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Abstract

Reinforcement learning (RL) is a powerful way of solving sequential decision-

making tasks in which the agent’s goal is to learn how to maximize its reward.

RL approaches can be divided into 2 different categories: model-based ap-

proaches that learn with the help of a model of the environment, and model-

free approaches where the agent only learns by maximizing its reward. How-

ever, training an RL agent in a complex environment requires a vast amount

of training data which can be expensive in tasks where the agent is expected

to operate close to humans. In this work, we explore building a simulated

environment, using a new representation of game frames. We use this rep-

resentation to pre-train an agent and transfer the learned policy to the real

environment. Our model can simulate the changes of a real environment in

response to an agent’s action and returns a reward value. Our major contri-

bution is presenting a new entity-based representation for game frames and

using the proposed representation as our baseline to train our virtual environ-

ment. Our work outperforms an existing method for learning a model of an

environment with significantly less training data.

ii



Preface

Chapter 3 of this thesis has been published at the Experimental AI in Games

an AIIDE 2020 Workshop as: Khameneh, N. Y., Guzdial, M. (2020). Entity

embedding as game representation. arXiv preprint arXiv:2010.01685.

iii



Acknowledgements

Foremost, I wish to express my sincere appreciation to Professor Matthew

Guzdial for generously sharing his wisdom with me throughout my research.

He taught me to express my goals clearly and precisely. Without his persistent

guidance, the goal of this thesis would not have been realized. I wholeheart-

edly appreciate his strong support and great advice which proved monumental

towards the completion of this work. As a young researcher, I was fortunate

to be in a place to learn my first steps from such amazing supervisor. I am

indebted to my bigger family at the University of Alberta, specially Amii mem-

bers whose inspirational discussions motivated my academic life. Last but not

least, I would like to thank my lovely family back in my hometown and my

supportive friends here, specially my dear husband Faraz, for all the passion

and love they devoted to me.

iv



Contents

1 Introduction 1

2 Background 5
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . 7

2.2 Deep Neural Network(DNN) . . . . . . . . . . . . . . . . . . . 9
2.2.1 Variational Autoencoder (VAE) . . . . . . . . . . . . . 10

2.3 Recurrent Neural Networks(RNN) . . . . . . . . . . . . . . . . 11
2.3.1 Long Short-Term Memory (LSTM) . . . . . . . . . . . 12

2.4 Game Representations . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Forward Model Learning . . . . . . . . . . . . . . . . . . . . . 14

3 Entity-Based Representation for Game Frames 17
3.1 Entity-Based Representation . . . . . . . . . . . . . . . . . . . 17

3.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Entity Vectorization . . . . . . . . . . . . . . . . . . . 18

3.2 VAE-Based Entity Representation . . . . . . . . . . . . . . . . 19
3.2.1 Qualitative Examples . . . . . . . . . . . . . . . . . . . 20
3.2.2 Training VAE with Centipede and Space Invaders . . . 21
3.2.3 Training Entity VAE with Pong . . . . . . . . . . . . . 22
3.2.4 VAE-Based Entity Frame Representation . . . . . . . . 23
3.2.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Forward Model Learning 26
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Model Architecture . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Reward Prediction . . . . . . . . . . . . . . . . . . . . 30

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Accuracy of the Predicted Frames . . . . . . . . . . . . 32
4.2.2 Accuracy of the Predicted Rewards . . . . . . . . . . . 34
4.2.3 Usefulness of the Forward Models . . . . . . . . . . . . 35

5 Conclusion 39
5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 39
5.2 Discussion and Future Works . . . . . . . . . . . . . . . . . . 40

5.2.1 Other Game Domains . . . . . . . . . . . . . . . . . . 40
5.2.2 Training Agents . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Using this predictive model in other RL Methods . . . 40

v



References 41

vi



List of Tables

4.1 Comparison of our experiments over our test data, comparing
the output of the forward models to the original game frame. . 33

4.2 Comparison of our experiments over our test data, F1-score of
the predicted rewards for negative rewards and zero value rewards. 34

4.3 This table shows the F1-score of the predicted rewards over the
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Average game score of game playing agents over 100 game rounds
in the real environment. ‘RE’ indicates DQN learned in the real
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Average game score for our game playing agents over 100 game
rounds in the real environment. ’RE’ refers to the agent which
trained in the real environment with ε starts from 0.5. The pre-
trained agent, starts learning in the real environment with the
same initial value of ε. . . . . . . . . . . . . . . . . . . . . . . 37

vii



List of Figures

2.1 Deep Neural Network Architecture . . . . . . . . . . . . . . . 8
2.2 Variational Autoencoder Architecture . . . . . . . . . . . . . 11
2.3 3 Consecutive Pong Frames. . . . . . . . . . . . . . . . . . . 14

3.1 This figure depicts the entity-based representation of a frame.
Red arrows indicates the movement direction of entities. . . . 19

3.2 t-SNE Visualization of our latent space. Blue dots are entities
from Centipede and yellow entities are from Space Invaders . . 21

3.3 Two randomly selected frames of the games Centipede and
Space Invaders. Entities in blue circles are the Alien and Mush-
room from Space Invaders and Centipede respectively, both de-
stroyable entities. Entities with red circles are player entities.
The tables indicates the Euclidean distance of these entities in
the latent space. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Six random variations made to the right paddle in the latent
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 4 consecutive original and generated frames of Breakout. . . . 24
3.6 A random variation of a Pong frame generated from our VAE-

based entity frames representation. As is shown, with a random
variation of the frame in the latent space, the ball and paddles
are in different position in the generated frame compared with
the original frame . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 This figure demonstrates the whole structure of our approach.
At each time step, the forward model takes the entity-based
representation of the state and agent’s action to predict the
next state and possible reward value and send it back to the
agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 A frame example of Pong. There are two paddles, a ball, scores
and some other background objects. . . . . . . . . . . . . . . . 28

4.3 The Figure depicts the complete architecture of our predictive
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 This figure illustrates our Frame Embedding and Entity
Embedding experiment. Entity-based representation of state
at time step t is first encoded to the latent space using the VAE.
The encoded representation and agent’s action then fed into the
forward model to predict the next frame. . . . . . . . . . . . . 30

4.5 This figure depicts a consecutive predicted frames of our Entity
predictive model. The right paddle which is surrounded by the
red square is controlled by the agent. . . . . . . . . . . . . . . 32

4.6 The plot shows the average reward per episode on Pong during
training in simulated environment and real environment. . . . 35

viii



4.7 The left plot depicts the pre-trained agent and the agent just
trained in the real environment. The right plot shows the av-
erage reward per generation on Pong during training with our
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



Chapter 1

Introduction

Imagination is the ability to produce and simulate novel objects, sensations,

and ideas in the mind without any immediate input of the senses. Learning

and understanding the internal representation of physics of the world gives

a human the capability of predicting the future and imagining different real

situations in their mind. This helps humans to learn quickly, plan, and react

in critical situations in milliseconds [18].

Many state-of-the-art machine learning methods such as reinforcement

learning (RL) and deep learning (DL) algorithms have been used to train

agents that can accomplish human tasks. RL is a framework for defining and

computationally solving sequential decision-making problems and DL models

are powerful tools to handle large datasets by finding patterns among the data

that can be used in decision making. Game-playing agents are among one of

the most popular successes of both RL and DL [26].

Most of the impressive RL approaches are model-free. Model-free methods

do not employ a model of the environment, they only focus on maximizing

agents’ future return by choosing the best action according to the given state,

which is equivalent to finding the optimal behavior policy. With complex

environments, model-free agents may require tens or hundreds of millions of

interactions with an environment to learn the task. On the other hand, some

other recent RL methods have been proposed to train agents with the ability to

learn a model of the environment beside finding the best policy. These models

are analogous to the internal models humans learn about their surrounding
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environments. Knowing the environment can drastically reduce the number

of interactions between the agent and the environment [15]. However, all

these methods still need substantial amounts of training data through a direct

interaction of the agent and environment and these interactions can be costly,

such as when agents are expected to operate around humans, like self-driving

cars [20].

Let’s assume two different scenarios of a child who wants to learn how

to play ping-pong: a sport in which two or four players hit a lightweight

ball, known as the ping-pong ball, back and forth across a table using small

rackets[38]:

In our first scenario, the child has the ability to learn the rules and the

reward of an action at each time step. For example, if a child misses the ball

then the child loses a point. After learning the rules, this child is able to play

the game even in their own imagination without physically sitting and playing

the game. In our second scenario, the child, instead of learning the rules ahead

of time, just takes actions, and they are just told when they lose or gain points.

This child is not able to play the game in their own imagination since they do

not know anything about the game, they just learn how to map the current

state to the best action in order to achieve the highest score.

Now, let’s think of a robot instead of a child in our first scenario, where

the robot will now attempt to learn the rules of the game. Unlike the child,

the robot would likely need millions of interactions with the environment to

learn the rules. One possible reason is that the robot does not know anything

about the components of the environment, such as the ball, rackets, or even

the table. It needs to play and collect large amounts of data to just understand

that objects of the game differ from each other. Afterward, the robot can focus

on the temporal features including ball movement, ball bouncing, and so on.

This is a metaphor for how an agent might learn to play the game. We

include it to demonstrate the importance of how we think about the environ-

ment or represent the environment and how that impacts learning. This idea

has become a key component in many recent research projects to develop a

predictive model of the environment for the agent in order to interact with
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a virtual version of the environment as their internal model. Over the years

deep neural network methods have shown outstanding results in many visual

problems such as object detection [39], image classification [30], video pre-

diction [23], and so on. However, modeling video is still a very challenging

issue due to the high dimensionality and complex temporal dynamics of the

frames. Also, in some of these problems future frames are conditioned on both

previous frames and control variables [28]. A few research projects have also

focused on presenting the joint prediction of both future frame and reward

for reinforcement learning applications [37]. To train an accurate predictive

model we have traditionally needed a vast amount of data collected from the

real environment [23]. One possible reason for this problem is that most DL

methods require large amounts of training data when we use very complex

and highly variable representations [11]. However, if we had a less variable

representation, we might be able to learn a model of the environment in less

time.

In the attempt to find a method to learn the internal model of an agent

with less training data, We first proposed an entity-based representation for

our game environment in a compressed space with less complexity compared

with pixel-based images which contains the required information of each game

state. We then use our proposed representation to train an action-conditioned

predictive model as the agents internal model to predict both reward signals

and the next frame. We also use this model to train an agent in its internal

world model to investigate if this approach meet our goal which is obtaining a

usefull forward model with less training data. While the high-level goal of the

research projects in this area is just to train an accurate model, our aim is to

train a model with significantly less training data.

Concretely, this thesis makes the following contributions:

• Proposes a new entity-based representation for game frames.

• Explores the entity-based representation with the use of Variational Au-

toencoder (VAE).

• Trains a forward model on the entity-based representation frames.
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• Demonstrates that the forward model outperforms an existing forward

model learning method.

• Demonstrates that an RL agent trained with our forward model as a

virtual environment outperforms an agent based on this existing virtual

environment work.

This thesis is structured in four more chapters. In Chapter 2, we provide

preliminary background materials including RL, different DL models, and re-

quirements for forward model training. Chapter 3 is dedicated to describing

our entity-based representation approach as a game representation and how it

can be applied to different problems. Further in Chapter 4, we provide details

of our predictive model and evaluate our results and compare them with the

state-of-the-art approaches. Finally, the last chapter is the conclusion, where

we provide some limitations and possible future work.
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Chapter 2

Background

This chapter introduces the preliminary knowledge for the following chapters.

We provide background on Reinforcement Learning (RL), Deep Neural Net-

works (DNNs) such as Autoencoders, Variational Autoencoders (VAEs), and

Long Short-Term Memory Recurrent Neural Netwoks (LSTM RNNs). We

then discuss and introduce how to represent and learn game contents. Fi-

nally, we close the chapter with a discussion of Forward Model learning and

its challenges.

2.1 Reinforcement Learning

An RL agent interacts with its surrounding environment by taking actions, and

receiving rewards and observations in return. Unlike supervised learning that

deals with a set of labeled examples, the RL agent is not provided with labels:

it learns with trial and error which leads to learning which action gives rise to

the maximum reward [2]. Markov decision processes (MDPs) are the standard

mathematical formulation used for RL problems. An MDP is a mathematical

framework used for modeling decision-making problems where the outcomes

are partly random and partly deterministic. An MDP is described by the

tuple 〈S,A, T, γ, R〉, where at each timestep, s ∈ S indicates the current state,

a ∈ A is the choice that the agent makes at the current timestep, which

causes the environment to transition to the new state s′ ∈ S with transition

function T (s, a, s′) = Pr(s′|s, a) and returns reward r : S × A → R. The

reward function indicates the ‘pleasure’ or ‘pain’ of taking particular actions
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in particular states by emitting positive or negative reward. Finally, γ is

the discount rate representing the importance of future reward compared to

the immediate reward. The goal of the RL agent is to maximize discounted

cumulative reward by finding the optimal policy π : |S| × |A| → [0, 1]. A

Policy π(a|s), returns the probability of taking an specific action a at state s.

As we discussed, the goal of the RL agent is to maximize the discounted

cumulative reward over a long period of time. This weighted sum is called the

return and we denote it as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
i=0

γiRt+i+1 (2.1)

The expectation of the return for each state indicates the estimation the degree

to which a specific state is good or bad. This expectation is called the value

function. A value of a state, is the expectation of the return under the given

the policy(π):

vπ(s) = Eπ[Gt|St = s] (2.2)

It is also useful to define a state-action value function which is denoted as

Qπ(s, a) is the expected sum of discounted reward at state s for a specific

action a following policy(π).

qπ(a, s) = Eπ[Gt|St = s, At = a] (2.3)

The goal of most RL algorithms is to find the optimal state-action value

function under the optimal policy.

In this thesis we do not focus on RL methods directly, we just evaluate our

approach by training the RL agent on their internal model of the environment.

2.1.1 Q-Learning

To solve RL problems, we need to keep track of states, actions, and their

expected rewards. One possible way to do this, is to save the required infor-

mation in a Q-table. A Q-table is a data structure which maps state-action

pairs to a Q-value (value function) which the agent will learn. Q-Learning is
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an iterative algorithm to find the best state-action value function with given

update rule:

qt+1(st, at) = qt(st, at) + αt[R(st, at) + γmaxaqt(st+1, a)− qt(st, at)] (2.4)

where st and at denotes the state and action at timestep t and qt denotes

the estimate of optimal state-action value function at timestep t. Finally, αt

is the learning rate at timestep t. Before learning begins, q is initialized to

an arbitrary fixed value. Then, at each time t the agent selects an action

a, observes a reward r, enters a new state s′ that may depends on both the

previous state s and action a, and q is updated.

We draw on Q-learning in this work. Our focus is not on optimal perfor-

mance, and there are other RL algorithms that we could use. We focus on

Q-learning due to its generality and popularity

2.1.2 Deep Q-Networks

In Q-learning, when the state and action space are discrete and relatively small,

a Q-Table can be used to store the Q value of each state-action pair. However,

when the state and action space are high-dimensional and continuous, a Q-

Table is not appropriate. Deep Q-Networks (DQN) are possible solutions for

dealing with high dimensional data in a continuous space. The Deep Neural

Network (DNN) acts as a fuzzy Q-table, allowing the agent to approximate

the Q values of unseen states and actions or generalize between them.

DQN is one of many algorithms that combines Deep Learning (DL) and

RL to learn strategies directly from high-dimensional raw data. The state is

generally the input to the network and the output is the state-action values

for any action. In the original paper [26], the network architecture was de-

signed to process image input from Arcade Learning Environment (ALE)[3].

The agent’s experiences at each timestep, et = (st, at, rt, st+1) were stored in

a dataset and pooled over many episodes into a replay memory. To update

the Q-values they applied Q-Leaning updates to random samples of experi-

ences. After performing experience replay, the agent selected and executed an

action according to an ξ-greedy policy. They also trained the Q-function on
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Figure 2.1: Deep Neural Network Architecture

a fixed length representation of histories. In this work we also use the same

architecture on the Atari 2600 environment in order to evaluate our approach.

We conclude this section by explaining that DQN is a model-free RL algo-

rithm, which estimates action values directly from experience. In other words,

in model-free algorithms the agent does not learn how taking action at at state

st changes the environment, it learns how good or bad taking action at at state

st is. Training an accurate DQN may require millions of interactions between

the agent and the environment in complex environments [27]. In comparison,

model-based approaches achieve better performances with fewer environmen-

tal interactions [15]. Decreasing the number of interactions between the agent

and the environment can improve data efficiency. This can be valuable in sit-

uations where the computational resources are significant. We can recall our

earlier example here, self-driving cars which require significant resources.
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2.2 Deep Neural Network(DNN)

DNNs have recently become a standard tool for many machine learning tasks.

They are composed of artificial neurons, which are inspired by biological neu-

rons.

DNNs have multiple hidden layers between input and output layers. Each

layer consists of artificial neurons. The information from the input layer prop-

agates through network to reach the output layer. Ideally, each hidden layer

derives high-level information from the data.

DNNs process input into predicted output, and use the difference between

the true output and the predicted output to update towards the final model

The whole process occurs many times until it reaches local minimum in terms

of loss. The learning problem can be represented as a minimization of the loss

function. The loss function is a function that measures the performance of the

model by how accurate the predicted result is.

In this thesis we apply a specific type of autoencoder called a variational

autoencoder which is a type of DNN to explore the embedding of our proposed

game representation. We then employ Long short-term memory (LSTM) Re-

current Neural Network for our predictive model.

AEs were first introduced by Hinton [31] to address the problem of back-

propagation without a teacher by using the input data as the teacher. AEs

are unsupervised machine learning methods where the input is the same as

the output. They encode the input to a new space and then reconstruct the

output from this representation. An AE consists of 3 components: encoder,

latent space, and decoder. The encoder encodes the input to a latent space,

the decoder then reconstructs the input from the latent space representation.

Copying the input to the output may sound useless, but training the AE to

perform the input copying task will result in taking on useful properties in the

latent space. One way to obtain useful features from the AE is to constrain

the latent space to have a smaller dimension than the input. These kinds of

AEs are called undercomplete [7]. The latent space usually consists of most

salient features of the input. We can describe the whole learning process as
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below:

L(x, g(f(x)) (2.5)

Where L is the loss function, x is the input, f tries to compress the data to a

latent space and g reconstructs the input from the latent space. For example,

if we use RGB images as inputs we can represent this as xi ∈ Rn, where each xi

is a pixel. Also, mean pixel-wise squared error can be used as a loss function.

2.2.1 Variational Autoencoder (VAE)

In the previous section we mentioned that AEs use both an encoder and de-

coder to reconstruct the input data, however, they struggle to generate a new

content from the encoded features. VAE can be defined as an AE in which

instead of encoding an input to a single point, it is encoded to a distribu-

tion over the latent space [19]. In practice, the encoded distribution is chosen

to be a normal distribution so that the VAE tries to approximate the mean

and covariance matrix that describes the normal distribution. The distribu-

tions returned by the encoder are enforced to be close to a standard normal

distribution. The latent space should have 2 important features:

• Decoded outputs from close points in the latent space should not be

completely different

• For a chosen distribution, a sampled point from the latent space should

give meaningful content once decoded.

The VAE loss function consists of two terms, the generative loss function to

minimize the error between the input and output. The second term is the

latent loss, which is the KL divergence that measures how closely the latent

variables match a normal distribution. The loss function li for one data point

xi is:

li(θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] +KL(qθ(z|xi) || p(z)) (2.6)

KL(P ||Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (2.7)
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Figure 2.2: Variational Autoencoder Architecture

The total loss is
∑N

i=0 li for N total data points. As we discussed above, the

first term in the formula, is the expected negative log-likelihood of the ith data

point. This term encourages the decoder to reconstruct the input data from the

latent space. The second term is the Kullback-Leiber (KL) divergence between

the encoded distribution and p(z) which is a unit Gaussian distribution. KL

divergence measures how two different distributions over the same variable

differ from each other

In this work, we have done experiments by training the VAE on an entity-

based representation of Atari frame inputs which we will go through in more

detail in the next chapter.

2.3 Recurrent Neural Networks(RNN)

RNNs are a type of deep neural network which use sequential data or time

series data. These networks are used for temporal problems, such as language

translation[1], natural language processing(NLP)[6], image captioning[14], next

frame prediction[29] and so on. RNNs are distinguished from other types of

DNN by memorizing information from previous inputs to affect the current

output. They also share the same parameters across all timesteps. The RNN

problem can be formalized as:

ht = f(xt, ht−1) (2.8)
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where ht is the current hidden state, xt is the current input and ht−1 is the

previous hidden state. f is usually the non-linear transformation which is

applied to xt and ht−1. In RNNs, the hidden layer h takes part in memorizing

the long term information.

Vanilla RNNs suffer from the problem of vanishing gradient when they

want to learn and remember long-term temporal dependencies. LSTM net-

works are a type of RNN that can handle the problem of long-term temporal

dependencies using frequent gates update on every timestep of the learning

process. Gates are the part of LSTM’s architecture which we will talk in more

details in the next section.

2.3.1 Long Short-Term Memory (LSTM)

LSTM networks are capable of learning order dependencies in sequence pre-

diction problems. They were introduced by Hochreiter & Schmidhuber [13].

Compared to standard RNNs, an LSTM unit has a memory cell ct for mem-

orizing information. Also, LSTMs can control information flow at each cell,

by structures called gates. An input gate it controls how much information to

keep and the forget gate ft controls how much old information to forget. They

are computed given the current state and previous hidden layer as follow:

ft = σ(Wf . [ht−1, xt] + bf ) (2.9)

it = σ(Wi . [ht−1, xt] + bi) (2.10)

where Wi and Wf are weight matrixes, σ is a Sigmoid function, bi and bf

are biases.

σ(x) =
1

1 + e−x
(2.11)

Similarly, an output gate otwhich is also called peehole connections is calcu-

lated as:

ot = σ(Wo . [ht−1, xt] + bo) (2.12)

This gate decides what memory content to output.

ht = ot ∗ tanh(ct) (2.13)
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Where ’*’ is the element-wise product between two matrices. Now new ct can

be calculated as a weighted sum of the previous memory cell and candidate

values, c
′
t, can be added to the state.

ct = ft ∗ ct−1 + it ∗ c
′

t (2.14)

c
′

t = tanh(Wc . [ht, xt] + bc) (2.15)

With the help of this whole architecture the LSTM is able to memorize

longer sequences.

LSTMs also were proven to be quite successful in video frame predictions.

However, training an LSTM on high dimensional data such as images with lots

of complexities, needs vast amount of training data. To tackle this problem,

we proposed a new entity-based representation for game frames. We will go

through more details in the upcoming chapters.

2.4 Game Representations

Game playing is an important domain of artificial intelligence. Video games

provide a platform for DL models to learn how to interact with dynamic en-

vironments and solve complex problems, just like in real life. Video games

have been utilized for decades to evaluate artificial intelligence (AI) agents

performance [34]. One of the fundamental topics in intelligent game playing

is the problem of efficient game representation [25]. Many DL algorithms are

given each video game frame as an input. A single level played may consist of

tens of thousands of frames, and each individual frame contains a lot of infor-

mation. Game frames, take in all the necessary information of each game, like

main characters and background objects. Also, by looking at the sequences of

frames, the game rules can be captured [8]. For example, in Pong from Atari,

by looking at each frame, we can see game entities like the ball, paddles, scores

and so on. Additionally, to extract game rules such as, bouncing the ball and

paddle movements, we need to consider sequences of frames.

There are different approaches to deal with sequential game frames. Many

DL approaches have shown great success in many visual perception prob-
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Figure 2.3: 3 Consecutive Pong Frames.

lems. Convolutional Neural Networks (CNNs) [32] and Recurrent Neural Net-

works(RNNs) [36] deal with both pixel input images and sequential data, re-

spectively. Since images are high dimensional data structures, one major as-

pect to balance the training time and model performance is pre-processing the

image inputs. However, different games can have totally different entities and

rules, which means many of these DL models are game specific and can not

be applied to different game domains.

In this project, we propose a new entity-based representation for frame

inputs. We explore training a VAE on these frame entities. We then train an

LSTM on this new representation as our predictive model.

2.5 Forward Model Learning

As we mentioned in the introduction, training RL agents in a real environment

can be costly. One way to offset this problem is to derive an accurate simulated

environment [21]. The initial idea was introduced by Schmidhuber & Hu-

ber [33]. With this idea, we can train an agent in the simulated environment

and transfer the learned policy to the real environment. The simulated envi-

ronment can be understood as an agent’s internal model of the environment.

However, acquiring a sufficiently accurate model is a challenging problem and
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in many cases needs many data samples which is expensive when the agent

operates close to humans. Oh et al. [28] proposed a highly accurate video

frame action-prediction model using a combined RNN and CNN architecture.

In this work they used a DQN agent to generate gameplay video frames using

an ε−greedy action selection policy. They also used 500,000 training game

frames for each game. Later, Leibfried et al. [22] extended the work of Oh

et al. by including reward prediction. Wang et al.[37] proposed a convolu-

tional feed-forward model for predicting future frames and rewards. They also

trained their model with around 600,000 frames of Pong from Atari. However,

relying on a trained DQN to collect the training data frames is not ideal be-

cause it is not possible to have a trained DQN unless it is already trained in

the real environment, which makes learning a simulated environment useless.

Ha & Schmidhuber[10] presented a predictive model that can be trained

quickly in an unsupervised manner to learn a compressed spatial and temporal

representation of the environment using two models: a VAE and LSTM. They

evaluated their model on the Car Racing environment [5] and Doom [16]. They

trained their model on a dataset of 10,000 random rollouts of the environment.

They first trained their VAE which is called V model. Then they trained the

LSTM (M model) with the latent representation of their V model. Their

model also contains a controller, which is responsible for choosing the action

in order to maximize the cumulative reward. Kaiser el al.[15] proposed a com-

plete model-based deep RL algorithm based on video prediction models. They

presented a predictive model, called Simulated Policy Learning (SimPLe), and

used the model to train a policy to play the game within the learned model.

In this work, we propose a method in which by extracting the useful infor-

mation from images we significantly decrease the required size of the training

set. Additionally, we trained a VAE on the extracted information to investi-

gate the embedding of our proposed representation. Finally, we train an LSTM

to predict both next frame and the reward, given the current state and the

action. We trained our LSTM with the latent representation and the original

entity-based representation. In the upcoming chapters we will talk about the

details of our approach.
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Chapter 3

Entity-Based Representation for
Game Frames

The goal of this work is to propose a method that can understand the physics

of the environment and make predictions of future states. However, many

previous works used pixel-based input images which are high dimensional input

data. In this chapter, we introduce our entity-based representation, and we

explore if we can develop a method for embedding entities from multiple games.

The proposed representations will then be used in the next chapter as the basis

for our forward model.

3.1 Entity-Based Representation

In this thesis we present a new representation for games that we call our

“entity-based representation”. We focus on the domain of Atari games to

test this approach, as the games are relatively simple while still being more

complex, which makes hand-authoring knowledge for them non-viable. We

identify dynamic information (e.g. position) automatically from Atari games

by running an algorithm introduced by Guzdial et al. [8]. We collect and

vectorize these features for each entity, based on the extracted information

from the frames. In this representation we can represent changes over entities

as vectors (one entity at one point becoming another entity at another point),

and whole games as graphs or point clouds (where each point is an entity in

the game).
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3.1.1 Feature Extraction

Our goal is to have a low dimensional representation in comparison to pixel-

based images that reflects the semantics (mechanics) of the entities and main-

tains the needed information to train a predictive model. To obtain the re-

quired information, we first identify the background color for each frame, to

avoid considering the background as an entity. We do this by finding the most

common pixel color in a given frame. After obtaining the background color, we

run a depth first search algorithm through the entire frame to identify every

pixel that is not the background color. We also consider neighboring pixels to

be neighbors in each frame if they have the same pixel color. Note that we

assume that entities in an Atari games have a constant pixel color, and the

entire entities are structured so that every pixel in the entity is adjacent to at

least another pixel

Below is the list of the types of the entity information we use in this work:

• Animation contains SizeX SizeY of the entity.

• VelocityX indicates the velocity of the entity horizontally.

• VelocityY indicates the velocity of the entity vertically.

• PositionX is the value of an entity in the x dimension of a frame.

• PositionY is the value of an entity in the y dimension of a frame.

3.1.2 Entity Vectorization

As we mentioned in the previous section, we extract physical information from

the frames to obtain: entity positions in both the x and y direction, the size of

each entity (width and height), and the velocity of each entity in both the x and

y directions. After obtaining the physical information of each entity we save

the mechanical information of each game entity as an integer in an individual

vector of shape (1x6). For example, entity ’A’ is represented as a vector

which contains,SizeX, SizeY, VelocityX, VelocityY, PositionX, PositionY. We

note that different in-game entities would generate multiple instances of this
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Figure 3.1: This figure depicts the entity-based representation of a frame. Red
arrows indicates the movement direction of entities.

representation across each frame. Further, all the values had to be integers

as they were measured over the space of pixels. We also added a vector of

zeroes to our dataset and use this vector to show entities that were removed

in the previous frame or were about to be added in the next frame. All of the

features are always greater than zero except VelocityX and VelocityY which

can be negative.

Figure 3.1, is an example of an entity-based representation for a game

frame. Each row in the table is how we represent entities in each frame.

We use this representation as a basis for our forward model in the next

chapter.

3.2 VAE-Based Entity Representation

In this section, we explore developing a model to learn an abstract, compressed

representation of our proposed entity-based approach. Plus, it helps validate

that entity-based representation is itself reach enough for tasks like differenti-

ating between games [17].

Further, we introduce some qualitative examples along with some evidence

towards its quality and future utility.

As we mentioned in the previous chapter, autoencoders are efficient tools
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for dimensionality reduction. These tools approximate a latent structure of a

feature set. In this work, we aimed to explore if we can employ the embedded

representation of our entity-based approach. To this end, we use a VAE to

reduce the dimensionality of the entities in order to learn an entity representa-

tion with less variance. We decided to make use of a VAE, as it would allow us

to learn a more consistent latent space and potentially to sample novel entities

from this learned distribution. We train our VAE on a dataset of entities in

our entity-based representation to learn the parameters of a probability distri-

bution to represent our entities. Since it is a generative model, we expect the

VAE can also be applied to game content generation tasks [9] like generating

entities similar to the input and blending the entities in the latent space.

We tried various VAE architectures with different hyper parameters. Since

accuracy of predicted entities using a VAE with low dimensional latent space

is our main goal, we choose the model with the possible lowest latent space

dimension that can predict highly accurate entities. Our final architecture has

one fully connected hidden layer with Relu activation in the encoder, which

are then fed into a n-dimensional embedding layer with Sigmoid activation.

We use 2 and 12 as latent space dimensions in different experiments.

The decoder section architecture is an inverse of the encoder section, start-

ing with a Sigmoid activated fully connected layer. We implemented this

model in Keras using the Adam optimizer with a learning rate of 0.001. We

employed the sum of mean-square error and kl-divergence as our loss function.

We assigned 0.001, a low value to the weight of kl-divergence loss and one to

the weight of the mean-square error, since we aimed to have more accurate

reconstruction of frames.

3.2.1 Qualitative Examples

In this section we discuss our experiments and some qualitative examples to

explore the latent space.
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Figure 3.2: t-SNE Visualization of our latent space. Blue dots are entities
from Centipede and yellow entities are from Space Invaders

3.2.2 Training VAE with Centipede and Space Invaders

In this example, we aimed to investigate how entities of different games are

distributed in the latent space to explore if the latent space is really represents

the semantics of each game.

We chose Space Invaders and Centipede. We trained the VAE with entities

of 15,000 frames of both games. Since the initial goal of this thesis is to

train a model with less training data, at first we use 10,000 frames we then

gradually increase the number of frames to finally achieve the accurate VAE.

We also choose Centipede and Space Invaders because both games have similar

mechanics in which the player is a fighter who shoots at enemies. In Figure 3.2,

we display the distribution of entities of both games in the latent space using

the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique. This

technique is for dimensionality reduction and is well suited for the visualization

of high-dimensional datasets [24]. Even though we use a 2-dimensional latent

space. t-SNE is still helpful in terms of showing clear “clusters“ of points.

The representation depicts the distribution of entities in the projected 2D

space. The reason that there are more Centipede entities than Space Invaders

21



Figure 3.3: Two randomly selected frames of the games Centipede and Space
Invaders. Entities in blue circles are the Alien and Mushroom from Space
Invaders and Centipede respectively, both destroyable entities. Entities with
red circles are player entities. The tables indicates the Euclidean distance of
these entities in the latent space.

entities is that in Centipede each entity has many variations in different game

frames. However, in Space Invaders, most entities do not vary substantially

during the game round. As it is depicted, different groups of entities from

Space Invaders are in the same cluster with entities of Centipede, this shows

that different entities with similar physical features have less distance in the

latent space. For example, 3.3, illustrates the Euclidean Distance between enti-

ties of two randomly selected frames from both Centipede and Space Invaders.

As it is shown, the distance between players from both games is significantly

less than the distance between the players and enemies of those games. This

indicates that our latent space places mechanically similar entities closer to one

another in its learned latent space. We hope to explore the possible research

direction of this feature in the future.

3.2.3 Training Entity VAE with Pong

We also trained our VAE with entities extracted from 15,000 frames of the

Atari game Pong, and used the trained model as a part of our forward model

in some of our experiments in the next chapter. We again choose 15,000 since

the one major goal of this thesis is to train an accurate model with less training

data. In this section we will discuss some other qualitative examples. In this
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Figure 3.4: Six random variations made to the right paddle in the latent space.

example we first pick a random entity from 5 consecutive frames and added

a random vector in the range of (-0.5, 0.5) to that entity’s embedding. As is

shown in Figure3.4, our random entity is the right paddle which is surrounded

by the red circle. The entity moves in different directions and has different

sizes compared with the corresponding frame without the random variation.

This example shows how original entities can be affected by small random

variations in the latent space.

We also tested our VAE trained with Pong entities on Breakout from Atari.

We chose breakout because in both Pong and Breakout some entities have

similar mechanics, such as the ball and paddle. We show some generated

frames in Figure 3.5. Although the generated frames are not playable frames

and still have many differences compared with the original frames, we can

see that the VAE is able to capture the ball movements, and the colorful

lines still have the correct size, though they are in the wrong positions. In

this example, we aimed to explore the possibility of using this approach as a

shared representation for games with similar mechanics.

3.2.4 VAE-Based Entity Frame Representation

In this section, we discuss another experiment in which we train the VAE with

entity-based frames instead of individual entities. In this model, each training

instance is represented as a flatten vector of entities. For example, in Pong,
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Figure 3.5: 4 consecutive original and generated frames of Breakout.

Figure 3.6: A random variation of a Pong frame generated from our VAE-
based entity frames representation. As is shown, with a random variation of
the frame in the latent space, the ball and paddles are in different position in
the generated frame compared with the original frame
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we have at most 9 entities in each frame, and each entity has a shape of 1× 6,

thus each frame has the shape of 1× 54.

We train a highly accurate VAE with a low dimensional latent space (12-

dimensional). We also use this model as a part of our forward model in one of

our experiments in the next chapter.

3.2.5 Future Work

We first proposed a new representation for games based on mechanical features

of game entities. We then trained different VAEs on mechanical features of

entities in order to derive an embedding of entities and frames. We argue that

this entity embedding can be a shared representation that enables various

game content generation tasks. We list potential directions for future work

below.

• Entity Blending: This representation can be used to generate new enti-

ties based on existing ones.

• Speeding up Rule Learning : As we discussed in the Ruleset section, the

embedding is based on mechanical features of entities in each rule of a

game. Each rule references a set of entities (group of conditional facts)

together in a frame which causes an effect. We might expect similar

mechanical effects if we have entities from another different game with

a similar latent representation. We anticipate a need for another study

to investigate this.

• Extending the Dataset: We trained this model on around 15,000 frames

from three Atari games. Extending our dataset by adding other similar

and dissimilar games is another potential future direction.
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Chapter 4

Forward Model Learning

Predictive models can simulate how the real environment changes in response

to an action from an agent. Unlike previous approaches which use high dimen-

sional pixel input observations to make the prediction, we present a method

that is able to learn the temporal and spatial dependencies of entities, using

an entity-based representation, and make predictions with considerably less

training data. In this chapter, we use our entity-based representation to learn

the system dynamics of an environment and the reward structure jointly. We

show that this approach can be used to improve performance by pre-training

the RL agents in this simulated environment.

4.1 System Overview

The goal of our model is to learn a function f : st−k:t, at → st+1, Rt+1, where st,

at, and rt are the entity-based representation of the frame, action and reward

at timestep t, respectively. st−k:t indicates frames from time t − k to time t.

Figure 4.1 demonstrates the whole structure of our approach which has 2 main

components. Entity extraction converts the pixel inputs to entity vectors, and

our predictive model to predict the next state and the reward. The predictive

model is composed of LSTM layers that extract temporal and spatial features

from the input data. The model also has an action-conditioned layer, which

is concatenated with the output of the LSTM. Finally, the concatenation of

the LSTM output and action is fed into dense layers to predict both the next

frame and reward. The major difference from this approach to existing, prior
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Figure 4.1: This figure demonstrates the whole structure of our approach. At
each time step, the forward model takes the entity-based representation of the
state and agent’s action to predict the next state and possible reward value
and send it back to the agent.

work is to use our entity-based representation instead of pixel input [28].

4.1.1 Dataset

We present an initial evaluation of our approach in the Pong game domain from

ALE. We choose this game because it has a reasonable number of entities,

with at most nine across all frames, including the ball, paddles, score and

background items. We applied our model to Space Invaders which has around

80 entities, and Centipede with approximately 40 entities, nonetheless, the

model could not perform sufficiently.

Pong is also a fixed camera game in which the scene does not change.

We tried to evaluate our model in the Car Racing environment [5] in which

the camera moves with the agent’s action. However, the model had a poor

performance in dealing with this kind of environment.

For our dataset, we collect 15,000 frames of the Pong environment. We

have an agent act randomly to explore the environment, and record the ran-

dom actions taken, the resulting observations, and the reward value from the
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Figure 4.2: A frame example of Pong. There are two paddles, a ball, scores
and some other background objects.

environment. The action is a one-hot encoded vector of shape 1× 6. Possible

actions in Pong are, moving down, moving up, and do nothing where

Reward values in many Atari games vary significantly between games. In

Pong, the reward values are -1, 0, and 1. We extract the physical information of

entities from frames as we mentioned in the previous chapter. The entity-based

extracted features are used to train our forward model. In all experiments, each

frame is represented as a fixed size vector of ordered entities. We have different

numbers of entities in each frame, therefore we find all the possible kinds of

entities and represent each frame with the maximum number of entities. In

the case where there are fewer entities the remaining indices are filled with

0’s, otherwise, they have a vectorized entity-based representation. We use the

first 14,000 frames for our training set, and the last 1000 frames for our test

set. We also train our forward model with e sequence of entity-based frames

observed.

4.1.2 Model Architecture

Our network takes a fixed history of previous frames as an input. We choose 4

for the history frame time horizon as previous works also used this number for

Pong [28]. The exact shape of the input varies depending on the entity-based
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Figure 4.3: The Figure depicts the complete architecture of our predictive
model.

representation, we will go through more details in the evaluation section. The

network architecture consists of 3 LSTM layers each with 1024 hidden units.

The action is represented as a one-hot encoded vector, which is concatenated

to the output of the third LSTM layer. As shown in Figure 4.3, after adding

the action, the network is divided into two parts. Both parts are followed

by three fully connected dense layers, which predict the next frame and the

reward. In the first part, the output is a real-valued approximation of the

vectorized representation of the entities. The second part employs a softmax-

activated fully connected layer, which predicts the reward. We split the reward

into three categories (-1,0,1) to make it a classification problem, we will go into

more details on this below. We used dropout equal to 0.5, the Adam optimizer,

a batch size of 64, and we trained the model for 200 epochs. We implemented

this model in Keras.

4.1.3 Loss Function

The model is trained by minimizing the weighted sum of two loss functions,

mean squared error (MSE), and cross-entropy.

Loss = (10×MSE) + (1× cross− entropy) (4.1)

We exert the MSE loss function between the predicted frame and the next

ground truth frame, where each frame is represented with a vectorized entity

representation. In addition, we employ the cross-entropy loss function, which

is popular for classification problems [35] to approximate the reward values.
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Figure 4.4: This figure illustrates our Frame Embedding and Entity Em-
bedding experiment. Entity-based representation of state at time step t is
first encoded to the latent space using the VAE. The encoded representation
and agent’s action then fed into the forward model to predict the next frame.

4.1.4 Reward Prediction

We tried different representations for reward values, such as considering the

reward as a number. Since, around 95% of rewards in our dataset have a value

of 0, the model was not able to predict non-zero rewards. In our final model,

rewards are represented as one-hot encoding vectors of size 3 [22].

However, one major problem during reward prediction was the imbalanced

data. 336 frames out of 15,000 have rewards of -1, 14,653 frames have 0 as

reward and only 11 frames have +1 as their reward value. Although there are

possible ways to deal with imbalance data such as sampling, we aim to train

a model that can learn a sparse reward problem. As a result, many of our

model variants struggled to predict positive rewards.

4.2 Evaluation

The entire purpose of this approach is to achieve a useful forward model that

can predict accurate future frames and reward values. To find the best version

of our method we employ four different versions of our entity-based represen-

tation.

• Entity: the original values of the physical information of entities are
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used in the entity-based representation of frames. We wanted to investi-

gate whether the direct entity-based representation can be employed in

forward model learning. In this version the input size is 1× 54 where 54

is number of entities × entity dimension.

• Entity Embedding: the embedding of the entities are used in the

entity-based representation of frames. Using this low-dimensional latent

spaces enables us to increase the generalization. In this representation

each frame has a shape of 1 × 18 where 18 is number of entities × la-

tent dimension of each entity.

• Output VAE: the reconstructed output of the Entity VAE are used

in the entity-based representation of frames. We included this because

in-between approach, potentially is more general than the Entity repre-

sentation, but has more detail than the Entity Embedding representa-

tion. In this approach each frame’s shape is similar to frames in Entity

representation.

• Frame Embedding: the embedded version of the entity-based frames.

We employed this representation to explore if it is more helpful to rep-

resent all entities in a single embedding or model them individually. In

this approach each frame has the shape of 1 × 12, where 12 is the la-

tent dimension of each frame.

Further, to evaluate our work we use three different types of evaluations. To

evaluate the quality of the predicted frames, we employ some similarity metrics

between the predicted frames and the original frames. To evaluate the quality

of the predicted reward function, we calculate the F1-score of the predicted

rewards. Finally, to evaluate whether the forward models are helpful to an

agent, we pre-train a DQN agent in a subset of our simulated environments.

We also employ a previous attempt at learning a forward model as a base-

line [10]. We chose this method as our baseline because it is the original world

model paper. The world model uses a generative recurrent neural network,

which can model RL environments through compressed spatio-temporal rep-
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Figure 4.5: This figure depicts a consecutive predicted frames of our Entity
predictive model. The right paddle which is surrounded by the red square is
controlled by the agent.

resentations. This approach also works the best of subsequent world modeling

papers with small datasets. Furthermore, we attempted to implement a model

of [28], however, their model has around 90 million parameters, which means

it would not be trainable with our small training set. We had to adapt our

baseline to the Atari environment. Since the original paper evaluated their

model using the Car Racing and Doom environments, we had to change the

input parameters for Pong. Their model consists of a VAE to learn the com-

pressed representation of the 2D image input. They also have an LSTM which

learns to approximate the future latent vectors that their VAE is expected to

produce. They also have a controller as a part of their model. This controller

is responsible for choosing the action in order to maximize the expected cu-

mulative reward. The controller is a single linear model that maps the latent

space of the VAE and the output of the LSTM to the action a at timestep t.

We trained the VAE and LSTM with our 14,000 training frames.

4.2.1 Accuracy of the Predicted Frames

To evaluate the accuracy of the predicted frames, we use MSE and the Struc-

tural Similarity Index Measure (SSIM), which are two similarity metrics used

to compare images. MSE calculates the average of the Euclidean distance of

pixels. SSIM is another similarity metric that quantifies the image quality of

the predicted frame compared to the original frame by looking for similari-
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SSIM MSE MSE of Entities

Entity 0.9677 0.1644 10.1733
Entity Embedding 0.8442 0.4534 15.4121

VAE Output 0.9441 0.1997 11.1356
Frame Embedding 0.9694 0.1587 8.0112

Baseline -0.0951 2.4052 77.2876

Table 4.1: Comparison of our experiments over our test data, comparing the
output of the forward models to the original game frame.

ties within pixels, such as, if the pixels in the two images have similar pixel

density values. In addition, since the major goal of our model is to predict a

frame in which each entity is in the right position with the right size, we also

compare the predicted and ground truth entity-based representation of each

frame. To this end, we calculate the MSE of each entity’s position and size

features between the predicted frames and the original frames. Lower values

for both MSE between pixels and entity representation, and higher values for

SSIM are better as they indicate fewer differences between the original image

and the predicted one.

As seen in Table 4.1, the Entity and Frames Embedding representation

of our proposed model outperform the others according to all similarity met-

rics. We observed that, in both of these versions, our model is able to capture

the movement of entities, specifically the player-controlled paddle. The model

also can predict the interactions between objects such as bouncing the ball

from the paddle.

In comparison, our baseline is not able to capture the important entities

of the frames, such as the ball and paddles. One possible reason for this

problem is that their model requires 10,000 rollouts of frames for training

while we just train the model with around 14 rollouts. Due to the importance

of the accuracy of the predicted frames, we focus on the Entity and Frame

Embedding forward models in our final evaluation.
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Zero Negative(-1)

Entity 1 1
Entity Embedding 0.99 0.76

VAE Output 0.99 0.79
Frame Embedding 0.99 0.77

Table 4.2: Comparison of our experiments over our test data, F1-score of the
predicted rewards for negative rewards and zero value rewards.

Zero Negative(-1) Positive(+1)

Entity 0.99 0.99 1
Entity Embedding 0.99 0.89 0

VAE Output 0.99 0.95 0
Frame Embedding 0.99 0.99 0

Table 4.3: This table shows the F1-score of the predicted rewards over the
training set.

4.2.2 Accuracy of the Predicted Rewards

To asses the validity of the reward prediction we calculate the F1 score, which

is a measure of a model’s accuracy on a dataset. The F1 score is defined as:

F1 =
2× TruePositive

TruePositive + 1
2
(FalsePositive + FalseNegative)

(4.2)

Since our training set has around 95% zero value rewards, it is really important

to us to check the validity of our model on non-zero rewards. In Table 4.2,

we show the F1-score of all versions of our forward model over our test set for

both 0 and -1 rewards. We did not include the +1 reward values in Table 4.2,

as there were no examples of those values in our test set. Table 4.3 depicts

the F1-score of the predicted rewards over our training set. As is shown, the

Entity version has an F1-score near or equal to 1, which shows the ability of

the model to predict both positive and negative rewards. Other versions also

predict both negative and zero rewards with a high F1-score. However, they

could not predict positive rewards. One possible reason is that we only had 11

positive rewards among our training set given that we used a random agent to

collect the frames. We did not include our baseline in this section, since their

approach does not predict rewards.
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Figure 4.6: The plot shows the average reward per episode on Pong during
training in simulated environment and real environment.

4.2.3 Usefulness of the Forward Models

To evaluate the usefulness of the trained forward models we trained DQN

agents [26] using the Entity and Frame Embedding forward models. We

then test the trained agents in the real environment to explore if they could

transfer the learned policy from the simulated environment to the real envi-

ronment.

The original DQN agent used 84 × 84 pixel inputs [27]. However, the

output of our forward models is not a pixel-based image, therefore we convert

the forward model’s output to a gray-scale 210 × 160 frame, we then resize

the image to 110 × 84 by down-sampling. Finally, we obtain the final input

by cropping an 84× 84 square area of the frame. Also, as is mentioned in the

original paper, a single frame does not have all the necessary information for

the agent, to tackle this issue, they stacked the last four frames to produce the

input to the DQN agent. We also stack the last four predicted frames of our

predictive model to create the input to the DQN agent. The final input shape

for the DQN agent is 84× 84× 4. In the original paper, the authors applied a

simple frame-skipping technique from [4] to the frames. In frame-skipping the

environment repeats the action for k frames and just returns the last frame to

the agent instead of every frame. This technique allows the agent to play on

k frames with much less computation. Since, we trained our forward models

using the frame-skipping method our models automatically predict the kth

frame. We choose k = 4 as the original paper suggests the same value for
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Figure 4.7: The left plot depicts the pre-trained agent and the agent just
trained in the real environment. The right plot shows the average reward per
generation on Pong during training with our baseline.

RE Entity Frame Embedding Baseline Random

Score +1.89 -4.23 -6.15 -7.4 -10.4

Table 4.4: Average game score of game playing agents over 100 game rounds
in the real environment. ‘RE’ indicates DQN learned in the real environment.

Pong.

The DQN network’s first hidden layer convolves 16 8× 8 filters with stride

4. The second hidden layer convolves 32 4×4 filters with stride 2, both hidden

layers are followed by a rectifier non-linearity layer. Finally, the last hidden

layer is a fully-connected layer with 256 rectifier units. The output layer is

a fully-connected linear layer with a single output for each valid action. The

number of valid actions in Pong is 6. To train the agent, we use the ε-greedy

behaviour policy. The ε decreases from 1 to 0.05 linearly over the first million

frames. Episode lengths are 100 during training in all experiments. We choose

100 because our model can predict reasonable frames over around 100 time

steps.

Figure 4.6, shows the visualization of the average game score per episode

during training of the agent in both the real and simulated environment of

our Entity and Frame Embedding representations, respectively. We train

3 agents with different seeds in all experiments. As is shown, the agent’s score

converges to -0.6 and -1 in the Entity and Frame Embedding simulated

environments, respectively, while the agent’s score converges to +0.5 in the
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RE Pre-trained agent

Score 1.57 3.65

Table 4.5: Average game score for our game playing agents over 100 game
rounds in the real environment. ’RE’ refers to the agent which trained in the
real environment with ε starts from 0.5. The pre-trained agent, starts learning
in the real environment with the same initial value of ε.

real environment. The plot shows that agent learns by playing in the simulated

environments, however with the same number of timesteps the agent learns

more while playing in the real environment. This led us to try to pre-train the

agent in the simulated environment, then transfer the learned policy to the

real environment and train the agent. Our goal was to see whether this would

help us achieve a better score with fewer interactions in the real environment.

We choose the best Entity agent and transfer its learned policy to the real

environment. We chose the Entity agent, since that agent outperforms the

Frame Embedding agent. We then trained the agent in the real environment

with ε starting from 0.5 and decreases to 0.05 in 500,000 steps. The agent

trained for 1,200,000 steps or 12,000 episodes. We chose 0.5 as an initial value

for the ε to explore if we can train a DQN agent with less exploration that

outperforms agents without pre-training. In Figure 4.7, the left plot shows the

average score of this agent during training. As is shown the reward reaches

to +0.5 after around 5000 episodes. We also train the same agent in the real

environment without pre-training it, as is displayed, the pre-trained agent has

higher scores from the initial steps.

The right plot in this Figure 4.7, displays the cumulative reward of our

baseline during training. We train the agent in over 3000 generations. Since

our baseline, does not predict the reward, the controller has access to the

rewards from the real environment. As we mentioned the controller is a simple

single layer linear model that maps the output of the VAE and LSTM directly

to action at at each time step.

at = Wc[ztht] + bc (4.3)

Where at is the action at timestep t, Wc and bc are the weights and the bias

that controller tries to learn, zt and ht are the latent space and the output of
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the LSTM at timestep t. To optimize the parameters of the controller, the

authors employed Covariance Matrix Adaptation Evolution Strategy(CMA-

ES) [12]. Since their predictive model is not able to predict appropriate future

states, the controller converges to -1.5 after only few generations.

We tested all the agents before the pre-training experiment in the real

environment for 100 game rounds, each with a length of 500 frames. As is

shown in table 4.4, the real environment (RE) agent outperforms all other

agents. The Entity agent achieves an average score of -4.23 which is the second

best agent compared to our Frame Embedding agent, random, and our

baseline. Further, we include the two agents from the pre-training experiment

in table 4.5. It is shown that, the pre-trained agent outperforms the other

agent that only trained in the real environment and the RE agent from the

first set of experiments. This indicates it has learned a more general final

policy.
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Chapter 5

Conclusion

5.1 Summary of Contributions

We started this thesis claiming that despite the huge success of modern RL

algorithms, training them in the real world could be often be too time con-

suming, dangerous or expensive. To tackle this problem, many state-of-the-

art approaches have been presented in which the agent learns a model of the

environment alongside learning the optimal policy. However, many of these

approaches still require a large amount of data from the environment.

In this thesis, we introduced a new representation for game frames in the

Atari environment. This representation uses mechanical information of each

entity at each frame, such as the position and size of each entity. We also

explore how the entities are distributed in a lower dimensional space by training

a VAE. We then use the proposed representations as basis to train different

predictive models. These models predict future frames and the reward value

based on agent actions and previous frames. We showed qualitatively and

quantitatively that they are able to predict accurate rewards, future frames,

and useful-for-control frames on Pong from Atari. To our knowledge, this is

the first work that uses this kind of representation. This representation allows

us to predict the joint probability of the next frame and the reward value

with significantly less training data. We show that pre-training a DQN agent

with our simulated environment can improve the agent’s performance. We

also demonstrated that our approach outperforms an existing state-of-the-art

method [10] using significantly less training data.
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5.2 Discussion and Future Works

This thesis opens up new interesting research directions. We discuss some of

these directions in this section.

5.2.1 Other Game Domains

We only focused on the domain of Pong from Atari due to its simplicity and

matching to the current version of our entity extraction algorithm, however for

future work we can apply our approach to other domains to increase its gen-

erality. We anticipate that by including other mechanical information based

on different games characteristics such as moving camera we may be able to

extend this approach to domains where the camera moves.

5.2.2 Training Agents

In this work, we converted the output of our predictive model to a pixel-

based image to train the DQN agent. We hope to train a DQN agent using

the entity-based representation which has a simpler structure than pixel-based

image input. Our simple structures could be helpful in terms of learning faster.

5.2.3 Using this predictive model in other RL Methods

Another possible area of future work is that we can employ our approach in

different model-free and model-based algorithms to explore the usefulness of

this representation in various RL algorithms.
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