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Abstract

Experimentally-validated nonlinear flight control of a helicopter UAV has two nec-

essary conditions: an estimate of the vehicle’s states from noisy multirate output

measurements, and a nonlinear dynamics model with minimum complexity, physi-

cally controllable inputs and experimentally identified parameter values. This thesis

addresses both these objectives for the Applied Nonlinear Controls Lab (ANCL)’s

helicopter UAV project. A magnetometer-plus-GPS aided Inertial Navigation Sys-

tem (INS) for outdoor flight as well as an Attitude and Heading Reference System

(AHRS) for indoor testing are designed, implemented and experimentally validated

employing an Extended Kalman Filter (EKF), using a novel calibration technique

for the magnetometer aiding sensor added to remove the limitations of an earlier

GPS-only aiding design. Next the recently-developed nonlinear observer design

methodology of invariant observers is adapted to the aided INS and AHRS exam-

ples, employing a rotation matrix representation for the state manifold to obtain

designs amenable to global stability analysis, obtaining a direct nonlinear design

for gains of the AHRS observer, modifying the previously-proposed Invariant EKF

systematic method for computing gains, and culminating in simulation and exper-

imental validation of the observers. Lastly a nonlinear control-oriented model of

the helicopter UAV is derived from first principles, using a rigid-body dynamics

formulation augmented with models of the on-board subsystems: main rotor forces

and blade flapping dynamics, the Bell-Hiller system and flybar flapping dynamics,

tail rotor forces, tail gyro unit, engine and rotor speed, servo operation, fuselage

drag, and tail stabilizer forces. The parameter values in the resulting models are

identified experimentally. Using these the model is further simplified to be tractable

for model-based control design.
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Chapter 1

Introduction

1.1 Background

The helicopter (rotary-wing vehicle) platform offers a number of advantages over
the airplane (fixed-wing vehicle) one, namely in-place hover, low-speed flight in
any direction and vertical take-off and landing1, in addition to fast forward flight
capability. The price is much greater complexity in the piloting, mechanical design
and maintenance, as well as dynamics modeling in the rotary-wing configuration in
comparison to the fixed-wing case. This explains why helicopters were introduced
much later than airplanes: the first production helicopter using the single main
rotor configuration was the Sikorsky R-4 delivered to the US Army in May 1942 [44,
p. 108], while the first radio-controlled helicopter was the fixed-pitch Bell Huey
Cobra successfully flown in April 1970 [121, p. 8].

Academic interest in autonomous helicopter flight control can be traced back
to 1991, the first year of the International Aerial Robotics Competition created
by Prof. Robert Michelson from Georgia Tech. The competition consists of a pre-
specified “mission” which must be executed in a fully autonomous fashion. The first
mission required moving a metal disk between two designated locations separated by
a three-foot high central barrier on an outdoor field, and was successfully completed
in 1995 by a team from Stanford University [133]. As of 2011 the competition is on
its sixth mission, which requires entering a building, swapping a USB flash drive on
a desk with a replica and leaving with the original, all the while avoiding detection
from walking guards and surveillance equipment at the site.

The University of Alberta’s Applied Nonlinear Controls Lab (ANCL) helicopter
UAV project began with the work of [75] who designed and built an avionics suite
for a stock radio-controlled Bergen Industrial Twin helicopter, popular for aerial cin-
ematography due to its considerable payload capacity (9.1 kg) and flight endurance
(30 min). A picture of the UAV in flight is shown in Figure 1.1. The avionics con-
sist of an Ampro ReadyBoard 800 single-board computer equipped with a Pentium
M 1.4 GHz CPU and 512 MB of RAM running the QNX real-time operating sys-
tem; a Microhard VIP2400 2.4 GHz radio modem providing Ethernet and RS-232
communication with the ground station; a Microstrain 3DM-GX1 Inertial Measure-
ment Unit (IMU) providing triaxial magnetometer, accelerometer and rate gyro
measurements at up to 333 Hz; a NovAtel OEM4-G2 carrier phase differential GPS

1Available to a very small subset of fixed-wing vehicles such as the Harrier and F-35.

1



capable of centimeter-level accuracy position measurements at 10 Hz; two Measure-
ment Computing CTR10HD counter/timer boards used to respectively log RC pilot
inputs and control the helicopter’s servos; and a takeover board used to switch
between manual and autonomous flight control. A GPS-aided inertial navigation
system (INS) was implemented and experimentally validated on this system. This
UAV platform has motivated research work presented in this thesis, further detailed
in Section 1.1.1.

Figure 1.1: ANCL helicopter UAV in flight [75]; note the underslung avionics enclo-
sure and tail-mounted GPS antenna

The current trend among UAV research groups seems to be the small electric
quadrotor vehicle, e.g. [68, 102, 66]. However an outdoor heavy-lift helicopter re-
mains the best choice for applications such as powerline inspection, a current joint
research project between ANCL and BC Hydro [85, 128], which requires carrying
infrared and ultraviolet cameras used to detect existing or imminent damage in
high-voltage transmission lines. Employing a UAV for this task is dramatically less
risky for the inspection crews as exemplified by the following anecdote from [44,
p. 244]:

Five years earlier I rode in a small helicopter while an electrician on
board worked on a live transmission line in Pennsylvania. We were
eighty feet off the ground, and pilot Mark Campolong had to hold his
machine next to a thumb-thick aluminum-steel cable carrying 230,000
volts of electricity. His job, simply stated, was to keep electrician Jeff
Pigott close enough to the cable to do his work, but not so close as to
tangle his ship with the line. New pilots need a football field or larger
when learning to maneuver; Campolong had no more than sixteen inches
of tolerable error (In such a situation, the pilot is conscious of two risks
in particular: an engine failure or accidentally bringing the tail rotor
against the cable. Either would lead to a crash). I watched his gloved
hands cope with the light and variable winds: his hand on the cyclic was
as economical of motion as a bicyclist who is cruising down the street.
After we banked and flew back to the fueling truck, he said that his
mother-in-law asked why his work was so tiring. In her opinion, all he
did was sit around all day.

2



1.1.1 Motivation of Research

There are two necessary though not sufficient conditions to achieve experimentally-
validated nonlinear autonomous flight control on a UAV: an observer to estimate the
state of the vehicle from noisy, multi-rate measurements; and a dynamics model with
minimum complexity, physically controllable inputs and experimentally-identified
parameter values. These two goals have motivated and been successfully achieved
with the research work presented in this thesis.

The earliest stage of work involved adding magnetometer readings as an aiding
measurement to the existing GPS-only aided INS [75] which had been found to give
incorrect heading angle estimates in hover but correct ones in forward flight exper-
iments. It turns out the heading angle in a GPS-aided INS is only observable if the
vehicle has non-zero lateral acceleration, i.e. is manoeuvering; of course adding a
direct measurement of this angle resolves this issue. The work is reported in Chap-
ter 3 including the mathematical derivation, hardware implementation and extensive
simulation and experimental validation of the resulting system. Using experience
acquired during this work, an Attitude and Heading Reference System (AHRS) was
also designed and implemented. In contrast to the Aided INS’ position, velocity
and attitude estimates the AHRS provides only attitude information, however it
does not use GPS aiding and hence is useful for prototyping attitude-stabilization
algorithms in our indoor laboratory. The AHRS derivation, implementation and
testing is provided alongside the Aided INS in Chapter 3.

Aided navigation, with Mag-plus-GPS Aided INS and AHRS as specific exam-
ples, is fundamentally a nonlinear observer design problem due to the presence of
rigid-body attitude dynamics (c.f. Section 2.4). The conventional design approach
to this class of systems is the Extended Kalman Filter (EKF), which is based on re-
linearization of the system about its latest estimate. This method is universally used
in the aerospace industry c.f. [49, 51] and works very well in practice as demonstrated
in Chapter 3. However, a direct nonlinear observer design is of interest for at least
two reasons other than its intrinsic elegance: first, the EKF is unable to guarantee
global stability due to its reliance on (re)linearization of the system equations; and
second, the EKF algorithm is computationally expensive due to its requirements
of linearizing the system and propagating the estimation error covariance matrix
at every aiding measurement. The research focused on the Invariant (Symmetry-
Preserving) Observer method [27, 28] due to its novelty and successful application
to aided navigation examples [25, 91] whose dynamics possess the necessary sym-
metries (formally defined in Section 4.3). This work is documented in Chapter 4,
using the AHRS and Aided INS examples from Chapter 3, with successful validation
of the results in simulation and experiment. This part of the research required a
substantial investment of time to learn the tools of differential geometry, and made
full use of the experience gained from designing the conventional EKF systems.

Accurate estimates of vehicle’s state enable non-model based control — namely
PID— but a dynamic model is required for more sophisticated control schemes, both
those based on linearization (e.g. H∞ [46]) and nonlinear methods (e.g. MPC [5]).
Since the model is used for control, it must possess the following characteristics:
system equations of sufficiently low order and complexity to be usable yet which
adequately capture the physics of the vehicle; physically controllable inputs, which
requires modeling of the mechanization of the helicopter controls including servo
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operation, the Bell-Hiller system and the tail gyro unit; and parameter values iden-
tified specifically for our UAV platform, i.e. not available from the literature. Such
a model is developed throughout Chapter 5 using a first-principles approach to ex-
plain which assumptions are being made, and making extensive use of simplifications
based on identified parameter values, e.g. neglecting servo dynamics based on their
measured performance c.f. Section 5.3.5. The result is a nonlinear model of the
helicopter capturing the full flight envelope (hover, climb and fast forward flight)
and its simplification to the case of hover useful for a first version of model-based
control design.

We mention the highly simplified model introduced in [79] popularly used for
simulation studies of nonlinear helicopter control e.g. [80, 87, 56, 71, 86, 57, 89].
The model itself is unsuitable for experimental implementation due to a number
of unrealistic assumptions (c.f. [59, p. 56]): instantaneous control of main and tail
rotor thrusts and rotor disc tilt angles, whose amplitudes are unaffected by the
system’s state and cannot saturate; ignoring the mappings between servo inputs
and the above actuation mechanisms, which are non-trivial due to the Bell-Hiller
mechanism and tail gyro unit equipped on UAV helicopters; and neglecting state
feedback effects such as translational lift, fuselage drag and rotor-fuselage coupling
which strongly affect the performance of real helicopters. It is hoped the model
developed and identified in Chapter 5, in particular the simplified hover model
mentioned above, can act as a bridge between the nonlinear control techniques
developed in the literature and experimentally-validated designs.

1.2 Literature Survey

1.2.1 Aided Navigation

A comprehensive survey of algorithms which have been employed for experimentally-
validated aided navigation is provided in [49] including the Extended Kalman Filter,
H∞ methods, unscented filters, particle filters, as well as a selection of nonlinear
observers. The EKF method, first employed in the early 1960’s by NASA for the
Apollo lunar landing program [97], remains the most widely-used tool for aided
navigation design [51, 119]; textbook references to the EKF method include [34,
123, 48]. In particular research groups employing outdoor UAV helicopters [122, 74,
45, 59, 132, 21, 3, 134] have all used the EKF for state estimation.

1.2.2 Invariant Observers

Invariant Observers, also known as Symmetry-Preserving Observers are a novel ap-
proach to nonlinear observer design. The method is described in [27, 28] with pre-
liminary versions having appeared in [30, 25, 26]. It provides a systematic method to
build a nonlinear observer structure which possesses the same symmetries (formally
defined in Section 4.3) as the original system, guaranteeing a reduced-complexity
estimation error dynamics (c.f. Section 4.6.3) which simplifies gain selection and
stability analysis. The existence of symmetries in dynamical system under state
feedback was previously studied in [129, 63] and for the observer case in [64]. Ex-
ploiting system symmetries for design first appeared in the context of tracking con-
trollers [120], continued in [90] and more recently [47]; using symmetries for observer

4



design was first seen in [10, 11]. The invariant observer design method was applied
to aided navigation examples in [91, 93, 92, 94, 95].

1.2.3 Helicopter Modeling and Identification

References for full-sized helicopter modeling include [61, 72, 126, 115, 113, 33].
Radio-controlled (RC) helicopters [121] such as the Bergen Industrial Twin employed
by the ANCL UAV project operate on the same principles, but have a number of
characteristics which distinguish them from the full-sized versions [101, Chap. 5]
including much higher thrust-to-weight ratios and head speeds, hingeless blades,
and the inclusion of a Bell-Hiller mechanism and tail gyro to ease pilot workload.
Modeling specific to RC helicopters includes [60, 76, 81, 101, 21, 36, 116]. Highly
simplified models used for simulation of nonlinear control methods (c.f. Section 1.1.1)
are developed in [80, 131, 37].

Model identification is a broad subject. Frequency-domain system identification
of full-sized helicopters is treated in [127] and the references therein. Application
of frequency-domain methods to UAV-sized helicopters is found in [122, 81, 101].
Such approaches necessarily provide linear models which are valid around the oper-
ating point where the identification data was collected. An alternative time-domain
method is used in [7, 6, 5] which combines nonlinear rigid-body dynamics together
with simple linear parameterizations of force and moment components as functions
of system state and pilot inputs. These parameters are identified using logged flight
data and a least-squares minimization between measured and predicted accelera-
tions. The third approach is to identify a model’s parameters using direct mea-
surements and experimental tests as done by [59, 21, 77]. This approach may re-
quire further tuning of the parameters to match the simulated and experimental
data [65, 22] but provides a single nonlinear model for the full flight envelope of
the helicopter. This is the approach taken in this thesis, and the specific methods
employed for parameter identification will be referenced throughout Chapter 5.

1.3 Outline of Thesis

This Chapter provided a background of the ANCL helicopter UAV project and
the motivations for undertaking the research presented in this thesis, followed by a
survey of existing literature. An itemized statement of contributions will be provided
in Section 1.3.1.

Chapter 2 is a collection of mathematical results used throughout the rest of
the thesis. We first review rotation matrices, their use for changing basis vectors
and measuring the attitude of a vehicle, then the R

3 cross-product and its rela-
tion to skew-symmetric matrices. These are used to obtain rotational kinematics,
the nonlinear dynamics of rotation matrices resp. vehicle attitude. We use these
tools to derive the system equations of aided inertial navigation. Next we cover
the parametrization of rotation matrices using in turn axis-angle, Euler angles and
unit quaternions. Finally we review the Earth’s magnetic field, the calculation of
heading angle using the measurements from a triaxial magnetometer, and the prob-
lem of magnetometer calibration whose importance will become clear at the end of
Chapter 3, specifically Sections 3.4.2 and 3.4.3 describing experimental testing of
the aided inertial navigation system.
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In Chapter 3 we cover the design of the Extended Kalman Filter (EKF), the
conventional approach to designing observers for aided navigation problems. We
perform the design steps using two examples relevant to our project, an Attitude
and Heading Reference System (AHRS) and a Magnetometer-plus-GPS-aided In-
ertial Navigation System (Aided INS): models of sensor signals, bias and noise;
nonlinear system equations and their numerical integration; linearized error dynam-
ics used by the Kalman observer and their observability properties; discretization;
the Kalman Filter and its adaptation to nonlinear systems, the Extended Kalman
Filter; and implementation details including initialization and aiding criteria. The
resulting AHRS and Aided INS designs are then extensively tested and validated in
simulation and experiment, demonstrating excellent performance and showing how
the deficiencies of the previous GPS-only Aided INS have been resolved.

Chapter 4 treats Invariant (Symmetry-Preserving) Observers, a novel approach
to nonlinear observer design. Using the AHRS example we intuitively demonstrate
the existence of system symmetries. These are then formally defined using the
coordinate-free language of differential geometry, and their existence in the AHRS
and Aided INS examples in Chapter 3 is shown. We review the method of invariant
observer design including the proofs of key results, then apply the method to design
invariant observers for the two examples above. For the AHRS observer, a nonlin-
ear gain design is found which guarantees almost-global stability, although not for
the (more complicated) Aided INS case. For this reason we employ the Invariant
EKF [23, 29], a systematic approach to design the gains of the invariant observer
based on re-linearizing its invariant estimation error dynamics. This method is
applied to both the AHRS and Aided INS systems. Finally a comprehensive simu-
lation and experimental evaluation of the AHRS and Aided INS invariant observers
is made including comparing the performance of the nonlinear gain design versus
the Invariant EKF method.

Chapter 5 develops a nonlinear model of the helicopter UAV and experimentally
identifies its parameter values. The aim of the model is to be of sufficiently low
order and complexity to be tractable, yet to accurately model the real helicopter
e.g. the mechanization of the control inputs. We first derive the rigid-body dynamics
of the helicopter using tools from Chapter 2, then perform subsystem-by-subsystem
modeling of its components: the main rotor and blade flapping dynamics, rotor head
construction and the Bell-Hiller mechanism, tail rotor and the tail gyro unit, rotor
speed and engine, servos, fuselage drag and tail stabilizers. The resulting nonlinear
model is also simplified to the case of hover, c.f. Section 1.1.1. The parameter values
of the nonlinear model are experimentally identified throughout and are summarized
together at the end of this chapter.

Chapter 6 summarizes the work done in the thesis and the resulting findings.
Possible future research tasks which build on the present thesis are discussed.

1.3.1 Statement of Contributions

The following items are claimed as research contributions of this thesis (listed in
order of appearance):

• Integrating the magnetometer calibration proposed in [54] (described in Sec-
tion 2.9) into the Aided INS design and experimentally demonstrating the
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resulting improvement in performance over the conventional (hard-iron cali-
bration) method and the uncompensated case, as well as resolving the short-
comings of the previous GPS-only version of the aided navigation system [75,
Chap. 5]. This work was reported in conference proceedings [15] and journal
paper [17].

• Implementing an AHRS system for indoor testing of attitude-stabilization al-
gorithms. The design inherits features developed for the Aided INS design
including magnetometer calibration, an orthogonality-preserving attitude up-
date (c.f. Section 3.2.5) and accurately-identified sensor noise and bias char-
acteristics (c.f. Section 3.2.2). The design was experimentally validated using
an indoor motion-capture system as described in Section 3.3.2. The work was
reported in conference proceedings [16].

• Design and validation of invariant observers for the AHRS and Aided INS
examples. Specific contributions are: designing the observers in terms of R ∈
SO(3) making them amenable to global stability analysis, c.f. [38]; finding
a set of gains for the invariant AHRS guaranteeing almost-global stability
(Section 4.8); improving the Invariant EKF method [23, 29] by removing the
requirement for invariant noise and rendering the Aided INS invariant observer
case tractable, c.f. Section 4.9.1; and validating the designs in both simulation
and experiment. The Aided INS invariant observer was published in conference
proceedings [18] while the AHRS invariant observer was submitted as journal
publication [19].

• Developing an identified nonlinear dynamics model of the helicopter UAV from
first principles for the purpose of control. Specific contributions include an el-
egant derivation of the rigid-body and flapping dynamics in the style of [105];
simplification of the main rotor and flybar flapping dynamics based on experi-
mentally identified parameter values, c.f. Sections 5.3.1.4 and 5.3.2.1, the latter
including a mathematical analysis of the Bell-Hiller mechanism as a deriva-
tive action stability augmentation system; a simplified version of the nonlin-
ear model to the case of hover provided in Section 5.4.1 which removes the
need for an iterative solution of induced velocity vi (c.f. Section 5.3.1.5) and
analytically explains the rotor-fuselage coupling characteristic of helicopter
UAVs [101, 59, 127]; and obtaining the numerical values of the model param-
eters, tabulated in Section 5.5 with identification details provided throughout
the chapter.
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Chapter 2

Mathematical Preliminaries

This chapter presents a number of mathematical results used throughout the rest
of the thesis. Derivations are included in order to make the thesis self-contained.

2.1 Rotation Matrices

We typically make use of two coordinate frames (a set of orthonormal vectors span-
ning R

3): a ground-fixed navigation frame with basis vectors {n1, n2, n3}, and a
body-fixed body frame using basis vectors {b1, b2, b3}. The basis vectors for both
frames are orthonormal and follow the right-handed convention, i.e. n1 × n2 = n3
and b1 × b2 = b3 where × denotes the R

3 cross-product. Note that the navigation
frame is stationary, making it an inertial frame where Newton’s Laws can be applied.
By contrast, the body-fixed frame moves with the body which may be accelerating
and/or rotating, making the body frame a non-inertial frame.

In order to describe the orientation of the body with respect to the ground, we
express the body frame basis vectors in the navigation frame basis. Using the dot
product · for projection, we have

bi = (bi · n1)n1 + (bi · n2)n2 + (bi · n3)n3, i = 1, 2, 3.

For a given point p we define pB = [pB,1 pB,2 pB,3]
T ∈ R

3 as its coordinates in
the body frame and pN = [pN,1 pN,2 pN,3]

T ∈ R
3 in the navigation frame. The

coordinates are related as follows:

p = pB,1b1 + pB,2b2 + pB,3b3

= pB,1
[
(b1 · n1)n1 + (b1 · n2)n2 + (b1 · n3)n3

]

+ pB,2
[
(b2 · n1)n1 + (b2 · n2)n2 + (b2 · n3)n3

]

+ pB,3
[
(b3 · n1)n1 + (b3 · n2)n2 + (b3 · n3)n3

]

=
[
pB,1(b1 · n1) + pB,2(b2 · n1) + pB,3(b3 · n1)

]
n1

+
[
pB,1(b1 · n2) + pB,2(b2 · n2) + pB,3(b3 · n2)

]
n2

+
[
pB,1(b1 · n3) + pB,2(b2 · n3) + pB,3(b3 · n3)

]
n3

= pN,1n1 + pN,2n2 + pN,3n3.

8



The above can be written as


pN,1
pN,2
pN,3




︸ ︷︷ ︸
pN

=



b1 · n1 b2 · n1 b3 · n1
b1 · n2 b2 · n2 b3 · n2
b1 · n3 b2 · n3 b3 · n3




︸ ︷︷ ︸
R



pB,1
pB,2
pB,3




︸ ︷︷ ︸
pB

,

where R is known as the rotation matrix. By construction, the columns of R rep-
resent the coordinates of each bi in the navigation frame. Since {b1, b2, b3} are
orthonormal, the columns of R are automatically orthonormal as well, making R
an orthogonal matrix, i.e. R−1 = RT and |R| = ±1. Further, {b1, b2, b3} obey the
right-handed convention, from which it follows that |R| = +1. This subset of orthog-
onal matrices generates the special orthogonal group SO(3), to which all rotation
matrices belong to:

R ∈ SO(3) =⇒ R ∈ R
3×3, RRT = RTR = I, |R| = 1.

The rotation matrix measures the orientation of the body relative to the ground.
In general motion, as the body rotates, the entries of R change with time which we
denote as R = R(t).

The above ideas can be applied to the case of three or more frames, leading to
the composition of rotations. Consider again the fixed point p and the frames N ,
B and C, illustrated in Figure 2.1 with offset origins for clarity (i.e. there is no
translation between the frames, only rotation). There exist three possible changes
of coordinates between the frames:

pN = RBNpB (2.1a)

pB = RCBpC (2.1b)

pN = RCNpC , (2.1c)

with, for instance, RBN denoting a transformation from frame B to the frame N . It
can also be interpreted as the rotation of frame B with respect to the base frame
N . Substituting (2.1b) into (2.1a) and comparing with (2.1c), we see that

pN = RBNR
C
BpC ,

i.e. the C → N transformation can be performed in two steps, C → B then B → N ,
in that order. The composition of rotations will be used extensively in Section 2.6.

Consider the inverse transformation case. From (2.1a) above,

pN = RBNpB =⇒ pB =
(
RBN
)T
pN ,

and so (
RBN
)T

= RNB ,

the transformation from frame N to frame B.
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p

Figure 2.1: Three-frame schematic; frame origins offset for clarity

2.2 Cross-Product and Skew-Symmetric Matrices

Let x =
[
x1 x2 x3

]T
and y =

[
y1 y2 y3

]T
be two vectors in R

3. By definition
of the cross-product,

x× y =



x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


 ,

× being an anti-commutative, homogenous, distributive and non-associative opera-
tion. The cross-product can be expressed as a matrix multiplication:

x× y =




0 −x3 x2
x3 0 −x1
−x2 x1 0




︸ ︷︷ ︸
S(x)



y1
y2
y3




︸ ︷︷ ︸
y

. (2.2)

Remark that S(x) is a skew-symmetric matrix, i.e. S(x)T = −S(x). All R
3×3

skew-symmetric matrices can be parameterized using three scalars, or equivalently
S(x), x ∈ R

3 generates all possible skew-symmetric matrices within R
3×3.
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We show that S(x)S(y)−S(y)S(x) = S(x× y) by expanding the left-hand side:

=




0 −x3 x2
x3 0 −x1
−x2 x1 0






0 −y3 y2
y3 0 −y1
−y2 y1 0


−




0 −y3 y2
y3 0 −y1
−y2 y1 0






0 −x3 x2
x3 0 −x1
−x2 x1 0




=



−x3y3 − x2y2 x2y1 x3y1

x1y2 −x3y3 − x1y1 x3y2
x1y3 x2y3 −x2y2 + x1y1




−



−x3y3 − x2y2 x1y2 x1y3

x2y1 −x3y3 − x1y1 x2y3
x3y1 x3y2 −x2y2 + x1y1




=




0 x2y1 − x1y2 x3y1 − x1y3
x1y2 − x2y1 0 x3y2 − x2y3
x1y3 − x3y1 x2y3 − x3y2 0




= S(x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) = S(x× y).

Next we develop a property of R ∈ SO(3) and the cross-product. Recall that the
columns of R are the coordinates of the body frame basis vectors bi in the navigation
frame, i.e.

R =
[
b1N b2N b3N

]
,

with biN ∈ R
3, i = 1, 2, 3 orthonormal and obeying the right-handed convention

b1N × b2N = b3N . We compute:

Rx×Ry = (x1b1N + x2b2N + x3b3N )× (y1b1N + y2b2N + y3b3N )

= x1y1b1N × b1N + x1y2b1N × b2N + x1y3b1N × b3N

+ x2y1b2N × b1N + x2y2b2N × b2N + x2y3b2N × b3N

+ x3y1b3N × b1N + x3y2b3N × b2N + x3y3b3N × b3N

= (x1y2 − x2y1)b3N + (x1y3 − x3y1)b2N + (x2y3 − x3y2)b1N = R(x× y),

proving that R(x× y) = Rx×Ry,R ∈ SO(3). Note this property does not hold for
general R3×3 matrices.

The last property to be established involves R and S and makes use of all the
results developed above. Note that RT ∈ SO(3) because SO(3) is a group.

RTS(x)Ry = RT [x×Ry]

= RTx× y

= S(RTx)y,

hence RTS(x)R = S(RTx).

2.3 Rotation Kinematics

Consider a point p fixed to a rigid body rotating in space, shown schematically in
Figure 2.2. The basis vectors {b1, b2, b3} are attached to the body, and their origin
coincides with the fixed {n1, n2, n3} basis vectors’ origin at all times. In other words,
the rigid body is free to rotate about an axis which may change orientation, but
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r

Figure 2.2: Rigid Body Rotation About Fixed Origin

always passes through the common origin. Consider the vector r from the origin to
the point p; the coordinates of this vector in the body frame are rB whose entries
are constant with time since both the bi basis vectors and the point p are rigidly
attached to the body. As the body rotates, the point p moves in space, and so the
coordinates of vector r in the navigation frame rN (t) are a function of time. The
two coordinates are related by

rN (t) = R(t)rB .

Differentiating with respect to time,

ṙN (t) := vN (t) = Ṙ(t)rB

where vN (t), mathematically defined as the rate of change of coordinates of p in
frame N , are the coordinates of the velocity v of point p, where v is an absolute
velocity vector (as opposed to a relative velocity vector) since its components were
measured w.r.t. a stationary origin.

In order to obtain an expression for Ṙ(t) we time differentiate the identity
R(t)RT (t) = I, which gives

Ṙ(t)RT (t) +R(t)ṘT (t) = 0 =⇒ Ṙ(t)RT (t) = −R(t)ṘT (t) = −(Ṙ(t)RT (t))T ,

i.e. Ṙ(t)RT (t) is a skew-symmetric matrix. We can parameterize this last term using
S(ω(t)), where ω(t) ∈ R

3 has a physical interpretation which we will see shortly.
Using this parametrization gives

Ṙ(t)RT (t) = S(ω(t)) =⇒ Ṙ(t) = S(ω(t))R(t),

and we obtain

vN (t) = Ṙ(t)rB = S(ω(t))R(t)rB = S(ω(t))rN (t) = ω(t)× rN (t).
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This last expression gives the velocity vector vN (t) of a point located by the po-
sition vector rN (t) on a rigid body undergoing a purely rotational motion. From
mechanics we now see that the parameterizing vector ω(t) is ωN (t), the navigation
frame coordinates of the rigid body’s angular velocity vector ω, which measures the
rate of rotation of the body w.r.t. frame N and is an absolute angular velocity since
frame N is non-rotating. The expression for Ṙ(t) is thus

Ṙ(t) = S(ωN (t))R(t), (2.3)

the rotational kinematics equation of a rigid body for an angular velocity vector
expressed in navigation frame coordinates.

The kinematic equation (2.3) has an alternative form, which we now develop by
taking advantage of the last property developed in Section 2.2:

Ṙ(t) = S(ωN (t))R(t)

= R(t)RT (t)S(ωN (t))R(t)

= R(t)S(RTωN(t))

Ṙ(t) = R(t)S(ωB(t)) (2.4)

where ωB(t) = RT (t)ωN (t) is the absolute angular velocity vector of the rigid body
expressed in body frame coordinates. The components of ωB(t) can be directly
measured using a set of three rate gyros, each fixed to the rigid body and aligned
with its corresponding body frame axis bi. This class of sensors, known as inertial,
measures absolute quantities (here, angular velocity) despite being mounted on a
rotating/accelerating body.

2.4 Navigation Dynamics

We now derive the navigation dynamics equations used for Aided Inertial Navigation
System (Aided INS) design in Chapters 3 and 4 using the tools in Sections 2.1–
2.3. The navigation problem makes use of three coordinate frames schematically
illustrated in Figure 2.3:

• Body-fixed frame B: Origin rigidly attached to Helicopter’s centre of mass
(CM), with b1 and b2 aligned with longitudinal and lateral axes, and b3 pointing
down. The on-board Inertial Measurement Unit (IMU) provides accelerome-
ter, rate gyro and magnetometer measurements in this frame.

• Navigation frame N : Origin is fixed at an arbitrary geographic location, with
n1, n2 and n3 pointing in the North, East and Down directions, respectively.
The navigation system outputs its estimates in this frame.

• Earth-Centered, Earth-Fixed (ECEF) frame E: Origin is fixed at the Earth’s
centre of mass, with axes pointing towards (0◦N, 0◦E), (0◦N, 90◦E) and 90◦N
geodetic coordinates, respectively. The GPS receiver reports position pE in
the ECEF frame.

We neglect the rotation of the Earth, such that E and N frames are inertial. This
assumption is due to the available resolution of the rate gyros as well as the back-
and-forth flying patterns which nullify the Coriolis effect.
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Figure 2.3: Body, Navigation and ECEF frames

Let p denote the position vector of the helicopter’s CM with respect to the navi-
gation frame origin, with pN (t) the vector’s coordinates in the navigation frame. As
in Section 2.3 we have (d/dt)pN (t) = vN (t), an absolute velocity since its compo-
nents are measured w.r.t. the stationary origin of frame N , and so Newton’s second
law applies directly:

d

dt
(mvN (t)) = FN (t) =⇒ maN (t) = FN (t)

where (d/dt)vN (t) = aN (t) is the acceleration of the helicopter’s CM w.r.t. the
origin of frame N and FN (t) is the net external force vector acting on the helicopter
expressed in N frame coordinates; this last term includes the gravity force mgN
where gN = [0 0 9.81]T is a constant. The expression above becomes

mv̇N (t) = FN (t)−mgN +mgN

v̇N (t) = aN (t)− gN + gN

v̇N (t) = RBN (t) (aB(t)− gB(t)) + gN

where RBN (t) := R(t) measures the attitude of the helicopter w.r.t. the navigation
frame and aB(t)−gB(t) := fB(t), the difference between inertial and gravity acceler-
ations known as specific force f , is directly measurable using a triaxial accelerometer
fixed to the helicopter and aligned with the B frame axes. Remark an accelerom-
eter which is stationary outputs fB = −gB as its measurement, while in a free-fall
condition the output will be fB = 0. The dynamics of attitude R(t) are governed
by (2.4)

Ṙ(t) = R(t)S(ωB(t))

where ωB is directly measured by the IMU’s triaxial rate gyro. The dynamics of the
navigation system are thus

ṗN = vN

v̇N = RfB + gN

Ṙ = RS(ωB)

(2.5)
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with state x = [pN vN R] and inputs u = [fB ωB ]. The outputs of the system
are taken as the IMU magnetometer measurement mB(t) = RT (t)mN , where mN is
the Earth’s magnetic field in the navigation frame, to be discussed in Section 2.8;
and the GPS receiver measurement rE(t) = roE + pE(t), where r and ro are position
vectors from the E frame origin (Earth’s CM) to the vehicle and N frame origin,
respectively. The roE value can be measured directly using the GPS receiver, either
at a fixed location or by taking the helicopter’s pre-takeoff location as the N frame
origin. The pE(t) value is written in terms of system state x as pE(t) = RNE pN (t)
where rotation matrix RNE is computed by [51, p. 43]

RNE =



− sinλ cosϕ − sinϕ − cos λ cosϕ
− sinλ sinϕ cosϕ − cos λ sinϕ

cos λ 0 − sinλ


 (2.6)

where (λ, ϕ) are the geodetic (latitude, longitude) coordinates of the N frame origin.
These are obtained from roE = [X Y Z] using the closed-form solution [32]

υ = arctan
bZ

ap

(
1 + e′

b

R

)

λ = arctan
Z + e′b sin3 υ

p− e2a cos3 υ

ϕ = atan2(Y,X),

(2.7)

where p =
√
X2 + Y 2, R =

√
X2 + Y 2 + Z2, and a, b, e2, e′ are respectively

semi-major axis, semi-minor axis, first eccentricity squared and second eccentric-
ity of the ellipsoid used to approximate the shape of the earth’s surface. The most
commonly used ellipsoid model is WGS84 [1, Sec. 3] which defines these values
as a = 6378137.0 m, b = 6356752.3142 m, e = 6.69437999014 × 10−3 and e′ =
8.2094437949696 × 10−2. In summary the navigation system outputs y = [ym yp]
are written as functions of state x as

ym = RTmN

yp = roE +RNE pN
(2.8)

A navigation system estimates x = [pN vN R] from sensor inputs u = [fB ωB]
and aiding measurements y = [ym yp] — a nonlinear observer design problem due
to the form of (2.5).

2.5 Parameterizing the Rotation Matrix

Up to now, the orientation of the helicopter with respect to the ground was described
by the nine-element matrix R. We now show it is possible to parameterize the
rotation matrix using a smaller set of numbers. This can be intuitively seen from
the fact that any rotation matrix has orthonormal columns and a determinant of
+1, so the nine entries of R cannot be independent of each other.

Consider the matrix exponential of a skew-symmetric matrix,

eS(x)θ
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where x ∈ R
3 as before and θ ∈ R is a scalar whose physical significance will become

clear soon. We have

(
eS(x)θ

)−1
= e−S(x)θ = eS(x)

T θ =
(
eS(x)θ

)T
,

i.e. eS(x)θ is an orthogonal matrix hence

∣∣∣eS(x)θ
∣∣∣ = ±1.

Note that for θ = 0, |e0| = |I| = 1, and because both the matrix exponential and
the determinant are continuous functions |eS(x)θ| = 1. Therefore eS(x)θ ∈ SO(3) for
x ∈ R

3, θ ∈ R — a candidate 4-element parametrization of R, but only if it can be
shown to be surjective onto SO(3).

Before proving surjectivity, we need a formula for calculating eS(x)θ. By defini-
tion,

eS(x)θ = I + S(x)θ +
S(x)2θ2

2!
+
S(x)3θ3

3!
+ · · ·

By direct computation, we have:

S(x) =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 ,

S(x)2 =



−x22 − x23 x1x2 x1x3
x1x2 −x21 − x23 x2x3
x1x3 x2x3 −x21 − x22


 ,

S(x)3 =




0 x21x3 + x22x3 + x33 −x21x2 − x32 − x21x2
−x21x3 − x22x3 − x33 0 x31 + x1x

2
2 + x1x

2
3

x21x2 + x32 + x21x2 −x31 − x1x
2
2 − x1x

2
3 0




= −(x21 + x22 + x23)




0 −x3 x2
x3 0 −x1
−x2 x1 0


 = −‖x‖2S(x).

We see that

S(x)4 = −‖x‖2S(x)2,
S(x)5 =

(
−‖x‖2

)2
S(x),

and by induction,

S(x)2k = (−1)k−1
(
‖x‖2

)k−1
S(x)2, k = 1, 2, . . .

S(x)2k+1 = (−1)k
(
‖x‖2

)k
S(x), k = 0, 1, . . .
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Returning to the matrix exponential definition,

eS(x)θ = I +

(
S(x)θ +

S(x)3θ3

3!
+ · · ·

)
+

(
S(x)2θ2

2!
+
S(x)4θ4

4!
+ · · ·

)

= I +

(
S(x)θ − ‖x‖2S(x)θ3

3!
+ · · ·

)
+

(
S(x)2θ2

2!
− ‖x‖2S(x)2θ4

4!
+ · · ·

)

= I +
S(x)

‖x‖

(
‖x‖θ − ‖x‖3θ3

3!
+ · · ·

)
+
S(x)2

‖x‖2
(‖x‖2θ2

2!
− ‖x‖4θ4

4!
+ · · ·

)

eS(x)θ = I +
S(x)

‖x‖ sin(‖x‖θ) + S(x)2

‖x‖2 (1− cos(‖x‖θ)) , (2.9)

known as Rodrigues’ formula. We will use the normalized version of x, a = x/‖x‖,
such that Rodrigues’ formula takes the form

eS(a)θ = I + S(a) sin θ + S(a)2(1− cos θ), ‖a‖ = 1. (2.10)

Note that (2.10) is still a 4-element (candidate) parametrization of SO(3), because a
is constructed of three independent entries, then normalized. To prove surjectivity,
start with an arbitrary R ∈ SO(3). Expanding (2.10), we obtain



1− (a22 + a23)vθ −a3sθ + a1a2vθ a2sθ + a1a3vθ
a3sθ + a1a2vθ 1− (a21 + a23)vθ −a1sθ + a2a3vθ
−a2sθ + a1a3vθ a1sθ + a2a3vθ 1− (a21 + a22)vθ




︸ ︷︷ ︸
eS(a)θ

=



r11 r12 r13
r21 r22 r23
r31 r32 r33




︸ ︷︷ ︸
R

, (2.11)

where a = [a1 a2 a3]
T , sθ = sin θ and vθ = 1 − cos θ, the versine function.

Equating traces,

3−2(1−cos θ) (a21 + a22 + a23)︸ ︷︷ ︸
‖a‖2=1

= r11 + r22 + r33︸ ︷︷ ︸
tr(R)

=⇒ θ = arccos

(
tr(R)− 1

2

)
(2.12)

A property of all rotation matrices, i.e. members of SO(3), is that they possess one
eigenvalue at +1, and the remaining two eigenvalues are complex conjugates with
magnitude 1. Also, the trace of any matrix equals the sum of its eigenvalues. We
conclude −1 ≤ tr(R) ≤ 3, and the domain of arccos in (2.12) is [−1, 1], so θ exists
for any {r11, r22, r33} ∈ R. Strictly speaking, the solution of (2.12) is ±θ, because
cos is an even function; we can remove this ambiguity by the restriction θ ≥ 0,
however. Equating the remaining entries in (2.11), we have

r32 − r23 = 2a1 sin θ,

r13 − r31 = 2a2 sin θ,

r21 − r12 = 2a3 sin θ,

from which, provided θ 6= 0,



a1
a2
a3


 =

1

2 sin θ



r32 − r23
r13 − r31
r21 − r12


 ,
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which proves the existence of a for any {r12, r13, r21, r23, r31, r32} entries of R pro-
vided θ 6= 0. Consider the θ = 0 case, which only occurs when tr(R) = 3 in (2.12).
Since R has orthonormal columns, this is only possible for R = I. Returning to
(2.11), we have



1− (a22 + a23)0 −a30 + a1a20 a20 + a1a30
a30 + a1a20 1− (a21 + a23)0 −a10 + a2a30
−a20 + a1a30 a10 + a2a30 1− (a21 + a22)0


 =



1 0 0
0 1 0
0 0 1


 ,

which is obviously satisfied for any a, meaning R = I is in the range of eS(a)θ as
well. This completes the proof of surjectivity, and we have shown that eS(a)θ fully
parameterizes SO(3). Comparing this result with Euler’s Rotation Theorem, we
see that a physically represents the (normalized) axis of rotation and θ the angle
through which the object is rotated. θ = 0 is the no-rotation case, in which case any
rotation axis a can be used in the exponential. From the proof, we see that a given R
configuration yields a unique {a, θ} pair (as long as θ > 0 is assumed, otherwise both
{θ, a} and {−θ,−a} are solutions), except at R = I, where an infinity of solutions
exist. This effect is known as a singularity of the parametrization, because it destroys
the continuous nature of the inverse problem (finding the set of parameters given
an orientation R). Singularities are also discussed in Section 2.6.

Consider the matrix exponential eS(x), where x ∈ R
3 is not necessarily of unit

length. Clearly,
eS(x) = eS(x/‖x‖) ‖x‖.

By rotating x (changing its entries while keeping ‖x‖ constant), it is possible for
x/‖x‖ to span the entire set a ∈ R

3, ‖a‖ = 1; this is true for any choice of ‖x‖ ∈ R.
In this way, eS(x) can be made equal to eS(a)θ, ‖a‖ = 1, θ ∈ R, which was shown
to be surjective onto SO(3). Since x ∈ R

3, we conclude it is possible to surjectively
parameterize SO(3) with only three parameters.

2.6 Euler Angles Parametrization

Having shown that R ∈ SO(3) can be parameterized using only three numbers, we
now develop a concrete case, Euler angles. We will compose three rotations, each
described by one angle, to produce the final orientation R. The composition of
rotations was discussed in Section 2.1.

n1

n2

n3

b1

b2

b3
γ1

n1

n2

n3

b1

b2

b3

γ2
n1

n2

n3

b1b2

b3

γ3

Figure 2.4: Elementary rotations about n1, n2 and n3

We first derive the rotation matrices about the three basis axes, illustrated in
Figure 2.4. Note that unlike Section 2.1, all three rotations are made with respect
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to the same frame N instead of using the previous frame as the “datum”. This will
be reflected in the physical interpretation of Euler Angles below — however, the
composition of rotations still holds because R measures only the rotation between
two frames, so composing three rotations relative to N is mathematically identical
to the case in Section 2.1. Using the definition of R from Section 2.1,

RBN =



b1 · n1 b2 · n1 b3 · n1
b1 · n2 b2 · n2 b3 · n2
b1 · n3 b2 · n3 b3 · n3


 ,

we work out the rotations about n1, n2 and n3 as

R1(γ1) =



1 0 0
0 cos γ1 cos(π/2 + γ1)
0 cos(π/2 − γ1) cos γ1


 =



1 0 0
0 cos γ1 − sin γ1
0 sin γ1 cos γ1


 , (2.13a)

R2(γ2) =




cos γ2 0 cos(π/2 − γ2)
0 1 0

cos(π/2 + γ2) 0 cos γ2


 =




cos γ2 0 sin γ2
0 1 0

− sin γ2 0 cos γ2


 , (2.13b)

R3(γ3) =




cos γ3 cos(π/2 + γ3) 0
cos(π/2− γ3) cos γ3 0

0 0 1


 =



cos γ3 − sin γ3 0
sin γ3 cos γ3 0
0 0 1


 . (2.13c)

It’s easy to directly verify that each matrix in (2.13) belongs to SO(3).
As seen in Section 2.1 composing rotations corresponds to matrix multiplication,

hence the order is not commutative. Any three-part sequence is valid provided
adjacent rotations are not made about the same axis, which gives 3 × 2 × 2 = 12
possible parameterizations. We choose to use the so-called roll-pitch-yaw sequence,
the most widely used in aerospace literature. This sequence is defined by

RBN = R3(ψ)R2(θ)R1(φ), (2.14)

where roll φ, pitch θ and yaw ψ are defined as rotations about the x, y and z axes,
respectively. Substituting (2.13) into (2.14) and performing matrix multiplication
gives

RBN =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


 , (2.15)

where cφ = cosφ, etc. Since Rk ∈ SO(3) we know RBN ∈ SO(3). As will be shown
below, roll-pitch-yaw is surjective but not injective onto SO(3).

Physically, the composition (2.14) represents an ordered sequence of rotations of
the helicopter body frame with respect to the ground. As seen in Figure 2.4, R1,
R2 and R3 represent rotations with respect to the N frame, so (2.14) corresponds
to the following rotation sequence, starting from a level flight configuration (frames
N and B aligned, R = I):

1. Rotate the helicopter about n1 by φ (roll)

2. Rotate about n2 by θ (pitch)

3. Rotate about n3 by ψ (yaw).
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It is also possible to interpret the angles φ, θ, ψ from a body-frame point of view.
Starting from R = I, the rotations are made with respect to b1, b2 and b3, requiring
the transpose version of (2.13) because RBN = (RNB )

T as shown in Section 2.1. Note
the base frame B gets rotated at each step, but once again the mathematical form
of composing rotations remains the same. For reasons that will become clear soon
the rotation sequence is done “backwards” from the one above:

1. Rotate the helicopter about b3 by ψ (yaw)

2. Rotate about b2 by θ (pitch)

3. Rotate about b1 by φ (roll)

This sequence of rotations composes to

RNB = R1(φ)
TR2(θ)

TR3(ψ)
T

and transposing both sides gives

RBN = R3(ψ)R2(θ)R1(φ),

which is identical to (2.14) above. In this sense, roll-pitch-yaw represents both the
ground-fixed rotation sequence

Roll φ around n1 =⇒ Pitch θ around n2 =⇒ Yaw ψ around n3,

and the body-fixed rotation sequence

Yaw ψ around b3 =⇒ Pitch θ around b2 =⇒ Roll φ around b1.

Consider the numerical example {φ = −π/2, θ = π/2, ψ = π}. This sequence can
be executed in either the ground-fixed or body-fixed order, giving the same final
configuration as illustrated in Figure 2.5. Remark that the body frame axes bk are
rotated at each step.

Consider the inverse problem of calculating the sequence {φ, θ, ψ} given an ori-
entation R. Starting from (2.15),

R =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


 =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 . (2.16)

By inspection, θ = − arcsin r31. Since R ∈ SO(3) the matrices (2.16) are orthonor-
mal. It follows that |r31| ≤ 1 and so −π/2 ≤ θ ≤ π/2. Consider first the case
|θ| < π/2, from which cθ 6= 0 and thus

tanφ =
r32
r33

=⇒ φ = atan2(r32, r33)

tanψ =
r21
r11

=⇒ ψ = atan2(r21, r11)

where atan2 is the “smart” arctan function which assigns the correct quadrant
and handles the case of division by zero. Since arcsin and arctan are injective
functions and the entire range of R is in their domain, roll-pitch-yaw is a bijective
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b1
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b2b2
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b3

b3

b3

b3b3

b3

n1, φ

n2, θ n3, ψ

b3, ψ

b2, θ b1, φ

Figure 2.5: Roll-Pitch-Yaw sequence of rotations, φ = −π/2, θ = π/2, ψ = π

parametrization of SO(3) provided θ 6= ±θ/2. This last condition is a singularity of
Euler angles, discussed next.

Consider the case where r31 = ±1 =⇒ θ = ∓π/2. From orthonormality, r11 =
r21 = 0 necessarily, and r33 = r32 = 0 since RT ∈ SO(3) as well. Equation (2.16)
reduces to




0 r12 r13
0 r22 r23
±1 0 0


 =




0 ∓ sin(φ± ψ) ∓ cos(φ± ψ)
0 cos(φ± ψ) − sin(φ± ψ)
±1 0 0


 .

We see injectivity has been lost for θ = ∓π/2 because two different roll-pitch-yaw
sequences with the same φ ± ψ will map to the same R. This loss of injectivity is
a singularity of the roll-pitch-yaw parametrization, just like R = I for axis-angle
in Section 2.5. As an example consider Figure 2.5 again, which used a (singular)
sequence φ = −π/2, θ = π/2, ψ = π. A different sequence with θ = π/2 and
φ−ψ = −π/2− π = −3π/2, for instance φ = −π, ψ = π/2, will give the same final
orientation. This is shown in Figure 2.6 using the body-fixed rotation convention.

b1

b1 b1

b1 b2 b2 b2

b2
b3

b3

b3

b3

b3, ψ b2, θ b1, φ

Figure 2.6: Alternative Roll-Pitch-Yaw sequence of rotations, φ = −π, θ = π/2,
ψ = π/2

Euler angles can be used to parameterize the rotation kinematics developed in
Section 2.3. Consider the body-frame version (2.4)

Ṙ(t) = R(t)S(ωB(t)),
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We use R from (2.15), compute Ṙ and solve the above for {φ̇, θ̇, ψ̇}. Since the Ṙ
expression is quite long, we first group terms on the left side then perform the matrix
multiplication in e.g. Mathematica:

RT Ṙ = S(ωB)



0 sφθ̇ − cφcθψ̇ cφθ̇ + sφcθψ̇

−sφθ̇ + cφcθψ̇ 0 −φ̇+ sθψ̇

−cφθ̇ − sφcθψ̇ φ̇− sθψ̇ 0


 =




0 −ωB,3 ωB,2
ωB,3 0 −ωB,1
−ωB,2 ωB,1 0


 .

Isolating ωB,



ωB,1
ωB,2
ωB,3


 =




φ̇− sθψ̇

cφθ̇ + sφcθψ̇

−sφθ̇ + cφcθψ̇


 =



1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ





φ̇

θ̇

ψ̇




Inverting, we obtain



φ̇

θ̇

ψ̇


 =



1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ





ωB,1
ωB,2
ωB,3


 ,

or equivalently
φ̇ = ωB,1 + sinφ tan θ ωB,2 + cosφ tan θ ωB,3

θ̇ = cosφωB,2 − sinφωB,3

ψ̇ = sinφ sec θ ωB,2 + cosφ sec θ ωB,3

(2.17)

Equations (2.17) are the dynamics of the roll-pitch-yaw Euler angle parametriza-
tion. Remark the dynamics involve trig functions and become undefined at the
parametrization singularity θ = ±π/2, making them a poor choice for numerical
implementation.

As mentioned previously, roll-pitch-yaw is just one of twelve possible Euler Angle
parameterizations. It can be verified that all exhibit singularities, and in more
general terms it can be shown that any three-element parametrization of SO(3) will
possess singularities [125]. A practical solution is avoiding configurations which are
singular, e.g. never pitching the helicopter straight up or down. A more elegant
solution is to use a parametrization with > 3 elements which does not contain
singularities, specifically unit quaternions discussed in the next section.

2.7 Quaternions

Quaternions were first introduced by Hamilton as a generalization of complex num-
bers. Just as complex numbers on the unit circle can represent planar rotations via
eiθ, unit-length quaternions can represent three-dimensional rotations.

A quaternion r ∈ H is defined as

r = r0 + r1i+ r2j + r3k

where (r0, r1, r2, r3) ∈ R
4 and H is a four-dimensional vector space over the reals

with basis vectors {1, i, j,k} ∈ H. A quaternion can be written as r = (r0, ~r)
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where r0 ∈ R is the “scalar” component and ~r := (r1, r2, r3) ∈ R
3 is the “vector”

component. A quaternion with r0 = 0 is known as a “pure” quaternion.
Quaternion multiplication ∗ is defined by

i ∗ i = j ∗ j = k ∗ k = i ∗ j ∗ k = −1,

a bilinear, distributive, non-commutative operation. Left and right–multiplying the
above yields

i ∗ j = k j ∗ k = i k ∗ i = j,

j ∗ i = −k k ∗ j = −i i ∗ k = −j.

The multiplication of quaternions r = (r0, ~r) and s = (s0, ~s) is written out as

r ∗ s =(r0 + r1i+ r2j + r3k) ∗ (s0 + s1i+ s2j + s3k)

=r0s0 + r0s1i+ r0s2j + r0s3k

+ r1s0i+ r1s1i ∗ i+ r1s2i ∗ j + r1s3i ∗ k
+ r2s0j + r2s1j ∗ i+ r2s2j ∗ j + r2s3j ∗ k
+ r3s0k + r3s1k ∗ i+ r3s2k ∗ j + r3s3k ∗ k

=(r0s0 − r1s1 − r2s2 − r3s3)

+ r0s1i+ r0s2j + r0s3k

+ r1s0i+ r2s0j + r3s0k

+ (r2s3 − r3s2)i+ (r3s1 − r1s3)j + (r1s2 − r2s1)k

=(r0s0 − ~r · ~s, r0~s+ s0~r + ~r × ~s),

where · and × are the R3 inner and cross-product, respectively. Note that quaternion
multiplication is not commutative. By inspection the above can be written as a
matrix multiplication, better suited for numerical implementation (note there are
two possible forms):

r ∗ s =




r0 −r1 −r2 −r3
r1 r0 −r3 r2
r2 r3 r0 −r1
r3 −r2 r1 r0







s0
s1
s2
s3


 =




s0 −s1 −s2 −s3
s1 s0 s3 −s2
s2 −s3 s0 s1
s3 s2 −s1 s0







r0
r1
r2
r3


 .

We define the quaternion conjugate as r∗ = (r0,−~r), and the norm as

‖r‖ =
√
r ∗ r∗ =

√
r20 + r21 + r22 + r23.

The identity element for quaternion multiplication is (1,~0), and the inverse of a
quaternion is given by r−1 = r∗/‖r‖2. In this way, quaternions form a (non-Abelian)
group under multiplication. Consider the conjugate of quaternion multiplication

(r ∗ s)∗ = (r0s0 − ~r · ~s,−r0~s− s0~r − ~r × ~s),

and now note that

s∗ ∗ r∗ = (s0,−~s) ∗ (r0,−~r)
=
(
s0r0 − (−~s) · (−~r), s0(−~r) + r0(−~s) + (−~s)× (−~r)

)

= (r0s0 − ~r · ~s,−r0~s− s0~r − ~r × ~s)

= (r ∗ s)∗,
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analogous to matrix multiplication; this property will be used shortly.
In Section 2.5, we have shown that R ∈ SO(3) can be surjectively parameterized

by a rotation axis a, ‖a‖ = 1 and angle θ via the matrix exponential. Define the
associated quaternion

q = (cos(θ/2), a sin(θ/2)). (2.18)

Remark that ‖q‖ = 1 by construction. We now show that (2.18) is also surjective
onto unit quaternions

q = (q0, ~q), q20 + ‖~q‖2 = 1.

For the scalar part,
cos(θ/2) = q0 =⇒ θ = 2arccos q0,

and since |q0| ≤ 1 for a unit quaternion, θ can always be found. For the vector part,
consider first the case θ 6= 0:

a sin(θ/2) = ~q =⇒ a =
1√

1− q20



q1
q2
q3


 =

~q

‖~q‖ ,

i.e. a unit rotation axis a can be found for any values of ~q. Now consider the case
θ = 0:

θ = 0 =⇒ q0 = 1 =⇒ ~q = ~0,

and the axis is
a sin 0 = ~0 =⇒ a ∈ R

3 =⇒ a = ~0;

i.e. we have chosen a = ~0 when θ = 0. Note in this case, ‖a‖ 6= 1 in Equation (2.18);
however, q = (1,~0), still a unit quaternion. We conclude that (2.18) is a surjective
parametrization of unit quaternions.

We now relate unit quaternions q written as (2.18) to R ∈ SO(3). For the case
θ 6= 0, ‖a‖ = 1 and we use Rodrigues’ formula (2.10):

R = I + S

(
~q√

1− q20

)
sin(2 arccos q0) + S

(
~q√

1− q20

)2

(1− cos(2 arccos q0))

= I + S(~q)
2q0
√

1− q20√
1− q20

+ S(~q)2
2(1− q20)

1− q20

=



1 0 0
0 1 0
0 0 1


+ 2q0




0 −q3 q2
q3 0 −q1
−q2 q1 0


+ 2



−q22 − q23 q1q2 q1q3
q1q2 −q21 − q23 q2q3
q1q3 q2q3 −q21 − q22




=



1− 2(q22 + q23) 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 1− 2(q21 + q23) 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2(q21 + q22)


 .

For θ = 0, q = (1,~0), which gives R = I above, which is consistent because θ = 0
denotes the no-rotation case. We conclude the matrix above, equivalently written
as

R =



q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


 , (2.19)

24



is the rotation matrix corresponding to the unit quaternion q. An immediate benefit
of quaternion parametrization is that (2.19) does not use trig functions, as compared
to e.g. roll-pitch-yaw in (2.15).

Using parametrization (2.19), we can investigate the injectivity of q onto SO(3).
As with Euler angles, begin by equating (2.19) to an arbitrary R ∈ SO(3),



q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


 =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 .

(2.20)
Equating traces, and using the fact that ‖q‖ = 1 =⇒ q20 + q21 + q22 + q23 = 1,

3q20 − (q21 + q22 + q23) = r11 + r22 + r33

4q20 − 1 = r11 + r22 + r33

q0 = ±1

2

√
1 + r11 + r22 + r33.

As shown in Section 2.5, −1 ≤ tr(R) ≤ 3, so q0 ∈ R, |q0| ≤ 1 as expected. Also note
there are two possible solutions to q0 — this will be discussed below. From (2.20)
we also have

4q0q1 = r32 − r23

4q0q2 = r13 − r31

4q0q3 = r21 − r12,

so

q1 =
r32 − r23

4q0
, q2 =

r13 − r31
4q0

, q3 =
r21 − r12

4q0
.

Since the q0 sign choice is arbitrary, it follows that both q and −q map to the same
R, i.e. unit quaternions provide a two-to-one covering of SO(3). From (2.18) this
is equivalent to saying (θ, a) and (−θ,−a) produce the same rotation. This issue
is easily resolved by always picking the q0 ≥ 0 value when converting R to q. The
other ambiguity is the q0 = 0 case, which occurs if θ = ±π in (2.18). We investigate
the limit

lim
q0→0

q1 = lim
q0→0

r32 − r23
4q0

.

Using (2.19), this can be rewritten as

lim
q0→0

2q2q3 + 2q0q1 − 2q2q3 + 2q0q1
4q0

= lim
q0→0

q0q1
q0

,

and by using l’Hôpital’s rule,
lim
q0→0

q1 = q1,

i.e. a (unique) limit exists. The analogous result holds for q2 and q3, which completes
the proof that quaternions form a two-to-one covering of SO(3).

Although we have proven the limit to exist, numerical problems will appear as
q0 → 0 in the formulas above. To resolve this issue, we return to Equation (2.20)
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and arrange the diagonal entries as one of:

B = r11 − r22 − r33 = 3q21 − (q20 + q22 + q23)

C = −r11 + r22 − r33 = 3q22 − (q20 + q21 + q23)

D = −r11 − r22 + r33 = 3q23 − (q20 + q21 + q22),

which result in

q1 =
±
√
1 + B
2

, q2 =
±
√
1 + C
2

, q3 =
±
√
1 +D
2

,

respectively. Clearly if A = r11+r22+r33 = 0, then B, C,D 6= 0 and one of the above
qk solutions can be used to find the remaining three entries of q. Since qk will be
used in the denominator of the remaining entries, we use “option” max{A,B, C,D}
to reduce numerical problems. The conversion formulas for each option are provided
below:

A :

q0 =

√
1 +A
2

q1 =
r32 − r23

2
√
1 +A

q2 =
r13 − r31

2
√
1 +A

q3 =
r21 − r12

2
√
1 +A

B :

q0 =
r32 − r23

2
√
1 + B

q1 =

√
1 + B
2

q2 =
r12 + r21

2
√
1 + B

q3 =
r13 + r31

2
√
1 + B

C :

q0 =
r13 − r31

2
√
1 + C

q1 =
r12 + r21

2
√
1 + C

q2 =

√
1 + C
2

q3 =
r23 + r32

2
√
1 + C

D :

q0 =
r21 − r12

2
√
1 +D

q1 =
r13 + r31

2
√
1 +D

q2 =
r23 + r32

2
√
1 +D

q3 =

√
1 +D
2

We develop two useful properties of unit quaternions. Consider a rotation matrix
acting on a vector:

~v ′ = R~v, R ∈ SO(3);~v,~v ′ ∈ R
3.

Let v = (0, ~v) and v′ = (0, ~v ′) be two pure non-unit quaternions. We will show that
for the unit quaternion q parameterizing R above,

v′ = q ∗ v ∗ q−1 = q ∗ v ∗ q∗.
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Using the angle-axis form (2.18) of q and assuming θ 6= 0 so that ‖a‖ = 1,

q ∗ v ∗ q∗

= (cθ/2, asθ/2) ∗ (0, ~v) ∗ (cθ/2,−asθ/2)
=
(
cθ/2, asθ/2

)
∗ (~v · asθ/2, ~vcθ/2 + (a× ~v)sθ/2

)

=
(
− a · (a× ~v)︸ ︷︷ ︸

0

s2θ/2, c
2
θ/2~v + 2cθ/2sθ/2(a× ~v) + s2θ/2a(~v · a) + s2θ/2a× (a× ~v)

)

=
(
0, (1 − s2θ/2)~v + sθ(a× ~v) + s2θ/2a(a · ~v) + s2θ/2a× (a× ~v)

)

=
(
0, ~v + s2θ/2

(
a(a · ~v)− ~v (a · a)︸ ︷︷ ︸

‖a‖2=1

)

︸ ︷︷ ︸
a×(a×~v)

+sθ(a× ~v) + s2θ/2a× (a× ~v)
)

=
(
0, ~v + 2s2θ/2a× (a× ~v) + sθ(a× ~v)

)

=
(
0, ~v + (1− cθ)S(a)(S(a)~v) + sθS(a)~v

)

=
(
0, (I + sθS(a) + (1− cθ)S(a)

2)~v
)

=
(
0, eS(a)θ~v

)

=
(
0, R~v

)

= v′.

If θ = 0, q = (1,~0) = q∗, and v′ = v, which is correct since θ = 0 corresponds to
R = I.

The above leads to another property of unit quaternions. Composing rotations
as in Section 2.1, assume we have

~v ′ = R1~v, ~v
′′ = R2~v

′; ~v,~v ′, ~v ′′ ∈ R
3, R1, R2 ∈ SO(3).

It follows that
~v ′′ = R2R1~v.

Using pure quaternions, the above are equivalent to

v′ = q1 ∗ v ∗ q∗1 , v′′ = q2 ∗ v′ ∗ q∗2,

and by substitution,

v′′ = q2 ∗ q1 ∗ v ∗ q∗1 ∗ q∗2
= (q2 ∗ q1) ∗ v ∗ (q2 ∗ q1)∗.

It follows that q2 ∗ q1 corresponds to the composed rotation R2R1 and so q2 ∗ q1 is
a unit quaternion. This means that unit quaternions form a subgroup of H whose
group operation ∗ composes rotations just as in the SO(3) group.

We will now use unit quaternions q to parameterize the rotation dynamics (2.4)
Ṙ = RS(ωB) obtained in Section 2.3. Expanding RT Ṙ = S(ωB) using (2.19) we
obtain four equations:

2




q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3
−q1q̇0 + q0q̇1 + q3q̇2 − q2q̇3
−q2q̇0 − q3q̇1 + q0q̇2 + q1q̇3
−q3q̇0 + q2q̇1 − q1q̇2 + q0q̇3


 =




0
ωB,1
ωB,2
ωB,3


 ,
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equivalent to 


q0 q1 q2 q3
−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0







q̇0
q̇1
q̇2
q̇3


 =

1

2




0
ωB,1
ωB,2
ωB,3


 .

Inverting, 


q̇0
q̇1
q̇2
q̇3


 =

1

2




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0







0
ωB,1
ωB,2
ωB,3


 ,

the matrix form of the quaternion multiplication

q̇ =
1

2
q ∗ (0, ~ωB) (2.21)

which can also be expressed as




q̇0
q̇1
q̇2
q̇3


 =

1

2




0 −ωB,1 −ωB,2 −ωB,3
ωB,1 0 ωB,3 −ωB,2
ωB,2 −ωB,3 0 ωB,1
ωB,3 ωB,2 −ωB,1 0







q0
q1
q2
q3


 .

Similarly for (2.3) we have ṘRT = S(ωN ) and obtain

2




q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3
−q1q̇0 + q0q̇1 − q3q̇2 + q2q̇3
−q2q̇0 + q3q̇1 + q0q̇2 − q1q̇3
−q3q̇0 − q2q̇1 + q1q̇2 + q0q̇3


 =




0
ωN,1
ωN,2
ωN,3







q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0







q̇0
q̇1
q̇2
q̇3


 =

1

2




0
ωN,1
ωN,2
ωN,3







q̇0
q̇1
q̇2
q̇3


 =

1

2




q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0







0
ωN,1
ωN,2
ωN,3




=
1

2




0 −ωN,1 −ωN,2 −ωN,3
ωN,1 0 −ωN,3 ωN,2
ωN,2 ωN,3 0 −ωN,1
ωN,3 −ωN,2 ωN,1 0







q0
q1
q2
q3




=⇒ q̇ =
1

2
(0, ~ωN ) ∗ q (2.22)

2.8 Earth’s Magnetic Field

The Earth’s magnetic fieldm can be visualized by modeling the Earth as a magnetic
dipole, with magnetic field lines emanating vertically from the southern magnetic
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Figure 2.7: Earth’s Magnetic Field

pole, running nearly parallel to the surface near the equator, and sinking vertically
into the north magnetic pole as illustrated in Figure 2.7.

We distinguish between magnetic and geographic (“true”) north: the magnetic
north is defined as the geographic location where the magnetic field lines point
vertically down into the ground, while geographic north is defined by the location of
the Earth’s rotation axis which also defines latitude 90◦ N. The magnetic north is
not fixed; for instance in 2010 it was located at 84.97◦ N, 132.35◦ W, drifting North-
West at approximately 55 km/year. For this reason geographic north is always used
for navigation, and the N frame’s n1 and n2 axes (c.f. Section 2.4) are defined as
pointing respectively in geographic north and east directions. A hand-held compass
measures the direction of magnetic north and its reading must be corrected by the
declination angle λ between true and magnetic north at a given geographic location.
In Edmonton λ > 0 indicates magnetic north is east relative to geographic north.

The SI unit for the magnetic field is the Tesla. A 1 T field is extremely strong
so a more common unit is the Gauss where 1 T = 1 × 104 G. The magnetic field
vector m varies in magnitude and direction over the surface of the Earth, but can
be taken as constant for a given geographic location. The on-board IMU’s triaxial
magnetometer directly measures mB with a range of ±1.2 G and a resolution of
0.2 mG on each axis. The reference magnetic field vector coordinates mN as well
as declination angle λ can be computed for a given location and date using the
International Geomagnetic Reference Field (IGRF) [2] or World Magnetic Model
(WMM) [98] models1. For instance the ERCHA flight field located at 53◦25′12” N,
113◦23′58” W, alt = 712.2 m has the magnetic field value

mN =
[
0.1404 0.0386 0.5578

]T
G, λ = 15.38◦

for September 1, 2011 using the IGRF model.

1An online calculator is available at http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp.

29



2.8.1 Computing Yaw

During the navigation system’s initialization phase, the magnetometer is used to
calculate the yaw angle ψ of the helicopter w.r.t. the ground-fixed frame N , i.e. the
angle of the longitudinal body-fixed axis b1 relative to geographic north direction n1.
Together with roll φ and pitch θ angles, this is used to compute the initial attitude
R0 ∈ SO(3) of the vehicle.

The roll and pitch angles φ0 and θ0 of the helicopter during initialization can
typically be taken as zero since the helicopter starts out level on its landing skids.
More generally these angles can be computed from the accelerometer: as discussed
in Section 2.4 a stationary accelerometer outputs f̄B = −gB where gB = RT gN ,
gN = [0 0 g]T and using (2.15),



f̄B,1
f̄B,2
f̄B,3


 = −




cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ





0
0
g


 =




sθ
−sφcθ
−cφcθ


 g

such that

φ0 = arctan

(
f̄B,2

f̄B,3

)
and θ0 = arcsin

(
f̄B,1
g

)

are the initialization roll and pitch angles of the vehicle provided it is stationary.
Remark the range of both arctan and arcsin is [−π/2, π/2] but the helicopter is not
expected to exceed this range during initialization.

Once initialization roll and pitch angles φ0, θ0 are available, the yaw angle ψ0 can
be computed from the magnetometer. Let mN := [Bx By Bz]

T be the (known)
reference magnetic field in the navigation frame. We directly measure m̄B = RTmN

and from (2.14) and (2.13) we have

R1(φ)
TR2(θ)

TR3(ψ)
TmN = m̄B

R3(ψ)
TmN = R2(θ)R1(φ)m̄B


cψ sψ 0
−sψ cψ 0
0 0 1





Bx
By
Bz


 =



cθ 0 sθ
0 1 0

−sθ 0 cθ





1 0 0
0 cφ −sφ
0 sφ cφ





m̄B,1

m̄B,2

m̄B,3






cψBx + sψBy
−sψBx + cψBy

Bz


 =



cθ sθsφ sθcφ
0 cφ −sφ

−sθ cθsφ cθcφ





m̄B,1

m̄B,2

m̄B,3




The first two vector entries give

cψBx + sψBy = cθm̄B,1 + sφsθm̄B,2 + cφsθm̄B,3 = X
−sψBx + cψBy = cφm̄B,2 − sφm̄B,3 = Y

Combining the above two equations leads to:

XBy − YBx = sψ(B
2
y +B2

x)

XBx + YBy = cψ(B
2
x +B2

y)

And so

tanψ =
XBy − YBx
XBx + YBy

=⇒ ψ = atan2(XBy − YBx,XBx + YBy),
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or written out explicitly,

ψ = atan2

(
By

[
cθm̄B,1 + sφsθm̄B,2 + cφsθm̄B,3

]
−Bx

[
cφm̄B,2 − sφm̄B,3

]
,

Bx

[
cθm̄B,1 + sφsθm̄B,2 + cφsθm̄B,3

]
+By

[
cφm̄B,2 − sφm̄B,3

]) (2.23)

Equation (2.23) provides a direct calculation for ψ, the yaw angle relative to true
north. The disadvantage is the reliance onmN which is calculated from a theoretical
world magnetic model and may be different in experiment due to warping of the
local magnetic field by things such as ferromagnetic building materials or active
magnetic field sources such as power lines. We will revisit this point in Section 2.9.

An alternative approach to computing yaw is to consider a different ground-fixed
frame whose first axis points in the direction of magnetic north. We denote this as
the magnetic frame M where m3 points vertically down just like in the navigation
frame such that m2 points in the direction of magnetic east. The magnetic field m
expressed in M frame coordinates becomes mM := [BH 0 BV ]

T where BH and
BV are the horizontal and vertical components of the magnetic field vector. The
vehicle’s yaw with respect to the magnetic north is known as the azimuth ψm. The
azimuth can be converted to navigation frame yaw ψ by ψ = ψm + λ where λ is
the local declination angle as discussed in Section 2.8. The advantage of using ψm

instead of ψ is that (2.23) simplifies considerably for mM :

ψm = atan2 (−cφm̄B,2 + sφm̄B,3, cθm̄B,1 + sφsθm̄B,2 + cφsθm̄B,3) , (2.24)

which does not employ the reference value of m. In addition to ψm we compute the
value of the mM reference field using φ0, θ0 and m̄B : from (2.15),

mM =



BH
0
BV


 =




∗ ∗ ∗
∗ ∗ ∗

−sθ sφcθ cφcθ





m̄B,1

m̄B,2

m̄B,3




and so
BV = − sin θ0 m̄B,1 + sinφ0 cos θ0 m̄B,2 + cosφ0 cos θ0 m̄B,3

BH =
√
m̄2
B,1 + m̄2

B,2 + m̄2
B,3 −B2

V

(2.25)

2.9 Magnetometer Calibration

The measurements made by a magnetometer sensor are affected by the surrounding
environment (e.g. structural steel in buildings, power lines) as well as the vehicle
itself (e.g. ferrous metal parts, engine magneto). Since the earth’s magnetic field is
very weak, uncompensated magnetometer readings cannot be trusted.

Field distortions present in the environment, e.g. inside a building, have an
unknown spatially-varying nature and cannot be compensated for in practice. For
instance, we have observed the measured magnetic field inside a lab shift by 90
degrees just from moving the sensor close to the wall. For this reason all indoor
testing is done in a prescribed section of the lab where magnetic interference has
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been verified to be minimal, and the magnetic frame M is used as the ground-
fixed frame to remove the need for a theoretical magnetic field value. Conversely,
outdoor testing is conducted on a flying field situated far from buildings such that
the reference magnetic field value mN is reliable and the navigation frame N can
be employed. This is important for GPS-aided navigation because the RNE matrix
in (2.8) specifically requires the use of the N frame.

Field distortions caused by the vehicle body are fixed w.r.t. the magnetometer
sensor, and can be quantified and removed from subsequent sensor readings by a
calibration procedure. The simplest approach is to collect a set of sensor readings
{m̃} while sequentially rotating the vehicle about the body-fixed axes b1, b2 and
b3, each aligned with the magnetic East-West line. Since the theoretical magnetic
field vector m is constant, the collected data points should trace out a 3-D sphere
centered at zero with radius |m|. As shown in Figure 2.8 below, the actual sensor
readings will trace out a warped, offset sphere, whose center bm = mean({m̃}) can
be computed and used to correct future measurements by m̃− bm. This method is
commonly known as Hard-Iron Calibration and is often found as a firmware feature
on commercial magnetometers, including the IMU used in our helicopter UAV. It
has the advantage of a simple calculation and not requiring knowledge of the local
magnetic field amplitude. Its disadvantage is the inability to compensate for field
distortions which show up as a warping of the spherical shape.

A novel compensation approach is proposed in [54]. The magnetometer sensor
model is taken as

m̃ =




ε1 0 0
ε2 sin ρ1 ε2 cos ρ1 0

ε3 sin ρ2 cos ρ3 ε3 sin ρ3 ε3 cos ρ2 cos ρ3


m+



ζ1
ζ2
ζ3


 = Kmm+ bm, (2.26)

where εk represent the sensor scaling errors, ρk the sensor misalignment angles,
and ζk the sensor offsets of the individual magnetometer axes, 1 ≤ k ≤ 3. Physi-
cally (2.26) models the following sources of magnetometer error: scale factor, mis-
alignment, null shift (sensor bias), hard-iron and soft-iron errors [54]. Remark that
(2.26) reduces to the Hard-Iron Calibration model by taking εk = 1 and ρk = 0
resp. Km = I.

Equation (2.26) is inverted to m = K−1
m (m̃−bm) and substituted into m2

1+m
2
2+

m2
3 = |m|2 where |m| is known and constant, c.f. Section 2.8, resulting in

C1m̃
2
1 + C2m̃1m̃2 + C3m̃1m̃3 + C4m̃

2
2 + C5m̃2m̃3 + C6m̃

2
3

+ C7m̃1 + C8m̃2 + C9m̃3 = C10 (2.27)

where the coefficients Cl are nonlinear functions of ε, ρ, ζ and |m|. Assume a
magnetometer calibration data set {m̃} has been collected, consisting of N data
points for which (2.27) holds. The system is rewritten as



m̃2

1,1 m̃1,1m̃2,1 · · · m̃3,1
...

...
. . .

...
m̃2

1,N m̃1,Nm̃2,N · · · m̃3,N






C1/C10

...
C9/C10


 =



1
...
1


 , (2.28)

from which a least-squares solution for the numerical values of C1/C10 . . . C9/C10 is
performed. This produces a system of nine nonlinear equations in nine unknowns ε,
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ρ, ζ, which can be solved numerically. Using ε = 1, ρ = 0, ζ = 0 as initial guesses,
the solution converges rapidly. The calibration constants are then substituted back
into (2.26), and future sensor readings are corrected as K−1

m (m̃− bm) := Acm̃+ bc,
a linear mapping.
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Figure 2.8: Magnetometer Calibration, Engine Off: Raw Sensor Readings, Hard-
Iron Compensated, Fully Compensated

The data collected during engine-off calibration is plotted alongside its hard-
iron and fully-compensated versions in Figure 2.8. Observe the original data’s offset
centre is corrected by both methods, but only the full compensation (2.26) corrects
the elliptical distortion. The magnitude plot in the bottom-right corner confirms
the improvement in accuracy. The impact of magnetometer calibration on the ex-
perimental performance of an aided inertial navigation system will be covered in
Section 3.4.2.

Running the helicopter’s engine creates substantial distortions in the measured
magnetic field. For this reason, a separate engine-on calibration data set is collected
and the calculations above are repeated. The two sets of constants are given in
Table 2.1. The change in parameters is pronounced, confirming that the running
engine has a significant impact on the sensed magnetic field. This will be shown
through flight experiments in Section 3.4.3.
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Table 2.1: Magnetometer Calibration Constants
ε ρ ζ

Engine Off
1.0044
1.0884
1.1423

−3.292◦

−3.934◦

6.242◦

0.0795
−0.1978
0.2412

Engine On
1.0373
1.2658
1.3635

4.211◦

−6.862◦

−12.380◦

0.0616
0.0149
0.0020
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Chapter 3

Extended Kalman Filter Design

for Aided Navigation

As mentioned in Section 1.2.1 the Extended Kalman Filter (EKF) is the conven-
tional method of choice for aided navigation design. We apply this method to two
examples used for our helicopter UAV project: an Attitude and Heading Reference
System (AHRS) and a Magnetometer-plus-GPS Aided Inertial Navigation System
(Aided INS). The resulting designs are implemented and validated in experiment
and provide a foundation for the invariant observer design in Chapter 4.

3.1 Overview of EKF

The method of the Extended Kalman Filter is to linearize the system dynamics
around a nominal trajectory and use the resulting model in a Kalman filter, an
optimal linear time-varying observer used to estimate the state of the linearized sys-
tem from sensor and aiding measurement signals corrupted by noise. The resulting
estimates are then added to the nominal trajectory to obtain state estimates for the
nonlinear system. A nonlinear system with noise inputs is written as

ẋ = f(x, u,w)

y = h(x, v)
(3.1)

where x and y are the state and output (aiding measurements) vectors, u is the
input (sensors) vector, and w, v are process and measurement Gaussian white noise
vectors with zero mean and known covariance. Let (x̂, u, 0, 0) represent a nominal
(noise-free) trajectory of (3.1), i.e. one which satisfies

˙̂x = f(x̂, u, 0)

ŷ = h(x̂, 0)
(3.2)

where ŷ is the nominal output. Linearizing (3.1) about the nominal trajectory we
obtain

ẋ = f(x̂, u, 0) +
∂f

∂x

∣∣∣∣
x̂,u,0

(x− x̂) +
∂f

∂u

∣∣∣∣
x̂,u,0

(u− u) +
∂f

∂w

∣∣∣∣
x̂,u,0

(w − 0)

y = h(x̂, 0) +
∂h

∂x

∣∣∣∣
x̂,0

(x− x̂) +
∂h

∂v

∣∣∣∣
x̂,0

(v − 0),
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and after defining δx = x − x̂, δy = y − ŷ and the Jacobian matrices F (t) =
(∂f/∂x)(x̂, u), G(t) = (∂f/∂w)(x̂, u), H(t) = (∂h/∂x)(x̂) and L(t) = (∂h/∂v)(x̂),
we obtain the LTV system

δẋ = F (t)δx +G(t)w

δy = H(t)δx + L(t)v
(3.3)

The nominal trajectory x̂ can be either computed ahead of time as x̂ = x̂∗, a design
known as the Linearized Kalman Filter (LKF); or x̂ can be taken as the estimated
state of (3.1) itself, equivalent to re-linearizing the system about its latest estimate,
which is known as the Extended Kalman Filter. We use the latter approach since the
motions of the vehicle cannot be predicted a priori. The EKF is an ad-hoc design
because the convergence properties of the observer depend on the trajectories of
the nonlinear system and we cannot formally prove non-local stability. Nevertheless
the EKF works well in practice due to its inherent robustness to sensor noise and
tolerance of aiding measurement drop-outs. We will revisit the issue of observer
stability in Chapter 4.

3.2 EKF Design

3.2.1 Complementary Filter Topology

For Aided INS designs, the EKF is used inside a complementary filter topology [34,
Chap. 10]: the nominal system dynamics (3.2) are numerically integrated using
high-rate, low-accuracy sensor signals u to produce the (roughly) estimated state
x̂ =: x̂− of the nonlinear system (3.1). Whenever a low-rate, high-accuracy aiding
measurement is available, x̂− is used to obtain the linearized model (3.3), used
by the Kalman Filter together with u and y to estimate δx̂, which corrects the
nonlinear system state as x̂− + δx̂ = x̂+. The updated state x̂+ is output to the
user and becomes the IC for the next integration of (3.2). Conversely if an aiding
measurement is not available at the current time, x̂− is output directly and used for
the next (3.2) integration.

The complementary filter setup is ideal for Aided INS applications because of
the multirate nature of the on-board sensors: in our system, the IMU provides
accelerometer, rate gyro and magnetometer information at 100 Hz whereas GPS
information is available at 10 Hz and is subject to service drop-outs due to environ-
mental conditions. For the AHRS, all sensor signals are available at 100 Hz, however
the aiding rate may be set lower to conserve CPU cycles since the numerical inte-
gration is computationally much less expensive than the Kalman update. This is
particularly useful for implementation on low-power embedded systems.

3.2.1.1 AHRS

The topology of the AHRS is shown in Figure 3.1. The task of the system is to
estimate the attitude of the vehicle, measured by the rotation matrix R ∈ SO(3) of
the body-fixed frame relative to the ground-fixed magnetic frame (c.f. Section 2.9).
The name AHRS comes from aviation where “attitude” means the roll and pitch
angles of the vehicle i.e. its attitude w.r.t the horizon while “heading” is its yaw angle
to magnetic north [9, p. 3-22]. The design is a complementary filter consisting of
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high-rate integration of a rate gyro signal ω̃ from the IMU and low-rate correction of
the resulting estimates using magnetometer and accelerometer aiding measurements
via the Extended Kalman Filter.

Gyro
AHRS

Dynamics

Extended
Kalman
Filter

Output
Equations

Mag

Accel

−
+

−
+

ω̃ x̂

δx

ŷm

ŷa

ỹm

ỹa

δym

δya

Figure 3.1: Topology of AHRS; signal rate inversely proportional to dot spacing

3.2.1.2 Aided INS

The Mag-plus-GPS aided INS topology is shown in Figure 3.2. The system provides
estimates of the position, velocity and attitude of the vehicle relative to the ground-
fixed navigation frame. The high-rate signals are the accelerometer f̃ and rate
gyro ω̃ measurements provided by the IMU. The low-rate aiding measurements are
obtained from the on-board magnetometer and GPS receiver. Remark that unlike
Figure 3.1 the system’s EKF employs input (sensor) signals u in addition to aiding
measurements y.

IMU
Navigation
Dynamics

Extended
Kalman
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Output
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GPS

−
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δx

ŷm

ŷp

ỹm

ỹp

δym
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Figure 3.2: Topology of Aided INS; signal rate inversely proportional to dot spacing
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Table 3.1: Identified Noise Parameters – Engine Off [75]

σf σω βf σbf βω σbω σm
[m/s3/2] [rad/

√
s] [1/s] [m/s2] [1/s] [rad/s] [G

√
s]

0.0079 0.0017 1.89/178 0.0042 1.89/562 0.00029 0.00058
0.0074 0.0017 1.89/562 0.0020 1.89/562 0.00038 0.00051
0.0090 0.0021 1.89/562 0.0016 1.89/562 0.00032 0.00051

3.2.2 Sensor Models

The on-board IMU is equipped with a triaxial accelerometer, rate gyro and magne-
tometer, respectively measuring specific force fB = p̈B−gB , angular velocity ωB and
the Earth’s magnetic fieldmB = RTmG at a rate of 100 Hz wheremG = mM or mN

is the magnetic field vector in the ground-fixed frame coordinates, taken as known
and constant as discussed in Section 2.8. The measured data exhibits significant
bias and noise effects, which must be accounted for. The proposed sensor models
with frame subscripts omitted are

f̃ = f + bf + νf

ω̃ = ω + bω + νω

m̃ = Kmm+ bm + νm

(3.4)

where each ν represents a Gaussian white noise vector with zero mean and diagonal
covariance matrix entries σ2. The noise properties of the accelerometer and rate gyro
sensors were analyzed using the method of Allan Variance [12] by [75, Chap. 4], who
proposed modeling both bias terms as b = b0 + bt where b0 is the constant turn-on
bias to be computed during initialization, and bt is the time-varying part described
as a Gauss-Markov random process

ḃt = −βbt +
√

2βνb

where 1/β is the time constant of the process and νb is a Gaussian white noise vector
as before.

The Km ∈ R
3×3 and bm ∈ R

3 in (3.4) are constant terms used to model the
warping of the magnetic field, found by performing a calibration as described in
Section 2.9. For later convenience the magnetometer signal is rewritten as

m = K−1
m (m̃− bm)︸ ︷︷ ︸

ỹcm

−K−1
m νm︸ ︷︷ ︸
νcm

=⇒ ỹcm = m+ νcm,

where as in Section 2.9

ỹcm = Acm̃+ bc, Ac := K−1
m , bc := −K−1

m bm

is the compensated magnetometer measurement, and νcm := Acνm is still a Gaussian
white noise vector due to the linear transformation [123, p. 60], with covariance
(σcm)

2 = E〈νcm(νcm)T 〉 = Acσ
2
m(Ac)

T . The identified noise parameters for the engine-
off case are provided in Table 3.1.

A GPS receiver measures the position of the antenna mounted on the tail of
the vehicle w.r.t. the ECEF frame origin raE where by Section 2.4 raE = roE +RNE p

a
N
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with roE , R
N
E constant terms computed during initialization. The GPS receiver

runs its own Kalman filter, which provides position measurements ỹp = ra + νp
along with their estimated standard deviations σp and diagnostic information at
10 Hz. Using carrier-phase differential GPS the receiver is capable of providing up
to 2 cm circular error probable precision, however atmospheric conditions may cause
periods of decreased accuracy or measurement drop-outs which will be addressed in
Section 3.2.10.2.

The accelerometer measures the difference between the vehicle’s inertial accel-
eration and gravity, known as the specific force f = a − g. The standard practice
in AHRS design is to use the accelerometer as a tilt sensor by assuming a = 0,
which holds if the body is stationary. This assumption also holds for a stationary
engine-on vehicle exhibiting vibrations due to E〈a〉 = 0. Clearly, this assumption
is violated under any vehicle manoeuvres. For reasons explained in Section 3.2.6.1,
in the AHRS design we take the accelerometer bias model as bf = bf0 where bf0 is
the constant turn-on bias which is found during initialization. The accelerometer
output measurement (for the AHRS case) is thus written as

f ≈ −g =⇒ f̃ − bf0︸ ︷︷ ︸
ỹa

−νf ≈ −g =⇒ ỹa ≈ −g + νf ,

where ≈ is used to emphasize the a = 0 assumption does not always hold.

3.2.3 Dynamics and Output Equations

3.2.3.1 AHRS

The AHRS is described using states R and bω measuring attitude and rate gyro
bias, respectively. Employing the body-frame rotational kinematics (2.4) with sensor
models (3.4) the AHRS dynamics are

Ṙ = RS(ω̃ − bω − νω)

ḃω = −βω(bω − bω0) +
√

2βωνbω
(3.5)

The measured outputs are written as functions of state

ỹcm = RTmM + νcm

ỹa = −RT gM + νf
(3.6)

where mM , gM are respectively the magnetic and gravity field vectors in magnetic
frame coordinates. The nominal (noise-free) trajectory x̂ dynamics are

˙̂
R = R̂S(ω̃ − b̂ω)

˙̂
bω = −βω(b̂ω − bω0)

(3.7)

with corresponding output
ŷm = R̂TmM

ŷa = −R̂TgM
(3.8)

As discussed in Section 3.2.2, the ya model implicitly assumes zero vehicle acceler-
ation, which may be violated. The rate gyro constant turn-on bias bω0 is computed
during initialization.
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3.2.3.2 Aided INS

The IMU is assumed to be located sufficiently close to the vehicle’s centre of mass
to directly measure its acceleration. Using sensor models from Section 3.2.2 with
navigation dynamics (2.5) from Section 2.4 gives

ṗN = vN

v̇N = R(f̃ − bf − νf ) + gN

Ṙ = RS(ω̃ − bω − νω)

ḃf = −βf (bf − bf0) +
√
2βfνbf

ḃω = −βω(bω − bω0) +
√

2βωνbω

(3.9)

The nominal dynamics of the system are the noise-free version of (3.9)

˙̂pN = v̂N

˙̂vN = R̂(f̃ − b̂f ) + gN

˙̂
R = R̂S(ω̃ − b̂ω)

˙̂
bf = −βf (b̂f − bf0)

˙̂
bω = −βω(b̂ω − bω0)

(3.10)

As in the AHRS the constant turn-on bias terms bf0 and bω0 will be computed
during the system’s initialization.

The output (aiding) measurements of the system are the position of the tail-
mounted GPS antenna reported in E frame coordinates and the compensated mag-
netometer output in the B frame. From Section 3.2.2

ỹp = roE +RNE (pN +RlB) + νp

ỹcm = RTmN + νcm
(3.11)

where roE is the position vector of the navigation frame origin w.r.t. the ECEF frame
origin, RNE is the rotation matrix between N and E, lB is the position vector of the
GPS antenna w.r.t. the body frame origin, and mN is the reference magnetic field in
the navigation frame. The terms roE and RNE are computed during the initialization
period, c.f. Section 2.4. The lever-arm term lB is measured directly from the vehicle’s
geometry. The value ofmN is available from a magnetic reference model as discussed
in Section 2.8. The corresponding nominal output equations are

ŷp = roE +RNE

(
p̂N + R̂lB

)

ŷm = R̂TmN

(3.12)

3.2.4 Numerical Integration

The AHRS and Aided INS nominal dynamics (3.7) and (3.10) in Section 3.2.3 are
numerically integrated at the IMU sampling rate of 100 Hz. As discussed in Sec-
tion 3.2.1 the resulting estimated state x̂− is periodically updated using the high-
precision, low-rate aiding measurements via the Extended Kalman Filter.
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Instead of directly numerically integrating the equations using e.g. Runge-Kutta,
we solve them analytically then apply numerical quadrature if required. For b̂ω
dynamics in (3.7) and b̂f , b̂ω dynamics in (3.10) we left-multiply by the integrating
factor

e
∫ t

t0
βds

= eβ(t−t0),

then integrate the result between t = t0 and t = t1. This gives:

eβ(t−t0)
˙̂
b(t) + eβ(t−t0)βb̂(t) = eβ(t−t0)βb0

d

dt

(
eβ(t−t0)b̂(t)

)
= eβ(t−t0)βb0

∫ t1

t0

d

dt

(
eβ(t−t0)b̂(t)

)
dt =

∫ t1

t0

eβ(t−t0)βdtb0

eβ(t1−t0)b̂(t1)− eβ(t0−t0)b̂(t0) =
(
eβ(t1−t0) − eβ(t0−t0)

)
b0

b̂(t1) = e−β(t1−t0)
(
b̂(t0)− b0

)
+ b0

For R̂ dynamics in (3.7), (3.10) we right-multiply by the integrating factor

e
−

∫ t

t0
S(ω̂(s))ds

where ω̂(t) := ω̃(t)− b̂ω(t), then integrate the result between t = t0 and t = t1:

˙̂
R(t)e

−
∫ t

t0
S(ω̂(s))ds − R̂(t)S(ω̂(s))e

−
∫ t

t0
S(ω̂(s))ds

= 0

d

dt

(
R̂(t)e

−
∫ t

t0
S(ω̂(s))ds

)
= 0

∫ t1

t0

d

dt

(
R̂(t)e

−
∫ t

t0
S(ω̂(s))ds

)
dt =

∫ t1

t0

0 dt

R̂(t1)e
−

∫ t1
t0
S(ω̂(s))ds = R̂(t0)e

−
∫ t0
t0
S(ω̂(s))ds

R̂(t1) = R̂(t0)e
∫ t1
t0
S(ω̂(s))ds

where we used the matrix exponential properties d/dt(eAt) = AeAt = eAtA, e−At =
(eAt)−1 and e03×3 = I. We evaluate the integral using the trapezoidal rule

∫ b

a
f(x)dx ≈ (b− a)

f(a) + f(b)

2

so that the update equation is

R̂(t1) = R̂(t0) exp

(
(t1 − t0)

2
S
[
ω̃(t0)− b̂ω(t0) + ω̃(t1)− b̂ω(t1)

])

Alternatively, define ξ ∈ R
3 as

ξ :=
(t1 − t0)

2

[
ω̃(t0)− b̂ω(t0) + ω̃(t1)− b̂ω(t1)

]
≈
∫ t1

t0

ω̂(s)ds

and use Rodrigues’ formula (2.9) from Section 2.5 to express the exponential of a
skew-symmetric matrix:

R̂(t1) = R̂(t0)e
S(ξ) = R̂(t0)

(
I +

S(ξ)

‖ξ‖ sin ‖ξ‖ + S(ξ)2

‖ξ‖2 (1− cos ‖ξ‖)
)
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which is equivalent to the previous numerical update but does not require computing
a matrix exponential.

The v̂N and p̂N dynamics in (3.10) are directly solved by integrating both sides.
The trapezoidal rule then gives

v̂N (t1) = v̂N (t0) +
(t1 − t0)

2

[
R̂(t0)

(
f̃(t0)− b̂f (t0)

)
+ R̂(t1)

(
f̃(t1)− b̂f (t1)

)
+ 2gN

]

and

p̂N (t1) = p̂N (t0) +
(t1 − t0)

2

[
v̂N (t0) + v̂N (t1)

]

3.2.5 Linearized Error Dynamics

The EKF requires a linearized system model (3.3) with state δx = x − x̂ for the
error between the true and nominal system trajectories. In order to handle the terms
R−R̂ we use the following standard approach [51, 59]: use the ground-frame rotation
kinematics (2.3) Ṙ = S(ωN )R and define ωN =: dγ/dt where γ ∈ R

3 is a vector
which will be used to measure attitude error; remark γ is expressed in navigation
frame coordinates. Multiplying the above by dt and taking the approximations
dR ≈ R− R̂, dγ ≈ γ − γ̂ = δγ gives

R− R̂ ≈ S(δγ)R

which is left-multiplied by R̂T and right-multiplied by RT , giving

R̂T −RT ≈ R̂TS(δγ)

Transposing both sides then gives

R̂−R ≈ −S(δγ)R̂ or equivalently R ≈ R̂+ S(δγ)R̂ (3.13)

where we used the fact that S is a skew-symmetric matrix. The term δγ will be
used to represent the error between R and R̂; the remaining states will use the
default δx = x− x̂ definition. The reason for redefining the attitude error is that as
mentioned in Section 2.5, the 9 entries of R ∈ SO(3) are not independent of each
other and so using R−R̂ as the error state would lead to a singular covariance matrix
P (c.f. Section 3.2.8) in the EKF which is numerically difficult to maintain [84,
Sec. VIII].

The EKF is an observer which estimates the state δx of the linearized sys-
tem (3.3) using sensor (input) signals ũ and aiding (output) measurements ỹ. The
estimate δγ ⊂ δx is used to update R̂ to R; however, using the approximation (3.13)
for this purpose causes R̂ to lose orthogonality, creating significant problems in the
algorithm unless the resulting matrix is numerically re-orthogonalized after each
update, typically using SVD [51, p. 469]. A more elegant solution is to use an at-
titude update which preserves orthogonality [17, 59]: for (2.3) Ṙ = S(ωN )R the
integrating factor is

e
−

∫ t

t0
S(ωN (s))ds
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which left-multiplies the rotational kinematics (in contrast to Section 3.2.3):

e
−

∫ t

t0
S(ωN (s))ds

Ṙ(t)− e
−

∫ t

t0
S(ωN (s))ds

S(ωN (t))R(t) = 0

d

dt

(
e
−

∫ t

t0
S(ωN (s))ds

R(t)
)
= 0

∫ t1

t0

d

dt

(
e
−

∫ t

t0
S(ωN (s))ds

R(t)
)
dt =

∫ t1

t0

0 dt

e−
∫ t1
t0
S(ωN (s))dsR(t1) = e−

∫ t0
t0
S(ωN (s))dsR(t0)

R(t1) = e
∫ t1
t0
S(ωN (s))dsR(t0)

Using ωN(s) = dγ/ds as before with R(t0) = R̂, R(t1) = R we have

R = e
∫ t1
t0
S(dγ/ds)dsR̂ = eS(γ−γ̂)R̂ = eS(δγ)R̂ (3.14)

an attitude update which preserves orthogonality:

RRT = eS(δγ)R̂R̂T e−S(δγ) = eS(δγ)(1−1) = I

where we have used the identities (eA)T = eA
T

and eAt1eAt2 = eA(t1+t2). Equa-
tion (3.14) is used with δγ from the EKF to correct the state R̂ obtained from
numerical integration of the nominal dynamics. The remaining states are corrected
directly from the definition of δx as

x = x̂+ δx

We now work out the linearized error dynamics and outputs for the AHRS and
Aided INS dynamics in Sections 3.2.3.1 and 3.2.3.2, respectively. For attitude errors
R− R̂, starting from (3.13), we have

Ṙ− ˙̂
R = S(δγ̇)R̂+ S(δγ)

˙̂
R

RS(ω̃ − bω − νω) = R̂S(ω̃ − b̂ω) + S(δγ̇)R̂

+ S(δγ)R̂S(ω̃ − b̂ω)(
R̂+ S(δγ)R̂

)
S(ω̃ − bω − νω) =

(
R̂+ S(δγ)R̂

)
S(ω̃ − b̂ω) + S(δγ̇)R̂

(
R̂+ S(δγ)R̂

)
S(ω̃ − (b̂ω + δbω)− νω) =

(
R̂+ S(δγ)R̂

)
S(ω̃ − b̂ω) + S(δγ̇)R̂

(
R̂+ S(δγ)R̂

)
S(−δbω − νω) = S(δγ̇)R̂

R̂S(−δbω − νω) + S(δγ)R̂S(−δbω − νω)︸ ︷︷ ︸
≈0

= S(δγ̇)R̂

S(−δbω − νω) = R̂TS(δγ̇)R̂ = S(R̂T δγ̇)

−δbω − νω = R̂T δγ̇

δγ̇ = −R̂δbω − R̂νω
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where the neglected expression consists of quadratic (i.e. non-linear) terms. For bias
errors δb = b− b̂, we have

δḃ = ḃ− ˙̂
b

= −β(b− b0) +
√

2βνb + β(b̂− b0)

= −β(b− b̂) +
√

2βνb

δḃ = −βδb+
√

2βνb

an exact expression since the bias dynamics model is linear, c.f. Section 3.2.2. For
Aided INS, the velocity error δv = v − v̂ dynamics are

δv̇ = R(f̃ − bf − νf ) + gN − R̂(f̃ − b̂f )− gN

= R(f̃ − bf − νf )−R(f̃ − b̂f ) +R(f̃ − b̂f )− R̂(f̃ − b̂f )

= −Rδbf −Rνf + (R − R̂)(f̃ − b̂f )

= −R̂δbf − S(δγ)R̂δbf︸ ︷︷ ︸
≈0

−R̂νf − S(δγ)R̂νf︸ ︷︷ ︸
≈0

+S(δγ)R̂(f̃ − b̂f )

= −R̂δbf − R̂νf + δγ ×
(
R̂(f̃ − b̂f )

)
= −R̂δbf − R̂νf −

(
R̂(f̃ − b̂f )

)
× δγ

δv̇ = −S
(
R̂(f̃ − b̂f )

)
δγ − R̂δbf − R̂νf

and for position error δp = p− p̂ the dynamics are

δṗ = v − v̂ = δv

The magnetometer output error is

δym = ỹcm − ŷm

= RTmG + νcm − R̂TmG

= (R− R̂)TmG + νcm

=
(
S(δγ)R̂

)T
mG + νcm

= −R̂TS(δγ)mG + νcm

= −R̂T (δγ ×mG) + νcm

= R̂T (mG × δγ) + νcm

δym = R̂TS(mG)δγ + νcm

wheremG = mM for AHRS andmG = mN for Aided INS. The AHRS accelerometer
output error δya is obtained simply by replacing mG by −gM and νcm by νf in the
last line above:

δya = −R̂TS(gM )δγ + νf

For Aided INS the GPS output error δyp is

δyp = ỹp − ŷp

= roE +RNE (pN +R lB) + νp − roE −RNE (p̂N + R̂ lB)

= RNE

(
δp + S(δγ)R̂ lB

)
+ νp

= RNE δp−RNES(R̂ lB)δγ + νp
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In each case the linearized error dynamics form the continuous-time LTV system
(c.f. Section 3.1)

δẋ = F (t)δx +G(t)w

δy = H(t)δx + v,
(3.15)

where the entries of F (t), G(t) and H(t) are read off the expressions above. The
resulting linearized error dynamics are summarized in Sections 3.2.5.1 and 3.2.5.2.

3.2.5.1 AHRS

The error system (3.15) is
[
δγ̇

δḃω

]
=

[
0 −R̂
0 −βω

] [
δγ
δbω

]
+

[
−R̂ 0
0

√
2βω

] [
νω
νbω

]

[
δycm
δya

]
=

[
R̂TS(mM ) 0

−R̂TS(gM ) 0

] [
δγ
δbω

]
+

[
νcm
νf

] (3.16)

and the process and measurement noise vectors w and v are characterized by the co-
variance matrices Q = E〈wwT 〉 = diag(σ2ω, σ

2
bω) and R = E〈vvT 〉 = diag((σcm)

2, σ2f ).

3.2.5.2 Aided INS

The error system (3.15) is




δṗ
δv̇
δγ̇

δḃf
δḃω



=




0 I 0 0 0

0 0 −S(R̂(f̃ − b̂f )) −R̂ 0

0 0 0 0 −R̂
0 0 0 −βf 0
0 0 0 0 −βω







δp
δv
δγ
δbf
δbω




+




0 0 0 0

−R̂ 0 0 0

0 −R̂ 0 0

0 0
√

2βf 0
0 0 0

√
2βω







νf
νω
νbf
νbω




[
δyp
δym

]
=

[
RNE 0 −RNES(R̂ lB) 0 0

0 0 R̂TS(mN ) 0 0

]



δp
δv
δγ
δbf
δbω



+

[
νp
νcm

]

(3.17)

The process and measurement noise vectors w and v are characterized by the
covariance matrices Q = E〈wwT 〉 = diag(σ2f , σ

2
ω, σ

2
bf , σ

2
bω) and R = E〈vvT 〉 =

diag
(
σ2p, (σ

c
m)

2
)
.

3.2.6 Observability Analysis

As mentioned in Section 3.2.5, the LTV systems (3.16), (3.17) are used to the design
the EKF, an observer which estimates the state δx from inputs u and outputs y
where u represents sensor signals which enter the Jacobians F (t), G(t), H(t) and y
represents aiding measurements. We first verify the observability of these systems.
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3.2.6.1 AHRS

Following [40, Theorem 6.O12], for a LTV system with state dimension n we define
the observability matrix

O(t) =




N0(t)
N1(t)

...
Nn−1(t)




where
N0(t) = H(t)

Nm+1(t) = Nm(t)F (t) + (d/dt)Nm(t), m = 0, . . . , n− 2

where F (t) and H(t) are the state and output matrices. For system (3.16), n = 6
and we would need to compute terms up to N5(t). We have

N0(t) = H(t) =

[
R̂TS(mM ) 0

−R̂TS(gM ) 0

]

and by (3.7),
˙̂
R = R̂S(ω̃ − b̂ω) =⇒ ˙̂

RT = −S(ω̃ − b̂ω)R̂
T . We now compute

N1(t) = N0(t)F (t) + Ṅ0(t)

=

[
R̂TS(mM ) 0

−R̂TS(gM ) 0

] [
0 −R̂
0 −βω

]
+

[
−S(ω̃ − b̂ω)R̂

TS(mM ) 0

S(ω̃ − b̂ω)R̂
TS(gM ) 0

]

=

[
0 −R̂TS(mM )R̂

0 R̂TS(gM )R̂

]
+

[
−S(ω̃ − b̂ω)R̂

TS(mM ) 0

S(ω̃ − b̂ω)R̂
TS(gM ) 0

]

=

[
−S(ω̃ − b̂ω)R̂

TS(mM ) −R̂TS(mM )R̂

S(ω̃ − b̂ω)R̂
TS(gM ) R̂TS(gM )R̂

]

The observability matrix O(t) has the structure



N0(t)
N1(t)
∗


 =




R̂TS(mM ) 0

−R̂TS(gM ) 0

−S(ω̃ − b̂ω)R̂
TS(mM ) −R̂TS(mM )R̂

S(ω̃ − b̂ω)R̂
TS(gM ) R̂TS(gM )R̂

∗ ∗




Consider the left half of the N0(t) line, written as

[
R̂TS(mM )

−R̂TS(gM )

]
=

[
R̂T 0

0 R̂T

] [
S(mM )
−S(gM )

]

Since R̂ ∈ SO(3) is always invertible, we have

rank

[
R̂TS(mM )

−R̂TS(gM )

]
= rank

[
S(mM )
−S(gM )

]
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The magnetic and gravity field vectors are respectively mM = [BH 0 BV ]
T and

gM = [0 0 g]T and so the term above expands to

rank

[
S(mM )
−S(gM )

]
= rank




0 −BV 0
BV 0 −BH
0 BH 0
0 g 0
−g 0 0
0 0 0



= 3

Next, consider the right half of the N1(t) line, written as

[
−R̂TS(mM )R̂

R̂TS(gM )R̂

]
=

[
R̂T 0

0 R̂T

] [
−S(mM )R̂

S(gM )R̂

]
=

[
R̂T 0

0 R̂T

] [
−S(mM )
S(gM )

] [
R̂
]

and with R̂ ∈ SO(3) always invertible, we have

rank

[
−R̂TS(mM )R̂

R̂TS(gM )R̂

]
= rank

[
−S(mM)
S(gM )

]
= 3,

since the expanded form is just a sign change of the earlier term. Due to the lower-
triangular form of the N0(t) and N1(t) lines in O(t), we know (e.g. [67, p. 25])

rank

[
N0(t)
N1(t)

]
≥ 3 + 3 =⇒ rank

[
N0(t)
N1(t)

]
= 6 =⇒ rankO(t) = 6,

i.e. the observability matrix O(t) is always full rank. The LTV system (3.16) rep-
resenting the AHRS linearized error dynamics is therefore observable at any time
t ∈ (−∞,∞), and so is said to be instantaneously observable [39, p. 187].

The AHRS system in Section 3.2.3.1 could be expanded by including accelerom-
eter bias as a dynamic state, i.e. adding

ḃf = −βf (bf − bf0) +
√

2βfνbf

to (3.5) and using ỹa = f̃ − b̂f in place of the current ỹa = f̃ − bf0. In this case the
LTV error system (3.16) increases its dimension to 9 and an observability analysis
reveals the system is not observable unless it is rotating [51, p. 369]. We chose to
include the rate gyro bias bω rather than accelerometer bias bf as a state because
the former is used to integrate the rotation kinematics, hence a detailed model of
bω is more important than bf for accuracy of the AHRS.

3.2.6.2 Aided INS

The original implementation of a navigation filter for our helicopter UAV [75] used
the GPS position ỹp as the sole aiding measurement, which was found to provide re-
liable yaw estimates for trajectory flying but not in hover. An observability analysis
of the LTV system (3.17) using δyp as the only output reveals the δγ3 state is unob-
servable unless the vehicle is manoeuvering [117], meaning ψ will remain uncorrected
and slowly diverge in hover. This can be shown intuitively as follows: the only coef-
ficient of δγ in (3.17) is S(R̂(f̃ − b̂f )) := S(f̂N ) where f̂N denotes the bias-corrected
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accelerometer measurement expressed in the navigation frame. Expanding S(f̂N )
via (2.2) we see the coefficients of δγ3 will vanish when f̂N,1 = f̂N,2 = 0, i.e. zero
lateral acceleration. Thus, unless the vehicle is manoeuvering, δγ3 cannot be ob-
servable; the δγ term in δyp cannot be distinguished from δp and does not alter this
behaviour.

This effect can be eliminated by adding an aiding sensor which provides δγ3
observability, e.g. a magnetometer. The output equation δym in (3.17) contains
S(mN )δγ and gives non-zero δγ3 coefficients provided mN 6= [0 0 ±|m|]T , which
would only occur at the magnetic north or south poles. A different source of δγ3
information such as a two-antenna GPS receiver [135] could also be employed.

The triaxial magnetometer part of the output matrix in (3.17) generally provides
correction information for all three components of δγ, i.e. it provides updates for the
roll and pitch axes in addition to the yaw axis. This is due to S(mN )δγ = mN × δγ
in (3.17) providing observability for the part of δγ which is not parallel to mN . This
is why δγ3 becomes unobservable at the magnetic poles and why δγ1 and δγ2 are
observable from δym as long as the rotation axis is not parallel to mN . However in
some situations the magnetometer should only be used to provide information about
the yaw error state δγ3 [50, p. 28]; this will be further discussed in Sections 3.4.2
and 3.4.3.

The yaw-only aiding equation is obtained as follows: starting from y − ŷ =
RTmN + νcm − R̂TmN , assume that roll and pitch are perfectly estimated by the
navigation filter, i.e. φ = φ̂ and θ = θ̂. By (2.14) we have

R− R̂ = R3(ψ)R2(θ̂)R1(φ̂)−R3(ψ̂)R2(θ̂)R1(φ̂)

and from (3.13)
R3(ψ) −R3(ψ̂) ≈ S([0, 0, δγ3 ]

T )R3(ψ̂)

Using these expressions, we obtain the yaw-only magnetometer output equation

δym = R̂TS(mN )[0, 0, δγ3]
T + νcm, (3.18)

which clearly provides observability of only δγ3.

3.2.7 Discretization

Since the aiding measurements are sampled, we use the discrete-time formulation
of the Kalman Filter, which requires a discretized version of the linearized error
system (3.15). The details of how the resulting model is used by the EKF algorithm
will be covered in Section 3.2.8.

Let tk, tk+1 denote successive sampling times with τ = tk+1 − tk and x̂k be
the state estimate at t = tk, then evaluate (3.15) at x̂k to obtain Fk = F (x̂k),
Gk = G(x̂k), Hk = H(x̂k) which are assumed constant on t ∈ [tk, tk+1]. The
resulting LTI system is then solved as

δxk+1 = eFkτδxk +

∫ tk+1

tk

eFk(tk+1−t)Gkw(t)dt = Φkδxk + wk

δyk = Hkδxk + vk
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where wk represents a white sequence whose covariance is given by

Qk = E
〈
wkw

T
k

〉

= E

〈∫ tk+1

tk

eFk(tk+1−t)Gkw(t)dt

∫ tk+1

tk

wT (s)GTk e
FT
k
(tk+1−s)ds

〉

= E

〈∫ tk+1

tk

∫ tk+1

tk

eFk(tk+1−t)Gkw(t)w
T (s)GTk e

FT
k
(tk+1−s)dt ds

〉

=

∫ tk+1

tk

∫ tk+1

tk

eFk(tk+1−t)Gk E
〈
w(t)wT (s)

〉
︸ ︷︷ ︸

Qδ(s−t)

GTk dt e
FT
k
(tk+1−s)ds

Qk =

∫ tk+1

tk

eFk(tk+1−s)GkQG
T
k e

FT
k
(tk+1−s)ds (3.19)

where we used the definition of continuous-time white noise [34, p. 92] as a stationary
random process with autocorrelation E〈ν(t)ν(t + s)〉 = σ2δ(s) where δ denotes the
Dirac delta function. The Qk term (3.19) can be numerically evaluated using the
following method adapted from [130]: form the matrix

M =

[
A1 B1

0 A2

]

where A1, A2 and B1 are square matrices with the same dimensions. Due to its
upper block-triangular structure, the matrix exponential of M takes the form

eMt =

[
C1(t) D1(t)
0 C2(t)

]

Since (d/dt)eMt = MeMt and e0 = I, we obtain the set of matrix differential
equations

Ċ1(t) = A1C1(t) C1(0) = I

Ċ2(t) = A2C2(t) C2(0) = I

Ḋ1(t) = A1D1(t) +B1C2(t) D1(0) = 0

whose solution is

C1(t) = eA1t

C2(t) = eA2t

D1(t) =

∫ t

0
eA1(t−s)B1e

A2sds

whereD1(t) is found using the integrating factor approach employed in Section 3.2.4.
To evaluate (3.19), form the matrix

M =

[
−Fk GkQG

T
k

0 F Tk

]

and recall τ = tk+1 − tk. Evaluating the matrix exponential eMτ then gives

eMτ =

[
N1 N2

0 N3

]
=

[
e−Fkτ

∫ τ
0 e

−Fk(τ−s)GkQG
T
k e

FT
k
sds

0 eF
T
k
τ

]
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Using the change of variables s = tk+1 − t,

N2 = e−Fkτ

∫ τ

0
eFksGkQG

T
k e

FT
k
sds

=
(
eFkτ

)−1
∫ tk+1

tk

eFk(tk+1−t)GkQG
T
k e

FT
k
(tk+1−t)dt

and referring to (3.19),
Qk = (N3)

T N2

Remark that (N3)
T = eFkτ = Φk, the transition matrix of the DT system.

The covariance of vk, the measurement noise white sequence, is found as follows:
first consider a continuous-time signal f(t) with Fourier transform Fc(ω) and sample
it with a period of T . The discrete-time Fourier transform Fd(Ω) of the resulting
signal f [k] can be shown to be [82, p. 636]

Fd(Ω) =
1

T
Fc

(
Ω

T

)

where Fd(Ω) has a period of 2π; this relationship holds irrespective of whether f(t)
is bandlimited or whether it is sampled above its Nyquist rate. A continuous-time
white noise term ν is defined by its autocorrelation R(τ) = E 〈ν(t)ν(t+ τ)〉 = σ2δ(τ)
or equivalently by its power spectral density function

Sc(ω) = Fc (R(τ)) =
∫ ∞

−∞
σ2δ(τ)e−jωτdτ = σ2

The sampled version of ν is the discrete-time white sequence v[k], defined by the
autocorrelation Rd[κ] = E〈v[k]v[k + κ]〉 = σ2dδκ or equivalently the power spectral
density function

Sd(Ω) = Fd (Rd[κ]) =
κ=∞∑

κ=−∞

σ2dδκe
−jΩκ = σ2d

By the above we have

Sd(Ω) =
1

T
Sc

(
Ω

T

)
=
σ2

T

and so the sampled version of ν possesses the discrete-time covariance σ2d = σ2/T .
For the measurement white sequence vk, this means

Rk =

(
1

τ

)
R

In summary we have converted (3.15) into the discrete-time LTV system

δxk+1 = Φkδxk + wk E〈wkwTk 〉 = Qk

δyk = Hkδxk + vk E〈vkvTk 〉 = Rk
(3.20)

where Φk, Hk, Qk and Rk are calculated as above using the current state x̂k = x̂(tk)
and interval between aiding measurements τ = tk+1 − tk.
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3.2.8 Kalman Filter

The Kalman Filter applies to linear, discrete-time systems of the form (3.20) where
wk, vk are white sequences with known covariances Qk, Rk, respectively. We also
assume that

E
〈
wkv

T
l

〉
= 0 ∀k, l

The reason for this assumption will become clear in the derivation below; physically,
this means the process and measurement noise are uncorrelated with each other.
This is a reasonable assumption as seen from (3.16) and (3.17) where the process
w and measurement v noise vectors are composed from different sensors. Note the
Kalman Filter can be modified to allow wk and vk to be correlated, c.f. [34, Sec. 9.2].

Define the pre-update estimate of the linearized system state δxk as δx̂−k and the
associated estimation error as e−k = δxk−δx̂−k with covariance P−

k = E
〈
(e−k )(e

−
k )

T
〉
.

The Kalman filter is the linear observer

δx̂k = δx̂−k +Kk(δyk −Hkδx̂
−
k ), (3.21)

where Kk is chosen to minimize the trace of Pk = E
〈
(δxk − δx̂k)(δxk − δx̂k)

T
〉
=

E
〈
ek e

T
k

〉
, the post-update error covariance. This last condition is the cost function

to be minimized, representing the sum of the variances of the individual entries of ek,
the estimation error vector. Substituting (3.21) into Pk and expanding via (3.20),

Pk = E
〈(
δxk − δx̂−k −Kk(δyk −Hkδx̂

−
k )
) (
δxk − δx̂−k −Kk(δyk −Hkδx̂

−
k )
)T〉

= E
〈(
e−k −Kk(Hke

−
k + vk)

) (
e−k −Kk(Hke

−
k + vk)

)T〉

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k , (3.22)

where we took E
〈
e−k vk

〉
= E

〈
e−k
〉
E 〈vk〉 = 0 due to the assumption that vk and wk

are uncorrelated. Equation (3.22) gives Pk as a quadratic function of Kk. Using the
matrix differentiation formulas d (tr(AB)) /dA = BT , d

(
tr(ACAT )

)
/dA = 2AC,

we compute d (trPk) /dKk and find its minima:

d (trPk)

dKk
= −2(HkP

−
k )T + 2Kk(HkP

−
k H

T
k +Rk) = 0

=⇒ Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1,

(3.23)

whereKk is the optimal observer gain in (3.21). Using this value, we update the esti-
mate δx̂−k using (3.21) and find the post-update error covariance of δx̂k using (3.22).
Finally, we propagate the post-update δx̂k in time using (3.20) as

δx̂−k+1 = Φkδx̂k (3.24)

and the covariance Pk as

P−
k+1 = E

〈
(δxk+1 − δx̂−k+1)(δxk+1 − δx̂−k+1)

T
〉

= E
〈
(Φk(δxk − δx̂k) + wk)(Φk(δxk − δx̂k) + wk)

T
〉

P−
k+1 = ΦkPkΦ

T
k +Qk, (3.25)

where E 〈ekwk〉 = E 〈ek〉E 〈wk〉 = 0 because wk is the process noise during the
propagation interval

(
δx̂k, δx̂

−
k+1

]
and hence uncorrelated with ek. The δx̂−k+1 and

P−
k+1 terms are used on the next Kalman Filter pass as δx̂−k and P−

k , respectively,
making it a recursive algorithm well-suited for computer implementation.
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3.2.9 Extended Kalman Filter

As explained in Section 3.1, the Extended Kalman Filter re-linearizes the nonlinear
system (3.1) about its latest nominal state x̂ and output ŷ. The standard Kalman
Filter algorithm in Section 3.2.8 is thus modified as described below.

Whenever an aiding measurement is available, the latest nominal state and out-
put are obtained from integration of (3.2) as x̂−k and ŷ−k , respectively, where the su-
perscript − is used to denote pre-correction quantities. The states of the linearized
error system (3.20) are then δxk = xk−x̂−k and δyk = yk−ŷ−k , the estimated Kalman
states are δx̂k = x̂k − x̂−k and δx̂−k = x̂−k − x̂−k = 0, and so the update step (3.21)
simplifies to

x̂k = x̂−k +Kk

(
yk − ŷ−k

)
(3.26)

where Kk is computed by (3.23) and Pk is updated by (3.22) as in the conventional
Kalman Filter. After update (3.26) is performed, the updated state x̂k immediately
becomes the linearization trajectory, so δxk = xk − x̂k and δx̂k = x̂k − x̂k = 0.
This means the estimated state propagation (3.24) becomes trivial and is omitted.
The covariance matrix propagation step (3.25) still requires Φk and Qk, which are
calculated by the method in Section 3.2.7 using the just-updated state x̂k.

An important point for implementation is that the aiding measurements may be
aperiodic, and so the EKF should not propagate Pk forwards in time. Instead, after
performing the update (3.26), we save a copy of the updated state estimate x̂k, the
error covariance Pk obtained from (3.22) and the current aiding time ta. The next
time an aiding measurement is available and the EKF is entered, we use the saved
state as x̂k−1 to build Fk−1, Gk−1, compute τ = t − ta, calculate Φk−1, Qk−1 and
use these to propagate the saved Pk−1 to P−

k by (3.25). This works because the
calculation method for Φk and Qk in Section 3.2.7 is time-invariant and requires
only the elapsed time τ .

In summary, the EKF algorithm consists of the following sequence of operations,
executed whenever an external aiding measurement is available:

1. Propagate previous covariance matrix: P−
k = Φk−1Pk−1Φ

T
k−1 +Qk−1

2. Compute Kalman gain: Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1

3. Update estimate: x̂ = x̂− +Kk(yk − ŷ−k )

4. Compute covariance of updated estimate: Pk = (I−KkHk)P
−
k (I−KkHk)

T +
KkRkK

T
k

Following the above, the terms x̂ and Pk are retained. On the next EKF pass, the
saved x̂ is used as x̂k−1 to build Fk−1, Gk−1 to calculate Φk−1, Qk−1, and the saved
Pk as Pk−1 in step 1 above. To initialize the (recursive) EKF algorithm, x̂k−1 is
assigned as the vehicle’s initial state estimate x̂(0), computed during an initialization
period discussed in Section 3.2.11. The Pk−1 is assigned as a zero matrix, which
results in sub-optimal estimates for the first few EKF passes but is numerically safer
than over-estimating the entries [34, p. 261].

3.2.10 EKF Implementation

The EKF algorithm from Section 3.2.9 is implemented for the AHRS and Aided INS
as a Simulink S-Function block written in C, using the open-source GNU Scientific
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Library (GSL) for vector and matrix operations. The same code block is used for
both offline and real-time operation.

The magnetometer compensation terms Km, bm resp. Ac, bc (c.f. Section 3.2.2)
are computed by (2.26) in Section 2.9 using parameters from Table 2.1. The entries
of the continuous-time process and measurement noise covariance matrices Q, R
in (3.16) and (3.17) are taken from Table 3.1 in Section 3.2.2, and are then discretized
to Qk and Rk as covered in Section 3.2.7.

3.2.10.1 AHRS

As mentioned in Section 3.2.9, the EKF algorithm can handle aperiodic aiding
measurements by keeping track of the time elapsed since the previous update. We
use this fact to allow the magnetometer and accelerometer aiding to be performed
at independent, user-selectable intervals Tm and Ta, where Tm, Ta ≥ 0.01 s, the
IMU sampling period. The main reason for this is that the Kalman correction
step is computationally much more expensive than the numerical integration step
(c.f. Section 3.2.4), so if the hardware cannot maintain real-time performance due
to e.g. a low-power processor or an expensive control algorithm such as MPC, the
user can lengthen the aiding period(s). In practice, we have never encountered
a problem due to the tremendous computational power provided by the on-board
Ampro ReadyBoard 800, however this tuning capability may be useful in the future
as more complex control algorithms are implemented.

Dual-rate aiding uses the DT model (3.20) with partitioned output matrix
Hk = [Hm

k ;Ha
k ] and measurement noise covariance matrix Rk = diag(Rmk , R

a
k).

The variable τ is (still) used to measure the time elapsed since the previous Kalman
update, whose type is irrelevant, and the EKF algorithm described in Section 3.2.9
is run using the stored x̂ and Pk and the (Hk, Rk) pair for the current aiding mea-
surement. Note that if both aiding measurements are available at a given time, the
second EKF pass sees τ = 0 in which case the propagation step becomes trivial: the
stored Pk is used as P−

k , so step 1 of the EKF algorithm is omitted.
The ability of the EKF to handle aperiodic aiding measurements is useful in

another way. As discussed in Section 3.2.2, we assume the accelerometer measures
only gravity, which is incorrect under acceleration. We test each aiding measurement
by computing ‖ỹa‖ and comparing it to ‖g‖ = 9.81 m/s2, considering it as reliable
if

|‖ỹa‖ − 9.81|
9.81

≤ tol

where tol ≥ 0 is the accelerometer tolerance factor selected by the user. An overly
low tolerance will not work well in experiment due to noise and time-varying bias
affecting the measurement; we have found tol = 0.5 performs well in practice. If ỹa
is outside the prescribed tolerance the accelerometer aiding step is skipped such that
the next EKF pass will use a larger τ value. Conversely ỹa aiding is re-established
once the unit ceases to accelerate.

3.2.10.2 Aided INS

The dual-rate aiding discussed in Section 3.2.10.1 is used for Aided INS by partition-
ing the output matrix of the DT model (3.20) as Hk = [Hp

k ;H
m
k ] and measurement

noise covariance matrix as Rk = diag(Rpk, R
m
k ). This allows using the magnetometer

53



at a user-specified aiding period Tm ≥ 0.01 s corresponding to the IMU’s 100 Hz
measurement rate. The magnetometer aiding can also be disabled altogether.

As mentioned in Section 3.2.2 the GPS receiver reports the standard deviation
σp and solution status of every measurement, nominally available at a period of
Tp = 0.1 s (10 Hz rate). The reported standard deviation is used to build the
discrete-time covariance matrix as Rpk = diag(σ2p). The solution status is a metric of
the accuracy of the position measurement [108, Tbl. 47]; we employ solutions with
floating narrow-lane ambiguity or better for aiding and discard others [75, p. 95].

3.2.11 Initialization

Both the AHRS and Aided INS designs employ an initialization period during which
the vehicle is known to be stationary with given roll and pitch angles φ0 and θ0.
Throughout initialization we compute a running average of the (compensated) mag-
netometer, accelerometer and rate gyro measurements, as well as GPS measurements
in the Aided INS case. For a sampled signal yk, the running average is computed
as [123, p. 90]

yk =
1

k

[
(k − 1)yk−1 + yk

]

When the user switches out of initialization mode the vectors m, f , ω and ra contain
the averaged sensor readings for this period. These are used as follows:

3.2.11.1 AHRS

The magnetometer average m is used to calculate initial magnetic frame yaw ψm0
as (2.24)

ψm0 = atan2 (− cosφ0m2 + sinφ0m3, cos θ0m1 + sinφ0 sin θ0m2 + cosφ0 sin θ0m3)

The set (φ0, θ0, ψ
m
0 ) gives the initial attitude (2.15)

R0 =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




Using m we calculate the reference magnetic field mM = [BH 0 BV ]
T as (2.25)

BV = − sin θ0m1 + sinφ0 cos θ0m2 + cosφ0 cos θ0m3

BH =
√
m2

1 +m2
2 +m2

3 −B2
V

The vector f gives (c.f. Section 3.2.2)

f = E〈f̃〉 = E 〈a0 − g0 + bf0 + bft + νf 〉 = −g0 + bf0

where

g0 := RT0 gM =



∗ ∗ −sθ
∗ ∗ sφcθ
∗ ∗ cφcθ





0
0
g


 =




− sin θ0
sinφ0 cos θ0
cosφ0 cos θ0


 g
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such that bf0 = f + g0 is the constant turn-on accelerometer bias. The vector ω
gives

ω = E〈ω0 + bω0 + bωt〉 = bω0,

the constant turn-on rate gyro bias. The initial state of nominal dynamics (3.2) is

x̂(0) =
[
R̂(0) b̂ω(0)

]
=
[
R0 bω0

]

also used to initialize the EKF as discussed in Section 3.2.9.

3.2.11.2 Aided INS

We have the initialization conditions p0 = v0 = 0. As discussed in Section 2.8 the
reference magnetic field mN = [Bx By Bz]

T is known. We calculate the initial
navigation frame yaw ψ0 as (2.23)

ψ0 = atan2

(
By

[
cθ0m1 + sφ0sθ0m2 + cφ0sθ0m3

]
−Bx

[
cφ0m2 − sφ0m3

]
,

Bx

[
cθ0m1 + sφ0sθ0m2 + cφ0sθ0m3

]
+By

[
cφ0m2 − sφ0m3

])

then use (φ0, θ0, ψ0) to build the initial attitude matrix (2.15)

R0 =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




As in Section 3.2.11.1 we have bf0 = f + g0 and bω0 = ω where

g0 =




− sin θ0
sinφ0 cos θ0
cosφ0 cos θ0


 g

and the initial state of nominal dynamics (3.2) is

x̂(0) =
[
p̂(0) v̂(0) R̂(0) b̂f (0) b̂ω(0)

]
=
[
0 0 R0 bf0 bω0

]

also used to initialize the EKF in Section 3.2.9.
The antenna position ra is converted from ECEF to geodetic coordinates (λa, ϕa)

using (2.7) in Section 2.4. The resulting coordinates are used to compute the
antenna-centered rotation matrix (RNE )

a by (2.6) from which

ra − (RNE )
aR0 lB = roE

i.e. the helicopter’s centre of mass is used as the navigation frame origin whose
position vector w.r.t. the ECEF frame origin is roE. We then convert roE to (λ, ϕ)
by (2.7) and use (2.6) to obtain RNE , the rotation matrix between ECEF and navi-
gation frame.
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3.3 AHRS Testing

3.3.1 Simulation Results

The desired reference trajectory is generated and converted into m, f and ω signals,
which are then corrupted by simulated white noise and time-varying bias employing
the engine-off noise parameters in Table 3.1. We generate the following trajectory:
the system is initialized for 5 s with (φ0 = 0, θ0 = 0, ψm0 = 45◦) attitude. Next,
the system is transitioned to (φ1 = 90◦, θ1 = 60◦, ψm1 = 90◦), (φ2 = −90◦, θ2 =
−60◦, ψm2 = 0), (φ3 = 0, θ3 = 0, ψm3 = 0) at times t1 = 10 s, t2 = 15 s, t3 = 20 s,
respectively. Adjacent segments are connected using three-point splines in order to
reflect the smooth transition between motions in a real experiment. The attitude at
t = t3 is held constant during a 5 s interval while the system is shaken along its three
axes, described by the acceleration profile ak = Ak sin(ωkt) whereAk ∈ (4, 8, 6) m/s2

and ωk ∈ (2.5, 2.5, 3.3) Hz; these values were experimentally identified from an IMU
sensor data log collected while the unit was violently shaken by hand. The shaking
is then terminated and the system is left at rest for 5 s to allow the estimates to
re-converge.

As per Section 3.2.10 the process and measurement noise covariance matrices Q
and R are (also) taken from Table 3.1. The magnetometer compensation terms are
taken as Km = I, bm = 0 since we did not warp the sensed magnetic field in the
simulated data. The aiding intervals are selected as Tm = 0.04 s and Ta = 0.02 s,
i.e. magnetometer and accelerometer aiding rates of 25 Hz and 50 Hz respectively,
and the latter’s tolerance factor is set to tol = 0.5. The resulting state estimates
are plotted versus their reference trajectories in Figure 3.3.
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Figure 3.3: AHRS simulation: estimated states (—), reference states (- - -).

For the post-initialization, pre-shaking interval 5 ≤ t ≤ 20 s the states estimated
by the AHRS follow their reference values quite closely. The shaking phase on 20 <
t ≤ 25 s exhibits a much larger discrepancy due to violating the a = 0 assumption
in Section 3.2.2; the error is partially rectified by using the accelerometer tolerance
factor tol. Once the shaking is stopped, the estimates re-converge on 25 < t ≤ 30 s.

The error between estimated and reference attitudes is plotted in Figure 3.4.
The AHRS provides sub-degree precision under normal operation and bounds the
errors to below 10◦ during the shaking period. The estimates re-converge once the
unit is stationary on t ≥ 25 s; remark the roll and pitch errors re-converge faster
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than yaw due to the lower aiding rate of the magnetometer.
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Figure 3.4: AHRS simulation: error between estimated and reference attitude angles

3.3.2 Experimental Results

The AHRS is now run experimentally in an indoor lab equipped with a Vicon
motion-capture system. Using a set of passive optical markers attached to the vehi-
cle, this system provides high-precision attitude and position measurements at up to
240 Hz. We set the Vicon output rate at 100 Hz and use the attitude measurements
as a comparison for our estimates. Since the Vicon system uses the starting vehicle
position as its φ = θ = ψ = 0 datum, we report AHRS yaw as ψ = ψm − ψm0 where
ψm0 is found in initialization, c.f. Section 3.2.11.1.

The experimental procedure is very similar to Section 3.3.1: after an initializa-
tion period where the unit is level, it is picked up by hand and maintained level.
Next, a set of positive and negative roll, positive and negative pitch and negative
and positive yaw motions are sequentially executed, returning to the level configu-
ration after each one. After this the unit is violently shaken by hand and then set
down. The AHRS system parameters are identical to those used in Section 3.3.1,
except for using magnetometer compensation Km, bm resp. Ac, bc factors found by
performing a (full) calibration a priori, c.f. Sections 2.9 and 3.2.2.
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Figure 3.5: AHRS experiment: estimated states (—), Vicon attitudes (- - -).

The experimental AHRS state estimates and Vicon outputs are shown in Fig-
ure 3.5. Using the Vicon data as a reference we see very good attitude estimation
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performance from the AHRS, in most cases achieving sub-degree accuracy and with
peak errors of about 2◦ in the φ and θ and about 3◦ in ψ data outside the shaking
period which occurs at 116 ≤ t ≤ 122 s. This is more clearly seen in Figure 3.6 which
plots the errors between attitude angles from both systems, as well as ‖ỹa‖ used to
pinpoint the shaking interval. The AHRS bias estimates in Figure 3.5 do not have
a reference trajectory, but we see the estimates are nearly constant throughout the
experiment except during the shaking interval, after which they re-converge. This
is consistent with the simulated results in Figure 3.3.
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Figure 3.6: AHRS experiment: error between AHRS and Vicon attitudes; ‖ỹa‖

3.4 Aided INS Testing

3.4.1 Simulation Results

The Aided INS is first tested in simulation by generating a reference trajectory in
the navigation frame described by smooth position pN and Euler angles (φ, θ, ψ)
functions of time. These are analytically differentiated and converted to IMU mB ,
fB, ωB and GPS raE signals using lever arm lB = [−0.8 0 −0.5]T for the antenna
position1. A 45 s initialization period is added to the start of the trajectory, and
the generated signals are then corrupted with simulated noise using the parameters
provided in Table 3.1.

The EKF filter’s process and measurement noise covariance matrices Q and R
and bias decay constants β are (also) taken from Table 3.1. The reference magnetic
field value mN was provided in Section 2.8, and we perform magnetometer aiding
at a period of Tm = 0.02 s. In order to validate Section 3.2.6.2, a GPS-only version
of Aided INS is also employed by disabling magnetometer aiding as discussed in
Section 3.2.10.2. As in Section 3.3.1 we do not warp the magnetic field in simulation
such that Km = I and bm = 0; the effect of magnetometer calibration on Aided
INS performance will be comprehensively studied in experiment in Sections 3.4.2
and 3.4.3.

1This has been measured directly from the helicopter UAV.
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3.4.1.1 Hover Simulation

The first case deals with an idealized hover. The vehicle starts out on the ground
facing geographic East (ψ0 = 90◦). It then flies vertically up by 5 m, executes a 180◦

counter-clockwise turn and hovers facing geographic West, each stage taking 5 s with
the vehicle stationary in-between; this is achieved using quintic and cubic splines
to respectively transition the position and attitude between the given points [75,
p. 102]. The resulting state estimates are shown in Figure 3.7, and the case with
magnetometer aiding disabled is shown in Figure 3.8.
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Figure 3.7: State Estimates: Simulated Hover
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Figure 3.8: State Estimates: Simulated Hover, GPS-only Aiding

The simulated hover using magnetometer aiding (Figure 3.7) shows essentially
perfect estimation with p̂1 = p̂2 = 0 and φ̂ = θ̂ = 0 as the vehicle climbs 5 m
and yaws 180◦ counter-clockwise from the starting ψ̂ = 90◦. The bias estimates
b̂f and b̂ω are nearly constant throughout. By contrast Figure 3.8 with GPS-only
aiding (magnetometer disabled) shows markedly worse performance. The system
incorrectly assumes ψ0 = 0 due to the lack of the initial yaw calculation (2.23)
and ψ remains uncorrected during the climb interval 45 ≤ t ≤ 50 s since it is
unobservable to the EKF. Integrating the nominal dynamics (3.10) using the rate
gyro signal ω correctly identifies the −180◦ change in ψ, however the error in the
actual ψ value leads to errors in p̂ and v̂ estimates due to the lever-arm lB of the GPS
antenna creating errors in yp aiding measurements. Although the velocity estimates
re-converge to the correct v = 0 value on the stationary hover period 55 ≤ t ≤ 60 s,
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the p̂1 and p̂2 estimates each exhibit a steady-state error of almost 2 m. The bias
estimates b̂f,1 and b̂ω,1, b̂ω,2 are (incorrectly) perturbed at t ≥ 50 s, the start of the
turn manoeuver, although the relative importance of this error is smaller than that
for position, velocity and attitude estimates.

3.4.1.2 Trajectory Simulation

We now consider a more complicated flying trajectory: a three-dimensional figure-
8, requiring motion in all six degrees of freedom and producing significant lateral
accelerations due to banking turns. The trajectory is described as a parametric
curve in the navigation frame,

x(t) =M sin(2πt/T ) + x0

y(t) = (m/2) sin(4πt/T ) + y0

z(t) = (−H/2) sin(πt/T ) + z0

(3.27)

where M = 50 m, m = 25 m represent the major and minor diameters of each lobe,
respectively, H = 10 m is the total vertical height of the trajectory, T = 50 s is
the period of one complete figure-8 circuit and (x0, y0, z0) = (0, 0,−15) m are the
NED coordinates of the geometric center of the trajectory. We define the associated
attitude such that the yaw corresponds to direction of travel, pitch is proportional
to rate of climb, and roll to the turning rate:

ψ(t) = atan2(y′(t), x′(t))

θ(t) = −αz′(t)
φ(t) = βψ′(t),

(3.28)

where α = 1, β = 1 are the pitching and banking coefficients, which should be set
proportional to the speed of the trajectory, which in turn is inversely proportional
to T . The complete trajectory consists of the initialization period with ψ0 = 90◦,
followed by a 10 s transition to the t = 0 point of (3.27), (3.28) using splines to
generate a smooth transition trajectory as in Section 3.4.1.1, and a 200 s interval
of flying a three-dimensional figure-8 pattern. As in Section 3.4.1.1 we employ
magnetometer aiding at Tm = 0.02 s and for comparison consider a GPS-only aided
design i.e. where magnetometer aiding is disabled.
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Figure 3.9: State Estimates: Simulated figure-8
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Figure 3.10: State Estimates: Simulated figure-8, GPS-only Aiding

The figure-8 trajectory estimation results are shown in Figure 3.9 for the mag-
plus-GPS aided INS case and in Figure 3.10 for the GPS-only case. The clearest
difference between the plots is the ψ̂ estimate, which is initially 90◦ in error in
the GPS-only case but slowly converges to the same trajectory as the mag-aided
case due to the lateral accelerations providing observability of δγ3 as discussed in
Section 3.2.6.2. The magnetometer-aided case provides superior estimation perfor-
mance. This is clearly seen in Figure 3.11 where the errors of all 15 estimated states
from their reference trajectories are shown for both designs.
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Figure 3.11: State Estimation Errors: Simulated figure-8, Mag-plus-GPS vs GPS-
only Aiding

3.4.2 Experimental Ground Test Results

We now turn our attention to experimental results. In the first test, the engine-off
helicopter was manually carried around the perimeter of a rectangular landing pad
set up at the ERCHA flight field mentioned in Section 2.8. The vehicle was picked
up at the southern-most corner of the pad, kept pointed in the direction of travel,
executed a stop and 90◦ counter-clockwise turn at each corner, and was set down
at the start point after two complete circuits. The sensor readings from the IMU,
magnetometer and GPS were logged to disk and input into the Aided INS using the
engine-off magnetometer calibration constants in Table 2.1 and the data in Table 3.1
as the EKF parameters.
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3.4.2.1 Full versus Yaw-only Magnetometer Aiding

In our initial experiments, we used 3-axis magnetometer readings, compensated
using the parameters in Table 2.1, as an aiding measurement via the linearized
error system’s output matrix H in (3.17). The resulting state estimates are plotted
in Figure 3.12. The position estimates are qualitatively correct: a plot of p2 vs p1
traces out the rectangular shape of the landing pad, while p3 correctly identifies
the pickup and put-down events. Similarly, the estimated roll and pitch φ, θ are
held close to zero, with oscillations created by the gait of the operator carrying the
helicopter, while the estimated yaw ψ increases by π/2 at each corner. However,
we see problems in the velocity estimates, which incorrectly estimate a non-zero
velocity before and after the helicopter is carried.
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Figure 3.12: State Estimates: Ground Test, 3-Axis Mag Aiding

The incorrect velocity estimation problem was diagnosed by zooming in on the
pre-pickup estimated states, t ≤ 60 s, shown in the bottom plot of Figure 3.12. The
position estimate p1 is seen to be affected by the incorrect v1 estimate, however this
is mitigated by the EKF, evidenced by the 10 Hz “sawtooth” pattern created by the
aiding measurements from the GPS receiver. This bounds the error in the position
estimates. The estimated roll and pitch angles are updated from zero to φ ≈ 1◦,
θ ≈ 2◦, which is incorrect since the helicopter remains level. Under the initial
yaw angle ψ ≈ 50◦, the helicopter is estimated to be tilting southwards, causing
negative growth of v1 due to the R̂ term in nominal dynamics (3.10). As seen in
Figure 3.12, the growth of v1 is bounded due to GPS updates, however it creates
jitter in the position estimates and affects the accelerometer bias estimates bf,1, bf,2,
which will affect the accuracy of the integration of nominal dynamics (3.10). This
chain of events is caused by the updates of roll and pitch during the pre-pickup stage,
created by errors in magnetometer measurements remaining after compensation. As
discussed in Section 3.2.6.2, the triaxial magnetometer output equation provides
direct observability of roll and pitch via δγ1 and δγ2, respectively, which cause the
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residual sensor errors to feed through into φ and θ.
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Figure 3.13: State Estimates: Ground Test, Yaw-Only Mag Aiding

The above discussion motivates the switch to a yaw-only magnetometer update
by replacing the 3-axis δym in (3.17) with the yaw-only δym (3.18). The resulting
state estimates are shown in Figure 3.13. We remark the estimated velocities in the
pre- and post-carry phases are correct and that the accelerometer bias estimates
change much less. The zoom-in view at the bottom of Figure 3.13 confirms the roll
and pitch angles are not corrected, and exhibits smoother position estimates; the
same conclusion was made in [50, p. 36]. We have found the opposite effect in flight
testing, however, which will be covered in Section 3.4.3.

3.4.2.2 Comparison of Calibration Methods

We now compare the performance of calibration methods discussed in Section 2.9
in the yaw-only magnetometer updates version of the filter. Using the logged sensor
data from the ground test, we compensate the magnetometer readings using in
turn the full model (2.26) with engine-off parameters from Table 2.1, hard-iron
compensation, uncompensated (raw) sensor data, and with magnetometer updates
disabled. The overhead position and yaw angle estimates for each of the four cases
are plotted in Figure 3.14. The dimensions of the landing pad and angle w.r.t. true
north were measured directly and used to generate the reference trajectory. The
reference yaw angle was generated by using the measured yaw angle of the first
vertex and adding π/2 at every corner turn.

The full compensation case gives good navigation filter performance, with the
estimated yaw and overhead positions tracking the reference trajectory fairly closely.
A part of the tracking error is caused by imperfect alignment of the helicopter with
the edges of the landing pad during the carry. The hard-iron compensation case
shows good performance as well, although the yaw estimates differ from the full
compensation case, visible in the start and end configurations. Since the same
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Figure 3.14: Magnetometer Calibration Comparison, Ground Test, Yaw-Only Mag
Aiding: Overhead Position; Yaw Angle

sensor data is used throughout, this discrepancy is necessarily an effect of the com-
pensation method. The raw sensor case produces significant error in the yaw esti-
mates, which also affects the position estimates due to the antenna lever arm term
in δyp equation (3.17). This confirms the assertion from Section 2.9 that uncom-
pensated magnetometer readings cannot be trusted. The magnetometer-disabled
case demonstrates the observability of δγ3 under lateral acceleration discussed in
Section 3.2.6.2, with the estimated yaw initialized at ψ0 = 0 gradually converging
towards its reference value once the helicopter starts moving.

3.4.3 Experimental Flight Results

In the second experimental test, the helicopter takes off from the landing pad, hovers
in mid-air with a fixed heading angle and then lands, all under control from an
experienced pilot. The ANCL helicopter is equipped with a Futaba GY401 heading-
hold gyro [58], standard equipment for R/C helicopters, which regulates the in-flight
yaw angle using angular velocity as the sensed output and the tail rotor pitch as
the control input c.f. Section 5.3.3.2. The remaining degrees of freedom are much
less precise; the helicopter is an underactuated and relatively light vehicle being
flown in unsteady wind conditions, making perfectly stationary hover extremely
difficult. This fact will be reflected in the plots below. The estimated states were
used to generate an animated helicopter model, which was compared against a
recorded video of the hover flight, giving a qualitative estimate of the accuracy of
the navigation states.

The running engine creates significant vibration in the airframe, in addition to
disturbing the sensed magnetic field. The noise covariances of the accelerometer, rate
gyro and magnetometer signals were re-computed using IMU sensor data collected
while the engine was running, and are listed in Table 3.2. The engine-on parameters
in Table 2.1 were used to compensate the magnetometer readings. Due to the fuel
limit of the helicopter, we were unable to collect a sufficiently long data set to
accurately analyze bias dynamics using Allan Variance (c.f. Section 6.2.1); instead,
the engine-off β and σb parameters in Table 3.1 are re-used. Due to the uncertainty
of the bias dynamics, the entries of the initial covariance matrix P−

0 corresponding
to δbf and δbω were experimentally tuned to 1 × 10−3 and 1 × 10−5, respectively,
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Table 3.2: Modified Noise Parameters – Engine On
σf σω σm

[m/s3/2] [rad/
√
s] [G/

√
s]

0.1748 0.0079 0.00414
0.2792 0.0124 0.00875
0.3847 0.0022 0.01042

and the remaining entries of P−
0 were tuned to 1× 10−3 due to their dependence on

bias estimation via dynamics (3.10).

3.4.3.1 Estimation Results in Flight

As in Section 3.4.2.1, we investigate the performance of 3-axis versus yaw-only mag-
netometer updates while keeping the other filter parameters constant. The plots for
the 3-axis case are shown in Figure 3.15. Before take-off, the pilot increases throttle
input to the engine, identified as the spool up in the plots, causing a counter-torque
on the helicopter body which is in turn compensated by the GY401 unit. The dip
in ψ represents a “tail wag” effect of the helicopter prior to take-off, observed in the
flight video. This is likely caused by integrator wind-up of the GY401 gyro, which is
known to use a PI control law on the sensed yaw angular velocity [58], although the
exact details of the algorithm are proprietary. The helicopter takes off, and after
a transient period visible in the plots, a stable hover is established with the yaw
angle held nearly constant. The remaining states drift around as the pilot actively
compensates for the turbulent atmospheric conditions, with roll and pitch motions
of the helicopter causing motion in the lateral and longitudinal directions, respec-
tively. After landing, the start of the engine spool down phase and resulting change
in ψ is visible before sensor logging was terminated.
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Figure 3.15: State Estimates: Flight Test, 3-Axis Mag Aiding

In addition to the hover phase, where the yaw angle is known to be nearly

65



constant, we focus on the pre-takeoff phase, with the helicopter’s skids on the ground
such that φ = θ = 0. A plot of the estimated attitude angles during this phase
is shown at the bottom of Figure 3.15. The tail wag effect discussed above is
clearly visible in the plot of ψ. The φ and θ estimates oscillate and exhibit a
mean value of approximately 2◦, indicating the attitude estimates are imperfect but
bounded. The errors are caused by a combination of factors, including imperfect
δγ1 and δγ2 updates from the magnetometer discussed in Section 3.4.2.1, significant
noise levels in the rate gyro measurements feeding through into attitude estimate
R̂ via dynamics (3.10), and the unmodeled effect of engine speed changes on the
IMU sensor outputs. This last effect is clearly visible in the sensor data plot in
Figure 3.15 which exhibits a pronounced change in the measured signals during
engine spool-up. The estimated bias states in Figure 3.15 show the navigation filter
compensates, however we can reasonably expect noise and bias model uncertainty
to create errors in estimated attitudes. In spite of these factors, using the estimated
states to animate a helicopter model and comparing it against the flight video, we
find the results are in agreement with reality. Design improvements including better
vibration isolation of the avionics unit from the helicopter body, better modeling of
the engine-on sensor dynamics, and upgrading to a higher-quality IMU can further
improve the performance of the system.

Switching to yaw-only magnetometer updates gives results shown in Figure 3.16.
Unlike Section 3.4.2, this method provides significantly worse performance, partic-
ularly in attitude estimates. The estimated ψ in hover exhibits drift, while the φ
and θ estimates are visibly different from those in Figure 3.15. The error is par-
ticularly evident in the estimated attitudes prior to take-off, shown at the bottom
of Figure 3.16, with estimated ψ incorrectly rising during counter-torque, and φ
approaching 20◦ despite the helicopter being level. This issue is discussed below.
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Figure 3.16: State Estimates: Flight Test, Yaw-Only Mag Aiding

For flight testing, the errors created by imperfect δγ1 and δγ2 updates from
the magnetometer are negligible compared to the errors resulting from discarding
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these updates. Of course the error system (3.17) is theoretically fully observable
with yaw-only magnetometer updates, c.f. Section 3.2.6.2, however in practice the
attitude updates depend on f̃− b̂f which enters as a coefficient of δγ in the dynamics
matrix of (3.17), and whose accuracy will in turn be affected by noise and bias
dynamics model uncertainty. During spool-up, the combination of increasing engine
throttle and angular acceleration of the main rotor leads to a complicated time-
varying vibration response of the helicopter, and in Figure 3.16 we can observe a
clear correlation between the start of the spool-up period, the increase in f̃ and ω̃
sensor noise levels and their respective estimated biases, and the growth of error
in φ. The error in θ is bounded, likely due to the lever-arm effect of the tail-
mounted GPS receiver providing aiding for δγ2, not available for δγ1 resp. φ since
the GPS antenna is mounted in the vertical mid-plane of the helicopter. The error
in ψ, visible in pre-takeoff as well as in flight, is caused by violating the assumption
φ = φ̂, θ = θ̂, i.e. perfect roll and pitch estimates from the navigation filter, which
was used in Section 3.2.6.2 to derive the yaw-only magnetometer aiding equation.
The parameters of the EKF were re-tuned in an effort to reduce the error in θ, φ
during spool-up. However, no significant improvement in performance was achieved.
It is still feasible that these errors could be reduced by a combination of re-tuning the
filter parameters, using better models of engine-on bias dynamics, and mechanical
vibration isolation of the IMU unit. A practical solution would be to disable the
EKF during spool-up given that its performance during flight is comparable to the
3-axis magnetometer update. We propose to simply discard the yaw-only aiding
design for flight testing and rely on the 3-axis version with filter parameters from
Section 3.4.3 for the final set of flight experiments.

3.4.3.2 Comparison of Calibration Methods

We now provide a flight performance comparison of magnetometer calibration meth-
ods using 3-axis updates. As in Section 3.4.2.2, we consider four cases: full com-
pensation, hard-iron compensation, raw sensor readings and magnetometer disabled.
The set of engine-on parameters listed at the beginning of Section 3.4.3 is used. The
mag-disabled case is manually initialized at the correct ψ0 initial yaw angle. The
estimation results are plotted in Figure 3.17, and we plot only attitude estimates
due to their strong dependence on magnetometer aiding.
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Figure 3.17: Magnetometer Calibration Comparison, Flight Test, 3-Axis Mag Aid-
ing: Estimated Attitude
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The full compensation case is the same plot as Figure 3.15, and serves as a refer-
ence for the other three. The hard-iron case produces the correct trend in the flight
estimates, although the in-flight yaw angle is in error by approximately 10◦ from
the fully compensated case. This may be caused by the significant warping of the
magnetometer readings which cannot be compensated for by hard-iron calibration,
seen by comparing the engine-on ε, ρ parameters in Table 2.1 with ε = 1, ρ = 0
for hard-iron compensation. The raw sensor case has higher errors in yaw angle;
in addition, the roll and pitch estimates differ from the reference case, caused by
δγ1 and δγ2 mag aiding using uncompensated sensor readings. The magnetometer-
disabled case shows a complete divergence of ψ, which makes it clear a yaw sensor
is critical in hover flights. As expected, the φ and θ estimates behave identically to
the yaw-only mag aiding case in Figure 3.16.
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Chapter 4

Invariant Observer Design for

Aided Navigation

4.1 Overview

The Extended Kalman Filter covered in Chapter 3 relies on re-linearization of the
system about its latest trajectory, an ad-hoc approach which works well in practice as
seen in Sections 3.3 and 3.4, but which makes it impossible to analyze global stability
and difficult to quantify the region of attraction of local stability, c.f. [124]. For this
reason a direct nonlinear observer design for aided inertial navigation systems is of
great interest to us.

This Chapter focuses on the nonlinear design method of invariant (symmetry-
preserving) observers [27, 28]. This approach provides a systematic method to obtain
a nonlinear observer structure which possesses the same symmetries (formally de-
fined in Section 4.3) as the original model. Using this observer, an invariant version
of the (nonlinear) estimation error dynamics exists which simplifies the process of
choosing the observer gains. We will demonstrate that both the AHRS and Aided
INS treated in Chapter 3 possess the necessary symmetries to make use of the in-
variant observer design method. An early version of invariant observer theory [25]
treating an example of velocity-aided navigation was in fact the initial motivation
for studying this method.

After considering a motivating example in Section 4.2, we formally define system
symmetries in Section 4.3 and find them for the AHRS (Section 4.4) and Aided
INS (Section 4.5). We cover invariant observer theory in Section 4.6 and derive
invariant observers for AHRS and Aided INS in Section 4.7 using rotation matrices
R ∈ SO(3) (c.f. Section 2.1), a singularity-free one-to-one parametrization of the
SO(3) manifold, making the invariant estimation error dynamics amenable to global
stability analysis [88, 38]. With the exception of [28] the invariant observer designs
found in the literature are formulated in terms of unit quaternions q ∈ H, ‖q‖ = 1
(c.f. Section 2.7) making a global analysis impossible due to their two-to-one covering
of SO(3) as noted in [27, Ex. 3].

While choosing the gains of an invariant observer is simplified, the process is
non-systematic due to the requirement of stabilizing a nonlinear system using e.g. a
Lyapunov analysis. We have found a stabilizing design for the AHRS case which
guarantees almost-global stability, c.f. Section 4.8. However for Aided INS a nonlin-
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ear stabilizing design has not (yet) been found. A natural approach to systematically
achieving stabilization is to apply the EKF to the nonlinear invariant estimation dy-
namics, an approach originally proposed in [23] and termed the Invariant EKF, later
applied to aided navigation examples in [29, 96]. We introduce the Invariant EKF
method in Section 4.9 and adapt it to our AHRS and Aided INS examples in a “nat-
ural” way, removing the need to formulate the system using invariant noise terms
as in [23], c.f. Section 4.9.1. We then provide a comprehensive performance compar-
ison of the invariant observers in both simulation and experiment in Sections 4.10
and 4.11.

4.2 Motivating Example

Consider the AHRS from Section 3.2.3.1. For simplicity we replace the Gauss-
Markov process model of the bias dynamics with the Wiener process model ḃω = νbω .
The nominal version of (3.5), (3.6) is then written as

Ṙ = RS(ω − bω)

ḃω = 0
[
ya
ym

]
=

[
RTa
RTm

]
,

(4.1)

where as before R ∈ SO(3), the rotation matrix from body-fixed to ground-fixed
frame, expresses the attitude of the system; S is the skew-symmetric matrix de-
fined in (2.2); ω and bω are the measured angular velocity and its bias, respectively,
the former available from the on-board rate gyro, the latter an unknown constant;
ya and ym are readings from the on-board accelerometer and magnetometer; and
a = [0 0 −9.81]T m/s2, m = [BH 0 BV ]

T G represent the ground-frame grav-
ity and magnetic field vectors which are known and constant as discussed in Sec-
tion 2.8.1. As in Section 3.2.2 we have assumed ya directly measures gravity i.e. zero
translational acceleration and that ym has been compensated for magnetic field dis-
tortions. The task of the AHRS is to estimate attitude R and rate gyro bias bω from
the signals ω, ya and ym — an observer design problem.

Defining x = (R bω) and u = ω, the nonlinear dynamics (4.1) are written

ẋ = f(x, u) =

(
RS(ω − bω)

0

)
.

Consider the change of variables

x′ =

(
RR0

RT0 (bω + ω0)

)
, u′ = RT0 (ω + ω0) (4.2)

where R0 ∈ SO(3) and ω0 ∈ R
3 are constants. We directly verify

f(x′, u′) =

(
RR0S

(
RT0 (ω + ω0)−RT0 (bω + ω0)

)

0

)

=

(
RR0S

(
RT0 (ω − bω)

)

0

)
=

(
RS (ω − bω)R0

0

)
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and
d

dt
(x′) =

d

dt

(
RR0

RT0 (bω + ω0)

)
=

(
ṘR0

RT0 (ḃω)

)
=

(
RS(ω − bω)R0

0

)
,

i.e. ẋ′ = f(x′, u′) under the above change of variables. Similarly, the output in (4.1)

y = h(x) =

(
RTa
RTm

)

becomes

h(x′) =

(
(RR0)

Ta
(RR0)

Tm

)
=

(
RT0 R

Ta
RT0 R

Tm

)
=

(
RT0 ya
RT0 ym

)

which “induces” the change of variables y′ = h(x′) under the definition

y′ =

(
RT0 ya
RT0 ym

)
.

System (4.1) can alternatively be written in terms of unit quaternions q ∈ H, ‖q‖ = 1
using rotational kinematics (2.21):

q̇ =
1

2
q ∗ (ω − bω)

ḃω = 0
[
ya
ym

]
=

[
q−1 ∗ a ∗ q
q−1 ∗m ∗ q

]
,

(4.3)

where ∗ represents quaternion multiplication and q−1 is the quaternion inverse;
the R

3 vectors ω − bω, a and m are understood to be taken as pure quaternions
v = (0, ~v) when multiplying q. Denoting the dynamics of (4.3) as ẋ = f(x, u) where
x = (q bω) and u = ω, consider the change of variables

x′ =

(
q ∗ q0

q−1
0 ∗ (bω + ω0) ∗ q0

)
, u′ = q−1

0 ∗ (ω + ω0) ∗ q0

where q0 ∈ H, ‖q0‖ = 1 and ω0 ∈ R
3 are constants, we directly verify

f(x′, u′) =
1

2
q ∗ q0 ∗

(
q−1
0 ∗ (ω + ω0) ∗ q0 − q−1

0 ∗ (bω + ω0) ∗ q0
)

=
1

2
q ∗ q0 ∗

(
q−1
0 ∗ (ω − bω) ∗ q0

)

=
1

2
q ∗ (ω − bω) ∗ q0

and

d

dt
(x′) =

d

dt

(
q ∗ q0

q−1
0 ∗ (bω + ω0) ∗ q0

)
=

(
q̇ ∗ q0

q−1
0 ∗ ḃω ∗ q0

)
=

1

2

(
q ∗ (ω − bω) ∗ q0

0

)
,

so once again ẋ′ = f(x′, u′) under the proposed change of variables. The output
in (4.3)

y = h(x) =

[
q−1 ∗ a ∗ q
q−1 ∗m ∗ q

]
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transforms to

h(x′) =

[
(q ∗ q0)−1 ∗ a ∗ q ∗ q0
(q ∗ q0)−1 ∗m ∗ q ∗ q0

]
=

[
q−1
0 ∗ q−1 ∗ a ∗ q ∗ q0
q−1
0 ∗ q−1 ∗m ∗ q ∗ q0

]
=

[
q−1
0 ∗ ya ∗ q0
q−1
0 ∗ ym ∗ q0

]

and induces the change of variables

y′ =

[
q−1
0 ∗ ya ∗ q0
q−1
0 ∗ ym ∗ q0

]

such that y′ = h(x′).
We have directly verified that the AHRS equations (4.1) or (4.3) are invariant

with respect to certain changes of variables to x, u and y; we refer to these changes
as the symmetries of the system. The mathematical details of the transformations
are quite different for the two cases, however they represent the same symmetries:
the transformed state x′ corresponds to rotating the body-fixed axes by R0 or q0,
and adding the constant ω0 to the sensor bias. Provided that u = ω, the sensed
angular velocity in the body-fixed frame, is also transformed by R0 or q0 and ω0,
we intuitively expect the governing dynamics to remain the same, which is verified
above. The same physical interpretation applies to the output y′. We have seen
that invariance is independent of the attitude parametrization used, and the the-
ory will be formulated using the framework of differential geometry to make this
independence precise.

For a system with symmetries, there exists a constructive method to be covered
in Section 4.6 to build a (nonlinear) observer which possess the same symmetries
as the system. The resulting estimation error dynamics possess a reduced-order
form which simplifies stability analysis and gain selection, c.f. Section 4.6.3. We
work with the same two examples as in Chapter 3 using a Wiener process model for
the bias dynamics: the AHRS (4.1), and the Magnetometer-plus-GPS-Aided INS
introduced in Section 3.2.3.2 whose symmetries will be provided in Section 4.5.

4.3 System Symmetries

The coordinate-free formulation of the smooth (C∞) nonlinear control system ẋ =
f(x, u) is the commutative diagram [107, Sec. 13.5]

B
F

//

π
  A

AA
AA

AA
A TM

πM
||yy
yy
yy
yy

M

(4.4)

where B is the total space of a smooth fiber bundle over M equipped with the
surjective map π : B → M , TM is the tangent bundle of M with the natural
projection map πM : TM → M , and F : B → TM is a bundle map, also known
as a bundle morphism. By definition of a smooth fiber bundle, B, M and TM
are smooth manifolds and π, F and πM are smooth maps. The base manifold M
represents the state space of the system, and for each x ∈M , the fiber π−1(x) ⊂ B
represents a state-dependent input space. In this way, diagram (4.4) can describe
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the dynamics of systems under state feedback, and is used in e.g. [129, 63] to define
system symmetry as the commutativity of

B
θg

//

F

""E
EE

EE
EE

E

π

��

B
F

||yy
yy
yy
yy

π

��

TM
(ϕg)∗

//

πM
||yy
yy
yy
yy

TM

πM
""E

EE
EE

EE
E

M ϕg

//M

(4.5)

where θg, ϕg are group actions of a Lie group G ∋ g on the manifolds B and M ,
respectively, and (ϕg)∗ denotes the pushforward of the map ϕg.

We briefly elaborate on how (4.4) relates to the usual ẋ = f(x, u) coordinate
dynamics. A smooth fiber bundle consists of a smooth manifold B together with
a surjective smooth map π onto the smooth manifold M . For each x ∈ M , there
exists a neighbourhood U of x and a diffeomorphism Φ : π−1(U) → U × V , where
V is a smooth manifold, such that the following diagram commutes:

π−1(U)
Φ

//

π
##G

GG
GG

GG
GG

U × V

π1
||yy
yy
yy
yy
y

U

where π1 is the projection on the first factor. The smooth manifolds B, M and V
are known as the total space, base space and standard fiber, respectively, and Φ is
the local trivialization of B over U . For any x0 ∈ M and b0 ∈ π−1(x0) ⊂ B, we
have the coordinate functions (x1, . . . , xn, u1, . . . , um) = (x, u) around Φ(b0), such
that (x, u) is a local coordinate expression for the total space B. Returning to (4.4),
the standard coordinates for TM are written as (x1, . . . , xn, v1, . . . , vn) = (x, v),
where x are the same coordinate functions around x0 ∈ M as above, and v are the
coordinate representations of the component functions of the vector field described
by F : B → TM , given by the right-hand side of ẋ = f(x, u). In other words,
the coordinate representation of F : B → TM is given by F (x, u) = (x, f(x, u))
which recovers the dynamics ẋ = f(x, u). As seen in (4.1), (4.3), two coordinate
representations of F may look very different from each other.

Because inputs to the observer are not directly functions of its state, we are able
to take the total space B in (4.4) as the product manifold B =M ×V , making B a
trivial fiber bundle over M , where the standard fiber V is the input manifold which
is independent of the state manifold M . Remark this simplification does not apply
to invariant controller design problems [120, 90, 47].

Using the trivial bundle B = M × V , take ϕg : G × M → M and ψg : G ×
V → V to be smooth Lie group actions (c.f. Section 4.3.1) acting on the system’s
state and input manifolds, respectively, where G is the Lie group associated to
the system known as its symmetry group. We define the system dynamics to be
G-invariant [90, 27] if

(ϕg)∗F (x, u) = F (ϕg(x), ψg(u)) ∀g ∈ G,
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a coordinate-free definition which is consistent with the general symmetry case
shown in (4.5). In local coordinates, this is equivalent to

d

dt
(ϕg(x)) = f(ϕg(x), ψg(u)) ∀g ∈ G,

or simply ẋ′ = f(x′, u′), the change of variables used in Section 4.2. Similarly, for
the output map H :M×V → Y where Y is the output manifold, the system output
is G-equivariant if

ρgH(x, u) = H(ϕg(x), ψg(u)) ∀g ∈ G,

where ρg : G × Y → Y is a Lie group action on the output manifold Y , which is
“induced” by ϕg and ψg as seen in Section 4.2. The coordinate version of this is

ρgy = h(ϕg(x), ψg(u)) ∀g ∈ G,

or equivalently y′ = h(x′, y′). The set of Lie group actions (ϕg, ψg, ρg) which verifies
a system’s G-invariance and G-equivariance are known as its symmetries.

The concept of invariance appears in standard differential geometry references
in the following context (e.g. [83, p. 93]): let G be a Lie group, and define left
translation Lg : G×G→ G as the map Lg(h) = gh. A vector field Xg : G→ TG is
said to be left-invariant if

(Lg′)∗Xg = Xg′g ∀g, g′ ∈ G.

The G-invariance of a system defined above can be viewed as a generalization of
this definition, and we will see further links between the two in Section 4.6.2. On
the other hand, equivariance is a standard concept and applies exactly as above,
e.g. [83, p. 212].

4.3.1 Lie Group Actions

A Lie group action θg : G×M →M can be either left or right. A left group action
θg verifies

θg1 ◦ θg2(p) = θg1g2(p) ∀g1, g2 ∈ G,∀p ∈M

θe(p) = p ∀p ∈M

while a right group action θg verifies

θg2 ◦ θg1(p) = θg1g2(p) ∀g1, g2 ∈ G,∀p ∈M

θe(p) = p ∀p ∈M

We deal exclusively with smooth Lie group actions, meaning θg : G×M →M is a
smooth map for all g ∈ G and p ∈ M . Under this assumption, the inverse θg−1 for
either action type is smooth, making θg a diffeomorphism.

For our purposes, we will always work with ϕg, ψg, ρg as being left Lie group
actions. We will demonstrate that this is done by correctly defining the group mul-
tiplication g1g2 ∈ G. The reason for this is that two steps in the invariant observer
design, finding the group invariants (Section 4.6.1) and building an invariant frame
(Section 4.6.2) assume a left Lie group action is being used. Although the procedure
could be modified to use the right group action case, there is nothing to be gained
from doing so. In the sequel, any Lie group action is understood to be left unless
explicitly stated otherwise.
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4.4 AHRS symmetries

Return to the AHRS in Section 4.2, using version (4.1) written in terms of rotation
matrices. Let G = SO(3) × R

3 be the Lie group acting on x = (R bω), u = ω,
y = (ya ym), and let g = (R0 ω0) ∈ G. The changes of variables were actually
the Lie group actions

ϕg

(
R
bω

)
=

(
RR0

RT0 (bω + ω0)

)
, ψg

(
ω
)
=
(
RT0 (ω + ω0)

)
, ρg

(
ya
ym

)
=

(
RT0 ya
RT0 ym

)
.

Clearly, for g = e = (I, 0) ∈ G, ϕe(x) = x, ψe(u) = u and ρe(y) = y. In order to
meet the left group action assumption in Section 4.3.1, we require ϕg1 ◦ϕg2 = ϕg1g2 .
Consider g1 = (R′

0, ω
′
0) ∈ G and g2 = (R′′

0 , ω
′′
0 ) ∈ G. We compute

ϕg1 ◦ ϕg2
(
R
bω

)
= ϕg1

(
RR′′

0

(R′′
0)
T (bω + ω′′

0)

)
=

(
RR′′

0R
′
0

(R′
0)
T (R′′

0)
T (bω + ω′

0 + ω′′
0)

)

based on which we define group multiplication g1g2 = (R′′
0R

′
0, ω

′
0 + ω′′

0 ) ∈ G, under
which

ϕg1g2

(
R
bω

)
=

(
RR′′

0R
′
0

(R′′
0R

′
0)
T (bω + ω′

0 + ω′′
0)

)

proving ϕg is a left action. Continuing with the input action ψg, we verify

ψg1 ◦ ψg2
(
ω
)
= ψg1

(
(R′′

0)
T (ω + ω′′

0)
)
= (R′

0)
T (R′′

0)
T (ω + ω′

0 + ω′′
0)

and
ψg1g2

(
ω
)
= (R′′

0R
′
0)
T (ω + ω′

0 + ω′′
0) = (R′

0)
T (R′′

0)
T (ω + ω′

0 + ω′′
0)

hence ψg is also a left action. Finally, for the output action

ρg1 ◦ ρg2
(
ya
ym

)
= ρg1

(
(R′′

0)
T ya

(R′′
0)
T ym

)
=

(
(R′

0)
T (R′′

0)
T ya

(R′
0)
T (R′′

0)
T ym

)

and

ρg1g2

(
ya
ym

)
=

(
(R′′

0R
′
0)
T ya

(R′′
0R

′
0)
T ym

)
=

(
(R′

0)
T (R′′

0)
T ya

(R′
0)
T (R′′

0)
T ym

)

hence ρg is a left action as well. Using the more “natural” multiplication definition
g1g2 = (R′

0R
′′
0 , ω

′
0+ω′′

0) ∈ G can be directly verified to yield right actions ϕg, ψg, ρg
which are not suitable for our use. Note the Lie group actions ϕg, ψg, ρg can also
be taken as acting on (4.3) by writing them in terms of unit quaternions, resulting
in different calculation details but the same results as above, c.f. [91].

4.4.1 Ground frame symmetries

The AHRS symmetries considered so far physically represent the rotation of the
body-fixed frame. A different set of symmetries can be obtained by considering
rotations of the ground-fixed frame. Consider system (4.1) and take x = (R bω),
u = (ω a m), i.e. treat the ground-frame magnetic and gravity fields as additional
inputs to the system. Let G = SO(3) × R

3 ∋ (Q0, ω0) = g be the symmetry group
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of the system where Q0 represents a constant rotation of the ground-fixed frame.
Defining the Lie group actions

Φg

(
R
bω

)
=

(
Q0R
ω0 + bω

)
, Ψg



ω
a
m


 =



ω0 + ω
Q0a
Q0m


 ,

we verify

f
(
Φg(x),Ψg(u)

)
=

(
Q0RS(ω0 + ω − ω0 − bω)

0

)
=

(
Q0RS(ω − bω)

0

)

d

dt

(
Φg(x)

)
=

d

dt

(
Q0R
ω0 + bω

)
=

(
Q0RS(ω − bω)

0

)
,

and so the dynamics are invariant w.r.t. Φg, Ψg. These induce the output action Υg

as

Υg

(
ya
ym

)
= h

(
Φg(x),Ψg(u)

)
=

(
(Q0R)

TQ0g
(Q0R)

TQ0m

)
=

(
RT g
RTm

)
=

(
ya
ym

)
=⇒ Υg = Id

Let g1 = (Q′
0, ω

′
0), g2 = (Q′′

0 , ω
′′
0) and compute

Φg1 ◦ Φg2
(
R
bω

)
= Φg1

(
Q′′

0R
ω′′
0 + bω

)
=

(
Q′

0Q
′′
0R

ω′
0 + ω′′

0 + bω

)

from which we define g1g2 = (Q′
0Q

′′
0, ω

′
0 + ω′′

0) to make Φg a left group action:

Φg1g2

(
R
bω

)
=

(
Q′

0Q
′′
0R

ω′
0 + ω′′

0 + bω

)

Remark that the g1g2 definition happens to use a “natural” multiplication order
Q′

0Q
′′
0 . Considering Ψg, we have

Ψg1g2



ω
a
m


 =



ω′
0 + ω′′

0 + ω
Q′

0Q
′′
0a

Q′
0Q

′′
0m




and

Ψg1 ◦Ψg2



ω
a
m


 = Ψg1



ω′′
0 + ω
Q′′

0a
Q′′

0m


 =



ω′
0 + ω′′

0 + ω
Q′

0Q
′′
0a

Q′
0Q

′′
0m


 ,

verifying Ψg is a left action. Finally, Υg = Id is a trivial Lie group action which is
left (or right). We have thus shown that the AHRS example (4.1) is G-invariant and
G-equivariant w.r.t. the Lie group actions Φg, Ψg, Υg, which physically represent
rotations of the ground-fixed reference frame.

4.4.2 Combined symmetries

Since the body and ground-fixed frames can be rotated independently of each other,
it’s logical to construct a set of combined symmetries containing both Q0 and R0

terms. Consider (4.1) with x = (R bω), u = (ω a m) and y = (ya ym) as
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the state, input and output spaces, respectively, and define the symmetry group
G = SO(3) × SO(3) × R

3 ∋ (Q0, R0, ω0) = g, where Q0 and R0 represent rotations
of the ground and body frames, respectively. The candidate Lie group actions for
this case are

ξg

(
R
bω

)
=

(
Q0RR0

RT0 (bω + ω0)

)
, υg



ω
a
m


 =



RT0 (ω + ω0)

Q0a
Q0m


 ,

and we directly verify system invariance:

f
(
ξg(x), υg(u)

)
=

(
Q0RR0S

[
RT0 (ω + ω0)−RT0 (bω + ω0)

]

0

)
=

(
Q0RS(ω − bω)R0

0

)

d

dt

(
ξg(x)

)
=

d

dt

(
Q0RR0

RT0 (bω + ω0)

)
=

(
Q0RS(ω − bω)R0

0

)

The induced output action ̺g is

h
(
ξg(x), υg(u)

)
=

(
(Q0RR0)

TQ0a
(Q0RR0)

TQ0m

)
=

(
RT0 ya
RT0 ym

)
=⇒ ̺g

(
ya
ym

)
=

(
RT0 ya
RT0 ym

)

Take g1 = (Q′
0, R

′
0, ω

′
0) ∈ G, g2 = (Q′′

0 , R
′′
0 , ω

′′
0 ) ∈ G. We have

ξg1 ◦ ξg2
(
R
bω

)
= ξg1

(
Q′′

0RR
′′
0

(R′′
0)
T (bω + ω′′

0 )

)
=

(
Q′

0Q
′′
0RR

′′
0R

′
0

(R′
0)
T (R′′

0)
T (bω + ω′

0 + ω′′
0 )

)
,

and thus define g1g2 = (Q′
0Q

′′
0, R

′′
0R

′
0, ω

′
0+ω′′

0) such that ξg1 ◦ ξg2 = ξg1g2 . The input
action υg verifies

υg1g2



ω
a
m


 =



(R′′

0R
′
0)
T (ω + ω′

0 + ω′′
0)

Q′
0Q

′′
0a

Q′
0Q

′′
0m




and

υg1 ◦ υg2



ω
a
m


 = υg1



(R′′

0)
T (ω + ω′′

0)
Q′′

0a
Q′′

0m


 =



(R′

0)
T (R′′

0)
T (ω + ω′

0 + ω′′
0)

Q′
0Q

′′
0a

Q′
0Q

′′
0m


 ,

while the output action ̺g verifies

̺g1g2

(
ya
ym

)
=

(
(R′′

0R
′
0)
T ya

(R′′
0R

′
0)
T ym

)

and

̺g1 ◦ ̺g2
(
ya
ym

)
= ̺g1

(
(R′′

0)
T ya

(R′′
0)
T ym

)
=

(
(R′

0)
T (R′′

0)
T ya

(R′
0)
T (R′′

0)
T ym

)

so ξg, υg, ̺g are left Lie group actions as required. Remark that by taking Q0 = I
or R0 = I the actions reduce to (ϕg, ψg, ρg) and (Φg,Ψg,Υg), respectively.
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4.5 Aided INS Symmetries

The second example to be treated is the Magnetometer-plus-GPS-Aided INS intro-
duced in Section 3.2.3.2. As in Section 4.2 we take the bf and bω bias dynamics
models as a Wiener process ḃ = ν. The nominal version of Aided INS dynamics (3.9)
becomes

ṗ = v

v̇ = R(f − bf )− a

Ṙ = RS(ω − bω)

ḃf = 0

ḃω = 0

(4.6)

where p, v are the position and velocity of the vehicle relative to the navigation frame
origin, R ∈ SO(3) measures its attitude and bf , bω are the constant, unknown biases
of the specific force f and angular velocity ω signals measured by the on-board IMU.
The outputs of the system are

yp = p

ym = RTm
(4.7)

where yp and ym are measured by a GPS receiver and magnetometer, respectively;
for simplicity, we have taken the vehicle’s position p as directly measurable, which
assumes the rotation matrix RNE and navigation frame location roE have been found
(c.f. Section 2.4). The vector m = [Bx By Bz]

T is the navigation frame magnetic
field which is known and constant (c.f. Section 2.8) and ym is assumed to have been
compensated for magnetic field distortions as in Section 3.2.2.

The state of (4.6), (p v R bf bω) ∈ R
3 × R

3 × SO(3) × R
3 × R

3 = M is a
smooth manifold and we take the symmetry group G = R

3 × SO(3) × R
3 × R

3 ∋
(p0 R0 bf0 bω0). We propose the Lie group actions

ϕ(p0,R0,bf0,bω0)




p
v
R
bf
bω




=




p+ p0
v

RR0

RT0 (bf + bf0)
RT0 (bω + bω0)



, ψ(p0,R0,bf0,bω0)

(
f
ω

)
=

(
RT0 (f + bf0)
RT0 (ω + bω0)

)

from which we directly verify

f
(
ϕg(x), ψg(u)

)
=




v
RR0

[
RT0 (f + bf0)−RT0 (bf + bf0)

]
− a

RR0S
[
RT0 (ω + bω0)−RT0 (bω + bω0)

]

0
0




=




v
R(f − bf )− a
RS(ω − bω)R0

0
0




d

dt
ϕg(x) =

d

dt




p+ p0
v

RR0

RT0 (bf + bf0)
RT0 (bω + bω0)




=




ṗ
v̇

ṘR0

RT0 ḃf
RT0 ḃω




=




v
R(f − bf )− a
RS(ω − bω)R0

0
0



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and so the system is G-invariant. We then find ρg which makes the system G-
equivariant:

h(ϕg(x), ψg(u)) =

(
p+ p0

(RR0)
Tm

)
=⇒ ρ(p0,R0,bf0,bω0)

(
yp
ym

)
=

(
yp + p0
RT0 ym

)

Next, we must define the group multiplication on G making ϕg, ψg, ρg left Lie group
actions. Let g1 = (p′0 R′

0 b′f0 b′ω0) and g2 = (p′′0 R′′
0 b′′f0 b′′ω0). We have

ϕg1 ◦ ϕg2




p
v
R
bf
bω




= ϕg1




p+ p′′0
v

RR′′
0

(R′′
0)
T (bf + b′′f0)

(R′′
0)
T (bω + b′′ω0)




=




p+ p′0 + p′′0
v

RR′′
0R

′
0

(R′
0)
T (R′′

0)
T (bf + b′f0 + b′′f0)

(R′
0)
T (R′′

0)
T (bω + b′ω0 + b′′ω0)




and so define g1g2 = (p′0 + p′′0 R′′
0R

′
0 b′f0 + b′′f0 b′ω0 + b′′ω0) such that

ϕg1g2




p
v
R
bf
bω




=




p+ p′0 + p′′0
v

RR′′
0R

′
0

(R′′
0R

′
0)
T (bf + b′f0 + b′′f0)

(R′′
0R

′
0)
T (bω + b′ω0 + b′′ω0)




= ϕg1 ◦ ϕg2




p
v
R
bf
bω



.

The input action ψ is left:

ψg1 ◦ ψg2
(
f
ω

)
= ψg1

(
(R′′

0)
T (f + b′′f0)

(R′′
0)
T (ω + b′′ω0)

)
=

(
(R′

0)
T (R′′

0)
T (f + b′f0 + b′′f0)

(R′
0)
T (R′′

0)
T (ω + b′ω0 + b′′ω0)

)

and

ψg1g2

(
f
ω

)
=

(
(R′′

0R
′
0)
T (f + b′f0 + b′′f0)

(R′′
0R

′
0)
T (ω + b′ω0 + b′′ω0)

)

The output action ρ is also left:

ρg1 ◦ ρg2
(
yp
ym

)
= ρg1

(
yp + p′′0
(R′′

0)
T ym

)
=

(
yp + p′0 + p′′0

(R′
0)
T (R′′

0)
T ym

)

and

ρg1g2

(
yp
ym

)
=

(
yp + p′0 + p′′0
(R′′

0R
′
0)
T ym

)

Instead of rotating the body-fixed frame as above, we can rotate the ground-
fixed frame by Q0, such that the symmetry group G = R

3 × SO(3)×R
3 ×R

3 with
G ∋ (p0, Q0, bf0, bω0) = g acts on the state and input manifolds respectively by Φg
and Ψg:

Φ(p0,Q0,bf0,bω0)




p
v
R
bf
bω




=




Q0(p0 + p)
Q0v
Q0R

bf0 + bf
bω0 + bω



, Ψ(p0,Q0,bf0,bω0)




f
ω
a
m


 =




bf0 + f
bω0 + ω
Q0a
Q0m


 ,
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We directly verify the G-invariance of (4.6) to Φg and Ψg:

f
(
Φg(x),Ψg(u)

)
=




Q0v
Q0R (f + bf0 − bf − bf0)−Q0a
Q0RS (ω + bω0 − bω − bω0)

0
0




=




Q0v
Q0R (f − bf )−Q0a
Q0RS (ω − bω)

0
0




d

dt
Φg(x) =

d

dt




Q0(p0 + p)
Q0v
Q0R

bf0 + bf
bω0 + bω




=




Q0v
Q0 [R(f − bf )− a]
Q0RS(ω − bω)

0
0



,

and find the induced output action Υg:

h
(
Φg(x),Ψg(u)

)
=

(
Q0(p0 + p)
(Q0R)

TQ0m

)
=⇒ Υg

(
yp
ym

)
=

(
Q0(p0 + yp)

ym

)
.

Take g1 = (p′0 Q′
0 b′f0 b′ω0) and g2 = (p′′0 Q′′

0 b′′f0 b′′ω0). We have

Φg1 ◦Φg2




p
v
R
bf
bω




= Φg1




Q′′
0(p + p′′0)
Q′′

0v
Q′′

0R
bf + b′′f0
bω + b′′ω0




=




Q′
0Q

′′
0(p+ p′0 + p′′0)
Q′

0Q
′′
0v

Q′
0Q

′′
0R

bf + b′f0 + b′′f0
bω + b′ω0 + b′′ω0




and defining g1g2 = (p′0 + p′′0, Q
′
0Q

′′
0, b

′
f0 + b′′f0, b

′
ω0 + b′′ω0) verifies Φg1 ◦ Φg2 = Φg1g2 :

Φg1g2




p
v
R
bf
bω




=




Q′
0Q

′′
0(p + p′0 + p′′0)
Q′

0Q
′′
0v

Q′
0Q

′′
0R

bf + b′f0 + b′′f0
bω + b′ω0 + b′′ω0




We also verify Ψg1 ◦Ψg2 = Ψg1g2 for the input action:

Ψg1 ◦Ψg2




f
ω
a
m


 = Ψg1




f + b′′f0
ω + b′′ω0
Q′′

0a
Q′′

0m


 =




f + b′f0 + b′′f0
ω + b′ω0 + b′′ω0

Q′
0Q

′′
0a

Q′
0Q

′′
0m


 = Ψg1g2




f
ω
a
m




and Υg1 ◦Υg2 = Υg1g2 for the output action:

Υg1 ◦Υg2

(
yp
ym

)
= Υg1

(
Q′′

0(yp + p′′0)
ym

)
=

(
Q′

0Q
′′
0(yp + p′0 + p′′0)

ym

)
= Υg1g2

(
yp
ym

)

This confirms Φg, Ψg and Υg are left group actions.
As in Section 4.4.2, we consider the combined case of rotating both the body and

the ground frames. The symmetry group is G = R
3 × SO(3) × SO(3) × R

3 × R
3 ∋
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(p0 Q0 R0 bf0 bω0) = g and the state and input actions are

ξg




p
v
R
bf
bω




=




Q0(p+ p0)
Q0v

Q0RR0

RT0 (bf + bf0)
RT0 (bω + bω0)



, υg




f
ω
a
m


 =




RT0 (f + bf0)
RT0 (ω + bω0)

Q0a
Q0m




which verify f
(
ξg(x), υg(u)

)
= d/dt(ξg(x)),

f
(
ξg(x), υg(u)

)
=




Q0v
Q0RR0

[
RT0 (f + bf0)−RT0 (bf + bf0)

]
−Q0a

Q0RR0S
[
RT0 (ω + bω0)−RT0 (bω + bω0)

]

0
0




d

dt
ξg(x) =

d

dt




Q0(p+ p0)
Q0v

Q0RR0

RT0 (bf + bf0)
RT0 (bω + bω0)




=




Q0v
Q0 [R(f − bf )− a]
Q0RS(ω − bω)R0

0
0




and induce the output action ̺g

h
(
ξg(x), υg(u)

)
=

(
Q0(p+ p0)

(Q0RR0)
TQ0m

)
=⇒ ̺g

(
yp
ym

)
=

(
Q0(yp + p0)
RT0 ym

)
.

Take g1 = (p′0 Q′
0 R′

0 b′f0 b′ω0) and g2 = (p′′0 Q′′
0 R′′

0 b′′f0 b′′ω0). We have

ξg1 ◦ ξg2




p
v
R
bf
bω




= ξg1




Q′′
0(p + p′′0)
Q′′

0v
Q′′

0RR
′′
0

(R′′
0)
T (bf + b′′f0)

(R′′
0)
T (bω + b′′ω0)




=




Q′
0Q

′′
0(p+ p′0 + p′′0)
Q′

0Q
′′
0v

Q′
0Q

′′
0RR

′′
0R

′
0

(R′
0)
T (R′′

0)
T (bf + b′f0 + b′′f0)

(R′
0)
T (R′′

0)
T (bω + b′ω0 + b′′ω0)




and so we define group multiplication as g1g2 = (p′0 + p′′0, Q
′
0Q

′′
0, R

′′
0R

′
0, b

′
f0 +

b′′f0, b
′
ω0 + b′′ω0) such that ξg1 ◦ ξg2 = ξg1g2 :

ξg1g2




p
v
R
bf
bω




=




Q′
0Q

′′
0(p + p′0 + p′′0)
Q′

0Q
′′
0v

Q′
0Q

′′
0RR

′′
0R

′
0

(R′′
0R

′
0)
T (bf + b′f0 + b′′f0)

(R′′
0R

′
0)
T (bω + b′ω0 + b′′ω0)




We verify υg1 ◦ υg2 = υg1g2

υg1 ◦ υg2




f
ω
a
m


 = υg1




(R′′
0)
T (f + b′′f0)

(R′′
0)
T (ω + b′′ω0)
Q′′

0a
Q′′

0m


 =




(R′
0)
T (R′′

0)
T (f + b′f0 + b′′f0)

(R′
0)
T (R′′

0)
T (ω + b′ω0 + b′′ω0)
Q′

0Q
′′
0a

Q′
0Q

′′
0m




υg1g2




f
ω
a
m


 =




(R′′
0R

′
0)
T (f + b′f0 + b′′f0)

(R′′
0R

′
0)
T (ω + b′ω0 + b′′ω0)
Q′

0Q
′′
0a

Q′
0Q

′′
0m



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and ̺g1 ◦ ̺g2 = ̺g1g2

̺g1 ◦ ̺g2
(
yp
ym

)
= ̺g1

(
Q′′

0(yp + p′′0)
(R′′

0)
T ym

)
=

(
Q′

0Q
′′
0(yp + p′0 + p′′0)

(R′
0)
T (R′′

0)
T ym

)

̺g1g2

(
yp
ym

)
=

(
Q′

0Q
′′
0(yp + p′0 + p′′0)
(R′′

0R
′
0)
T ym

)

so ξg, υg, ̺g are left actions.

4.6 Invariant Observer Theory

4.6.1 Invariants and Moving Frame

Using notation from Section 4.4 define the Lie group action φg = ϕg × ψg × ρg
of the symmetry group G acting on the smooth manifold M = X × V × Y with
dim(M) = m, dim(G) = r and r ≤ m. A real-valued function J :M → R is defined
to be an invariant of G [110, p. 77] if

J(φg(p)) = J(p) ∀g ∈ G, ∀p ∈M

We will cover an algorithm for obtaining the complete set of invariants of G which
are used in Sections 4.6.2 and 4.6.3 below. This procedure uses a moving frame
which is obtained using the constructive method in [52, 112].

We first review some definitions associated with Lie group actions:

• The orbit Op of p ∈M is the set {φg(p) : g ∈ G}

• G acts semi-regularly on M if the orbits Op all have the same dimension

• G acts regularly on M if it acts semi-regularly and in addition, each p ∈ M
has arbitrarily small neighborhoods U ⊂M whose intersection with each orbit
in M is a connected subset of the orbit

• The action φg is transitive if for every p ∈M , Op =M

• The isotropy group Gp of p ∈M is the set {g ∈ G : φg(p) = p}

• An action φg is free if for every p ∈M , Gp = {e}

• An action φg is locally free if for every p ∈M , Gp is a discrete subgroup of G

We deal exclusively with regular Lie group actions; the additional conditions over
semi-regular actions are easily satisfied except for pathological cases e.g. [112, p. 158],
and in exchange much stronger results can be proven specifically the following
adapted from [111, Thm. 2.23]:

Theorem 1 Let G be a Lie group acting regularly on an m-dimensional manifold
M with s-dimensional orbits. Then, around every point p0 ∈ M , there exists a
“flat” chart U with local coordinates (y, z) = (y1, . . . , ys, z1, . . . , zm−s), such that
any orbit Op intersects U either in the empty set, or in a single s-slice S ⊂ U
defined in coordinates as S = {(y, z)|(z1 = c1, . . . , zm−s = cm−s} for some c =
(c1, . . . , cm−s) ∈ R

m−s.
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Remark : This says that the “flat” coordinate functions zi : U → R are constant
along any orbit passing through U ⊂ M . The actual set of values c is different for
every orbit, and can be used to (locally) distinguish between them. Because each
orbit is the set of points {φg(p) : g ∈ G}, the flat coordinate functions define a
set of (m − s) invariants of G, (J1(x), . . . , Jm−s(x)) = (z1, . . . , zm−s), which exist
in a neighborhood U around any point p0 ∈ M . Any other invariant J(x) can be
uniquely expressed as an analytic function of this set [112, Thm. 8.17]: J(x) =
H(J1(x), . . . , Jm−s(x)). Note that although the theorem guarantees existence of the
flat charts, it says nothing about how to actually find their local coordinates; this
is done using the constructive method of normalization discussed below.

Theorem 1 is a consequence of the Frobenius Theorem, used to prove that a
Lie group acting smoothly with constant rank forms a foliation of the manifold
M , where the leaves are the individual orbits. Semi-regular actions (i.e. acting with
constant rank) are sufficient to prove existence of the foliation and its associated flat
charts, however the intersection may occur in a countable union of s-slices, which
is why we demand the action to be regular. A proof of the Frobenius Theorem and
the existence of foliation is given in [83, Chap. 19].

Theorem 1 can be visualized by considering a simple example. Consider the
Lie group of planar rotations SO(2) acting on R

2, a smooth manifold. We know
SO(2) acts regularly on R

2\{0} [112, p. 162]. The orbits of SO(2) on R
2 are circles

centered at the origin shown schematically in Figure 4.1, and the dimension of each
orbit is 1. Consider the chart of polar coordinates on R

2 with U = R
2\{0} and

coordinate functions
θ(x1, x2) = atan2(x2, x1)

r(x1, x2) =
√
x21 + x22

In this particular chart, any orbit of SO(2) intersects U either in the empty set for
the circle with radius zero, or in a single 1-slice defined by {(θ, r)|r = R}, i.e. a
circle centered at the origin where the value of R distinguishes individual orbits.
The real-valued coordinate function r(x1, x2) =

√
x21 + x22 = ‖x‖ is an invariant of

SO(2) because planar rotations do not alter lengths. The existence of this flat chart
is guaranteed by Theorem 1, although finding its form is not constructive; remark
that a different chart (U = R

2\{0}, IdR2) on R
2 with coordinate functions x1 and

x2 is clearly not flat because x2 is not an invariant of SO(2).
Each orbit of a regular action forms an s-dimensional embedded submanifold

of M [83, p. 174] due to the existence of s-slices guaranteed by Theorem 1. We
can thus define a cross-section to the orbits as an (m − s)-dimensional embedded
submanifold K which intersects transversely [83, p. 203] with each orbit at most
once. Specifically, this means that for k = Op ∩ K, the tangent spaces TkOp and
TkK (with dimensions s andm−s, respectively) span TkM , and that k ∈M contains
at most one element.

For our simple example of SO(2) acting on R
2, the cross-section is a (2−1) = 1 di-

mensional line segment from the origin illustrated in Figure 4.1, which transversely
intersects with each orbit at most once because Op ∩ K = k is a single point and
the one-dimensional tangent spaces TkOp and TkK together span TkR

2.
We will prove the existence of a cross-section through any point p ∈ M . Let V

denote a chart around p ∈M with coordinates (x1, . . . , xm) — note V is an arbitrary
chart, i.e. not necessarily the flat chart of Theorem 1. Fix the first s coordinates,
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b k

K

Figure 4.1: Orbits of SO(2) on R
2 and cross-section K

such that K = {x1 = c1, . . . , xs = cs} is an (m− s) slice in V , which makes K into
an (m− s) dimensional embedded submanifold as desired. We now need to prove K
intersects each orbit at most once. Assume the set of invariants (J1(x), . . . , Jm−s(x))
is available and has been expressed in the current (not necessarily flat) coordinates
(x1, . . . , xm). Recall their existence is guaranteed by Theorem 1, and we will cover
their actual construction shortly. The Implicit Function Theorem [83, p. 164] guar-
antees that if the matrix

∂(J1, . . . , Jm−s)

∂(xs+1, . . . , xm)
(x0)

is nonsingular at the point x0 (which is automatic since the (m − s) invariants
Jk are functionally independent), then in a neighbourhood of x0, the level set
(J1, . . . , Jm−s)(x) = c exists if and only if (xs+1, . . . , xm) = F(x1, . . . , xs) for some
smooth map F . Since level sets of the fundamental invariants define individual
orbits (distinguished by c), and since K was defined by {x1 = c1, . . . , xs = cs},
we conclude any orbit intersects K at exactly one point, (c1, . . . , cs,F(c1, . . . , cs)),
proving that K is a cross-section as claimed.

Finally, having proven the existence of a cross-section K such that any orbit
intersects both transversely and at most once, we introduce the method of normal-
ization. Assume the Lie group G acts semi-freely or freely on M . The necessity
of this assumption will become clear below, but for now, this only means that for
dim(G) = r, the orbits of φg are r-dimensional [52, Prop. 2.5].

Let x ∈M be an arbitrary point, and Ox its orbit. Define the cross-section K in
coordinates as {x1 = c1, . . . , xr = cr}. We have just proved that any orbit intersects
this K at exactly one point, and so we can define the map ξ : M → M, ξ(x) =
Ox∩K = k, which maps an arbitrary point x in M to where its corresponding orbit
Ox intersects K. By construction, ξ(x) = k = ξ(φg(x)), i.e. ξ is necessarily invariant
with respect to the group action. Writing ξ in the same coordinates as those used
to define K, it follows (ξ1(x), . . . , ξr(x)) = (c1, . . . , cr), the set of constants used to
define the cross-section; and that {ξm−r(x), . . . , ξm(x)} are the complete set of m−r
invariants of the group action, whose existence has been guaranteed by Theorem 1.

Clearly, if we can construct ξ, we will obtain the set of invariants of the group
action. This is done as follows: write the group action φg in coordinates, and write
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the components as φg = (φag , φ
b
g) ∈ R

r×R
m−r, choosing K such that c = (c1, . . . , cr)

are in the range of φag. Now, we just need to solve φag(x) = c for g; since φg
has r-dimensional orbits everywhere, the Jacobian matrix ∂φag/∂g is non-singular,
and so by the Implicit Function Theorem, φag(x) = c is locally guaranteed to have
the solution g = γ(x), known as the moving frame. Once γ(x) is found, we have
ξ(x) = φγ(x)(x), and so φaγ(x) recovers the constants defining the cross-section K,

and φbγ(x) is the complete set of (m− r) invariants.

From the definition of invariance and composition of (left) Lie group actions, we
also obtain

φbγ(x)(x) = φbγ(φg(x))(φg(x)) = φbγ(φg(x))g(x) =⇒ γ(x) = γ(φg(x))g,

or equivalently γ(φg(x)) = γ(x)g−1, the “right equivariance” property of the moving
frame, which implicitly requires φg to be free as shown next: let h ∈ Gx, the isotropy
group of x ∈M such that φh(x) = x. Then,

γ(x) = γ(φh(x)) = γ(x)h−1 =⇒ h = e

and so Gx = e, i.e. φg is necessarily free. We can relax this requirement by demand-
ing only local right equivariance of γ(x), i.e. γ(φg(x)) = γ(x)g−1 for all g close to e,
for which Gx can be a discrete isotropy group and φg a semi-free action.

While the concept of cross-sections to orbits is geometric and globally defined due
to being based on foliations, the normalization procedure is intrinsically local, since
the solution to φag = c for g = γ(x) is guaranteed only locally by the Implicit Function
Theorem. An important exception is the class of problems where φag represents G
acting on itself by left or right translation, an action which is regular, free, and
transitive [83, p. 209]. This was seen in Section 4.4.1 for an AHRS’s symmetry to
ground-frame rotations, for which we had

Φg

(
R
bω

)
=

(
Q0R
ω0 + bω

)
,

where SO(3) × R
3 acts on itself by left translation. In this case, we can choose

c = e ∈ G and the solution to φag(x) = e is g = x−1 = γ(x), which is clearly
defined globally. The moving frame is right equivariant due to the freeness, and the
invariants are given by φbγ(x) = φbx−1 as before. This class of symmetries is a subset

of the general problem and is the case treated in [28].

4.6.2 Invariant Frame

A vector field w :M → TM is defined to be G-invariant if

(ϕg)∗w(x) = w(ϕg(x)) ∀g ∈ G,

essentially identical to the definition of G-invariant dynamics in Section 4.3.
Since TM is by construction a smooth vector bundle of rank m, we can define

an invariant frame [111, p. 67] as an orderedm-tuple of G-invariant vector fields (wi)
which form a global frame for TM over M , i.e. for each p ∈M ,

(
w1(p), . . . , wm(p)

)

forms a basis for the fiber π−1(p) = TpM , an m-dimensional vector space. The
following Theorem, adapted from [27, Lem. 1], provides a constructive method to
build an invariant frame.
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Theorem 2 The vector fields defined by

wi(x) =
(
ϕγ(x)−1

)
∗
vi i = 1, . . . ,m (4.8)

where γ(x) :M → G is the moving frame constructed previously, and vi ∈ TpM are
basis vectors of the tangent space at some p ∈M , form an invariant frame.

Proof : We use the following two properties of pushforwards [83, Lem. 3.5]: If F :
M → N is a diffeomorphism, F∗ : TpM → TF (p)N is an isomorphism; and (G◦F )∗ =
G∗ ◦ F∗.

Since TpM is an m-dimensional vector space [83, Lem. 3.9], a set of basis vectors
(v1, . . . , vm) can be chosen. Since ϕg is a diffeomorphism, (ϕγ(x)−1)∗ : TpM → TxM
is an isomorphism, proving (wi(x)) is a frame.

We prove invariance of wi by direct verification. Applying ϕg to wi(x) above,
we have

wi(ϕg(x)) =
(
ϕγ(ϕg(x))−1

)
∗
vi

and because γ(x) is the moving frame, γ(ϕg(x))
−1 =

(
γ(x)g−1

)−1
= gγ(x)−1. We

thus have

wi(ϕg(x)) =
(
ϕgγ(x)−1

)
∗
vi =

(
ϕg ◦ ϕγ(x)−1

)
∗
vi =

(
ϕg
)
∗
◦
(
ϕγ(x)−1

)
∗
vi =

(
ϕg
)
∗
wi(x),

i.e. wi(x) is G-invariant. QED.
The particular case of M = G and ϕg = Lg above is well-known in differential

geometry, where vector fields verifying (Lg)∗w(h) = w(gh) with g, h ∈ G are said to
be left-invariant (c.f. Section 4.3). The set of all left-invariant vector fields on G can
be shown to form a finite-dimensional Lie algebra denoted as Lie(G), with dimension
equal to dim(G) [83, Thm. 4.20]. For this case, the moving frame is computed to
be γ(g) = g−1 (as discussed earlier for G acting on itself by left translation), and
the corresponding invariant vector field w(x) = (Lg)∗vi with vi ∈ TeG is in fact the
isomorphism between TeG and Lie(G) used to prove the latter is finite-dimensional.

The isomorphism between Lie(G) and TeG is used extensively in differential
geometry: for a given Lie group G, we define the Lie algebra g as the vector space
TeG equipped with a Lie bracket chosen such that Lie(G) and g are isomorphic as
Lie algebras. Since the state manifolds of the AHRS (Section 4.2) and Aided INS
(Section 4.5) are products of the Lie groups R

n, SO(3) and H1 ⊂ H, we can use
their Lie algebras and p = e to immediately obtain expressions for the vi ∈ TeG
basis vectors used in (4.8):

• Euclidian space R
n: The Lie algebra is R

n with the trivial bracket [v1, v2] =
0 [83, p. 96]. The basis vectors of T0R

n can thus be chosen as vi = ei, i.e.

v1 =



1
0
0


 , v2 =



0
1
0


 , v3 =



0
0
1




• Rotation matrices SO(3): The Lie algebra so(3) consists of skew-symmetric
matrices S(v), v ∈ R

3 under the commutator bracket [83, p. 205]

[S(v1), S(v2)] = S(v1)S(v2)− S(v2)S(v1)
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The basis vectors for TISO(3) are taken as vi = S(ei), specifically

v1 =



0 0 0
0 0 −1
0 1 0


 , v2 =




0 0 1
0 0 0
−1 0 0


 , v3 =



0 −1 0
1 0 0
0 0 0




• Unit quaternions H1: The Lie algebra consists of pure quaternions (real entry
equal to zero), with quaternion multiplication used as the Lie bracket [83,
p. 204]. The basis vectors are the quaternions i, j and k, i.e.

v1 =




0
1
0
0


 , v2 =




0
0
1
0


 , v3 =




0
0
0
1




In order to compute the pushforward in (4.8), we use the following method from [83,
pp. 76-77]: for any X ∈ TpM , define the smooth curve Γ : R → M whose tangent
vector for R ∋ τ = 0 is X; then, F∗X = (F ◦γ)′(0). In our case, we have F = ϕγ(x)−1

and X = vi, define Γ(τ) = viτ , and obtain

(
ϕγ(x)−1

)
∗
vi =

d

dτ

(
ϕγ(x)−1(viτ)

)∣∣∣∣
τ=0

= wi(x) (4.9)

4.6.3 Invariant Observer, Invariant Output Error

For the system dynamics ẋ = f(x, u), y = h(x, u), an invariant observer is the
system

˙̂x = F (x̂, u, y)

with the following three properties:

• (ϕg)∗ F (x̂, u, y) = F (ϕg(x̂), ψg(u), ρg(y)) (F is G-invariant)

• F (x, u, h(x, u)) = f(x, u) (F is a pre-observer)

• (x̂ − x) → 0 as t → ∞ for all x̂(0), or for all x̂(0) close to x(0) (the observer
error dynamics are globally or locally asymptotically stable)

A constructive method to build the invariant observer will be given below. One
ingredient of this construction is an invariant output error, the smooth vector-valued
map E(x̂, u, y) with the following two properties:

• E(x̂, u, y) = 0 ⇐⇒ y = h(x̂, u) (E is an output error)

• E(ϕg(x̂), ψg(u), ρg(y)) = E(x̂, u, y) (E is an invariant)

We recall Section 4.6.1, where the group action φg = ϕg×ψg× ρg acting (regularly)
on the product manifoldM = X×V ×Y with dim(M) = m and dim(G) = r, r ≤ m
gave the complete set of invariants of G as φbγ(x)(x) :M → R

m−r. Let dim(X) = n,

dim(V ) = o, dim(Y ) = p denote the number of states, inputs and outputs of our
system, respectively. Since Y clearly depends on X and V through the output map,
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we further assume r ≤ n+o and define I(x, u) as the set of functionally independent
invariants

I(x, u) =
(
ϕbγ(x)(x), ψγ(x)(u)

)
∈ R

n+o−r (4.10)

and Jh(x, y) as the remaining invariants

Jh(x, y) = ργ(x)(y) ∈ R
p.

We now prove that the construction

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y) (4.11)

is an invariant output error. Assume y = h(x̂, u); clearly E(x̂, u, h(x̂, u)) = 0.
Conversely, assume E(x̂, u, y) = 0. From (4.11) where Jh(x̂, y) = ργ(x̂)(y), we
see y 7→ E(x̂, u, y) is invertible for any x̂, u because ρg(y) is a diffeomorphism
for any g ∈ G, as discussed in Section 4.3.1. This guarantees E(x̂, u, y) = 0
for a single y value, meaning E(x̂, u, y) = 0 =⇒ y = h(x̂, u). This proves E is
an output error, i.e. E(x̂, u, y) = 0 ⇐⇒ y = h(x̂, u). The invariance of (4.11)
is verified directly: Jh(ϕg(x̂), ρg(y)) = Jh(x̂, y) because Jh is an invariant, and
Jh(ϕg(x̂), h(ϕg(x̂), ψg(u))) = Jh(ϕg(x̂), ρgh(x̂, u)) = Jh(ϕg(x̂), ρg(ŷ)) since the sys-
tem output is G-equivariant. QED.

Equation (4.11) is obviously not the only possible invariant output error; how-
ever, we can prove that any other invariant output error is written as Ẽ(x̂, u, y) =
L(I(x̂, u), E(x̂, u, y)), where L is a smooth function such that L(I,E) = 0 ⇐⇒ E =
0: since Ẽ is an invariant, Ẽ(x̂, u, y) = F(I(x̂, u), Jh(x̂, y)) where F is an analytic
function as discussed in Section 4.6.1. We have Jh(x̂, y) = Jh(x̂, h(x̂, u))−E(x̂, u, y)
and since Jh(x̂, h(x̂, u)) is an invariant, it must be a function of the fundamental
invariants I(x̂, u). It follows that Ẽ(x̂, u, y) = L(I(x̂, u), E(x̂, u, y)). Since both E
and Ẽ are invariant output errors, E = 0 ⇐⇒ y = h(x̂, u) ⇐⇒ 0 = Ẽ = L(I,E).
QED.

Using the constructions above, we now state the main theorem regarding invari-
ant pre-observers [27, Thm. 1]. Convergence will be addressed afterwards.

Theorem 3 ˙̂x = F (x̂, u, y) is an invariant pre-observer for the G-invariant and
G-equivariant system ẋ = f(x, u), y = h(x, u) if and only if

F (x̂, u, y) = f(x̂, u) +

n∑

i=1

Li (I(x̂, u), E(x̂, u, y))wi(x̂), (4.12)

where I(x̂, u) is the set of invariants (4.10), E(x̂, u, y) is the invariant output er-
ror (4.11), Li are smooth functions such that Li(I, 0) = 0, and wi(x̂) are the invari-
ant frame vector fields (4.8).

Proof : (⇐=) We first verify that (4.12) is a pre-observer: for x̂ = x and y = h(x, u),
we have

F (x, u, y) = f(x, u) +

n∑

i=1

Li (I(x, u), E(x, u, h(x, u))) wi(x)

= f(x, u) +

n∑

i=1

Li (I, 0)wi = f(x, u).
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We also verify G-invariance of (4.12) directly: I(x̂, u) and E(x̂, u, y) are invariants
thus so is Li (I(x̂, u), E(x̂, u, y)). By G-invariance of f(x̂, u) and wi(x̂), we have

F (ϕg(x̂), ψg(u), ρg(y)) = (ϕg)∗ f(x̂, u) +
n∑

i=1

Li (I(x̂, u), E(x̂, u, y)) (ϕg)∗ wi(x̂)

= (ϕg)∗ F (x̂, u, y),

the last equality due to the linearity of the pushforward.
(=⇒) Let ˙̂x = F (x̂, u, y) be an invariant pre-observer. By the discussion in

Section 4.3, the dynamics F (x̂, u, y) map to the tangent bundle TM , so they can be
expressed as

F (x̂, u, y) =

n∑

i=1

Fi(x̂, u, y)wi(x̂),

where Fi(x̂, u, y) are smooth real-valued functions and (wi(x̂)) is the invariant frame
(4.8), which was proven to be a global frame for TM in Section 4.6.2. Since F is
G-invariant,

F (ϕg(x̂), ψg(u), ρg(y)) =
n∑

i=1

Fi (ϕg(x̂), ψg(u), ρg(y))wi(ϕg(x̂))

= (ϕg)∗ F (x̂, u, y) = (ϕg)∗

n∑

i=1

Fi(x̂, u, y)wi(x̂).

Since (ϕg)∗wi(x̂) = wi(ϕg(x̂)) and the pushforward is linear, it follows that

Fi (ϕg(x̂), ψg(u), ρg(y)) = Fi(x̂, u, y),

i.e. Fi(x̂, u, y) are invariants of G. Since F is a pre-observer,

f(x, u) = F (x, u, h(x, u)) =
n∑

i=1

Fi(x, u, h(x, u))wi(x),

and we can then write

F (x̂, u, y) = f(x̂, u) + F (x̂, u, y)− f(x̂, u)

= f(x̂, u) +

n∑

i=1

[Fi(x̂, u, y) − Fi(x̂, u, h(x̂, u))]wi(x̂),

and since Fi are invariants, we conclude

Fi(x̂, u, y) − Fi(x̂, u, h(x̂, u)) = Li (I(x̂, u), E(x̂, u, y))

with Li (I, 0) = 0 because E is an output error and F is a pre-observer. QED.
Equation (4.12) has an equivalent form obtained by re-writing the real-valued

gains Li(I,E) as LiE, where each Li is a 1×p gain vector whose entries are arbitrary
functions of I and E. The invariant pre-observer (4.12) is rewritten as

F (x̂, u, y) = f(x̂, u) +

n∑

i=1

[
LiE(x̂, u, y)

]
wi(x̂), (4.13)

89



which clearly satisfies Li(I, 0) = 0 for any Li, including constant entries. Concate-
nating the vector fields as W (x̂) = (w1(x̂), · · · , wn(x̂)) and the gain vectors as L =(
LT1 , · · · ,L

T
n

)T
, (4.13) can be written as F (x̂, u, y) = f(x̂, u) +W (x̂)LE(x̂, u, y).

We now address convergence of the invariant pre-observer (4.12) resp. (4.13).
Not surprisingly, there is no general constructive procedure for choosing gains L
or L to guarantee convergence. However, the stability analysis of the invariant
pre-observer can be greatly simplified by considering the invariant estimation error

η(x, x̂) = ϕγ(x)(x̂)− ϕγ(x)(x) (4.14)

Clearly, x = x̂ =⇒ η = 0, and since ϕg is a diffeomorphism ∀g ∈ G, x̂ =
ϕγ(x)−1η(x, x̂) + x, hence η = 0 ⇐⇒ x = x̂. We also verify η(x, x̂) is an invari-
ant:

η (ϕg(x), ϕg(x̂)) = ϕγ(ϕg(x))(ϕg(x̂))−ϕγ(ϕg(x))(ϕg(x)) = ϕγ(ϕg(x))g(x̂)−ϕγ(ϕg(x))g(x)

and since γ(ϕg(x))g = γ(x) by the right equivariance of γ(x) established in Sec-
tion 4.6.1, (4.14) is an invariant: η (ϕg(x), ϕg(x̂)) = η(x, x̂). The convergence of
x to x̂ is equivalent to the stability of η dynamics, whose analysis is (potentially
greatly) simplified due to the following result [27, Thm. 3]:

Theorem 4 The dynamics of the invariant estimation error η(x, x̂) depend on the
system trajectory only through the set of fundamental invariants I(x, u), i.e.

d

dt
η = Υ(η, I(x, u)) .

Proof : As shown above, η is an invariant: η(x, x̂) = η (ϕg(x), ϕg(x̂)), from which it
follows

d

dt
η(x, x̂) =

d

dt
η (ϕg(x), ϕg(x̂)) .

Using the chain rule, we have

d

dt
η(x, x̂) =

∂η

∂x
(x, x̂)

d

dt
x+

∂η

∂x̂
(x, x̂)

d

dt
x̂

=
∂η

∂x
(x, x̂)f(x, u) +

∂η

∂x̂
(x, x̂)F (x̂, u, h(x, u))

:= σ(x, x̂, u),

d

dt
η(ϕg(x), ϕg(x̂)) =

∂η

∂x
(ϕg(x), ϕg(x̂))

d

dt
ϕg(x) +

∂η

∂x̂
(ϕg(x), ϕg(x̂))

d

dt
ϕg(x̂)

=
∂η

∂x
(ϕg(x), ϕg(x̂))f(ϕg(x), ψg(u))

+
∂η

∂x̂
(ϕg(x), ϕg(x̂))F (ϕg(x̂), ψg(u), h(ϕg(x), ψg(u))

= σ(ϕg(x), ϕg(x̂), ψg(u)),

i.e. the function σ(x, x̂, u) is an invariant. We have x̂ = ϕγ(x)−1η + x = F(x, η) as
before. Since σ(x, x̂, u) = σ(x,F(x, η), u) is an invariant it must be a function of the
fundamental set of invariants I(x, u) as well as η: σ(x,F(x, η), u) = Υ(η, I(x, u)) =
σ(x, x̂, u) = (d/dt)η. QED.
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The key point of Theorem 4 is that the convergence properties of the invariant
observer (4.12) or (4.13) depend on the system trajectory through the invariants
I(x, u) rather than (x, u) as in the general case. This guarantees a simplified stability
analysis and gain selection because by (4.10) I(x, u) ∈ R

n+o−r where n, o are the
dimensions of the state and input manifolds and r is the dimension of the symmetry
group G.

It can be shown that for a subclass of G-invariant systems, namely those with
X = G, dynamics of the form

d

dt
x = F (x, u) = (Lx)∗ u

and which are G-invariant to ϕg(x) = Rgx and ψg(u) =
(
Lg−1Rg

)
∗
u possess invari-

ant error dynamics which are autonomous from the system trajectory (x, u) [26, 28];
a concrete example is the AHRS (4.1) without bias estimation,

Ṙ = RS(ω)
[
ya
ym

]
=

[
RTa
RTm

]
.

Autonomy of the η dynamics greatly simplifies convergence analysis, however it can
only be guaranteed for a small subset of symmetry-possessing systems. In particular
the AHRS (4.1) and Aided INS (4.6) do not possess the required form, and the η
dynamics computed in Section 4.7 are dependent on the system trajectory through
I(x, u) exactly as stated by Theorem 4.

We will employ Theorem 4 using the estimated version of invariants (4.10),

d

dt
η = Υ̂(η, I(x̂, u)).

This holds because (d/dt)η = σ(x, x̂, u) is an invariant and thus a function of I(x)
and I(x̂, u); but η = ϕγ(x)(x̂) − ϕγ(x)(x) always contains I(x) = ϕbγ(x)(x) as a

subset, and the remaining part is necessarily a function of I(x̂, u) since η(x, x̂) is an
invariant. It follows that σ(x, x̂, u) = Υ̂(η, I(x̂, u)) = (d/dt)η as claimed.

4.7 Invariant Observer Design

We now apply the invariant observer construction method in Section 4.6 to the
AHRS (4.1) and Aided INS (4.6), (4.7). The symmetries of both systems are known
from Sections 4.4 and 4.5 and all the steps are systematic.

4.7.1 Invariant AHRS Design

The AHRS system dynamics written in terms of rotation matrices R ∈ SO(3)
are (4.1)

Ṙ = RS(ω − bω)

ḃω = 0
[
ya
ym

]
=

[
RTa
RTm

]
,
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4.7.1.1 Body frame symmetries

The first set of symmetries physically represents rotating the body-fixed reference
frame. The Lie group actions of G = SO(3)× R

3 ∋ (R0, ω0) = g are

ϕg

(
R
bω

)
=

(
RR0

RT0 (bω + ω0)

)
, ψg

(
ω
)
=
(
RT0 (ω + ω0)

)
, ρg

(
ya
ym

)
=

(
RT0 ya
RT0 ym

)

We first find the moving frame and complete set of invariants as in Section 4.6.1.
The composite Lie group action φg = ϕg × ψg × ρg acts regularly and freely on the
product manifold M = X ×V ×Y . Since dim(G) = 6 and dim(X) = 6 we partition
φg as φ

a
g = ϕg and φ

b
g = (ψg×ρg) and solve φag(x) = c for g, the image of the moving

frame γ(x):

ϕg

(
R
bω

)
=

(
RR0

RT0 (bω + ω0)

)
=

(
I
0

)
=⇒ g = (RT ,−bω) = γ(x)

The complete set of invariants is then φbγ(x)(x) = ψγ(x)× ργ(x) which we partition as

I(x, u) = ψγ(x)(u) = ψ(RT ,−bω)

(
ω
)
= R(ω − bω)

Jh(x, y) = ργ(x)(y) = ρ(RT ,−bω)

(
ya
ym

)
=

(
Rya
Rym

)

The invariant output error is computed by (4.11)

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y) =

(
R̂R̂Ta

R̂R̂Tm

)
−
(
R̂ya
R̂ym

)
=

(
a− R̂ya
m− R̂ym

)

From Section 4.6.2, the invariant frame for the state manifold X = SO(3) × R
3 is

defined by the set of vectors (4.8) where vRi = (S(ei) 0)T and vωi = (0 ei)
T , i =

1, 2, 3 span the tangent space TeX. We have γ(x) = (RT ,−bω) =⇒ γ(x)−1 = (R, bω)
and we compute the invariant frame vectors using (4.9)

wRi (x) =
d

dτ

(
ϕ(R,bω)

(
S(ei)τ

0

))∣∣∣∣
τ=0

=
d

dτ

(
S(ei)Rτ

0

)∣∣∣∣
τ=0

=

(
S(ei)R

0

)

wωi (x) =
d

dτ

(
ϕ(R,bω)

(
0
eiτ

))∣∣∣∣
τ=0

=
d

dτ

(
0

RT (eiτ + bω)

)∣∣∣∣
τ=0

=

(
0

RT ei

)

The invariant observer is written as (4.13)

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

[
LRi E

]
S(ei)R̂

˙̂
bω =

3∑

i=1

[
Lωi E

]
R̂T ei

We re-arrange the observer to obtain a more compact expression. The invariant

output error column vector is partitioned as E = [ETa ETm]
T and the row gains LRi ,
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Lωi are each partitioned as Li = [Li,a Li,m] giving

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

{
LRi,aEa + LRi,mEm

}
S(ei)R̂

˙̂
bω =

3∑

i=1

{
Lωi,aEa + Lωi,mEm

}
R̂T ei

Remark {··} ∈ R so the R̂ terms can be factored out:

˙̂
R = R̂S(ω − b̂ω) +

[
3∑

i=1

{
LRi,aEa + LRi,mEm

}
S(ei)

]
R̂

˙̂
bω = R̂T

[
3∑

i=1

{
Lωi,aEa + Lωi,mEm

}
ei

]

The [··] terms are now written using matrix-vector multiplication:

˙̂
R = R̂S(ω − b̂ω) + S

(
LRa Ea + LRmEm

)
R̂

˙̂
bω = R̂T

(
LωaEa + LωmEm

)
,

(4.15)

where each L is a 3 × 3 matrix of gains such that L = L(I,E). The invariant
estimation error associated with (4.15) is computed using (4.14):

ϕγ(x)(x̂)− ϕγ(x)(x) = ϕ(RT ,−bω)

(
R̂

b̂ω

)
− ϕ(RT ,−bω)

(
R
bω

)
=

(
R̂RT − I

R(b̂ω − bω)

)
=

(
ηR
ηω

)

For convenience we re-define ηR = R̂RT , such that R = R̂ ⇐⇒ ηR = I (instead of
0). We now compute the dynamics of η, which by Theorem 4 are known to depend
on η and I only. Remark

(
Ea
Em

)
=

(
a− R̂ya
m− R̂ym

)
=

(
a− R̂RTa

m− R̂RTm

)
=

(
a− ηRa
m− ηRm

)

i.e. both terms are functions of ηR and the known constants a and m. Time differ-
entiating the identity RRT = I we have

ṘRT +R
d

dt
(RT ) = 0 =⇒ d

dt
(RT ) = −RT ṘRT

By direct computation, we now find

d

dt
ηR =

˙̂
RRT + R̂

d

dt
(RT )

= R̂S(ω − b̂ω)R
T + S

(
LRa Ea + LRmEm

)
R̂RT + R̂

(
−RTRS(ω − bω)R

T
)

= R̂S(bω − b̂ω)R
T + S

(
LRaEa + LRmEm

)
R̂RT

= R̂RTRS(bω − b̂ω)R
T + S

(
LRa Ea + LRmEm

)
R̂RT

= R̂RTS
[
R(bω − b̂ω)

]
+ S

(
LRaEa + LRmEm

)
R̂RT

d

dt
ηR = ηRS(−ηω) + S

(
LRa Ea + LRmEm

)
ηR,
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which together with E = E(ηR) confirms Theorem 4. Remark the dynamics of ηR
are nonlinear, coupled with ηω, and autonomous. Moving to ηω we have

d

dt
ηω = Ṙ(b̂ω − bω) +R(

˙̂
bω − ḃω)

= RS(ω − bω)(b̂ω − bω) +RR̂T
(
LωaEa + LωmEm

)

= RS(ω − b̂ω + b̂ω − bω)R
TR(b̂ω − bω) +RR̂T

(
LωaEa + LωmEm

)

=
{
RR̂T R̂S(ω − b̂ω)R̂

T R̂RT +RS(b̂ω − bω)R
T
}
R(b̂ω − bω)

+ (R̂RT )T
(
LωaEa + LωmEm

)

=
{
(R̂RT )TS

[
R̂(ω − b̂ω)

]
R̂RT + S

[
R(b̂ω − bω)

]}
R(b̂ω − bω)

+ (R̂RT )T
(
LωaEa + LωmEm

)

=
{
(ηR)

TS [I(x̂, u)] ηR + S [ηω]
}
ηω + (ηR)

T
(
LωaEa + LωmEm

)

d

dt
ηω = S

[
(ηR)

T I(x̂, u)
]
ηω + (ηR)

T
(
LωaEa + LωmEm

)
,

where the last line follows from S[ηω]ηω = ηω × ηω = 0. Theorem 4 is confirmed
once again; remark that η̇ω is not autonomous, but depends on the system trajectory
through the (known) estimated invariant I(x̂, u) = R̂(ω − b̂ω).

4.7.1.2 Ground frame symmetries

We now consider the AHRS symmetries representing rotations of the ground-fixed
frame covered in Section 4.4.1. The symmetry group G = SO(3)×R

3 ∋ (Q0, ω0) = g,
where Q0 represents the rotation of the ground frame, acts on the system through
the Lie group actions

Φg

(
R
bω

)
=

(
Q0R
ω0 + bω

)
, Ψg



ω
a
m


 =



ω0 + ω
Q0a
Q0m


 , Υg

(
ya
ym

)
=

(
ya
ym

)

We have φg = Φg × Ψg × Υg acting on M = X × V × Y . With dim(G) = 6 and
dim(X) = 6, we partition φg as φag = Φg and φbg = (Ψg × Υg) and solve φag(x) = c
for g = γ(x). Remark that in the present case Φg is the Lie group G acting on itself
by left multiplication, which guarantees the global existence of γ(x) as discussed at
the end of Section 4.6.1. The calculation procedure is identical to Section 4.7.1.1:

Φg

(
R
bω

)
=

(
Q0R
ω0 + bω

)
=

(
I
0

)
=⇒ g = (RT ,−bω) = γ(x)

The complete set of invariants φbγ(x)(x) is partitioned as

I(x, u) = Ψγ(x)(u) = Ψ(RT ,−bω)



ω
a
m


 =



−bω + ω
RTa
RTm


 =



Iω
Ia
Im




Jh(x, y) = Υγ(x)(y) = Υ(RT ,−bω)

(
ya
ym

)
=

(
ya
ym

)
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The invariant output error is given by (4.11)

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y) =

(
R̂Ta

R̂Tm

)
−
(
ya
ym

)
=

(
R̂Ta− ya
R̂Tm− ym

)

The invariant frame for the state manifold X = SO(3) × R
3 is defined by the set

of vectors (4.8) where vRi = (S(ei) 0)T and vωi = (0 ei)
T , i = 1, 2, 3 span the

tangent space TeX. We have γ(x) = (RT ,−bω) =⇒ γ(x)−1 = (R, bω) and by (4.9)

wRi (x) =
d

dτ

(
Φ(R,bω)

(
S(ei)τ

0

))∣∣∣∣
τ=0

=
d

dτ

(
RS(ei)τ

0

)∣∣∣∣
τ=0

=

(
RS(ei)

0

)

wωi (x) =
d

dτ

(
Φ(R,bω)

(
0
eiτ

))∣∣∣∣
τ=0

=
d

dτ

(
0

bω + eiτ

)∣∣∣∣
τ=0

=

(
0
ei

)

The invariant observer is given by (4.13)

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

[
LRi E

]
R̂S(ei)

˙̂
bω =

3∑

i=1

[
Lωi E

]
ei

As in Section 4.7.1.1, we partition LRi and Lωi as Li = [Li,a Li,m] and E =
[ETa ETm]

T , using the invariant output error E computed above. We get

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

{
LRi,aEa + LRi,mEm

}
R̂S(ei)

˙̂
bω =

3∑

i=1

{
Lωi,aEa + Lωi,mEm

}
ei

This can be equivalently written using matrix-vector multiplication as

˙̂
R = R̂S(ω − b̂ω) + R̂S

(
LRa Ea + LRmEm

)

˙̂
bω = LωaEa + LωmEm

(4.16)

where L are 3× 3 gain matrices such that L = L(I,E).
The invariant estimation error associated with this observer is obtained from

(4.14):

η = Φγ(x)(x̂)−Φγ(x)(x) = Φ(RT ,−bω)

(
R̂

b̂ω

)
−Φ(RT ,−bω)

(
R
bω

)
=

(
RT R̂− I

b̂ω − bω

)
=

(
ηR
ηω

)

As before, we re-define ηR = RT R̂, such that R = R̂ ⇐⇒ ηR = I instead of 0.
Finally, we compute the dynamics of η. Remark

(
Ea
Em

)
=

(
R̂Ta− ya
R̂Tm− ym

)
=

(
R̂Ta−RT R̂R̂Ta

R̂Tm−RT R̂R̂Tm

)
=

(
Ia − ηRIa
Im − ηRIm

)
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where Ia = R̂Ta, Im = R̂Tm are (known) invariants, and so E is a function of ηR
and I(x̂, u). The dynamics of η are found by direct computation:

d

dt
ηR =

d

dt
(RT )R̂ +RT

˙̂
R

= −RT ṘRT R̂+RT
˙̂
R

= −RTRS(ω − bω)R
T R̂+RT R̂S(ω − b̂ω) +RT R̂S

(
LRaEa + LRmEm

)

= −S(ω − b̂ω + b̂ω − bω)R
T R̂+RT R̂S(ω − b̂ω) +RT R̂S

(
LRa Ea + LRmEm

)

= −S(Iω + ηω)ηR + ηRS(Iω) + ηRS
(
LRaEa + LRmEm

)

d

dt
ηR = ηRS(Iω)− S(Iω)ηR − S(ηω)ηR + ηRS

(
LRaEa + LRmEm

)
,

which together with E = E(ηR, Ia, Im) confirms Theorem 4. The dynamics of ηω
are very easy to compute,

d

dt
ηω =

˙̂
bω − ḃω = LωaEa + LωmEm

and also confirm Theorem 4.

4.7.1.3 Combined symmetries

The final AHRS design considers the case of combined symmetries in Section 4.4.2,
where the body and ground frame are independently rotated. It turns out this case
isn’t interesting as shown below.

The symmetry group in the combined case is G = SO(3) × SO(3) × R
3 ∋

(Q0, R0, ω0) = g so dim(G) = 9 and we require φag ∈ R
9. Since ξg ∈ R

6, we
need to use a component from the input action υ to construct φag ; we choose υag =
υg(a) = Q0a. Remark this extra step was not required in Sections 4.7.1.1 and 4.7.1.2,
however the method of normalization in Section 4.6.1 is unaffected and manually
picking components of φag is normal when solving for the moving frame [112, p. 163].
Using φag = ξg × υag we find γ(x),

φag



R
bω
a


 =




Q0RR0

RT0 (bω + ω0)
Q0a


 =



I
0
a


 =⇒ Q0 = I =⇒ γ(x) = (I,RT ,−bω),

and the complete set of invariants is

φbγ(x)




ω
m
ya
ym


 =




R(ω − b̂ω)
m
Rya
Rym


 =

(
I(x, u)
Jh(x, y)

)
.

We see that the I(x, u) and Jh(x, y) terms are identical to Section 4.7.1.1, the body-
symmetry case, and so the invariant observer for the combined symmetries case has
already been worked out as (4.15). Further, since Q0 = I in γ(x), the invariant
estimation error η(x, x̂) and its dynamics will be identical to those of Section 4.7.1.1
as well. In this sense, we have not gained anything from using the more complicated
symmetry group actions, although they still lead to a valid invariant observer design.
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4.7.2 Invariant Aided INS Design

We now consider the Mag-plus-GPS-Aided INS in Section 4.5. The system equa-
tions (4.6), (4.7) are

ṗ = v

v̇ = R(f − bf )− a

Ṙ = RS(ω − bω)

ḃf = 0

ḃω = 0
[
yp
ym

]
=

[
p

RTm

]

4.7.2.1 Body frame symmetries

We verified in Section 4.5 that the Aided INS admits the symmetry group G =
R
3 × SO(3) × R

3 × R
3 ∋ (p0, R0, bf0, bω0) = g, where R0 physically represents a

constant rotation of the body-fixed frame, through the set of Lie group actions

ϕ(p0,R0,bf0,bω0)




p
v
R
bf
bω




=




p+ p0
v

RR0

RT0 (bf + bf0)
RT0 (bω + bω0)




ψ(p0,R0,bf0,bω0)

(
f
ω

)
=

(
RT0 (f + bf0)
RT0 (ω + bω0)

)

ρ(p0,R0,bf0,bω0)

(
yp
ym

)
=

(
yp + p0
RT0 ym

)

Following Section 4.6.1 we take φag = ϕag = ϕag(p,R, bf , bω) and φbg = ϕbg × ψg × ρg
such that dim(φag) = dim(G). We then solve for the moving frame:

φag(x) = c =⇒ ϕ(p0,R0,bf0,bω0)




p
R
bf
bω


 =




p+ p0
RR0

RT0 (bf + bf0)
RT0 (bω + bω0)


 =




0
I
0
0




=⇒ g = (−p,RT ,−bf ,−bω) = γ(x)

Using γ(x) = (−p,RT ,−bf ,−bω), we obtain the complete set of invariants as in
Section 4.6.3,

I(x, u) =
(
ϕbγ(x)(x), ψγ(x)(u)

)
=




ϕbγ(x)(v)

ψγ(x)

(
f
ω

)

 =




v
R(f − bf )
R(ω − bω)


 =



Iv
If
Iω




Jh(x, y) = ργ(x)(y) = ργ(x)

(
yp
ym

)
=

(
yp − p
Rym

)

and the invariant output error E(x̂, u, y) is

Jh(x̂, h(x̂, u))− Jh(x̂, y) =

(
p̂− p̂

R̂R̂Tm

)
−
(
yp − p̂

R̂ym

)
=

(
p̂− yp

m− R̂ym

)
=

(
Ep
Em

)
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The invariant frame is computed as in Section 4.6.2. We have γ(x)−1 = (p,R, bf , bω),
and for each {p, v, bf , bω} ∈ R

3, TeR
3 ∋ vi = ei while R ∈ SO(3) =⇒ TeSO(3) ∋

vi = S(ei), i = 1, 2, 3. Denoting wi(x) and vi as the concatenated invariant frames
and basis vectors, respectively, we find

wi(x) =
(
ϕγ(x)−1

)
∗
vi

=
d

dτ

(
ϕγ(x)−1(viτ)

)∣∣∣∣
τ=0

=
d

dτ
ϕγ(x)−1




eiτ
eiτ

S(ei)τ
eiτ
eiτ




∣∣∣∣∣∣∣∣∣∣
τ=0

=
d

dτ




eiτ + p
eiτ

S(ei)τR
RT (eiτ + bf )
RT (eiτ + bω)




∣∣∣∣∣∣∣∣∣∣
τ=0

=




ei
ei

S(ei)R
RT ei
RT ei




=




wpi
wvi

wRi (x)

wbfi (x)
wbωi (x)




The invariant observer is then given as (4.13) in Section 4.6.3 where we parti-
tion the row gains Li as [Li,p Li,m] and the invariant output error vector as
E = [ETp ETm]

T :

˙̂p = v̂ +

3∑

i=1

{Lpi,pEp + Lpi,mEm}ei = v̂ + LppEp + LpmEm

˙̂v = R̂(f − b̂f )− a+

3∑

i=1

{Lvi,pEp + Lvi,mEm}ei = R̂(f − b̂f )− a+ LvpEp + LvmEm

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

{LRi,pEp + LRi,mEm}S(ei)R̂

= R̂S(ω − b̂ω) + S
[
LRp Ep + LRmEm

]
R̂

˙̂
bf =

3∑

i=1

{Lbfi,pEp + Lbfi,mEm}R̂T ei = R̂T
(
Lbfp Ep + LbfmEm

)

˙̂
bω =

3∑

i=1

{Lbωi,pEp + Lbωi,mEm}R̂T ei = R̂T
(
Lbωp Ep + LbωmEm

)

(4.17)
where the L terms are 3 × 3 matrix gains whose entries are in general functions of
I(x̂, u) and E(x̂, u, y) by Theorem 3. The invariant estimation error η associated to
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the above observer is calculated from (4.14)

η = ϕγ(x)(x̂)− ϕγ(x)(x)

=




p̂− p
v̂

R̂RT

R(b̂f − bf )

R(b̂ω − bω)




−




p− p
v

RRT

R(bf − bf )
R(bω − bω)




=




p̂− p
v̂ − v

R̂RT − I

R(b̂f − bf )

R(b̂ω − bω)




=




ηp
ηv

ηR − I
ηbf
ηbω




where as before we have taken ηR = R̂RT instead of R̂RT − I for convenience. We
will work out the dynamics η̇ below, which by Theorem 4 are guaranteed to depend
on the system’s trajectories only through the invariants Iv, If and Iω found above.
The invariant output error components can be expressed as

Ep = p̂− yp = p̂− p = ηp

Em = m− R̂ym = m− R̂RTm = m− ηRm

and we proceed to compute the individual η dynamics:

η̇p = ˙̂p− ṗ

= v̂ + LppEp + LpmEm − v

= ηv + LppEp + LpmEm

η̇v = ˙̂v − v̇

= R̂(f − b̂f )− a+ LvpEp + LvmEm −R(f − bf ) + a

= If + LvpEp + LvmEm −R(f − b̂f + b̂f − bf )

= If + LvpEp + LvmEm −RR̂T R̂(f − b̂f )−R(b̂f − bf )

= If + LvpEp + LvmEm − (ηR)
T If − ηbf

η̇R =
˙̂
RRT − R̂RT ṘRT

= R̂S(ω − b̂ω)R
T + S

[
LRp Ep + LRmEm

]
R̂RT − R̂RTRS(ω − bω)R

T

= R̂S(bω − b̂ω)R
T + S

[
LRp Ep + LRmEm

]
ηR

= −R̂RTRS(b̂ω − bω)R
T + S

[
LRp Ep + LRmEm

]
ηR

= −ηRS(ηbω) + S
[
LRp Ep + LRmEm

]
ηR
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η̇bf = Ṙ(b̂f − bf ) +R(
˙̂
bf − ḃf )

= RS(ω − bω)(b̂f − bf ) +RR̂T
(
Lbfp Ep + LbfmEm

)

= RS(ω − b̂ω + b̂ω − bω)(b̂f − bf ) + (ηR)
T
(
Lbfp Ep + LbfmEm

)

= RR̂T R̂S(ω − b̂ω)R̂
T R̂RTR(b̂f − bf ) +RS(b̂ω − bω)R

TR(b̂f − bf )

+ (ηR)
T
(
Lbfp Ep + LbfmEm

)

= (ηR)
TS(Iω)ηRηbf + S(ηbω)ηbf + (ηR)

T
(
Lbfp Ep + LbfmEm

)

= S
[
(ηR)

T Iω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ep + LbfmEm

)

η̇bω = Ṙ(b̂ω − bω) +R(
˙̂
bω − ḃω)

= RS(ω − bω)(b̂ω − bω) +RR̂T
(
Lbωp Ep + LbωmEm

)

= RS(ω − b̂ω + b̂ω − bω)(b̂ω − bω) + (ηR)
T
(
Lbωp Ep + LbωmEm

)

= RR̂T R̂S(ω − b̂ω)R̂
T R̂RTR(b̂ω − bω) +RS(b̂ω − bω)R

TR(b̂ω − bω)

+ (ηR)
T
(
Lbωp Ep + LbωmEm

)

= (ηR)
TS(Iω)ηRηbω + S(ηbω)ηbω + (ηR)

T
(
Lbωp Ep + LbωmEm

)

= S
[
(ηR)

T Iω
]
ηbω + (ηR)

T
(
Lbωp Ep + LbωmEm

)

The above error dynamics clearly verify Theorem 4. The error system is non-
autonomous and depends on the estimated states R̂, b̂f and b̂ω as well as input signals
f and ω through the If and Iω terms. Remark the η dynamics are independent
of both position and velocity p̂ and v̂ which simplifies stability analysis and gain
selection over the general case.

4.7.2.2 Ground frame symmetries

We now consider the ground-frame symmetries of the Aided INS for which the sym-
metry group is G = R

3×SO(3)×R
3×R

3 ∋ (p0, Q0, bf0, bω0) = g where Q0 represents
a constant rotation of the ground frame. From Section 4.5 the corresponding Lie
group actions on the state, input and output manifolds are

Φ(p0,Q0,bf0,bω0)




p
v
R
bf
bω




=




Q0(p+ p0)
Q0v
Q0R

bf + bf0
bω + bω0




Ψ(p0,Q0,bf0,bω0)




f
ω
a
m


 =




f + bf0
ω + bω0
Q0a
Q0m




Υ(p0,Q0,bf0,bω0)

(
yp
ym

)
=

(
Q0(yp + p0)

ym

)
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We partition the Lie group action φg = Φg ×Ψg ×Υg as φag = Φag = Φag(p,R, bf , bω)

and φbg = Φbg ×Ψg ×Υg and solve φag(x) = c for the moving frame:

Φag




p
R
bf
bω


 =




Q0(p+ p0)
Q0R

bf + bf0
bω + bω0


 =




0
I
0
0


 =⇒ g = (−p,RT ,−bf ,−bω) = γ(x)

The complete set of invariants is then

I(x, u) =

(
Φbγ(x)(x)

Ψγ(x)(u)

)
=




Φb
(−p,RT ,−bf ,−bω)

(v)

Ψ(−p,RT ,−bf ,−bω)




f
ω
a
m







=




RTv
f − bf
ω − bω
RTa
RTm




=




Iv
If
Iω
Ia
Im




Jh(x, y) = Υγ(x)(y) = Υ(−p,RT ,−bf ,−bω)

(
yp
ym

)
=

(
RT (yp − p)

ym

)

The invariant output error is

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y)

=

(
R̂T (p̂− p̂)

R̂Tm

)
−
(
R̂T (yp − p̂)

ym

)
=

(
R̂T (p̂ − yp)

R̂Tm− ym

)
=

(
Ep
Em

)

For the invariant frame computation, we have γ(x)−1 = (p,R, bf , bω) and the same
vi as in Section 4.7.2.1. We find

wi(x) =
(
Φγ(x)−1

)
∗
vi

=
d

dτ

(
Φγ(x)−1(viτ)

)∣∣∣∣
τ=0

=
d

dτ
Φγ(x)−1




eiτ
eiτ

S(ei)τ
eiτ
eiτ




∣∣∣∣∣∣∣∣∣∣
τ=0

=
d

dτ




R(eiτ + p)
Reiτ

RS(ei)τ
eiτ + bf
eiτ + bω




∣∣∣∣∣∣∣∣∣∣
τ=0

=




Rei
Rei

RS(ei)
ei
ei




=




wpi (x)
wvi (x)
wRi (x)

wbfi
wbωi



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The invariant observer is then

˙̂p = v̂ +
3∑

i=1

{Lpi,pEp + Lpi,mEm}R̂ei = v̂ + R̂
(
LppEp + LpmEm

)

˙̂v = R̂(f − b̂f )− a+
3∑

i=1

{Lvi,pEp + Lvi,mEm}R̂ei

= R̂(f − b̂f )− a+ R̂
(
LvpEp + LvmEm

)

˙̂
R = R̂S(ω − b̂ω) +

3∑

i=1

{LRi,pEp + LRi,mEm}R̂S(ei)

= R̂S(ω − b̂ω) + R̂S
[
LRp Ep + LRmEm

]

˙̂
bf =

3∑

i=1

{Lbfi,pEp + Lbfi,mEm}ei = Lbfp Ep + LbfmEm

˙̂
bω =

3∑

i=1

{Lbωi,pEp + Lbωi,mEm}ei = Lbωp Ep + LbωmEm

(4.18)

where as in Section 4.7.2.1 the L terms are 3× 3 matrix gains whose entries are in
general functions of I(x̂, u) and E(x̂, u, y). The invariant estimation error η for this
observer is

η = Φγ(x)(x̂)− Φγ(x)(x)

=




RT (p̂− p)
RT v̂

RT R̂

b̂f − bf
b̂ω − bω




−




RT (p− p)
RT v
RTR
bf − bf
bω − bω




=




RT (p̂− p)
RT (v̂ − v)

RT R̂− I

b̂f − bf
b̂ω − bω




=




ηp
ηv

ηR − I
ηbf
ηbω




The invariant output error E components are written as

Ep = R̂T (p̂− yp) = R̂TRRT (p̂− p) = (ηR)
T ηp

Em = R̂Tm− ym = R̂Tm−RTm = Im −RT R̂R̂Tm = Im − ηRIm
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We now work out the η̇ dynamics:

η̇p = −RT ṘRT (p̂− p) +RT ( ˙̂p − ṗ)

= −RTRS(ω − bω)R
T (p̂− p) +RT

(
v̂ + R̂

(
LppEp + LpmEm

)
− v
)

= −S(ω − b̂ω + b̂ω − bω)ηp + ηv +RT R̂
(
LppEp + LpmEm

)

= −S
[
Iω + ηbω

]
ηp + ηv + ηR

(
LppEp + LpmEm

)

η̇v = −RT ṘRT (v̂ − v) +RT ( ˙̂v − v̇)

= −RTRS(ω − bω)R
T (v̂ − v)

+RT
{
R̂(f − b̂f )− a+ R̂

(
LvpEp + LvmEm

)
−R(f − bf ) + a

}

= −S(ω − b̂ω + b̂ω − bω)ηv + ηRIf + ηR
(
LvpEp + LvmEm

)
− (f − b̂f + b̂f − bf )

= −S
[
Iω + ηbω

]
ηv + ηRIf + ηR

(
LvpEp + LvmEm

)
− If − ηbf

η̇R = −RT ṘRT R̂+RT
˙̂
R

= −RTRS(ω − bω)R
T R̂+RT R̂S(ω − b̂ω) +RT R̂S

[
LRp Ep + LRmEm

]

= −S(ω − b̂ω + b̂ω − bω)ηR + ηRS(Iω) + ηRS
[
LRp Ep + LRmEm

]

= −S
[
Iω + ηbω

]
ηR + ηRS(Iω) + ηRS

[
LRp Ep + LRmEm

]

η̇bf =
˙̂
bf − ḃf

= Lbfp Ep + LbfmEm

η̇bω =
˙̂
bω − ḃω

= Lbωp Ep + LbωmEm

The ground-frame symmetry version of the invariant observer has properties similar
to the body-frame symmetry version in Section 4.7.2.1: the estimation error dynam-
ics η̇ are a function of the system estimates via R̂, b̂f and b̂ω as well as inputs f , ω
but independent of position and velocity p̂ and v̂.

4.7.2.3 Combined symmetries

In Section 4.5 we also considered the combined symmetry case of rotating both the
body and ground frames. The corresponding Lie group actions were denoted by ξg,
υg and ̺g. Based on Section 4.7.1.3, we may expect this case to reduce to one of
the previous results.

Take the Lie group action φg = ξg × υg × ̺g; with the symmetry group G =
R
3 × SO(3) × SO(3) × R

3 × R
3 ∋ (p0, Q0, R0, bf0, bω0) = g and state manifold

X = R
3 × R

3 × SO(3) × R
3 × R

3 ∋ (p, v,R, bf , bω) = g both of dimension 15, we
logically partition φag = ξg, φ

b
g = υg × ̺g and (attempt to) solve for the moving
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frame:

ξg




p
v
R
bf
bω




=




Q0(p+ p0)
Q0v

Q0RR0

RT0 (bf + bf0)
RT0 (bω + bω0)




=




0
0
I
0
0




We immediately see two problems:

• Q0v = 0 has no solution for Q0 ∈ SO(3) except in the trivial case of v = 0.
In the more general case of Q0v = c, c ∈ R

3, a solution will exist only if
‖v‖ = ‖c‖.

• Q0RR0 = I has a non-unique solution: Q0 = (RR0)
T or alternatively R0 =

(Q0R)
T .

We deal with this problem by a different choice of φag components, c.f. Section 4.7.1.3.
We remove the ξg(v) component and replace it with υg(a) which provides a system
which can be solved for the moving frame:

φag




p
a
R
bf
bω




=




Q0(p+ p0)
Q0a

Q0RR0

RT0 (bf + bf0)
RT0 (bω + bω0)




=




0
a
I
0
0




=⇒ g = (−p, I,RT ,−bf ,−bω) = γ(x)

and the complete set of invariants is

φbγ(x)




v
f
ω
m
yp
ym




=




v
R(f − bf )
R(ω − bω)

m
yp − p
Rym




=

(
I(x, u)
Jh(x, y)

)

which are precisely the invariants in Section 4.7.2.1, such that the invariant observer
for the combined symmetries case will be identical to the earlier design. The invari-
ant estimation error and its dynamics will also be identical to Section 4.7.2.1 due
to the Q0 = I term. While using the combined symmetries case is valid, it results
in greater complexity and provides the same design as a simpler case. A combined
symmetries version of invariant observer design was used in [92] for an Aided INS
example with different dynamics and outputs than (4.6) and (4.7).

4.8 Nonlinear Observer Gain Design

So far, we have not said anything about gain selection for stabilizing the observer.
As mentioned in Section 4.6.3, there is no general systematic approach for choos-
ing the nonlinear observer gains L. Using the invariant AHRS observer (4.15) with
body-frame symmetries in Section 4.7.1.1, we now show how a particular choice of
gains reduces it to the “explicit complementary filter with bias correction” in [88,
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Thm. 5.1], for which almost global asymptotic stability [78]1 has been proven us-
ing a Lyapunov analysis; this is the strongest result achievable since any system
whose state manifold includes SO(3) cannot be globally asymptotically stable [20].
Observer (4.15) is repeated here for convenience:

˙̂
R = R̂S(ω − b̂ω) + S

(
LRa Ea + LRmEm

)
R̂

˙̂
bω = R̂T

(
LωaEa + LωmEm

)

We make the following gain choices:

LRa = kP laS(a) LRm = kP lmS(m)

Lωa = −kI laS(a) Lωm = −kI lmS(m)
(4.19)

where kP , kI , la, lm ∈ R are user-selected constants and a,m ∈ R
3 are the ground-

frame gravity and magnetic field vectors used previously. This set of constant gains
obviously satisfies L = L(I,E) and so the observer is invariant. Remark that we
have reduced the tuning degrees of freedom from 4× 9 = 36 to 4.

Using the above gains and the invariant error definitions Ea = a − R̂ya, Em =
m− R̂ym in (4.15) gives

˙̂
R = R̂S(ω − b̂ω) + S

(
kP laS(a)(a − R̂ya) + kP lmS(m)(m− R̂ym)

)
R̂

˙̂
bω = R̂T

(
− kI laS(a)(a − R̂ya)− kI lmS(m)(m− R̂ym)

)

since S(a)a = a× a = 0 and S(m)m = m×m = 0, we have

˙̂
R = R̂S(ω − b̂ω)− kPS

(
laS(a)R̂ya + lmS(m)R̂ym

)
R̂

˙̂
bω = kIR̂

T
(
laS(a)R̂ya + lmS(m)R̂ym

)

Using RTS(v)R = S(RT v) =⇒ S(v)R = RS(RT v) from Section 2.2, we have

˙̂
R = R̂S(ω − b̂ω)− kP R̂S

(
laR̂

TS(a)R̂ya + lmR̂
TS(m)R̂ym

)

˙̂
bω = kI

(
laR̂

TS(a)R̂ya + lmR̂
TS(m)R̂ym

)

We also have R̂TS(v)R̂ = S(R̂T v) = S(ŷv) where v = a,m:

˙̂
R = R̂S(ω − b̂ω)− kP R̂S

(
laS(ŷa)ya + lmS(ŷm)ym

)

˙̂
bω = kI

(
laS(ŷa)ya + lmS(ŷm)ym

)

And since S(ŷv)yv = ŷv × yv = −yv × ŷv we obtain

˙̂
R = R̂

(
S(ω − b̂ω) + kPS

(
laya × ŷa + lmym × ŷm

))

˙̂
bω = −kI

(
laya × ŷa + lmym × ŷm

)
,

1A system is almost globally asymptotically stable if all trajectories starting in an open dense
subset of the state space asymptotically converge to a stable equilibrium; or equivalently, the
set of initial conditions for which the trajectories do not converge form a set of zero Lebesgue
measure [103].
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which is identical to [88, Eqn. (32)] modulo choice of notation.
It is also possible to reduce the ground-frame symmetries invariant observer

(4.16),
˙̂
R = R̂S(ω − b̂ω) + R̂S

(
LRa Ea + LRmEm

)

˙̂
bω = LωaEa + LωmEm,

to [88, Eqn. (32)] using the (different) set of gains

LRa = kP laS(R̂
Ta) LRm = kP lmS(R̂

Tm)

Lωa = −kI laS(R̂Ta) Lωm = −kI lmS(R̂Tm)
(4.20)

where as before kP , kI , la, lm are constant scalars. Note that in Section 4.7.1.2,
we computed Ia = R̂Ta, Im = R̂Tm and so the above gains respect the invariant
observer condition L = L(I,E). Using these gains and Ea = R̂Ta − ya, Em =
R̂Tm− ym in (4.16) gives

˙̂
R = R̂S(ω − b̂ω) + R̂S

[
kP laS(R̂

Ta)(R̂T a− ya) + kP lmS(R̂
Tm)(R̂Tm− ym)

]

˙̂
bω = −kI laS(R̂Ta)(R̂Ta− ya)− kI lmS(R̂

Tm)(R̂Tm− ym)

using R̂Ta = ŷa, R̂
Tm = ŷm, S(x)y = x× y and y × y = 0 we obtain

˙̂
R = R̂S(ω − b̂ω)− kP R̂S

(
laŷa × ya + lmŷm × ym

)

˙̂
bω = kI

(
laŷa × ya + lmŷm × ym

)

and then from x× y = −y × x we have

˙̂
R = R̂

(
S(ω − b̂ω) + kPS

(
laya × ŷa + lmym × ŷm

))

˙̂
bω = −kI

(
laya × ŷa + lmym × ŷm

)
,

the observer [88, Eqn. (32)]. Remark the gain choices for L are different for the body-
frame symmetries observer (4.15) and the ground-frame symmetries observer (4.16),
but in both cases the observer in [88] is (a particular choice of) an invariant observer.

A nonlinear design for the gains of Aided INS observers (4.17), (4.18) remains
an open problem. Recent work in [31, 24] provides direct nonlinear gain designs
for a GPS-aided dead-reckoning system (c.f. [51, Ch. 9]) guaranteeing local, almost
global or global stability depending on the level of assumptions made about the
system’s state and inputs. Dead reckoning is a 2-dimensional aided navigation
problem and so it is reasonable to expect the analysis method can be extended to
Aided INS (4.6), (4.7) in Section 4.5, however no results have been obtained at the
time of writing. Another source of ideas are the direct nonlinear observer designs
in [69, 118] for the velocity-aided inertial navigation example considered in [27].

4.9 Invariant Extended Kalman Filter

Although a direct nonlinear design for the observer gains L is the most elegant ap-
proach, it is also difficult and non-systematic. In this Section we propose a method

106



of gain assignment based on the Extended Kalman Filter covered in Section 3.2.
The Invariant EKF re-linearizes the invariant estimation error η dynamics (instead
of the system dynamics f(x, u) as in the conventional EKF) about the latest esti-
mated state and computes optimal observer gains L for the resulting system. This
provides a fully systematic approach to obtaining the observer gains, which are also
automatically updated in the case of changing noise conditions due to the optimality
of the Kalman Filter. The obvious disadvantage is that the Invariant EKF guaran-
tees only local stability whose region of attraction is difficult to analyze as discussed
in Section 4.1.

Using an EKF to find the gains of an invariant observer was first proposed in [23]
and applied to different examples in [29, 96]. The method in [23] was formulated
for the class of systems where the Lie group G acts on itself by left or right transla-
tion (c.f. Section 4.6.1) and required defining invariant noise terms which preserve
the symmetry of the system. We adapt the method to apply to the general class
of G-invariant systems defined in Section 4.3 and such that the noise terms can
enter the dynamics naturally as part of the sensor models, c.f. Section 3.2.2. The
modified Invariant EKF can thus be applied to AHRS with body-frame symmetries
(Section 4.4) and Aided INS (Section 4.5).

4.9.1 Invariant EKF Overview

We first review the continuous-time Kalman filter, e.g. [34, Chap. 7]. The filter
applies to LTV systems

ẋ = A(t)x+B(t)w

y = C(t)x+D(t)v
(4.21)

where w and v are the process and measurement Gaussian white noise vectors with
covariances Q = E〈wwT 〉, R = E〈vvT 〉, respectively, and zero cross-correlation:
E〈wvT 〉 = 0. The Kalman filter for (4.21) is

˙̂x = Ax̂+K(y − Cx̂)

K = PCT (DRDT )−1

Ṗ = AP + PAT − PCT (DRDT )−1CP +BQBT ,

(4.22)

a linear optimal observer designed to minimize the covariance of the estimation error
e = x̂− x, specifically min

(
trace(E〈e eT 〉)

)
. From (4.22) and (4.21), the estimation

error dynamics are

ė = ˙̂x− ẋ

= Ax̂+K (Cx+Dv − Cx̂)−Ax−Bw

= (A−KC)(x̂− x)−Bw +KDv

ė = (A−KC)e−Bw +KDv (4.23)

The method of the Invariant EKF is as follows: introduce the sensor noise models
ũ = u + w, ỹ = y + v from Section 3.2.2 into the nominal system dynamics and
corresponding invariant observer as

ẋ = f(x, u) = f(x, ũ− w) (4.24a)

˙̂x = F (x̂, ũ, ỹ) = F (x̂, ũ, y + v) (4.24b)
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Using the existing invariant estimation error η (4.14) for this system, compute
(d/dt)η using terms (4.24) which yields the nonlinear dynamics

d

dt
η = Ξ(η, x̂, ũ, w, v), (4.25)

a more complicated system than in Theorem 4 due to the use of (4.24); note Ξ
necessarily reduces to Υ̂(η, I(x̂, u)) when w = v = 0. Let η denote zero estimation
error, e.g. ηR = I and ηω = 0 for the Invariant AHRS observer in Section 4.7.1, and
define δη := η − η. Due to the form of the invariant estimation error (4.14)

η = ϕγ(x)(x̂)− ϕγ(x)(x)

when computing Ξ, the terms ẋ (4.24a) and ˙̂x (4.24b) which respectively contain
w and v,K (K denotes the matrix of observer gains L) do not appear together in
product terms. Thus linearizing (4.25) about η = η, w = 0 and v = 0 leads to the
same form as (4.23),

δη̇ = (A−KC)δη −Bw +KDv (4.26)

from which we can read off the (A,B,C,D) and K matrices and use (4.22) to
compute the observer gains L which make up the matrix K. Remark that the
entries of the A,B,C,D matrices will in general be functions of (x̂, ũ), so as stated
in Section 4.9 we are re-linearizing the invariant estimation error dynamics about
the latest state estimate.

4.9.2 Invariant AHRS EKF design

As mentioned in Section 4.2, we model the AHRS bias dynamics using the Wiener
process model ḃ = ν. We also employ the rate gyro sensor model ω̃ = ω + bω + νω
and accelerometer and magnetometer output models ỹ = y + ν from Section 3.2.2.
Under these noise models the dynamics of (4.1) become (4.24a)

Ṙ = RS(ω̃ − bω − νω)

ḃω = νbω
(4.27)

where w = [νω νbω ]
T is the process noise vector. The system outputs with noise

are [
ỹa
ỹm

]
=

[
RTa+ νa
RTm+ νm

]
(4.28)

with v = [νa νm]
T the measurement noise vector; as discussed in Section 4.2 we

assume the accelerometer measures the gravity vector and the magnetometer reading
has been compensated.

4.9.2.1 Body frame symmetries

The nominal invariant observer is available from Section 4.7.1.1 as (4.15). Using the
noise models in Section 4.9.2 we obtain (4.24b)

˙̂
R = R̂S(ω̃ − b̂ω) + S

(
LRa Ẽa + LRmẼm

)
R̂

˙̂
bω = R̂T

(
Lωa Ẽa + LωmẼm

) (4.29)
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where ω̃ is the measured rate gyro signal. The Ẽa, Ẽm invariant output errors
in (4.29) and I(x̂, ũ) invariants used below are also available from Section 4.7.1.1:

(
Ẽa
Ẽm

)
=

(
a− R̂ỹa
m− R̂ỹm

)
, I(x̂, ũ) = R̂(ω̃ − b̂ω), (4.30)

where ỹa, ỹm are the output measurements and I(x̂, ũ) is known and will appear
below. The invariant error η (4.14) is a function of x and x̂ only and remains
unchanged from Section 4.7.1.1, i.e. ηR = R̂RT , ηω = R(b̂ω − bω). As explained
in Section 4.9.1, computing (d/dt)η using (4.27) and (4.29) will cause the process
noise vector w = [νω νbω ]

T to appear along with the measurement noise vector
v = [νa νm]

T embedded in Ẽ. Starting with ηR we directly compute

η̇R =
˙̂
RRT + R̂

d

dt
(RT )

= R̂S(ω̃ − b̂ω)R
T + S

(
LRa Ẽa + LRmẼm

)
R̂RT + R̂

(
−RTRS(ω̃ − bω − νω)R

T
)

= R̂S(bω − b̂ω)R
T + S

(
LRa Ẽa + LRmẼm

)
R̂RT + R̂S(νω)R

T

= R̂RTRS(bω − b̂ω)R
T + S

(
LRa Ẽa + LRmẼm

)
R̂RT + R̂S(νω)R̂

T R̂RT

= R̂RTS
[
R(bω − b̂ω)

]
+ S

(
LRa Ẽa + LRmẼm

)
R̂RT + S(R̂νω)R̂R

T

η̇R = ηRS(−ηω) + S
(
LRa Ẽa + LRmẼm

)
ηR + S(R̂νω)ηR

and for ηω we have

η̇ω = Ṙ(b̂ω − bω) +R(
˙̂
bω − ḃω)

= RS(ω̃ − bω − νω)(b̂ω − bω) +R
{
R̂T
(
Lωa Ẽa + LωmẼm

)
− νbω

}

= RS(ω̃ − b̂ω + b̂ω − bω)(b̂ω − bω) +RR̂T
(
Lωa Ẽa + LωmẼm

)

−Rνbω −RS(νω)(b̂ω − bω)

= RS(ω̃ − b̂ω + b̂ω − bω)R
TR(b̂ω − bω) +RR̂T

(
Lωa Ẽa + LωmẼm

)

−Rνbω +RS(b̂ω − bω)νω

=
{
RS(ω̃ − b̂ω)R

T +RS(b̂ω − bω)R
T
}
R(b̂ω − bω) + (R̂RT )T

(
Lωa Ẽa + LωmẼm

)

−RR̂T R̂νbω +RS(b̂ω − bω)R
TRR̂T R̂νω

=
{
RR̂T R̂S(ω̃ − b̂ω)R̂

T R̂RT + S
[
R(b̂ω − bω)

]}
R(b̂ω − bω)

+ (R̂RT )T
(
Lωa Ẽa + LωmẼm

)
− (R̂RT )T R̂νbω + S

[
R(b̂ω − bω)

]
(R̂RT )T R̂νω

= (R̂RT )TS
[
R̂(ω̃ − b̂ω)

]
R̂RT ηω + (ηR)

T
(
Lωa Ẽa + LωmẼm

)

− (ηR)
T R̂νbω + S [ηω] (ηR)

T R̂νω

η̇ω = S
[
(ηR)

T I(x̂, ũ)
]
ηω + (ηR)

T
(
Lωa Ẽa + LωmẼm

)
− (ηR)

T R̂νbω + S [ηω] (ηR)
T R̂νω

where the Ẽ terms are written as

(
Ẽa
Ẽm

)
=

(
a− R̂ỹa
m− R̂ỹm

)
=

(
a− R̂(RTa+ νa)

m− R̂(RTm+ νm)

)
=

(
a− ηRa− R̂νa
m− ηRm− R̂νm

)
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which contains the measurement noise vector v = [νa νm]
T . Remark I(x̂, ũ) ap-

pears in the η̇ω term above, and as expected setting w = v = 0 reduces both
dynamics to the form (d/dt)η = Υ(η, I(x̂, u)) guaranteed by Theorem 4.

We now linearize the above ηR and ηω dynamics about η̄R = I, η̄ω = 0 and ν̄ = 0
to obtain system (4.26) with states δη = η − η̄. The Ẽv, v ∈ {a,m} terms become

δẼv = Ẽv − Ẽv = v − ηRv − R̂νv − v + η̄Rv + R̂ν̄v = −δηRv − R̂νv

Ẽv = v − η̄Rv − R̂ν̄v = v − v = 0.

Linearizing η̇R we obtain

δη̇R = η̇R − ˙̄ηR

= ηRS(−ηω) + S
(
LRa Ẽa + LRmẼm

)
ηR + S(R̂νω)ηR

− η̄RS(−η̄ω)− S
(
L̄Ra Ẽa − L̄RmẼm

)
ηR − S(R̂ν̄ω)η̄R

= (δηR + η̄R)S(−δηω − η̄ω) + S
[
LRa (δẼa + Ẽa) + LRm(δẼm + Ẽm)

]
(δηR + η̄R)

+ S
[
R̂(δνω + ν̄ω)

]
(δηR + η̄R)− η̄RS(−η̄ω)− S

(
L̄Ra Ẽa − L̄RmẼm

)
ηR

− S(R̂ν̄ω)η̄R

= (δηR + η̄R)S(−δηω) + S
[
LRa δẼa + LRmδẼm

]
(δηR + η̄R)

+ S
[
R̂(δνω)

]
(δηR + η̄R)

= η̄RS(−δηω) + S
[
LRa δẼa + LRmδẼm

]
η̄R + S

[
R̂(δνω)

]
η̄R

= S(−δηω) + S
[
LRa (−δηRa− R̂νa) + LRm(−δηRm− R̂νm)

]
+ S[R̂νω]

where we have dropped quadratic terms in δ on the second-last line in order to
obtain a linear equation. For η̇ω we obtain the linearization

δη̇ω = η̇ω − ˙̄ηω

= S
[
(ηR)

T I(x̂, ũ)
]
ηω + (ηR)

T
(
Lωa Ẽa + LωmẼm

)
− (ηR)

T R̂νbω + S[ηω](ηR)
T R̂νω

− S
[
(η̄R)

T I(x̂, ũ)
]
η̄ω − (η̄R)

T
(
Lωa Ẽa − LωmẼm

)
+ (η̄R)

T R̂ν̄bω

− S[η̄ω](η̄R)
T R̂ν̄ω

= S
[
(δηR + η̄R)

T I(x̂, ũ)
]
(δηω + η̄ω) + (δηR + η̄R)

T
(
Lωa (δẼa + Ẽa)

+ Lωm(δẼm + Ẽm)
)
− (δηR + η̄R)

T R̂(δνbω + ν̄bω)

+ S[δηω + η̄ω](δηR + η̄R)
T R̂(δνω + ν̄ω)

= S
[
(η̄R)

T I(x̂, ũ)
]
δηω + (η̄R)

T
(
Lωa δẼa + LωmδẼm

)
− (η̄R)

T R̂δνbω

= S[I(x̂, ũ)]δηω + Lωa (−δηRa− R̂νa) + Lωm(−δηRm− R̂νm)− R̂νbω

where we have again dropped all quadratics in δ on the second-last line above. We
further simplify the above expressions by re-expressing δηR = ηR − η̄R = R̂RT − I
using the same technique as in Section 3.2.5: take the ground-frame rotational
kinematics (2.3) (d/dt)R = S(ω)R and define ω = dγ/dt. The kinematics get
written as dR/dt = S(dγ/dt)R =⇒ dR = S(dγ)R. For the linearization point
η̄R = I, we can write dR ≈ R̂−R and dγ = γ̂ − γ, and so R̂−R ≈ S(γ̂ − γ)R =⇒
R̂RT − I = S(γ̂ − γ) =⇒ δηR = S(δγ), where δγ gets used to represent attitude
error in the linearized system in place of δηR.
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Using δηR = S(δγ) in the η̇R and η̇ω expressions above, we obtain

S(δγ̇) = S(−δηω) + S
[
LRa (−S(δγ)a − R̂νa) + LRm(−S(δγ)m − R̂νm)

]
+ S[R̂νω]

S(δγ̇) = S
[
− δηω + LRa (S(a)δγ − R̂νa) + LRm(S(m)δγ − R̂νm) + R̂νω

]

δγ̇ = −δηω +
[
LRa S(a) + LRmS(m)

]
δγ − LRa R̂νa − LRmR̂νm + R̂νω

for δη̇R, and for δη̇ω we have

δη̇ω = S[I(x̂, ũ)]δηω + Lωa (−S(δγ)a − R̂νa) + Lωm(−S(δγ)m − R̂νm)− R̂νbω

= S[I(x̂, ũ)]δηω + Lωa (S(a)δγ − R̂νa) + Lωm(S(m)δγ − R̂νm)− R̂νbω

δη̇ω = S[I(x̂, ũ)]δηω +
[
LωaS(a) + LωmS(m)

]
δγ − Lωa R̂νa − LωmR̂νm − R̂νbω

The δγ̇ and δη̇ω expressions are rewritten as (4.26)

[
δγ̇
δη̇ω

]
=

[
0 −I
0 S[I(x̂, ũ)]

]

︸ ︷︷ ︸
A

[
δγ
δηω

]
−
[
LRa LRm
Lωa Lωm

]

︸ ︷︷ ︸
K

[
−S(a) 0
−S(m) 0

]

︸ ︷︷ ︸
C

[
δγ
δηω

]

−
[
−R̂ 0

0 R̂

]

︸ ︷︷ ︸
B

[
νω
νbω

]

︸ ︷︷ ︸
w

+

[
LRa LRm
Lωa Lωm

]

︸ ︷︷ ︸
K

[
−R̂ 0

0 −R̂

]

︸ ︷︷ ︸
D

[
νa
νm

]

︸ ︷︷ ︸
v

(4.31)

Using the set of matrices (A,B,C,D) along with the (identified) noise covariances
Q = E〈wwT 〉, R = E〈vvT 〉 we use (4.22) to calculate K and use the resulting gains
L in the invariant observer (4.29) resp. (4.15).

4.9.2.2 Ground frame symmetries

We also design an Invariant EKF for the AHRS ground-frame symmetry case covered
in Section 4.7.1.2. Under additive noise, the system dynamics and outputs are still
given by (4.27), (4.28)

Ṙ = RS(ω̃ − bω − νω)

ḃω = νbω[
ỹa
ỹm

]
=

[
RTa+ νa
RTm+ νm

]

while the observer (4.16) becomes

˙̂
R = R̂S(ω̃ − b̂ω) + R̂S

(
LRa Ẽa + LRmẼm

)

˙̂
bω = Lωa Ẽa + LωmẼm

where Ẽa = R̂Ta− ỹa, Ẽm = R̂Tm− ỹm. The invariant estimation errors ηR = RT R̂,
ηω = b̂ω − bω are unchanged from Section 4.7.1.2, and we compute their dynamics
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below:

η̇R = −RT ṘRT R̂+RT
˙̂
R

= −RTRS(ω̃ − bω − νω)R
T R̂+RT R̂S(ω̃ − b̂ω) +RT R̂S

(
LRa Ẽa + LRmẼm

)

= ηRS(Ĩω)− S(Ĩω)ηR − S(ηω)ηR + ηRS
(
LRa Ẽa + LRmẼm

)
+ S(νω)ηR

η̇ω =
˙̂
bω − ḃω

= Lωa Ẽa + LωmẼm − νbω

where Ĩω = ω̃− b̂ω as well as Ia = R̂Ta, Im = R̂Tm are the invariants of the system,
the latter two appearing in the invariant output errors:

Ẽa = R̂Ta− ỹa = R̂Ta−RTa− νa = Ia −RT R̂R̂Ta− νa = Ia − ηRIa − νa

Ẽm = R̂Tm− ỹm = R̂Tm−RTm− νm = Im −RT R̂R̂Tm− νm = Im − ηRIm − νm

Next, we linearize the above η dynamics about η̄R = I, η̄ω = 0 and ν̄ = 0. The Ẽ
terms will become

δẼa = Ẽa − Ẽa = Ia − ηRIa − νa − Ia + η̄RIa + ν̄a = −δηRIa − νa

δẼm = Ẽm − Ẽm = Im − ηRIm − νm − Im + η̄RIm + ν̄m = −δηRIm − νm

where Ẽa = Ẽm = 0. Using δηR = S(δγ) as in Section 4.9.2.1, we have

δẼa = −S(δγ)Ia − νa = S(Ia)δγ − νa

δẼm = −S(δγ)Im − νm = S(Im)δγ − νm

Finally, we calculate the linearized δη dynamics as

δη̇R = η̇R − ˙̄ηR

= ηRS(Ĩω)− S(Ĩω)ηR − S(ηω)ηR + ηRS
(
LRa Ẽa + LRmẼm

)
+ S(νω)ηR − 0

= (δηR + η̄R)S(Ĩω)− S(Ĩω)(δηR + η̄R)− S[δηω + η̄ω](δηR + η̄R)

+ (δηR + η̄R)S
(
LRa (δẼa + Ẽa) + LRm(δẼm + Ẽm)

)

+ S[δνω + ν̄ω](δηR + η̄R)

= δηRS(Ĩω)− S(Ĩω)δηR − S(δηω)η̄R + η̄RS
(
LRa δẼa + LRmδẼm

)
+ S(δνω)η̄R

S(δγ̇) = S(δγ)S(Ĩω)− S(Ĩω)S(δγ) − S(δηω) + S
(
LRa δẼa + LRmδẼm

)
+ S(νω)

δγ̇ = δγ × Ĩω − δηω + LRa δẼa + LRmδẼm + νω

= −S(Ĩω)δγ − δηω + LRa
(
S(Ia)δγ − νa

)
+ LRm

(
S(Im)δγ − νm

)
+ νω

and
δη̇ω = η̇ω − ˙̄ηω

= Lωa Ẽa + LωmẼm − νbω − Lωa Ẽa − LωmẼm + ν̄bω

= Lωa δẼa + LωmδẼm − νbω

= Lωa
(
S(Ia)δγ − νa

)
+ Lωm

(
S(Im)δγ − νm

)
− νbω
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which is rewritten in form (4.26) as

[
δγ̇
δη̇ω

]
=

[
−S[ω̃ − b̂ω] −I

0 0

]

︸ ︷︷ ︸
A

[
δγ
δηω

]
−
[
LRa LRm
Lωa Lωm

]

︸ ︷︷ ︸
K

[
−S[R̂Ta] 0

−S[R̂Tm] 0

]

︸ ︷︷ ︸
C

[
δγ
δηω

]

−
[
−I 0
0 I

]

︸ ︷︷ ︸
B

[
νω
νbω

]

︸ ︷︷ ︸
w

+

[
LRa LRm
Lωa Lωm

]

︸ ︷︷ ︸
K

[
−I 0
0 −I

]

︸ ︷︷ ︸
D

[
νa
νm

]

︸ ︷︷ ︸
v

(4.32)

Which provides the set (A,B,C,D) used in (4.22) to calculate the gains L of the
invariant observer (4.16).

4.9.3 Invariant Aided INS EKF design

In order to assign the gains L to the Aided INS observers designed in Sections 4.7.2.1
and 4.7.2.2, we use the Invariant EKF methodology of Section 4.9.1. We consider
both the body-frame and ground-frame symmetries versions below. Using the ac-
celerometer and rate gyro sensor models (3.4) f̃ = f + bf + νf , ω̃ = ω + bω + νω
from Section 3.2.2 along with a Wiener process model for the bias dynamics ḃ = ν
as mentioned in Section 4.5, the Aided INS dynamics (4.6) become (4.24a)

ṗ = v

v̇ = R(f̃ − bf − νf )− a

Ṙ = RS(ω̃ − bω − νω)

ḃf = νbf

ḃω = νbω

(4.33)

with process noise vector w = [νf νω νbf νbω]
T . The nominal output equa-

tions (4.7) become [
ỹp
ỹm

]
=

[
p+ νp

RTm+ νm

]
(4.34)

where v = [νp νm]
T is the measurement noise vector. As discussed in Section (4.5)

we assume the Navigation to ECEF rotation matrix RNE and location of navigation
frame roE have been found such that the vehicle’s navigation frame position p is
directly measurable. The vector m is the navigation frame magnetic field vector,
c.f. Section 2.8, and ỹm is assumed compensated such that νm := νcm, c.f. Sec-
tion 3.2.2.
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4.9.3.1 Body frame symmetries

From Section 4.7.2.1, the invariant observer (4.17) with noise models from Sec-
tion 4.9.3 takes the form (4.24b)

˙̂p = v̂ + LppẼp + LpmẼm

˙̂v = R̂(f̃ − b̂f )− a+ LvpẼp + LvmẼm

˙̂
R = R̂S(ω̃ − b̂ω) + S

[
LRp Ẽp + LRmẼm

]
R̂

˙̂
bf = R̂T

(
Lbfp Ẽp + Lbfm Ẽm

)

˙̂
bω = R̂T

(
Lbωp Ẽp + Lbωm Ẽm

)

where Ẽp = p̂ − ỹp and Ẽm = m − R̂ỹm. The invariant estimation errors η remain
unchanged, and the dynamics η̇ are expected to contain the invariants Iv = v̂,
Ĩf = R̂(f̃ − b̂f ) and Ĩω = R̂(ω̃ − b̂ω). By direct computation:

η̇p = ˙̂p− ṗ

= v̂ + LppẼp + LpmẼm − v

= ηv + LppẼp + LpmẼm

η̇v = ˙̂v − v̇

= R̂(f̃ − b̂f )− a+ LvpẼp + LvmẼm −R(f̃ − bf − νf ) + a

= Ĩf + LvpẼp + LvmẼm − (ηR)
T Ĩf − ηbf +Rνf

= Ĩf + LvpẼp + LvmẼm − (ηR)
T Ĩf − ηbf + (ηR)

T R̂νf

η̇R =
˙̂
RRT − R̂RT ṘRT

= R̂S(ω̃ − b̂ω)R
T + S

[
LRp Ẽp + LRmẼm

]
R̂RT − R̂RTRS(ω̃ − bω − νω)R

T

= −ηRS(ηbω) + S
[
LRp Ẽp + LRmẼm

]
ηR + R̂S(νω)R

T

= −ηRS(ηbω) + S
[
LRp Ẽp + LRmẼm

]
ηR + R̂S(νω)R̂

T R̂RT

= −ηRS(ηbω) + S
[
LRp Ẽp + LRmẼm

]
ηR + S

[
R̂νω

]
ηR
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η̇bf = Ṙ(b̂f − bf ) +R(
˙̂
bf − ḃf )

= RS(ω̃ − bω − νω)(b̂f − bf ) +RR̂T
(
Lbfp Ẽp + Lbfm Ẽm

)
−Rνbf

= S
[
(ηR)

T Ĩω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ẽp + Lbfm Ẽm

)
−RS(νω)(b̂f − bf )−Rνbf

= S
[
(ηR)

T Ĩω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ẽp + Lbfm Ẽm

)
+RS[b̂f − bf ]νω −Rνbf

= S
[
(ηR)

T Ĩω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ẽp + Lbfm Ẽm

)
+RS[b̂f − bf ]R

TRR̂T R̂νω

−RR̂T R̂νbf

= S
[
(ηR)

T Ĩω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ẽp + Lbfm Ẽm

)
+ S[ηbf ](ηR)

T R̂νω

− (ηR)
T R̂νbf

η̇bω = Ṙ(b̂ω − bω) +R(
˙̂
bω − ḃω)

= RS(ω̃ − bω − νω)(b̂ω − bω) +RR̂T
(
Lbωp Ẽp + Lbωm Ẽm

)
−Rνbω

= S
[
(ηR)

T Ĩω
]
ηbω + (ηR)

T
(
Lbωp Ẽp + Lbωm Ẽm

)
−RS(νω)(b̂ω − bω)−Rνbω

= S
[
(ηR)

T Ĩω
]
ηbω + (ηR)

T
(
Lbωp Ẽp + Lbωm Ẽm

)
+RS[b̂ω − bω]νω −Rνbω

= S
[
(ηR)

T Ĩω
]
ηbω + (ηR)

T
(
Lbωp Ẽp + Lbωm Ẽm

)
+RS[b̂ω − bω]R

TRR̂T R̂νω

−RR̂T R̂νbω

= S
[
(ηR)

T Ĩω
]
ηbω + (ηR)

T
(
Lbωp Ẽp + Lbωm Ẽm

)
+ S[ηbω](ηR)

T R̂νω − (ηR)
T R̂νbω

where we have

Ẽp = p̂− ỹp = p̂− p− νp = ηp − νp

Ẽm = m− R̂ỹm = m− R̂RTm− R̂νm = m− ηRm− R̂νm

We now linearize the error dynamics above about η̄ = 0 (η̄R = I) and ν̄ = 0. The
invariant output error terms become

δẼp = Ẽp − Ẽp = ηp − νp − η̄p + ν̄p = δηp − νp

δẼm = Ẽm − Ẽm

= m− ηRm− R̂νm −m+ η̄Rm+ R̂ν̄m = −δηRm− R̂νm = S(m)δγ − R̂νm
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where we have used δηR = S(δγ) with δγ = γ̂ − γ as explained in Section 4.9.2.1.

Remark that Ẽp = Ẽm = 0. We now proceed to calculate the linearizations:

δη̇p = η̇p − ˙̄ηp

= ηv + LppẼp + LpmẼm − η̄v − LppẼp − LpmẼm

= δηv + LppδẼp + LpmδẼm

= δηv + Lpp
(
δηp − νp

)
+ Lpm

(
S(m)δγ − R̂νm

)

δη̇v = η̇v − ˙̄ηv

= Ĩf + LvpẼp + LvmẼm − (ηR)
T Ĩf − ηbf + (ηR)

T R̂νf

− Ĩf − LvpẼp − LvmẼm + (η̄R)
T Ĩf + η̄bf − (η̄R)

T R̂ν̄f

= LvpδẼp + LvmδẼm − (δηR)
T Ĩf − δηbf + (δηR + η̄R)

T R̂(δνf + ν̄f )

= LvpδẼp + LvmδẼm −
(
S(δγ)

)T
Ĩf − δηbf + (η̄R)

T R̂δνf

= Lvp
(
δηp − νp

)
+ Lvm

(
S(m)δγ − R̂νm

)
− S(Ĩf )δγ − δηbf + R̂νf

δη̇R = η̇R − ˙̄ηR

= −ηRS(ηbω) + S
[
LRp Ẽp + LRmẼm

]
ηR + S(R̂νω)ηR − 0

= −
(
δηR + η̄R

)
S
[
δηbω + η̄bω

]
+ S

[
LRp
(
δẼp + Ẽp

)

+ LRm
(
δẼm + Ẽm

)](
δηR + η̄R

)
+ S

[
R̂
(
δνω + ν̄ω

)](
δηR + η̄R

)

δη̇R = −η̄RS(δηbω) + S
[
LRp δẼp + LRmδẼm

]
η̄R + S

[
R̂δνω

]
η̄R

S(δγ̇) = S(−δηbω) + S
[
LRp
(
δηp − νp

)
+ LRm

(
S(m)δγ − R̂νm

)]
+ S

[
R̂νω

]

δγ̇ = −δηbω + LRp
(
δηp − νp

)
+ LRm

(
S(m)δγ − R̂νm

)
+ R̂νω
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δη̇bf = η̇bf − ˙̄ηbf

= S
[
(ηR)

T Ĩω + ηbω
]
ηbf + (ηR)

T
(
Lbfp Ẽp + Lbfm Ẽm

)

+ S[ηbf ](ηR)
T R̂νω − (ηR)

T R̂νbf − 0

= S
[(
δηR + η̄R

)T
Ĩω +

(
δηbω + η̄bω

)](
δηbf + η̄bf

)

+
(
δηR + η̄R

)T(
Lbfp
(
δẼp + Ẽp

)
+ Lbfm

(
δẼm + Ẽm

))

+ S
[
δηbf + η̄bf

](
δηR + η̄R

)T
R̂
(
δνω + ν̄ω

)
−
(
δηR + η̄R

)T
R̂
(
δνbf + ν̄bf

)

= S
[(
η̄R
)T
Ĩω
]
δηbf +

(
η̄R
)T(

Lbfp δẼp + Lbfm δẼm

)

+ S
[
δηbf

](
η̄R
)T
R̂δνω −

(
η̄R
)T
R̂δνbf

= S
[
Ĩω
]
δηbf + Lbfp

(
δηp − νp

)
+ Lbfm

(
S(m)δγ − R̂νm

)
− R̂νbf

δη̇bω = η̇bω − ˙̄ηbω

= S
[
(ηR)

T Ĩω
]
ηbω + (ηR)

T
(
Lbωp Ẽp + Lbωm Ẽm

)

+ S[ηbω](ηR)
T R̂νω − (ηR)

T R̂νbω − 0

= S
[(
δηR + η̄R

)T
Ĩω
](
δηbω + η̄bω

)

+
(
δηR + η̄R

)T(
Lbωp
(
δẼp + Ẽp

)
+ Lbωm

(
δẼm + Ẽm

))

+ S
[
δηbω + η̄bω

](
δηR + η̄R

)T
R̂
(
δνω + ν̄ω

)
−
(
δηR + η̄R

)T
R̂
(
δνbω + ν̄bω

)

= S
[(
η̄R
)T
Ĩω
]
δηbω +

(
η̄R
)T(

Lbωp δẼp + Lbωm δẼm

)

+ S
[
δηbω

](
η̄R
)T
R̂δνω −

(
η̄R
)T
R̂δνbω

= S
[
Ĩω
]
δηbω + Lbωp

(
δηp − νp

)
+ Lbωm

(
S(m)δγ − R̂νm

)
− R̂νbω
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The preceding are rewritten in the form (4.26):




δη̇p
δη̇v
δγ̇
δη̇bf
δη̇bω



=




0 I 0 0 0

0 0 −S[Ĩf ] −I 0
0 0 0 0 −I
0 0 0 S[Ĩω] 0

0 0 0 0 S[Ĩω]




︸ ︷︷ ︸
A




δηp
δηv
δγ
δηbf
δηbω




−




Lpp Lpm
Lvp Lvm
LRp LRm
Lbfp Lbfm
Lbωp Lbωm




︸ ︷︷ ︸
K

[
−I 0 0 0 0
0 0 −S(m) 0 0

]

︸ ︷︷ ︸
C




δηp
δηv
δγ
δηbf
δηbω




−




0 0 0 0

−R̂ 0 0 0

0 −R̂ 0 0

0 0 R̂ 0

0 0 0 R̂




︸ ︷︷ ︸
B




νf
νω
νbf
νbω




︸ ︷︷ ︸
w

+




Lpp Lpm
Lvp Lvm
LRp LRm
Lbfp Lbfm
Lbωp Lbωm




︸ ︷︷ ︸
K

[−I 0

0 −R̂

]

︸ ︷︷ ︸
D

[
νp
νm

]

︸ ︷︷ ︸
v

which provides the required (A,B,C,D) matrices to compute K via (4.22) giving
the gains L of observer (4.17).

4.9.3.2 Ground frame symmetries

From Section 4.7.2.2, the invariant observer (4.18) with noise models from Sec-
tion 4.9.3 takes the form (4.24b)

˙̂p = v̂ + R̂
(
LppẼp + LpmẼm

)

˙̂v = R̂(f̃ − b̂f )− a+ R̂
(
LvpẼp + LvmẼm

)

˙̂
R = R̂S(ω̃ − b̂ω) + R̂S

[
LRp Ẽp + LRmẼm

]

˙̂
bf = Lbfp Ẽp + Lbfm Ẽm

˙̂
bω = Lbωp Ẽp + Lbωm Ẽm
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As before the η expressions are unchanged by the addition of noise. We directly
work out their dynamics below:

η̇p = −RT ṘRT (p̂− p) +RT ( ˙̂p − ṗ)

= −RTRS(ω̃ − bω − νω)R
T (p̂− p) +RT

(
v̂ + R̂

(
LppẼp + LpmẼm

)
− v
)

= −S
[
Ĩω + ηbω

]
ηp + ηv + ηR

(
LppẼp + LpmẼm

)
+ S(νω)R

T (p̂ − p)

= −S
[
Ĩω + ηbω

]
ηp + ηv + ηR

(
LppẼp + LpmẼm

)
− S(ηp)νω

η̇v = −RT ṘRT (v̂ − v) +RT ( ˙̂v − v̇)

= −RTRS(ω̃ − bω − νω)R
T (v̂ − v)

+RT
{
R̂(f̃ − b̂f )− a+ R̂

(
LvpẼp + LvmẼm

)
−R(f̃ − bf − νf ) + a

}

= −S
[
Ĩω + ηbω

]
ηv + ηRĨf + ηR

(
LvpẼp + LvmẼm

)

− Ĩf − ηbf + S(νω)R
T (v̂ − v) + νf

= −S
[
Ĩω + ηbω

]
ηv + ηRĨf + ηR

(
LvpẼp + LvmẼm

)
− Ĩf − ηbf − S(ηv)νω + νf

η̇R = −RT ṘRT R̂+RT
˙̂
R

= −RTRS(ω̃ − bω − νω)R
T R̂+RT R̂S(ω̃ − b̂ω) +RT R̂S

[
LRp Ẽp + LRmẼm

]

= −S
[
Ĩω + ηbω

]
ηR + ηRS(Ĩω) + ηRS

[
LRp Ẽp + LRmẼm

]
+ S(νω)ηR

η̇bf =
˙̂
bf − ḃf

= Lbfp Ẽp + Lbfm Ẽm − νbf

η̇bω =
˙̂
bω − ḃω

= Lbωp Ẽp + Lbωm Ẽm − νbω

where Ĩω = ω̃− b̂ω, Ĩf = f̃ − b̂f as well as Im = R̂Tm which appears in the invariant
output errors:

Ẽp = R̂T (p̂− ỹp) = R̂T (p̂ − p− νp) = R̂TRRT (p̂− p)− R̂T νp = (ηR)
T ηp − R̂T νp

Em = R̂Tm− ỹm = R̂Tm−RTm− νm = Im −RT R̂R̂Tm− νm = Im − ηRIm − νm

We linearize the system about η̄ = 0 (η̄R = I), ν̄ = 0. We have

δẼp = Ẽp − Ẽp

= (ηR)
T ηp − R̂Tνp − (η̄R)

T η̄p + R̂T ν̄p

= (δηR + η̄R)
T (δηp + η̄p)− R̂T νp

= (η̄R)
T δηp − R̂T νp = δηp − R̂Tνp

δẼm = Ẽm − Ẽm

= Im − ηRIm − νm − Im + η̄RIm + ν̄m

= −(δηR)Im − νm = −S(δγ)Im − νm = S(Im)δγ − νm
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and for the invariant estimation dynamics

δη̇p = η̇p − ˙̄ηp

= −S
[
Ĩω + ηbω

]
ηp + ηv + ηR

(
LppẼp + LpmẼm

)
− S(ηp)νω − 0

= −S
[
Ĩω + δηbω + η̄bω

](
δηp + η̄p

)
+ δηv + η̄v

+
(
δηR + η̄R

)(
Lpp
(
δẼp + Ẽp

)
+ Lpm

(
δẼm + Ẽm

))

− S
[
δηp + η̄p

](
δνω + ν̄ω

)

= −S(Ĩω)δηp + δηv + η̄R

(
LppδẼp + LpmδẼm

)

= −S(Ĩω)δηp + δηv + Lpp
(
δηp − R̂Tνp

)
+ Lpm

(
S(Im)δγ − νm

)

δη̇v = η̇v − ˙̄ηv

= −S
[
Ĩω + ηbω

]
ηv + ηRĨf + ηR

(
LvpẼp + LvmẼm

)
− Ĩf − ηbf − S(ηv)νω + νf

+ S
[
Ĩω + η̄bω

]
η̄v − η̄RĨf − η̄R

(
LvpẼp + LvmẼm

)
+ Ĩf + η̄bf + S(η̄v)ν̄ω − ν̄f

= −S(Ĩω)δηv − S
[
δηbω + η̄bω

](
δηv + η̄v

)
+ δηRĨf

+
(
δηR + η̄R

)(
Lvp
(
δẼp + Ẽp

)
+ Lvm

(
δẼm + Ẽm

))

− δηbf − S
[
δηv + η̄v

](
δνω + ν̄ω

)
+ νf

= −S(Ĩω)δηv + S(δγ)Ĩf + η̄R
(
LvpδẼp + LvmδẼm

)
− δηbf + νf

= −S(Ĩω)δηv − S(Ĩf )δγ + Lvp
(
δηp − R̂T νp

)
+ Lvm

(
S(Im)δγ − νm

)
− δηbf + νf

δη̇R = η̇R − ˙̄ηR

= −S
[
Ĩω + ηbω

]
ηR + ηRS(Ĩω) + ηRS

[
LRp Ẽp + LRmẼm

]
+ S(νω)ηR

+ S
[
Ĩω + η̄bω

]
η̄R − η̄RS(Ĩω)− η̄RS

[
LRp Ẽp + LRmẼm

]
− S(ν̄ω)η̄R

= −S(Ĩω)δηR − S
[
δηbω + η̄bω

](
δηR + η̄R

)
+ δηRS(Ĩω)

+
(
δηR + η̄R

)
S
[
LRp
(
δẼp + Ẽp

)
+ LRm

(
δẼm + Ẽm

)]

+ S
[
δνω + ν̄ω

](
δηR + η̄R

)

δη̇R = δηRS(Ĩω)− S(Ĩω)δηR − S
[
δηbω

]
η̄R + η̄RS

[
LRp δẼp + LRmδẼm

]
+ S

[
δνω
]
η̄R

S(δγ̇) = S(δγ)S(Ĩω)− S(Ĩω)S(δγ) − S
[
δηbω

]
+ S

[
LRp δẼp + LRmδẼm

]
+ S

[
νω
]

δγ̇ = δγ × Ĩω − δηbω + LRp δẼp + LRmδẼm + νω

= −S(Ĩω)δγ − δηbω + LRp
(
δηp − R̂Tνp

)
+ LRm

(
S(Im)δγ − νm

)
+ νω
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δη̇bf = η̇bf − ˙̄ηbf

= Lbfp Ẽp + Lbfm Ẽm − νbf − Lbfp Ẽp − Lbfm Ẽm + ν̄bf

= Lbfp
(
δηp − R̂T νp

)
+ Lbfm

(
S(Im)δγ − νm

)
− νbf

δη̇bω = η̇bω − ˙̄ηbω

= Lbωp Ẽp + Lbωm Ẽm − νbω − Lbωp Ẽp − Lbωm Ẽm + ν̄bω

= Lbωp
(
δηp − R̂T νp

)
+ Lbωm

(
S(Im)δγ − νm

)
− νbω

We then rearrange the above expressions into form (4.26):




δη̇p
δη̇v
δγ̇
δη̇bf
δη̇bω



=




−S(Ĩω) I 0 0 0

0 −S(Ĩω) −S(Ĩf ) −I 0

0 0 −S(Ĩω) 0 −I
0 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
A




δηp
δηv
δγ
δηbf
δηbω




−




Lpp Lpm
Lvp Lvm
LRp LRm
Lbfp Lbfm
Lbωp Lbωm




︸ ︷︷ ︸
K

[
−I 0 0 0 0
0 0 −S(Im) 0 0

]

︸ ︷︷ ︸
C




δηp
δηv
δγ
δηbf
δηbω




−




0 0 0 0
−I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I




︸ ︷︷ ︸
B




νf
νω
νbf
νbω




︸ ︷︷ ︸
w

+




Lpp Lpm
Lvp Lvm
LRp LRm
Lbfp Lbfm
Lbωp Lbωm




︸ ︷︷ ︸
K

[
−R̂T 0
0 −I

]

︸ ︷︷ ︸
D

[
νp
νm

]

︸ ︷︷ ︸
v

giving the set of (A,B,C,D) matrices used with (4.22) to compute K resp. the gains
L of observer (4.18).

4.10 Invariant AHRS testing

4.10.1 Implementation Details

The invariant AHRS observers were designed in Section 4.7.1 and will be summarized
below. We numerically implement the equations using the modified Euler method,
e.g. [35, p. 280]: for ẋ = F (x, t), x(t0) = x0, the approximated states wi = x(ti),
ti = t0 + iT with T representing the step size are calculated by

w0 = x0

wi+1 = wi +
T

2

(
F (ti, wi) + F (ti+1, wi + TF (ti, wi))

)
i = 0, 1, 2, . . .

As in Section 3.2.1, we employ a complementary filter topology: the system dynam-
ics part of the observer f(x̂, u) is integrated at the IMU sampling period TIMU to
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produce rough state estimates x̂, which are periodically updated using aiding mea-
surements ya, ym resp. Ea, Em and observer gains L at the user-selectable period
TAid ≥ TIMU. The terms L are available either from the direct nonlinear design
in Section 4.8, or from the Invariant EKF in Section 4.9. In the latter case we
numerically integrate (4.22)

Ṗ = AP + PAT − PCT (DRDT )−1CP +BQBT

at the period of TAid and from K = PCT (DRDT )−1 obtain the matrix of AHRS
observer gains

K =

[
LRa LRm
Lωa Lωm

]
.

The Q and R process and measurement noise covariance matrix entries are taken
from Table 3.1 in Section 3.2.2 and the initial covariance matrix is assigned as
P0 = 06×6, c.f. Section 3.2.9. In both methods, the initial observer state x̂0 is
computed during an initialization period described in Section 3.2.11.1 and we choose
TAid = 0.04 s, i.e. an aiding rate of 25 Hz.

4.10.1.1 Body frame symmetries

From Section 4.7.1.1 the invariant AHRS observer is (4.15)

˙̂
R = R̂S(ω − b̂ω) + S

(
LRa Ea + LRmEm

)
R̂

˙̂
bω = R̂T

(
LωaEa + LωmEm

)
,

with invariant output errors

[
Ea
Em

]
=

[
a− R̂ya
m− R̂ym

]

The observer gains L are available from a direct nonlinear design in Section 4.8
as (4.19)

LRa = kP laS(a) LRm = kP lmS(m)

Lωa = −kI laS(a) Lωm = −kI lmS(m)

whose parameter values are chosen as kP = 2.5, kI = 0.4 and la = lm = 0.01
to obtain good performance. Alternatively, the gains can be computed using the
Invariant EKF method of Section 4.9 with the set of matrices (4.31)

A =

[
0 −I
0 S[R̂(ω̃ − b̂ω)]

]
, B =

[
−R̂ 0

0 R̂

]
, C =

[
−S(a) 0
−S(m) 0

]
, D =

[
−R̂ 0

0 −R̂

]

4.10.1.2 Ground frame symmetries

From Section 4.7.1.2, the invariant AHRS observer is (4.16)

˙̂
R = R̂S(ω − b̂ω) + R̂S

(
LRa Ea + LRmEm

)

˙̂
bω = LωaEa + LωmEm
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where the invariant output errors are

[
Ea
Em

]
=

[
R̂Ta− ya
R̂Tm− ym

]

By direct nonlinear design in Section 4.8 the observer gains L are (4.20)

LRa = kP laS(R̂
Ta) LRm = kP lmS(R̂

Tm)

Lωa = −kI laS(R̂Ta) Lωm = −kI lmS(R̂Tm)

with the same parameter choices as before: kP = 2.5, kI = 0.4, la = lm = 0.01. The
gains L can alternatively be computed using the Invariant EKF method using the
matrices (4.32)

A =

[
−S[ω̃ − b̂ω] −I

0 0

]
, B =

[
−I 0
0 I

]
, C =

[
−S[R̂Ta] 0

−S[R̂Tm] 0

]
, D =

[
−I 0
0 −I

]

4.10.2 Simulation Results

We use the following reference trajectory for simulation: the system is stationary
for 5 s with attitude (φ, θ, ψ) = (0, 0, 0), the initialization period. Next, the system
moves to (60◦,−60◦, 60◦), (−60◦, 60◦,−60◦) and back to (60◦,−60◦, 60◦) at times
t1 = 10, t2 = 15, t3 = 20 s, respectively. This last attitude is then held constant
while the system undergoes linear vibration p̈ = A sin(ωt) during 20 < t < 25 s
where A = 8 m/s2 and ω = 2.5 Hz are representative values for the hardware unit
being violently shaken by hand; the sensor model ya is in error during this period
as discussed in Section 3.2.2. The system is then stationary for 25 ≤ t ≤ 30 s to
allow the observer estimates to re-converge. This reference trajectory is converted to
rate gyro, accelerometer and magnetometer signals, which are then corrupted using
additive bias and white noise terms whose parameters are taken from Table 3.12.
The resulting IMU sensor log is used as the input to the observer designs.

4.10.2.1 Body frame symmetries

The body-frame symmetries observer simulation results are shown in Figure 4.2
where we plot the estimated attitude R̂ (using Euler angles) and rate gyro bias
ω̂b versus the reference trajectory. The body-frame symmetry observer (4.15) is
validated to work under both the nonlinear design and the Invariant EKF gain
selection methods. During the manoeuvering phase 5 ≤ t ≤ 20 s the two cases
provide perfect tracking performance and are essentially identical to each other.
The shaking interval 20 ≤ t ≤ 25 s exhibits (bounded) tracking errors caused by
inertial acceleration violating the output model ya as discussed in Section 3.2.2. Here
the estimation performance is different between the two gain selection methods, for
instance bxω and byω which are strongly dependent on ya are seen to drift in the
Invariant EKF design, caused by the internal adjustment of gain matrix K due to
changes in the estimation error covariance matrix P . The attitude estimates are in
error during this phase; the ψm for the nonlinear gain design can be seen to have

2The simulated time-varying bias employs a Gauss-Markov process model whereas the invariant
observer assumes a (simpler) Wiener process model.
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Figure 4.2: Invariant AHRS Simulation: Body-Frame Symmetry Observer (4.15)
using gains from nonlinear design (left); Invariant EKF (right)

a slightly smaller error bound than the Invariant EKF version. Once shaking is
terminated, the attitude estimates quickly re-converge to their reference values and
the estimated biases do so at a slower rate.

4.10.2.2 Ground frame symmetries

The ground-frame symmetries observer estimates are plotted in Figure 4.3. The
observer (4.16) for the ground-frame symmetries case is validated to work for both
the nonlinear design and Invariant EKF gain selection methods: the estimated states
track the reference trajectory on 5 ≤ t ≤ 20 s, provide a bounded tracking error
during the shaking interval 20 ≤ t ≤ 25 s with ya in error due to the inertial
acceleration, and restore accurate estimates on 25 ≤ t ≤ 30 s where the shaking has
been stopped.

The performance obtained is very similar to the body-frame symmetries case
in Section 4.10.2.1 and the estimation errors for the two versions will be explicitly
compared in Section 4.10.2.3. In particular, the two symmetry versions of the non-
linear gain design are theoretically equivalent because the gains (4.19) and (4.20)
reduce (4.15) and (4.16) to the same observer, c.f. Section 4.8. As discussed in
Section 4.6.1 the ground-frame symmetries observer (4.16) has the advantage of the
moving frame γ(x) being guaranteed global existence.
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Figure 4.3: Invariant AHRS Simulation: Ground-Frame Symmetry Observer (4.16)
using gains from nonlinear design (left); Invariant EKF (right)

4.10.2.3 Estimation performance comparison

We now compare the estimation errors for the body-frame nonlinear gain design,
the body-frame Invariant EKF, the ground-frame nonlinear design and the ground-
frame Invariant EKF. The resulting errors are plotted in Figure 4.4.

During the maneuvering interval 5 ≤ t < 20 s, all four designs provide essentially
perfect attitude tracking performance, with peak errors < 0.5◦ and typical errors
on the order of 0.1◦. All designs exhibit large estimation errors during the shaking
phase 20 ≤ t < 25 s which converge back to zero once shaking is terminated on
25 ≤ t < 30 s; the attitude errors re-converge to zero faster than the bias errors
however. The ground-frame IEKF performs slightly better than the body-frame
IEKF design, with peak attitude errors during the shaking phase approximately
0.5◦ smaller in the former visible when zooming in. Both Invariant EKF designs
exhibit a drift in the mean value of the estimates 20 ≤ t < 25 s which is characteristic
of the observer gains being re-adjusted by the Kalman filter, and indeed this effect
is not present in the nonlinear designs.

As discussed in Section 4.10.2.2, the two versions of the nonlinear design are
theoretically equivalent, and their corresponding plots are essentially indistinguish-
able from each other. The nonlinear designs provide slightly lower error bounds on
20 ≤ t < 25 s and faster re-converge on 25 ≤ t < 30 s compared to the Invariant
EKF versions. However, the true advantage of the nonlinear design approach is the
big savings in processor load realized by not employing the computationally expen-
sive EKF algorithm. As mentioned in Section 3.2.10.1 our existing avionics system
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Figure 4.4: Invariant AHRS Simulation: Comparison of estimation errors

provides tremendous computing power and can easily run an EKF algorithm, how-
ever these saving would be of great importance on a low-power embedded system
platform such as those used on small indoor autonomous UAV’s.

4.10.3 Experimental Results

We now implement and test the invariant observers summarized in Section 4.10.1 in
experiment, using the dataset from Section 3.3.2 which includes reference attitudes
from the Vicon motion-capture system. The experiment consists of an initialization
period where the unit is level; it is then picked up by hand and executes a sequence
of positive and negative roll, positive and negative pitch and negative and positive
yaw motions, returning to level configuration in-between. The unit is then shaken
along its three axes with attitude held level, then set down allowing the estimates
to re-converge. The yaw is reported as ψ = ψm − ψm0 where ψm0 is found in initial-
ization (c.f. Section 3.2.11.1) because the Vicon system uses the AHRS unit’s initial
orientation as its zero datum for reported attitude.

The observer parameters are the same as in simulation, namely a 25 Hz aiding
rate, kP = 2.5, kI = 0.4, la = lm = 0.01 for the nonlinear design gains, and Q,
R from Table 3.1 and P0 = 06×6 for the Invariant EKF. The ym measurements
are compensated using terms Km, bm resp. Ac, bc obtained from an a priori magne-
tometer calibration, c.f. Sections 2.9 and 3.2.2. We have also found it necessary to
implement verification of accelerometer data in experiment: as in Section 3.2.10.1,
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each ya aiding measurement is used for aiding only if

|‖ya‖ − g|
g

≤ tol = 0.5,

otherwise aiding is omitted at that instant of time.

4.10.3.1 Body frame symmetries
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Figure 4.5: Invariant AHRS Experiment: Body-Frame Symmetry Observer (4.15)
using gains from nonlinear design (left); Invariant EKF (right)

The experimental results for the body-frame symmetries observer (4.15) using
the nonlinear design and Invariant EKF approaches to gain selection are plotted in
Figure 4.5. We see the observer works in experiment for both approaches, tracking
the reference attitude trajectory, providing a bounded error during the shaking
period and re-converging to the correct values once shaking is terminated; from
Figure 3.6 in Section 3.3.2, the shaking time interval is known to be 116 ≤ t ≤ 122 s.
Remark that the estimates of bxω and byω are more perturbed in the nonlinear design
than in the Invariant EKF case, but vice-versa for bzω. This is due to the way the
accelerometer output error is defined, namely ya × ŷa = ya × R̂Ta in the nonlinear
design (c.f. Section 4.8) and Ea = a− R̂ya in the body-frame Invariant EKF where
a = [0, 0,−g]T (c.f. Section 4.2). For the level attitude during shaking, using the
Euler angle parametrization of R̂ (2.15) we have

φ̂ = θ̂ = 0 =⇒ R̂ =



∗ ∗ 0
∗ ∗ 0
0 0 1



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and so R̂Ta = [0, 0, ∗]T =⇒ ya × R̂Ta = [∗, ∗, 0]T , i.e. the perturbed accelerom-
eter measurements ya do not enter bzω in the nonlinear design case. By contrast
R̂ya = [∗, ∗, ∗]T such that a − R̂ya = [∗, ∗, ∗]T in the Invariant EKF, so errors in
ya affect all three components of bω. This effect applies only if the shaking at-
titude is level, e.g. the simulated trajectory in Section 4.10.2 with final attitude
(φ, θ, ψ) = (60◦,−60◦, 60◦) does not exhibit this behaviour, while changing this to
(0, 0, 0) would make it appear. The effect of the perturbed bω estimates on attitude
error will be analyzed in Section 4.10.3.3.

4.10.3.2 Ground frame symmetries
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Figure 4.6: Invariant AHRS Experiment: Ground-Frame Symmetry Observer (4.16)
using gains from nonlinear design (left); Invariant EKF (right)

The experimental estimates from the ground-frame symmetries observer (4.16)
are shown in Figure 4.6 where the gains are obtained either by nonlinear design
or by the Invariant EKF method. The observer and its associated gain selection
methods are validated to work in experiment. During the shaking phase, the biases
estimates bω are visibly different than the previous body-symmetry version plotted in
Figure 4.5 in Section 4.10.3.1. For the present observer the invariant accelerometer
output error is Ea = R̂Ta − ya whereas the previous one uses Ea = a − R̂ya; this
means errors in the attitude state R and measurement ya are added in the present
(ground-frame symmetries) observer but multiplied in the previous (body-frame
symmetries) one. This leads to a difference in estimated states during the shaking
phase where the system is in error due to violating the ya output model as discussed
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in Section 3.2.2. The effect of these differences on attitude estimation errors will be
analyzed below in Section 4.10.3.3.

4.10.3.3 Performance comparison
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Figure 4.7: Invariant AHRS Experiment: Comparison of attitude estimation errors

We now compare the experimental performance of the body-frame symmetries
observer (4.15) and the ground-frame symmetries observer (4.16) under the nonlin-
ear design and Invariant EKF gain selection methods, for a total of four permuta-
tions. The error between estimated attitude (expressed as Euler angles) and the
attitude reported by the Vicon motion-capture system is shown in Figure 4.7.

Based on the plots in Figure 4.7 we make the following comments: on the pre-
shaking interval 90 ≤ t ≤ 116 s the two nonlinear gain designs provide smaller esti-
mation errors than the Invariant EKF versions. As discussed in Section 4.10.2.3 the
nonlinear gain design method is preferable due to its lower computational require-
ments. For the shaking period 116 ≤ t ≤ 122 s, the Invariant EKF designs provide
smaller estimation error bounds than the nonlinear designs. This is likely due to
the EKF’s ability to adjust the observer gains when the estimation error covariance
matrix P changes, and cannot be achieved by the nonlinear design which does not
adapt its gains during runtime. On the other hand, the shaking interval is intro-
duced as a test for system robustness, and so estimation performance during typical
manoeuvering can be considered as a better metric of observer quality. Finally,
the body-frame symmetry versions of both gain selection methods provide smaller
error bounds during the shaking interval and faster re-convergence once shaking is
terminated on 122 ≤ t ≤ 130 s. This is probably due to the difference in form of
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invariant output errors Ea and Em in the two designs discussed in Section 4.10.3.2:
for the body-frame version, errors in attitude R and measurements ya, ym multiply
which provides an attenuating effect assuming the errors are smaller than unity. By
contrast the ground-frame invariant output errors Ea, Em superimpose attitude and
measurement errors, which does not provide this attenuation effect. In this sense
the body-frame version is superior for experiment even though the ground-frame
version has the theoretical advantage of guaranteeing global existence of the moving
frame γ(x), c.f. Section 4.10.2.2.

4.11 Invariant Aided INS testing

4.11.1 Implementation details

We now implement the Aided INS invariant observers designed in Section 4.7.2 and
summarized below. As mentioned at the end of Section 4.8 a nonlinear observer
gain design for this case is not available, hence we use the Invariant EKF method
of gain assignment (c.f. Section 4.9) whose (A,B,C,D) matrices were designed in
Section 4.9.3 and will be summarized below.

As discussed in Section 4.5 the Aided INS outputs (4.7) assume the rotation
matrix RNE and navigation frame location roE are found during an initialization
period, such that the vehicle’s CM position measurement yp = pN in navigation
frame coordinates is converted from the GPS measurement raE of the tail-mounted
antenna position in ECEF frame coordinates by

yp = pN = REN (r
a
E − roE)−RlB

where lB is the antenna lever-arm vector, c.f. Section 3.2.3.2. The GPS receiver
reports the discrete-time covariance σ2p,d and solution status of every measurement.

The former is converted to continuous-time covariance σ2p = E〈νpνTp 〉 in the naviga-
tion frame by (c.f. Section 3.2.7)

σ2p = TGPS

(
RENσ

2
p,dR

N
E

)

where TGPS = 0.01 s is the nominal period between GPS measurements. The so-
lution status is used to determine whether or not the current yp is used for aiding;
we employ the same criterion as in Section 3.2.10.2 i.e. only measurements with
floating narrow-lane ambiguity or better are used for aiding. The second Aided INS
output is the magnetometer measurement ym = RTm where m is the local magnetic
field vector in the navigation frame, available from a reference model as discussed
in Section 2.8. Magnetometer measurements are corrected using the full compen-
sation method in Section 2.9, such that as in Section 3.2.2, ym = Acm̃ + bc and
(σcm)

2 = Acσ
2
m(Ac)

T are the compensated aiding measurement and its covariance
matrix, where m̃ is provided by the on-board triaxial magnetometer and σ2m is the
identified covariance of its measurements. The measurement noise covariance ma-
trix Rν = diag(σ2p, (σ

c
m)

2) is used together with the process noise covariance matrix
Qν = diag(σ2f , σ

2
ω, σ

2
bf , σ

2
bω) and the linearized system’s (A,B,C,D) matrices in the
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Invariant EKF computation (4.26) to obtain the matrix of observer gains

K =




Lpp Lpm
Lvp Lvm
LRp LRm
Lbfp Lbfm
Lbωp Lbωm




The identified values of sensor covariances σ2 are available from Table 3.1 in Sec-
tion 3.2.2. The Invariant Aided INS observers are numerically implemented using
the modified Euler method discussed in Section 4.10.1. Similarly to Section 4.10.3,
if a position aiding measurement yp is rejected due to insufficient precision of the
GPS solution, the observer correction is skipped for this instant of time, increasing
the time step h used by the observer at the next aiding measurement.

4.11.1.1 Body frame symmetries

From Section 4.7.2.1, the Aided INS body-frame symmetries observer is (4.17)

˙̂p = v̂ + LppEp + LpmEm

˙̂v = R̂(f − b̂f )− a+ LvpEp + LvmEm

˙̂
R = R̂S(ω − b̂ω) + S

[
LRp Ep + LRmEm

]
R̂

˙̂
bf = R̂T

(
Lbfp Ep + LbfmEm

)

˙̂
bω = R̂T

(
Lbωp Ep + LbωmEm

)

with invariant output errors

[
Ep
Em

]
=

[
p̂− yp

m− R̂ym

]

The gains L are then computed using the Invariant EKF method with the set of
matrices from Section 4.9.3.1

A =




0 I 0 0 0

0 0 −S[R̂(f − b̂f )] −I 0
0 0 0 0 −I
0 0 0 S[R̂(ω − b̂ω)] 0

0 0 0 0 S[R̂(ω − b̂ω)]




B =




0 0 0 0

−R̂ 0 0 0

0 −R̂ 0 0

0 0 R̂ 0

0 0 0 R̂




C =

[
−I 0 0 0 0
0 0 −S(m) 0 0

]
D =

[−I 0

0 −R̂

]
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4.11.1.2 Ground frame symmetries

From Section 4.7.2.2, the Aided INS ground-frame symmetries observer is (4.18)

˙̂p = v̂ + R̂
(
LppEp + LpmEm

)

˙̂v = R̂(f − b̂f )− a+ R̂
(
LvpEp + LvmEm

)

˙̂
R = R̂S(ω − b̂ω) + R̂S

[
LRp Ep + LRmEm

]

˙̂
bf = Lbfp Ep + LbfmEm

˙̂
bω = Lbωp Ep + LbωmEm

with invariant output errors

[
Ep
Em

]
=

[
R̂T (p̂− yp)

R̂Tm− ym

]
.

The gains L are computed using the Invariant EKF method employing the matrices
in Section 4.9.3.2

A =




−S(ω − b̂ω) I 0 0 0

0 −S(ω − b̂ω) −S(f − b̂f ) −I 0

0 0 −S(ω − b̂ω) 0 −I
0 0 0 0 0
0 0 0 0 0




B =




0 0 0 0
−I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I




C =

[−I 0 0 0 0

0 0 −S(R̂Tm) 0 0

]
D =

[
−R̂T 0
0 −I

]

4.11.2 Simulation results

4.11.2.1 Hover Simulation

The first simulation test is a hover manoeuver identical to that in Section 3.4.1.1: the
vehicle starts off on the ground with φ0 = θ0 = 0 i.e. level and ψ0 = π/2 i.e. facing
geographic East and remains stationary for 45 s to simulate an initialization period.
It then flies vertically up by 5 m in 5 s followed by a counter-clockwise turn of
180◦ over 5 s to end up facing West. These position and attitude configurations
are connected using quintic and cubic splines, respectively. The resulting reference
trajectory is converted to magnetometer m, accelerometer f , rate gyro ω and GPS
raE signals which are corrupted with simulated bias and noise using parameters from
Table 3.1 in Section 3.2.2 and employing a Gauss-Markov process model for the
time-varying bias terms. The noisy sensor log is used as an input to the body-frame
invariant Aided INS observer (4.17) and ground-frame observer (4.18) using the
Invariant EKF method of gain selection with Q and R covariance matrix entries
taken from Table 3.1 and initial error covariance P0 = 015×15, c.f. Section 4.10.1.
The resulting state estimates are plotted in Figures 4.8 and 4.9 for the body-frame
symmetry and ground-frame symmetry observers, respectively.

Both versions of the observer are shown to work and provide correct estimates of
the position, velocity and attitude states of the hover manoeuver, which are essen-
tially identical between the two designs. The estimated biases bf and bω vary slightly
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Figure 4.8: Body-Frame Invariant Aided INS: Simulated Hover
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Figure 4.9: Ground-Frame Invariant Aided INS: Simulated Hover

between the two observer versions, likely caused by differences in the symbolic forms
of the two observers and associated IEKF matrices affecting the numerical integra-
tion, for instance the estimated attitude R enters the bf and bω dynamics in the
body-frame symmetries observer (4.17) but not in the ground-frame symmetries
observer (4.18). These differences are small, however, and the main point of this
simulation is to establish that both versions of the invariant observer work correctly.

4.11.2.2 Trajectory Simulation

The next simulation involves the figure-8 trajectory from Section 3.4.1.2 with posi-
tion and attitude described by the parametric curves (3.27) and (3.28) using the same
parameter values as before: major and minor diameters of M = 50 m, m = 25 m
for each lobe, a vertical delta of H = 10 m and the geometric center of the figure-8
placed at pN = (0, 0,−15) m with a full circuit flight period of T = 50 s. The
simulated vehicle starts out level and stationary on the ground with ψ0 = 90◦ for
45 s, then the trajectory splines into the full-speed figure-8 flight over 10 s. The
same Invariant EKF parameters as in Section 4.11.2.1 are used here. The state
estimates for the body-frame and ground-frame symmetries observers are shown in
Figures 4.10 and 4.11, respectively.

As in Section 4.11.2.1, both versions of the invariant observer are confirmed to
work for the simulated trajectory. The flight states are estimated correctly and only
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Figure 4.10: Body-Frame Invariant Aided INS: Simulated Figure-8 flight
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Figure 4.11: Ground-Frame Invariant Aided INS: Simulated Figure-8 flight

small discrepancies are visible between the two designs. This is more clearly seen in
Figure 4.12, where we plot the error between the estimated states and the generated
reference trajectory for each observer.

−0.06
0

0.06

∆p
N

−0.1
0

0.1

∆v
N

−2
0
2

∆A
tt

−0.05
0

0.05

∆b
f

50 100 150 200 250
−4

0
4x 10

−3

∆b
ω

Time [s]

−0.06
0

0.06

∆p
N

−0.1
0

0.1

∆v
N

−2
0
2

∆A
tt

−0.05
0

0.05

∆b
f

50 100 150 200 250
−4

0
4x 10

−3

∆b
ω

Time [s]

Figure 4.12: Invariant Aided INS: Simulated Figure-8 flight estimation errors: Body-
frame symmetry; Ground-frame symmetry
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4.11.3 Experimental results

4.11.3.1 Ground Test

This test uses sensor logs from the experiment described in Section 3.4.2: the engine-
off helicopter is manually carried around the periphery of a rectangular landing
pad at the flight field, held level with its heading aligned with the direction of
travel and executing a 90◦ counter-clockwise turn at every corner for two complete
circuits. The experiment includes an initialization period where the helicopter is
left stationary and level at the southern-most corner of the pad aligned with the
initial direction of travel; the helicopter is also set down at this spot once its circuit
is complete. We employ the magnetometer compensation technique described in
Section 2.9 using parameters from Table 2.1 to construct the termsAc and bc. We use
the same observer parameters as for the simulations in Sections 4.11.2.1 and 4.11.2.2,
namely Invariant EKF process and measurement covariance matrices Q and R from
Table 3.1 and initial estimation error covariance matrix P0 = 015×15. The resulting
state estimates are plotted in Figure 4.13 for the body-frame symmetries invariant
observer and Figure 4.14 for the ground-frame version.
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Figure 4.13: Body-Frame Invariant Aided INS: Experimental engine-off walk
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Figure 4.14: Ground-Frame Invariant Aided INS: Experimental engine-off walk

Similarly to the simulation case, the two invariant observer versions perform
very similarly to each other. Remark the non-zero component of vN during the
pre-pickup t ≤ 60 s due to the use of 3-axis magnetometer updates as discussed in
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Section 3.4.2.1; unlike Figure 3.12, however, the error is eliminated by the invariant
observer adjusting estimates of bf,1 and bf,2, such that the end velocity is correctly
estimated as zero. The position and attitude estimates are qualitatively correct:
p1 and p2 show the circuit trajectory is repeated exactly twice, p3 identifies the
pick-up and set-down times of the helicopter, φ and θ and kept near zero due to the
helicopter being level while ψ increases by 90◦ at each (counter-clockwise) corner
turn. Although an exact reference is not available (unlike the AHRS experiment in
Section 4.10.3), we can use the measured dimensions of the landing pad and its yaw
angle w.r.t. geographic North to create an approximated reference trajectory for the
overhead position and yaw angle. This is done in Figure 4.15 for the body-frame
and ground-frame symmetries observers. The two versions are seen to provide good
performance relative to the available reference.
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Figure 4.15: Invariant Aided INS: Experimental engine-off walk comparison: Body-
frame symmetry; Ground-frame symmetry

4.11.3.2 Flight Test

The final experimental test is the engine-on hover flight previously seen in Sec-
tion 3.4.3. The helicopter starts out stationary on the landing pad running the
engine in idle setting. The throttle input is then increased, causing the main rotor
to spool up until lift-off is achieved. After a transient take-off phase a stable hover
is achieved characterized by a near-constant yaw angle provided by the tail gyro’s
heading-hold mode; the helicopter still drifts around due to strong cross-winds and
constant stick input from the pilot required to maintain stable hover. The helicopter
then lands.
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Table 4.1: Engine-on Invariant Aided INS observer parameters
Body Frame Invariant EKF

diag(Qf ) diag(Qω) diag(Qbf ) diag(Qbω) diag(Rm)
[m2/s3] [rad2/s] [m2/s4] [rad2/s2] [G2 s]

100 · 0.00792 10 · 0.00172 1 · 0.00422 1 · 0.000292 50 · 0.000582
100 · 0.00742 10 · 0.00172 1 · 0.00202 1 · 0.000382 50 · 0.000512
100 · 0.00902 10 · 0.00212 1 · 0.00162 1 · 0.000322 50 · 0.000512

Ground Frame Invariant EKF

diag(Qf ) diag(Qω) diag(Qbf ) diag(Qbω) diag(Rm)
[m2/s3] [rad2/s] [m2/s4] [rad2/s2] [G2 s]

100 · 0.00792 10 · 0.00172 0.01 · 0.00422 0.01 · 0.000292 50 · 0.000582
100 · 0.00742 10 · 0.00172 0.01 · 0.00202 0.01 · 0.000382 50 · 0.000512
100 · 0.00902 1 · 0.00212 0.01 · 0.00162 0.01 · 0.000322 50 · 0.000512

The key challenge is the uncertainty in noise and bias modeling for the engine-
on case. As noted in Section 3.4.3, the identified noise characteristics from the
engine-off case as well as initial error covariance matrix P0 entries must be tuned to
make the filter work in the engine-on case. In addition the noise characteristics vary
with time, e.g. the spool-up resonant frequency effect discussed in Section 3.4.3.1. As
explained below we found it necessary to adjust the Invariant EKF Q and R matrices
differently for the body-frame and ground-frame symmetries cases as summarized
in Table 4.1. In addition, we set the initial bias estimation error covariances of
bf , bω in P0 as follows: for the body-frame case, Pf,1 = Pf,2 = 1 × 10−3; Pf,3 =
1 × 10−7; Pω,1 = Pω,2 = 1 × 10−5; Pω,3 = 1 × 10−7; for the ground-frame case,
Pf,1 = Pf,2 = Pf,3 = 1 × 10−4 and Pω,1 = Pω,2 = Pω,3 = 1 × 10−5. The resulting
estimates are plotted in Figure 4.16 for the body-frame version and Figure 4.17 for
the ground-frame version.
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Figure 4.16: Body-Frame Invariant Aided INS: Experimental engine-on hover

Unlike the results in Section 4.11.2 and Section 4.11.3.1, there is a noticeable
difference in performance between the body-frame and ground-frame version of the
observer, with the latter performing much closer to the conventional EKF version
plotted in Figure 3.15 in Section 3.4.3.1; the nearly constant ψ provided by the
heading-hold tail gyro is clearly visible in Figure 4.17 but not in Figure 4.16. The
ground-frame version is also the case reported in [18].
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Figure 4.17: Ground-Frame Invariant Aided INS: Experimental engine-on hover

The reason for the discrepancy and need for different observer parameters can be
explained by looking at the form of the body-frame invariant observer (4.17) summa-
rized in Section 4.11.1.1 versus the ground-frame observer (4.18) in Section 4.11.1.2:
the estimated attitude R enters the bias bf , bω dynamics in the former but not in
the latter. This means that any errors in estimated attitude immediately affect the
bias estimates in the body-frame version, which further aggravates the problem due
to bω used for the high-rate integration of R dynamics. Remark that in the ground-
frame observer (4.18) the estimated attitude R enters the p and v dynamics whereas
it does not in the body-frame observer (4.17). Indeed zooming in on the estimated
position pN for the pre-takeoff period of 55 ≤ t ≤ 70 s as shown in Figure 4.18,
we see the body-frame version provides better position estimates (p closer to zero)
than the ground-frame version. However, given that position is directly aided by
the GPS modulo the lever-arm term, the ground-frame invariant observer is more
robust to poor bias and sensor noise modeling than the body-frame version as seen
in Figures 4.16 and 4.17. Of course a better model of the engine-on noise charac-
teristics would reduce this discrepancy, as seen in the engine-off experimental tests
in Section 4.11.3.1 where the noise parameters are well-identified [75, Chap. 4].
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Figure 4.18: Invariant Aided INS: Pre-takeoff estimated position zoom-in view
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Chapter 5

Nonlinear Model of a Helicopter

UAV

5.1 Overview

The dynamics of the helicopter are governed by the 6 DoF nonlinear equations
of motion of a rigid body [105, p. 167] whose forcing terms are gravity as well as
force and moment vectors created by aerodynamic effects, both controlled (e.g. rotor
thrust) and uncontrolled (e.g. drag forces), which must be modeled as functions of
the vehicle state and pilot inputs.

In contrast to rigid-body dynamics, aerodynamics are much more complicated
to model due to the large number of physical processes involved, including unsteady
flow through the rotating helicopter blades, wake-body interactions, vortex forma-
tion and turbulence at the rotor tips, blade stall, flow compressibility effects and
aeroelasticity of the blades. High-fidelity helicopter models use a finite-element ap-
proach to accurately model the physics of the flow. For control design, the better
approach is to use lumped-parameter models of the individual helicopter subsystems
— main rotor, main rotor blade flapping, fuselage body, tail horizontal stabilizer,
tail vertical stabilizer and tail rotor — using simplified aerodynamics equations,
whose parameters are experimentally identified and can be further adjusted to tune
the model output to match experimental flight data. This “minimum-complexity”
approach [65], originally applied to full-sized helicopter modeling and control studies
carried out by NASA [43] has been used for helicopter UAVs in [101, 59, 21] with
excellent results.

A visual representation of the proposed model structure is shown in Figure 5.1.
The rigid-body equations of motion are derived in Section 5.2. We develop expres-
sions for the individual subsystems’ forces and moments as functions of the helicopter
state and pilot inputs throughout Section 5.3. The resulting model is summarized
in Section 5.4 and its identified parameter values are listed in Section 5.5.

5.2 Rigid-Body Model

In this Section, we derive the 6 DoF rigid-body dynamics governing the motion of the
helicopter, shown schematically in Figure 5.2. The ground-fixed (inertial) navigation
frame has orthonormal basis vectors (n1, n2, n3) and the body-fixed (non-inertial)

139



xb

yb

zb

Tmr

Qmr

a1

b1

mg

Ffus

Ttr

Fhs

Fvs

Figure 5.1: Helicopter Model: Overall View [59]

body frame has orthonormal basis vectors (b1, b2, b3). The origin of the B frame is
placed at the centre of mass of the helicopter.

n1
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n3

b1
b2

b3

p

pp

pCM

rp

Figure 5.2: Navigation and Body Frames on Helicopter

By inspection of Figure 5.2, the position of any point p on the helicopter body is
described by the vector pp = pCM + rp where by construction pp and pCM start at
the N frame origin while rp starts at the B frame origin. Using frame coordinates
this is written as

ppN (t) = pCMN (t) +R(t)rpB ,

where the rotation matrix R(t) ∈ SO(3) is the coordinate transformation matrix
from B to N . Physically, R measures the attitude of the helicopter, e.g. R = I
means the B and N frames are aligned and so the helicopter is level with zero yaw.
Differentiating with respect to time gives

vpN (t) = vCMN (t) + Ṙ(t)rpB , (5.1)

where vpN (t) and vCMN (t) := v̄N (t) are the velocities of p and the centre of mass
w.r.t. the navigation frame origin.

The linear momentum vector of a point mass m is G = mv and its angular
momentum vector about a point P is HP = dP ×mv where dP denotes the vector
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from P to the mass. The linear momentum vector of a rigid body is defined as the
integral of infinitesimal linear momentums, i.e.

G =

∫

V
vp dm, (5.2)

where vp is the velocity vector of the infinitesimal mass element dm = ρ dV , where
vp and mass density ρ vary over the volume. Similarly, the angular momentum
vector of the rigid body about a point P is defined by

HP =

∫

V
dP × vp dm, (5.3)

with dP the position vector from P to dm. The G and HP vectors are expressed in
the same frame as their integrands, i.e. using (5.1) in (5.2) gives

GN (t) =

∫

V

(
v̄N (t) + Ṙ(t)rpB

)
dm = v̄N (t)

∫

V
dm+ Ṙ(t)

∫

V
rpB dm = mv̄N (t) (5.4)

where m is the total mass of the body. The second integral in (5.4) is zero by
construction: the CM position vector p̄ of a rigid body is defined by

p̄ :=
1

m

∫

V
pp dm,

but due to placing the B frame origin at the centre of mass, we have pp = rp,
p̄ = r̄ = 0 and r̄B = 0 =⇒

∫
V r

p
B dm = 0. Next, using (5.1) in (5.3) and taking

P = CM we have

HCM
N (t) =

∫

V
dCMN (t)× v̄N (t) dm+

∫

V
dCMN (t)× Ṙ(t)rpB dm (5.5)

Using dCMN (t) = R(t)dCMB and dCMB = rpB the first integral in (5.5) becomes
∫

V
R(t)rpB × v̄N (t) dm = −v̄N (t)×R(t)

∫

V
rpB dm = 0

due to
∫
V r

p
B dm = 0 as above. Using the rotational kinematics Ṙ(t) = R(t)S

(
ωB(t)

)

where ω(t) is the angular velocity vector and S is the skew-symmetric matrix such
that x × y = S(x)y, x, y ∈ R

3 along with the identity S(Rx) = RS(x)RT , R ∈
SO(3), the second integral in (5.5) becomes

∫

V
R(t)rpB ×R(t)S

(
ωB(t)

)
rpB dm = R(t)

∫

V
S(rpB)S

(
ωB(t)

)
rpBdm.

Denoting rpB = [x y z]T and ωB(t) = [p q r]T the integrand becomes

S(rpB)S(ωB(t))r
p
B =




0 −z y
z 0 −x
−y x 0






0 −r q
r 0 −p
−q p 0





x
y
z




=



−rxz + pz2 − qxy + py2

−ryz + qz2 + qx2 − pxy
ry2 − qyz + rx2 − pxz




=



y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2




︸ ︷︷ ︸
I



p
q
r




︸︷︷︸
ωB(t)

.
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Returning to (5.5) we have

HCM
N (t) = R(t)

∫

V
IωB(t)dm = R(t)JωB(t) (5.6)

where J =
∫
V I dm is the inertia matrix, a function of the geometry and mass

distribution of the body. Remark I hence J is symmetric and so it is always diag-
onalizable. Physically this corresponds to correctly orienting the body-fixed frame
B, whose origin is still required to be taken at the centre of mass. In this case
J = diag(Jxx, Jyy , Jzz) and (b1, b2, b3) define the principal axes of the body. For
now we leave J as a general (non-diagonalized) inertia matrix.

The dynamics of a rigid body are governed by Euler’s laws of motion

F =
d

dt
G(t) and MCM =

d

dt
HCM (t), (5.7)

where F , MCM are the net external force and moment vectors acting on the body.
Equations (5.7) hold under the following conditions:

• The mass of the body must remain constant,

• The moment and angular momentum vectors must be taken about the centre
of mass of the body,

• The linear and angular momentum vectors must be expressed in an inertial
frame.

Note it is possible to treat systems which do not meet one or more of these con-
ditions by generalizing the laws of motion. The case of time-varying mass, impor-
tant in e.g. rocketry where the fuel burn rate creates a significant loss in mass is
treated in [99, Art. 53]. Taking the angular momentum about a general, possibly
accelerating point will be developed in Section 5.2.2 and involves defining an an-
gular momentum relative to the moving point. Finally, it is possible to formulate
the problem in a non-inertial frame by using the principles of relative motion [99,
Art. 38], which transforms the velocity and acceleration observed in a non-inertial
frame to their absolute values by employing the acceleration and rotation of the
non-inertial frame. The present system avoids these complications, however, and
so (5.7) holds.

Using the linear momentum vector (5.4) (expressed in inertial frame N) in (5.7)
gives

FN (t) =
d

dt

(
mv̄N (t)

)
=⇒ FN (t) = m ˙̄vN (t), (5.8)

i.e. the familiar F = ma. It is possible to express (5.8) in the body frame, for reasons
which will be explained shortly. We have

R(t)FB(t) =
d

dt

(
mR(t)v̄B(t)

)

= mṘ(t)v̄B(t) +mR(t) ˙̄vB(t)

= mR(t)S(ωB(t))v̄B(t) +mR(t) ˙̄vB(t)

R(t)FB(t) = mR(t)ωB(t)× v̄B(t) +mR(t) ˙̄vB(t),
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and left-multiplying by RT (t) yields

FB(t) = m
(
ωB(t)× v̄B(t) + ˙̄vB(t)

)
, (5.9)

the body-frame version of F = ma where v̄ = [u v w]T denotes the velocity
vector of the helicopter’s CM expressed in body frame components. Although (5.9)
is more complicated than (5.8), the reason for using it is that the aerodynamic forces,
e.g. the main rotor thrust, are naturally formulated in the body-fixed B frame. The
one exception is gravity which always acts downwards and must be transformed into
B frame coordinates as RT (t)gN where gN = [0 0 g]T .

Using (5.6) (taken about CM and expressed in the inertial frame N as required)
in (5.7) gives

MCM
N (t) =

d

dt

(
R(t)JωB(t)

)

= Ṙ(t)JωB(t) +R(t)Jω̇B(t)

MCM
N (t) = R(t)S(ωB(t))JωB(t) +R(t)Jω̇B(t)

R(t)MCM
B (t) = R(t)ωB(t)× JωB(t) +R(t)Jω̇B(t).

Left-multiplying by RT (t) then gives

MCM
B (t) = ωB(t)× JωB(t) + Jω̇B(t). (5.10)

Together (5.9) and (5.10) are known as the Newton-Euler equations, e.g. [105,
p. 167], which govern the translational and rotational dynamics of the helicopter.

As discussed above, the J matrix can be diagonalized by properly orienting
the B frame axes. We assume the helicopter’s roll-pitch-yaw axes are sufficiently
aligned with the principal axes such that J ≈ diag(Jxx, Jyy, Jzz). Although this
assumption is not required, it greatly simplifies the form of (5.10) and has been
used in other experimentally-validated helicopter models [59, 101, 122]. Expanding
out (5.9) and (5.10) with gravity force mgB = mRTgN we obtain

u̇ = rv − qw +R31g +X/m

v̇ = pw − ru+R32g + Y/m

ẇ = qu− pv +R33g + Z/m

ṗ = qr(Jyy − Jzz)/Jxx + L/Jxx

q̇ = pr(Jzz − Jxx)/Jyy +M/Jyy

ṙ = pq(Jxx − Jyy)/Jzz +N/Jzz

(5.11)

where (X,Y,Z), (L,M,N) are the components of the aerodynamic force and mo-
ment vectors expressed in the roll-pitch-yaw body frame, respectively. The dynam-
ics (5.11) are integrated to obtain vB = [u v w]T , ωB = [p q r]T which in turn
are integrated through the kinematics

Ṙ = RS(ωB)

ṗN = RvB
(5.12)

to obtain attitude and position of the helicopter with respect to the ground-fixed
navigation frame.
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The mass m in (5.11) is measured directly using a digital scale. The location of
the CM was identified by balancing the side of the helicopter on a knife-edge and
is shown in Figure 5.3, where the CM is located on the vertical centerline plane of
the vehicle. The mass moment of inertias Jxx, Jyy and Jzz were first attempted to
be measured using a trifilar pendulum apparatus [114, p. 3.18] as suggested by [36,
Sec. 6.3.2.2], however this method proved unusable due to lateral swinging motions
of the helicopter during experimental testing [53]. We then successfully obtained
the values using a torsional pendulum apparatus described in Section 5.2.1.

Figure 5.3: Helicopter UAV with identified CM location

5.2.1 Torsional Pendulum

The torsional pendulum system is sketched in Figure 5.4. A circular disk with mass
m0, radius r0 and mass moment of inertia J0 (around the vertical axis) rotates by
angle θ as shown. The disk is supported by three long, thin wires of uniform length
l, fixed above the disk and attached at the outer rim.

l
l

l

m0, r0, J0

θ

Figure 5.4: Torsional pendulum schematic

We derive the pendulum’s equation of motion using Lagrange’s equation. Since
the top supports are fixed and the cables have constant lengths, the disk must move
upwards when it rotates away from its neutral configuration. Consider the side
view of a single cable subject to a disk rotation of θ, shown in Figure 5.5. The cable
bottom advances by r0θ units horizontally, while the whole disk rises vertically by
h.

From Figure 5.5, we immediately see h = l −
√
l2 − r20θ

2. The Lagrangian
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l
l

r0θ
h

Figure 5.5: Geometry of support cable; disk rotated by θ

L = T − V , the difference between kinetic and potential energy, is

L =
1

2
J0(θ̇)

2 −m0g

(
l −
√
l2 − r20θ

2

)
,

from which the equation of motion is obtained by

d

dt

(
dL

dθ̇

)
− dL

dθ
= 0 =⇒ J0θ̈ +

m0gr
2
0θ√

l2 − r20θ
2
= 0,

a nonlinear ODE. Consider the denominator of the second term,

l

l

√
l2 − r20θ

2 = l

√
1−

(r0
l

)2
θ2.

If the support cables are made much longer than the disk radius, r0/l << 1 and
hence (r0/l)

2 ≈ 0. The equation of motion then becomes

J0θ̈ +
m0gr

2
0

l
θ = 0,

an undamped linear oscillator with natural frequency

ω2
n =

m0gr
2
0

J0l
. (5.13)

Equation (5.13) is used to find J0 by giving the disk an initial rotation then allowing
it to oscillate back-and-forth about its vertical centerline. The period of oscillation
T = 2π/ωn is directly measured and substituted into the above to solve for J0.

Consider a body with (known) mass m and (unknown) mass moment of inertia
J . The body is rigidly attached to the disk in Figure 5.4, such that the vertical
disk axis passes through the center of mass of the measured object. The derivation
above now uses mass m0 +m and inertia J0 + J , giving the natural frequency

ω2
n =

(m0 +m)gr20
(J0 + J)l

=

(
2π

T

)2

,

where T is the period of oscillation of the composite system. Solving for the unknown
inertia,

J =
(m0 +m)gr20T

2

4π2l
− J0 (5.14)
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the measured body’s mass moment of inertia about the vertical axis, so the mea-
surement is performed for the yaw, pitch and roll axes of the helicopter, the last
requiring using a stand attached to the disk in order to hold the helicopter in po-
sition. The stand must be accounted for by measuring its mass ms and identifying
J0 of the disk-stand assembly using Equation (5.13) with mass term (m0+ms). We
also reiterate the need for the support cables to be as long as possible such that the
linearizing approximation holds. Pictures of the experimental setup for the pitch
and roll axes are shown in Figure 5.6; remark the stand used for the roll axis as well
as the hanging weight used to align the helicopter’s CM with the center of the disk
below it. The computed Jxx, Jyy , Jzz values are provided in Section 5.5.

Figure 5.6: Experimental measurement of J using a torsional pendulum [53]: pitch
axis, roll axis.

5.2.2 Extended Moment Equation

As mentioned in Section 5.2, it is possible to generalize the second Euler equa-
tion (5.7) to take moments about a general (non-CM) point. This will be used in
Section 5.3.1.3 to derive the flapping dynamics of the main rotor.

A general rigid body is shown schematically in Figure 5.7 where N is the ground-
fixed inertial frame, B is the body-fixed frame with point o on its origin, p is an
arbitrary point on the body, pp and po are the position vectors from the origin of N
to points p and o, respectively, while rp is the position vector from the origin of B
to p. The rigid body and its attached frame B are free to accelerate. By definition
the rigid body possesses a center of mass, but its coordinates are not important at
the moment.

By inspection of Figure 5.7 we have the vector expression ppN (t) = poN (t) +
rpN (t) whose components are functions of time due to the motion of the rigid body.
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N

o
B

p
po

pp

rp

Figure 5.7: Rigid body with body frame fixed at arbitrary point o

Differentiating with respect to time we obtain

vpN (t) = voN (t) + vpN (t) (5.15)

where vpN (t) := (d/dt)rpN (t) physically represents the relative velocity of point p with
respect to point o; remark vpN is a non-inertial measurement if o is accelerating.
Following (5.3) we define the relative angular momentum of the body as

Ho
N (t) =

∫

V
rpN (t)× vpN (t)dm (5.16)

Since Ho
N (t) is not taken about the centre of mass or a fixed point, Euler’s equa-

tions (5.7) do not apply directly. Instead we take the time derivative of (5.16) and
obtain

d

dt
Ho
N (t) =

∫

V
vpN (t)× vpN (t)dm+

∫

V
rpN (t)× apN (t)dm,

where apN (t) := (d/dt)vpN (t) is the relative acceleration of point p w.r.t. point o, a
non-inertial measurement if the body is accelerating. The first integrand above is
zero. Differentiating (5.15) we obtain apN (t) = apN (t)− aoN (t), a difference of inertial
accelerations. We have

d

dt
Ho
N (t) =

∫

V
rpN (t)× apN (t)dm−

∫

V
rpN (t)× aoN (t)dm.

The first integrand contains apN (t)dm = dF pN , the external force acting on the in-
finitesimal point p with mass dm. We thus have

∫
V r

p
N (t) × dF pN = Mo

N , the net
external moment about point o acting on the rigid body. The second integral be-
comes

−
∫

V
rpN (t)× aoN (t)dm = aoN (t)×

∫

V
rpN (t)dm = aoN (t)×mrCMN (t)

by definition of center of mass location rCM = 1
m

∫
V rdm; physically rCMN (t) repre-

sents the position vector from o to the CM expressed in N frame coordinates. We
have obtained

d

dt
Ho
N (t) =Mo

N −mrCMN (t)× aoN (t). (5.17)
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We now return to (5.16). Using rpN (t) = R(t)rpB and vpN (t) = (d/dt)rpN (t) =
Ṙ(t)rpB = R(t)S

(
ωB(t)

)
rpB we have

Ho
N (t) =

∫

V
R(t)rpB ×R(t)S

(
ωB(t)

)
rpBdm

Just as in Section 5.2 we use the identity S(Rx) = RS(x)RT , R ∈ SO(3) and obtain

Ho
N (t) = R(t)

∫

V
S(rpB)S

(
ωB(t)

)
rpBdm := R(t)

∫

V
IoωB(t)dm = R(t)JoωB(t)

where we wrote rpB = [xo yo zo]T and defined

Io =



(yo)2 + (zo)2 −xoyo −xozo

−xoyo (xo)2 + (zo)2 −yozo
−xozo −yozo (xo)2 + (yo)2


 and Jo =

∫

V
Iodm.

Remark Io resp. Jo are taken about o whereas I and J in Section 5.2 were taken
about the CM; the mass moments of inertia can be related using the parallel-axis
theorem Jo = J +m‖rCM‖2. Taking the time derivative of the last Ho

N (t) above
gives

d

dt
Ho
N (t) = Ṙ(t)JoωB(t) +R(t)Joω̇B(t) = R(t)S

(
ωB(t)

)
JoωB(t) +R(t)Joω̇B(t),

and substituting this into (5.17) gives

R(t)S
(
ωB(t)

)
JoωB(t) +R(t)Joω̇B(t) =Mo

N −mrCMN (t)× aoN (t)

which is pre-multiplied by RT (t) to give

Mo
B = ωB(t)× JoωB(t) + Joω̇B(t) +mrCMB × aoB(t), (5.18)

the “extended” [33, p. 363] version of the Euler equation (5.10) from Section 5.2. As
expected setting rCMB = 0 in (5.18) recovers (5.10) since in this case the moment is
taken about the CM. Alternatively, setting aoB(t) = 0 gives Mo

B = ωB(t)×JoωB(t)+
Joω̇B(t), the dynamics of a rigid body rotating about a fixed (or more generally non-
accelerating) point o [99, Art. 25].

5.3 Aerodynamics and Subsystem Modeling

5.3.1 Main Rotor

The following suite of assumptions is used for modeling the main rotor [61, 42]:

• Rotor blades are rigid in bending and torsion

• Both the flapping angle β and inflow angle Φ are assumed small

• The effects of helicopter body motion on flapping are limited to the helicopter’s
angular velocities p, q, angular accelerations ṗ, q̇ and normal acceleration (aB ·
b3)
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• The reversed flow region is ignored and compressibility and stall effects disre-
garded

• The inflow is assumed uniform across the rotor disc and no inflow dynamics
are used

• Tip loss is neglected

The above assumptions are considered valid for advance ratios µ = V/(ΩR) < 0.3
where V is the helicopter’s forward velocity. For the Bergen Industrial Twin with
Ω = 1650 RPM and R = 0.810 m, this works out to V < 42 m/s, well above the
maximum speeds achievable in forward flight.

5.3.1.1 Induced Velocity

The main rotor consists of two airfoil blades rotating clockwise at a rate of Ω. As
the blades rotate, a mass flow of air is sucked through the rotor disc traced out
by the spinning blades (illustrated in Figure 5.1) which generates a reaction force
perpendicular to the rotor disc known as the thrust T . The average velocity of the
airstream passing through the rotor disc is known as the induced velocity vi, which
is understood to be parallel to the thrust vector.

We first consider the hover case, where the relationship between vi and resulting
thrust T is worked out using control volume analysis [104, Ch. 5], assuming the flow
is steady, inviscid and incompressible and using the stream tube shown in Figure 5.8
as the control volume.

T

vi

v2

A1

A

A2

Figure 5.8: Rotor inflow in hover

In Figure 5.8, the fully developed wake region has stream tube area A2 and
average flow velocity v2. The top of the stream tube A1 represents an area far
upstream of the flow where the velocity is zero; A is the area of the rotor disc and
is known from the helicopter blade length. The continuity equation gives ρAvi =
ρA2v2 = ṁ, the mass flow rate. The momentum equation gives Fcv =

∫
cs vρv · ndA,

and since v0 = 0 the force on the flow Fcv = 0−v2ρv2A2 =⇒ T = v22ρA2, the reaction
force on the helicopter body. Finally the energy equation gives Ẇcv =

∫
cs ερv · ndA

where Ẇ is the rate of work done on the flow and ε is the total specific energy of
the flow, taken as the kinetic energy ε = v2/2 since we neglect changes in internal
and potential energy. We know Ẇcv = Tvi, the power imparted to the flow by the
helicopter rotor, so Tvi = (v22/2)ρv2A2 =⇒ vi = v2/2 using the momentum equation.
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Using the continuity equation we also have A/2 = A2, the wake contraction shown
in Figure 5.8. Using the last two results we obtain T = 2v2i ρA.

The same control volume analysis applies in vertical flight where the helicopter in
Figure 5.8 is climbing with velocity V . In this case, the flow velocity at A1 is V , the
velocity through the rotor disc A is V +vi, and the wake velocity at A2 is V +v2. The
continuity equation gives ṁ = ρA1V = ρA(V + vi) = ρA2(V + v2), the momentum
equation gives Fcv = V ρV A1−(V +v2)ρ(V +v2)A2 = V ṁ−(V +v2)ṁ =⇒ T = v2ṁ
and the energy equation gives Ẇcv = −1

2V
2ρV A1 + 1

2 (V + v2)
2ρ(V + v2)A2 =⇒

T (V + vi) = V v2ṁ + 1
2v

2
2ṁ. Combining the last two results gives v2ṁ(V + vi) =

V v2ṁ+ v22/2ṁ =⇒ vi = v2/2, just as in the hover case, and so T = 2vi(V + vi)ρA
which correctly reduces to the hover thrust expression above when V = 0.

Di

T

V∞ vi

αi

αi

Figure 5.9: Rotor inflow in fast forward flight

Fast forward flight is shown schematically in Figure 5.9. As before, we assume
uniform inflow vi across the rotor disc; based on experimental testing results [115,
p. 124] this assumption is not as accurate as in the hover case, however this is
mitigated by the fact that V ≫ vi [72, p. 126]. In order to obtain a relationship
between vi and T , we view the rotor disc as a fixed, finite-width wing and employ
lifting-line theory [13, Sec. 5.3], where vi is the downwash which reduces the effective
angle of attack of the wing and creates the induced drag Di parallel to the local
inflow. This is illustrated in Figure 5.9, where the rotor must generate the induced
drag force Di in addition to the usual thrust force T to maintain unaccelerated
flight. We assume an elliptical distribution of circulation across the wing, which is
known to yield uniform downwash over the span of the wing [13, p. 411] as desired.
For the elliptical distribution, the relationship between lift and drag is analytically
calculated to be [13, Eq. (5.43)]

CD,i =
C2
L

πAR
,

where CD,i = Di/(q∞S) is the coefficient of induced drag with q∞ = (1/2)ρ∞V∞
the free-stream dynamic pressure and S the wing planform area; CL = L/(q∞S) is
the coefficient of lift with L = T perpendicular to the local inflow; and AR = b2/S
is the wing aspect ratio with b the span of the wing. For the helicopter rotor disc
b = 2R and S = πR2 = A where R is measured from the blade geometry (A was
previously used in Figure 5.8). From Figure 5.9 we have

tanαi =
vi
V∞

=
CD,i
CL

=
C2
L

πARCL
=

T
1
2ρ∞V

2
∞Sπ(2R)

2/S
=⇒ vi =

T

2ρ∞V∞A
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We now seek a universal expression for vi which applies to any flight condition
of the helicopter. The control volume used for this analysis is shown in Figure 5.10.
The stream velocity V shown corresponds to the helicopter flying up and forwards.
The velocities perpendicular to the horizontal cross-sections with areas A1, A and
A2 are thus V sinα, V sinα+vi and V sinα+v2, respectively, where vi is the induced
velocity at the rotor and v2 is the downstream induced velocity as in the vertical
climb case.

A1

A

A2

V T
α

vi

Figure 5.10: Rotor inflow in general flight

The continuity equation
∫
cs ρv · ndA = 0 gives ρV sinαA1 = ρ(V sinα+ vi)A =

ρ(V sinα + v2)A2 ≡ ṁ, the mass flow rate perpendicular to the horizontal cross-
sections. The momentum equation Fcv =

∫
cs vρv · ndA along the vertical direc-

tion gives F vcv = V sinαρV sinαA1 − (V sinα + v2)ρ(V sinα + v2)A2 =⇒ T =
−V sinαṁ+(V sinα+v2)ṁ = v2ṁ. Finally, the energy equation Ẇcv =

∫
cs ερv ·ndA

where ε represents the specific kinetic energy of the flow (1/2)v2 gives T (V sinα+
vi) = −(1/2)V 2ρV sinαA1 + (1/2)[(V cosα)2 + (V sinα+ v2)

2]ρ(V sinα+ v2)A2 =
−(1/2)V 2ṁ+(1/2)[V 2+2V v2 sinα+v

2
2 ]ṁ⇒ V v2 sinαṁ+(1/2)v22ṁ = v2ṁ(V sinα+

vi) ⇒ v2 = 2vi just as in the hover and vertical climb cases. The momentum equa-
tion thus becomes T = 2viṁ. Although ṁ represents the vertical mass flow rate,
following [62] we redefine ṁ = ρAU where U =

√
(V cosα)2 + (V sinα+ vi)2 is

the total velocity of the stream at the rotor disc. Using this definition the induced
velocity is

vi =
T

2ρA
√

(V cosα)2 + (V sinα+ vi)2
. (5.19)

For vertical climb α = π/2 and (5.19) becomes vi = T/(2ρA(V + vi)) which agrees
with the earlier analysis. For fast forward flight α = 0, V ≫ vi and (5.19) becomes

vi = T/(2ρA
√
V 2 + v2i ) ≈ T/(2ρAV ) which also agrees with the previous analysis.

This is precisely the reason for redefining ṁ as above; although this step is not
mathematically rigorous, [72, Sec. 4-1.1] points out that vi predicted by (5.19) agrees
with experimental data as well as more complicated theories. The result has been
accepted in newer helicopter books [115, 113] and used in experimentally-validated
helicopter models [59, 21]. Remark (5.19) is an implicit equation for vi which can
be solved using numerical root-finding [72, p. 129].
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5.3.1.2 Blade lift and drag

A cross-section of the main rotor blade airfoil with infinitesimal width dl and chord
length c is shown in Figure 5.11 where Θ is the blade pitch angle, (UT , UP ) are the
tangential and perpendicular components of the approaching airstream vector with
inflow angle Φ, α is the angle of attack of the airfoil and dL, dD are the resulting
lift and drag forces, respectively, which by definition are perpendicular and parallel
to the incoming airstream vector.

UP

UT

Θ

Φ
α

dL

dD

c

Figure 5.11: Blade cross-section

In the absence of stall, the lift force dL acting on the airfoil section is

dL =
1

2
ρU2CLcdl,

where ρ is air density as before, U = (U2
T+U

2
P )

1/2 is the airstream vector magnitude,
c is the chord length of the airfoil and CL is the coefficient of lift. The drag force
on the airfoil is

dD =
1

2
ρU2CDcdl,

where CD is the coefficient of drag. The values of CL and CD versus angle of attack
α can be obtained from wind tunnel experiments and are tabulated based on airfoil
geometry, discussed below, and Reynolds number

Re :=
ρV c

µ
(5.20)

where µ = 1.789 × 10−5 N s/m2 is the dynamic viscosity of air at ground altitude
by the International Standard Atmosphere (ISA).

The main rotor blade is a symmetric airfoil with chord length c = 66.3 mm and
maximum thickness t = 9.3 mm at x = 19 mm from the leading edge; these values
were directly measured using a digital caliper. Based on the ratios t/c = 0.14,
x/c = 0.29 the blade is classified as a NACA 0014 airfoil [8, p. 114], where the
first two integers indicate percent camber and fractional location from the leading
edge (00 for a symmetric airfoil), and the last two integers indicate the maximum
thickness in percent of the chord, which by definition occurs at x/c = 0.3 in all
4-digit NACA series airfoils. Experimental data plots for CL vs α as well as CD
vs α for a variety of airfoils and Reynolds numbers — see e.g. [8, pp. 462-463] for
a NACA 0012 airfoil at Re = 3 × 106, 6 × 106, 9 × 106 — show that CL is a linear
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function of α and CD is nearly constant with α for roughly |α| ≤ 10◦. For symmetric
airfoils we denote

CL = aα

where a is the slope of the lift curve in its linear range.
Experimental data is not always available for all airfoil shapes, e.g. [8] does

not include NACA 0014 data. In this case the alternative approach is a numerical
calculation of the lift and drag forces, which can be done analytically for “thin”
airfoils (t/c ≤ 0.12) by modeling them as a vortex sheet [13, Sec. 4.7], or for more
general airfoil shapes by using the vortex panel numerical method [13, Sec. 4.10].
The latter method is implemented by the online applet JavaFoil1 which lets the user
specify the airfoil geometry according to NACA series and computes the lift and
drag coefficients as a function of Reynolds number and range of angles of attack.
The Reynolds number for the main blades is obtained from (5.20) using V = ΩR
with Ω = 55π rad/s and R = 0.810 m giving Re ≈ 6× 105. The resulting plots are
shown in Figure 5.12 and the lift curve slope a and drag coefficient CD are obtained
using a least-squares fit in the linear range; remark α is reported in degrees and the
slope value is converted to CL/rad to obtain a.
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Figure 5.12: NACA 0014 data from JavaFoil: Coefficients of lift and drag vs angle
of attack

We now obtain expressions for the aerodynamic force components dF⊥ and dF ‖

perpendicular and parallel to the tangential airstream UT which will be used in
Sections 5.3.1.3 and 5.3.1.5 below. From Figure 5.11 we have α = Θ−Φ where the
inflow angle Φ is assumed small (c.f. Section 5.3.1) and so Φ = arctan(UP /UT ) ≈
UP /UT . Due to the high rotational speed of the main rotor U2

T ≫ U2
P and so

U2 = U2
T + U2

P ≈ U2
T . Since CL is typically an order of magnitude larger than CD

as seen in Figure 5.12 we can neglect the contribution of dD to dF⊥, although we
cannot make this assumption for dF ‖. The resulting expressions are

dF⊥ = dL cos Φ− dD sinΦ ≈ dL =
1

2
ρac

(
ΘU2

T − UTUP
)
dl

dF ‖ = dL sinΦ + dD cos Φ ≈ ΦdL+ dD =
1

2
ρac

(
ΘUTUP − U2

P

)
dl +

1

2
ρcCDU

2
Tdl

(5.21)

1http://www.mh-aerotools.de/airfoils/javafoil.htm
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5.3.1.3 Main rotor flapping dynamics

Each rotor blade is an airfoil rotating at the rate Ω whose azimuth ψ denotes the
clockwise angle from the tail boom. The blade is allowed to move up and down
relative to the helicopter’s horizontal plane either via a hinge mounted near the
rotor hub, as done in full-sized helicopters, or by a combination of blade bending
and an elastomeric flapping restraint, the latter design known as a “hingeless” rotor
which is typically used on RC helicopters including our Bergen Industrial Twin.
The helicopter head design, to be discussed in Section 5.3.2, generates the periodic
blade pitch

Θ = A0 +A1 cosψ +B1 sinψ (5.22)

where A0, A1 and B1 are directly controlled through a series of mechanical link-
ages. Since the lift force on an airfoil is proportional to its pitch angle, the A1,
B1 coefficients in (5.22) cause periodic up/down motion of each blade known as
flapping, causing the rotor disc and thrust vector to tilt about the longitudinal and
lateral axes, respectively, providing underactuated control over 4 of the 6 DoF’s of
the helicopter.

The flapping dynamics are obtained by performing a moment balance on an
individual blade, modeled as a rigid body hinged at the main rotor shaft and shown
schematically in Figure 5.13. The blade is modeled as a uniform thin plate with
linear mass density ρb and length R. The blade’s flapping angle β is measured from
the helicopter’s horizontal plane. The torsional spring kβ is a lumped model of
the elastomeric flapping restraint and the blade’s elasticity, producing the restoring
moment −kββ about the flapping axis. The flapping motion is also forced by the
infinitesimal aerodynamic force dF⊥ which must be integrated along the length,
and the blade weight mR acting at the CM located at l = R/2 since the blade was
assumed uniform. The blade’s angular velocity is a combination of β̇ plus main rotor
speed Ω and the body’s roll and pitch rates p and q, respectively. In addition, the
hinge point undergoes linear acceleration az along the helicopter’s normal direction
(b3 axis) as assumed in Section 5.3.1, i.e. we neglect the ax and ay components. The
actual expression for this term is obtained from (5.11) resp. (5.9) as az = ẇ+pv−qu,
specifically the third component of the inertial acceleration vector of the helicopter’s
CM expressed along the body-fixed frame.

kβ

Ω

−kββ
β

p

q

az

(mR)g

dF⊥

l = R

Figure 5.13: Main Rotor: Blade free-body diagram

The moment balance on the blade in Figure 5.13 will be performed about the
flapping hinge such that reaction forces can be neglected. We place the blade-fixed
frame at the flapping hinge as shown in Figure 5.14 where the frame’s i, j and k
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axes are aligned with the blade’s feathering, flapping and lagging axes, respectively.
We will employ the generalized moment equation (5.18) developed in Section 5.2.2.

β

ψ

Ω

p

q
i
j

k

Figure 5.14: Blade flapping kinematics

The blade-fixed frame in Figure 5.14 is aligned with the symmetry axes of the
blade and so Jo = diag(Joxx, J

o
yy , J

o
zz). The blade is modeled as a thin plate of width

w, thickness t, length R and total mass M = mR. The components of Jo are
obtained from standard mass moment of inertia expressions, e.g. [100, p. 713], then
approximated using t≪ w. We get

Joxx =
1

12
M(w2 + t2) ≈ 1

12
Mw2

Joyy =
1

12
Mt2 +

1

3
MR2 ≈ 1

3
MR2

Jozz =
1

12
Mw2 +

1

3
MR2 = Joxx + Joyy

(5.23)

We write Mo
B = [Lo Mo No]T , ωB = [pb qb rb]T and aoB = [aox aoy aoz]

T

which represent the body-frame vector components of the total external moment
about the hinge axis, inertial angular velocity of the blade and inertial linear ac-
celeration of the hinge point, respectively. We have rCMB = [R/2 0 0]T since the
blade is uniform. Using these in (5.18) along with Jo = diag(Joxx, J

o
yy , J

o
zz) and total

blade mass mR, we obtain


Lo

Mo

No


 =



qbrb(Jozz − Joyy)

pbrb(Joxx − Jozz)
pbqb(Joyy − Joxx)


+



Joxxṗ

b

Joyy q̇
b

Jozz ṙ
b


+mR




0
−(R/2)aoz
(R/2)aoy




Flapping takes place around the j axis so we employ only the second component of
the above equations. Using Joxx − Jozz = −Joyy from (5.23) and defining Jβ := Joyy,
Mβ := ρbR

2/2 as in [42] we obtain

Mo = Jβ q̇
b − Jβp

brb −Mβa
o
z (5.24)

In Figure 5.13 we had az = ẇ + pv − qu, the hinge’s inertial acceleration2 parallel
to the helicopter’s b3 axis. For the blade-fixed frame shown in Figure 5.14 we have

aoz = (ẇ + pv − qu) cos β (5.25)

2Recall we neglect the helicopter’s lateral accelerations ax and ay for analyzing the flapping
dynamics, i.e. employ only the normal component az, by assumption from Section 5.3.1.
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We also need expressions for pb, rb and q̇b = (d/dt)qb, the inertial angular accelera-
tions of the blade expressed along the blade-fixed frame axes. These can be obtained
by inspection of Figure 5.14:

pb = −p cosψ cos β − q sinψ cos β − Ω sin β

qb = p sinψ − q cosψ + β̇

rb = −p cosψ sin β − q sinψ sin β +Ωcos β

Computing (d/dt)qb using ψ̇ = Ω we get

q̇b = ṗ sinψ + pΩcosψ − q̇ cosψ + qΩ sinψ + β̈

The above are used to expand Jβ(q̇
b−pbrb) in (5.24) and higher-order terms are sim-

plified as [42] cos2 β ≈ 1, sin2 β ≈ 0, p2 ≈ 0, q2 ≈ 0 and pq ≈ 0; the simplifications
are justified by small flapping angles β and p, q ≪ Ω. The result is

Jβ(q̇
b−pbrb) = Jβ

(
β̈+ṗ sinψ−q̇ cosψ+2pΩcosψ+2qΩ sinψ+Ω2 cos β sinβ

)
(5.26)

The net moment about the flapping hinge Mo consists of the three external forces
shown in Figure 5.13: the blade weight moment Mw = −(mR)g(R/2) cos β =
−Mβg cos β; the torsional spring restoring moment Mkβ = −kββ; and the aero-

dynamic moment MA =
∫ R
0 ldF⊥ where dF⊥ is given by (5.21) in Section 5.3.1.2.

Based on Figure 5.14 the blade cross-section at azimuth ψ and distance l from the
flapping axis experiences the airstream velocity components

UT = Ωl cos β + u sinψ − v cosψ

UP = (vi −w) cos β + u sin β cosψ + v sin β sinψ + β̇l + pl sinψ − ql cosψ
(5.27)

where [u v w]T is the body-frame component velocity of the helicopter, vi is the
induced velocity covered in Section 5.14, and p, q are the helicopter roll and pitch
rates as before. The aerodynamic moment integral is

MA =

∫ R

l=0
ldF⊥ =

1

2
ρac

∫ R

l=0
l
(
ΘU2

T − UTUP

)
dl

Substituting Θ from (5.22) and UP , UT from (5.27) into the integrand and assuming
small flapping angles such that cosβ ≈ 1, sin β ≈ β gives

MA =
1

24
ρacR2

{
− 2R

[
pu+ qv + 2Ω(vi − w)

]

+
[
6viv − 6vw +RΩ(3Rq − 4uβ)

]
cosψ

+ 2
[
R(pu− qv) + 3uvβ

]
cos 2ψ −

[
6viu− 6uw +RΩ(3Rp+ 4vβ)

]
sinψ

+
[
2R(qu+ pv) + 3β(−u2 + v2)

]
sin 2ψ + (A0 +A1 cosψ +B1 sinψ)

[
3(u2 + v2 + (RΩ)2)− 8RΩv cosψ − 3(u2 − v2) cos 2ψ

+ 8RΩu sinψ − 6uv sin 2ψ
]
−Rβ̇

[
3RΩ− 4v cosψ + 4u sinψ

]}

(5.28)
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Returning to (5.24), using (5.25), (5.26) assuming a small β angle and employing
Mo =Mw +Mkβ +MA gives the governing equation for the flapping angle β of an
individual blade:

β̈+ṗ sinψ−q̇ cosψ+2pΩcosψ+2qΩ sinψ+Ω2β =
Mβ

Jβ
(ẇ+pv−qu−g)−kβ

Jβ
β+

1

Jβ
MA

Substituting (5.28) into the above gives a linear, second-order, non-homogenous
differential equation for β(t):

β̈ +
ρacR3

24Jβ

{
3RΩ− 4v cosψ + 4u sinψ

}
β̇ +

{(
kβ
Jβ

+Ω2

)

+
ρacR2

24Jβ

(
4RΩu cosψ − 6uv cos 2ψ + 4RΩv sinψ + 3(u2 − v2) sin 2ψ

)}
β

=
Mβ

Jβ

(
ẇ + pv − qu− g

)
− ṗ sinψ + q̇ cosψ − 2pΩcosψ − 2qΩ sinψ

+
ρacR2

24Jβ

{
− 2R

[
pu+ qv + 2Ω(vi − w)

]
+ 3
[
2viv − 2vw +R2Ωq

]
cosψ

+ 2R(pu− qv) cos 2ψ − 3
[
2viu− 2uw +R2Ωp

]
sinψ + 2R(qu+ pv) sin 2ψ

+ (A0 +A1 cosψ +B1 sinψ)
[
3(u2 + v2 + (RΩ)2)− 8RΩv cosψ

− 3(u2 − v2) cos 2ψ + 8RΩu sinψ − 6uv sin 2ψ
]}

(5.29)
In order to get an expression for the flapping dynamics in the helicopter-fixed (non-
rotating) frame, we use the classical method [61, p. 153] of writing the 2π-periodic
β(t) as a Fourier series then neglecting all second and higher harmonics:

β(t, ψ) ≈ a0(t)− a1(t) cosψ + b1(t) sinψ (5.30)

where a0, a1 and b1 physically represent the coning, longitudinal tilt and lateral
tilt angles of the rotor disc traced out by the tips of the spinning blades, and
the a1, b1 signs have been assigned for consistency with Figure 5.1 on p. 140. This
approach is justified by experiment, where the amplitude of in-plane weaving (second
harmonic) is an order of magnitude smaller than the coning and tilting motion.
Differentiating (5.30) twice with respect to time, we obtain

β̇ = ȧ0 − ȧ1 cosψ + a1Ω sinψ + ḃ1 sinψ + b1Ωcosψ

= ȧ0 + (−ȧ1 + b1Ω) cosψ + (a1Ω+ ḃ1) sinψ (5.31)

β̈ = ä0 − ä1 cosψ + 2ȧ1Ω sinψ + a1Ω
2 cosψ + b̈1 sinψ + 2ḃ1Ωcosψ − b1Ω

2 sinψ

= ä0 + (−ä1 + a1Ω
2 + 2ḃ1Ω) cosψ + (2ȧ1Ω+ b̈1 − b1Ω

2) sinψ (5.32)

Expressions (5.32), (5.31) and (5.30) are then substituted into the LHS of (5.29)
and the coefficients of the constant, cosψ and sinψ terms are matched in order to
obtain the dynamics of x = [a0 a1 b1]

T , the tip path plane angles resulting in the
system ẍ+Dẋ+K = F .
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Based on the results in [42], we are able to pre-simplify our expressions. A key
parameter in flapping dynamics is the Lock number

γ :=
ρacR4

Jβ

For the Bergen Industrial Twin, using the identified parameters given in Section 5.5
we compute γ = 4.03 and by [42, Fig. 8], we see that the advance ratio µ has
negligible effect on the flapping modes for this “low” (γ < 8) Lock number. This
means we can disregard the translational velocity terms u, v in (5.29), whose LHS
becomes

β̈ +
ρacR3

24Jβ

{
3RΩ

}
β̇ +

{
kβ
Jβ

+Ω2

}
β = β̈ +

γΩ

8
β̇ +

(
kβ
Jβ

+Ω2

)
β

Substituting (5.32), (5.31) and (5.30) into the above and grouping terms yields

ä0 +
γΩ

8
ȧ0 +

(
kβ
Jβ

+Ω2

)
a0 +

{
− ä1 + a1Ω

2 + 2ḃ1Ω+
γΩ

8
(−ȧ1 + b1Ω)

−
(
kβ
Jβ

+Ω2

)
a1

}
cosψ+

{
2ȧ1Ω+b̈1−b1Ω2+

γΩ

8
(a1Ω+ḃ1)+

(
kβ
Jβ

+Ω2

)
b1

}
sinψ

while the RHS of (5.29) with u = v = 0 is

Mβ

Jβ

(
ẇ − g

)
− ṗ sinψ + q̇ cosψ − 2pΩcosψ − 2qΩ sinψ +

γ

24R2

{
− 4RΩ(vi − w)

+ 3R2Ωq cosψ − 3R2Ωp sinψ + (A0 +A1 cosψ +B1 sinψ)
[
3(RΩ)2

]}

Matching the constant, cosψ and sinψ coefficients gives

ä0 +
γΩ

8
ȧ0 +

(
kβ
Jβ

+Ω2

)
a0 =

Mβ

Jβ

(
ẇ − g

)
− γΩ

6R
(vi − w) +

γΩ2

8
A0

−ä1 + 2ḃ1Ω+
γΩ

8
(−ȧ1 + b1Ω)−

kβ
Jβ
a1 = q̇ − 2pΩ+

γΩ

8
q +

γΩ2

8
A1

2ȧ1Ω+ b̈1 +
γΩ

8
(a1Ω+ ḃ1) +

kβ
Jβ
b1 = −ṗ− 2qΩ− γΩ

8
p+

γΩ2

8
B1

(5.33)
The first equation describes the dynamics of the coning mode a0, with natural
frequency ω0 =

√
kβ/Jβ +Ω2 and forcing terms consisting of normal motion w and

ẇ, gravity g and collective pitch A0; it can be verified ζ0 = (γΩ)/(16ω0) although
this term is not required in the sequel. The remaining two equations are a coupled
dynamics system for flapping angles a1, b1, which can be rewritten in the form
ẍ+Dẋ+Kx = F as

[
ä1
b̈1

]
+

[γΩ
8 −2Ω

2Ω γΩ
8

] [
ȧ1
ḃ1

]
+

[ kβ
Jβ

−γΩ2

8
γΩ2

8
kβ
Jβ

][
a1
b1

]
=

[
−q̇ + 2pΩ− γΩ

8 q −
γΩ2

8 A1

−ṗ− 2qΩ− γΩ
8 p+

γΩ2

8 B1

]

(5.34)

158



The natural frequencies and damping ratios of (5.34) can be calculated using the
method of complex modal analysis [70, pp. 332–334]. The homogenous version
of (5.34) ẍ+Dẋ+Kx = 0 is written in state-space form by defining x1 = x, x2 = ẋ:

[
ẋ1
ẋ2

]
=

[
0 I

−K −D

] [
x1
x2

]

The eigenvalues of the above matrix are two complex-conjugate pairs λ1 and λ2,
corresponding to the system’s two vibration modes, whose natural frequencies and
damping ratios are respectively calculated by

ωi =
√

Re{λi}2 + Im{λi}2 and ζi =
−Re{λi}√

Re{λi}2 + Im{λi}2

By direct computation we find

λ1 = −γΩ
16

± j

4Jβ

√
32(JβΩ)2 + 16Jβkβ −

1

16
(γJβΩ)2 + 2JβΩ ξ

λ2 = −γΩ
16

± j

4Jβ

√
32(JβΩ)2 + 16Jβkβ −

1

16
(γJβΩ)2 − 2JβΩ ξ

ξ :=
√

256(JβΩ)2 + 256Jβkβ − (γJβΩ)2

Remark the only difference between the two eigenvalue pairs is the sign in front of
the ξ term. We then have

ω1 =

(
Ω2 + ω2

0 +
Ω

8

√
(16ω0)

2 − (γΩ)2
)1/2

ζ1 =
γΩ

16ω1

ω2 =

(
Ω2 + ω2

0 −
Ω

8

√
(16ω0)

2 − (γΩ)2
)1/2

ζ2 =
γΩ

16ω2

where

ω0 =

(
Ω2 +

kβ
Jβ

)1/2

is the frequency of the coning mode as before. The vibration modes characterized
by (ω1, ζ1) and (ω2, ζ2) are known as the advancing and regressing flapping modes,
respectively. As discussed in [42] we retain only the regressive flapping mode, whose
frequency is sufficiently low to couple into the rigid-body motions of the helicopter.
A good approximation of this mode can be obtained by setting ä1 = b̈1 = 0 in (5.34).
Further, for this low-frequency effect we can omit the effect of angular accelerations
by setting ṗ = q̇ = 0. The flapping dynamics become simplified to

2ḃ1Ω+
γΩ

8
(−ȧ1 + b1Ω)−

kβ
Jβ
a1 = −2pΩ+

γΩ

8
q +

γΩ2

8
A1

2ȧ1Ω+
γΩ

8
(a1Ω+ ḃ1) +

kβ
Jβ
b1 = −2qΩ− γΩ

8
p+

γΩ2

8
B1

Remark each of the cyclic inputs A1 and B1 affects both ȧ1 and ḃ1 in the simplified
equations above. In reality, the control linkages are designed to achieve perfect 90◦
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phase lag between cyclic input and maximum flapping angle in order to decouple the
flapping response. Mathematically, this means that in steady-state, the A1 cyclic
pitch component should affect only the lateral flapping angle b1 and the B1 only the
longitudinal a1; this is done by dropping the ȧ1 term from the first equation and the
ḃ1 term from the second one in the simplified model above, as seen in [101, p. 73]
who uses this approach without comment. The regressing mode dynamics become

2ḃ1Ω+
γΩ

8
(b1Ω)−

kβ
Jβ
a1 = −2pΩ+

γΩ

8
q +

γΩ2

8
A1

2ȧ1Ω+
γΩ

8
(a1Ω) +

kβ
Jβ
b1 = −2qΩ− γΩ

8
p+

γΩ2

8
B1

and interchanging their order and normalizing the coefficients of A1, B1 gives

16

γΩ
ȧ1 + a1 =

−8kβ
γΩ2Jβ

b1 −
16

γΩ
q − 1

Ω
p+B1

16

γΩ
ḃ1 + b1 =

8kβ
γΩ2Jβ

a1 −
16

γΩ
p+

1

Ω
q +A1

(5.35)

The dynamics (5.35) are a highly simplified form of the flapping dynamics of the
main rotor. They offer insight into the physics of flapping and can be used for a
simulation model with some parameter identification, c.f. [65, p. 16]. A more com-
plete model of the flapping dynamics can be obtained by returning to (5.29) and
substituting the tip-path plane expression (5.30) but without neglecting transla-
tional velocity terms as done in [42, 21], at the expense of a dramatic increase in
symbolic complexity. The regressing mode approximation could also be avoided by
using (5.34) resp. (5.33) when integrating for the flapping dynamics. We will not
pursue these avenues further.

5.3.1.4 Flapping Dynamics Simplifications

In Section 5.3.1.3 we have used identified parameters values for the Bergen Industrial
Twin to compute the Lock number γ = 4.03 and simplify the flapping dynamics.
Using the same numerical approach we can obtain further simplifications of our
model.

The ANCL helicopter uses an approximate head speed of Ω = 1650 RPM =
55π rad/s. We also use the following identified values from Section 5.5: kβ =
122 Nm/rad; Jβ = 0.057 kgm2. We numerically compute the natural frequency
and damping ratio pairs for the coning (ω0, ζ0), advancing (ω1, ζ1) and regressing
(ω2, ζ2) modes as

ω0 = 178.87 rad/s = 28.47 Hz ζ0 = 0.2433

ω1 = 349.01 rad/s = 55.55 Hz ζ1 = 0.1247

ω2 = 43.53 rad/s = 6.93 Hz ζ2 = 0.9999

As predicted only the regressing mode has a frequency low enough (6.93 Hz) to
possibly couple into the motion of the helicopter body, although the other flapping
frequencies will show up in the frequency content of the IMU sensor signal. Re-
mark the regressing mode is nearly critically damped and hence the approach of
approximating it as a first-order system (5.35) is justified.

160



Using a 5% criterion the settling time for a unit step input into the regressing
mode is given by [109, p. 233] ts = 3/(ζωn) = 0.069 s, or for the approximate
system (5.35) with time constant τ = 16/(γΩ) this value is 3τ = 0.069 s, identical
to before. Based on these numbers we are justified in taking the flapping response of
the main rotor as instantaneous. Physically this is due to the high angular speed of
the main rotor (Ω = 1650 RPM = 27.5 Hz) which makes the transient period of the
flapping dynamics negligibly short. This is the reason why a Bell-Hiller stabilizer
system, to be discussed in Section 5.3.2, is used on the Bergen Industrial Twin and
other RC helicopters — to slow down the effective flapping response of the main
rotor and make the helicopter flyable for a human pilot. A new generation of flybar-
less RC helicopters fly under closed-loop control and allow the pilot to tune the
main rotor response in real-time to suit their preferences.

Neglecting the flapping dynamics of the main rotor is done by dropping the ȧ1,
ḃ1 terms in (5.35). We can simplify further as follows: since the coning frequency
ω0 =

√
kβ/Jβ +Ω2 = 178.87 rad/s is less than 4% from the natural rotor frequency√

Ω2 = 172.79 rad/s, we can drop the kβ/Jβ term from (5.35). Evaluating the coef-
ficients 16/(γΩ) = 0.023 and 1/Ω = 0.0058 we also see that the effect of on-axis and
off-axis angular rates on disc tilt is respectively two and three orders of magnitude
lower than the cyclic amplitude terms A1 and B1. Under all these simplifications
equation (5.35) reduces to the steady-state expression

a1 = B1

b1 = A1
(5.36)

In Section 5.3.1.5 we will develop the force and moment expressions for the main
rotor in full generality, i.e. leaving in the flapping dynamics, which can be neglected
later by zeroing all ȧ0, ȧ1 and ḃ1 terms.

5.3.1.5 Main Rotor Forces and Moments

We now calculate the force and moment vectors resulting from the aerodynamic
forces acting on the main rotor. We first develop the fully general expressions then
simplify down to a hover model.

The main rotor thrust Tmr and counter-torque Qmr respectively defined as the
net body-vertical force and counter-clockwise moment in the body-horizontal plane
are evaluated from

Tmr =
Nb

2π

∫ 2π

0

∫ R

0
dF⊥ cos β dψ

Qmr =
Nb

2π

∫ 2π

0

∫ R

0
l dF ‖ dψ

where Nb = 2 is the number of blades and dF⊥, dF ‖ are the perpendicular and par-
allel aerodynamic forces acting on a blade section given by (5.21) in Section 5.3.1.2.
We will also calculate Xmr, Ymr, the in-plane force parallel to the xb and yb axes
given by

Xmr =
Nb

2π

∫ 2π

0

(∫ R

0
dF⊥ sin β cosψ −

∫ R

0
dF ‖ sinψ

)
dψ

Ymr =
Nb

2π

∫ 2π

0

(∫ R

0
dF⊥ sin β sinψ +

∫ R

0
dF ‖ cosψ

)
dψ
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as well as Lmr, Mmr, the moments at the main rotor blade hub in aligned with the
xb and yb axis directions:

Lmr =
Nb

2π

∫ 2π

0

(∫ R

0
l dF⊥ + kββ

)
sinψ dψ

Mmr =
−Nb

2π

∫ 2π

0

(∫ R

0
l dF⊥ + kββ

)
cosψ dψ

By assumption from Section 5.3.1 we take the flapping angle β as small such that
cos β ≈ 1 in T and sin β ≈ β in Xmr and Ymr above. The UT and UP expressions
in (5.27) simplify to

UT = Ωl + u sinψ − v cosψ

UP = vi − w + uβ cosψ + vβ sinψ + β̇l + pl sinψ − ql cosψ

The dF⊥, dF ‖ expressions in (5.21) as well as Θ, β and β̇ in (5.22), (5.30) and (5.31)
are repeated here for convenience:

dF⊥ =
1

2
ρac

(
ΘU2

T − UTUP
)
dl

dF ‖ =
1

2
ρac

(
ΘUTUP − U2

P

)
dl +

1

2
ρcCDU

2
Tdl

Θ = A0 +A1 cosψ +B1 sinψ

β = a0 − a1 cosψ + b1 sinψ

β̇ = ȧ0 + (b1Ω− ȧ1) cosψ + (a1Ω+ ḃ1) sinψ

Using the expressions above we first evaluate the Tmr integral:

Tmr =
ρacRNb

24

{[
4(RΩ)2 + 6(u2 + v2)

]
A0 + 6RΩ

[
w − vi − vA1 + uB1

]

− 3R
[
u(p + ḃ1) + v(q + ȧ1)

]
− 4R2Ωȧ0

}

The p, ḃ1 and q, ȧ1 terms physically represent the lateral and longitudinal angular
velocity of the rotor disc, respectively. From Section 5.3.1.1 we know vi = vi(Tmr)
and so Tmr is a transcendental equation which is typically solved numerically using
the Newton-Rhapson method over a few iterations, e.g. [72, p. 129], [65, p. 18], [59,
p. 35]. Since the transcendental equation is quartic it can be solved analytically
as [21, p. 63], however this still does not provide an explicit Tmr expression due to
the requirement of selecting one of four possible solutions.

In hover with translational velocities, angular rates and flapping dynamics iden-
tically zero, the Tmr expression reduces to

T hmr =
ρacRNb

12

{
2(RΩ)2A0 − 3RΩvhi

}
(5.37)

where from Section 5.3.1.1

T hmr = 2(vhi )
2ρπR2 =⇒ vhi =

√
T hmr

2ρπR2
(5.38)
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We can obtain an explicit equation for T hmr by substituting (5.38) into (5.37), which
gives

T hmr =
ρacR3NbΩ

2

6
A0 −

acRNbΩ
√
ρ

4
√
2π

√
T hmr := CTmrA0 −DT

mr

√
T hmr

where by inspection CTmr, D
T
mr are positive constants. By defining x =

√
T hmr we

can solve the above using the quadratic formula:

√
T hmr =

−DT
mr +

√
(DT

mr)
2 + 4CTmrA0

2
or
√
T hmr =

−DT
mr −

√
(DT

mr)
2 + 4CTmrA0

2

Squaring both sides gives

T hmr = CTmrA0 +
(DT

mr)
2

2
±DT

mr

√
CTmrA0 +

(DT
mr)

2

4

In order to pick a single solution consider A0 = 0 for which

T hmr = (DT
mr)

2 or T hmr = 0

but since zero collective pitch is known to produce zero thrust the “minus” solution
is the correct one:

T hmr = CTmrA0 +
(DT

mr)
2

2
−DT

mr

√
CTmrA0 +

(DT
mr)

2

4
(5.39)

Equation (5.39) is an explicit equation for hover thrust T hmr as a function of the
collective pitch angle A0 where CTmr, D

T
mr are constant parameters defined above.

A simplified expression for T hmr can be obtained by taking T hmr = mg in (5.38);
this assumes zero acceleration along the zb axis

3. In this case (5.37) becomes

T hmr ≈
ρacR3NbΩ

2

6
A0 −

acRNbΩ

4

√
mgρ

2π
=⇒ T hmr ≈ CTmrA0 −DT

mr
√
mg

The assumption of zero zb axis acceleration is poor due to the constant adjustments
of the collective input required to maintain hover; for this reason T hmr should be
computed using (5.39).

3This also assumes the helicopter is level, however this is reasonable since mg cosφ cos θ ≈ mg

for small angles.
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The Qmr counter-torque expression evaluates to

Qmr =
−ρacR2Nb

96

{
6(p2 + q2)R2 + 24(w − vi)

2 − 16R
[
qu− pv

]
a0 + 12

[
u2 + v2

]
a20

+ 4
[
6u(w − vi) + 4vRΩ+ 3pR2Ω

]
a1 + 3

[
3u2 + v2 + 2(RΩ)2

]
a21 − 12uva1b1

− 4
[
6v(w − vi) + 4uRΩ+ 3qR2Ω

]
b1 + 3

[
u2 + 3v2 + 2(RΩ)2

]
b21

+ 4R
[
− 8w − 4ua1 + 4vb1 + 8vi + 3Rȧ0 − 3RΩA0 + 2vA1 − 2uB1

]
ȧ0

+ 2R
[
6qR− 8ua0 − 6RΩb1 + 3Rȧ1 − 4vA0 + 3RΩA1

]
ȧ1

+ 2R
[
6pR+ 8va0 + 6RΩa1 + 3Rḃ1 − 4uA0 − 3RΩB1

]
ḃ1

+ 8R
[
− pu− qv + 2wΩ − 2Ωvi

]
A0

+
[
− 12v(w − vi) + 6qR2Ω− 8uRΩa0 − 3(u2 − v2)b1 − 6(RΩ)2b1 − 6uva1

]
A1

+
[
12u(w − vi)− 6pR2Ω− 8vRΩa0 + 3(u2 − v2)a1 − 6(RΩ)2a1 − 6uvb1

]
B1

}

+
ρcR2CDNb

8

{
(RΩ)2 + u2 + v2

}

In hover with zero translational and rotational velocities and zero flapping dynamics,
the above reduces to

Qhmr =
−ρacR2Nb

96

{
24(−vhi )2 + 3

[
2(RΩ)2

]
a21 + 3

[
2(RΩ)2

]
b21 + 8R

[
− 2Ωvhi

]
A0

+
[
− 6(RΩ)2b1

]
A1 +

[
− 6(RΩ)2a1

]
B1

}
+
ρcR2CDNb

8

{
(RΩ)2

}

In hover (5.36) gives a1 = B1 and b1 = A1 and so Qhmr becomes

Qhmr =
−ρacR2Nb

96

{
24(vhi )

2 + 6(RΩ)2a21 + 6(RΩ)2b21 − 16RΩvhi A0

− 6(RΩ)2b21 − 6(RΩ)2a21

}
+
ρcR2CDNb

8

{
(RΩ)2

}

=
ρacR2Nbv

h
i

12RΩ

{
− 3RΩvhi + 2(RΩ)2A0

}
+
ρcR4Ω2CDNb

8

=
T hmrR

RΩ

√
T hmr

2ρπR2
+
ρcR4Ω2CDNb

8
:= CQmr

(
T hmr

)3/2
+DQ

mr (5.40)

where vhi was taken from (5.38), T hmr is calculated by (5.39) and CQmr, D
Q
mr are

constants whose notation has been chosen to match [79, Sec. 2.2].
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We now return to the Xmr and Ymr force expressions, which evaluate to

Xmr =
−ρacRNb

96

{
24Rp(w − vi)

+ 4
[
18v(w − vi)− 2qR2Ω+ 3uRΩa0 + 12uva1 − 12v2b1 + 2(RΩ)2b1

]
a0

+ 3R
[
pu− 5qv + 12Ω(w − vi) + 4Ωua1

]
a1 − 12vRΩa1b1 + 3R

[
qu− 7pv

]
b1

− 4R
[
4pR+ 9va0 + 6RΩa1 − 3uA0 − 2RΩB1 + 4Rḃ1

]
ȧ0

−R
[
8RΩa0 + 15va1 − 3ub1 + 3uA1 − 3vB1

]
ȧ1

+R
[
24(w − vi) + 3ua1 − 21vb1 + 8RΩA0 − 3vA1 + 9uB1

]
ḃ1

+ 4
[
− 6u(w − vi) + 2pR2Ω+ 9vRΩa0 + 6v2a1 + 4(RΩ)2a1 + 6uvb1

]
A0

−
[
3R(qu+ pv) + 24v2a0 + 8(RΩ)2a0 + 24vRΩa1

]
A1

+ 3
[
3Rpu+Rqv − 4RΩ(w − vi) + 8uva0 + 4uRΩa1 + 4vRΩb1

]
B1

}

− ρcR2ΩNb

4
uCD

and

Ymr =
−ρacRNb

96

{
24Rq(w − vi)

+ 4
[
− 18u(w − vi) + 2pR2Ω+ 3vRΩa0 − 12u2a1 + 2(RΩ)2a1 + 12uvb1

]
a0

− 3R
[
pv − 7qu

]
a1 − 12uRΩa1b1 + 3R

[
5pu− qv − 12Ω(w − vi) + 4Ωvb1

]
b1

− 4R
[
4qR − 9ua0 − 6RΩb1 − 3vA0 + 2RΩA1 + 4Rȧ1

]
ȧ0

+R
[
24(w − vi) + 21ua1 − 3vb1 + 8RΩA0 − 9vA1 + 3uB1

]
ȧ1

+R
[
8RΩa0 − 3va1 + 15ub1 − 3uA1 + 3vB1

]
ḃ1

− 4
[
6v(w − vi)− 2qR2Ω+ 9uRΩa0 + 6uva1 + 6u2b1 + 4(RΩ)2b1

]
A0

+ 3
[
−Rpu− 3Rqv + 4RΩ(w − vi) + 8uva0 + 4uRΩa1 + 4vRΩb1

]
A1

+
[
3R(qu+ pv)− 24u2a0 − 8(RΩ)2a0 − 24uRΩb1

]
B1

}
− ρcR2ΩNb

4
vCD

While the Xmr, Ymr terms are complicated, this is normal as evidenced by the
expressions found in e.g. [41, pp. 7-8]; [113, pp. 108-111]; [21, pp. 234-238]. In hover
with u = v = w = 0, p = q = 0 and ȧ0 = ȧ1 = ḃ1 = 0, the Xmr and Ymr expressions

165



simplify to

Xh
mr =

−ρacRNb

96

{[
8(RΩ)2b1

]
a0 −

[
36RΩvhi

]
a1

+
[
16(RΩ)2a1

]
A0 −

[
8(RΩ)2a0

]
A1 +

[
12RΩvhi

]
B1

}

Y h
mr =

−ρacRNb

96

{[
8(RΩ)2a1

]
a0 +

[
36RΩvhi

]
b1

−
[
16(RΩ)2b1

]
A0 −

[
12RΩvhi

]
A1 −

[
8(RΩ)2a0

]
B1

}

Using a1 = B1 and b1 = A1 from (5.36) we get

Xh
mr =

−ρacRNb

96

{
−
[
24RΩvhi

]
a1 +

[
16(RΩ)2a1

]
A0

}

=
−ρacRNb

12

{
2(RΩ)2A0 − 3RΩvhi

}
a1

Y h
mr =

−ρacRNb

96

{[
24RΩvhi

]
b1 −

[
16(RΩ)2b1

]
A0

}

=
ρacRNb

12

{
2(RΩ)2A0 − 3RΩvhi

}
b1

and using (5.37) we have

Xh
mr = −T hmra1
Y h
mr = T hmrb1

which is validated by the flapping sign convention shown in Figure 5.1.
The final set of calculations involve hub moment expressions Lmr, Mmr, which

turn out to have a simpler form than Qmr, Xmr and Ymr above:

Lmr =
−ρacR2Nb

96

{
− 12uw + 12uvi + 6pR2Ω+ 8RvΩa0

+ 3
[
− u2 + v2 + 2(RΩ)2

]
a1 + 6uvb1 + 8Ruȧ0 + 6R2Ωḃ1

− 16uRΩA0 + 6uvA1 −
[
9u2 + 3v2 + 6(RΩ)2

]
B1

}
+
kβb1Nb

2

Mmr =
−ρacR2Nb

96

{
− 12vw + 12vvi + 6qR2Ω− 8RuΩa0 − 6uva1

− 3
[
u2 − v2 + 2(RΩ)2

]
b1 + 8Rvȧ0 + 6R2Ωȧ1

− 16vRΩA0 +
[
3u2 + 9v2 + 6(RΩ)2

]
A1 − 6uvB1

}
+
kβa1Nb

2

At hover this reduces to

Lhmr =
−ρacR2Nb

96

{
3
[
2(RΩ)2

]
a1 −

[
6(RΩ)2

]
B1

}
+
kβb1Nb

2
=
kβb1Nb

2
= kβb1

Mh
mr =

−ρacR2Nb

96

{
− 3
[
2(RΩ)2

]
b1 +

[
6(RΩ)2

]
A1

}
+
kβa1Nb

2
=
kβa1Nb

2
= kβa1

where the second equality is due to a1 = B1 and b1 = A1 from (5.36) and the third
from Nb = 2. The final result is validated by Figure 5.1 as well.
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5.3.1.6 Main Rotor Contributions

The main rotor forces Tmr, Xmr and Ymr create a moment around the helicopter’s
CM which is added to the moments Qmr, Lmr and Mmr. The main rotor’s force
and moment contributions along the helicopter’s body-fixed axes are given by

Xmr = Xmr

Ymr = Ymr

Zmr = −Tmr
Lmr = hmrYmr + Lmr

Mmr = −hmrXmr +Mmr

Nmr = −Qmr
where hmr is the height of the main rotor hub above the center of mass, measured
directly using the identified CM position, c.f. Figure 5.3 in Section 5.2. The center
of mass is placed directly under the hub by moving the avionics box fore and aft
in its T-slot rails attachment system. In hover the force and moment contributions
become

Xh
mr = −T hmra1
Y h
mr = T hmrb1

Zhmr = −T hmr
Lhmr = hmrT

h
mrb1 + kβb1

Mh
mr = hmrT

h
mra1 + kβa1

Nh
mr = −CQmr

(
T hmr

)3/2
−DQ

mr

where by (5.39)

T hmr = CTmrA0 +
(DT

mr)
2

2
−DT

mr

√
CTmrA0 +

(DT
mr)

2

4

and where we defined

CTmr :=
ρacR3NbΩ

2

6
DT
mr :=

acRNbΩ
√
ρ

4
√
2π

CQmr :=
1

RΩ
√
2ρπ

DQ
mr :=

ρcR4NbΩ
2CD

8

The kβ term was used in Sections 5.3.1.3 and 5.3.1.5 and represents a lumped-
parameter torsional spring model of the blade’s elasticity and the elastomeric flap-
ping restraint within the blade grip. This parameter is experimentally identified by
attaching a set of masses m on the main rotor blade and measuring the resulting
linear deflection of the attachment point. A picture of the experiment is shown in
Figure 5.15, where the deflections are measured w.r.t. the ground with the zero-mass
distance used as the datum for subsequent deflection measurements d. The data is
converted to torque τ = mglm versus flapping angle β = d/lm where lm is the con-
stant length from the main rotor shaft to the mass attachment point on the blade.
Plotting τ versus β and using a least-squares linear fit provides kβ as the slope of
the line, also shown in Figure 5.15. Remark the linear fit is good over a range of
values which confirms that a linear torsional spring model for the main blades is
accurate.
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Figure 5.15: Main rotor kβ identification: experiment setup; restoring torque τ
versus flapping angle β

5.3.2 Rotor Head

The rotor head system controls the main blade pitch Θ through a series of linkages.
The input to this subsystem is a swashplate which can be tilted in a plane as
well as raised/lowered through another set of linkages connected to the roll, pitch
and collective servos. The rotor head includes a Bell-Hiller system for stability
augmentation. The design is shown schematically in Figure 5.16 for ψ = 0. Note
the swashplate consists of two parts, both tilting but only the upper one rotating.

Forward Mixer

Bell input
Hiller input

Washout arm

Swashplate

δp > 0δr > 0

Ω

Θf

Θ

βf < 0

Figure 5.16: Bell-Hiller system schematic [76] for ψ = 0, ψf = 90◦; δc omitted for
clarity.

Let δc ∈ [0, 1] denote the normalized vertical swashplate position such that
δc = 0 and δc = 1 denote the lowest and highest position reachable corresponding
to collective stick fully down and fully up, respectively. Also let δr ∈ [−1, 1] and
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δp ∈ [−1, 1] denote the normalized swashplate tilt about the helicopter roll and pitch
axes, respectively. The sign convention is shown in Figure 5.16 with δr = 0, δp = 0
denoting the swashplate is level in the roll and pitch axis or the roll and pitch sticks
are centered, respectively. The limits δr = −1 and δr = 1 represent maximum left
and right swashplate tilt or roll stick fully left and fully right, respectively. Similarly
δp = −1 and δp = 1 represent maximum forward and backward swashplate tilt or
pitch stick fully front and fully back, respectively. Using δc, δr and δp as inputs
allows the math model to handle different types of swashplate layouts, e.g. the 90◦

control setup on the Bergen Industrial Twin or a 120◦ CCPM control used on the
Mini-Titan electric heli; the mapping from δ to servo commands will be discussed
in Section 5.3.5.

The Bell-Hiller system consists of a flybar with small airfoils attached to its ends,
mounted at 90◦ to the main blades and rotating about a teetering hinge inside the
main rotor shaft. The washout arm moves together with the swashplate such that
the input δc does not affect the pitch Θf of the flybar airfoils but only the collective
component of the main rotor blade pitch Θ (5.22):

A0 = Ccδc +Dc (5.41)

where Cc and Dc are constants which depend on the mechanical link setup and pilot
settings on the transmitter. Physically these are identified by moving the collective
stick from δc = 0 to δc = 1 and measuring the range of Θ and its value at δc = 0,
respectively, with Dc < 0 being typical. The flybar pitch Θf is a periodic function
of the swashplate tilt as

Θf = (KHδr) cosψf + (KHδp) sinψf (5.42)

where KH is the Hiller input ratio of flybar cyclic pitch amplitude to swashplate tilt;
remark the flybar paddle with pitch Θf shown in Figure 5.16 is at azimuth station
ψf = 90◦. The 2π-periodic flybar pitch function (5.42) will cause the flybar to flap
with the approximate profile

βf (t, ψ) ≈ −a1f (t) cosψf + b1f (t) sinψf (5.43)

where the sign convention has been chosen identical to (5.30). The dynamics of
a1f and b1f will be analyzed in Section 5.3.2.1; remark that (5.43) has no coning
component because the flybar is a teetering rotor. Using the Mixer arm shown
in Figure 5.16 the cyclic amplitudes A1, B1 of the main rotor pitch (5.22) Θ =
A0+A1 cosψ+B1 sinψ are controlled by a mix of swashplate tilt and flybar flapping
angles as

A1 = KBδr +KF b1f

B1 = KBδp +KFa1f
(5.44)

where KB is the Bell input ratio of main rotor cyclic pitch amplitude to swashplate
tilt, and KF is known as the flybar ratio4 of main rotor pitch to flybar flapping
angle. The three ratios above are functions of mechanical linkage setup.

The Bell and Hiller input ratios KB and KH can be measured as follows: tilt
the swashplate by moving the roll or pitch transmitter stick to one of its limits and

4This is standard terminology in RC helicopters. Typical flybar ratios range from .5 : 1 to 1 : 1;
this is further discussed at the end of Section 5.3.2.1
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hold it there. Using a pitch gauge measure max(Θ), min(Θ) as well as max(Θf ),
min(Θf ) over a complete 360◦ main rotor revolution; the input ratios are then given
by

KB =
max(Θ)−min(Θ)

2
, KH =

max(Θf )−min(Θf )

2

Remark this assumes the roll or pitch stick center position δ = 0 corresponds to
a perfectly level swashplate, and so it is important to zero out any trims on these
sticks for this procedure.

The flybar ratio KF is computed by tilting the flybar to a given angle βf with
respect to the horizontal and measuring the resulting main rotor blade pitch Θ using
a pitch gauge. The experimental setup is shown in Figure 5.17; the tilt angle βf is
measured using a digital inclinometer. We obtain a set of (βf ,Θ) pairs which are
plotted to obtain KF as the slope of least-squares linear fit to the data, also shown
in Figure 5.17. Computing the slope of the line we find KF = 0.66 i.e. a flybar ratio
of .66 : 1.
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Figure 5.17: Flybar ratio KF identification: experiment setup; blade pitch Θ versus
flybar tilt βf

5.3.2.1 Flybar Flapping Dynamics

A schematic of the flybar is shown in Figure 5.18. The flybar consists of a uniform
rod hinged at the center of the main rotor with two paddle airfoils attached to its
ends. The flybar is free to teeter about its pivot and its flapping angle βf is measured
upwards from the horizontal plane. The ijk frame is fixed to the flybar’s centre
of mass so the moment balance is governed by the standard Euler equation (5.10)
rather than its “extended” version (5.18) which was employed in Section 5.3.1.3. The
outer radius of the flybar is denoted Rf and the radial distance to each paddle’s
inner edge is εfRf where by construction 0 < εf < 1.

The flybar paddles are symmetric however they are tapered in shape, have a
sharp leading edge and their maximum thickness occurs at the midpoint xf/cf = 0.5.
The average paddle chord is cf = 50 mm and maximum thickness is tf = 4.4 mm
such that tf/cf = 0.09. The paddle is classified as the modified four-digit airfoil [8,
p. 117] NACA 0009-05, where the first four digits function as before, the fifth digit
indicates relative magnitude of the leading edge radius with 0 denoting a sharp edge
(a 6 denotes the standard curvature of NACA four-digit series airfoils), and the
sixth digit indicates the maximum thickness position with 5 indicating mid-chord.

170



i

j

k

u

v
w

p

q

Ω

Rf
εfRf

ψf

βf

Figure 5.18: Flybar Kinematics

This geometry is used in JavaFoil to compute the paddle lift curve slope af using
Reynolds number (5.20) with Vf = ΩRf .

Denoting the flybar’s angular velocity vector as [pf qf rf ]T , the dynamics of
βf are obtained from a moment balance about the j axis (5.11)

Jfyy q̇
f + pfrf (Jfxx − Jfzz) =Mf

where Mf is the net external moment about the j axis. The flybar is modeled
as a slender rod of mass mr and length 2Rf with point masses mp on each end
representing the paddles where by direct measurementmr = 0.043 kg, Rf = 0.306 m
and mp = 0.025 kg. Using the CM-fixed frame illustrated in Figure 5.18 we have
by [100, p. 713]

Jfxx ≈ 0

Jfyy =
1

12
mr(2R

2
f ) + 2mpR

2
f

Jfzz =
1

12
mr(2R

2
f ) + 2mpR

2
f = Jfyy

and thus Jfxx − Jfzz = −Jfyy := −Jf and the previous equation above becomes

Jf (q̇
f − pfrf ) =Mf (5.45)

The angular velocity components in (5.45) can be obtained by inspection of Fig-
ure 5.18:

pf = −p cosψf cos βf − q sinψf cos βf − Ω sin βf

qf = p sinψf − q cosψf + β̇f

rf = −p cosψf sin βf − q sinψf sin βf +Ωcos βf

which is exactly analogous to the main blade flapping analysis in Section 5.3.1.3 due
to ψf being measured from the same datum as ψ. We directly compute

q̇f = ṗ sinψf + pΩcosψf − q̇ cosψf + qΩ sinψf + β̈f

and substituting the above into (5.45) then using the small-angle approximations
cos βf ≈ 1, sin βf ≈ βf , β

2
f ≈ 0 as well as p2 ≈ 0, q2 ≈ 0, pq ≈ 0 due to p, q ≪ Ω we
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get

pfrf = −pΩcosψf − qΩ sinψf −Ω2βf ,

Jf (q̇
f − pfrf ) = Jf

(
β̈f + ṗ sinψf − q̇ cosψf + 2pΩcosψf + 2qΩ sinψf +Ω2βf

)

(5.46)

which is analogous to (5.26). The moment about the central hinge Mf in (5.45)
comes only from aerodynamic lift, due to the weight moment canceling itself out
on the two sides and the absence of a restoring spring term. The tangential and
perpendicular flow components UT , UP on the advancing paddle at distance l from
the central hinge are obtained by inspection of Figure 5.18 or by analogy from (5.27):

UaT = Ωl cos βf + u sinψf − v cosψf

UaP = (vi − w) cos βf + u sin βf cosψf + v sin βf sinψf + β̇f l + pl sinψf − ql cosψf

On the retreating paddle, ψrf = ψf + π hence sinψrf = − sinψf , cosψ
r
f = − cosψf

and βrf = −βf , β̇rf = −β̇f , β̈rf = −β̈f :

U rT = Ωl cos βf − u sinψf + v cosψf

U rP = (vi − w) cos βf + u sin βf cosψf + v sin βf sinψf − β̇f l − pl sinψf + ql cosψf

From (5.42) the advancing paddle’s pitch angle is the period function

Θf = (KHδr) cosψf + (KHδp) sinψf := Af cosψf +Bf sinψf

and it follows the retreating paddle has the pitch angle

Θr
f = −Af cosψf −Bf sinψf = −Θf

As in Section 5.3.1.3 the moment created by aerodynamic lift on the advancing
paddle is

Ma(ψf ) =

∫ Rf

εfRf

ldF⊥ =
ρafcf
2

∫ Rf

εfRf

l
[
Θf (U

a
T )

2 − UaTU
a
P

]
dl

The retreating paddle creates the moment

M r(ψf ) = −
∫ Rf

εfRf

ldF⊥,r = −ρafcf
2

∫ Rf

εfRf

l
[
−Θf (U

r
T )

2 − U rTU
r
P

]
dl

where the −1 factor is due to positive (upwards) lift on the retreating paddle creating
a negative contribution to Mf . The total aerodynamic lift moment Mf =Ma+M r

is then

Mf =
1

2
ρaf cf

∫ Rf

εfRf

l

{
(Af cosψf +Bf sinψf )

[
(UaT )

2 + (U rT )
2
]
−UaTU

a
P +U rTU

r
P

}
dl

which evaluates to

Mf =
1

4
ρaf cfR

2
f (1− ε2f )

{[
u2 + v2 + (1 + ε2f )(RfΩ)

2 − (u2 − v2) cos 2ψf

− 2uv sin 2ψf

]
(Af cosψf +Bf sinψf ) +

[
2v(vi − w) + q(1 + ε2f )R

2
fΩ
]
cosψf

+ 2uvβf cos 2ψf −
[
2u(vi − w) + p(1 + ε2f )R

2
fΩ
]
sinψf

− (u2 − v2)βf sin 2ψf − (1 + ε2f )R
2
fΩβ̇f

}
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and which is substituted into (5.45) along with (5.46) to yield

β̈f +

{
ρafcfR

4
f (1− ε4f )Ω

4Jf

}
β̇f +

{
Ω2 +

ρaf cfR
2
f (1− ε2f )

4Jf

[
(u2 − v2) sin 2ψf

− 2uv cos 2ψf

]}
βf = −ṗ sinψf + q̇ cosψf − 2pΩcosψf − 2qΩ sinψf

+
ρafcfR

2
f (1− ε2f )

4Jf

{[
u2 + v2 + (1 + ε2f )(RfΩ)

2 − (u2 − v2) cos 2ψf

− 2uv sin 2ψf

]
(Af cosψf +Bf sinψf ) +

[
2v(vi − w) + q(1 + ε2f )R

2
fΩ
]
cosψf

−
[
2u(vi − w) + p(1 + ε2f )R

2
fΩ
]
sinψf

}

(5.47)
The coefficient group ρaf cfR

4
f (1− ε4f )/Jf in (5.47) is similar to the Lock number γ

introduced in Section 5.3.1.3. Let Jf = 2Jβf where Jβf measures the mass moment
of inertia of one-half of the flybar about its flapping hinge5. The term R4

f (1− ε4f ) =

R4
f − (εfRf )

4 measures the length of the half-flybar’s lifting surface i.e. the width
of an individual paddle. We thus define the flybar Lock number

γf :=
ρaf cfR

4
f (1− ε4f )

Jβf

which is introduced into (5.47). The assumed flybar flapping profile (5.43) is differ-
entiated twice w.r.t. time giving

βf = −a1f cosψf + b1f sinψf

β̇f = (−ȧ1f + b1fΩ) cosψf + (a1fΩ+ ḃ1f ) sinψf

β̈f = (−ä1f + a1fΩ
2 + 2ḃ1fΩ) cosψf + (2ȧ1fΩ+ b̈1f − b1fΩ

2) sinψf

(5.48)

analogously to (5.31) and (5.32). Substituting the above into (5.47) and matching
coefficients of cosψf and sinψf gives a set of coupled second-order linear differential
equations for the flapping angles a1f and b1f . As in Section 5.3.1.3 we pre-simplify
by numerically computing γf = 0.93 using the identified values listed in Section 5.5.
Since γf < γ is very small, we are able to disregard the translational velocity effects
by setting u = v = 0 in (5.47) which simplifies to

β̈f +
γfΩ

8
β̇f +Ω2βf =− ṗ sinψf + q̇ cosψf − 2pΩcosψf − 2qΩ sinψf

+
γfΩ

2

8
(Af cosψf +Bf sinψf ) +

γfΩ

8
(q cosψf − p sinψf )

Substituting (5.48) into the above and matching coefficients of cosψf and sinψf

5This by analogy to Jβ in Section 5.3.1.3 which measures the mass moment of inertia of a single
blade about its flapping axis
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gives

−ä1f + a1fΩ
2 + 2ḃ1fΩ+

γfΩ

8
(−ȧ1f + b1fΩ)− Ω2a1f

= q̇ − 2pΩ+
γfΩ

2

8
Af +

γfΩ

8
q

2ȧ1fΩ+ b̈1f − b1fΩ
2 +

γfΩ

8
(a1fΩ+ ḃ1f ) + Ω2b1f

= −ṗ− 2qΩ+
γfΩ

2

8
Bf −

γfΩ

8
p

(5.49)
The above is a set of coupled linear differential equations which govern the flybar
flapping dynamics. They are rewritten in modal form ẍ+Dẋ+Kx = F as

[
ä1f
b̈1f

]
+

[
γfΩ
8 −2Ω

2Ω
γfΩ
8

][
ȧ1f
ḃ1f

]
+

[
0 −γfΩ

2

8
γfΩ

2

8 0

][
a1f
b1f

]
=

[
−q̇ + 2pΩ− γfΩ

8 q − γfΩ
2

8 Af

−ṗ− 2qΩ − γfΩ
8 p+

γfΩ
2

8 Bf

]

(5.50)
As in Section 5.3.1.3 we perform a complex modal analysis. The homogenous version
of (5.50) is written in state-space form ẏ = Ay where y = [y1 y2]

T := [x ẋ]T such
that [

ẏ1
ẏ2

]
=

[
0 I

−K −D

] [
y1
y2

]

The eigenvalues of A are two complex-conjugate pairs λ1 and λ2 which govern the
natural frequencies and damping ratios of each vibration mode. By direct compu-
tation we find

λ1 = −γfΩ
16

± jΩ

16

√
512− γ2f + 32

√
256 − γ2f

λ2 = −γfΩ
16

± jΩ

16

√
512− γ2f − 32

√
256 − γ2f

and the natural frequency and damping ratio of each mode are given by

ωi =
√

Re{λi}2 + Im{λi}2 and ζi =
−Re{λi}√

Re{λi}2 + Im{λi}2

which gives

ω1 = Ω

(
2 +

√
4−

(γf
8

)2
)1/2

ζ1 =
γfΩ

16ω1

ω2 = Ω

(
2−

√
4−

(γf
8

)2
)1/2

ζ2 =
γfΩ

16ω2

The eigenvalues γ1 and γ2 represent the advancing and regressing flybar flapping
modes, respectively. By inspection of the last result above, for a “small” γf we have
4 ≫ (γf/8)

2 and thus ω1 ≈ 2Ω, such that the advancing flybar flapping mode is
much faster than the rigid-body motions and can be neglected. By contrast the
regressing mode frequency ω2 will be very low.

Using the numerical values γf = 0.67 and Ω = 55π rad/s from Section 5.5 we
compute

ω1 = 345.50 rad/s = 54.99 Hz ζ1 = 0.0208

ω2 = 7.18 rad/s = 1.14 Hz ζ2 = 0.9998
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which confirms the regressing flybar flapping mode’s natural frequency is sufficiently
low, or equivalently the 5% step input settling time ts = 3/(ζ2ω2) = 0.418 s is
sufficiently long to noticeably impact the helicopter’s dynamics. The regressing
mode’s near-critical damping ratio means it can be approximated as a first-order
system by setting ä1f = b̈1f = 0 in (5.49) as well as setting ṗ = q̇ = 0 exactly as in
Section 5.3.1.3. The regressing flapping dynamics of the flybar become

2ḃ1fΩ+
γfΩ

8
(−ȧ1f + b1fΩ) = −2pΩ+

γfΩ
2

8
Af +

γfΩ

8
q

2ȧ1fΩ+
γfΩ

8
(a1fΩ+ ḃ1f ) = −2qΩ+

γfΩ
2

8
Bf −

γfΩ

8
p

We assume the control links from the swashplate to the flybar are phased to decouple
the flapping response, i.e. the roll cyclic Af = KHδr affects only the lateral flapping
b1f and the pitch cyclic Bf = KHδp only the longitudinal flapping a1f . This is
done by dropping respectively ȧ1f and ḃ1f from the first and second equation above.
Normalizing the coefficients of Af and Bf gives

16

γfΩ
ȧ1f + a1f = − 16

γfΩ
q − 1

Ω
p+Bf

16

γfΩ
ḃ1f + b1f = − 16

γfΩ
p+

1

Ω
q +Af

where Bf = KHδp and Af = KHδr are inputs from the swashplate. Finally, eval-
uating the coefficients 16/(γfΩ) = 0.1392 and (1/Ω) = 0.0058 we see the on-axis
effect of q on a1f and p on b1f dominate the off-axis effects and the above can be
simplified to

16

γfΩ
ȧ1f + a1f = − 16

γfΩ
q +KHδp

16

γfΩ
ḃ1f + b1f = − 16

γfΩ
p+KHδr

(5.51)

where 16/(γfΩ) := τf is the time constant of the simplified flybar flapping dynam-
ics (5.51).

As discussed in Section 5.3.2 the flybar flapping angles enter the main rotor
cyclic pitch amplitudes A1, B1 as (5.44)

A1 = KBδr +KF b1f

B1 = KBδp +KFa1f

and A1 and B1 in turn map to main rotor flapping angles by (5.36)

b1 = A1

a1 = B1

This last relationship was obtained in Section 5.3.1.4 by neglecting the main rotor
flapping dynamics due to their fast time constant. The flybar performs two func-
tions: first, it slows down the main rotor flapping response to swashplate tilt since
δp → a1f → B1 → a1 and δr → b1f → A1 → b1 provide a partial rate limit on a1 and
b1 due to the first-order dynamics of a1f and b1f . Second, the flybar dynamics (5.51)
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contain negative feedback terms −τfq and −τfp which provide derivative action in
the pitch and roll channels of the helicopter which damps the response to external
disturbances such as wind gusts.

The flybar can be summarized in control diagram form as shown in Figure 5.19
for the roll channel; the pitch channel has the same diagram with (δr, b1f , A1, b1, p)
replaced by (δp, a1f , B1, a1, q). The Roll Dynamics block represents ṗ = qr(Jyy −
Jzz)/Jxx + L/Jxx from (5.11) where L ≈ Lhmr = (hmrT

h
mr + kβ)b1, i.e. we use

the roll moment expression in hover developed in Section 5.3.1.5 instead of L =
hmrYmr + Lmr due to the complexity of the Ymr and Lmr expressions; the key
point of this block is that a b1 > 0 rotor disc tilt provides a p > 0 roll response.
Increasing the flybar ratio KF increases the derivative feedback action, making the
helicopter more resistant to disturbances such as wind gusts but also slowing down
input step responses; indeed higher flybar ratios are better for beginning pilots
as well as helicopter competitions which demand stable hover and resistance to
wind conditions, while lower flybar ratios are better for 3D flying which require
very nimble handling of the helicopter. The derivative feedback action can also be
boosted by increasing τf = 16/(γfΩ) which by the definition of γf is equivalent
to reducing af , cf , Rf and augmenting εf , Jβf . This is why using heavier, shorter
paddles makes the helicopter more stable, while using longer flybars with lightweight,
wide paddles (whose larger aspect ratio (Rf − εfRf )/c provides higher a values) is
preferred for 3D flight.

KH KF 1

τf

KB

Roll

Dynamics
τf ḃ1f + b1f = u

+

−

+
+δr b1f A1 b1

p

Figure 5.19: Rotor head system diagram — roll channel

5.3.3 Tail Rotor

The tail rotor uses a fixed-pitch design, similar to an airplane propeller. We use
the tail blade pitch Θt as the input term as in Section 5.3.1.5. Due to the fixed
pitch design the tail rotor does not exhibit flapping. The tail rotor is geared to
rotate counter-clockwise as viewed from the right side of the helicopter at the rate
Ωt = KtΩ where Kt > 1 is the tail to main rotor gearing ratio. We define Θt > 0
as the pitch which creates tail rotor thrust Ttr in the positive yb direction and take
the tail blade azimuth position ψt = 0 as the blade’s rear-most position. This is
illustrated in Figure 5.20. The tail rotor blades are symmetric with ct = 32.5 mm
and maximum thickness tt = 3.9 mm at xt = 10 mm from the leading edge, giving
tt/ct = 0.12, xt/ct = 0.31 which classifies them as NACA 0012 airfoils. We obtain
at, CD,t as in Section 5.3.1.2 using Vt = ΩtRt (where Rt is the tail rotor disc radius)
to compute the Reynolds number (5.20).
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Ωt

ψt

dtr

htr

Qtr

u

v
w

p

qr

dtr

vi,t

Ttr

Figure 5.20: Helicopter tail: Side view (left), Overhead view (right)

By inspection of Figure 5.20, the tail blade airfoil section at distance l from the
rotor shaft is subject to tangential and perpendicular flow components

UT = Ωtl + u sinψt + w cosψt + q(dtr + l cosψt)

UP = vi,t + v + p(htr − l sinψt)− r(dtr + l cosψt)

where dtr and htr are the longitudinal distance and height of the tail rotor axis
w.r.t. the helicopter’s CM. The tail rotor induced velocity vi,t is assumed constant
across the rotor disc as in Section 5.3.1. Using (5.21) in Section 5.3.1.2 the infinites-
imal force components perpendicular and parallel to the vertical plane are

dF⊥ =
1

2
ρatct

(
ΘtU

2
T − UTUP

)
dl

dF ‖ =
1

2
ρatct

(
ΘUTUP − U2

P

)
dl +

1

2
ρctCD,tU

2
Tdl

The tail rotor thrust and counter-torque are evaluated from

Ttr =
Nbt

2π

∫ 2π

0

∫ Rt

0
dF⊥ dψt

Qtr =
Nbt

2π

∫ 2π

0

∫ Rt

0
l dF ‖ dψt

where Nbt = 2 is the number of tail rotor blades. The in-plane forces Xtr, Ytr and
moments Ltr, Mtr are neglected as small, which is justified due to the size of the
tail rotor as compared to the main one. The Ttr expression evaluates to

Ttr =
ρatctRtNbt

24

{[
4(RtΩt)

2 + 6(u2 + w2) + 6qRt(w + 2dtrΩt)

+ 2q2(R2
t + 6d2tr)

]
Θt + 2qrR2

t + 3Rt(pu+ rw)

− 6(RtΩt + 2qdtr)(v + vi,t + phtr − rdtr)

}
(5.52)

The tail rotor induced velocity vi,t is computed as in Section 5.3.1.1. We assume the
main rotor’s downwash is sufficiently far to not affect the tail rotor inflow due to the
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Bergen Industrial Twin’s extended tail boom (c.f. Figure 5.23 in Section 5.3.7.1).
Note that for a smaller helicopter where the rotor disc overhangs the tail this as-
sumption would not hold, e.g. [59, p. 49]. Since the tail rotor disc is vertical, the
general flight inflow equation (5.19) becomes

vi,t =
Ttr

2ρπR2
t

√
u2 + (w + qdtr)2 + (v + phtr − rdtr + vi,t)2

which gives a transcendental equation for Ttr when substituted into (5.52), just as
for the main rotor in Section 5.3.1.5. At hover, the tail thrust (5.52) reduces to

T htr =
ρatctRtNbt

12

{
2(RtΩt)

2Θt − 3RtΩtv
h
i,t

}
(5.53)

where

vhi,t =

√
T htr

2ρπR2
t

(5.54)

We obtain an explicit T htr = T htr(Θt) expression by substituting (5.54) into (5.53)
and solving a quadratic equation as in Section 5.3.1.5. The substitution gives

T htr =
ρatctR

3
tNbtΩ

2
t

6
Θt −

actRtNbtΩt
√
ρ

4
√
2π

√
T htr := CTtrΘt −DT

tr

√
T htr

with CTtr, D
T
tr positive constants. The solution to the above is exactly analogous

to (5.39)

T htr = CTtrΘt +
(DT

tr)
2

2
−DT

tr

√
CTtrΘt +

(DT
tr)

2

4
(5.55)

where we have chosen the solution for which Θt = 0 =⇒ T htr = 0. A simpler version
of (5.55) can be obtained by employing T htr = Qhmr/dtr ≈ CQmr(mg)3/2 + DQ

mr in
(5.53) which gives

T htr ≈ CTtrΘt −
(
DT
tr

√
CQmr(mg)3/2 +DQ

mr

)

but which requires ẇ = ṙ = 0, i.e. zero heave acceleration and zero yaw angular
acceleration, making it much worse than (5.55).

Returning above, the Qtr expression is

Qtr = −ρatctR
2
tNbt

48

{[
3qrR2

t + 4Rt(pu+ rw)− 4(2RtΩt + 3qdtr)

(v + vi,t + phtr − rdtr)
]
Θt + 3(p2 + r2)R2

t + 12(v + vi,t + phtr − rdtr)
2

}

+
ρctR

2
tCD,tNbt

48

{
6(RtΩt)

2 + 6(u2 + w2) + 8qRt(w + 2dtrΩ) + 3q2(R2
t + 4d2tr)

}
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and at hover this simplifies to

Qhtr = −ρatctR
2
tNbt

48

{[
− 4(2RtΩt)v

h
i,t

]
Θt + 12(vhi,t)

2

}
+
ρctR

2
tCD,tNbt

48

{
6(RtΩt)

2

}

=
ρatctR

2
tNbtv

h
i,t

24RtΩt

{
4(RtΩt)

2Θt − 6RtΩtv
h
i,t

}
+
ρctR

4
tΩ

2
tCD,tNbt

8

=
T htrRt
RtΩt

√
T htr

2ρπR2
t

+
ρctR

4
tΩ

2
tCD,tNbt

8
:= CQtr

(
T htr

)3/2
+DQ

tr (5.56)

where by inspection CQtr and DQ
tr are constants.

5.3.3.1 Tail Rotor Contributions

The tail rotor’s thrust and counter-torque Ttr and Qtr generate the following force
and moment components along the helicopter’s body-fixed axes:

Xtr = 0

Ytr = Ttr

Ztr = 0

Ltr = htrTtr

Mtr = −Qtr
Ntr = −dtrTtr

where htr and dtr are the height and longitudinal distance, respectively, of the tail
rotor hub w.r.t. the center of mass as illustrated in Figure 5.20; as in Section 5.3.1.6
these are directly measured c.f. Figure 5.3 in Section 5.2. In hover this becomes

Xh
tr = 0

Y h
tr = T htr

Zhtr = 0

Lhtr = htrT
h
tr

Mh
tr = −CQtr

(
T htr

)3/2
−DQ

tr

Nh
tr = −dtrT htr

where by (5.55)

T htr = CTtrΘt +
(DT

tr)
2

2
−DT

tr

√
CTtrΘt +

(DT
tr)

2

4

and where

CTtr :=
ρatctR

3
tNbt(KtΩ)

2

6
DT
tr :=

actRtNbtKtΩ
√
ρ

4
√
2π

CQtr :=
1

RtKtΩ
√
2ρπ

DQ
tr :=

ρctR
4
tNbtCD,t(KtΩ)

2

8
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5.3.3.2 Tail Gyro

As seen in Section 5.3.1.5 the main rotor’s counter-torque on the helicopter body

Qmr is a function of thrust Tmr, e.g. Q
h
mr = CQmr

(
T hmr

)3/2
+DQ

mr in hover, such that
changes in collective input require adjustments to the tail input in order to cancel
the counter-torque. On full-sized helicopters this is done manually by the pilot by
adjusting the tail pedal inputs [121, p. 43]. RC helicopters such as the Bergen
Industrial Twin have relatively small Jzz mass moment of inertias and high thrust-
to-weight ratios, which make manual compensation of counter-torque too taxing for
the pilot. For this reason tail rotor control is augmented with an electronic gyro
which provides closed-loop control of the tail input using the sensed yaw rate r.

The ANCL helicopter employs the popular Futaba GY401 tail gyro [58] which
provides two modes of operation: a Normal mode which stabilizes the sensed yaw
rate r using the tail pitch servo and thus provides damping in the yaw channel; and a
Heading Hold6 mode which provides tracking control of r using tail stick deflections
for rref and a PI control action on the error signal. For zero tail stick deflection,
Heading Hold mode can thus maintain a steady heading angle ψ in the presence
of exogenous inputs (changes in Qmr, wind gusts), while Normal mode will remove
yaw velocity r but exhibit a steady-state error in ψ. The GY401 manual [58] calls
this the weathervane effect, where a helicopter hovering in wind under Normal mode
will eventually align itself along the wind vector due to its tail stabilizers, whereas
in the same situation Heading Hold mode is able to maintain a prescribed heading
angle.

The GY401 unit uses two inputs from the on-board receiver, the tail channel and
gyro sensitivity channel, and one output to the tail servo which directly controls the
blade pitch Θt used in Section 5.3.3. In Normal mode, the tail input is added to a
gain on the sensed r and passed directly to the tail servo, whereas in Heading Hold
mode this input is used as rref where rref = 0 is taken as the tail input level at
initialization. The gyro sensitivity input is interpreted as follows: for a “neutral”
signal from the receiver (PWM with TON = 1.5 ms, c.f. Section 5.3.5) the gyro gain
is set to zero. For PWM signals above neutral i.e. 1.5 ms < TON < 2.0 ms the
gyro operates in Heading Hold mode with the P and I gain values increasing from
0 to 100% of their maximum values. Conversely for signals below neutral the gyro
operates in Normal mode with 1.5 ms > TON > 1.0 ms mapping to a P gain from
0 to 100% of its maximum value. In this way the GY401 can be switched in-flight
between Normal and Heading Hold modes, and the feedback gains adjusted to fine-
tune the overall performance. Heading Hold mode is useful for hovering and forward
flight while Normal mode is better for turns as well as certain 3D maneuvers.

The exact relationship between gyro sensitivity input and gain values in Normal
and Heading Hold modes is not available from Futaba and thus requires experimental
identification. The GY401 contains a “Control Delay” trimmer whose setting is
adjustable from 0 to 100%. The exact function of this feature is not explained
although we speculate it acts as a rate limit on the output control signal to the tail
servo; this must be confirmed in experiment and the exact relationship between this
setting and resulting rate limit needs to be identified. Heading Hold mode appears
to implement an integrator reset function, although this is not stated in the manual,

6Futaba calls this the Angular Vector Control System (AVCS) mode
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and the reset error threshold requires experimental identification as well.
Based on the above paragraph we can model the tail gyro unit in one of the

following ways, listed in order of increasing difficulty:

1. Use Heading Hold mode and assume the input sensitivity is properly tuned
such that the yaw channel is stabilized and r = rref , i.e. discard the ṙ dynam-
ics.

2. Turn off the tail gyro by setting the gyro sensitivity input to neutral (TON =
1.5 ms). The ṙ dynamics remain and Qmr, Ttr terms are computed as in
Sections 5.3.1.5 and 5.3.3, respectively.

3. Include an identified model of the tail gyro as in e.g. [22].

Define δt ∈ [−1, 1] as the normalized tail input where δt = −1 denotes tail stick
fully left and δt = 1 fully right. The map from δt to the helicopter model has three
possible forms corresponding to the above:

1. r = rref = κtδt where κt is identified in flight by commanding a maximum tail
stick deflection and measuring the resulting yaw rate rmax using the avionics
box, such that κt = |rmax|.

2. Θt = Ctδt +Dt where Ct = [Θt(δt = 1)−Θt(δt = −1)]/2, Dt = Θt(δt = 0) are
measured using a pitch gauge7. We have Ct,Dt < 0 because a positive yaw
turn (δt > 0) requires Θt < 0 by sign convention of Section 5.3.3.

3. rref = κtδt as in 1, then compute er = rref − r and Θt = κP er+κI
∫
er where

κP , κI are the identified gains of the tail gyro; also include the “control delay”
and integrator reset into the calculation.

For option 1, Ttr still appears in the Ytr and Ltr terms summarized in Section 5.3.3.1
and must be computed from

Ttr = −Qmrdtr
where Qmr is given in Section 5.3.1.5 and Ttr < 0 compensates for Qmr > 0 by sign
convention in Section 5.3.3.

5.3.4 Rotor Speed and Engine

The dynamics of Ω are governed by a moment balance on the main rotor shaft,

Ω̇ = ṙ +
1

Jmr
(KeQe −Qmr −KtQtr),

where Jmr is the rotational inertia of the main blades and rotor head, Ke > 1 is the
engine to main rotor gearing ratio, Qe is the torque generated by the engine, Qmr,
Qtr are the counter-torques from the main and tail rotors available respectively from
Sections 5.3.1.5 and 5.3.3, and Kt > 1 is the tail to main rotor gearing ratio. The
engine input is a fuel throttle controlled by a dedicated servo. Let δe ∈ [0, 1] denote
the normalized fuel throttle input with δe = 0 and δe = 1 denoting fully closed and

7The Θt offset term Dt models the design of the tail servo linkage.
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fully open fuel inputs, respectively. Following [59, p. 44] we model the engine output
power Pe and subsequently output torque as

Pe = Pmaxe δe =⇒ Qe =
Pe
KeΩ

where Pmaxe is the engine’s maximum output power. The δe to Qe model is as-
sumed instantaneous since the time constants associated to fuel flow, air intake and
combustion are much faster than the vehicle’s dynamics [59, p. 44].

Internal combustion engines operate most efficiently in a narrow RPM band,
hence maintaining a constant Ω is desirable. This is accomplished using either
an engine governor, which maintains a target Ω by controlling δe using a PI con-
trol structure, or through a throttle-pitch curve, a nonlinear map from δc to δe
programmed on the RC transmitter and tuned by the pilot. The current ANCL
helicopter uses the latter solution, with two different versions of the curve used
for no-payload (“stock”) and full-payload flights. For illustration purposes the two
curves are plotted in Figure 5.21; the values come from a lookup table, which is
either built from servo inputs logged by the on-board avionics box or downloaded
directly from the transmitter’s flash memory card.
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Figure 5.21: Throttle-pitch curves: Stock (left), Full-payload (right)

Based on the above discussion, we will ignore rotor speed dynamics and take Ω
as constant, assuming a well-tuned curve or by physically adding a governor to the
helicopter. The dynamics of Ω are important in autorotations [4]; in this case, the
engine and tail rotors are disengaged through a centrifugal clutch, such that Ω̇ is a
function of Qmr only.

5.3.5 Servo Commands

The swashplate normalized vertical position δc and tilt angles δr, δp introduced
in Section 5.3.2 are physically controlled by the collective, roll and pitch servos
through a set of mechanical linkages. Similarly the tail rotor pitch Θt in Section 5.3.3
and the fuel throttle in Section 5.3.4 are controlled by their corresponding servos.
The servos themselves are controlled by PWM signals coming from either the on-
board Futaba R149DP radio receiver or generated by the avionics’s Measurement
Computing CTR10HD card, except for the tail servo which is controlled by PWM
signals generated by the tail gyro unit as discussed in Section 5.3.3.2.
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The servo reacts by rotating an output wheel, where the output rotation is
mechanically limited to a [−45◦, 45◦] range where 0 is the servo’s neutral position.
The input PWM signal to the servo is a square wave with period TPWM = 1/70 s ≈
14.3 ms and pulse width of TON where pulse widths of TON = 1.0 ms, TON = 1.5 ms
and TON = 2.0 ms command output rotations of −45◦, 0 and 45◦, respectively [75,
p. 11]. The same signal type is used for the inputs to the tail gyro discussed in
Section 5.3.3.2 where the above pulse widths are interpreted as “min”, “neutral”
and “max” signals, respectively.

The PWM duty cycle ∆ is defined as

∆ =
TON

TPWM

such that for TPWM = 1/70 s we have ∆ = 70TON and 0.070 ≤ ∆ ≤ 0.140 for the
above servo logic. The duty cycle ∆ is the numerical value either logged or output
by the avionics box via its CTR10HD card. For instance generating a “neutral”
signal on the gyro sensitivity channel (c.f. Section 5.3.3.2) corresponds to setting
∆ = 0.105 on the appropriate CTR10HD PWM output channel.

Since the servo output rotations are converted to linear motion by a set of me-
chanical linkages, the full [−45◦, 45◦] output range is typically not used, and in fact
the extreme ranges may cause jamming or breaking of the linkages. For this reason
the normalized system inputs δ are used, which respect the servo limits programmed
by the pilot into the transmitter unit. We then need to identify the mapping from
δ to ∆, such that the avionics box can mimic the signal limits programmed into the
transmitter.

The identification process is made using the avionics box’s receiver logging func-
tionality. For collective, roll, pitch and tail inputs we propose the linear maps

∆c = mcδc + bc

∆r = mrδr + br

∆p = mpδp + bp

∆t = mtδt + bt

(5.57)

where
ms = ∆δs=1 −∆δs=0

bs = ∆δs=0

}
s = {c, r, p, t}

The identified values of the m and b parameters in (5.57) are listed in Section 5.5.
The duty cycles were logged using the “Bergen-02” transmitter programming em-
ployed for full-payload flight, c.f. Section 5.3.4; sample plots for the collective and
roll channels are shown in Figure 5.22 where the corresponding pilot sticks are swept
through their full range of motion. Observe that the collective duty uses a larger
portion of its maximum 0.070 ≤ ∆c ≤ 0.140 range than does ∆r. As expected the
roll stick neutral position δr = 0 provides a duty of ∆r ≈ 0.105 corresponding to
neutral servo output. We identify mc < 0 and mr < 0 from the plots due to the
mechanical linkage setup between servo output wheel and swashplate.

The ∆e duty cycle input to the engine throttle servo can be stored as a look-
up table as discussed in Section 5.3.4, and is not required if an engine governor is
installed. Finally ∆g, the duty cycle input to the gyro sensitivity channel is typically
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Figure 5.22: Duty Cycles ∆c, ∆r for collective and roll stick sweeps

set to ∆g = 0.105 in order to disable the tail gyro for autonomous control purposes,
as discussed in Section 5.3.3.2. Remark the maps (5.57) do not apply to a CCPM
(Cyclic/Collective Pitch Mixing) setup where the collective, roll and pitch pilot stick
each control more than one servo simultaneously, however this is a moot point since
the Bergen Industrial Twin does not employ a CCPM setup.

The servos do not move instantaneously. The ANCL helicopter employs JR-
DS8311 digital servos. A comprehensive identification study [73] proposes to model
these as a combination of a rate limit of 274◦/s = 4.782 rad/s together with a
PT4-Block transfer function

G(s) =
1

(1 + 0.0093s)4

where 0.0093 s is the identified time constant when the system is inside its rate
limits. Since the servo time constant is on the order of the main rotor regressing
flapping time constant calculated in Section 5.3.1.4, and the latter dynamics were
approximated as being instantaneous, the servo dynamics can be neglected as well.
By observation of a human pilot the stick movements required for hover and smooth
flight are small in amplitude and gradual, meaning the servo rate limits are also a
negligible effect for our system.

5.3.6 Fuselage Drag

The fuselage generates a drag force on the helicopter due to velocity drag plus
deflection of the downwash from the main rotor. As in Section 5.3.1.2 the drag force
FD on a three-dimensional object in airflow is

FD =
1

2
ρU2CDA

where ρ is the air density, U is the magnitude of airflow velocity, A is the cross-
sectional area exposed to the flow, and CD is the coefficient of drag, which is a
function of the object’s geometry but can be assumed constant with U for subsonic
flow. The typical order of magnitude of the drag coefficient for non-streamlined
bodies is CD ≈ 1 as compared with CD ≈ 0.01 for blade airfoils.

In forward or sideways flight, the main rotor downwash is deflected by the fuse-
lage, creating a drag force along the xb and yb axes additional to the velocity-induced
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drag force. To model this effect we adapt the drag model from [59, p. 47]:

U =
√
u2 + v2 + (w − vi)2

Xfus = −1

2
ρAxCD,fus u|U |

Yfus = −1

2
ρAyCD,fus v|U |

Zfus = −1

2
ρAzCD,fus (w − vi)|U |

where Ax, Ay, Az are the cross-sectional areas of the helicopter normal to the body-
fixed axes and CD,fus is the (constant) coefficient of drag. We model the helicopter
as a box with vertices parallel to the body-fixed axes and enclosing the helicopter
body forward of the tail boom, for which CD,fus = 1.05 [104, p. 612] and Ax, Ay and
Az are the measured areas of the box faces. We neglect the generation of moments
by the fuselage since its centre of pressure is close to the CM of the helicopter.

In hover with u = v = w = 0 we have Uh = vhi and Zhfus = (1/2)ρAzCD,fus (v
h
i )

2

where by (5.38) vhi =
√
T hmr/(2ρπR

2). Substituting the latter into the former and
using the parameters in Section 5.5 we compute

Zhfus =

(
AzCD,fus
4πR2

)
T hmr = 0.019T hmr

i.e. Zhfus ≪ T hmr and thus fuselage drag can be omitted from the hover model.

5.3.7 Tail Stabilizers

Horizontal and vertical stabilizer fins mounted on the tail of the helicopter increase
forward flight stability by providing restoring moments in the pitch and yaw axes,
respectively. For aerodynamic analysis the stabilizers are modeled as thin plates
whose surface areas Ahs and Avs can be directly measured.

Just like a symmetric airfoil, a thin plate in axial flow generates a lift force Lp
proportional to its angle of attack α [13, p. 328] such that (c.f. Section 5.3.1.2)

Lp =
1

2
ρU2apαAp,

where U2 = U2
T + U2

P is the (squared) flow velocity, Ap is the surface area of the
plate and ap is the slope of the lift curve, where for a thin airfoil or plate this value
can be computed analytically [13, Sec. 4.7] to be ap = 2π. Based on experimental
testing of thin plates in subsonic flow [106, p. 76], maximum lift is achieved at
approximately α ≈ 9◦ then gradually decreases until stall at α ≈ 15◦ although the
change of slope of CL versus α is gentle around CL,max. Unlike the main rotor
blades in Section 5.3.1.2 where UT ≫ UP essentially guarantees the blades remain
in the pre-stall region, tail fin stall is common and must be modeled [65, p. 17]. We
proceed as follows: α = arctan(UP /UT ) ≈ UP /UT in the pre-stall region and lift
force is

Lp =
1

2
ρ(U2

T + U2
P )ap

UP
UT

Ap =
1

2
ρAp

(
apUTUP + U2

Pap
UP
UT

)
.
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The UT denominator term would create numerical issues in low-speed forward flight.
We revert to UP /UT = α and thus apUP /UT = CL,p, the coefficient of lift of a thin
plate. Based on experimental data for a thin plate in subsonic flow [106, p. 79]
CL,p ≈ 1 for 5◦ ≤ α ≤ 15◦, while for α < 5◦ we have UP ≪ 1 =⇒ U2

P ≈ 0 which
cancels out the term using the (now incorrect) CL,p ≈ 1 assumption8. We therefore
approximate pre-stall tail stabilizer fin lift as

Lp ≈
1

2
ρAp

(
apUTUP + U2

P

)
(5.58)

which agrees with [59, p. 47] where it is provided without explanation. Post-stall lift
is calculated using the Bernoulli Equation which holds since the fluid acts incom-
pressible (Mach number < 0.3). The dynamic pressure at each tail fin is (1/2)ρU2

and so the maximum lift force is

|Lmaxp | = 1

2
ρ(U2

T + U2
P )Ap (5.59)

The tail stabilizer lift force Lp is calculated using (5.58) and saturated to (5.59) if
|Lp| > |Lmaxp | as suggested by [65, p. 21] and [59, p. 48]. We neglect drag contribu-
tions as being accounted for by the fuselage model in Section 5.3.6.

5.3.7.1 Tail Stabilizer Force and Moment Contributions

As shown in Figure 5.23, the horizontal stabilizer is exposed to the main rotor inflow
velocity vi while the vertical is exposed to vi,t. Denote the longitudinal distance and
height of each stabilizer’s geometric centre w.r.t. the CM as (dhs, hhs) and (dvs, hvs),
respectively, which are measured directly c.f. Figure 5.3 in Section 5.2. The surface
areas of the stabilizers are denoted Ahs, Avs and were calculated by removing the
fins, tracing their shapes on paper and manually computing the surface area. The
numerical values are listed in Section 5.5.

Figure 5.23: Tail zoom-in; note main blades overhang horizontal stabilizer

Using Figure 5.20 in Section 5.3.3 with (dtr, htr) 7→ (dhs, hhs), the horizontal
stabilizer is exposed to tangential and perpendicular flow components

UhsT =
√
u2 + v2 + (p hhs)2 + (r dhs)2

UhsP = vi − w − q dhs

8Remark UT ≫ UP would invalidate this argument, however this is a moot point since for the
tail stabilizers UT ≈ UP from an order-of-magnitude point of view.
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which by (5.58) give the vertical force

Fhs =
1

2
ρAhs

(
apU

hs
P |UhsT |+ UhsP |UhsP |

)

with Fhs > 0 denoting a downwards force as shown in Figure 5.1. The force and
moment contribution to the rigid-body dynamics (5.11) is

Xhs = 0

Yhs = 0

Zhs = Fhs

Lhs = 0

Mhs = dhsFhs

Nhs = 0

In hover Uhs,hT = 0, Uhs,hP = vhi and so F hhs = (1/2)ρAhs(v
h
i )

2. From (5.38) vhi =√
T hmr/(2ρπR

2) and so

F hhs =
Ahs
4πR2

T hmr = 0.0015T hmr

where we used numerical parameters from Section 5.5; we see F hhs ≪ T hmr and can
be neglected.

Now using Figure 5.20 with (dtr, htr) 7→ (dvs, hvs) the vertical stabilizer is ex-
posed to the flow components

UvsT =
√
u2 +w2 + (dvsq)2

UvsP = v + vi,t + hvsp− dvsr

which by (5.58) give the horizontal force

Fvs =
1

2
ρAvs

(
apU

vs
P |UvsT |+ UvsP |UvsP |

)

and Fvs > 0 denotes a force in the −yb direction as shown in Figure 5.1. The
contribution of Fvs to (5.11) is

Xvs = 0

Yvs = −Fvs
Zvs = 0

Lvs = −hvsFvs
Mvs = 0

Nvs = dvsFvs

In hover Uvs,hT = 0 and Uvs,hP = vhi,t =⇒ F hvs = (1/2)ρAvsv
h
i,t|vhi,t|. Using (5.54)

vhi,t =
√
T htr/(2ρπR

2
t ) we have

F hvs =
Avs
4πR2

t

T htr = 0.048T htr

using the parameters in Section 5.5. Since F hvs is less than 5% of T htr we take F
h
vs ≈ 0,

although this approximation is weaker than F hhs ≈ 0 above.
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5.4 Dynamics Model Summary
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Figure 5.24: Topology of helicopter dynamics model

The general (non-hover) helicopter dynamics model is shown as a block diagram in
Figure 5.24. The inputs to the system are u = [δc δr δp δt]

T . We have

• Collective input δc ∈ [0, 1] where δc = 0 and δc = 1 are respectively collective
stick down, swashplate vertically down and collective stick up, swashplate
vertically up.

• Roll and pitch inputs δr, δp ∈ [−1, 1] with δr,p = 0 for centered sticks and
swashplate level in the roll and pitch axes, respectively. The endpoints δr,p =
−1 represent roll stick fully left, pitch stick fully up and maximal swashplate
tilt in negative roll, negative pitch axes directions, respectively. Conversely
δr,p = 1 represent roll stick fully right, pitch stick fully down and maximal
swashplate tilt along the positive roll and pitch axes.

• Tail input δt with δt = 0 representing centered tail stick and zero tail pitch
Θt, while δt = −1 and δt = 1 represent respectively full left and full right on
the tail stick, positive and negative yaw angular velocities r > 0, r < 0 and
Θt < 0 and Θt > 0 by sign convention in Section 5.3.3.

The δ inputs are converted to servo commands using (5.57). We take main rotor
speed Ω as constant as discussed in Section 5.3.4 and neglect servo dynamics based
on Section 5.3.5.
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5.4.1 Hover Model

The model is made up of the flybar dynamics (5.51)

τf ȧ1f + a1f = −τfq +KHδp

τf ḃ1f + b1f = −τfp+KHδr

with flybar time constant

τf :=
16

γfΩ
=

16Jβf
ρaf cfR

4
f (1− ε4f )Ω

(5.60)

The main rotor cyclic amplitudes (5.44)

A1 = KBδr +KF b1f

B1 = KBδp +KFa1f

The main rotor flapping angles (5.36)

a1 = B1

b1 = A1

The main rotor collective pitch amplitude (5.41)

A0 = Ccδc +Dc

The main rotor thrust and counter-torque (5.39), (5.40)

T hmr = CTmrA0 +
(DT

mr)
2

2
−DT

mr

√
CTmrA0 +

(DT
mr)

2

4

Qhmr = CQmr

(
T hmr

)3/2
+DQ

mr

with constants

CTmr =
ρacR3NbΩ

2

6
DT
mr =

acRNbΩ
√
ρ

4
√
2π

CQmr =
1

RΩ
√
2ρπ

DQ
mr =

ρcR4NbΩ
2CD

8

(5.61)

The tail rotor pitch with tail gyro turned off for control purposes (option 2 in
Section 5.3.3.2)

Θt = Ctδt +Dt

And the tail rotor thrust and counter-torque (5.55), (5.56)

T htr = CTtrΘt +
(DT

tr)
2

2
−DT

tr

√
CTtrΘt +

(DT
tr)

2

4

Qhtr = CQtr

(
T htr

)3/2
+DQ

tr
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with

CTtr =
ρatctR

3
tNbt(KtΩ)

2

6
DT
tr =

actRtNbtKtΩ
√
ρ

4
√
2π

CQtr =
1

RtKtΩ
√
2ρπ

DQ
tr =

ρctR
4
tNbtCD,t(KtΩ)

2

8

(5.62)

At hover the fuselage (Section 5.3.6) and tail stabilizers (Section 5.3.7) can be ne-
glected. The force and moment contributions to the helicopter dynamics come from
main rotor and tail rotor with components (c.f. Sections 5.3.1.6 and 5.3.3.1)

Xh = −T hmra1
Y h = T hmrb1 + T htr

Zh = −T hmr
Lh = hmrT

h
mrb1 + kβb1 + htrT

h
tr

Mh = hmrT
h
mra1 + kβa1 −Qhtr

Nh = −Qhmr − dtrT
h
tr

which enter the rigid-body dynamics (5.11) where cross-coupling terms are neglected
as small in hover,

u̇ = R31g +Xh/m

v̇ = R32g + Y h/m

ẇ = R33g + Zh/m

ṗ = Lh/Jxx

q̇ =Mh/Jyy

ṙ = Nh/Jzz

with rigid-body kinematics (5.12)

Ṙ = RS
(
[p q r]T

)

ṗn = R [u v w]T
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where pn = [pN pE pD]
T is the position vector in the navigation frame. The

above equations can be summarized in a single ẋ = f(x, u) expression as

T hmr := CTmr(Ccδc +Dc) +
(DT

mr)
2

2
−DT

mr

√
CTmr(Ccδc +Dc) +

(DT
mr)

2

4

T htr := CTtr(Ctδt +Dt) +
(DT

tr)
2

2
−DT

tr

√
CTtr(Ctδt +Dt) +

(DT
tr)

2

4

ȧ1f = − 1

τf
a1f − q +

KH

τf
δp

ḃ1f = − 1

τf
b1f − p+

KH

τf
δr

ṗ =
1

Jxx

(
(hmrT

h
mr + kβ)(KBδr +KF b1f ) + htrT

h
tr

)

q̇ =
1

Jyy

(
(hmrT

h
mr + kβ)(KBδp +KFa1f )− CQtr

(
T htr

)3/2
−DQ

tr

)

ṙ =
1

Jzz

(
−CQmr

(
T hmr

)3/2
−DQ

mr − dtrT
h
tr

)

Ṙ = RS
(
[p q r]T

)

u̇ = R31g +
1

m

(
−T hmr(KBδp +KFa1f )

)

v̇ = R32g +
1

m

(
T hmr(KBδr +KF b1f ) + T htr

)

ẇ = R33g +
1

m

(
−T hmr

)

ṗn = R [u v w]T

(5.63)

where the flybar time constant τf is provided in (5.60); the C
{T,Q}
mr ,D

{T,Q}
mr and

C
{T,Q}
tr ,D

{T,Q}
tr parameter groups are listed in (5.61) and (5.62), respectively. The

model parameters and their identified numerical values are summarized in Sec-
tion 5.5. Remark the hover dynamics (5.63) are linear except for the attitude
dynamics Ṙ = RS(ω). The flapping dynamics ȧ1f , ḃ1f and angular velocity dy-
namics ṗ, q̇ are interconnected, which models the coupled rotor/fuselage dynamics
characteristic of helicopter UAV’s [127, Chap. 15], [101, Chap. 5].

5.5 Identified Parameter Values

The various subsystem models given previously require a number of symbolic con-
stants as well as coefficient groups. The symbols, their identified values and physical
meaning are provided below, grouped chronologically by subsystem.

A set of identified values for a Bergen Industrial Twin UAV used by a differ-
ent research group are provided in [21, App. B]. The identification details are not
given and their helicopter is configured differently from ours, e.g. the larger R value
indicates longer main rotor blades, which affects other main rotor parameters such
as Jβ and a. Nevertheless, the numbers provided indicate our identified values are
correct from an order-of-magnitude point of view.

191



Rigid Body Model

Symbol Value Description

m 13.765 kg Total helicopter dry mass
Jxx 0.36 kgm2 Helicopter x-axis mass moment of inertia

Jyy 1.48 kgm2 Helicopter y-axis mass moment of inertia
Jzz 1.21 kgm2 Helicopter z-axis mass moment of inertia

g 9.81 m/s2 Acceleration due to gravity

Main Rotor

Symbol Value Description

ρ 1.225 kg/m3 Density of air
A 2.061 m2 MR disc area = πR2

R 0.810 m Radius of MR disc
kβ 122 Nm/rad MR blade restoring spring constant
Jβ 0.057 kgm2 MR blade mass moment of inertia about β axis
Mβ 0.105 kgm MR blade first mass moment = (1/2)(ρbR)R
ρb 0.321 kg/m Linear mass density of MR blade
Ω 55π rad/s MR angular rotation rate = 1650 RPM
a 6.6 Lift curve slope of MR blade
c 0.066 m MR blade chord length
CD 0.016 Coefficient of drag of MR blades
γ 4.03 Lock number of MR blade = ρacR4/Jβ
Nb 2 Number of blades in MR
hmr 0.32 m Height of MR hub above CM
Ke 90/13 Engine to main rotor gearing ratio

Rotor Head and Flybar

Symbol Value Description

Cc 0.23 rad Slope of A0 = Ccδc +Dc map
Dc −0.05 rad Offset of A0 = Ccδc +Dc map
KH 0.28 rad Hiller input ratio (Flybar cyclic pitch to δr or δp)
KB 0.09 rad Bell input ratio (MR cyclic pitch to δr or δp)
KF 0.66 Flybar ratio (MR cyclic pitch to a1f or b1f )
af 5 Lift curve slope of flybar paddle
cf 0.050 m Flybar paddle chord length
Rf 0.306 m Radius of flybar rotor disc
εf 0.712 Fractional location of paddle on flybar

Jf 0.006 kgm2 Flybar mass moment of inertia about βf axis
Jβf 0.003 kgm2 Half-flybar mass moment of inertia = Jf/2

γf 0.67 Lock number of flybar = ρafcfR
4
f (1− ε4f )/Jβf

τf 0.139 s Flybar flapping time constant = 16/(γfΩ)
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Tail Rotor and Tail Gyro

Symbol Value Description

Kt 70/15 Tail to main rotor gearing ratio
dtr 1.06 m Longitudinal distance of TR axis to CM
htr 0.12 m Height of TR axis above CM
at 6.4 Lift curve slope of TR blade
ct 0.0325 m TR blade chord length
CD,t 0.017 Coefficient of drag of TR blades
Rt 0.163 m Radius of TR disc
Nbt 2 Number of blades in TR
Ct −0.30 rad Slope of Θt = Ctδt +Dt map
Dt −0.07 rad Offset of Θt = Ctδt +Dt map

Fuselage

Symbol Value Description

Ax 0.125 m2 Fuselage area normal to x axis
Ay 0.3 m2 Fuselage area normal to y axis
Az 0.15 m2 Fuselage area normal to z axis
CD,fus 1.05 Fuselage coefficient of drag

Tail Stabilizers

Symbol Value Description

dhs 0.79 m Longitudinal distance of horizontal stabilizer to CM
hhs 0.14 m Height of horizontal stabilizer above CM
dvs 0.99 m Longitudinal distance of vertical stabilizer to CM
hvs 0.11 m Height of vertical stabilizer above CM
Ahs 0.0120 m2 Surface area of horizontal stabilizer
Avs 0.0161 m2 Surface area of vertical stabilizer
ap 6.3 Lift curve slope of thin plate (tail fins)

Servo Commands

Symbol Value Description

mc −0.064 Slope of ∆c = mcδc + bc map
bc 0.140 Offset of ∆c = mcδc + bc map
mr −0.028 Slope of ∆r = mrδr + br map
br 0.104 Offset of ∆r = mrδr + br map
mp 0.020 Slope of ∆p = mpδp + bp map
bp 0.103 Offset of ∆p = mpδp + bp map
mt −0.014 Slope of ∆t = mtδt + bt map
bt 0.105 Offset of ∆t = mtδt + bt map
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Chapter 6

Conclusions

6.1 Review of Results

The research goals listed in Section 1.1.1 have been successfully achieved. We fo-
cus on the results of the three research topics proposed in the Ph.D. Candidacy
Report [14] preceding this thesis, namely magnetometer integration into an Aided
INS, development of an invariant observer as an alternative to the EKF, and ob-
taining an identified model of the Bergen Industrial Twin helicopter UAV.

6.1.1 Magnetometer Integration

The novel magnetometer calibration technique in [54] was summarized in Section 2.9
including numerical values of parameters identified from engine-off and engine-on
tests of our vehicle. Its integration into the AHRS and Aided INS designs was ex-
plained in Section 3.2.2 as part of sensor signal and noise modeling. Finally its im-
portance to overall system performance was experimentally assessed in Section 3.4.2
for engine-off ground tests and in Section 3.4.3 for engine-on flight tests.

The experimental results have validated this technique and demonstrated an
improvement in performance over the conventional method known as hard-iron cal-
ibration. The deficiencies of the former GPS-only Aided INS design were explained
and resolved by the addition of the magnetometer. The importance of magne-
tometer calibration to the performance of an Aided INS is an important lesson for
any experimentally-validated work: consider [59, p. 21] who simply discarded mea-
surements from the on-board magnetometer to get better heading accuracy. The
same author pointed out [59, pp. 26–28] the inadequacy of this solution for non-
aggressive flight such as prolonged hover, as well as the necessity of calibration.
In [88, Sec. V-A] the authors suggest reducing the weighing of the magnetometer
w.r.t. the accelerometer due to magnetic field distortions created by the vehicle’s
motor. In flight experiments [88, Sec. VI] of a tail-sitter UAV, the magnetometer
readings are turned off completely and the yaw angle is not estimated.

6.1.2 Invariant Observers

The method of invariant observers was treated throughout Chapter 4. The theo-
retical foundations of the method were studied in-depth, including its relationship
to earlier work on symmetries in systems under state feedback, as well as the three
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types of symmetries (body-frame, ground-frame and combined) found in the AHRS
and Aided INS examples. Invariant observers were then constructed for each sym-
metry type in both examples, using the rotation matrix representation of the SO(3)
manifold instead of unit quaternions as done in previously published work. The
choice of rotation matrices over unit quaternions has profound implications for the
validity of global stability analysis of the resulting observers [78, 20, 38]; indeed
the nonlinear design for AHRS observer gains in Section 4.8 guaranteeing almost-
global asymptotic stability is only possible because the system is written in terms
of rotation matrices.

Of course a nonlinear design of observer gains is non-systematic and was not
found for the Aided INS case. Motivated by this fact we adapted the Invariant EKF
method [23, 29] to our examples, developing an approach which does not require
defining invariant noise terms and works for systems whose manifold M and sym-
metry group G are not necessarily the same, c.f. Section 4.9.1. The Invariant EKF
provides a fully systematic approach to observer gain selection, and we performed
the calculations for both the AHRS and Aided INS examples. The resulting nonlin-
ear observers were then successfully validated in simulation as well as experiment.
Comparing the nonlinear gain design versus the Invariant EKF for the AHRS, we
saw the former is able to perform as well or better than the linearization-based
Invariant EKF design, in addition to being dramatically less computationally ex-
pensive and amenable to global stability analysis. For this reason, a nonlinear design
for the invariant Aided INS observer is of great interest for future research in this
area. Early steps have recently been carried out in [31, 24].

6.1.3 Modeling and Identification

Chapter 5 contains a complete first-principles derivation of a nonlinear dynamics
model for the helicopter UAV and the experimental identification of its parameters.
As discussed in Section 1.1.1 such a model was required to bridge the gap between
the variety of nonlinear approaches developed for helicopter UAV flight control and
their actual implementation in experiment. This gap has been pointed out by other
authors e.g. [59, p. 56] in reference to the work of [55]:

For the simplified model used, the method was theoretically proved to
provide tracking controllers for a wide class of trajectories, including
aggressive trajectories involving extreme attitude angles. The mathe-
matical model used for design and evaluation of this controller relied on
a number of unrealistic assumptions: exact knowledge of the tail rotor
torque and moments of inertia, and instantaneous application of pre-
cisely known control moments. While the design approach in its current
state is probably not applicable to a real helicopter, the approach may
potentially be modified to yield a practical control design method for
tracking aerobatic trajectories.

The proposed model is composed of the 6 DoF rigid-body dynamics (5.11), equations
of force and moment contributions of the main rotor, tail rotor, fuselage drag and
tail stabilizers, plus dynamics of the main rotor and flybar flapping angles and maps
from servo positions to the above subsystems. Using a combination of assumptions
and experimentally identified parameter values, we simplified the model whenever
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possible, e.g. neglecting the coning and advancing modes of the main rotor flapping
dynamics in Section 5.3.1.4. The first-principles modeling approach gave insight
into a number of issues which are poorly explained in the existing literature such
as: the superiority of the torsional over the trifilar pendulum for mass moment of
inertia testing, c.f. Section 5.2; a mathematical model of the Bell-Hiller stabilization
action, c.f. Section 5.3.2.1; and the source of the rotor-fuselage coupling obtained in
frequency-domain identification results, c.f. Section 5.4.1. The nonlinear model is
summarized in Section 5.4 and its identified parameters in Section 5.5.

The general model is complicated by the induced velocity vi and rotor thrust T
forming a set of two transcendental equations in both the main rotor (Section 5.3.1.5)
and tail rotor (Section 5.3.3), in addition to the symbolic complexity of the force
and moment expressions. The model equations can be greatly simplified by spe-
cializing to the case of hover by taking the translational and rotational velocities as
identically zero; furthermore, we are then able to analytically solve the coupled vi
and T equations. The result is provided as (5.63) in Section 5.4.1 and should be
useful for a first version of model-based control design.

6.2 Future Work

Development and implementation of nonlinear model-based control is the next log-
ical step in the ANCL UAV helicopter project. The research work presented in
this thesis was carried out precisely for this purpose, and a number of nonlinear
designs are already available in the literature e.g. the control references listed in Sec-
tion 1.1.1. Based on first-hand experience of developing experimentally-validated de-
signs, this work should be performed in incremental steps, beginning with non-model
based (PID-type) control, moving to model-based hover stabilization using (5.63)
in Section 5.4.1, and only then employing the complete nonlinear model. The value
of the experience gained from the simpler designs cannot be overstated. In addi-
tion, the Sections below list specific research tasks which build directly on the work
presented in this thesis.

6.2.1 Engine-on Noise Characteristics

The Aided INS engine-on flight experiments in Sections 3.4.3 and 4.11.3.2 required
ad-hoc tuning of the filter parameters, in contrast to the engine-off experiments in
Sections 3.4.2 and 4.11.3.1 which employed identified parameters from Section 3.2.2
without modification; the identified parameters were also used as-is by the AHRS
design. To remedy this situation, more accurate sensor modeling is needed for the
engine-on case, in particular choice of bias model and identification of its parameters.
The Allan Variance method [12] employed by [75, Chap. 4] to obtain the parameters
listed in Table 3.1 required logging approximately 14 hours of sensor data, which
is impossible due to the fuel limit and overheating issues of the helicopter’s engine.
This time length may be reduced by either accepting a larger estimation error (set to
10% for the engine-off identification [75, p. 58]) or employing a different identification
method.
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6.2.2 Nonlinear Gain Design for Invariant Aided INS Observer

As discussed in Section 4.8, a nonlinear gain design for the invariant Aided INS
observer remains an open problem. In the AHRS case such a design was found,
and based on simulation and experimental testing in respectively Sections 4.10.2
and 4.10.3, it provides performance which is equivalent or superior to the Invariant
EKF while requiring significantly less computational power. Such a design also
enables a formal analysis of the region of attraction and the capability of finding
gains which provide almost-global stability, making it interesting from a theoretical
point of view. Of course such an analysis is non-systematic and an almost-global
design may not exist, although proving this fact would be a significant theoretical
contribution as well. References [31, 24] as well as [69, 118] listed in Section 4.8
may provide insight into the method of attack for this problem. Theorem 4 in
Section 4.6.3 guarantees a reduced-order form of the invariant observer’s estimation
dynamics, which will simplify the analysis over the general case.

6.2.3 Experimental Testing of Nonlinear Model

The model developed in Chapter 5 requires experimental testing under flight con-
ditions. As mentioned in Section 5.1 the model’s nominal parameter values are
expected to require adjustments in order to match the model’s predictions with
experimental data. The recommended approach is to obtain a log of experimen-
tal data consisting of pilot inputs and estimated helicopter states collected while
the pilot executes a series of step inputs on each of the sticks — collective δc, roll
δr, pitch δp and tail δt — returning to hover in-between each. From the hover
model (5.63) the dynamics in each axis are decoupled from each other and the col-
lected data could be used with a least-squares formulation to identify the C and D
parameters (5.61), (5.62) whose reliance on aerodynamic parameters makes them
the most sensitive to model uncertainty. For the forward flight regime, the fuselage
drag parameters Ax, Ay, Az in Section 5.3.6 and tail stabilizer parameters Ahs, Avs
should be experimentally tuned, ideally using wind-tunnel testing to directly mea-
sure the drag forces experienced by the helicopter. The resulting experimentally-
tuned model would provide better performance of any model-based control. Of
course closed-loop control provides robustness against model uncertainty, meaning
that even a poorly-identified model should still achieve satisfactory performance in
experimental autonomous flight.
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