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Abstract

A longstanding problem in wireless engineering is to determine the probability distribution
of a sum of independent lognormal random variables. Many approximate solutions to this
problem have been developed. But none of them is valid over a wide range of parameters.

A generic approach to find a sum distribution of independent random variables is to
use characteristic functions. However the characteristic function of a lognormal random
variable is not known. The numerical computation of the characteristic function was even
considered to be substantially difficult.

In this thesis, an efficient numerical method is found to evaluate the characteristic func-
tion of a lognormal random variable. Then the CDF of a sum of N independent lognormal
random variables is obtained by the inverse transform of the characteristic function of the
sum evaluated. Based on these numerical data, we compare previous approximate methods
and conclude that if a lognormal random variable is used to approximate the sum distribu-
tion, neither Schwartz & Yeh’s nor Wilkinson’s approaches is good. A new paradigm of
constructing approximations to lognormal sum distributions, the minimax approximation
that minimizes the maximum error, was presented for determining mean values and vari-
ances of the corresponding Gaussian distributions. Our work shows that this new method

is better than others in the global view.



To my parents



Acknowledgments

I would like to express my sincere appreciation to my supervisor Dr. Norman C. Beaulieu
for his insightful guidance, exceptional expertise, continuous encouragement and financial

support during the whole course of this work.

I would like to thank my husband Yuan Sha for his encouragement and technical advice
in aspect of numerical evaluations. Special thanks to David Young and other people in our
iCORE Wireless Communications Lab. for the help on numerical evaluation, documenta-

tion and other technical issues.
I thank my parents and my brother for their love and long-time encouragement.

This thesis was financially supported through research assistantships provided by the

Alberta Informatics Circle of Research Excellence (iCORE).



Contents

1 Introduction 1
L1 Overview . . .. oo e e e 1
1.2 Lognormal Shadowing . . . . . . . . ... ... .. .. ... ... ... 4
1.3 Lognormal Random Variables . . . . . . ... ... ... ......... 5
1.4 Sums of Lognormal Random Variables . . . . . . .. .. ... ... .... 8
1.5 Literature Review . . . . . . . .. ... .. L o 10

1.5.1 Wilkinson’sMethod . . . . ... .. ... o oL 11
1.5.2 Schwartz and Yeh’s Method . . . . . . ... ... .. ... ... 12
1.53 Farley’sMethod . . ... ... ... ... ... ... ... ..., 14
154 Comparisonsof Methods . . . . ... ... ... ... ... ... 15
1.6 Thesis Outline and Contributions . . . . . . . . .. ... ... ... .... 16

2 Numerical Computation of the Characteristic Function of a Lognormal

Random Variable and the Inverse Transform 17
2.1 The Characteristic Function of a Lognormal Random Variable . . . .. .. 18
2.2 Modified Hermite Polynomial Method . . . . . . .. ... .. ... . ... 20
2.3 Transformed Integral . . . . . . . . ... ... .. oL 22

231 TrapezoidalRule . . . . . ... ... ... ... ... .. .. ... 26



24

2.5

2.6

2.7

23.2 Simpson’sRule . . . .. e e e e
233 Adaptive Algorithm . . . . ... o 0oL
Fast Fourier Transform Approach . . . . . . .. ... . ... ... ....
24.1 Sampling . . .. ... e
242 Truncation . . . . . .. ... e e
Integration Between the Zeros of the Integrand . . . . . . . . ... .. ..
2.5.1 Divisionoftheinterval . . . . . ... .. oL
2.5.2 Integration methods over each subinterval . . . . . . . .. R
253 g-algorithm . . . . . ... Lo
Comparison of Numerical Methods . . . . . . .. .. ... .. ... ....
Inverse Fourier Transformto PDFandCDF . . . . . .. .. ... ... ..
271 FFT . 0. o

272 Modified Clenshaw-Curtis . . . . . . . . . . . . o v i v ..

3 Minimax Approximation to the Sum Distribution

3.1
3.2
3.3
34
35
3.6

CDF of the Sum Distribution . . . . ... ... ... ... ........
Minimax Approximation . . . . . . . . ... ..o
Discussion. . . . . . . .. e
Minimax approximations of sums with different power means . . . . . . .
Minimax approximations of sums with differentdB spreads . . . . . . . . .

Conclusion . . . . . . . . s,

4 Conclusion

References

58
58
64
75
77
82

85

86

89



List of Tables

2.1 FFT sizes for the lognormal CF’s

.......................

2.2 Comparison of numerical integration methods . . . . . . .. ... ... ..

3.1 Minimax approximation of the sums of i.i.d lognormal RV’s . . . . . . ..



List of Figures

1.1 Frequency reuse of cellular radiosystems. . . . . . ... ... ... .... 2
1.2 The PDF’s of four lognormal distributions A(0,62).. . . . ... ... ... 8
1.3 The PDF’s of three lognormal distributions A(m,1). . . . . . . ... .. .. 9

2.1 Real and imaginary parts of lognormal CF computed using modified Her-
mite polynomialsforc=0.25. . . . . . .. ..o oL 21
2.2 Transformation of theintegral. . . . . . . . .. ... ... ... ... .. 23
2.3 (a) The transformed integrand in (2.16a). (b) The transformed integrand in
(2.16b)forw=20ando=6dB. .. ... ... .. ... ... ... 25
2.4 Real and imaginary parts of a lognormal CF computed using trapezoidal
rule(c=6dB). . . . . . . ... e 27
2.5 Real and imaginary parts of a lognormal CF computed using trapezoidal
rule(c=12dB). . .. ... . 28
2.6 Real and imaginary parts of a lognormal CF computed using Simpson’s
rule(c=6dB). . . . .. ... 30
2.7 Real and imaginary parts of a lognormal CF computed using Simpson’s

rule(c=12dB). . .. ... ... 31



2.8 (a)Real and imaginary parts of a lognormal CF computed using an adaptive
algorithm for ¢ = 6 dB. (b) Magnitudes of the real and imaginary parts of
a lognormal CF computed using an adaptive algorithm forc =6dB. . . . .
2.9 (a)Real and imaginary parts of a lognormal CF computed using an adaptive
algorithm for o = 12 dB. (b) Magnitudes of the real and imaginary parts of
a lognormal CF computed using an adaptive algorithm for o = 12dB. . . .
2.10 Lognormal PDF with differento.. . . . . . . . . ... ... ... .. ...
2.11 (a) Real and imaginary parts of a lognormal CF computed using FFT for
o6 = 6 dB. (b) Magnitudes of the real and imaginary parts of a lognormal
CFcomputedusing FFT foro=6dB. . . . . . . ... ... ... .....
2.12 (a) Real and imaginary parts of a lognormal CF computed using FFT for
o = 12 dB. (b) Magnitudes of the real and imaginary parts of a lognormal
CFcomputed using FFT foro=12dB. . .. ... .. .. .. ... ....
2.13 (a) Real and imaginary parts of a lognormal CF computed using modi-
fied Clenshaw-Curtis method for ¢ = 6 dB. (b) Magnitudes of the real and
imaginary parts of a lognormal CF computed using modified Clenshaw-
Curtismethodforo=6dB. . . .. ... ... ... ... ... ...
2.14 (a) Real and imaginary parts of a lognormal CF computed using modified
Clenshaw-Curtis method for o = 12 dB. (b) Magnitudes of the real and
imaginary parts of a lognormal CF computed using modified Clenshaw-
Curtis methodforo=12dB. . .. ... ... ... ... . .......
2.15 Complementary CDF of a sum of 6i.i.d. lognormal RV’s (in=0dB,c =06

dB) computedusingthe FFT. . . . . . ... ... ... ... ... ...

33

39



2.16

2.17

3.1

3.2

33

34

35

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Comparison of the theoretical PDF and the PDF computed using the nu-
merical inverse transform form=0dBando=12dB. . . . . . .. ...,
Comparison of the theoretical CDF and the CDF computed using the nu-

merical inverse transform form =0dBando=12dB. . . . . .. ... ..

The CDF of the sum of N i.i.d. lognormal RV’s in=0dB, 0 =6dB). . . .
The CDF of the sum of N i.i.d. lognormal RV’s (m =0dB, 6 = 12dB). . .
Minimax approximationtothe CDE. . . . . . . . .. ... ... .. ....
The CDF of a sum of 21.i.d. lognormal RV’s m=0dB,c=6dB). . . . .
The CDF of a sum of 2 i.i.d. lognormal RV’s (m = 0 dB, ¢ = 12 dB).

The CDF of a sum of 6 i.i.d. lognormal RV’s (n=0dB,c =6dB). . . . .
The CDF of a sum of 6i.i.d. lognormal RV’s (m = 0 dB, o = 12 dB).

The CDF of a sum of 10 i.i.d. lognormal RV’s (m = 0 dB, o = 6 dB).

The CDF of a sum of 10 i.i.d. lognormal RV’s im=0dB, o0 =12dB). . . .
The CDF of a sum of 6 lognormal RV’s with different power means (m; =
~3dB,m, =-2dB,my; = —1dB, my=1dB, ms =2 dB, mg =3 dB) and
the same dB spreads (0, =6dB). . . . . ... ... ... .. .. ... ..
The CDF of a sum of 6 lognormal RV’s with different power means (m; =

~3dB,my=-2dB,m; = -1 dB,m4=1dB,m5::2dB,m6::3dB)and

the same dB spreads (0, =12dB). . . .. ... ... .. ... .....

The CDF of a sum of 6 lognormal RV’s with different power means (m, =

—25dB, my = —15 dB, my = —5 dB, m, = 5 dB, ms = 15 dB, m, = 25

dB) and the same dB spreads (0; =6dB). . . . ... ... .. ... .. ..

62
63
65
68
69
70
71
72

73

80



3.13 The CDF of a sum of 6 lognormal RV’s with different power means (m, =
=25 dB, my = —15 dB, my = —5 dB, my = 5 dB, my = 15 dB, my = 25
dB) and the same dB spreads (6; =12dB). .. ... ... ... ......

3.14 The CDF of a sum of 6 lognormal RV’s with different dB spreads (o; = 6
dB, 0, =8 dB, 0, =9 dB, 5, = 10 dB, 05 = 11 dB, 05 = 12 dB) and the
same powermeans (m; =0dB). . . ... ... ... .. ...

3.15 The CDF of a sum of 6 lognormal RV’s with different dB spreads (6, = 7.5
dB, 0, =8dB, 63 =8.5dB, 0, =9 dB, 05, = 9.5 dB, 0, = 10 dB) and the

same powermeans (m; =0dB). . . ... ... .. ... .. ... ..



Acronyms

Acronym Definition

PDF Probability Density Function

CDF Cumulative Distribution Function

CF Characteristic Function

RV Random Variable

iid Independently and Identically Distributed

FFT Fast Fourier Transform



Symbol Notation

Symbol Definition

o Random event A

E[X] Expectation of X

E, The maximum deviation in minimax approximation
) Probability density function

() The first deviative of the function f(x)
76) The second deviative of the function f(x)
Fm() The nth deviative of the function f(x)

fn The maximum non-zero frequency

fo Frequency resolution in FFFT

fs Sample frequency in FFT

fx() Probability density function of X

F(-) Cumulative distribution function

Fy () Cumulative distribution function of X
G(+) Complementary CDF

Gy () Complementary CDF of X

Gn n-point Gaussian quadrature rule

g(") A function after some transformation



Im

Imaginary part of a complex number

n-point Gauss-Kronrod rule

Mean value of a Gaussian distribution

Mean value of a Gaussian distribution X

The number of the summands in a sum

Size of FFT algorithm

A normal distribution with mean n and variance ¢
The ith summand of a lognormal sum

The summand with the largest dB spread

A lognormal RV estimated by minimax approximatin
Polynomial of the degree n

Polynomial space of the degree n

Q-function

Real part of a complex number

Remainder

Approximation of Simpson’s rule with n subintervals
Chebyshev polynomial of the degree k
Approximation of trapezoidal rule with n subintervals
Abscissa or node in numerical integration methods
Truncation length in FFT

Absolute tolerance

Relative tolerance

A lognormal RV with the corresponding the Gaussian RV N(m, 62)

Characteristic function



‘Po()
0x ()

Characteristic function of a lognormal RV A(0, o)

Characteristic function of X

CDF of the standard normal distribution N(0,1)

Tnverse function of the CDF of the standard normal distribution N(0, 1)
Standard deviation of a Gaussian distribution

Standard deviation of a Gaussian distribution X



Chapter 1

Introduction

In the first half of 2002, the number of cellular mobile phone subscribers all over the world
broke the one billion mark. The sustained growth of the number of cellular mobile users
gives the operators impetus to increase the capacities of their systems. An important prob-
lem that must be faced is co-channel interference. Co-channel interference can be charac-

terized as a sum of lognormal random variables.

1.1 Overview

In a cellular frequency-reuse radio system, the radio frequencies or channels available for
an operator are divided into a number of channel sets, each of which is used to cover a cer-
tain cell that is the elemental component of a service area. Channel (frequency) assignment
follows the rule that the same frequency set cannot be employed by two adjacent cells but
can be reused in two separated cells in a systematic way such that the possible separation
(reuse distance) between the same frequency sets is maximized. This system is called fre-

quency reuse. Frequency reuse greatly increases frequency utilization and further increase



Figure 1.1. Frequency reuse of cellular radio systems (after [1, Fig. 3.1]).

system capacity. However, frequency reuse also introduces co-channel interference arising
from distant transmitters using the same frequencies.

For example, in Figure 1.1, the whole available frequencies for a service provider are
divided into 7 sets and each set is assigned to one cell. Every 7 cells that uses the complete
set of available frequencies form a cluster. The cluster size in this case is 7 and the typical
value is 4, 7 or 12. Then the cluster is replicated to cover a certain service area. The cells
labeled with the same letter use the same group of channels. They are called co-channel
cells. Therefore, co-channel interference occurs between these cells. Co-channel interfer-
ence cannot be simply combated by increasing the transmit power to improve signal-to-
noise ratio (SNR) because the interference to neighboring co-channel cells also increases.
In order to reduce co-channel interference, co-channel cells must be physically separated
by a sufficient distance so that the interference level in a given cell is below a tolerance
due to the radio propagation loss. If the size of a cell is kept constant, a large cluster size

is desirable to weaken co-channel interference because a large cluster size implies a large



distance between co-channel cells. On the other hand, the cluster size is important to de-
termine the capacity of a cellular system. This is because if the cluster size is reduced
while remaining the same cell size, more cluster are required to cover a given area and
hence more users can be served. Thus, there is a trade-off between the capacity and the
co-channel interference. Co-channel interference is one of the major factors that limit the
capacity of a cellular system.

When a mobile station moves through the service area, the received signal experiences
both fading and shadowing. Fading indicates that the envelope of the received signal fluc-
tuates rapidly due to multipath propagation. Shadowing, in contrast, is a phenomenon that
the signal envelope gradually changes in the local mean level due to signal blocking by
buildings, foliage and hills. Empirical studies have shown that shadowing has a lognormal
distribution. Since the effect of fast fading caused by multipath propagation can be mi-
grated by employing some form of micro-diversity, shadowing of a radio signal can be a
more serious transmission impairment than fading. Therefore, co-channel interference be-
comes strongly dependent on this large scale signal variations originating from shadowing
phenomena.

Co-channel interference in cellular telephone systems can be modeled as a sum of log-
normal random variables. However, determining the sum distribution of lognormal random
variables is a longstanding problem in wireless engineering, even for the case of indepen-
dent and statistically identical co-channel interference signals. Sums of lognormal random
variables also occur in many other important communication problems like the detection
of radar targets in clutter and the optimal detection of frequency hopped spread spectrum
signals [1].

Studying sum distributions of independent lognormal signals is a good start to the prob-



lem of this kind. Many approximate solutions to the probability distribution of a sum of
lognormal random variables such as Wilkinson’s [2], Schwartz and Yeh’s [2], and Far-
ley’s [2] methods have been reported. But none of them is dominant and well-accepted.
Many works also focused on the comparison of these methods [1] - [5].

The well-known approach for studying the probability distribution of a sum of inde-
pendent random variables uses the characteristic function. This approach is totally general
because the probability density function of a sum of N independent random variables has a
characteristic function equal to the product of the characteristic functions of the summands.
However, the characteristic function of a lognormal random variable is unknown.

In this thesis, the numerical computation of lognormal characteristic functions and sum
distributions of lognormal random variables are investigated in much greater detail than
previously. Moreover, a new paradigm for approximating the distributions of lognormal

sums is presented.

1.2 Lognormal Shadowing

Reflection, diffraction and scattering in the radio frequency propagation environment lead
to three nearly independent phenomena, fast multipath fading, slow shadowing and pass
loss, which correspond to instantaneous signal envelope, local mean and area mean of a
received signal, respectively.

In wireless communications, there are usually many radio propagation paths between
the transmitter and the receiver due to reflection, diffraction and scattering. The radio
waves through different paths possess random amplitudes and phases. The constructive
and destructive addition of these radio waves at the receiver leads to rapid fluctuations,

called multipath fading or fast fading, in the envelope of the received signal. The main
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statistical models for multipath fading include Rayleigh, Ricean, and Nakagami fading.

The mean envelope or power called local mean can be obtained if the fast fluctuation
of the envelope is averaged over a distance of 20 to 30 wavelengths. Usually, the local
mean will also experience slow variations due to the presence of terrain features such as
surrounding buildings, foliage and hills. This phenomenon is called shadowing or slow
shadow fading. Experiment observations have confirmed that shadowing follows a lognor-
mal distribution. The signal envelope or power in decibel units of a lognormal shadowed
signal is Gaussian distributed about the area mean that is the mean value of the local mean.

The area mean is the average received signal strength over a large area between the
~ transmitter and the receiver. Area mean is directly related to path loss which describes how
a signal attenuates with the distance between the transmitter and the receiver. Generally the
received power P, for an arbitrary transmitter-receiver separation d is inversely proportional
to the a-th power of the distance d. The quantity o is path loss exponent.

Because some wireless techniques like diversity channel coding can be employed to
minimize the effects of the fast multipath fading, the slow signal variations from lognormal
shadowing are more serious than rapid fading. For this reason, and to limit the scope of

this thesis, our analysis concentrates on the shadowing effect only.

1.3 Lognormal Random Variables

A lognormal random variable (RV) is characterized in that the logarithm of this RV has
a Gaussian distribution. Let X = 10log,, L. If X is normally distributed with probability

density function (PDF)

(1.1)



L is said to be a lognormal RV with PDF

1 __(10log;q I-my) }
== eXp [ el X [>0,
fill)y= 4 Ve o (1.2)

0 [ <0.
where my and Oy are the mean and standard deviation of the Gaussian RV X, respectively,
both of which have decibel units and A = In(10)/10 = 0.23026 [1]. In a mobile radio
environment, the parameter oy, sometimes called the dB spread, is typically between 6
dB and 12 dB for practical channels where 6 dB represents a light-shadowed mobile radio
environment and 12 dB represents a heavy-shadowed environment.
Generally, the natural logarithm of L is more convenient to handle mathematically.

Define the Gaussian RVY =InL. The PDF of Y is

_ 1 ()"my)z
fY(y) - \,/2—7TO'Y €Xp [“‘%‘g—:l (13)

with mean my, and standard deviation oy, which are related to X by

The PDF of the RV L can be correspondingly given by

Inl—my)?
—-——\/§;1C-GYI exp [——(HZG?Y) ] >0,

)= (1.5)

0 1<0.
The moments of a lognormal RV can be easily computed using the moment generating

function of the normal distribution as
E[L") = E[())"] = ™ Tam'oF, (1.6)
Consequently, the mean value of a lognormal RV is obtained by setting n = 1

my = E[I] = E[e'] = " t1% 1.7)

6



and the variance is

2 2
o2 = E[LZ] _ m% — eZmY+20'Y _ eZmY-l—O'Y

S~

= MO (e5 — 1), (1.8)

The cumulative distribution function (CDF) of a lognormal RV is given by

F,(x) = P(L< x) = P(e' <x)=P(Y <Inx)
:l*Q(lnx—mY> (1.9)

Oy
where P(L < x) is the probability that L < x and Q(x) is the complementary CDF of the

standard normal distribution written as

1 °° ——t2/2
X) = —— € dt, x>0. 1.10
0w =—=[ > (1.10)
The complementary CDF is
Inx —
G, (x) = 1—F(x):Q(3%_"_’Z>. (1.11)
Y

Generally a lognormally distributed variable with two parameters m and o is denoted
by A(m,c?). The corresponding normal distribution is denoted by N(m,c?). Figure 1.2
shows the PDF curves of four lognormal RV’s A(0,6?) for o = 0.2, 0.5, 1.3816 (6 dB),

2.3026 (10 dB). Since the PDF of a lognormal RV A(m, 0'2) with non-zero mean can be

written as
1 (Inx — m)z} 1 { In? (xe"’”)}
x) = exp | — = exp | ——————=
&) mox P [ 207 2mox P 202
= e f (xe™™) (1.12)

where f,(-) denotes the PDF of the lognormal RV A(0, 02) with zero mean and the same

variance, it is seen that the parameter m scales the magnitude and X-coordinate of the
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Figure 1.2. The PDF’s of four lognormal distributions A(0, 62).

PDF of the lognormal RV A(0,6?). This parameter can be regarded as a scale factor of a
lognormal distribution. Figure 1.3 illustrates the PDF curves of three lognormal variables

A(m, 1) form =0, 1.0, 2.0.

1.4 Sums of Lognormal Random Variables

A well-known assumption to a sum of lognormally distributed variables is that the sum

distribution is well approximated by another lognormal RV, i.e.
L=Li+Ly+ - +Ly=e1+e2 4+ v . (1.13)

Here the random variable Z follows a normal distribution.
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Figure 1.3. The PDF’s of three lognormal distributions A(m, 1).

Estimating outage probabilities in shadowed wireless environments with co-channel
interference is one of the important practical applications of sums of lognormal random
variables. The outage probability is usually defined in terms of excess co-channel interfer-
ence; i.e. the resultant interference power is greater than the wanted signal power divided
by an appropriate power protection ratio.

Usually, there are N interference signals arriving at the receiver from co-channel mo-
biles or base stations in a cellular radio system. Both the local mean power level S of the
desired signal, S = e%, and the local mean power level I; of the each interference signal,

I, =éYi(i=1,---,N), are known as lognormal distributions. The total interference signal



is generally modeled as a sum of N lognormally distributed signals given by
N
I1=Y1I. (1.14)
i=1
Therefore, the outage probability is defined as [6] [7]
S
Ppy =P (7 < q> =P(I>5/q)

= /0oo G,(s/q) fs(s)da (L.15)

where ¢ is the power protection ratio. This dimensionless quantity depends on modula-
tion techniques and the desired performance. If the assumption (1.13) is used, the outage

probability can be written as [1]
S ebo
P,=P 7 <4 =P Z <q|=P¥,—Z<Ing)
Ing — my, +my
\ /GI%O + 02

due to the fact that (¥, — Z) is a Gaussian distribution.

=1-0 (1.16)

In practical problems, both values of the CDF and the complementary CDF of the sum
less than 107! are of great interest. To put it another way, the both tails of the CDF are
of central concern. For example, outage probabilities in the thermal noise arising from
statistical detection problems of radar targets in lognormal clutter involve values of the
CDF in the range of 107! to 1076, Outage probabilities in co-channel interference are

related to the complementary CDE.

1.5 Literature Review

Many approximate solutions have been developed extensively in the past to compute the
moments or complementary CDF of a sum of independent lognormal signals. Brief de-

scriptions of these approximations are given in this section.

10



1.5.1 Wilkinson’s Method

Wilkinson’s method is based on the widely accepted assumption that the sum of lognormal
RV’s can be approximated by a lognormal RV. According to Wilkinson’s method, the mean
value and standard deviation of Z are determined by matching the first and second moments

of both sides of (1.13) to give:

E[e”] =E[L,+Ly+--+Ly], (1.17)

E[e*]=E[(Li+Ly+---+Ly)*. (1.18)
Combining (1.6) with (1.17) and (1.18), we get

V% = EL|+ElLy) 4+ ElLy]

[ ]

1
= Y M =y (1.19)
i=1
and
) N N-1 N
Mz 1207 EE[L%HZ Z 2 E[L,]E[L,]
i=1 i=1 j=it+1
N
= ) 0f +uf=uy+u (1.20)
i=1
where
of = E[L{]-E[L]%,
N 2 N om0, o2
uzzzoLi:Ze LT (e - 1). (1.21)

Finally m, and 0, can be found by solving (1.19) and (1.20) yielding:

m, = Inu, — 02/2, (1.22)

o3 =1n ('J‘-§+1>. (1.23)
“

11



1.5.2 Schwartz and Yeh’s Method

An exact expression is derived by Schwartz and Yeh for the first two moments of the sum
of only two lognormal signals. Based on the assumption that the sum of two lognormal
RV’s is also a lognormal distribution, Schwartz and Yeh’s approach deploys a recursive
procedure to calculate the moments of the sum of N > 2 lognormal signals, i.e. using the
result of the sum of i lognormal signals to obtain the first two moments of the sum of i +1

lognormal signals. This procedure is illustrated as:

eZ = eY1+eY2.|_..._|..eYN
framy eZZ+eY3+...+eYN:...

= V146, (1.24)

Due to the recursive procedure, we are only interested in the detail of Schwartz and

Yeh’s method for the case of two components, i.e.
? =et +eh2 (1.25)

where the Gaussian RV’s ¥, and Y, have means my and my, and standard deviations Oy,
and Oy, respectively.

Define a new Gaussian RV, Y,=Y,—Y;,sothat

of, = Of +oy. (1.27)

After a very long manipulation in [2], the expression for the mean value of the Gaussian
RV Z is given by

my =my +G; (1.28a)

12



where

M\ O -md o)
Gy=my ®| —4 | +—=Le '

k2o /2
+ 2 Ck Y /
k=1

C
¥

my —kog
T,=¢ M0 (L—ﬁ) ,

O;
Y,

with

(-1t

G =
and the variance is given by

o7 = oy — G —20} G3+G,

where
= my My Oy, _m? /(262 )
G, =N b+ |1-®| ——2 || (md +08)+ —L=te ™/
2 Ig—::]. 2 ( O-Yd> ( Yd Yd) \/ﬁ

o
Yd

+ Z be (k- Tymy (k41707 /20 (mYd - G%d(kJr 1))

— —my kK202 /2
) 2 Cke Y, Yd/
k=1

_ _ 2
M (——————mY koYd) +T,

ool ) T i /20f)
Y O-Yd RV 2r

Gy = 3 (= 1)k NPT+ Y (~ 1)k,

k=0 k=0
with
2
I, = s (k+1)+(k+1)2cx,%d/2q) —My, — (k+1)oy
O'Yd
2 1 k+1 k 1
by = el Z G
Ck+1 =1 ]
and
mYk = “‘mYd +k(7}%d.

(1.28b)

(1.28¢)

(1.28d)

(1.28¢)

(1.28f)

(1.28g)

(1.28h)

(1.281)

(1.28)

Obviously the computational complexity of this method is much greater than that of Wilkin-

son’s method.
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1.5.3 Farley’s Method

Farley’s approach assumes that the summands are N independently and identically dis-

tributed (i.i.d.) RV’s each with corresponding Gaussian mean value my and variance o2.

Farley approximated the complementary CDF of the lognormal sum

2

L=

M=

L. = eYi juaas eY

i
i=1 =1 1

I
0

as

N
P(L>y)~1— [I—Q(wﬂ . (1.29)

Oy
This method was proved by Beaulieu and Abu-Dayya [1] to be a strict lower bound on the

complementary CDF of the i.i.d. lognormal sum. Let

o/ = {the event that at least one RV > v},

# = {the complement of event &/ }.

The mutually exclusive events & and Z give the computation of the complementary CDF

to be

P(L>y) = P(L>y,4)+P(L>Yy,%)
= P()+P(L>y,RB)

N
= 1- {1-Q<M>] . (1.30)

Oy
Farley’s method can be easily extended to sums of lognormal RV’s that are not i.i.d. The

result is

N lny—myi
P(L>y)>1-]]|1-0 — (1.31)
Y,

i=1

i
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Correspondingly the upper bound of the CDF of a lognormal sum is

1ny——myi
1-0 — ]| (1.32)
Yi

Many works [1] - [5] have discussed comparisons of these methods. Some investigated

N
P(LSY)SI_I1

1.5.4 Comparisons of Methods

these approximations to the CDF and complementary CDF while others concentrated on
the estimations of the first two moments of the sum distribution. All of these works assessed
the accuracies of the methods by comparing results computed using these approximate
methods to results from simulation.

In Schwartz & Yeh’s paper [2], Wilkinson’s method and Schwartz & Yeh’s method are
compared in terms of their approximations to the first two moments of the lognormal sum
distribution. It was stated that the Wilkinson’s approach breaks down for o > 4 dB which
falls in the range of practical values of the dB spread (6 dB < o < 12 dB).

Beaulieu and Abu-Dayya [1] compared these methods for approximating the CDF and
complementary CDF of a sum of i.i.d. lognormal RV’s instead of approximating the first
two moments. They found that the simpler Wilkinson’s approximation may give more
accurate results than Schwartz & Yeh’s approach for values of the complementary CDF in
the range of 10! to 10 while Schwartz & Yeh’s method, in most cases, provides the most
accurate results for values of the CDF less than 0.9. However, Farley’s formula gives more
accurate estimates than the other two methods for large values of the dB spread o =12 dB.

Cardieri and Rappaport [5] examined the means and standard deviations obtained using
Wilkinson’s and Schwartz & Yeh’s methods for the more general cases when the sum-
mands have different mean values and standard deviations in decibel units . It was shown

that Schwartz & Yeh’s method always provides better accuracy than Wilkinson’s method
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and is virtually invariant to differences in the mean values and standard deviations of the
summands, as well as to the number of summands.

In this thesis, we investigate the assumption that a sum of independent lognormal RV’s
is also lognormally distributed, which is the basis of Wilkinson’s and Schwartz & Yeh’s
approximations, by numerically computing CDF values of lognormal sums in the range of
107% to (1 — 1075). This range is much wider than that of previous works. Based on these
numerical values of CDF’s, we give a more detailed comparison of the above approximate
methods and present a new paradigm for constructing approximations to lognormal sum

distributions.

1.6 Thesis Outline and Contributions

In this chapter, we give a brief introduction to the background and previous literature on
the sum distribution of independent lognormal RV’s.

In the next chapter, we investigate the several numerical integration methods for com-
puting the characteristic function (CF) of a lognormal RV for the practical values of dB
spread. The curves of the CF’s are given and compared for different numerical meth-
ods. The CDF values of a sum of independent lognormal RV’s are obtained by the inverse
Fourier transform of the product of individual CF’s.

In Chapter 3, we examine the goodness of the assumption that a sum of independent
lognormal RV’s is also lognormally distributed and present a new numerical approximation
to a lognormal sum distribution based on this assumption. At the same time, we investigate
the accuracy of Wilkinson’s, Schwartz & Yeh’s and Farley’s approximations.

In chapter 4, we give a summary and conclusions of the thesis.

16



Chapter 2

Numerical Computation of the
Characteristic Function of a Lognormal
Random Variable and the Inverse

Transform

The characteristic function (CF) method is a standard approach to determine the probabil-
ity distribution of a sum of independent RV’s. However, the exact form of the CF for a
lognormal signal is not known. Computation of the lognormal CF using numerical integra-
tion also presents considerable difficulties due to the semi-infinite integration interval, the
oscillating behavior of the integrand and the extremely slow decay rate of the tail of the
lognormal probability density function (PDF).

In this chapter, we investigate different numerical methods for the lognormal CF’s for
values of the dB spread of practical interest. The curves of the CF’s are given and compared

for the different numerical methods to determine the best numerical integration method.
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Finally CDF values of a sum of independent lognormal RV’s are obtained by the inverse

Fourier transform of the product of individual summand CF’s.

2.1 The Characteristic Function of a Lognormal Random

Variable

The characteristic function is quite useful in determining the probability distribution of a
sum because the CF of the sum of independent RV’s is equal to the product of the individual

CF’s. That is, if we have a sum

then the CF of the sum is
N
o, (w) =9, (w) @.1)
i=1
where each CF of L, is actually the Fourier transform (within a minus sign) of its corre-

sponding PDF, f; (x), with the form

¢, (w) = E[e/"] = /_ : f, ()™ ax. (2.2)

4

It is obvious that the PDF can be determined as the inverse Fourier transform of the CF as

fil) = % /.: O (w)e™ " dw (2.3a)
- % /0 " (Re[g, ()] cos(wx) + I, (w)] sin(wx) }dw. (2.3b)

where Re[:] and Im[-] denote the real part and the imaginary part, respectively. The last
equation is due to the fact that the Fourier transform of a real function has an even real part

and odd imaginary part. Using a property of Fourier transform [8, 3.3.7] the CDF of the
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sum is obtained as

P(L<Y) =5 / [ ~i')-L}_%"—) M (2.4a)

¢L(W) ~-]w)/
2.4b
2 27t —e  JW dw (2.45)

1 1 / = Im[¢; (w)]cos(wy) — Re[¢, (w)] Sin(WY)dw. (2.4c)
0

w

2 T

Therefore, the CF provides an general, exact and straightforward approach to find the PDF
and the CDF of a sum of independent lognormal random signals. However, no exact ex-
pression for the CF of a lognormal RV is known. The Fourier transform of a lognormal RV
is very difficult to evaluate even using numerical methods.

In the following sections, several numerical integration approaches are investigated.
Because the CF of a lognormal RV is a complex function, numerical computation of the

lognormal CF is usually split into two parts, i.e. the real part and imaginary part as
Re[¢(w)] = / £,(x) cos(wx)dx = / £, (x) cos(wx)dx 2.5)
—o0 0

m[@(w)] = / fr.(x) sin(wx)dx = / f1 (x) sin(wx)dx. (2.6)
oo 0
To simply the computation, let the corresponding Gaussian mean value m equal zero which

does not lose generality because, due to (1.12), the CF is expressed by
= /0 ) f(x)e™*dx
= /m e~ f(xe ™) e dx
= / foxe ™) e M¥ dxe™™
= /0 Jo(y)exp(jwe™y)dy
= ¢y(e™w) 2.7)
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where
y=e"x,
and ¢, (w) denotes the CF of the corresponding lognormal RV with zero mean and the same
standard deviation in decibel units. Obviously a non-zero mean value only causes a scale
factor in frequency.
Due to the spectral symmetry and equations (2.3b) and (2.4¢), we only need to evaluate

the values of the lognormal CF over the positive frequencies.

2.2 Modified Hermite Polynomial Method

Barakat [9] derived an expression for the CF of a lognormally distributed RV as

o(w) = oW W2 ;20 g’%)ian( W)k, (ow) (2.82)
where
: d’ )
an(jw) = s expljw(e’ —y—1)],_g (2.8b)

and the Taylor-series coefficients and

() = H, (x) = (—1)"e?2 j?e-xzﬂ 2.80)

are defined as modified Hermite polynomials which are different from the normal Hermite

polynomials. The relationship with the normal Hermite polynomial is

H, (x) =27, (%) . (2.9)

Figure 2.1 gives the real and imaginary parts of the lognormal CF for o = 0.25. This figure
is a replication of {9, Fig.1]. To the best of the authors’ knowledge, this is the only graph

of the real and imaginary parts of the CF of a lognormal RV published in the literature.
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Figure 2.1. Real and imaginary parts of lognormal CF computed using modified Hermite

polynomials for o = 0.25 (after [9, Fig.1]).
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Note the o = 0.25 or 62 = 0.0625 corresponding to 1.09 dB spread. Practical problems in
wireless communication involve lognormal RV’s with values of dB spread ranging from 6
dB to 12 dB. Our empirical tests indicate that the expansion (2.8) can only be used for small
values of ¢ and small values of w. For example, for 6 = 1.0 and w =5, or for 0 = 0.25
and w = 30, the series did not converge. These tests were done using MATLAB on a Linux
system. We note from Figure 2.1 that the real and imaginary components exhibit oscillatory

behavior.

2.3 Transformed Integral

As mentioned in the previous section, the major difficulties encountered in working with

numerical integration of the lognormal CF are the following:
e Semi-infinite integration interval;
e Slow decay rate of the lognormal PDF;
e Oscillation behavior of the Fourier integral.

A common approach for dealing with the infinite or semi-infinite integration interval is
to make some transformation to change the interval to be finite.

According to the behavior of the lognormal PDF which is a positive-valued function
with only one local maximum (unimodal function), its Fourier transform can be performed
by evaluating the area below the PDF curve in horizontal strips instead of in vertical strips,
if one has knowledge of the inverse PDF function [10]. The following are the details.

Since the lognormal distribution has only one maximum value

Y, = 1 o2 (2.10)
2nC
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Lognormal PDF
y

Figure 2.2. Transformation of the integral.

atx=e¢ % 2, the Fourier integral can be transformed to be
6(w) = Ele™]= [ f@erax
0

o rflx) Yo rx(y)
= / / dye?™ dx = / / /" dxdy
0 Jo 0 Jx

Yo pJwx x5(y) Yin eijz(y) — eijl(y>
0 Jw x () 0

where x, (y) and x, (y) are the inverse functions of the lognormal PDF which can be obtained

dy 2.11)

Jw

by solving the PDF equation

2
y= ) = e enp (13 )

2nox

In®x
V2Toy = exp (——E&—i — lnx>
(Inx)? 4 26% Inx+26* In(v/276y) = 0. (2.12)
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Solving the equation (2.12), the inverse functions are

x,(5) = exp(—02 — 0/ 02 - 2In(v/270y))

=exp(—02— 0+/—2In(y/Yp)) (2.13)

x,(y) = exp(—06* + 0‘\/02 —2In(v2m6y))
= exp(—62 +0+/=21In(y/Y)). (2.14)

Substituting (2.13) and (2.14) into (2.11) and after some manipulations, the Fourier integral

is transformed to be

Ym /1 J 2()’) jwul(y)
= m wity(¥) _ d 2.15
0(w) = =2 [0 —ea0)ay @.158)
where
u,(y) = exp(—0? — 64/-21ny) (2.15b)
Uy (y) = exp(—02 +c4/—21ny). (2.15¢)
The real part and imaginary part of the transformed integral are given, respectively, by
Yo (1. .
Re[p(w)] = -2 /0 {sinwi, ()] — sinwu, (¥)]}dy (2.16a)
Y. 1
Im[¢(w)] = -;v”—’/o {cos[wu, (y)] — cos[wu,(y)] }dy. (2.16b)

These are definite integrals, each with a finite interval that is free of the truncation error that
occurs for a semi-infinite integral. Moreover, the form of this transformed integral is quite
interesting. However, this integral has a singular point at y = 0 which cannot be evaluated
in computer systems. Thus, the actual integration interval has to be [§, 1] where § is very
small. In addition, it is found that the transformed integrands are still oscillatory functions
with irregularly located zeros. They are illustrated in Figure 2.3 for w = 20 and 0 = 6 dB.

Figure 2.3 shows that the integrand oscillates more rapidly as y approaches zero and that

the envelope is not constant. These features may make the transformed integral inefficient
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Figure 2.3. (a) The transformed integrand in (2.16a). (b) The transformed integrand in

(2.16b) for w = 20 and 6 = 6 dB.
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to evaluate numerically. In the following subsections, we use the trapezoidal rule and

Simpson’s rule to compute the transformed integral.

2.3.1 Trapezoidal Rule

In this subsection, we apply the trapezoidal rule to the transformed integral developed in
the previous section and use an automatic integration technique that will continue to bisect
the subintervals until a preset absolute tolerance €, or relative tolerance €, is satisfied.
The integration interval [a, D] is divided into n equal subintervals, leta =x, <x; <--- <
Xp = b, x; = a+ih, h = (b—a)/n, and the trapezoidal rule is applied to each subinterval.

Then the extended or composite trapezoidal formula [11] is given by

1
o= |5 flag) + S oo S 05y ) + 5 )| @.17)
The remainder is
(b“a)3 '
Ro=—5mf"(§), a<E<b (2.18)

for some £. But it is not easy to choose the step & or n perfectly at the beginning if the
bound of f”(&) cannot be found. Therefore, the trapezoidal rule can be implemented in an
iterative way. First we set an initial n, calculate T,,, then double the number of subintervals
by equally dividing each original subinterval. Then

1 = h
L, =T+~ =) 1
=3T3 2 ot 3) (2.19)

The algorithm (2.19) does not lose the benefit of the previous work. If |T,, — T,| < €, , the
iteration stops and 7, is the integration approximation. If not, the iteration will continue
until the tolerance is achieved.

The plots of the CF’s computed using trapezoidal rule are given in Figure 2.4 for 6

dB spread and Figure 2.5 for 12 dB spread. In Figure 2.5 we found three small abrupt
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Figure 2.4. Real and imaginary parts of a lognormal CF computed using trapezoidal rule

(6 =6 dB).
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Figure 2.5. Real and imaginary parts of a lognormal CF computed using trapezoidal rule

(0 =12 dB).
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convexities along the curve of the real part of the CF on w € [0, 40] that illustrates that the
use of the trapezoidal rule to compute the transformed integral is not fully stable so that

there are some inaccuracies occurring in its evaluation.

2.3.2 Simpson’s Rule

Simpson’s rule is very frequently used in approximating integrals [11], [12]. This rule
approximates f(x) with a quadratic polynomial and, in general, is more efficient and more
accurate than the trapezoidal rule when the integrand function has a finite 4th derivative.

The composite Simpson’s rule is given as

h n—1 n—1
Son =3 | F@+F(B)+2 3, ) +4 3, f1) (2.20a)
i=1 i=1
where
n="22, (2.20b)
2n
x;=a+ih, i=12,--+,2n-1. (2.20c)

The remainder is
(b—a)®

= "5eza g fV(E), a<i<b 2.21)

An interesting and useful observation is that Simpson’s approximation can be calculated
from the trapezoidal rule by

Sy = @%ZJ. (2.22)

As a result, Simpson’s rule can reuse most of the computational effort and programming
code of the trapezoidal rule.

The plots of the CF’s using Simpson’s rule are given in Figure 2.6 for 6 dB spread

and Figure 2.7 for 12 dB spread. Similar to the trapezoidal rule, there is a small glitch

happening to the imaginary part curve in Figure 2.7 for 12 dB spread.
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Figure 2.6. Real and imaginary parts of a lognormal CF computed using Simpson’s rule

(0 =6dB).

30



1 T T ! ! T T T
: : : : ; . | — Real Part
: : — -~ Imaginary Part

d(w)

02l STRURTRR A _
~0.4 l { l | { l 1
5 10 15 20 25 30 35 40
Frequency ©
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Both trapezoidal rule and Simpson’s rule are simple numerical techniques to implement
but they are not the most efficient. As w increases, the integration becomes extremely time-

consuming.

2.3.3 Adaptive Algorithm

Observing the transformed integrand in Figure 2.3, we conjecture that an adaptive algo-
rithm might be helpful because the integrand changes more rapidly when y — 0. An adap-
tive algorithm partitions the original subintervals based on the estimated error on each
subinterval for each iteration, such that many points are located in the neighborhood of
local difficulties of the integrand.

We utilize an adaptive subroutine from GNU Scientific Library (GSL). The algorithm
is based on Gauss-Kronrod rule. The curves obtained by this adaptive algorithm, which
are illustrated in Figure 2.8 and 2.9 for 6 dB and 12 dB, respectively, are almost the same
as those we have obtained using the trapezoidal and Simpson’s rules but the computation
time is reduced greatly and the curves are smooth without any glitches or cusps. Since the
CF values become very small and change slowly beyond the point w = 40, we also plot the
absolute values of the real and imaginary parts of CF’s over a large interval to see how the

CF’s decay with the frequency w.

2.4 Fast Fourier Transform Approach

The fast Fourier transform (FFT) usually provides an efficient approach to the spectral anal-
ysis of a signal. The FFT also can be used to evaluate the Fourier integral of a function.

However, the PDF of a lognormal RV is a continuous function with a long slowly-decaying
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computed using an adaptive algorithm for o = 6 dB.
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tail that requires special treatments before applying the FFT algorithm. Sampling and trun-

cation are necessary steps in the FFT approach.

2.4.1 Sampling

The PDF of a lognormal RV is a continuous function that has to be converted to a discrete
value sequence via sampling. The sampling rate must be carefully chosen to avoid or
minimize the aliasing effect.

The theoretical sampling frequency required to eliminate the aliasing effect must be

equal to or greater than two times the maximum non-zero frequency [13], i.e.

fs 2 2fm. (2.23)

However, the spectrum of the lognormal distribution is not known. From the CF plots
gotten in last section, it seems to be not zero over a large range of the frequency, especially
for greater o. This feature makes eliminating the aliasing effect impossible. From another
point of view, the location of the PDF mode may give us a reference point. The peak value
of a lognormal PDF happens at x, = e™¢ ? which decreases exponentially with the square
of the dB spread. Thus, f; must at least be on the order of that value. For example, for
o = 12 dB, x, = 0.00049 so that f; must be greater than 10*. In this work, the values of f;
are decided by the empirical data. We continuously increase f; until it reaches a point that

the CF curve does not change greatly any more.

2.4.2 Truncation

The lognormal distributions possess long tails that have low values but nonzero probabil-

ities. This character is more obvious for the larger dB spreads as demonstrated in Figure
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Figure 2.10. Lognormal PDF with different .

2.10. Before applying the FFT algorithm, the PDF must be truncated to be a sequence with
a finite length. Truncation operation actually multiplies a rectangular window function
with the lognormal PDF which will introduce high frequency components into the spec-
trum. This is the effect referred to as frequency leakage. Therefore, a new source of error
in addition to aliasing error is triggered. We inevitably have to take it into consideration.
The number of points in the FFT is also important in determining the frequency resolu-

tion. Fortunately it is determined by the truncation length since

_ LS L (2.24)
N Xf X

fo

in which X, denotes the truncation length. Equation (2.24) shows that if the truncation
length is large enough, the frequency resolution can be made very small.

In this thesis, We choose N to be a power of 2 because then the FFT algorithm is the
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fastest and most efficient. The explicit values of N are determined by the truncation points

at which the PDF values start to be less than 1074,

Table 2.1. FFT sizes for the lognormal CF’s

o@dB) | e | f X, | N (Power of 2)
6 {01483 | 1000 | 32.77 216
8 [0.0336 | 3000 | 87.38 218
10 | 0.0050 | 10000 | 209.72 221
12 | 0.0005 | 20000 | 419.43 223

Table 2.1 provides some data about the parameters used for the FFT algorithm in evalu-
ating the lognormal CF’s. Figure 2.11 and 2.12 are CF plots obtained by FFT methods. The
analysis above shows that the errors derived from aliasing and frequency leakage cannot be
estimated due to the limited knowledge of the CF so that the accuracy of the FFT approach
can not be rigorously guaranteed. Error control is only roughly implemented by increasing

/s to reach a point that the curve will not change significantly.

2.5 Integration Between the Zeros of the Integrand

The method of the transformed integral shows that it is very difficult to change the oscil-
latory character of the integrand no matter how the integration is transformed. In general,
the regular rules for numerical integration are not effective for oscillatory functions [12].
A simple method for oscillatory functions is to integrate between the zeros of the integrand
function and sum up the resultant infinite series.

The algorithms used in this section are based on those in QUADPACK [14]. A subrou-
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Figure 2.11. (a) Real and imaginary parts of a lognormal CF computed using FFT for 0 =6
dB. (b) Magnitudes of the real and imaginary parts of a lognormal CF computed using FFT

for o = 6 dB.
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tine from GSL, qawf, is utilized to compute the lognormal CF’s for the practical parameters.

In this method, the integration is evaluated by three steps:

1. Divide the semi-infinite Fourier integration interval into the consecutive subintervals
by the zeros of the integrand. Note that the zeros of the integrand are those of cos(wx)

or sin(wx) as the zeros are not displaced by the multiplication by the PDFE.

2. Apply the modified Clenshaw-Curtis algorithm to the integral over each subinterval.
If win (2.5) and (2.6) is too small, the Gauss-Kronrod rule instead of the modified

Clenshaw-Curtis rule is used to evaluate the integral over each subinterval.

3. The contributions from the consecutive subintervals form a series. The summation

of this series is speeded up using a series acceleration technique, €-algorithm.

Because the step 2 is the key procedure in this method, we simply call this integration

method as “modified Clenshaw-Curtis” method in the remainder of this thesis.

2.5.1 Division of the interval

The entire semi-infinite interval is divided into the consecutive subintervals as
C.=[(k=1)TkT], k=1,2,---, (2.25a)

where T is the length of each subinterval

Clwl)+ )z

=

(2.25b)

The quantity [|w|] represents the largest integer that is smaller than or equal to |w]|. The for-
mula (2.25b) makes the width of the subintervals contain an odd number of half circles and

prevents the width of the subintervals from varying greatly with the value of w. Since the
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subinterval length 7 is chosen to be an odd number of half periods, the contributions from
the consecutive subintervals will have alternative signs when the function to be integrated
is positive and monotonically decreasing.

The whole integration works on an overall absolute error tolerance (€, ). On each

subinterval C, the algorithm tries to achieve the tolerance

g=(1-pp" ¢ k=1,2,--, (2.26)

abs’

with p = 0.9 such that the overall absolute tolerance can be guaranteed in the entire process

since
gtotal:kZlgk:(l'—p) (kz:lp ) €abs

= gabs :

2.5.2 Integration methods over each subinterval

The modified Clenshaw-Curtis procedure is applied to the integral over each subinterval. If
win (2.5) and (2.6) is too small, the Gauss-Kronrod rule instead of the modified Clenshaw-
Curtis rule is used to evaluate the integral over each subinterval. In the following, we
give brief introductions to the modified Clenshaw-Curtis algorithm and Gauss-Kronrod

integration. The details are given in [15].

2.5.2.1 Modified Clenshaw-Curtis method

Clenshaw-Curtis integration approximates the integrand f(x) by a truncated Chebyshev
expansion which can be integrated exactly. That is, if f(x) is a continuous and bounded

function in [a, b], then it can be expanded as Chebyshev polynomials as [15]

oo N
flx)=g(t) = éCO + Y T (1) =~ Zﬂcka(t) (2.27a)
k=1
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where

(b"“)t“b“)} L rel-11], (2.27b)

1) =
s =| =2
and Z” indicates that the first and last terms are to be halved. The Chebyshev polynomial

of degree k is given by

T(t) = cos(kcos™11), (2.28)

and the coefficients are obtained by
2 T
= —7;/ f(cosB)cos(kO)d6. (2.29)
0

The Chebyshev polynomials of up to degree five are expressed as

Ty(1) =1, T,(2) = 4 — 31,
T,(t) =1, T,(t) = 8t* — 81> +1,
T,(t) =27 — 1, T(2) = 16¢° — 200> + 51

Then the integral becomes

[ reae=22 [ gt

b—al +1
2“2”ck / - T(e)di (2.30)
k=0 -

~
~

which can be integrated exactly.

The coefficients ¢, in (2.29) can be approximated by means of the trapezoidal rule

2 Y, nil ik
ck:ﬁlgolf [COS (—N—)]COS (—]V“) s k:071727'”7N' (231)

In the subroutine based on QUADPACK, a 25-point modified Clenshaw-Curtis rule is used
to evaluate the integration over each subinterval. Piessens et al [14] gives an extended

method for calculating these 25 coefficients efficiently.
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For the integrand with the weight functions sin(wx) and cos(wx), the integration changes

to be
b b—a (t! [b—a_ b al
/ w(x) f(x)dx = a/ w at-|~—tg Z”cka(t)dt
a 2 "\ 2 2 )~
= b‘“%"c /Hw b=, PE A ¢y (2.32)
=3 A, 5 5 ()dr. :
Then

/ab sin(wx) f(x)dx :b — % cos ({)—g—ft—w> %H ¢ /+1 sin(Az) T, (¢)dt

N// +1
5 w) Y e / 1 cos(A1) T, (¢)dt (2.33a)

k=0 -
and

N
/bcos(wx)f(x)dx :b;a cos (b;aw> 2" c; /+1 cos(At) T, (¢)dt

b—a . (b+a N +
- sm( ; w)k:zo c, /_ sn(GnT(0d (2330
where
b—a
A=""w (2.33¢)

Consequently the sine and cosine Chebyshev moments are calculated by

+1

S,(A) = / SQOT(0dr, k=0,1,--,N, 2.34)
+1

C,(A) = / cosA)T,(1)dr, k=01, N, (2.35)
-1

respectively. It is noticed that
SZk(k) :C2k+1(k)207 k:O,l,"' . (2.36)
And some recurrence relationships are used to obtain these moments, that is,

Ak —1)(k—2)S,,(4) —2(K* - 4)(A* - 2k* +2)S,(A)

+ A2 (k+ 1) (k+2)S,_,(A) = —8(k* —4)sin(A) — 24A cos(A) (2.37a)
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with initial values
S,(A) =2(sin(A) — Acos(1))A 72, (2.37b)

S3(A) = A7%sin(A) (18 — 48273 + 2T cos(A) (4842 —2) (2.37¢)
and

Ak~ 1)(k—2)Cp oy (A) = 2(k2 — 4)(A* — 2K* +2)C, (A)

+ 22 (k+1)(k+2)C,_,(A) =244 sin(A) — 8(k* —4)cos(A) (2.38a)

with initial values

Cy(A) =24 Lsin(A), (2.38b)
C,(A) =84 %cos(A) — A 73(24% - 8) sin(A), (2.38c)
Cy(A) =32274(A% — 12) cos(A) + 24> (A* — 8042 +192) sin(A). (2.38d)

Therefore, the numerical computation of the Fourier integral can be easily and efficiently
accomplished using the modified Clenshaw-Curtis method.

In this thesis, a 25-point modified Clenshaw-Curtis integration rule is applied to eval-
uate the integral over each subinterval. Then an iterative computation similar to that in
the trapezoidal rule or Simpson’s rule is executed. For small values of A, there is no need
to take special care regarding the weight function because the function does not oscillate
greatly. A 15-point Gauss-Kronrod formula instead is used in this case for directly com-

puting the integrals.

2.5.2.2 Gauss-Kronrod Integration

In the general Gaussian quadrature formula

Gy = i w.f(x.), (2.39)

i=1
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the nodes x; and the weights w, for the different n-point Gaussian formulae do not overlap.
That means that the computation of m-point (m > n) Gaussian quadrature cannot reuse the
previous results of n-point rules. But this is particularly important when some specified
degree of accuracy is required and the number of points needed to achieve this accuracy is
not known ahead of time.

Kronrod found a way to expand Gaussian quadrature to allow the duplication of nodes.
The Gauss-Kronrod rule uses the original n» nodes and adds n+ 1 new nodes to form a
higher order 2n + 1 Kronrod rule. But this required new weights to be calculated again.

The expression of Kronrod rule is
n ntl
Kons1 = i_Zluif(x,J +j§v,-f(yj) (2.40)
where u; and v ; are the new weights, x; are the original Gaussian nodes, and y ;are the new
added nodes. Consequently G, and K, ; share n nodes.
In the automatic integration, a Gauss-Kronrod rule starts from a classical n-point (n =7,
10, 15, 20, 25 or 30) Gaussian quadrature rule over each subinterval. Then this is extended
to be 2n+ 1 order Kronrod rule. The difference between the two rules is regarded as an
error estimate in the approximation of the integral. If the required tolerance is not achieved,

the subintervals will be continuously bisected and the same procedure is then applied to the

new and smaller subintervals.

2.5.3 ¢-algorithm

The summation of the contributions from the consecutive subintervals in the previous sub-
section is speed ed up using g-algorithm. The ¢-algorithm [12] is a device for accelerating

the convergence of slowly convergent sequences or determining a limit for divergent se-
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quences. The fundamental relationships of the g-algorithm is

(M) — glm D) (elmtD) — glmy = 1 (2.41)

that also can be rearranged as

m) . ~(m+1 m+1 m)y—1
gl = glmFl) 4 (glmtl) — glm))~1, (2.42)

A two-dimensional array can be used to demonstrate the procedure of the g-algorithm in

which the subscript s of the quantity es('") indicates a column number and the superscript m

a diagonal.

el)

891) sfo)
el € 2(0)

£@) (V) £
£ £(1)

891) 552)
8(()3)

The relationship in (2.42) can be applied to a fundamental component in this two-dimensional

array in a general form as

glm
+1
o
gs(m+1)
If we set the initial conditions
e =0, m=1,2,-, (2.43a)
e =5, m=0,1,, (2.43b)
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in which §,, are the elements of the slowly convergent series to which the g-algorithm
applies, equations (2.43a) and (2.43b) give the values in the first two columns of this two-
dimensional array and then the rest of the array is constructed from left to right, column by
column, using the relationship (2.42).

It is often found that the quantities 82(;") approach more rapidly to the limit of the sum of
the sequence {S,,} than partial sums of the original sequence [15]. That is also the property
that enables the g-algorithm to be a convergence accelerating transformation.

Figure 2.13 and Figure 2.14 are CF plots obtained using the third method, the modified
Clenshaw-Curtis integration. The curves obtained in this section are more smooth than

those obtained from the transformed integral using the trapezoidal and Simpson’s rules.

2.6 Comparison of Numerical Methods

Based on the graphs obtained using the three different numerical methods, these methods
give us almost the same results. But their efficiencies are different.

A comparison of these numerical methods is made on a specific machine to identify
their efficiencies. The numbers of multiplications, function evaluations, integrand functions
evaluation and computing time are used as the criteria. Function evaluation here is referred
to as the evaluation of all involved elementary functions, such as sin(x), cos(x), In(x), ¢* and
so on, while the integrand function evaluation regards the entire integrand as a function. So
the integrand evaluation gives us an idea about how many data points a specific algorithm
needs to achieve the tolerance. In this thesis, the transformed integral (trapezoidal, Simp-
son’s, adaptive algorithm), FFT and modified Clenshaw-Curtis methods are compared in
calculating the lognormal CF for 12 dB spread for @ €[0, 40]. When the step size Aw is

0.1 rad/s, there are 400 frequency points to be evaluated. The absolute tolerance in the CF
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Figure 2.13. (a) Real and imaginary parts of a lognormal CF computed using modified
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a lognormal CF computed using modified Clenshaw-Curtis method for o = 6 dB.
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is set to be 1075,

Table 2.2. Comparison of numerical integration methods
Methods Multiplication | Func. Eval. | Integ. Eval. | Time(sec)
Trapezoidal 6.84E+9 4.56E+9 0.76E+9 749
Simpson’s 10.03E+9 6.68E+9 1.11E+9 1099
Adaptive 54.97E+6 | 36.64E+6 6.11E+6 7
FFT 40.94E+6 | 24.12E+6 | 1,048,576 5
Clenshaw-Curtis 19.01E+6 2.67E+6 495,075 1

Table 2.2 summarizes the approximate number of operations required in these methods.
It is concluded that the modified Clenshaw-Curtis is the most efficient in terms of all the
criteria while the transformed integral is the worst. Among the three algorithms for the
transformed integral, the performance of the adaptive algorithm is better than the others
by 2 to 3 orders of magnitude. Simpson’s rule is a little worse than the trapezoidal rule
consistent with published results that the trapezoidal rule is well suited for Fourier integrals
[16]. Furthermore, the difficulties of the trapezoidal and Simpson’s rules becomes more and
more severe with increasing .

The FFT differs from the other methods in that it has to hold the whole data set in the
memory at the same time which leads to large storage requirements. If the size of the FFT
is determined, the computation complexity of the FFT method is always determined as
O(Nlog, N) no matter what the spectral range being evaluate. In other words, evaluating
a CF over the ranges of [0, 40] and [0, 100] require the same amount of time. However,
the errors coming from aliasing and sequence truncation are difficult to estimate due to the

lack of knowledge of the exact form of the lognormal CF. In order to minimize these errors,
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f5 is set to be as great as possible.

2.7 Inverse Fourier Transform to PDF and CDF

As mentioned in Section 2.1, the characteristic function of a sum of independent RV’s
is the product of the characteristic functions of the summands. The sum distribution can
be obtained by evaluating the inverse Fourier transform of the CF of the sum based on
equations (2.3b) and (2.4c). In this section, we give a method to evaluate these inverse
transforms numerically. The numerical computation of the inverse transform is actually a
two-dimensional integration without the exact form of the CF of a lognormal RV.

Since the inverse Fourier transform is a similar procedure to the Fourier transform,
we applied the same numerical methods to it. We found that the transformed integral
method is not valid for the inverse transform because the computation efficiency of the
transformed integral is extremely low. QOur efforts mainly concentrate on the FFT method

and the modified Clenshaw-Curtis integration method.

2.7.1 FFT

It is straightforward to find the PDF of the sum via the IFFT. Then the CDF is obtained
through accumulating the discrete values of the PDF. But it is found that the resources of
computer systems might not be able to implement the FFT for some parameters to obtain
the desired CDF values. For instance, the CDF for a sum of 6 lognormal RV’s with 12 dB
spread converges to unity slowly. Its value is not above (1 — 1076) until y = 105. If the

CDF value of (1 — 107°) is desired, we need to carry out the FFT with a size of
N =10°x fs = 10° x 20000 = 2 x 1010 < 23¢
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which demands 8 x 16G bytes memory in a computer system supposing that a double-type
variable occupies 8 bytes. This is because the FFT algorithm requires storing N variables
in memory at the same time. Obviously, the FFT method is not practical in evaluating CDF
values for large dB spreads that require great sampling frequencies. But it is well suited for
small dB spreads like 6-8 dB. Figure 2.15 gives a complementary CDF plot obtained using

the FFT method.

2.7.2 Modified Clenshaw-Curtis

When using the modified Clenshaw-Curtis approach, it is noticed that the function cannot
be evaluated at w = 0 in the formula (2.4c) because the denominator is w = 0. If we evaluate
the integration starting from a small § instead of zero, truncation error will be introduced.
An alternative way that avoids truncation error is to use the limiting value of the integrand
function at w = 0. Fortunately the limiting value at w = 0 can be found using I’Hospital’s

rule because Re[¢(0)] = 1 and Im[¢(0)] = 0 in all cases, i.e.

Im[¢, (w)] cos(wy)

tim [TV _ {Im[ch(w)]}'cos(wy) — lm Im{g, () sin(w)y
= }vl_f_)r}) 2 [¢L( ) — ‘PL(“W)]’COS(WY)
N N
=Y E[L]= Y emtoil?, (2.44)
i=1 i=1
and
tim RAPLNIOI) _ i, (ef, ()]} sinowy) + lim Relg, () cos(wr)y

= lim — [¢L(w)+¢L(——w)] sin(wy) +v

=Y (2.45)
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Figure 2.15. Complementary CDF of a sum of 6 i.i.d. lognormal RV’s (n=0dB, c =6

dB) computed using the FFT.
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where

Q)E (W) = ¢L(~—W)7

N
(bL(W) - H(Z)Li(w)a

dg; (w)
dw

= JE[L;].

w=0

Consequently the limiting value of the function in (2.4¢) is

Ml/i_f)l%) Im[¢, (w)] cos(wy) 1; Re[¢; (w)]sin(wy) _ ge’"i“’?/z . (2.46)
In the special case of i.i.d. RV’s and m; = 0 for all i, the right side of (2.46) becomes
Ne%/2 — Y.

In implementing the inverse transform, the subroutine we utilized from GSL often broke
down. It was found that this was caused by evaluating the CF at some extremely small

frequencies (w < 10“6). In such situation, we changed to use the Gauss-Kronrod rule

directly after making the variable change
X= (2.47)

to transform the semi-infinite range to a finite range (0, 1] because when the w in the
integrands f(x)sin(wx) and f(x)cos(wx) becomes too small, the integrand functions do
not oscillate quickly and can be treated normally.

Although there is no closed-form expression for the sum distribution of independent
lognormal RV’s, the numerical methods for computing the PDF and CDF can be tested
through the case of N = 1 by comparing the quantities after Fourier transform and inverse

transform with the theoretical data. The CDF of a single lognormal RV is evaluated as

PL<y)=1-0 (W) . (2.48)
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Figure 2.16. Comparison of the theoretical PDF and the PDF computed using the numerical

inverse transform form =0 dB and o = 12 dB.
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The comparison results are illustrated in Figure 2.16 and 2.17. In Figure 2.17 we plot
the data on the lognormal probability paper in which the lognormal CDF is plotted as a
straight line. It is observed in both figures that the results from the numerical computa-
tions are in excellent agreement with the theoretical values. Therefore, we gain confidence
that our numerical method is suitable for computing the sum distributions of independent
lognormal RV’s for probabilities in the range of practical interests and that the plots of the
lognormal CF are correct.

In conclusion, three numerical integration methods for the lognormal CF and the inverse
transform have been investigated in this chapter. The modified Clenshaw-Curtis approach
was seem to be well suited to this computation. We can further in the next chapter calculate
the sum distribution of N > 1 i.i.d. lognormal RV’s and examine their behaviors. To the
best knowledge of the author’s, these numerical results about lognormal CF’s and sum dis-
tributions are new. Moreover, we present a new approach, based on our numerical values,

to approximate a sum as a lognormal RV. The details are given in the next chapter.
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Chapter 3

Minimax Approximation to the Sum

Distribution

Both two well-known approximations, Wilkinson’s and Schwartz & Yeh’s methods, are
based on the assumption that the sum of independent lognormal variates is approximated
by another lognormal variate. But the question as to whether such an assumption is good
or just acceptable is still not clear. In this chapter, we examine this assumption and further

presents a new paradigm for constructing approximations to lognormal sum distributions.

3.1 CDF of the Sum Distribution

A lognormal distribution L ~ A(m,o?) where two parameters m and o denote the mean
value and standard deviation of the corresponding normal distribution N(m, 62), respec-
tively, can be written as a scaled lognormal random variable with only one parameter ©.
Let

V=e¢"L, 3.1

58



then, due to (1.12), the PDF of V is

dl
fv(") :fL(l) "l dv
=e "fy(le™)e™ = fi(v). (3.2)

We can see that V here is a lognormal variable with zero mean and the same standard
deviation, i.e. A(0,0?), which only has one parameter &. The non-zero parameter m can
be regarded as a scaling factor in the lognormal distribution.

The above relationship can be applied to a sum of N independent lognormal variables
with different mean values m; and standard deviations o;. Both the mean and standard

deviations here refer to the corresponding Gaussian distribution. Thus, the sum
N
L=Y1L, (3.3)
i=1

can be expressed as a weighted sum of N independent lognormal variables with zero means

but the same dB spreads as

h

I
M=

[
=

3.4)

T

where the weights are

a. =™ (3.5)

and V; denotes the lognormal distribution A(0, O‘iz). The characteristic function of the sum
in (3.3)is [17]
¢ (w) = H ¢Li(w) = ﬂd)"i(aiw)' (3.6)
i=
The same result can be obtained from equation (2.7). The scaling factor €™ only affects the
frequency for a CF. Setting m; to be zero would not lose the generality. Thus, this section
focuses on sums of i.i.d. lognormal variates with zero power mean m,. We will discuss the

cases of non-i.i.d. and non-zero power mean in section 3.4 and 3.5.
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One way of examining whether or not a random variable is lognormally distributed is to
plot the curve of the CDF on the lognormal probability paper and to see whether it acts as
a straight line. A probability plot [18] is a graphical technique for assessing whether or not
a data set is approximately a certain distribution. The data are plotted against a theoretical
specific distribution in such a way that the points should form an approximate straight line.
Departures from this straight line indicate departures from that distribution. Therefore, the
lognormal probability paper is used in this thesis to assess to what extent the lognormal
sum behaves like a lognormal variable.

The CDF of a sum of N independent lognormal RV’s except for N = 2 is evaluated using
the numerical inverse transform of the characteristic function by the modified Clenshaw-
Curtis method described in Chapter 2. In the case of N = 2, it is found that numerical
convolution is more efficient than the numerical inverse transform because the convolution

for N = 2 is a one-dimensional integration as

Fi(z)= i, () * Iy, (2) = 7, (2) * fLZ(Z) (3.7)

where f(x) denotes the PDF and F(x) denotes the CDF of the summands. Equation (3.7)
is proved [17] by letting

Z=X+7Y,

then

l

= / / fX y\X )’)dXdy
= [ [ h@axsy0)ay

“/ X(Z )’fy y)dy
= Fy(z) * fy (2).
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The examined range of CDF in this thesis is from 1076 to 1 — 1075, This range is much
wider than those of the simulations in previous works. The previous work [2] studied the
CDF of a sum of independent lognormal RV’s in the interval of [0.001, 0.999]. Reference
[3] only gave simulation results for values of the complementary CDF greater than 1074
for 12 dB spread, while [19] did not provide simulation data for dB spreads greater than 8
dB.

We plot on the same graph the CDF’s of the sum of i.i.d. lognormal RV’s with different
numbers N of summands and compare their behaviors. Figures 3.1 - 3.2 illustrate the
CDF’s of the sum distribution for 6 dB and 12 dB spread, respectively. Even though the
CDF’s of the i.i.d. lognormal sum over the range of [0.1, 0.9] are close to straight lines,
the CDF’s in [1076, (1 — 107%) ] form an approximate quadratic pattern on the lognormal
probability paper and are left-shewed relative to the lognormal distribution . It is observed
that the larger the number N of the summands is, the more severely the CDF curve bends
and deviates from a straight line. The numerical data in our work shows that the sum
distribution increasingly deviates from a lognormal distribution as N grows when plotted
on the scales used here.

The number of the summands does not seem to affect the tail of complementary CDF
too much but significantly influences the tail value of CDF. Examining these graphs, we
found that the tails of complementary CDF with different summation numbers approach
that of the single lognormal RV with the identical m and o as Y — eo. This phenomenon
can be explained by the asymptotic character of sum distributions given by Janos [20].
Janos indicated that the tail of a sum distribution asymptotically displays the lognormal

behavior of its members with the largest dB spreads.
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Figure 3.1. The CDF of the sum of N i.i.d. lognormal RV’s (m = 0 dB, o = 6 dB).
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3.2 Minimax Approximation

If we use a lognormal distribution to approximate the sum distribution, a straight line need
to be found to fit the numerical data set for the CDF on [107¢, 1 — 107%] on the lognormal
probability paper. Because minimax approximation [21] is an approximation that mini-
mizes the maximum deviation from the true function, namely, makes best performance in
the worst case, this approximation presents better estimation than others. Let f(x) be con-
tinuous on [a, b] and p,(x) be any polynomial with degree n. If there exists a polynomial

Pi(x) € P, that satisfies the expression of the form

f=pr*lle= Jpax, |f(x) = pp(x)| < Jnax, | f(x) = pn(x)] (3.8)
or
I f =P |le= [oax |£(x;) = pr(x)| < ax |f(x;) — pu(x;)] (3.9)

then p;(x) is called the best uniform approximation or minimax approximation of degree
n to f(x). For the more general approximation problem, the monomials 1,x,x?,--- ,x" in
Pn(x) are replaced by other fixed functions gg, &, ,&» such as g, = In(x), g, = sin(x)
and so on. The form ¥, c;g; is called the generalized polynomials.

It was already proved that such a solution exists and uniquely exists for any continuous
function f(x) defined on a finite interval [22]. In addition, the alternation theorem [21]

provides a necessary and sufficient condition for the minimax approximation.

Alternation Theorem:
Let f(x) € Cla, b) and p(x) be a polynomial of degree n. Let E, = max .,
|f(x) = p(x)| and e(x) = f(x) — p(x). A necessary and sufficient condition that

p(x) be the unique best uniform approximation to f(x) is that there are at least
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and with alternating signs:
£(x,) = +E, i=1,2,- ,n+2,
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This theorem is very important for the numerical determination of best uniform ap-

proximation. But before determining minimax approximations to the sum distributio

first describe how to construct a lognormal probability paper. In order to creat a lognormal

probability paper, the CDF F(x) of a RV is transformed to

Inverse normal CDF

ns, we

(3.10)



where ®~1(x) is the inverse function of the standard normal CDF with the form

1 m
=0 N F(x) = —x—— 3.11
§0) = @7 (F () = —x— = (.11)
for any normal distribution, or
1 m
=0 HF(x)) = =Inx— — 3.12
§0) =0 (F () = =Inx =T (3.12)

for any lognormal distribution. Then we plot the data pairs In(x), g(x) on a two dimensional
coordinate system and label manually the corresponding probability values on the vertical
axis. Such lognormal probability plot is demonstrated in Figure 3.3 where we notice that
the horizontal axis is a log-scale. Therefore, if the F(x) is the CDF of a lognormal variate,
the points of g(x) will definitely form a straight line.

Now with m > 2 distinct values of the CDF F*(x) of a sum of lognormal RV'’s, a straight
line, i.e. p(x) = ¢y + ¢;g, with g, = Inx, on the lognormal probability paper is to be found
in the sense of

min max |g(x;) — (¢y+¢; Inx;)| (3.13)

¢,y 1<i<m
where g(x) is the function after the transformation (3.10) of F*(x).
According to the alternation theorem [21], there are at least 3 distinct points a < x; <
xy < x3 < b which have maximum deviation E;. Through observing the shape of the CDF
of a sum, we find that the CDF of a sum is a concave function with g’ < 0. So g is

monotonic function. Since
g(xk)—p(xk):iEl k‘:132737
there is only one root on [a, b] for the equation

g (x)—p'(x) =¢(x) —¢; =0.
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That is
/
g(x,) =¢y.
The other two maximum discrepancy points must occur at the two ends of the interval, i.e.

X; = a, x3 = b. Then the coefficients are found by the expressions [22]

¢, = 5(%{%@, (3.14a)
Co= %[g(a) +g(x,)] — ar 1; () g(bl)) : i (@) (3.14b)

where x, is the unique solution of

3(b) — (@) (3.14¢)

!
1 =
g (Inx,) h—a

The numerical procedure for the minimax approximation shown in Figure 3.3 is de-

scribed as follows:

1. Connect the two ends of the curve to form a line AB. The slope of p(x), i.e. ¢, is the

slope of the line AB.

2. Find a point C on the curve whose derivative is ¢, i.e. its tangent is parallel to the

line AB or a parallel line to AB passing this point is the most far away to the line AB;

3. Then p(x) should be in the middle position between the tangent of point C and the

line AB;

4. The mean m* and the standard deviation o* approximated by minimax approxima-

tion are given by (3.12), i.e.

m* = —cy/cy, (3.15)

0" =1/c,. (3.16)

67



CDF Probability P(x < y)

1-(1e-8)
1-(1e~7)
1-(1e-6)
1-(1e-5)

0.9999

0.999

0.99

© 0OoCCoo ©
- N WHOIMN 00 ©

o
=]
=

0.001

Numerical lntégration
Farley
Wilkinson

.- Schwartz & Yeh
- Minimax (m = 5.45dB, ¢ = 4.8dB) ||

20

Figure 3.4. The CDF of a sum of 2 i.i.d. lognormal RV’s (rn = 0 dB, ¢ = 6 dB).

68

30



CDF Probability P(x <)

1-(1e-8)
1-(1e-7)
1-(1e-6)
1-(1e-5)

0.9899

0.999

0.99

© 000000 O O
= pDwhoON® ©

0.01 < e |

0.001 k- - . . ......... AU .......... .......... — Ndmerical Intégration -
; : : ; : o | & Farley
1e-4 I : : ; : - Wilkinson k
Te-B A/ KRR Feeeeeeed Lo R SR Schwartz & Yeh H
1e- - N . S S S .| @ Minimax (m = 9.4dB, 6 = 9.9dB) ||
T 1 H
-30 -20 -10 0 10 20 30 40 50 60
Y (dB)

Figure 3.5. The CDF of a sum of 2 i.i.d. lognormal RV’s (m = 0 dB, o = 12 dB).

69



CDF Probability P(x <)

1-(1e-11)

1-(1e-9)
1-(1e-8)
1-(1e-7)
1-{1e-6)
1-(1e-5)

0.9999

0.999

o
©
©

© 0oooooo ©
- N WA ©

0.01F - A R TR R REERS R R RETREE TR R s
0.001 koot ] — Numerical Integration i
W : - Farley
a4 7 ..................... Wilkinson L]
te_5- & 7. O ] @ Schwartz & Yeh L
: : g - Minimax (m= 12.2dB, o = 3.5dB)
1e-6F -7 [ [ l s I
0 10 20 30

Figure 3.6. The CDF of a sum of 6 i.i.d. lognormal RV’s (m = 0 dB, o = 6 dB).

70



CDF Probability P(x < ¥)

1-(1e-11) F

1-(1e-9)
1-(1e-8) -
1-(le-7)
1-(1e-6) -
1-(le-5)
0.9999 -
0.999 -

0.99 f

0.9
08r
def
04
03
021
01r
0.01F , :
: o B : : —— Numerical Integration
Te—db 20 . . o % Wilkinson o
& S : : @ Schwarz & Yeh :
Rl A S A .® Minimax (m =20.6dB, ¢ = 7.6dB) | 7]
Te-BFF e e PPN P oA ot S -stont S SN .
] { i ! 1 i | 1
~10 0 10 20 30 40 50 60

Figure 3.7. The CDF of a sum of 6 i.i.d. lognormal RV’s (m = 0 dB, ¢ = 12 dB).

71



GDF Probability P(x <)

1-(1e-13)
1~(1e~11)
1-(1e-9)
1-(1e-8)
1-(1e-7)
1-(1e-6)
1-(1e=5)
0.9999
0.999

0.99

© 0000000 O
= MhUN® ©

0.01}f - A s
T : : —— Numerical Integration
0.001 T : : -4 Farley
Temdb o Dl D ... & Wilkinson
o5l & SRR RPN .| = Schwartz & Yeh i
: ; -4 - Minimax (m = 15dB, ¢ = 3dB)
1e-BF -7 [T P . et
10 20 30
y (dB)
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Table 3.1. Minimax approximation of the sums of i.i.d lognormal RV’s

dB spreads of L, | Number N | Minimax m*(dB) | Minimax ¢*(dB)
6 2 5.45 4.8
6 12.2 3.5
10 150 3.0
7 2 6.08 5.7
6 13.6 4.2
10 16.5 3.7
8 2 6.62 6.5
6 14.9 4.9
10 18.1 4.3
9 2 7.38 7.4
6 16.4 5.6
10 19.7 4.9
10 2 8.0 8.2
6 17.7 6.2
10 214 55
11 2 8.76 9.1
6 19.2 6.9
10 232 6.2
12 2 9.44 9.9
6 20.6 7.6
10 24.9 6.8
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Figure 3.4 - 3.9 illustrate the CDF plots and their minimax approximations of N =
2,6,101.i.d. lognormal sums for 6 dB and 12 dB spreads, respectively, as well as Wilkin-
son’s, Schwartz & Yeh’s and Farley’s approximations for comparison. Table 3.1 sum-
marizes the approximate values of the mean m* and the standard deviation ¢* by using
minimax approximation for sums of N = 2,6, 10 i.i.d. lognormal RV’s with zero mean and

different dB spreads from 6 dB to 12 dB.

3.3 Discussion

The CDF’s of lognormal sums on the lognormal probability paper provide us a more de-
tailed view to look at the problem of lognormal sums and to compare previous approximate
methods. From the graphs in the previous section, we found that our work agrees with the
previous conclusions in many aspects. In addition, new conclusions are drawn. The fol-

lowing is our discussion.

1. All the methods give relative good approximation when N = 2 because the sum dis-

tribution of two variates is very close to a lognormal distribution.

2. Schwartz & Yeh’s method always gives excellent agreements to numerical results in
the range of [0.1, 0.9] but has significant deviations in the tail values of complemen-
tary CDE, particularly for large summands number N. When ¢ = 6 dB and N = 10,
for instance, the maximum discrepancy between Schwartz & Yeh’s approximation
and the numerical data reaches more than 7 orders of magnitude. Schwartz & Yeh’s
approximation extremely underestimates the values of the tails of complementary
CDF’s. Its performance for values of CDF tails is better than that for values of com-

plementary CDF tails.
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3. In contrast, the simple Wilkinson’s method provides better approximation to the
values of the complementary CDF’s that are less than 0.1 than Schwartz & Yeh’s
method. Its accuracy improves when the values of dB spreads increase. For 12 dB
spread, it is found that the tail values approximated by Wilkinson’s method almost
match with those obtained by numerical integration. On the other hand, its estimates
to the tail values of the CDF’s are worse than those of Schwartz & Yeh’s. The max-
imum deviation exceeds 4 orders of magnitude for the case of 12 dB spread and

N =10.

4, Farley’s approach is an upper bound to the CDF and strict lower bound to the comple-
mentary CDPF tails but the performance becomes worse when the dB spread becomes
smaller or the number N of summands becomes greater. The maximum deviation

also exceeds 4 orders of magnitude when ¢ = 6 dB and N = 10.

5. If it is assumed that the sum distribution is also a lognormal RV, both Schwartz &
Yeh’s and Wilkinson’s approximation to that lognormal distribution are not good.
The straight line obtained by Schwartz & Yeh’s method on the lognormal proba-
bility paper is only close to the values of CDF’s in the range of [0.1, 0.9], just ap-
proximately like a tangent of an arc, while the line derived by Wilkinson’s method
roughly looks like another tangent of this arc that touches the arc in a different place.
In the global view, the minimax approximation that minimizes the maximum devia-
tions provides more accurate approximations than Schwartz & Yeh’s and Wilkinson’s

methods. The maximum error in our examples is less than 2 orders of magnitude.

6. Since both the CDF and the complementary CDF with values less than 107! are

of practical interest, the minimax approximation provides better performance than

76



Schwartz & Yeh’s and Wilkinson’s methods on values of both CDF tails and com-

plementary CDF tails.

In this and previous sections, we examine the sum distributions of i.i.d. lognormal RV’s
and provide minimax approximations to these sum distributions. In addition, this minimax
approximation method can be easily extended to non-i.i.d. cases that we will examine in

next two sections.

3.4 Minimax approximations of sums with different power

means

Based on (2.4c) and (3.6), the same numerical integration method is used to calculate the
CDF’s of sums which have the same dB spread but different power means of the summands.
Two examples with different power means distributed in [-3 dB, 3 dB] and [-25 dB, 25 dB]
respectively are given for each of 6 dB spread and 12 dB spread. Therefore, the former one
has smaller difference in power means of the summands than the later. All these examples
are illustrated in Figures 3.10 - 3.13. We observe that three approximations, Wilkinson’s,
Schwartz & Yeh’s and Farley’s methods present similar performances to those of the i.i.d.
cases. Schwartz & Yeh’s method provides good approximations to CDF’s in the range of
[0.1, 0.9] but it has great deviations in the two tails. Wilkinson’s method is better than
Schwartz & Yeh’s method when the values of the complementary CDF’s are less than 0.1.
Farley’s approach is a strict lower bound to the complementary CDF tail but its performance
degrades for small dB spreads. When the differences in the power mean values of the
summands increases, the sum distribution is more close to a straight line in the lognormal

probability paper. Thus, the performance of previous methods become better. For instance,
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the maximum deviation of Schwartz & Yeh’s approximation decreases roughly from 4
orders of magnitude to 2 orders of magnitude. This is because changing the power mean
of a lognormal RV is equivalent to scaling the RV. When the power means (scalings) are
substantially different, the largest of the scaled RV’s dominates the sum and the CF tends
toward the CF of the single, dominant RV which is a lognormal RV. In the global view, the

minimax approximation provides more precise estimations than other methods.

3.5 Minimax approximations of sums with different dB
spreads

Figures 3.15 and 3.15 give the CDF’s of two sums that have the same power mean but
different dB spreads of the summand. One has the summands with different dB spreads
in the range of [6 dB, 12 dB] and the other one is in [7.5 dB, 10 dB]. In these figures
we plot the CDF of the summand with the greatest dB spread as well. It is found that
large values of the CDF of the sum and those of the summand with the greatest dB spread
overlap which clearly demonstrates the asymptotic character of the sum distribution [3].
Moreover, for the case of sums with different dB spreads, Schwartz & Yeh’s method has
a more significant error in the tail of the complementary CDF than that for the i.i.d. case.
We take some following typical cases for example. In Figure 3.6 for the sum of 6 i.i.d.
summands with 6 dB spread, the maximum error given by Schwartz & Yeh’s method is
about 4 orders of magnitude while the maximum error in Figure 3.15 for the sum of 6
non-i.i.d. summands with the dB spreads in [6 dB, 12 dB] is about 9 orders of magnitude.
The similar phenomenon also happens to Wilkinson’s method. However, the maximum

deviations decrease when the difference among the dB spreads of the summands decreases.
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3.6 Conclusion

In conclusion, we have examined the goodness of the well-accepted assumption that a
sum of independent lognormal RV’s is also lognoramlly distributed. It was found that
this assumption is good for sums of N = 2 i.i.d. summands but becomes worse when
the number of summands increases or the difference among the dB spreads of the sum-
mands increases. Three previous approximate approaches, Schwartz & Yeh’s, Wilkinson’s
and Farley’s methods, have been compared with the results obtained by numerical com-
putation. It was seen that none of them is valid over a wide range of parameters. The
approximations obtained by Schwartz & Yeh’s method deviate significantly in the tails of
the complementary CDF’s while the performances of Wilkinson’s method are not good for
tails of the CDF’s. Farley’s approximation is worse than others when the dB spread is small
or the number of summands is large.

A new paradigm for constructing approximations to lognormal sum distributions was
created in this chapter. The minimax approximation was developed to estimate a lognormal
distribution to a sum distribution of independent lognormal RV’s. Our work shows than this

approximation is better than Schwartz & Yeh’s and Wilkinson’s methods in the global view.
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Chapter 4

Conclusion

Determining the sum distribution of independent lognormal RV’s is a longstanding prob-
lem even though it is important for assessing the capacity and system performance in cel-
lular mobile communication systems. Many approximate solutions to this problem such as
Wilkinson’s, Schwartz & Yeh’s, and Farley’s methods have been developed. Wilkinson’s
and Schwartz & Yeh’s approximations are based on the assumption that a sum of inde-
pendent lognormal RV’s is another lognormally distributed variable while Farley’s method
provides a lower bound to the complementary CDF of a sum of lognormal RV’s. But none
of them is valid over a wide range of parameters.

A standard approach for finding the distribution of a sum of independent RV’s is to
use characteristic functions. But an exact expression for the CF of a lognormal RV is not
known. Even the numerical computation of the CF was considered to be substantially dif-
ficult 1], [9]. In this thesis, three numerical methods have been investigated and compared
in terms of their efficiencies. The most efficient one, the modified Clenshaw-Curtis numer-
ical integration, was found to evaluate a lognormal CF and the inverse transform of a CF.

Additionally, this method was tested to be valid for the case of lognormal PDF in the range
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of practical interests.

Furthermore, the CDF of a sum of N independent lognormal RV’s was obtained by the
numerical integration of the inverse transform of the CF of the sum. We found that the
CDF of a lognormal sum is left-skewed relative to the lognormal distribution. This leads
Wilkinson’s and Schwartz & Yeh’s approximations to have large discrepancy in certain
areas. Schwartz & Yeh’s method has significant deviations in the tails of the complementary
CDF’s even though it provides an excellent approximation for the CDF values in the range
of 0.1 - 0.9. Wilkinson’s method provides better approximation than Schwartz & Yeh’s
to the tails of complementary CDF values but it is worse in the CDF tails. Meanwhile,
the performance of Farley’s approximation degrades when the number of the summands
increases or the dB spreads of the summands decreases.

We conclude that if we use a lognormal RV to approximate a sum distribution, neither
Schwartz & Yeh'’s nor Wilkinson’s approaches for determining the mean value and variance
of the corresponding Gaussian distribution of the sum is good. Retaining the lognormal sum
assumption, a new and more precise estimation in the global point of view, the minimax
approximation, is presented in this thesis. This method was examined for the case of i.i.d.

summands and the case of summands that are not i.1.d.

The contribution of this thesis is summarized as follows:

1. An efficient numerical method was found to evaluate the CF of a lognormal RV and

sum distributions of independent lognormal RV’s.

2. The goodness of the well-accepted assumption that a sum of independent lognormal
RV’s is also lognormally distributed was examined and a more detailed comparison

of the previous works was given.
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3. A new paradigm of constructing approximations to lognormal sum distributions, the
minimax approximation, was presented for determining mean values and variances

of the corresponding Gaussian distributions.
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