loaded under out-of-plane (i.e., eccentric axial compression and lateral loading) compiled 

from the literature (Yokel et al. 1970, Hatzinkolas et al. 1978, ACI-SEASC 1982, Suwalski 

1986, Mohsin 2005).  

Based on the comparison between the experimental and FE-predicted capacities, the statistical 

parameters of ME are quantified. It is found that ME follows a normal distribution with a mean 

of 𝜇𝑀𝐸 = 1.02 and coefficient of variation 𝐶𝑂𝑉𝑀𝐸 = 0.17. The histogram, fitted distribution, 

mean (𝜇) and mean ± standard deviation (𝜇 ± 𝜎) are shown in Figure 4-3. 

 

Figure 4-3 Histogram and fitted probability density function (PDF) for the model error 

distribution 

ME accounts for the uncertainties that emerge from model simplification and embedded 

assumptions. In that sense, incorporating ME in quantifying the probabilistic behaviour and the 

reliability analysis can be essential.  It is found that considering the model error in the 
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probabilistic capacity result in a significantly higher variance (i.e., more scattered capacity 

range) as indicated by the comparison of the empirical probability distribution functions (PDFs) 

of the probabilistic capacity of the considered walls (i.e., wall S and wall H) when loaded with 

𝑒𝑛
𝑡⁄ = 0.1, 2.0 with and without considering model error as shown in Figure 4-4.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-4 Comparison of load capacity PDFs  with and without considering model error: 

(a) Wall S 
𝒆𝒏

𝒕⁄ = 𝟎. 𝟏, (b) Wall S 
𝒆𝒏

𝒕⁄ = 𝟐.0, (c) Wall H 
𝒆𝒏

𝒕⁄ = 𝟎. 𝟏, and (d) Wall H 
𝒆𝒏

𝒕⁄ =

𝟐.0 

 

4.4 Uncertainty in Load Effects 

In addition to the aforementioned uncertainties in the wall properties and thus the capacities, the 

loads (e.g., dead load, live load, snow load) applied directly or indirectly to the walls are also 
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uncertain.  The corresponding statistical characteristics of the loading random variables are 

provided in Table 4-3,  according to Bartlett et al. (2003). In Table 4-3, 𝐷𝐿𝑛 , 𝐿𝐿𝑛 , 𝑆𝐿𝑛 are the 

nominal dead load, live load and snow load, respectively. It should be noted that when the live or 

snow loads are principal loads, the statistics corresponding to 50-year maximum load are used in 

the reliability assessment. On the other hand, the point-in-time statistics are used for companion 

loads. In addition, the transformation to load effects statistics are introduced to account for 

modelling (e.g., uncertainties with an idealization of the actual load to equivalent uniformly 

distributed load) and analysis factors (e.g., uncertainties with calculating the straining actions 

induced by the loads) (Barlett et al. 2003).    

Table 4-3 Statistical characterization for loads 

Load Type 

 

Mean (μ) Coefficient of 

variation  

Distribution 

Dead 1.05𝐷𝐿𝑛 0.10 Normal 

 

 

 

Live 

50-year maximum 

load 

0.90𝐿𝐿𝑛 0.17 Gumbel 

Point-in-time load 0.27𝐿𝐿𝑛 0.68 Weibull 

Transformation to 

load effects 

1.00 0.21 Normal 

 

Snow 

50-year maximum 

load 

1.10𝑆𝐿𝑛 0.20 Gumbel 

Point-in-time load 0.20𝑆𝐿𝑛 0.89 Weibull 

Transformation to 

load effects 

0.60 0.42 Lognormal 

 

Assuming the two walls were designed satisfying the CSA S304-14, the nominal load effects or 

loads that the walls were supposed to resist, can be back-calculated based on the limit state 

design criterion used. Namely, at the limit, the factored resistance should be equal to the factored 

load effect. As such, the nominal properties of the wall considered are used together with 

resistance factors to calculate its design resistance, represented by the column P-M interaction 
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diagram as derived from the section P-M interaction diagram using moment magnifier method 

with CSA S304-14). For a given eccentricity e, the nominal load effects can be traced back based 

on the corresponding load factors, depending on the load combinations considered in this paper. 

In this section, the three load combinations involving dead load, live load, snow load considered 

are: load combination#1 1.4 𝐷𝐿𝑛  with dead load only; load combination #2 1.25 𝐷𝐿𝑛 +

1.5 𝐿𝐿𝑛 + 0.5 𝑆𝐿𝑛  with the live load and snow load as the principal and companion load, 

respectively; and load combination #3 1.25 𝐷𝐿𝑛 + 0.5 𝐿𝐿𝑛 + 1.5 𝑆𝐿𝑛  with the snow load and 

live load as the principal and companion load, respectively. 

Specifically, for the load combination with dead load only, the design resistance of the cross-

section is denoted by designed axial force resistance 𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛 and the corresponding designed 

moment resistance 𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛. denoted by point a (𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛, 𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛)  in Figure 4-5. This design 

moment resistance corresponds to the magnified primary moment by moment magnifier method; 

thus, the primary moment 𝑀𝑃𝑛  can be deduced by reducing the designed moment resistance, 

denoted by point b (𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛, 𝑀𝑃𝑛)  in Figure 4-5. Subsequently, the nominal dead load can be 

expressed as 𝑃𝐷𝑛 =
𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛

1.4
 as indicated by point c (𝑃𝐷𝑛, 𝑀𝐷𝑛) . Subsequntally, the random 

properties of 𝑃𝐷 can be obtained by the available statistical information for the dead load. 
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Figure 4-5 Typical interaction diagrams for walls loaded under dead load only  

Consider load combinations that involve more loads in addition to dead load, e.g., load 

combination #2, the nominal axial load (𝑃𝑟𝑛) and moment (𝑀𝑟𝑛) resistances can be expressed as 

follows according to CSA S304-14:  

𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛 = 1.25𝑃𝐷𝑛 + 1.5𝑃𝐿𝑛 + 0.5𝑃𝑆𝑛                      (4 − 1) 

   𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛 = 1.25𝑀𝐷𝑛 + 1.5𝑀𝐿𝑛 + 0.5𝑀𝑆𝑛                (4 − 2)    

where 𝑃𝐷𝑛, 𝑃𝐿𝑛 and 𝑃𝑆𝑛 are nominal axial load due to dead, live and snow loads, and 𝑀𝐷𝑛, 𝑀𝐿𝑛 

and 𝑀𝑆𝑛  are the corresponding moments due to eccentricity. According to (Ellingwood et al. 

1980), the typical load-ratios between the nominal values of live load 𝑃𝐿𝑛 (or snow load 𝑃𝑆𝐿) and 

the dead load 𝑃𝐷𝑛  for masonry structures, 𝛼𝑃𝐿  (or 𝛼𝑃𝑆 ), range from 0.25 to 2.0. Thus  𝛼𝑃𝐿 

(or 𝛼𝑃𝑆) = 0.25, 0.5, 1.0, and 2.0, are considered in this study. 𝛼𝑃𝐿 (or 𝛼𝑃𝑆) are used to back-

calculate the nominal values of the axial loads and the corresponding moments from the designed 
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values of resistances. Note that the moment ratios (i.e., 𝛼𝑀𝐿 and 𝛼𝑀𝑆)  are taken equal to the 

corresponding axial load ratios for a given eccentricity considered in this study.  

Subsequently, 𝑃𝐷𝑛 and 𝑀𝐷𝑛, can be determined based on 𝑃𝑟,   𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛, as follows:  

𝑃𝐷𝑛 =     
𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛

(1.25 + 1.5 𝛼𝑃𝐿 + 0.5𝛼𝑃𝑆 )
                  (4 − 3) 

𝑀𝐷𝑛 =
𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛

(1.25 + 1.5 𝛼𝑃𝐿 + 0.5𝛼𝑃𝑆 )
                    (4 − 4) 

Similar to load combination #2, 𝑃𝐷𝑛  and 𝑀𝐷𝑛 , can be determined based on 𝑃𝑟,   𝑑𝑒𝑠𝑖𝑛  and 

𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛 for load combination #3 as follows:  

𝑃𝐷𝑛 =     
𝑃𝑟,𝑑𝑒𝑠𝑖𝑔𝑛

(1.25 + 0.5 𝛼𝑃𝐿 + 1.5𝛼𝑃𝑆 )
                  (4 − 5) 

𝑀𝐷𝑛 =
𝑀𝑟,𝑑𝑒𝑠𝑖𝑔𝑛

(1.25 + 0.5 𝛼𝑃𝐿 + 1.5𝛼𝑃𝑆 )
                    (4 − 6) 

For the load combinations considered above, masonry walls are subjected to eccentric axial loads 

only. In that sense, the applied axial loads (i.e., load effects) can be compared with the axial load 

capacity for the corresponding eccentricity. The probabilistic axial load capacity 𝑃𝑐 , with and 

without considering model error, against the probabilistic load effects, for the walls considered 

with eccentricity to thickness ratio (
𝑒𝑛

𝑡⁄ = 0.1 ) is presented in Figure 4-6. 
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(a) 

 

(b) 

Figure 4-6 Comparison between load capacity with and without model error and the load 

effects: (a) Wall S, and (b) Wall H 

4.5 Reliability Analysis for Global Failure of Walls 

4.5.1 Global failure-based limit state function 

For the three load combinations involving eccentric axial loads only, load resistance R and load 

effect S are described by the axial load capacity Pc and the applied load, 𝑃 = PD in the case of 

load combination #1 and 𝑃 = (𝑃𝐷 + 𝑃𝐿 + 𝑃𝑆) in the cases of load combination #2 and #3.  Hence, 

the limit state function can be defined as follows:  

𝐺 = 𝑅(𝑓𝑚, 𝜀0, 𝑓𝑡 , 𝑓𝑦, 𝐸, 𝑑) − 𝑆(𝑃𝐷 , 𝑃𝐿 , 𝑃𝑆)                                 (4 − 7) 

where 𝑅 and S are random variables representing the structural resistance and the load effects 

(i.e., demand), respectively.  

As found in Jiang et al. (2020), the nominal load eccentricity (en) significantly affects wall 

behaviour and thus the reliability analysis outcomes. Accordingly, the reliability of the 

considered walls is analyzed under a wide range of eccentricities. Specifically, 
𝑒𝑛

𝑡⁄  = 0.1, 0.5, 

and 2.0, are considered in this study. In addition, the reliability assessment is conducted 
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considering two scenarios: with and without considering the model error, to demonstrate the 

importance of considering model error for accurate reliability assessment of the masonry walls.  

4.5.2 Reliability analysis methods 

 As mentioned previously, structural reliability aims at investigating the probability that the 

actual value of the load effect exceeds the resistance considering a certain failure criterion. This 

probability is referred to as the probability of failure Pf.    However, the analytical determination 

of the probability of failure (Pf.)  is not feasible in several practical cases which involve complex 

numerical systems or implicit limit state functions.  Alternatively, Monte Carlo (MCS) is the 

most commonly used method to calculate the probability of failure (𝑃𝑓) as any form of the limit 

state functions (e.g., implicit functions) can be incorporated within its framework (Su et al. 

2017).  

Although MCS provides a robust and accurate tool for reliability analysis, it is associated with a 

low convergence rate. This limits MCS application for cases in which the evaluation of the limit 

state function is computationally expensive (Dubourg et al. 2013). To tackle this problem, other 

simulation-based methods were developed. Among these methods is Subset Simulation (SS), an 

adaptive stochastic simulation technique that aims to capture rare failure events and compute 

small failure probabilities. In SS, the target probability of failure is expressed as a product of 

larger conditional probabilities of adaptive intermediate failure events. To this end, computing 

small probabilities of failure becomes feasible by performing a sequence of problems involving 

more frequent events (Au et al. 2007, Tee et al. 2014).  
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 To further resolve the computational cost using (SS) for FE-based reliability analysis, the 

original expensive FE model can be replaced with a fast-to-evaluate surrogate model. Among 

different surrogate models, polynomial chaos expansion (PCE) (Ghanem and Spanos 1991) and 

kriging (Schöbi et al. 2017) are the most widely used techniques in uncertainty quantification 

and reliability analysis (Yu et al. 2020, Bhattacharyya 2021). However, each of them is 

associated with certain drawbacks. For instance, PCE sometimes fails to accurately represent the 

tails of the model response distribution, which limits its applicability for reliability-related 

applications (Marelli and Sudret 2018). On the other hand, kriging relies significantly on the 

information provided by the training sample. Accordingly, kriging surrogating quality can be 

compromised if only a limited number of samples are available (Ling et al. 2020). 

To overcome the aforementioned drawbacks, a new unified surrogate modelling technique, 

polynomial chaos kriging (PCK), was firstly introduced by (Schobi et al. 2015) to combine the 

advantages of both models. To do so, PCK employs PCE to approximate the main trend of the 

original computational model and kriging to account for the local variations.  Intuitively, PCK 

was shown to be more accurate compared to PCE and kriging separately (Schobi et al. 2015). 

Thereafter, PC-Kriging was widely used in different applications, including reliability analysis 

(Das et al., 2020, Leifsson et al. 2020, Schöbi et al.  2017, Yu et al. 2020).  

In this study, the PCK surrogate model is trained over (N=300) stochastic generated based on the 

Latin hypercube sampling strategy (LHS). The comparison between the empirical different 

surrogate models (e.g., PCK-100, PCK-300 and PCK-2000) developed to reproduce the peak 

capacity (i.e., resistance) for two extreme cases (i.e., Wall S with 
𝑒𝑛

𝑡⁄ =0.1 and wall H with 

𝑒𝑛
𝑡⁄ =2.0) is shown in Figure 4-7. Based on the comparison, it is found out that 300 FE 
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simulations are sufficient to construct the surrogate model with the same level of accuracy 

obtained with much larger number (e.g., 2000 FE simulations).    

 

(a) 

 

(b) 

Figure 4-7 Comparison of the capacity CDFs based on different surrogate models: (a) Wall 

S, and (b) Wall H 

4.5.3 Results and discussion 

In this section, the reliability assessment results are shown for the three load combinations 

involving dead load, live load, snow load (i.e., Combination #1, Combination #2, Combination 

#3). For combination #2 and combination #3, different load ratios (i.e., 𝛼𝑃𝐿  and 𝛼𝑃𝑆)  are 

considered. Each combination of (combination #, 𝛼𝑃𝐿 , 𝛼𝑃𝑆)  resemble a unique case in the 

reliability assessment. Table 4-4 provides a summary of the considered cases.  

Table 4-4 Cases considered in the reliability assessment 

Case# Combination # 𝜶𝑷𝑳, 𝜶𝑴𝑳 𝜶𝑷𝑺, 𝜶𝑴𝑺 

1 1 - - 

2 2 0.25 0.25 

3 3 0.25 0.25 

4 2 0.5 0.5 

5 3 0.5 0.5 

6 2 1 1 

7 3 1 1 
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8 2 2 2 

9 3 2 2 
10 2 1 0.25 
11 2 1 0.5 

12 2 1 2 
13 3 0.25 1 

14 3 0.5 1 
15 3 2 1 

 

It is found that the reliability assessment can be significantly influenced by the model error. 

Figure 4-8 shows the reliability indices (β) for the considered walls (i.e., Wall S and Wall H) 

loaded with design eccentricity to thickness ratio of with (
𝑒𝑛

𝑡⁄ =0.1, 2.0) with and without 

considering model error. It is shown that incorporating ME results in noticeably lower reliability 

indices (𝛽) (i.e., higher probabilities of failure) for the majority of the cases. This indicates that 

the negligence of ME in the reliability assessment is on the non-conservative side, even if 

mechanics-based FE models are adopted for the reliability analysis. 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

Figure 4-8 Comparison between the reliability indices (𝜷) with and without considering 

model error: (a) Wall S (
𝒆𝒏

𝒕⁄ =0.1), (b) Wall S (
𝒆𝒏

𝒕⁄ =2.0), (c) Wall H (
𝒆𝒏

𝒕⁄ =0.1), and (d) 

Wall H (
𝒆𝒏

𝒕⁄ =2.0) 

 

It is also found that the reliability indices (𝛽) are sensitive to the design eccentricity to thickness 

ratio (
𝑒𝑛

𝑡⁄ ). Figure 4-9 shows a comparison for the reliability indices associated with the 

considered walls (i.e., Wall S and Wall H) at different design eccentricity to thickness ratios 

(e.g., 
𝑒𝑛

𝑡⁄ = 0.1, 0.5,2.0). Note that the results shown here are with considering the model error. 

It is shown that the reliability indices corresponding to (
𝑒𝑛

𝑡⁄ = 0.1) are significantly higher 

compared to the other ratios (e.g., 
𝑒𝑛

𝑡⁄ = 0.5, 2.0). This trend is observed for both of the 

considered walls. This conforms to the findings reported in (Liu and Dawe 2003), which 

indicated that CSA S304 is overly conservative for walls loaded with smaller design eccentricity 

to thickness ratios (e.g., 
𝑒𝑛

𝑡⁄ =0.1).   On the contrary, walls loaded with (
𝑒𝑛

𝑡⁄ =0.5) are found 

to be associated with the lowest reliability indices (𝛽), which is most pronounced for wall H. 
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This conforms to the findings reported in (Isfeld et al. 2019, Liu and Dawe 2003), which 

indicated that the design code (i.e., CSA S304) underestimates the second-order effects for walls 

loaded with such eccentricity range.  

 

(a) 
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(b) 

Figure 4-9 Comparison between the reliability indices (𝜷) with different 
𝒆𝒏

𝒕⁄  (a) Wall S, 

and (b) Wall H 

In order to investigate the effect of the slenderness ratio on the reliability of the walls, the 

reliability indices (𝛽) of the considered two walls (i.e., wall S and wall H) are compared for each 

considered load eccentricity to thickness ratio (
𝑒𝑛

𝑡⁄ = 0.1, 0.5,2.0), as shown in Figure 4-10. 

Note that the results shown are with considering model error. It is found that the reliability 

assessment for both walls yields similar reliability indices (𝛽) throughout the considered 15 cases 

for (
𝑒𝑛

𝑡⁄ = 0.1,2.0). However, this was not the case for (
𝑒𝑛

𝑡⁄ = 0.5) as the highly slender (i.e., 

wall H) is associated with noticeably lower reliability indices (𝛽) compared to walls S. Another 

observation is that the reliability indices (𝛽) for the considered walls for (
𝑒𝑛

𝑡⁄ = 0.5,2.0) are 

below 3.5, which is the target reliability indices recommended by (CSA S408,2011) for normal 

importance buildings with a gradual (ductile) failure mode. 
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(a) 

 

(b) 
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(c) 

Figure 4-10 Comparison between the reliability indices (𝜷) for wall S and wall H: (a) 
𝒆𝒏

𝒕⁄ = 𝟎. 𝟏, (b) 
𝒆𝒏

𝒕⁄ = 𝟎. 𝟓, 𝐚𝐧𝐝 (𝐜) 
𝒆𝒏

𝒕⁄ = 𝟐. 𝟎 

 

In addition to the aforementioned factors, the reliability indices can be sensitive to the load ratios 

(e.g., 𝛼𝑃𝐿 , 𝛼𝑃𝑆). Figure 4-11 shows the comparison between the reliability indices (𝛽) for the 

considered walls when loaded with (
𝑒𝑛

𝑡⁄ = 0.1,2.0) considering load combination #2 (where the 

live load is a principal load and snow load is a companion load) and load combination #3 (where 

snow load is a principal load and live load is a companion load) with different companion load to 

dead load ratios. Note that the results shown here are with considering the model error and the 

ratio between the nominal principal load (e.g., live or snow) and the nominal dead load is (1). It 

is shown that the load combinations with the snow load as principal loads are associated with 

generally lower reliability indices (𝛽) compared to the ones with the live load as a principal load 
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for the same load ratio. This can be attributed to the higher uncertainty associated with snow 

loads. The same trend was also observed and reported in (Moosavi and Korany 2014). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-11 Comparison between the reliability indices (𝜷) for load combinations #2 and 

#3: (a) Wall S (
𝒆𝒏

𝒕⁄ =0.1), (b) Wall S (
𝒆𝒏

𝒕⁄ =2.0), (c) Wall H (
𝒆𝒏

𝒕⁄ =0.1), (d) and Wall H 

(
𝒆𝒏

𝒕⁄ =2.0) 
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4.6 Reliability Analysis for Local Failure of Walls 

4.6.1 Local failure-based limit state function 

The limit-state function formulated above serves to describe the global failure of a structural 

member, which implies the incapability of the masonry wall to resist the loads applied.  In 

contrast, the current design codes (e.g., CSA S304-14) interpret failure as the incapability of the 

critical cross-section to sustain the load effects (i.e., applied axial force P and moment M on the 

section), which is referred to as local failure limit-state for a cross-section. Namely, failure 

occurs when the sectional moment capacity MC under the axial load P is less than the applied 

moment M. In that sense, MC represents the resistance R while M represents the demand S in the 

limit state function. Note that the applied moment M on the critical cross-section can be obtained 

through the moment magnifier method to consider the second-order effect approximately in the 

wall response. However, the applied moment calculated can suffer from inaccuracy in the 

moment magnifier method. For a fair comparison, the applied moment is determined through 

nonlinear FE analysis using the same macro FE model developed earlier. Thus, the limit-state 

function formulated in a safety margin format reads : 

 𝐺 = 𝑅(𝑓𝑚, 𝜀0, 𝑓𝑡 , 𝑓𝑦, 𝐸, 𝑑, 𝑃) − 𝑆(𝑓𝑚, 𝜀0, 𝑓𝑡, 𝑓𝑦, 𝐸, 𝑑, 𝑃)                                 (4-8) 

This limit-state function serves to describe the local failure limit-state defined in terms of the 

cross-section. In order to show the difference in the reliability levels using different failure 

criteria, or relative conservatism in the current design arising from failure criteria, this study also 

conducts reliability analyses for the aforementioned walls against local failure in a critical cross-

section. 
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The section capacity MC can be determined from sectional analysis (i.e., moment-curvature 

analysis), a well-received approach to characterize the sectional behaviour in engineering 

practice.  Figure 4-12 summarizes the procedure to calculate MC schematically, in which, the 

masonry cross-section is discretized into masonry and steel layers associated with the same 

material stress-strain behaviours (e.g., Concrete02 and Steel01) as those used in the FE model of 

the masonry wall.  The stress in each fibre is determined based on the aforementioned material 

models. Subsequently, the force carried by each fibre can be calculated given the fibre geometry. 

Afterwards, the equilibrium of the section under the internal and external forces is checked. If 

the equilibrium is not satisfied, this means that the neutral axis location (c) is not correct. 

Accordingly, (c) is changed in an iterative manner until equilibrium is satisfied. From here, the 

curvature (𝜅) and the corresponding moment resistance (M) can be obtained. Lastly, the moment-

curvature curve can be obtained for different combinations of (𝜅, M). The peak moment on the 

moment-curvature curve represents the moment capacity MC.  Note that in the figure, 𝜀𝑢 = 

ultimate strain,  𝜀𝑠 = steel strain, c = neutral axis depth, d = steel bars depth, 𝐶𝑚 = masonry 

compression force,  𝑇𝑚 = masonry tension force,  𝑇𝑠 = steel tension force, P= axial load and M = 

moment resistance.  MC is the peak moment on the moment-curvature curve.  
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Figure 4-12 Moment-curvature analysis procedure 

 

In addition, another more stringent local failure criterion for material (e.g., concrete compressive 

crushing) is of interest. This refers to the local failure limit-state defined in terms of material 
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failure. For comparison purposes, this study also conducts reliability analysis against local failure 

in a critical cross-section. In this case, MC is the moment corresponding to the compressive 

crushing of extreme concrete fibre (i.e., compressive strain = 0.003 (i.e., the crushing strain 

commonly used in design codes)).   

4.6.2 Results and discussion 

The effect of the failure criteria on the reliability assessment is investigated in this section by 

comparing the reliability indices obtained based on global, section and material (i.e., fibre) 

failure criteria. Figure 4-13 shows the comparison of the reliability indices obtained based on the 

aforementioned failure criteria (i.e., global failure, section failure and fibre failure) for the two 

considered walls (i.e., wall S and wall H) at different 
𝑒𝑛

𝑡⁄  (e.g., 0.1,0.5,2.0) and considering load 

case #9. It is found that there is a higher probability of material fibre failure (corresponding to a 

lower reliability index) than section failure. This implies that the material fibre failure is a more 

stringent criterion and thus more conservative as expected since the sectional failure criterion 

allows stress redistribution over the cross-section among different material fibres. However, the 

difference between these two local failure criteria (i.e., section failure and fibre failure) are small 

for masonry walls that are slender (Wall H) and those with high load eccentricities (e.g., wall S 

with 
𝑒𝑛

𝑡⁄  =0.5, 2.0).  

Similarly, since stress redistribution (or plastic hinge formulation) is allowed along with the wall 

height, the probability of global failure is lower (corresponding to higher reliability index) than 

the probability of local failure (e.g., section failure) for Wall S with high load eccentricities 

(e. g. ,
𝑒𝑛

𝑡⁄ = 0.5, 2.0), see Figure 4-13(a). However, compared to the global failure criterion, 



103 

 

 

local failure criteria (e.g., section failure) is not always more conservative. For example, slender 

Wall H with different load eccentricities (e. g. ,
𝑒𝑛

𝑡⁄ = 0.1, 0.5, 2.0), see Figure 4-13(b), and Wall 

S with lower load eccentricities (e.g.,
𝑒𝑛

𝑡⁄ = 0.1), the probability of global failure is higher 

(corresponding to a lower reliability index). This is because the section failure criterion fails to 

account for stability failure, while the global failure criterion does. As mentioned previously, 

highly slender walls (e.g., Wall H) and walls loaded with lower eccentricities (e.g., Wall S with 

𝑒𝑛
𝑡⁄ = 0.1) are most vulnerable to stability failure. 

 
(a) 

 
(b) 

Figure 4-13 Comparison between the reliability indices (𝜷) for different failure criteria for 

load case #9: (a) Wall S, and(b) Wall H 

4.7 Wind load combinations 

4.7.1 Global failure-based limit state function for wind load combinations 

Previously, the limit-state function that describes the global failure of a structural member (i.e., 

masonry wall) under a combination of vertical loads (e.g., dead, live and snow) was defined. In 

addition to that, the limit-state function that describes the global failure for masonry walls 

subjected to vertical and wind loads (P,W) is discussed in this section.    
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Similar to the case with only vertical loads, the two walls are assumed to be designed in 

accordance with CSA S304-14. Accordingly, the factored resistance should be equal to the 

factored load effect at the limit. The nominal and random properties of the loads can be back-

calculated from the factored ones employing the same procedure illustrated in Section 4.4. 

Assuming a sequential loading approach (i.e., the vertical loads are applied first followed by the 

wind load), the failure occurs when the wind load capacity WC under the axial load P is less than 

the applied wind load W. In that sense, WC represents the resistance R while W represents the 

demand S in the limit state function. Thus, the limit-state function formulated in a safety margin 

format reads: 

 𝐺 = 𝑅(𝑓𝑚, 𝜀0, 𝑓𝑡, 𝑓𝑦, 𝐸, 𝑑, 𝑃) − 𝑆(𝑊)                                         (4 − 9)              

The corresponding statistical characteristics of the wind load random variables are provided in 

Table 4-5.  according to Bartlett et al. (2003). In this study, the reliability assessment is 

conducted considering the load combination #4 (1.25 𝐷𝑛 + 1.4 𝑊𝑛 + 0.5 𝐿𝑛), where 𝐷𝑛, 𝑊𝑛 and 

𝐿𝑛  are the nominal dead and wind and live loads, respectively. The analysis is conducted 

assuming that 𝛼𝑃𝐿 = 1, the wind loads possess no contribution in the axial force (i.e.,𝛼𝑃𝑊 =

0), while gravitational loads are assumed to be concentric for simplicity and the out-of-plane 

moment is induced by the uniformly applied wind load only.   

 

Table 4-5 Statistical characterization for wind load 

Load Type 

 

Mean (μ) Coefficient of 

variation  

Distribution 

 

 

50-year maximum 

load 

1.04 𝑊𝑛 0.08 Gumbel 
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Wind 

Point-in-time load 0.16 𝑊𝑛 0.72 Weibull 

Transformation to 

load effects 

0.68 0.22 Lognormal 

 

4.7.2 Results and discussion 

The reliability assessment results considering combination #4 are discussed in this section.  

Figure 4-14 shows a comparison for the reliability indices associated with the considered walls 

(i.e., Wall S and Wall H) at different design eccentricity to thickness ratios (e.g., 
𝑒𝑛

𝑡⁄ =

0.1, 0.5,2.0). It should be noted that 𝑒𝑛  here refers to the ratio between the design primary 

moment and the design axial load at the critical section along with the wall height (i.e., mid-

height). The reliability indices ( 𝛽)  are shown to be sensitive to the design eccentricity to 

thickness ratio (
𝑒𝑛

𝑡⁄ ). is shown that the reliability indices corresponding to (
𝑒𝑛

𝑡⁄ = 0.1) are 

higher compared to the other ratios (e.g., 
𝑒𝑛

𝑡⁄ = 0.5, 2.0) for both of the considered walls, 

consistent with the trend observed for walls under vertical loads only.   In addition, the reliability 

assessment is found to be sensitive to the model error. Again, similar observations were made for 

the cases with only vertical loads. Furthermore, it can be seen that both walls are associated with 

similar reliability indices when the model error is considered except for (
𝑒𝑛

𝑡⁄ = 2.0) as wall H is 

associated with higher reliability than wall S for this eccentricity to thickness ratio.  
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(a) 

 

(b) 

Figure 4-14 Comparison between the reliability indices (𝜷) for load combination #4: (a) 

Wall S, and (b) Wall H 

4.8 Conclusions 

In this study, FE-based reliability analysis for reinforced masonry walls loaded out-of-plane is 

presented. The reliability assessment is conducted considering two representative walls with 

different slenderness ratios (e.g., h/t=16,42) employing global and two local failure criteria (i.e., 

section failure and fibre failure). In addition, the effect of the model error on the reliability 

assessment is investigated.  Based on the findings of the conducted analysis, the following 

conclusions can be drawn:  

• The reliability indices (β) were proven to be very sensitive to the modelling error. 

Accordingly, incorporating the modelling error in the reliability analysis is essential.  

• Other factors were found to affect the reliability assessment, such as the load eccentricity 

to thickness ratio and the slenderness ratio. Specifically, the walls loaded with relatively 

low load eccentricities (e.g., 
𝑒𝑛

𝑡⁄ = 0.1)  were found to be associated with higher 

reliability indices compared to those loaded with higher eccentricities (e.g., 
𝑒𝑛

𝑡⁄ = 0.5). 

In addition, for the walls loaded with 
𝑒𝑛

𝑡⁄ = 0.5, highly slender walls were associated 
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with lower reliability indices compared to other walls with lower slenderness ratios. The 

same pattern was noticed for walls loaded in vertical eccentric compression or lateral 

wind loads.  

• The reliability assessment is affected by the adopted failure criteria. For instance, 

adopting the fibre failure criteria generally produced more conservative results for the 

wall with (h/t=16) compared to the global failure criteria. On the contrary, the local 

failure criteria resulted were less conservative for the highly slender wall (i.e., h/t=42) 

compared to the global failure criteria.   
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CHAPTER 5:  Model Error Assessment of Out-of-plane Load Capacity Models for 

Reinforced Concrete Masonry Walls in CSA S304-14 and TMS 402-16 

This paper investigated the model error associated with out-of-plane capacity models for 

reinforced concrete masonry walls in the well-known North American provisions, namely, CSA 

S304-14 and TMS 402-16.  Finite element (FE) models together with experimental data are 

utilized to quantify the model error and develop corrected models using non-parametric 

probabilistic regression models. The developed regression model is used to (1) investigate the 

sensitivity of the model error associated with design codes to the variations of different design 

parameters and (2) provide the corrected model for the considered codes, which can be used in 

different subsequent analyses (e.g., reliability analysis). It is found that CSA S304-14 is overly 

biased in different cases, especially for highly slender walls loaded. Whereas TMS 402-16 is 

found to be generally more consistent and associated with less bias, except for highly slender 

walls loaded with high reinforcement ratios and relatively high load eccentricities. In addition, 

the reliability assessment results computed based on the original design code-based models (i.e., 

without correction) are found to be severely biased and unconservative compared to the ones 

computed based on the corrected models.  

5.1 Introduction 

Theoretical models, which are typically established with simplifications and assumptions, are 

associated with a corresponding model error (Mathews and Vial 2017). This can be most 

pronounced for capacity models in design codes in the field of civil engineering  

In the context of masonry structures, current masonry design standards in North America, such 

as CSA S304-14 (CSA 2014) TMS 402-16 (TMS 2016), have been examined by other 
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researchers aiming to investigate the conservatism of the design provisions arising from the 

inaccuracy in the design code models. For instance, Isfeld et al. (2019) investigated the 

conservatism of CSA S304-14 in determining the out-of-plane capacity of unreinforced and 

reinforced masonry walls using a broad set of available experimental data. The findings of the 

mentioned study indicated the need for re-examination of CSA S304-14 provisions for slender 

walls because of the undue conservatism.  This is consistent with other findings in the literature. 

For example, Mohsin (2005) recommended re-investigating CSA S304-04, especially the effect 

of support stiffness for masonry walls, because neglecting the restraining effect of realistic 

boundary conditions can lead to significant under-prediction of the out-of-plane capacity for 

highly slender walls. Dawe and Liu (2003) also showed that CSA S304-94 significantly 

underestimated the effective flexural rigidity (EIeff), leading to an overly conservative design. 

Similar findings were reported in Pettit et al. (2021) and Bilotta and Cruz (2021) for CSA S304-

14 and TMS 402-16. To be specific, Pettit et al. (2021) concluded that TMS 402-16 tends to 

underestimate effective flexural rigidity (EIeff), especially for cases when the applied moment 

exceeds the cracking moment. Bilotta and Cruz (2021) evaluated the moment magnifier method 

(MM) adopted by the considered design provisions (i.e., CSA S304-14 and TMS 402-16) to 

account for the second-order effects. This study showed that the CSA S304-14 is overly 

conservative compared to other analytical and numerical models. On the contrary, TMS 402-16 

is significantly unconservative for walls with low compressive strengths (𝑓𝑚)  and high 

reinforcement ratios (𝜌𝑠).   

As such, it is essential to quantify the model error associated with out-of-plane capacity models 

in the design codes mentioned above (e.g., CSA S304-14, TMS 402-16) to facilitate a more 
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rigorous and reliable assessment of the design standards using reliability analysis. Ideally, the 

model error can be quantified using sufficient experimental tests of masonry walls by comparing 

the experimentally predicted capacity to the corresponding design code model prediction (Zhou 

and Huang 2012). However, only limited experimental data in the public literature is available, 

particularly when a systematic error exists in the capacity prediction models in the design 

provisions. In order to correct the systematic error, namely, the correction of the model error 

with certain design parameters and quantify the model error probabilistically with limited 

experimental data, a high-fidelity model can be used. For instance, Jiang et al. (2013) used a 

high-fidelity FE model to correct a low-fidelity model and assess the remaining error in the 

corrected model for a car crashing problem in mechanical engineering.  Similarly, Li et al. (2019) 

quantified the error of an analytical model for dented pipelines using a high-fidelity FE model.  

In these works, high-fidelity models are used to generate reference data without considering 

model error due to the high accuracy of FE models.  

A similar approach can be taken to correct the masonry design code models and quantity of the 

remaining model error. Various FE models have been developed for masonry walls subjected to 

out-of-plane loading, such as those using the micro FE modelling approach and the macro FE 

modelling approach. The micro FE modelling approach explicitly accounts for the heterogeneous 

nature of masonry, which allows capturing complex failure mechanisms but is computationally 

expensive. Alternatively, the macro FE modelling approach provides a simpler and more 

efficient solution when the out-of-plane capacity of masonry walls is of interest (Lourenco 1996). 

For example, the fibre-section-based beam approach, which allows using the stress-strain 

characteristics of masonry as employed in the current design codes, is widely used for masonry 
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walls (Ganduscio and Romano 1997). Among these models, although more accurate than design 

code models, no one is error-free due to the embedded complexity in masonry walls with 

heterogeneous materials. In order to use FE models with higher fidelity (e.g., efficient beam 

models) to quantify the error in design code models, the error in FE models needs to be taken 

into account. To this end, a probabilistic FE-based capacity model is first developed using 

experimental data available and used to generate reference data after considering model error. 

The generated reference data can be used to learn the relationship between the model error and 

different design parameters using regression models (e.g., Gaussian process regression).  

To summarize, this paper aims to evaluate the model error associated with the OOP load capacity 

models in the current North American standards (CSA S304-14; TMS 402-16) using a 

combination of experimental and numerical simulations. The relationship between the model 

error and different designed parameters (e.g., load eccentricity, slenderness ratio, masonry 

compressive strength and reinforcement ratio) is modelled using a non-parametric Gaussian 

process regression model. Hence, the sensitivity of the model error associated with design code-

based models to the variations of the design parameters is investigated. In addition, the corrected 

models of the code-based design models are provided. Finally, the original (i.e., without model 

correction) and the corrected models for the design codes are used to assess the reliability of 

different representative masonry walls to investigate the effect of the accuracy of the prediction 

model on the reliability assessment.    
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5.2 Comparison of Model Predictions with Experimental database 

5.2.1 Design code-based capacity models 

The current masonry design provisions in North America (CSA S304-14; TMS 402-16) adopt a 

similar design procedure for masonry walls against out-of-plane loading. To account for second-

order effects due to geometric nonlinearity, both North American masonry codes recommend the 

use of the moment magnifier method (MM), in which the maximum moment demand without 

considering second-order effect, i.e., the applied primary moment (Mp), is magnified by a factor 

(ψ) and compared with the section capacity characterized by the section P-M interaction diagram 

(P, Mu). Equivalently, the load capacity of the wall can be determined by the modified P-M 

interaction diagram (P, Mp).  For a given axial load (P), the wall capacity is determined when the 

combination of the axial load 𝑃 and the corresponding magnified moment ψ𝑀𝑝 is equal to the 

total magnified moment 𝑀𝑢 on the section P-M interaction diagram. The moment magnifier 

factor is defined in Eq. 5-1. 

  ψ =
𝐶𝑚

1 −
𝑃

𝑃𝑐𝑟

   , in which 𝑃𝑐𝑟 =  
𝜋2𝐸𝐼𝑒𝑓𝑓

(𝑘ℎ)2
                                                                        (5 − 1)          

Here, 𝐶𝑚  is the moment diagram factor, 𝑃  is the axial load acting on the wall,  𝑃𝑐𝑟   is Euler 

buckling load of the wall, 𝐸𝐼𝑒𝑓𝑓   is the effective flexural rigidity, 𝑘   is the effective length 

coefficient depending on the boundary conditions (e.g., k = 1.0 for simply supported), and ℎ  is 

the clear unsupported wall length. 

In spite of the great similarity of the two code-based capacity models for reinforced masonry 

walls against OOP loading, there exist slight differences in the derivation of both the cross-
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section P-M interaction diagram and the moment magnifier factor.  Figure 5-1 summarizes 

schematically the procedure to determine OOP capacity characterized by (P, Mp), which mainly 

consists of two steps: (1) the derivation of the section P-M interaction diagram and (2) the 

moment capacity reduction using moment magnifier method.  

In the derivation of section P-M interaction diagram, the normal stress distribution over the 

cross-section is determined based on a linear strain distribution and the compressive stress block 

assumption together with several characteristic material strength properties (e.g., the 

compressive strength 𝑓𝑚
′  for masonry and the yield strength 𝑓𝑦 for steel bars). The linear strain 

distribution can be fully defined for an assumed neutral axis location (𝑐) and the prescribed 

maximum usable compressive strain (𝜀𝑢) for masonry, which is taken as 0.003 and 0.0025 for 

CSA S304-14 and TMS 402-16, respectively.    The compressive stress distribution is 

represented approximately by an equivalent stress block with a depth of (𝛽𝑐) and a uniform 

stress magnitude of (𝛼𝑓𝑚
′ ). The factor (𝛽) is taken as 0.80 for both design codes, while the factor 

𝛼 is taken as 0.85 for CSA S304-14 and 0.80 for TMS 402-16, respectively. Together with the 

geometric properties of the cross-section (e.g., wall width b, wall thickness t, reinforcement bars 

location d and reinforcement bars area 𝐴𝑠), the compressive force resultant (C) and tensile force 

resultant (T) acting on the cross-section can be determined, and thus unknown c can be 

determined iteratively so that the applied axial load (P) can be in axial force equilibrium with T 

and C.  To this end, the moment resistance (𝑀𝑟) corresponding to the applied axial load P can be 

obtained through moment equilibrium of the cross-section. When the aforementioned procedure 

is repeated for different values of P, the section P-M interaction diagram can be constructed. 

Afterwards, the global properties of the wall (e.g., slenderness ratio, boundary condition and 
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loading) are considered to quantify the second-order effects and determine the OOP capacity 

using the previously introduced moment magnifier method (MM).  

 

Figure 5-1 Schematic procedure used to determine the OOP capacity of reinforced concrete 

masonry walls according to CSA S304-14 and TMS 402-16 

 

Although the two considered codes adopt the moment magnifier method to account for second-

order effects, their approach in determining the effective flexural rigidity (𝐸𝐼𝑒𝑓𝑓), which depends 

on the cracked characteristics of the walls (e.g., the cracked moment of inertia 𝐼𝑐𝑟) is different. 

which depends on the cracked characteristics of the walls, including the cracked moment of 

inertia (𝐼𝑐𝑟). Specifically, CSA S304-14 neglects the effect of the axial load when calculating 𝐼𝑐𝑟 . 

In that sense, 𝐼𝑐𝑟 depends on the cross-section properties only. This is not the case for TMS 402-

16 as it considers the effect of the applied axial load when calculating 𝐼𝑐𝑟 . On the other hand, 

TMS 402-16 conservatively neglects the variation of the stiffness by utilizing the cracked 
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moment inertia 𝐼𝑐𝑟 along the wall height when the applied moment (𝑀𝑝) exceeds the cracking 

moment (𝑀𝑐𝑟), which can produce very conservative estimations for the (𝐸𝐼𝑒𝑓𝑓) (Pettit et al. 

2021). The cracked moment of inertia (𝐼𝑐𝑟) and the effective flexural rigidity (𝐸𝐼𝑒𝑓𝑓) for CSA 

S304-14 and TMS 402-16 are calculated as follows:  

𝐼𝑐𝑟(𝐶𝑆𝐴 𝑆304) =
𝑏𝑐3

3
+ 𝑛𝐴𝑠(𝑑 − 𝑐)2                        (5 − 2)    

𝐸𝐼𝑒𝑓𝑓(𝐶𝑆𝐴 𝑆304) = 𝐸𝑚𝐼𝑐𝑟 ≤ 𝐸𝑚 [0.25𝐼𝑜 − (0.25𝐼𝑜 − 𝐼𝑐𝑟) (
𝑒 − 𝑒𝑘

2𝑒𝑘
)] ≤ 0.25𝐸𝑚𝐼𝑜        (5 − 3)  

𝐼𝑐𝑟(𝑇𝑀𝑆 402) =
𝑏𝑐3

3
+ 𝑛 (𝐴𝑠 +

𝑃

𝑓𝑦
) (𝑑 − 𝑐)2         (5 − 4)  

𝐸𝐼𝑒𝑓𝑓(𝑇𝑀𝑆 402) = {
0.75𝐸𝑚𝐼𝑜

𝐸𝑚𝐼𝑐𝑟   

                    𝑀𝑝 <  𝑀𝑐𝑟

                    𝑀𝑝 ≥  𝑀𝑐𝑟
}         (5 − 5) 

In the formulas above, 𝐸𝑚  is the masonry modulus of elasticity,  𝑛  is the ratio between the 

modulus of elasticity for masonry and reinforcement steel. 𝑒 is the eccentricity which is defined 

as the ratio between 𝑀𝑝 and 𝑃, 𝑒𝑘  is the kern eccentricity which is defined between the ratio 

between the section modulus 𝑆𝑒 and the effective mortared area 𝐴𝑒,  𝐴𝑠 is the area of the steel 

reinforcement, 𝐼𝑜 is the gross moment of inertia and 𝑀𝑐𝑟 is the cracking moment. 

To examine the error associated with the aforementioned OOP capacity models for masonry 

walls as specified in CSA S304-14 and TMS 402-16, an experimental database including 69 

reinforced masonry walls subjected to OOP loading (i.e., eccentric axial compression and lateral 

loading) is compiled from five testing programs in the literature (Yokel et al. 1970, Hatzinkolas 

et al. 1978, ACI-SEASC 1982, Suwalski 1986, Mohsin 2005). The experimental peak load 
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capacities are compared against the corresponding predictions using the design code-based 

models after excluding any design bias (e.g., load or resistance factors), as shown in Figure 5-2. 

Note that the capacities are measured by the maximum axial load for eccentrically axially loaded 

walls and the maximum lateral load pressure (normalized by the wall area with a scale factor of 

10 for plotting) for laterally loaded walls, respectively. The comparison shows that both design 

code-based models are associated with noticeable underestimation. The models are generally 

conservative for design purposes but not acceptable for the reliability assessment of masonry 

walls.  

 
(a) 

 
(b) 

Figure 5-2 Comparison of the experimental and design code-predicted capacities for 

reinforced concrete masonry walls considered: (a) CSA S304-14, and (b) TMS 402-16 

Further investigation shows that the error associated with the considered design codes (i.e., CSA 

S304-14 and TMS 402-16) is not random (i.e., not free of systematic error) because the errors for 

both codes are strongly correlated to design parameters, for example, the slenderness ratio (h/t) 
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and the load eccentricity to thickness ratio (e/t) of masonry walls. Specifically, both codes are 

shown to be more conservative for walls with an increasing slenderness ratio (h/t) and a 

decreasing load eccentricity to thickness ratio (e/t), as shown in Figure 5-3 and Figure 5-4, 

respectively. Accordingly, the model errors associated with the code-based models cannot be 

modelled using the traditional professional factor approach, where the random error is assumed 

to be independent of the wall and loading properties. Instead, the model should be corrected such 

that the trend of the model error is independent of the wall and loading properties and thus 

consistent for all design scenarios.   

 
(a) 

 
(b) 

Figure 5-3 The test-to-prediction ratio for OOP capacities of masonry walls tested in the 

literature with respect to the slenderness ratio h/t: (a) CSA S304-14, and (b) TMS 402-16 
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(a) 

 
(b) 

Figure 5-4 The ratio between the Experimental and code-based predicted capacities with 

respect to the load eccentricity to thickness ratio (a) CSA S304-14, (b) TMS 402-16 

5.2.2 Finite element-based capacity model  

The mechanics-based FE models are considered to be a more accurate alternative for predicting 

load capacities of masonry walls compared to the design code-based models. Accordingly, the 

macro FE modelling approach using fibre-based beam elements in OpenSees is adopted herein to 

predict the OOP capacities of those tested walls considered above. In FE models, geometric 

nonlinearity is taken into account rigorously. The configuration and the schematic view of the FE 

model used for simply supported walls loaded in eccentric compression are shown in Figure 5-5. 

In the model, the eccentric loading is applied through a rigid beam with a length equal to the load 

eccentricity (𝑒). The walls are modelled using displacement-based fibre beam elements, each 

with 5 Gaussian-Legendre integration points. Each integration point is assigned with a 

generalized fibre section consisting of masonry and steel fibres. The behaviour of each fibre is 

modelled by a uniaxial material model that represents the uniaxial stress-strain behaviour of 
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masonry or steel. In the material model adopted for masonry (i.e., Concrete02 as shown in 

Figure 5-5), 𝑓𝑚 and 𝜀0  represent the tested masonry compressive strength and the corresponding 

strain for the wall considered. In contrast, the masonry tensile strength 𝑓𝑡, the masonry residual 

compressive strength  𝑓𝑚𝑢  and the corresponding strain 𝜀𝑢 , as well as the ultimate tensile 

strain 𝜀𝑡𝑢 , are determined based on literature findings when tested values are missing. 

Specifically, 𝑓𝑡  is taken 0.5 MPa according to Drysdale and Hamid (2005);  𝑓𝑚𝑢 and 𝜀𝑢  are 

determine based on the models proposed in (Pritsley and Elder 1983) for homogenous masonry, 

whereas 𝜀𝑡𝑢 is taken as 0.004 (Wang et al. 1997).  On the other hand, Steel01 is used to model 

steel fibres and the parameters 𝑓𝑦 , E and b which represent the yield strength of steel 

reinforcement, the Young’s modulus and the strain hardening ratio, respectively, are determined 

according to the experimental tests.   
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(a) 

 

 

 

(b) 

Figure 5-5 Simply supported masonry walls subjected to eccentric loads P with an 

eccentricity e (a) wall configuration, and (b) schematic view of the FE model 

The accuracy of the introduced FE model for load capacity prediction is examined using the 

same experimental database previously used to examine the accuracy of the design code-base 

models. The comparison between the experimental and FE-predicted capacities, as shown in 

Figure 5-6, indicates that the FE model predicts the experimental capacities with a reasonable 

level of accuracy without severe bias.  
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Figure 5-6 Comparison of the experimental and FE-predicted capacities for reinforced 

concrete masonry walls tested in the literature 

The correlation between the FE-prediction error (indicated by the test-to-prediction ratio) and the 

design parameters (e.g., slenderness ratio h/t, eccentricity to thickness ratio e/t) is shown in 

Figure 5-7. It is shown that FE-prediction error is not sensitive to the variation of the 

aforementioned design parameters, especially when compared to the design code-based models. 

This can be evidenced by the trend line of the FE-prediction, which is in contrast with the trend 

lines of design code-based predictions (i.e., CSA S304-14 and TMS 402-16). In that sense, the 

FE-prediction error is considered to be independent of the design parameters.  To this end, the 

modelling error (ME) associated with the FE model can be quantified using the test-to-prediction 

ratio, which can be modelled by a random variable ME independent of the design variables. It is 

found that ME follows a normal distribution with a mean of 𝜇𝑀𝐸 = 1.02 and coefficient of 

variation 𝐶𝑂𝑉𝑀𝐸 = 0.17 (see Figure 5-8). 
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(a) 

 

 
(b) 

Figure 5-7 The test-to-prediction between the experimental and FE-based predicted 

capacities with respect to (a) slenderness ratio h/t, and (b) eccentricity to thickness ratio e/t 

 

Figure 5-8 Histogram and fitted probability density function (PDF) for the model error 

distribution 

5.3 Problem Statement and Methodology 

As illustrated previously, the prediction error in the design code-based models for the load 

capacity of reinforced concrete masonry walls is strongly correlated to the design parameters 
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(e.g., slenderness ratio, eccentricity to thickness ratio), while the FE models are not. In that sense, 

the systematic error in the design code-based models (e.g., CSA S304-14 and TMS 402-16) can 

be potentially corrected using the data generated based on mechanics-based FE models with 

higher fidelity. In order to use FE models with higher fidelity (e.g., efficient beam models) to 

quantify the error in design code models, the error in FE models is taken into account by 

considering the associated ME. To this end, a probabilistic FE-based capacity model is first 

developed and can be used to generate reference data. The reference data can be employed to 

investigate the systematic error trend associated with the design code-based models.  

The reference data can be generated by the probabilistic FE-based capacity prediction model, 

i.e., by applying a random multiplier (ME) to the load capacities obtained from the FE model. In 

that sense, the corrected load capacities are considered to represent the numerical experiments.  

To this end, 4000 data points are randomly generated by considering a wide range of values for 

each key design parameter (see Table 5-1), which was found to affect the error trend associated 

with the design code-based models.  The four key design parameters include the masonry 

compressive strength fm, and the steel reinforcement ratio ρs, in addition to the two as illustrated 

earlier, i.e., the slenderness ratio h/t, the load eccentricity to thickness ratio e/t (Isfeld et al. 2019, 

Bilotta and Cruz 2021). It should be noted that all the walls simulated are assumed to have a 

constant block thickness of 190 mm, conforming to the typical values in Canada, and pinned-

roller conditions. 
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Table 5-1 Numerical experimental design of reinforced concrete masonry walls with the 

four key design parameters and their range considered 

Design parameter 

 

Lower bound Upper bound 

        e/t 0.1 2.5 

h/t 15 45 

fm 10 MPa 20 MPa 

ρs 0.0013 0.019 

 

The test-to-prediction ratio (ξ) between the numerical experiments and design code-based 

models for the OOP load capacities of the 4000 walls simulated can be examined to show its 

dependence on design parameters (e.g., Figure 5-9 for the eccentricity to thickness ratio e/t). 

A similar trend associated with test-to-prediction ratios (ξ) is captured by the numerical 

experiments as Figure 5-4 for the physical experiments.  Thus, the reference data can be used 

to learn the systematic error trend as a function of the four key design parameters considered.  

 

(a) 

 

(b) 
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Figure 5-9 The dependency on e/t of the test-to-prediction ratio (ξ) between the numerical 

experiments and design code-based models: (a) CSA S304-14, and (b) TMS 402-16 

To this end, the non-parametric Gaussian process regression (GPR) technique is adopted in this 

study. The theoretical background behind GPR is briefly summarized here (Sammut and Webb 

2017, Su et al. 2017, Jiang et al. 2013, Li et al. 2019).  

GPR is a non-parametric method that can be used to build the input/output relationship without 

assuming a specific function form from the observed data using a Bayesian probabilistic 

approach. In that sense, the model output prediction ξ( 𝒙 ) for an input point, e.g., 𝒙 =

 (ℎ/𝑡, 𝑒/𝑡, 𝑓𝑚, 𝜌𝑠), is modelled by a Gaussian process, which is entirely defined by the mean 

function 𝑚(𝒙) and the covariance function 𝑐(𝒙, 𝒙′), i.e., 𝜉(𝒙)~ 𝐺𝑃𝑅 (𝑚(𝒙), 𝑐(𝒙, 𝒙′)) . In the 

Bayesian framework, the data observed in the training dataset can be used to update the prior 

statistics. The prior for the mean function 𝑚(𝑥) can take different forms (e.g., zero, linear, 

quadratic) to represent the prior information on the trend of the relation between input and output 

and is typically zero function, 𝑚(𝑥) = 0 as considered here due to lack of prior knowledge.  The 

best covariance function 𝑐(𝒙, 𝒙′) from several candidates (e.g., exponential, squared exponential, 

rational quadratic and ARD rational quadratic), as well as the corresponding hyperparameters, 

are optimized by using the Statistics and Machine Learning Toolbox in MATLAB (Matlab 

2019b) in this study.   

Accordingly, random variables 𝜉(𝒙1), 𝜉(𝒙2), …  𝜉(𝒙𝑛)  at points 𝒙1, 𝒙2, … , 𝒙𝑛  follow a jointly 

normal distribution as follows 

[
𝜉(𝒙1)

⋮
𝜉(𝒙𝑛)

] ~ 𝑵 (𝟎, 𝑪𝑿,𝑿 = [
𝑐(𝒙1, 𝒙1) ⋯ 𝑐(𝒙1, 𝒙𝑛)

⋮ ⋱ ⋮
𝑐(𝒙𝑛, 𝒙1) ⋯ 𝑐(𝒙𝑛, 𝒙𝒏)

])           (5 − 6) 



132 

 

 

where  𝑪𝑿,𝑿 is a covariance matrix with 𝐶𝑖𝑗 = 𝑐(𝒙𝑖, 𝒙𝑗). In order to account for noisy output 

observations, an independent and normally distributed noise term 𝜀𝑖 ~ 𝑁(0, 𝜎𝑛𝑜𝑖𝑠𝑒
2 ) , where 

𝜎𝑛𝑜𝑖𝑠𝑒
2 is the noise variance, can be incorporated. Accordingly, the output observation ( 𝑦𝑖 ) 

corresponding to the input point (𝒙𝒊) reads:  

𝑦𝑖 = 𝜉(𝒙𝑖) + 𝜀𝑖                                                                                        (5 − 7) 

Subsequently, the outputs 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇  at 𝑿 = (𝒙1, 𝒙2, … , 𝒙𝑛)  in the training dataset 

(reference data) follows a joint Gaussian (normal) distribution, i.e., 𝒀|𝑿 ~ 𝑁(𝟎, 𝑪𝑿,𝑿 + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝑰), 

in which 𝑰 is an identity matrix of dimension 𝑛 × 𝑛. 

Similarly, for an unobserved point 𝒙 , the probability distribution of the corresponding 

observation 𝑦  can be determined by marginalizing the joint distribution for 𝒀 𝑎𝑛𝑑 𝑦  , i.e., 

𝑌, 𝑦|𝑋, 𝑦~𝑁(0, 𝑪∗),  

where 𝑪∗ is the covariance matrix as follows:  

𝑪∗ =  [
𝑪𝑋,𝑋 + 𝜎𝑛𝑜𝑖𝑠𝑒

2 𝑰 𝑪𝑋,𝑥

𝑪𝑋,𝑥
𝑇 𝑐(𝒙, 𝒙) + 𝜎𝑛𝑜𝑖𝑠𝑒

2 ]                                              (5 − 8) 

in which 𝑪𝑋,𝑥 = (𝑐(𝒙1, 𝒙), 𝑐(𝒙2, 𝒙), … , 𝑐(𝒙𝑛, 𝒙))
𝑇

. Accordingly, the conditional predictive 

distribution for y follows a normal distribution, y | x, 𝐗, 𝐘~𝑁(𝜇∗(𝒙), 𝜎∗
2(𝒙)),  

where 𝜇∗ and 𝜎∗
2 are the mean and variance function of the posterior process for an unobserved 

point 𝒙,  

𝜇∗(𝒙) = 𝑪𝑋,𝑥∗

𝑇 (𝑪𝑋,𝑋 + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝑰)

−1
𝒀                                                                  (5 − 8) 
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𝜎∗
2(𝒙) = 𝑐(𝑥∗, 𝑥∗) − 𝑐𝑋,𝑥∗

𝑇 (𝐶 + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝐼)−1𝑐𝑋,𝑥∗

+ 𝜎𝑛𝑜𝑖𝑠𝑒
2                             (5 − 9) 

The posterior mean prediction provides the model for the test-to-prediction ratio: 𝜉𝐺𝑃𝑅(𝒙) =

𝜇∗(𝒙) . 

5.4 GPR-based Model Correction and Error Quantification 

5.4.1 GPR model results  

The comparison between the reference modelling error (𝜉𝑅𝐸𝐹), which is defined as the test-to-

prediction ratios for the code-based models, and the corresponding GPR-based predictions (𝜉𝐺𝑃𝑅) 

is provided in Figure 5-10. As observed, the GPR-based predictions (𝜉𝐺𝑃𝑅)  are in good 

alignment with the reference modelling error data (𝜉𝑅𝐸𝐹) as they almost coincide with the unity 

line.     

 
(a) 

 
(b) 

Figure 5-10 Reference ζ versus predicted ζ for (a): CSA S304-14, and (b): TMS 402-16 

To this end, the GPR model can be used in two different applications. The first is to investigate 

the sensitivity of the model error associated with design codes to the variations of the design 

parameters. Whereas the second one is to provide the corrected model for the considered codes, 

which can be used in different subsequent analyses (e.g., reliability analysis).  
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5.4.2 Systematic error in design code-based models  

The test-to-prediction ratio models 𝜉𝐺𝑃𝑅
𝐶𝑆𝐴(𝒙) 𝑎𝑛𝑑  𝜉𝐺𝑃𝑅

𝑇𝑀𝑆(𝒙)  for the two design codes allow 

providing more insight into their systematic error as a function of the four key design parameters 

considered. Among the four key design parameters, the masonry compressive strength (fm) is 

found to be the least influential, as shown in Figure 5-11.  It can be shown that systematic error 

correctors (𝜉𝐺𝑃𝑅
𝐶𝑆𝐴(𝒙) 𝑎𝑛𝑑 𝜉𝐺𝑃𝑅

𝑇𝑀𝑆(𝒙)) associated with both design codes (i.e., CSA S304-14 and 

TMS 402-16) are not sensitive to the variations of fm.   

 
(a) 

 
(b) 

Figure 5-11 GPR-based systematic error corrector versus 𝒇𝒎 considering various 

combinations of (e/t, h/t and ρs): (a) CSA S304-14, and (b) TMS 402-16 

Similarly, it is also found that the systematic error associated with CSA S304-14 only slightly 

depends on the steel reinforcement ratio (𝜌𝑠), see Figure 5-12 (a) for the case with fm fixed at a 

value of 15 MPa.  The same is observed for TMS 402-16 except for highly slender walls loaded 

with relatively high load eccentricities (e.g., walls with h/t = 45, e/t = 0.5, 2.0), see Figure 5-12 

(b). Specifically, one can notice that systematic error (𝜉𝐺𝑃𝑅
𝑇𝑀𝑆(𝒙)) decreases significantly with 

increasing ρs for such walls, leading to more unconservative designs than other walls by TMS 

402-16. 
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(a) 

 
(b) 

Figure 5-12 GPR-based systematic error corrector versus 𝝆𝒔  considering various 

combinations of (e/t, h/t) with fm  = 15 MPa: (a) CSA S304-14, and (b) TMS 402-16 

 

Figure 5-13 and Figure 5-14 show how GPR-based systematic error correctors for CSA S304-14 

and TMS 402-16 vary with respect to the load eccentricity to thickness ratio (e/t) and the 

slenderness ratio (h/t). it is observed that the systematic error associated with CSA S304-14 is 

significantly influenced by the eccentricity to thickness ratio (e/t). It can be seen that CSA S304-

14 is much more conservative for walls with low eccentricity to thickness ratios, particularly 

when the slenderness ratio is large, see Figure 5-14 (a). On the contrary, CSA S304-14 is shown 

to be unconservative (i.e., ξ <1) for walls loaded with other eccentricity ratios (e.g., 0.5 ≤ e/t ≤

1.0). In contrast, the systematic error associated with TMS 402-16 is less dependent on the load 

eccentricity to thickness ratio (e/t) and the slenderness ratio (h/t) when compared to CSA S304-

14. Overall, TMS 402-16 has a less systematic error, i.e., the bias is more consistent for different 

walls, except the highly slender walls loaded with high reinforcement ratios and relatively high 

load eccentricities.  
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(a) 

 
(b) 

Figure 5-13 GPR-based systematic error corrector versus e/t considering different values of 

h/t with fm = 15 MPa and ρs = 0.002: (a) CSA S304-14, and (b) TMS 402-16 

 

 

 
(a) 

 

 
(b) 

Figure 5-14 GPR-based systematic error corrector versus h/t considering different values 

of e/t with fm = 15 MPa and ρs = 0.002: (a) CSA S304-14, and (b) TMS 402-16 

 

5.4.3 Corrected model 

The developed GPR model provides systematic error corrector (ζ) associated with the design 

code models (i.e., CSA S304-14 and TMS 402-16) for a given wall with certain design 

parameters (e.g., e/t, h/t, fm and ρs). Based on the systematic error corrector (ζ) provided, the 
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design code models can be corrected by multiplying (ζ) to the load capacities obtained from 

the code-based models. With this done, the model error of the corrected model should be 

independent of the design parameters (e.g., e/t) (i.e., the corrected model has no systematic 

error). The scatter plots between the test-to-prediction ratio (ξ) of the corrected models for 

CSA S304-14 and TMS 402-16 and the eccentricity to thickness ratio (e/t) throughout the 

4000 FE simulations (i.e., training samples) are shown in Figure 5-15. One can notice that 

the model error of the corrected model is not affected by the variations of (e/t) (i.e., 

independent of the design parameter). However, this is not the case for the original code 

models (i.e., without corrections) as they were more conservative (i.e., associated with higher 

values of (ζ)) for lower e/t values (i.e., e/t =0.1).   

 
(a) 

 
(b) 

Figure 5-15 The test-to-prediction ratio (ξ) for the corrected model versus the eccentricity 

to thickness ratio e/t (a) CSA S304-14, (b) TMS 402-16 

 

5.5 Application to Reliability Assessment 

To investigate the effect of the accuracy of the adopted behavioural model on the reliability 
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assessment, the reliability analysis of two representative walls (i.e., wall S and wall H) is 

conducted based on the original and the corrected models of CSA S304-14, as a representative of 

the design codes-based models. The slenderness ratios are 16 and 42 for wall S and wall H, 

respectively. In addition, both walls have a characteristic compressive strength 𝑓𝑚
′ , nominal yield 

strength of the reinforcement bars 𝑓𝑦𝑛 , reinforcement ratio 𝜌𝑠  of 10 MPa, 400 MPa, 0.0019, 

respectively.   

For the original CSA S304-14, the reliability analysis is conducted without considering its 

associated model error (i.e., assuming it is accurate enough for such an application), while the 

uncertainty in the capacity predictions of the corrected model for CSA S304-14 is considered by 

a coefficient of variation of 0.17, which is determined based on 2000 independent FE 

simulations. The resistance random variables listed in Table 5-2, including the mean, coefficient 

of variation (COV), and probability distribution types, are considered for the reliability 

assessment conducted herein. Note that the randomness in 𝑓𝑡  and 𝜀𝑜 is not considered as these 

parameters are not included in the capacity prediction model of CSA S304-14. 

Table 5-2 Statistical characterization of random variables considered for the original and 

corrected design code-based reliability assessment 

Random 

variable 

Mean  

(μ) 

Coefficient 

of variation 

Probability 

distribution 

Reference 

fm 1.6  𝑓𝑚
′  0.24 Gumbel Moosavi and Korany 2014, Moosavi 2017 

fy 1.14 fyn 0.07 Normal Moosavi 2017 

E 200 GPa 0.033 Normal Mirza, 1998 

d dn 4.0 𝑚𝑚
𝑑𝑛

⁄  Normal Moosavi 2017 
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The probabilistic load capacities obtained based on the considered two models (i.e., the original 

and corrected models for CSA S304) for wall S and Wall H when loaded with e/t = 0.1, 0.5 is 

shown in Figure 5-16. It found that the original model for CSA S304-14 (i.e., without correction) 

can be significantly biased, which conforms to the findings illustrated in section 5.4.2. In 

addition, the original model for CSA S304-14 is associated with a noticeably lower variance 

compared to the corrected model, which can lead to misinformative reliability assessment results. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 5-16 Comparison of the probabilistic load capacity for the original and corrected 

CSA S304-14 model (a) wall S (e/t=0.1), (b) wall S (e/t=0.5) (c) wall H (e/t=0.1), and (d) wall 

H (e/t=0.5) 

The results of the reliability assessment conducted based on the two considered models for the 

dead load combination (i.e., 1.4 𝐷𝑛, where 𝐷𝑛 is the nominal dead load) are shown in Figure 5-

17. The comparison reveals that reliability assessment results can be significantly biased when 

assuming design code models are accurate (i.e., without model error). In that sense, it is essential 

to rigorously consider the modelling error of the design codes when they are employed for 

reliability assessment. 

 

(a) 

 

(b) 

Figure 5-17 Reliability index (𝜷) versus (e/t) based on FE and CSA S304-14 models (a): 

Wall S, and (b) Wall H 

 

5.6 Summary and Conclusions 

The model error associated with the out-of-plane capacity models for reinforced concrete 

masonry walls in CSA S304-14 and TMS402-16 was investigated and quantified using well-

validated finite element (FE) models and experimental data. The design code-based models were 
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found to be associated with a systematic error (i.e., a dependency between the model error and 

design parameters). The relationship between the model error and different design parameters 

(e.g., load eccentricity to thickness ratio, slenderness ratio, masonry compressive strength and 

steel reinforcement ratio) was studied using a non-parametric Gaussian process regression 

model. Thereafter, the systematic error associated with the design codes was investigated.  It was 

found that CSA S304-14 is overly conservative for highly slender walls loaded with relatively 

low load eccentricities. On the other hand, TMS 402-16 was found to be less biased, except for 

highly slender walls loaded with high reinforcement ratios and relatively high load eccentricities. 

The code-based models were corrected using the developed regression model. The model error 

of the corrected model was found to be independent of the design parameters. The original and 

corrected code-based models for CSA S304-14 were used to conduct reliability analysis of two 

representative masonry walls with different slenderness ratios. It was found that adopting the 

design code-based models without correction can lead to biased and unconservative reliability 

estimates.  
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CHAPTER 6: Summary, Conclusions and Recommendations 

6.1 Summary  

The behaviour of masonry walls is associated with large scatter due to the inherent uncertainties 

in the material and geometric properties. These uncertainties are not considered within the scope 

of the deterministic models (e.g., mechanics-based finite element (FE) models, design code-

based models). In addition, developing an accurate model to predict the behaviour of masonry 

walls with deterministic properties (i.e., without uncertainties) is still considered to be 

challenging due to the embedded complexity in masonry walls with heterogeneous materials, 

which gives rise to the importance of considering the uncertainty in the model predictions along 

with the uncertainties in material and geometric properties.  To this end, the probabilistic 

behaviour of masonry walls subjected to out-of-plane loading was investigated employing 

mechanics-based macro FE models in conjunction with Monte Carlo simulations (MCS). The 

outcomes of the probabilistic analysis were used to identify the influential parameters and their 

effect on different response quantities (e.g., load capacity and ductility) through a variance-based 

global sensitivity analysis.  

The developed mechanics-based FE models were used to assess the reliability of masonry walls 

with different slenderness ratios and loading scenarios using the efficient subset simulation 

algorithm in conjunction with polynomial chaos-kriging surrogate models to address the 

computational cost. The aforementioned uncertainties (e.g., material, geometric and model 

uncertainties) were incorporated in the reliability analysis. In addition, different global and local 

failure criteria were considered.  

Furthermore, the validated mechanics-based FE models in conjunction with the available 

experimental data in the literature were used to investigate the model error associated with the 
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design code-based models for masonry walls (e.g., CSA S304-14 and TMS-402-16). The 

systematic error of the design code-based models was investigated through probabilistic 

regression analysis. The regression models were thereafter used to correct the model error 

associated with the design codes. To further understand the effect of the accuracy of the 

behaviour model on the reliability of masonry walls, reliability analysis is conducted for the 

considered masonry walls employing the original (i.e., without model correction) and the 

corrected models of CSA S304-14 for comparison.   

6.2 Conclusions  

The main conclusions of this research can be summarized as follows:  

• The probabilistic analysis showed that the behaviour of the highly slender wall was found 

to be associated with larger scatter compared to walls with less slenderness ratios.  

• The load capacity variance was mostly attributed to the uncertainty associated with the 

masonry compressive strength  𝑓𝑚, the yield strength of steel 𝑓𝑦, and steel bar location 

𝑑. In contrast, the deformation capacity variance was mostly attributed to the uncertainty 

associated with the masonry compressive strength 𝑓𝑚, and the masonry tensile strength 𝑓𝑡. 

• The model uncertainty was found to be non-negligible compared to other geometric and 

material uncertainties, as incorporating the model error in the probabilistic analysis led to 

a substantial increase in the variance of load capacity. 

• Similarly, the reliability assessment was found to be sensitive to the model uncertainty, 

which indicated the importance of the rigorous quantification and incorporating of the 

model error in the context of the uncertainty analysis. 
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• Other factors were found to affect the reliability assessment for masonry walls, such as 

the slenderness ratio, load eccentricity. For instance, walls with low slenderness ratios 

(e.g., 16) loaded with relatively low load eccentricities were found to be associated with 

higher reliability indices (β) compared to highly slender walls or walls loaded with larger 

eccentricities.    

• The failure criteria were found to affect the reliability assessment significantly. For 

instance, adopting local failure criteria was generally more conservative for the wall with 

relatively low slender ratios (e.g., h/t=16) compared to the global failure criteria. On the 

contrary, the local failure criteria were less conservative for the highly slender wall (e.g., 

h/t=42) compared to the global failure criteria.  

• The design code-based models were found to be associated with a systematic error (i.e., a 

correlation between the model error and design parameters such as the load eccentricity, 

slenderness ratio, masonry compressive strength and steel reinforcement ratio). 

• The investigation of the model error associated with the design codes-based models 

revealed that CSA S304-14 is overly conservative for highly slender walls loaded with 

relatively low load eccentricities, while TMS 402-16 was found to be less biased, except 

for highly slender walls loaded with high reinforcement ratios and relatively high load 

eccentricities. 

• Adopting the code-based models without the rigorous incorporating of the associated 

model error in the reliability analysis can lead to significantly biased results.  
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6.3 Recommendations for Future Work  

This section describes the limitations of the present study in addition to the recommendations for 

future work. 

• The probabilistic structural analysis and the variance-based sensitivity analysis were 

conducted on the macroscopic level, which does not capture the influence of the local 

properties of masonry (e.g., unit-mortar interface, reinforcement bond-slip). To get 

further insight into the contribution of the local properties of masonry, the analysis can be 

conducted on the microscopic level.  

• The provided probabilistic structural analysis approach can be expanded to investigate 

other response quantities (e.g., cracking load, elastic stiffness). In addition, the analysis 

can be applied to walls with different loading conditions (e.g., in-plane loading). 

• The provided outcomes of the reliability analysis are not sufficient for code calibration. 

Expanding the analysis to cover all the design combinations is recommended.  

• The model error associated with the developed FE models is quantified using the limited 

experimental data available in the literature. However, the available experimental data is 

insufficient to address the model error for design code-based models, which can be 

associated with systematic trends. Accordingly, more experimental tests for masonry 

structures are needed.  
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