
 
 

 

Catechol-Escherichia coli UM146 interaction revealed through 

multi-omics 

 

by 

 

Md Shiful Islam 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

in 

Molecular Biology & Genetics 

 

 

 

Department of Biological Sciences 

University of Alberta 

 

 

 

 

 

 

© Md Shiful Islam, 2024



 

ii 
 

Abstract 

Microorganisms are intricately linked with life on earth. The substantial enhancement of 

environment and human health is influenced largely due to their biotransformation potency. The 

comprehensive identification of bacterial byproducts can be accomplished by employing a 

systematic approach involving untargeted metabolomics techniques, with the integration of liquid 

chromatography high-resolution mass spectrometry (LC-HRMS), nuclear magnetic resonance 

(NMR), and gas chromatography-mass spectrometry (GC-MS). Untargeted metabolomics is an 

analytical approach to characterize the global metabolites without any prior knowledge. This study 

attempted to combine untargeted metabolomics and RNA sequencing (RNA-Seq) to determine 

unknown bacterial byproducts and genes to highlight the metabolic pathway in a particular 

condition.  

Studying the Escherichia coli UM146 strain grown on catechol-containing media in 

aerobic and anaerobic conditions, we identified novel genetic and metabolic changes through 

transcriptomic and untargeted metabolomics analysis.  As highlighted in Chapter 2, many 

inconsistencies were noted between the NMR and MS metabolomics results, most specifically, 

false positive results were observed in the MS analyses.  We concluded that these results were 

highly dependent on the available software being used and the analytical workflow employed.  

Benchmarking experiments were performed to evaluate false positive and false negative 

rates in the identification of a set of 28 compounds in a synthetic mixture. XCMS performed better 

than Metaboanalyst and MZmine2 in determining minimum features with coverage of more 

compounds. Sensitivity and specificity were tested based on three distinct approaches including a) 

all features, b) putative ID, and c) putative ID & true positive (PID28). In negative mode, all three 

software packages provided similar sensitivity (70-75%). Variability was observed for PID28 in 

positive mode, XCMS (75%) has outperformed both Metaboanalyst (58.33%) and MZmine2 

(66.67%). The specificity of Metaboanalyst in the criteria of all features is 44.44%, which is quite 

inferior compared to XCMS (96.09%) and MZmine2 (100%). As inconsistent results were 

observed with the synthetic mixture, pure concentrated lysine from Sigma-Aldrich (purity ≥98%) 

was used to determine the contaminants through resin-based column chromatography and 1H-

NMR. Among the three software packages in LC-HRMS analysis, entirely Metaboanalyst was 

able to determine the unknown contaminant (2-piperdinone) in the lysine solution.  
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Bacterial by-product identification using LC-HRMS analysis is challenging due to false 

positive results. Our analysis demonstrated that a combination of software packages is required to 

screen the actual features and reduce the false positive results in MS analysis. 
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Chapter 1: Introduction 

1.1.Bacterial Metabolites: Characteristics features 

Metabolites are small molecules (typically with a MW < 1500 Da) such as amino acids, 

organic acids, nucleic acids, sugars, lipids, and vitamins that are synthesized or broken down 

by all living cells (Muthubharathi et al., 2021; Wishart, 2019). They are the end products or the 

intermediates of biochemical reactions, catalyzed by enzymes that naturally occur within cells. 

Within the cell, metabolites perform a multitude of key functions, including energy generation, 

biosynthesis, signaling, activation, inhibition, and modification of macromolecules (Zhang et 

al., 2012). Metabolites can be classified into two categories: primary and secondary (Horak et 

al., 2019). Primary metabolites are the molecules needed for life (Seyedsayamdost, 2019). They 

include molecules such as lipids, amino acids, nucleic acids, short peptides, sugars, alcohols, 

and organic acids. Primary metabolites are commonly produced by endogenous catabolism or 

anabolism and have a direct role in an organism’s growth, development, reproduction, and 

other physiological processes (Wishart, 2019). Secondary metabolites are molecules such as 

steroids, polyphenols, antibiotics, and pigments; that are not required for growth and 

development, but facilitate an organism’s interaction with its environment (Brader et al., 2014). 

Plants, animals, and even bacteria produce both primary and secondary metabolites. Bacteria 

typically produce primary metabolites in the log (exponential) phase, whereas secondary 

metabolites predominate in a growth phase known as the late idiophase (Figure 1.1) (Horak et 

al., 2019).  
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Figure 1.1. Graphical illustration of primary and secondary metabolites production in 

different growth phases in bacteria. 

Primary metabolites are conserved throughout all bacterial phyla and kingdoms while 

secondary metabolites are poorly conserved and can differ even among bacterial species 

(Karlovsky, 2008; Vaidyanathan, 2005). Because of their high turnover rates, primary 

metabolites are normally present at lower concentrations within cells. Indeed, the levels of 

primary metabolites within bacteria can be lower than the levels of secondary metabolites. The 

number of primary metabolites in most bacterial species typically numbers less than 3000 

molecules, including lipid species (Sajed et al., 2016). It is estimated that bacteria (collectively) 

produce about ~50000 secondary metabolites (Thirumurugan et al., 2018; van Santen et al., 

2019). On the other hand, plants are thought to (collectively) produce about 600,000 secondary 

metabolites (Thirumurugan et al., 2018).  

1.1.1. Secondary metabolites: a source of bioactive compounds 

Secondary metabolites have traditionally served as the structural and functional 

scaffolds for many important drugs (Ntie-Kang et al., 2021). Following the discovery of 

penicillin (a microbially derived secondary metabolite) in 1929, a sustained period of 

secondary metabolite production commenced which sought to detection of bioactive secondary 

metabolites in plants, animals, and microbes. This work led to the development of thousands 
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of new drugs and drug-like compounds. Examples of plant and microbially-derived secondary 

metabolites used in the drug industry include antibacterial agents (Sulphonamides, Macrolides, 

Quinolones and Flouroquinolones), anticancer agents (azurin, arnesyltransferases inhibitors, 

prodiginines and epothilones), immunosuppressive agents (Mitomycins, Bleomycins, and 

Actinomycins ), anthelmintics agents (Milbemycin D, and Destomycin A), and antiparasitic 

agents (Ivermectin, Paromomycin and Hygromycin B) (Shuikan et al., 2021). By the 1990s, 

approximately 80% of commercial medications were natural products or their derivatives 

(Harvey, 2008). Because of their widespread use in drug or drug intermediate generation, as 

well as their roles in plastic production, herbicide and pesticide production, and in food 

processing, plant and microbially-derived secondary metabolites have had a profound and 

positive effect on the global economy (Fouillaud & Dufossé, 2022). Generating large quantities 

of secondary metabolites through industrial-scale fermentation or bioreactor production is an 

industry that is now worth more than 300 billion dollars each year ( Barbuto Ferraiuolo et al., 

2021; Meyer & Schmidhalter, 2014). Industrial production of microbial and plant secondary 

metabolites requires a comprehensive and in-depth knowledge of the metabolite, the cell 

system (microbe or plant cell), and the cell’s metabolism. This is because multiple mechanisms 

can regulate cellular metabolic processes that result in the formation of secondary metabolites 

(Brakhage, 2013). Many secondary metabolic pathways depend on multienzyme complexes 

(Vining, 2007) and the proper redirection of primary metabolic intermediates or end-products 

towards secondary metabolite synthesis (Bruce, 2022). Indeed, the activation of secondary 

metabolic pathways is generally observed only under particular cell growth conditions (Baral 

et al., 2018). Determining the optimal growth conditions for secondary metabolite production 

often requires dozens of trial-and-error efforts that examine various growth parameters and 

medium compositions (Bode et al., 2002; Boruta & Bizukojc, 2016). The main factors that 

typically affect the bioproduction efficiency of secondary metabolites include pH, level of 

aeration, temperature, carbon and nitrogen sources, light, and the concentration of nutrients 

(Frisvad, 2012). It is also known that stress response mechanisms are closely intertwined with 

the regulation of microbial secondary metabolism (Roze et al., 2011; Yin et al., 2013).  

1.1.2. Microbial degradation of plant secondary metabolites 

Discovering new bioactive molecules from microbial sources can be accomplished by 

growing microbes on different media or substrates. Indeed, many drug discovery studies have 

been conducted that involve growing microbes on media containing plant-derived or 

microbially-derived secondary metabolites (Aura, 2008; Aura et al., 2002; Blaut et al., 2003; 
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Cheng et al., 1969; Fleschhut et al., 2006; Flores et al., 2015; Krishnamurty et al., 1970; 

Krumholz & Bryant, 1986; Meselhy et al., 1997; Řezanka et al., 2004; Schneider & Blaut, 

2000; Takagaki & Nanjo, 2013, 2015). The intent of many of these studies is to transform 

existing, but biologically inactive secondary metabolites, into new, potentially bioactive 

compounds. These kinds of microbial growth studies have also been conducted to better 

understand the metabolic fate of plant-derived secondary metabolites in the human gut (Clavel 

et al., 2005; Kawabata et al., 2013; Lee et al., 2006; Puupponen-Pimiä et al., 2005; Reddy et 

al., 2007; Tzounis et al., 2008). An example of one such fate-determination study was described 

by Takagaki et al. (2015) who performed an experiment that involved exposing the gut-derived, 

equol-producing bacterium Adlercreutzia equolifaciens (MT4s-5) to a catechin/epicatechin 

containing media for 24 hrs under anaerobic conditions. This was done to identify the 

microbially-derived by-products of these plant-derived polyphenols and their potential 

association with anti-inflammatory activities.   Catechin and epicatechin were found to have 

similar metabolism profiles, produced 1-(3,4-dihydroxyphenyl)-3-(2,4,6-

trihydroxyphenyl)propan-2-ol from catechin-epicatechin degradation. Moreover, 1-(3,4-

dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol has antioxidant and antispasmodic 

potential (Gleńsk et al., 2019). The characterization of these microbial biotransformation 

products typically requires considerable analytical work involving the use of nuclear magnetic 

resonance spectroscopy (NMR) and mass spectrometry coupled to liquid chromatography (LC-

MS). S1 Table (supplementary section) provides a comprehensive list of many experiments 

conducted over the past 45 years that examined bioactive compounds produced by bacteria 

grown on food-derived phytochemicals and secondary metabolites. The table includes the 

reported experiments, the fermentation products, growth conditions, and the chemical profiling 

technology used to characterize the bio-transformed molecules.  As seen by S1 table, many of 

the chemical profiling techniques employ a field of omics science called “metabolomics”. 

1.2. Metabolomics: a tool for bacterial natural product identification  

Metabolomics is an emerging field of systems biology that uses advanced analytical 

chemistry techniques to identify, characterize, and quantify small non-polymeric molecules 

(metabolites) in a biological specimen (cell, tissue, organ, biological fluid, or organism) (Idle 

& Gonzalez, 2007; Krastanov, 2010; Roberts et al., 2012; Wishart, 2019). The complete set of 

metabolites within a cell, organ, or organism is called the metabolome (Oldiges et al., 2007). 

Metabolites represent the downstream products of processes involved in gene expression, 

protein translation, and gene-environment interactions. As such the metabolome is considered 
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as a very useful probe of an organism’s phenotype (Wishart, 2019).  Generally speaking, the 

genome and proteome indicate what might happen in living organisms, while the metabolome 

indicates what is actually happening (Wishart, 2016).                  

Metabolomics can be performed using two distinct approaches: targeted and untargeted 

(Turi et al., 2018). Targeted metabolomics involves the characterization of a predefined set of 

known metabolites (Roberts et al., 2012; Zhao et al., 2022), while untargeted metabolomics 

attempts to characterize as many known and unknown metabolites as possible (Vinayavekhin 

& Saghatelian, 2010). In targeted metabolomics, metabolites can be accurately quantified using 

internal standards; while in untargeted metabolomics, metabolites are only semi-quantified. 

Targeted metabolomics is generally performed for hypothesis testing while untargeted 

metabolomics is used for hypothesis generation (Nalbantoglu, 2019).  Both targeted and 

untargeted metabolomics can lead to the identification of >1000 metabolites (Lelli et al., 2021). 

The analytical techniques used for both targeted and untargeted metabolomics include nuclear 

magnetic resonance (NMR) spectroscopy, liquid chromatography-mass spectrometry (LC-

MS), and gas chromatography-mass spectrometry (GC-MS). A more detailed discussion of the 

analytical methods used in metabolomics is given in the next section. 

Metabolomics can be applied to a wide range of samples including cells, tissues, organs, 

biofluids, cell growth media, soil, and water. When metabolomics is applied to cells or cell 

cultures several common terms are used depending on what part of the cell culture systems is 

studied.  Endo-metabolome profiling or metabolic fingerprinting refers to the characterization 

of metabolites found within cells. Exo-metabolome profiling or metabolic footprinting refers 

to the characterization of metabolites in the cell media or the fluids outside cells (Hoerr et al., 

2012). 

1.2.1. Common analytical techniques in microbial metabolomics 

Figure 1.2 provides details about the microbial metabolomics methods and the 

analytical methods used, based on publications appearing in PubMed after 2000. As seen from 

this figure, the most popular methods for microbial metabolomics studies involve liquid 

chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-

MS), and NMR spectroscopy. Each of these methods has its advantages and disadvantages. 

Because they are so important to the work described in this thesis, I will describe these methods 

in more detail.  
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Figure 1.2. A steady increase in the most commonly utilized analytical techniques for 

microbial metabolite determination in PubMed Since 2000. The numbers were obtained from 

the PubMed search using the keywords “mass spectrometry microbial / bacterial 

metabolomics”, “NMR microbial / bacterial metabolomics” and “GC-MS microbial / 

bacterial metabolomics”. 

1.2.1.1. Mass spectrometry 

Mass spectrometry (MS) is the most widely used analytical technique in metabolomics. 

Simply stated, MS measures the mass-to-charge ratios (m/z) of ions and uses this information 

to determine the chemical composition or the chemical structure of molecules. For mass 

spectrometry to work, molecules or molecular fragments must be ionized (i.e., charged). Once 

charged, these ions can be selected, directed, and sent through a series of magnetic or electric 

filters that allow the ions to be detected and the m/z values of those ions to be determined (using 

simple physics equations). 
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  Figure 1.3. Basic principles of a typical mass spectrometry. ESI, electrospray 

ionization; CI, chemical ionization; APCI, atmospheric-pressure chemical ionization; MALDI, 

matrix-assisted laser desorption/ionization. 

A mass spectrometer consists of three components: an ionization source, a mass 

analyzer, and an ion detection system (Figure 1.3). The ionization source is both the place 

where ions are generated from neutral molecules and the point of entry for charged ions into 

the mass spectrometer. Once the ions have been generated, they are passed into the mass 

analyzer.  The analyzer (which is typically under a high vacuum) accelerates the ions through 

a series of electrically charged plates or a series of magnets. These electric or magnetic fields 

deflect the ions or change their speed according to their charge and masses. Once the ions have 

passed through the analyzer, they are detected by a detector that may include electron 

multipliers (EM), Faraday cups (FC), photomultiplier conversion dynodes, or array detectors. 

The detectors allow the MS instrument to measure the number of ions and the amount of ion 

deflection or the period of the ion transit time. The amount of deflection or the time it takes for 

an ion to transit through the analyzer depends on the ratio of the mass of the ion and its charge 

(m/z ratio). Lighter ions with lower masses or ions with lower (single) charges will either be 

deflected the most or have the shortest transit times. Heavier ions with larger masses or those 

ions that have more than one electron will be deflected by the least or have the longest transit 

times. This information is used to determine the mass-to-charge (m/z) ratio of the ions.            

1.2.1.1.1. MS ionization methods 

Several ionization techniques are used in MS, including electrospray ionization (ESI), 

atmospheric-pressure chemical ionization (APCI), and matrix-assisted laser 

desorption/ionization (MALDI). In ESI, ions are generated by pushing a liquid with dissolved 
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(neutral) molecules through a tiny nozzle that is placed under a strong electric field. This 

generates a spray or aerosol that ionizes the neutral molecules (Ho et al., 2003). ESI is a liquid-

based ionization technique that is best applied to compounds of high to moderate polarity. ESI 

is a soft ionization technique which results in less fragmentation in the mass spectrum. In 

contrast to ESI, chemical ionization is a gas-phase ionization process that uses a reagent gas to 

ionize sample molecules through ion–molecule reactions in the gas phase. Atmospheric 

pressure chemical ionization (APCI) is a chemical ionization method used in mass 

spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure. APCI 

is a soft ionization method that can be applied to liquid samples by coupling the gas inlet used 

for gas-phase chemical ionization to a liquid chromatography system (Dass, 2007; Rockwood 

et al., 2018). APCI performs well with compounds with low to medium polarity and with 

moderate molecular weight (up to ~1.5kDa). As an ionization technique, MALDI is somewhat 

different from ESI or APCI. This is because MALDI is best done with solid samples.   In 

MALDI, ions are generated using pulsed laser beams that heat the sample. This heating leads 

to an explosive ionization (desorption) event.  This simultaneous desorption and ionization 

process is achieved by incorporating the analyte of interest into a solid matrix of ultraviolet- 

sensitive crystals (Kaufmann, 1995).  

1.2.1.1.2.  Mass analyzers for MS 

There are several types of mass analyzers used for MS. These are named based on how 

the ions are manipulated or the mechanisms used to select and/or accelerate ions.  The most 

common mass analyzers include quadrupole systems, quadrupole ion trap systems, ion 

cyclotron resonance systems, time of flight systems, and Orbitrap mass analyzer systems. 

Different mass analyzers have specific advantages and disadvantages. Quadrupole mass 

analyzers consist of four parallel cylindrical rods with two bearing positive and two bearing 

negative charges. The charged ions enter the quadrupole and are accelerated by the charged 

DC (direct current) bias placed on the quadrupole rods. This allows the ions to pass through 

the center line of the analyzer (Thomas, 2019). The quadrupole ion trap (QIT) mass analyzer 

is a three-dimensional, dynamic ion storage device that consists of three electrodes: two end 

caps and a ring electrode. Ions enter the QIT analyzer through the end cap electrode, where 

they are stored (or trapped) and then ejected in a mass-selective manner (March, 2009).  Similar 

to the QIT, ion cyclotron resonance (ICR) mass analyzers trap ions into a cyclic orbit inside 

the analyzer using a powerful magnetic field. The ions are then ejected in a mass-selective 

manner when an external electric field is applied (Rockwood et al., 2018). ICR (specifically 
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Fourier Transform ICR) mass analyzers provide the highest mass resolving power and mass 

accuracy of any mass analyzer, with up to parts-per-billion (ppb) mass accuracy, high dynamic 

range, and mass resolving power values greater than 10,000,000 (ten million) in routine 

analyses (Bowman et al., 2020).  The time-of-flight (TOF) mass analyzer utilizes an electric 

field to accelerate ions through a long tube. This acceleration is done using an electrical 

potential, and then the time for each ion to reach the detector is measured to determine the m/z 

ratio of each ion (Mamyrin, 2001). TOF is the fastest MS analyzer and is well-optimized for 

pulsed ionization methods. TOF mass analyzers can achieve a mass accuracy of 10 ppm or 

better and a resolving power of up to 60,000. The Orbitrap mass analyzer, which is conceptually 

similar to QIT and ICR mass analyzers, uses a central rod-like electrode surrounded by a barrel-

shaped outer electrode to trap and select ions (Scigelova & Makarov, 2009). Ions are 

electrostatically trapped in an orbital motion around the Orbitrap spindle. Orbitrap mass 

analyzers provide very high mass accuracy (<1-2 ppm) and high resolving power (up to 

240,000 at m/z 400).  

1.2.1.1.3.  Tandem Mass Spectrometry 

Tandem mass spectrometry is a mass fragmentation technique that is also known as 

MS/MS or MS2 (Mittal, 2015). In tandem mass spectrometry, two or more mass analyzers are 

coupled together. The first mass analyzer is used to select a given ion (a precursor ion), then 

direct that selected ion into a collision cell and measure the fragment ions arising from that 

collision (product ions) (Smith, 2013). MS/MS allows more information to be obtained about 

the structure of a molecule by characterizing the ions that arise from the molecule breaking up. 

Characteristic ion fragments with specific m/z values allow skilled MS chemists to determine 

which molecular components were part of the original (parent) molecule. MS/MS is commonly 

used to confirm the identification of unknown compounds in metabolomics mixtures. The most 

widely used analyzer in MS/MS is the triple quadruple, triple quad, or QqQ analyzer. In a QqQ 

analyzer, the first (Q1) and third (Q3) quadrupoles are used as mass filters, while the second 

quadrupole (Q2) serves as a collision cell. Ions selected in Q1 are moved to Q2, where they 

produce fragments after colliding with neutral gas. Fragments produced in Q2 are then 

analyzed in Q3. Other kinds of MS/MS configurations exist, including the QTOF (quadrupole 

time of flight) system, which consists of a quadrupole MS analyzer to a TOF MS analyzer and 

the Orbitrap system. These kinds of MS/MS systems offer much higher resolution MS spectra 

than the QqQ system. 
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1.2.1.1.4.  Chromatography Coupled to MS  

Mass spectrometry alone is often not enough to fully identify a compound – especially 

if it is being characterized from a complex mixture. To help simplify the process, 

chromatography techniques are often coupled to mass spectrometers to separate the mixtures 

and reduce the complexity of the resulting MS spectra (Lei et al., 2011). Mass spectrometers 

can be coupled to either liquid chromatography systems (LC-MS) or gas chromatography 

systems (GC-MS). 

Gas chromatography (GC) is a chromatographic technique that uses an inert gas (such 

as Argon or Helium) as the carrier and vaporized mixtures that are carried by the gas down a 

long, narrow column to separate and detect the chemical components within the mixture.  

The gas carrier is called the mobile phase while the column (which has an interior 

covered with inert organic molecules) is called the stationary phase.  Gas chromatography is 

also known as vapor-phase chromatography (VPC), or gas–liquid partition chromatography 

(GLPC). The glass or metal column through which the mobile (gas) phase passes is located in 

an oven where the temperature of the gas can be controlled and the eluent coming off the 

column is monitored by a computerized mass or flame ionization detector. The chemical 

components within any mixture that is being analyzed by GC usually must be volatile organic 

molecules or gasses. For GC to be successful the chemicals in the mixture must have a 

molecular weight below 1250 Da and be thermally stable so they don’t degrade in the heated 

GC system. To make non-volatile compounds more volatile, it is possible to chemically 

derivatize them with organo-silicon compounds, which lowers their boiling point. In GC-MS, 

samples are first introduced into the GC column manually or by an autosampler. Analytes are 

separated according to their differences in partitioning between the mobile phase and the 

stationary phase. After separation, the neutral molecules enter into the vacuum system of the 

mass spectrometer where they are ionized (usually via electron impact ionization) and sent to 

a mass analyzer for detection. GC (and GC-MS) is ideal for separating and identifying 

hydrophobic, uncharged, lower molecular weight molecules such as terpenes, alcohols, 

aromatic compounds, hydrocarbons, pesticides, and herbicides. 

Unlike the situation with gas chromatography, the mobile phase in liquid 

chromatography is a liquid. Simply stated, liquid chromatography (LC) is a separation 

technique that separates mixtures of molecules dissolved in a liquid (the mobile phase) based 

on their interaction with a solid, high surface-area substrate (often coated beads or gels) placed 
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in a short column (called the stationary phase). Early LC methods allowed the mobile phase to 

flow through the stationary phase via gravity under atmospheric pressure. However, today, 

most liquid chromatography systems use very small packing particles and a relatively high 

pressure to push the mobile phase through the column. This high-pressure form of 

chromatography is referred to as high-performance liquid chromatography (HPLC). HPLC is 

both faster and provides greater chromatographic resolution than gravity/atmospheric pressure 

LC methods. 

HPLC columns are typically packed with a stationary phase composed of irregularly or 

spherically shaped particles, or a porous monolithic layer. These monolithic layers or monoliths 

are ‘sponge-like chromatographic media’ and are made up of an sequential block of organic or 

inorganic parts. HPLC can be divided into three different subclasses based on the polarity of 

the mobile and stationary phases. Methods in which the stationary phase is more polar than the 

mobile phase are termed normal phase liquid chromatography (NPLC) and methods where the 

mobile phase is more polar than the stationary phase are termed reversed phase liquid 

chromatography (RPLC).  The third form of HPLC is called HILIC, which is short for 

hydrophilic interaction chromatography. In HILIC the mobile phase and stationary phase are 

both relatively polar. 

In LC-MS, samples are first introduced into the LC (or HPLC) column manually or by 

an autosampler. Analytes are then separated according to their differences in partitioning 

between the mobile phase and the stationary phase. After separation, the un-ionized molecules 

enter the vacuum system of the mass spectrometer where they are ionized (usually via 

electrospray ionization or ESI) and sent to a mass analyzer for detection. LC and HPLC are 

ideal for separating and identifying higher molecular weight molecules that are non-volatile or 

which are not thermally stable. In particular, HPLC-MS (often called LC-MS) is widely used 

to separate and characterize lipids, amino acids, fatty acids, nucleosides, nucleotides, and 

steroids. 

1.2.1.1.5.  Analysis of mass spectrometry data  

MS-based metabolomics studies generate huge amounts of data and consequently, these 

data sets must be analyzed by computers to help with compound identification and 

quantification.  In MS-based metabolomics, compound identification and quantification are 

sometimes called “peak annotation” or “metabolite annotation”.  
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For targeted MS-based metabolomics the software used for peak annotation is very 

platform- or vendor-specific. In general, these targeted MS-based metabolomics packages must 

be able to identify MS (or MS/MS) peaks from the raw MS data and perform accurate peak 

integration.  After the peaks have been identified and integrated, the software will typically use 

lists of pre-determined, compound-specific LC retention times as well as compound-specific 

MRM (multiple reaction monitoring) transitions to identify specific compounds. Calibration 

curves and integrated peak areas determined from isotopically labeled standards are used to 

determine the actual concentrations of the compounds.  Because targeted MS-based 

metabolomics always uses a predefined set of compounds, the identification process can be 

highly automated. In other words, targeted MS data can be analyzed very rapidly and very 

consistently. Targeted MS-based metabolomics usually allows users to generate lists of 

metabolites and concentrations for each sample in their study.  These lists can then be used in 

multivariate statistical analysis packages to determine which metabolites have changed 

significantly between two (or more) groups of cohorts or which have changed significantly 

relative to physiologically normal values. 

In contrast to targeted MS data analysis, untargeted MS data analysis is much more 

difficult, much less automated, and consequently much slower. In untargeted MS 

metabolomics, many of the thousands of features are detected but not all features are 

biologically interesting or even technically relevant. This is because they may represent 

background signals from sample processing or there may be multiple signals arising from the 

same analyte (adducts, isotopes, in-source fragmentation). In general, untargeted MS-based 

data analysis requires the collection and analysis of many more samples than targeted MS-

based studies.  This is because untargeted metabolomics always requires a “reference” cohort 

(usually healthy controls) from which to perform relative comparisons to the cohort of interest 

(a treated or diseased cohort).  This is because untargeted metabolomics is not able to accurately 

quantify metabolites, which is one of its central limitations.  

The standard data analysis workflow for an untargeted MS-based metabolomics 

experiment involves several steps. These include 1) extraction of extracted ion chromatograms 

(EICs); 2) noise filtering; 3) peak detection; 4) peak deconvolution (consolidating adducts and 

isotope peaks); 5) peak/retention time alignment; 6) feature filtering; 7) significant feature 

detection/selection and finally 8) significant feature annotation (i.e. compound identification 

and intensity measurement).  Very lengthy and detailed reviews have been written about the 

workflows and methods required for untargeted MS-based metabolomics (Alonso et al., 2015; 
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Di Minno et al., 2021; Rafiei & Sleno, 2015; Schiffman et al., 2019; Vinayavekhin & 

Saghatelian, 2010).  Rather than discussing all aspects of the untargeted MS metabolomics data 

analysis workflow, I will only focus on a few. Two of the most important steps are peak-picking 

and peak (or retention time) alignment.   

Proper peak identification is critical to the success of annotating peaks and determining 

peak intensities. These steps are highly dependent on the parameters chosen and the applied 

algorithms. Several methods are commonly used for peak picking. These include centWave, 

matchedFilter, and Massiquant. CentWave uses a continuous wavelet transformation model to 

find peaks and features (Tautenhahn et al., 2008). The matchedFilter algorithm works by using 

a Gaussian model to extract the peaks from slices of the spectra data that have a defined mass 

width (for example, 0.1 m/z) (C. A. Smith et al., 2006). This method is more suitable for peak 

detection in low-resolution MS spectra than for high-resolution MS spectra. Massiquant is 

another popular algorithm. It uses the Kalman gain approach for isotopic trace detection and 

avoiding missing centroids. This method is particularly sensitive to low-intensity peaks 

(Conley et al., 2014). Most metabolomics software packages use the centwave method for peak 

picking. More recently, other approaches have appeared, including the ADAP method which 

uses continuous wavelet transform (CWT) and ridgeline detection (Du et al., 2020).  

After peak picking has been completed, peak matching and retention time alignment 

must be performed.  This peak alignment process enables the comparison of LC-MS-based 

metabolomic data across samples. The retention time of an ion may drift across different 

samples, even if those samples are analytical replicates. As a result, the drift is generally non-

uniform across the retention time range and cannot be completely controlled during LC 

separations. For large-scale studies involving multiple samples, retention time alignment is 

used to correct the retention time drift and ensure that the same ion is compared across samples. 

One approach for peak alignment uses the peak detection results and makes efforts to find and 

match similar peaks. Kernel estimation is the most popular method to group peaks with similar 

m/z values and retention times across a given dataset (N. Kumar et al., 2021). In Kernel 

estimation, the algorithm assembles “well-behaved” peak groups to which very few samples 

have no peak assigned and these are used as landmarks for alignment. The deviations of the 

retention times of these landmarks from their median values within peak groups are regressed 

against the retention time. Those regions on a chromatogram without “well-behaved” peaks 

can be interpolated and aligned. The aligned peaks are grouped again to match peaks with 

corrected retention times. This procedure is usually carried out iteratively two or three times to 
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make sure the retention time drift is sufficiently corrected. Other peak alignment methods use 

LC-MS raw data for retention time alignment by matching the EIC (extracted ion 

chromatogram) chromatographic signals. Correlation-optimized warping (COW) aligns 

chromatographic signals by dividing the time axis into segments and performing a linear 

warping within each segment to maximize the overall correlation of the two chromatographic 

profiles (Tomasi et al., 2004). Another method called dynamic time warping (DTW) aligns 

chromatograms by maximizing the spectra similarity while preserving the internal ordering of 

the eluents (Clifford et al., 2009).  

Another important step in the untargeted metabolomics data analysis workflow is peak 

filtering. As untargeted metabolomics datasets often have high numbers of ambiguous or 

erroneous features (even after peak alignment), it is often essential to employ additional 

filtering procedures prior to finalizing the list of peak features used for peak significance 

assessment. Log transformation, manual identification of high- and low-quality filters, blank 

subtraction, p-value, and box/density plots can all be used to filter features to help minimize or 

remove uninformative features. Deisotoping (removal of features corresponding to the same 

compound but with different isotopes) is another important feature filter that is often applied 

(McCardle, 2022). 

A typical untargeted metabolomics experiment can easily generate 10,000 to 20,000 

features. After cleaning, aligning, and filtering, the number of features may be reduced to 

5,000-6,000 robust or reproducibly reliable features.  However, not all of these are biologically 

significant, and not all of these may be changed as a result of a given intervention. Rather than 

attempting to annotate (identify and quantify) all 5,000 features, most researchers apply a 

variety of multivariate statistical techniques to reduce the number of features even further.  

These methods, such as principal component analysis (PCA) or partial least squares 

discriminant analysis (PLS-DA) can be used to identify those m/z and retention time features 

that have changed significantly between the two (or more) sets of cohorts. Programs such as 

MetaboAnalyst (Pang et al., 2022) and Workflow4Metabolomics (Giacomoni et al., 2015) are 

examples of popular software tools that can help with these multivariate analyses. Typically, 

these multivariate statistical analyses will reduce the number of features from 5,000 to as few 

as 50-100 highly significant features.  Once the most significant features have been selected, 

then the next step is feature annotation.  

Feature annotation or metabolite identification in untargeted metabolomics is mainly 

achieved through mass-based search followed by manual verification. In most cases, the m/z 
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value of a molecular ion of interest or the calculated molecular weight (MW) of the molecule 

is searched against database(s) such as HMDB (Wishart, Guo, et al., 2022), PubChem (Kim et 

al., 2016), KEGG (Ogata et al., 1999) or Metlin (Guijas et al., 2018). The molecules having 

molecular weights or ions having m/z values within a specified tolerance range to the query 

molecule are retrieved from databases as putative identifications. Unfortunately, mass-based 

searches rarely provide unique identifications for the ions of interest since there are often 

multiple compounds with the same m/z values or molecular weights. Likewise, most metabolite 

databases do not have complete coverage of all known molecules. Generally, less than 30% of 

the detected ions in a typical LC-MS-based metabolomic experiment can be uniquely identified 

through mass-based searching. To verify the mass-based search results, authentic compounds 

of those putative identifications must then be collected. By comparing the LC retention times 

and MS/MS spectra of the authentic compounds with the ions of interest in the sample, the 

identities of the metabolites can be confirmed. Using information about the species being 

analyzed (to eliminate the possibility of identifying plant-only compounds in bacteria or 

eliminating the possibility of identifying human-only drugs in rat studies) can also help 

minimize incorrect identifications.  

Over the past decade, a wide variety of software packages have been developed to help 

perform untargeted metabolomics data analysis. These include SIRIUS (Dührkop et al., 2019), 

MetaboAnalyst 5.0 (Pang et al., 2022), MetAlign (Lommen, 2009), OpenMS (Rurik et al., 

2020), Compound Discoverer (Thermo Fisher), SIEVE (Thermo Fisher), Metaboanalyst (Pang 

et al., 2022), XCMS online (Huan et al., 2017), MZmine (Du et al., 2020), MS-DIAL (Tsugawa 

et al., 2015), El-MAVEN (Agrawal et al., 2019), Progenesis QI (Waters), and MetaboScape 

(Bruker). Compound Discoverer, SIEVE, Progenesis QI, and MetaboScape are commercial 

software packages, while the others are freely available web-based or downloadable software 

packages. Some of these packages (such as SIRIUS) are limited to the peak annotation steps 

while others are more comprehensive and can perform all or nearly all the eight data processing 

steps needed for untargeted metabolomics. Each software program has its own approaches that 

offer different degrees of accuracy, and each has its own distinct advantages and disadvantages 

in terms of data pre-processing, analysis, visualization, and interpretation. Among all of these 

software packages MetaboAnalyst, XCMS online, MZmine, and MS-DIAL are perhaps the 

most well-known and widely used. A graph indicating the frequency of use by Metaboanalyst, 

XCMS online, MZmine, and MS-DIAL as indicated by PubMed citations is shown in Figure 

1.4. 
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Figure 1.4. The use of XCMS, Metaboanalyst, MZmine2 and MS-DIAL has increased 

dramatically in the past 20 years. (A) Annual number of publications available on PubMed 

that contain the keywords “XCMS,” “Metaboanalyst,” “MZmine,” and “MS-DIAL”. These 

numbers were obtained directly from PubMed’s “Results by Year” section.  

1.2.1.1.6. Challenges in untargeted mass spectrometry data analysis: false positive/false 

negative results 

Large metabolomics datasets can contain thousands of falsely identified features. These 

include noise signals from sample processing or multiple signals originating from the same 

analyte (e.g., adducts, isotopes, in-source fragmentation) or features with imperfect integration 

(e.g., incorrect integration regions and missing values). As a result, false positive and false 

negative feature identifications frequently plague untargeted metabolomics studies (Schiffman 

et al., 2019). The goal of many untargeted metabolomics software packages is to reduce the 

number of false positives and false negatives. Several studies were conducted on the 

performance of different software. Cobble & Fraga et. al (2014) evaluated the performance of 

MetAlign, XCMS, and MZmine2, and reported that significant improvements were needed in 

the preprocessing tools to reduce the high percentage of false peaks identified. Another study 

involving a comparison between PeakView, Markerview, and MetabolitePilot (three 

commercial software products from the MS vendor Sciex) against the freeware package XCMS 

Online was conducted (Rafiei & Sleno, 2015). These authors noticed significant variations in 

each software’s peak lists. Additionally, they reported that all four software packages failed to 

detect several standard metabolites. In 2017, Mayer’s et al. conducted a comparative study for 

chromatogram construction and chromatographic peak detection performance between XCMS 
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and MZmine2. They observed that both programs performed well for peak picking, however, 

both packages reported a significant number of false positive EIC peaks, and both failed to 

detect real EIC peaks as well. In addition, during the peak annotation process (conducted 

against the same database) selection of related isotopes and adducts for neutral masses 

sometimes led to false positive results. Additionally, other authors have noted that noise peaks 

can sometimes be incorrectly detected as a peak group while using XCMS for feature detection 

and integration (Schiffman et al., 2019), leading to incorrect peak area integration. As a result, 

untargeted metabolomics datasets may include thousands of incorrectly identified features or 

features with poor integration values (such as inaccurate integration regions and missing 

values). 

1.2.1.2. Nuclear magnetic resonance (NMR) spectroscopy 

NMR is a very different spectroscopic approach than mass spectrometry. Rather than 

measuring masses to determine molecular formulas or molecular structures, NMR measures 

the electromagnetic radiation absorbed by molecules in the radio frequency range to determine 

the structure of organic compounds (Mlynárik, 2017). Unlike MS, NMR provides much more 

detailed structural information about molecules, and it can be very accurate in terms of 

compound quantification (coefficients of variation as low as 1-2% compared to 20% for MS). 

Arguably, NMR was the first metabolomics platform with the vast majority of early 

metabolomic studies being conducted by NMR (Hoult et al., 1974; Shulman et al., 1979). 

However, over the past 15 years, the preferred platforms for metabolomic analysis have mostly 

shifted away from NMR in favor of GC-MS and LC-MS.  This is because GC-MS and LC-MS 

are 10-100 times more sensitive than NMR (5 nM vs. 5 uM) and as a result, it is often possible 

to identify 4-5 times more compounds in a metabolomics sample via GC-MS or LC-MS. 

Despite the disadvantage of poor sensitivity, NMR still offers some important advantages. In 

particular, NMR is non-destructive, it is highly reproducible, it allows identification of novel 

compounds, it doesn't need chemical derivatization, and it requires little to no separation 

(Emwas et al., 2019). NMR is also very effective in detecting certain classes of compounds, 

such as sugars, alcohols, amines, and low molecular weight volatile liquids which are not easily 

detected by GC-MS or LC-MS.  

1.2.1.2.1. NMR Basics 

Atomic nuclei are composed of protons and neutrons. They have an intrinsic property 

called spin, which is expressed by the quantum number I. Three types of spin are usually seen 

in nuclei, including integral spins (I = 1, 2, 3 ....), fractional spins (I = 1/2, 3/2, 5/2 ....), and no 
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spin, where I = 0.  Nuclei with spin I = 0 are not detectable by NMR spectroscopy. Different 

isotopes can have different spins depending on the proportion of protons and neutrons. Isotopes 

of particular interest in NMR spectroscopy are those that have an I = ½ such as 1H, 13C, 19F, 

and 31P. NMR involves the measurement of the absorption of electromagnetic (EM) radiation 

by certain nuclei at specific frequencies or specific wavelengths. This is because NMR active 

nuclei respond to (i.e. absorb energy from) the oscillating magnetic fields in EM radiation. 

NMR active nuclei (those with non-zero spins) behave like tiny bar magnets. These properties 

allow nuclei not only to respond to EM radiation but also to align with external magnetic fields. 

When an external magnetic field is applied to a sample, a small fraction (<0.01%0 of nuclei 

will align with the external magnetic field. This alignment “conditions” the sample so that those 

nuclei can absorb the EM radiation. In particular, those nuclei that are aligned with the external 

magnetic field, are in a low energy state that makes them susceptible for EM absorption at 

certain frequencies (called resonant frequencies). When broad-spectrum radio frequency EM 

radiation is passed through the sample, the nuclei in the low energy state will absorb the EM 

radiation at a characteristic frequency.  The amount of energy absorbed, or the frequency 

absorbed depends on the type of nucleus (1H nuclei absorb at higher frequencies than 13C) and 

the local electric environment defined by local atomic bonds and local molecular geometry.  
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Figure 1.4. A typical NMR instrument, components, and inner part. A) Design of an 

NMR spectrometer and its components. B) Inner part of an NMR.  

        An NMR spectrometer consists of three basic components: a magnet, a probe, and a 

console (Figure 1.5). The magnet must be very powerful (10-15 Tesla or 100,000X more 

powerful than a kitchen magnet) so that it can align a sufficient number of nuclear spins in the 

sample. Most modern NMR spectrometers use superconducting magnets, which require very 

low temperatures to work. Therefore, an extensive “passive” cooling system must be used 

which resembles a gigantic thermos bottle. In particular, the magnet (which is shaped like a 

cylinder with a hole through it) is surrounded by an inner jacket filled with liquid helium (at -

270 oC) which is surrounded by an additional liquid nitrogen tank (at -196 oC) to keep the 

magnet in its superconducting state (Figure 1.5B).  A cylindrical tube, called a probe, goes into 

the center of the hole of the doughnut-like superconducting magnet. The NMR probe is 

(A) 

(B) 
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designed to contain the NMR sample and hold the sample in the “sweet spot” in the center of 

the magnet where the field is maximized. NMR probes also contain a collection of saddle- 

shaped coils which performs multiple functions, including radio frequency (RF) EM generation 

and RF reception (the coils act as RF transceivers).  In other words, the coil excites the nuclear 

spins by irradiating the sample with RF EM radiation. The absorption of this EM radiation is 

also detected or received by the coils whereupon the signal is passed on to the console. The 

console is a collection of computers and radio frequency generators/receivers that is 

responsible for generating the RF radiation, recording the RF absorption/NMR signals, 

processing the NMR signals, and controlling the magnetic field. The console controls all the 

experimental conditions and communicates with the NMR probe and the NMR magnet. Most 

modern NMR spectrometers measure the RF absorption signals as a time-dependent change in 

radio frequencies. These time-dependent changes are then transformed by a mathematical 

transformation (called a Fourier Transformation) to produce a frequency-dependent signal that 

indicates which frequencies were absorbed and how strongly they were absorbed. The resulting 

(one-dimensional) NMR spectrum resembles an HPLC or GC chromatogram with multiple 

peaks at different frequencies (Figure 1.6).  These NMR spectra reveal information about a 

molecule’s chemical shifts and their coupling constants, both of which are valuable for 

determining a molecule’s atomic structure. 

Figure 1.5. A typical 700 MHz 1H NMR spectrum of a natural mixture. 
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1.2.1.2.2. Chemical shifts  

The position of any given peak seen in an NMR spectrum (Figure 1.5) is referred to as 

the peak’s chemical shift.  The chemical shift is defined as “the measured nuclear magnetic 

resonance frequency of a nucleus arising from its local (molecular) electronic environment”. 

The chemical shift is affected by the type of nucleus or atom being measured (the gyromagnetic 

ratio of that nucleus), the type of bonding with which the atom is involved (single, double, 

triple), the proximity of electropositive (Si) or electronegative (O, Cl or F) atoms or atomic 

groups to the atom of interest, the geometry or shape of the molecule (linear vs. aromatic) and 

the solvent with which the compound is dissolved. A single molecule may have as few as one 

(such as formic acid) or as many as dozens of peaks (such as glucose) corresponding to the 

number of 1H or 13C atoms in the molecule.  Each of those peaks is a characteristic chemical 

shift of that molecule. The complete set of chemical shifts defines a chemical shift “signature” 

for that molecule. Most chemical shift signatures are unique to a molecule, which enables their 

unambiguous identification through comparing the observed chemical shifts with known 

chemical shift tables (for different molecules).  In NMR spectroscopy, a molecule is considered 

“assigned” if all of the 1H or 13C shifts for each of the atoms in that molecule are known or 

fully determined.    Formally or numerically, the chemical shift is defined as the difference 

between the resonant frequency of an atomic nucleus and the signal of the reference or standard 

molecule (Mlynárik, 2017). In this regard, chemical shifts are relative measures and so the 

chemical shift can vary greatly depending on the standard molecule that is chosen. The standard 

molecules most often chosen for both 1H and 13C NMR are TMS (tetramethylsilane) or DSS 

(sodium trimethylsilyl propanesulfonate). The chemical shift δ is usually expressed in parts per 

million (ppm) by frequency because it is calculated using the following equation: δ = [n 

(sample) – n (ref)]/ n (ref), where ν (sample) is the absolute resonance frequency of the sample 

and ν (ref) is the absolute resonance frequency of a standard reference compound. The chemical 

shifts in 1H NMR spectra typically range from 0 ppm to 14 ppm while the chemical shifts in 

13C NMR spectra typically range from 0 ppm to 220 ppm. 

1.2.1.2.3. Coupling Constants 

1H NMR spectra (Figure 1.6) are also characterized by clusters of peaks (often called 

multiplets) that have distinct intensity patterns. These clusters of peaks arise from a 

phenomenon known as J-coupling. J-coupling arises from an interaction between nuclei 

containing spin.  J-couplings are also known as scalar couplings. This interaction is mediated 

through bonds. The coupling constant, J (usually measured in Hz) is a measure of the 
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interaction between a pair of chemically bonded spins (1H, 13C or 15N). Coupling is controlled 

by geometry and the orbitals involved between the coupling nuclei. In 1H NMR, clusters of 

coupled peaks come in different varieties, including pairs of peaks (doublets), groups of three 

peaks (triplets) and groups of four peaks (quartets).  In 1H NMR, doublets have equal intensity 

or intensity ratios of 1:1, while triplets of intensity ratios of 1:2:1, and quartets have intensity 

ratios of 1:3:3:1. The relative intensities of peaks in a coupling pattern are given by a binomial 

expansion.  J-coupling provides information about relative bond distances and angles as well 

as information on the connectivity of chemical bonds. 

1.2.1.2.4. One-dimensional NMR spectroscopy 

The simplest form of NMR spectroscopy is called one-dimensional or 1D NMR. 1D 

NMR usually requires a single, broad-frequency RF pulse to excite all the 1H or 13C nuclei in 

the molecule of interest. The resulting spectrum is a 2D line plot with signal intensity plotted 

on the Y-axis and frequency (or chemical shift) plotted on the X-axis. An example of a 1D 

NMR or 1H NMR spectrum is shown in Figure 1.6. The position of the peaks (chemical shifts), 

the multiplicity of the peaks (J-couplings), and the coupling patterns along with the peak or 

peak cluster intensities (indicating the number of 1H or 13C atoms) can all be retrieved from 1D 

NMR data. This information can be used to assign the chemical shifts to a molecule or to 

determine its structure. The detailed process of chemical shift assignment or NMR-based 

structure determination is complex and far beyond the scope of this introduction, but interested 

readers may find more about this in the following references (Cavalli et al., 2007; Nerli et al., 

2018; Yao et al., 1997; Yesiltepe et al., 2018).  

1.2.1.2.5. Two-Dimensional NMR spectroscopy 

For small molecules, one-dimensional NMR is often sufficient to detect all individual 

peaks for all observable functional groups and to determine a molecule’s atomic structure.  

However, for larger, more complicated molecules or mixtures of compounds, the interpretation 

of a 1D NMR spectrum may be too challenging due to the presence of several overlapping 

resonances (Silverstein et al., 2015). Two-dimensional NMR gives much more information 

than 1D NMR. This is because the data are defined by two frequencies instead of one 

(Silverstein et al., 2015). An example of a 2D NMR spectrum is shown in Figure 1.7.  As seen 

in this example, a 2D NMR spectrum is somewhat like a topographic map with contour lines 

used to indicate peak intensities.  The X and Y axes are frequencies while the Z axis (peak 

intensity) is depicted via contour lines.  
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Figure 1.6. A typical 600 MHz HSQC (2D NMR) spectrum of L-lysine (downloaded 

from HMDB database). 

2D NMR spectra are collected by exciting nuclei with multiple RF pulses separated by 

different time periods. This multi-step RF excitation leads to magnetization transfer between 

nuclei and the appearance of coupled peaks or pairs of peaks at different frequencies on the X 

and Y axes. There are two types of 2D NMR: homonuclear correlation spectroscopy, and 

heteronuclear correlation spectroscopy. In homonuclear correlation spectroscopy, 

magnetization transfer occurs between nuclei of the same type (usually 1H to 1H) (Handbook 

of Pharmacogenomics and Stratified Medicine, 2014). The most often utilized homonuclear 

correlation spectroscopic experiments are 1H-1H correlation spectroscopy (COSY), total 

correlation spectroscopy (TOCSY), and nuclear overhauser enhancement spectroscopy 

(NOESY). In heteronuclear correlation spectroscopy, magnetization transfer occurs from one 

nucleus to another nucleus of a different type (usually 1H to 13C). Heteronuclear multiple 

quantum coherence (HMQC), and heteronuclear multiple-bond correlation spectroscopy 

(HMBC) are the two most commonly performed types of heteronuclear correlation 

spectroscopy.  
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1.2.1.2.6. COSY and TOCSY 

The 1H-1H COSY experiment provides information about off-diagonally correlated 

protons that are directly coupled to each other (Emwas et al., 2019; Rahman, 2015). In the 

COSY experiment, magnetization is transferred between J-coupled spins. However, in the 

TOCSY experiment, magnetization transfer to all protons in a spin system occurs (protons that 

are directly or indirectly coupled to each other) (Emwas et al., 2019). For instance, if a spin 

system has components A, B, C, and D, then a COSY spectrum will show three off-diagonal 

peaks between A and B, B and C, and C and D. In contrast, a TOCSY spectrum will show six 

off-diagonal peaks between A+B, A+C, and A+D, as well as B+C, B+D, and C+D. In other 

words, correlations will be seen between all the spins in a TOCSY experiment. In this regard, 

a TOCSY experiment is often more informative than a COSY experiment. 

 1.2.1.2.7. HSQC and HMBC 

Heteronuclear multiple quantum coherence (HMQC), and it’s a slightly more efficient 

variant known as heteronuclear single quantum coherence (HSQC), are 2D NMR experiments 

that detect correlations between different nuclei (usually 1H and 13C or 1H and 15N) that are 

separated by one bond (Emwas et al., 2019; Öman et al., 2014). These 2D experiments provide 

information about the relative relationships between protons (1H) that are directly bonded to 

carbons (13C) in a chemical structure. On the other hand, heteronuclear multiple bond 

coherence (HMBC) detects a correlation between 1H and 13C nuclei through two, three, or 

sometimes four bonds (Emwas et al., 2019; Öman et al., 2014; Rahman, 2015). This 2D 

experiment provides information about the relative relationships between protons (1H) that are 

directly and indirectly bonded to carbons (13C) in a chemical structure. HMBC spectra can 

show 2-4 bond coupling between protons and carbons. In this regard, the HMBC experiment 

can provide more structural information than an HSQC or HMQC experiment.  However, both 

types of experiments can be used in concert to decipher which proton signals belong to which 

1H atoms and which carbon signals belong to which 13C atoms. 

1.2.1.2.8. Software and Databases for Compound Identification in NMR metabolomics 

NMR can be used for the analysis of pure compounds or mixtures. In metabolomics, 

NMR is primarily used to analyze mixtures, although it can also be used to help identify novel 

(or unknown) compounds, if those compounds have been purified or partially purified. The 

analysis of mixtures by NMR is slightly different than the analysis of pure compounds by 

NMR. This is because the NMR signals in a mixture can arise from multiple chemicals, each 
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of which has its own characteristic NMR spectra or characteristic chemical shift signatures. As 

a result, the NMR spectrum of a mixture, which is made up of several different metabolites, is 

really the sum of the individual NMR spectra for each of the pure metabolites present in the 

mixture. To determine which compounds are which and how abundant each of those 

compounds is in the mixture, one must use a technique called spectral deconvolution (Jarvis, 

1982). Spectral deconvolution is a process designed to decompose or deconstruct a spectrum 

into its individual components. In NMR metabolomics, spectral deconvolution is used to 

separate out or identify distinct pure compound spectra from the more complex mixture spectra. 

Spectral deconvolution of mixtures by NMR is more robust than for LC-MS or GC-MS. This 

is because it is rare for any two substances to have the same number of NMR peaks, the same 

chemical shifts, or the same peak intensities (whereas it is much more common in LC-MS or 

GC-MS for compounds to have the same retention times and/or the same masses). Using NMR-

based spectral deconvolution, it is possible to manually or automatically identify and quantify 

many compounds in an NMR spectrum by accurately matching and fitting the observed peaks 

in the chemical mixture to a library of pure reference component peaks (which have been 

calibrated to an internal concentration standard) (Ebrahimi et al., 2014).  There are several 

software packages that support NMR spectral deconvolution for manual or semi-automated 

compound identification and quantification.  These include commercial packages such as the 

Chenomx NMR suite from Chenomx Inc. (https://www.chenomx.com/) and the Bruker 

TopSpin package 4.3.0 (https://www.bruker.com/en/products-and-solutions/mr/nmr-

software/topspin.html). Several freely available, automated NMR methods for 1D NMR 

spectral deconvolution also exist, including BATMAN (Hao et al., 2014),  MagMet (Rout et 

al., 2023), and Bayesil (Ravanbakhsh et al., 2015). Likewise, a 2D NMR package called 

COLMAR (F. Zhang et al., 2009) also exists for deconvolution of 2D homonuclear and 

heteronuclear spectra. Each package has its own software-specific spectral databases. Some of 

the open-source packages use NMR spectral databases such as the Human Metabolome 

Database (HMDB) (Wishart, Guo, et al., 2022), the Madison-Qingdao Metabolomics 

Consortium Database (MQMCD) (Cui et al., 2008), the Natural Product Magnetic Resonance 

Database (NP-MRD) (Wishart, Sayeeda, et al., 2022), and the Biological Magnetic Resonance 

Bank (BMRB) (Romero et al., 2020).  

1.3. Alternate methods for metabolite identification 

The last 15 pages of this document have outlined some of the most common (direct) 

methods for determining the chemical composition of mixtures in metabolomics or for the 
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identification of unknown or novel compounds in biological samples.  These include LC-MS, 

GC-MS, tandem mass spectrometry, and NMR spectroscopy.  However, it is also possible to 

use other forms of biological information or other types of databases to help reduce the 

complexity of the problem.  For instance, if one knows the kind of organism being studied, it 

is possible to restrict the search for metabolites to only those metabolites known to be produced 

or metabolized by that organism.  For instance, if one is studying E. coli growing in a fermenter 

system, one only needs to look for metabolites that are produced by E. coli.  Likewise, if one 

is studying metabolites in lab rats or lab mice, then one can immediately exclude metabolites 

that might come from cosmetics, or drugs, or even plants, given that lab animals are confined 

to cages and eat restricted diets and therefore are not exposed to these chemicals.  So, genetics 

or knowledge of genetically encoded metabolites can be used to restrict the search space used 

by MS or NMR-based metabolomics.  Another route that can help infer the identity of 

metabolites is to measure changes in gene expression (transcriptomics).  This is because 

changes in gene expression can lead to changes in metabolite production (or consumption) or 

the activation of new pathways that can be used to infer or predict metabolites.  This will be 

explained further below. 

1.4. Transcriptomics 

Transcriptomics is a branch of genetics that studies the global measurement of an 

organism's transcriptome, the complete set of RNA transcripts, including messenger RNAs 

(mRNAs), non-coding RNAs, and small RNAs in a biological system (Dong & Chen, 2013). 

Transcriptomics allows the measurement of the RNA expression of hundreds to thousands of 

transcripts in tissues, biofluids, and cells. Transcriptomics provides a simple route to measure 

gene expression changes (and by proxy, protein expression changes) that arise due to external 

perturbations. Prior to 2010, most transcriptomics measurements were done using microarray 

technologies. Microarrays measured the hybridization of sample RNA to defined or synthetic 

RNA segments attached to specific positions on manufactured chips. The advent of next- 

generation sequencing has changed the field dramatically, as now it is possible to measure the 

transcriptome using a more robust technique called RNA-sequencing or RNA-Seq (Wang et 

al., 2009). The RNA-Seq workflow involves several steps, including sample preparation, the 

running of DNA sequencing equipment, and data analysis. In the first step, a given sample's 

RNA is isolated, then converted to complementary DNA (cDNA). Next, the sample is prepared 

for sequencing and then sequenced using an NGS platform (Kukurba & Montgomery, 2015). 

RNA-Seq has several advantages over other transcriptomics technologies. Unlike 
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hybridization-based microarray technology, RNA-Seq is not restricted to identifying and 

quantifying transcripts from completely sequenced organisms. Additionally, RNA-Seq has 

significantly greater reproducibility than other microarray technologies (van der Kloet et al., 

2020). In addition to offering a more precise and in-depth assessment of RNA abundance than 

microarrays, RNA-Seq also detects alternatively spliced genes and can determine allele-

specific expression arising from polymorphisms in the transcript (Kukurba & Montgomery, 

2015). RNA-Seq can be used to quantify several populations of RNA, including total RNA, 

pre-mRNA, and noncoding RNA (i.e. rRNA, microRNA, and long ncRNA), in addition to 

assisting with the analysis and counting of mRNA transcripts (Kukurba & Montgomery, 2015). 

Transcriptomics can be combined with metabolomics to help identify changes to gene 

expression and the corresponding changes to metabolism that arise from changes to an 

organism’s nutrient sources (Zhang et al., 2022), chemical exposures (Hudson et al., 2021), 

genetic changes (Hassan et al., 2020), and exposures to pathogens (Wu et al., 2023).  

Transcriptomics and metabolomics can also be combined to help identify novel metabolites, 

especially with regard to novel microbial metabolites (Dutta et al., 2020; Fan et al., 2023). 

1.5. Rationale of studying catechol metabolism in Escherichia coli 

This study focuses on catechol metabolism in Escherichia coli (E. coli), which will 

contribute to a comprehensive understanding of microbial metabolism and physiology. 

Catechol, a common aromatic molecule found in a variety of natural instances, acts as a 

fundamental model for elucidating general degradation mechanisms for more complex 

aromatic substances. E. coli is a gram-negative, rod-shaped facultative anaerobic member of 

the Enterobacteriaceae family of bacteria (Desmarchelier & Fegan, 2002). E. coli has been one 

of the most extensively studies species since Theodor Escherich discovered it in 1885 (FAQ, 

2011). E. coli, including other facultative anaerobic bacteria, constitutes about 0.1% of the gut 

microbiota (Eckburg et al., 2005). The regeneration time of E. coli is about 20 minutes, and 

their growth and culture in a laboratory setting are inexpensive. Due to the availability of its 

complete genome (Blattner et al., 1997) as well as the comprehensive understanding of its 

genome and metabolism, this is the most studied microorganism in biological research (Ruiz 

& Silhavy, 2022). E. coli is used in a wide range of applications, including the production of 

recombinant proteins, enzymes, and bioactive molecules (Gupta & Shukla, 2016; Huang et al., 

2012). E. coli has also been modified to function as biosensors and detecting molecules 

(d’Oelsnitz et al., 2022). The metabolic changes and diversity of E. coli allow it to adapt in a 
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variety of biological niches, including the human gut and multiple environmental habitats. 

These features prompt us to study E. coli. Understanding catechol metabolism in E. coli will 

provide insights into the organism's potential as a bioremediation agent to control 

environmental pollution issues, as well as enable the development of medicinal enhancements. 

1.6. Statement of thesis problem 

Microbes are the microscopic chemical ‘terra-forming’ factories that populate every 

conceivable niche of the earth. They are responsible for transforming thousands of natural and 

synthetic chemicals into compounds that can either be consumed, assembled or further 

degraded so that other organisms can thrive or survive.  In particular, microbes in the human 

gut play a key role in the production of chemicals (often derived from food) that can turn out 

to be helpful or harmful to the human body (Wishart et al., 2023). However, a complete 

understanding of the microbe-diet-metabolome relationship is still a long way away (Wishart 

et al., 2023).  This is because the type and variety of chemicals in our diet, and the type and 

variety of known microbes and microbial chemical reactions are still poorly understood.  

To better understand which chemicals can be produced by human gut microbes, 

especially when grown on specific food-derived chemicals, I decided to apply a combination 

of metabolomics and transcriptomics to the problem.  This is a relatively new area of microbial 

metabolomics, and therefore few protocols are in place or few methods from which to draw 

upon. Therefore, my focus for this thesis was on developing methods and technologies on a 

pilot scale that could eventually be applied more broadly or more generally.  Specifically, I 

chose to determine how a plant-derived chemical called catechol could be chemically 

transformed by a single human gut microbe, E. coli.   This small-scale analysis was designed 

to combine NMR and MS-based metabolomics with RNA-Seq transcriptomics to identify the 

metabolites produced (via untargeted metabolomics) and the metabolite pathways activated 

(via transcriptomics) when E. coli is grown in catechol-containing media.  This study and the 

results that were found are summarized in the second chapter of this thesis. As far as we are 

aware, no other metabolic or metabolomic study has been conducted looking at E. coli growing 

in catechol.   

This microbial metabolomics/transcriptomics study described in Chapter 2 also led to 

a second study that looked at the problems and challenges associated with using untargeted 

metabolomics to identify novel compounds. As highlighted in Chapter 2, many inconsistencies 

were noted between the NMR and MS metabolomics results. Specifically, many false positive 
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compounds were identified in the MS analyses.  These results and the number of false positives 

identified were highly dependent on the software being used and the analytical workflow being 

employed.  Therefore, to identify the sources for these errors, I explored how and why these 

errors could arise by analyzing a simple set of defined mixtures (using both NMR and MS). 

This was done to better understand some of the challenges facing untargeted metabolomics 

when applied to novel compound identification. This study and the results that were found are 

summarized in the third chapter of this thesis. Therefore, based on these ideas and the direction 

that arose from this research, I have defined three thesis objectives. 

1.7. THESIS OBJECTIVES 

1) Identify and characterize the known and previously unknown metabolites produced 

by E. coli after growth in a catechol-containing medium in both anaerobic and aerobic 

conditions. 

2) Use RNA-Seq to identify upregulated and downregulated genes arising from 

catechol metabolism in E. coli and use these transcriptomics changes to help identify known 

(and previously unknown) metabolites. 

3) Determine the source of the variability arising from untargeted metabolomics (MS 

and NMR) studies in terms of false positives and false negatives using different software 

software packages applied to defined chemical mixtures. 

1.8. THESIS OUTLINE 

This thesis consists of four chapters. The first chapter (the current chapter) introduces 

bacterial metabolism and provides a general background on metabolomics (both targeted and 

untargeted), with a specific focus on the different analytical platforms and analytical techniques 

used in my thesis research. This chapter also discusses some of the challenges facing untargeted 

metabolomics in terms of false positives and false negatives for compound identification.  

The second chapter describes what is known about catechol metabolism in E. coli. It 

also describes the study design I used to characterize catechol metabolism in E. coli. Using a 

combination of untargeted MS and NMR-based metabolomics and RNA-Seq analysis of 

transcriptomic changes. The chapter describes the detailed growth conditions, the 

metabolomics and transcriptomics techniques, the relevant results of this study, and the lessons 

learned about the limitations of untargeted metabolomics. 
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Third, chapter describes the untargeted MS-based metabolomics benchmarking 

experiment.  This study was conducted to determine the variability of MS-based results in terms 

of false positives and false negatives with regard to compound identification during data 

analysis. The chapter describes and discusses the different analytical techniques used, the types 

of defined mixtures prepared and analyzed, and the performance of the different software 

packages. 

The final chapter summarizes the results described in chapters 2 and 3 and discusses 

potential improvements to the study design of both projects. 
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Chapter 2   

Exploring Catechol Impact on E. coli UM146: A Multi-Omics Perspective 

on Detoxification and Stress Response Pathways 

2.1. Introduction 

Phenolic compounds have a benzene ring with one or more hydroxyl groups attached. 

In nature, this group of chemicals is abundantly present (Minatel et al., 2017). There are more 

than 4,000 identified phenolic plant chemicals (Tsao, 2010), many of which have applications 

including pigments, lignin precursors, anti-inflammatory, antiproliferative, and antioxidant 

properties (Albuquerque et al., 2021). Some of these substances such as catechol, catechin, 

caffeic acid, gallic acid, ferulic acids, etc. are found in food or are employed in medicine 

(Delgado et al., 2019; Nisar, 2022). Catechol is one of the essential phenolic flavonoids, present 

in a trace amount in human food sources, such as green vegetables, green tea, and fruits 

(Knezevic et al., 2021). It serves as a raw ingredient in the production of several medications, 

pesticides, and fragrances (Fiege et al., 2000). Catechol is widely distributed in atmospheric 

air, and originates from vehicle emissions, cigarette smoke, combustion pollution plumes, and 

biomass burning (Rana et al., 2023). It has been found in drainage water from bituminous shale, 

crude wood tar, wastewater from coal conversion processes, and effluent from coal-tar 

chemical synthesis (Lofrano et al., 2009). Its content in wastewater from coal carbonization 

and gasification ranges from a few mg/L to 2000 mg/L, followed by the concentration able to 

reach 5,300 mg/L at low temperatures of wastewater (Subramanyam & Mishra, 2007, 2008a, 

2008b). Therefore, humans or animals obtain catechol directly from food or through inhalation 

everyday. Around 14,000 workers in the United States get exposed to catechol (On the 

Evaluation, 1999). According to the International Agency for Research on Cancer (IARC) 

(1986), catechol is present in cigarette smoke at a level of 100–360 μg per cigarette (“Tobacco 

Smoking,” 1986). It is estimated that humans consume or endogenously produce 0.3 mg/kg of 

catechol daily (McDonald et al., 2001). Although catechol has a diverse set of applications, 

based on the substantial evidence of carcinogenicity in test animals, the International Agency 

for Research on Cancer (IARC 1999) classified catechol as "possibly carcinogenic to humans" 

(Group 2B). Several strains of rats have been shown to develop adenocarcinomas of the 

glandular stomach after receiving long-term dietary exposure to catechol (IARC, 1999); 

however, no relevant epidemiological study has been found for humans. The EPA 

(Environmental Protection Agency) of the United States has classified phenolic chemicals, 
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including catechol, as priority pollutants (Moussavi et al., 2010; Subramanyam & Mishra, 

2007). Catechol is severely poisonous to fish at doses of 5 to 25 mg/L (Kumar et al., 2005; 

Rigo et al., 2010). Several studies have reported the toxic nature of catechol towards cell lines 

including cats, fish, humans, mice, rats, rabbits, trout, and water fleas (Garton & Williams, 

1948; Hattula et al., 1981; Neilson et al., 1991; Pellack-Walker et al., 1985; Rahouti et al., 

1999; Svenson & Hynning, 1997; Van Den Heuvel et al., 1999). 

Bacteria have diverse metabolic capabilities of efficiently degrading and transforming 

a wide range of compounds such as pesticides, hydrocarbons, lignin monomers, amino acids, 

quinones, and flavonoids (Koppel et al., 2017; Stevens & Maier, 2016; Weng et al., 2021). 

Bacteria influence bioremediation in nature by degrading, transforming, accumulating, and 

concentrating many toxic compounds (Coelho et al., 2015; Zhong & Zhou, 2002). Also, 

bacteria that exist in the human gut play a significant role in the transformation, and metabolism 

of phenolic compounds (Corrêa et al., 2019; Mosele et al., 2015). The microbial metabolism 

of catechol has been extensively studied in Azotobacter species (T. aromatica type strain K172 

and Azoarcus sp. Strain EbN1), and Pseudomonas species (Pseudomonas putida and 

Pseudomonas cepacia ATCC 29351) (Ding et al., 2008; Hamzah & Al-Baharna, 1994; Ornston 

& Stanier, 1966; Suvorova & Gelfand, 2019).  Degradation of catechol during aerobic 

condition follows two routes: meta-cleavage, or ortho-cleavage (Aghapour et al., 2013; Singh 

et al., 2015). Within the ortho-cleavage route, catechol 1,2-dioxygenase breaks down catechol 

between its two ring hydroxyls to produce cis, cis-muconate. Subsequently, this cis,cis-

muconate undergoes a series of three steps to yield the intermediate 3-oxoadipate (Fritsche & 

Hofrichter, 2005). Succinyl-CoA and acetyl-CoA are produced after 3-oxoadipate. Catechol 

ortho-cleavage route is widely spread across soil bacteria and fungi (Njiru et al., 2022). Besides 

the intradiol-ortho cleavage route, the catechol meta-cleavage pathway is also observed in 

bacteria from different genera, such as Ralstonia, Azotobacter, and Pseudomonas species 

(Hamzah & Al-Baharna, 1994; Hughes & Bayly, 1983; Sala-Trepat & Evans, 1971; Shi et al., 

2021). Catechol 2,3-dioxygenase enzyme cleaves the aromatic ring of catechol adjacent to the 

two hydroxyls, and forms (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate. In the next step, 2-

hydroxymuconic semialdehyde hydrolase catalyzes the conversion of (2Z,4E)-2-hydroxy-6-

oxohexa-2,4-dienoate into (2E)-2-hydroxypenta-2,4-dienoate (Bertini et al., 1994; Sala-Trepat 

& Evans, 1971). 2-oxopent-4-enoate hydratase, 4-hydroxy-2-oxovalerate aldolase, and 

acetaldehyde dehydrogenase enzymes work in sequence to convert 2-oxopent-4-enoate to 4-

hydroxy-2-oxovalerate, pyruvate, and acetaldehyde (and eventually acetyl-coA) (acylating). 



 

33 
 

However, in anoxic conditions, catechol is degraded into benzoyl-CoA through coenzyme A 

ligation, dehydroxylation, and carboxylation (Harwood et al., 1998). Denitrifying bacterium 

Thauera aromatica, and sulphate-reducing bacetria Desulfobacterium sp. strain use catechol 

as only electron donor and carbon source (Ding et al., 2008; Gorny & Schink, 1994). 

Carboxylation of catechol forms protocatechuate in Desulfobacterium species (Gorny & 

Schink, 1994). Protocatechuyl-CoA is converted into 3-hydroxybenzoyl-CoA in a second 

oxygen-sensitive step by the reductive removal of the p-hydroxyl group. Procatechuate-CoA 

ligase and protocatechuyl-CoA reductase are involved in the anaerobic protocatechuate 

metabolism in Thauera aromatica strain AR-1, resulting in 3-hydroxybenzoyl-CoA (Philipp et 

al., 2002). T. aromatica is known to include most of the genes necessary for the anaerobic 

metabolism of aromatic compounds such as phenol, 3-hydroxybenzoate, 4-hydroxybenzoate, 

and benzoate (Breinig et al., 2000).  

E. coli has the ability to break down numerous aromatic compounds such as 

phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-

hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid, phenylethylamine, tyramine, and 

dopamine (Díaz et al., 2001). E. coli is a highly diverse species of bacterium found in many 

distinct areas, including the intestines of humans, animals, food, soil, and water.  According to 

NCBI (National Center for Biotechnology Information), more than 2,000 strains of E. coli have 

been identified and characterized. Most varieties of E. coli are benign, leading to mild diarrhea 

in humans and animals. Certain pathogenic strains such as E. coli O157:H7 cause foodborne 

infections, and bloody diarrhea (Tortorello, 1999). E. coli UM146 strain found in the gut 

intestine involved in inflammatory bowel disease (IBD), including Crohn’s disease (CD) 

(Kittana et al., 2023). It is an adherent invasive (AIEC) strain, possessing adhesins and fimbriae 

to adhere intestinal epithelial cells to rapidly colonize and invade cell lines (Krause et al., 2011). 

Adhesins are the preliminary step of biofilm formation. Biofilm formation is a distinctive 

attribute of nearly 99% of the bacteria, a factor involved in 80% of all human body infections 

(Davies, 2003; Paraje, 2011). In the USA, around 65% of bacterial infections are related to 

biofilm (Srey et al., 2013). Therefore, there is a need for antibiofilm agents which can prevent 

biofilm formation. Several studies were conducted to measure the effect of phytochemicals on 

biofilm formation in E. coli CECT 434 (Baptista et al., 2019) and E. coli PBIO729 (Buchmann 

et al., 2023). 

To date, there is no study conducted growing E. coli UM146 strain in catechol 

containing minimal media. This study will explore the response of E. coli UM146 strain 
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towards catechol addressing key research questions, including whether E. coli UM146 can 

degrade catechol, the characterization of major byproducts, and an in-depth analysis of gene-

expression changes. In the event of catechol displaying toxicity towards the E. coli UM146 

strain, this study will determine the strategies used by the E. coli UM146 strain to survive and 

grow. Moreover, the impact of catechol on virulence factors of E. coli UM146 will be 

determined through transcriptomics analysis. Previous studies of catechol metabolism in 

bacteria were conducted using purified enzyme kinetics assay systems. Determination of 

metabolites from enzymatic reactions works by monitoring the affinity of enzyme-metabolite 

interactions and the rate of substrate depletion over time. Modern metabolomics techniques can 

be applied to identify compounds using liquid chromatography high-resolution mass 

spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS), and nuclear 

magnetic resonance (NMR). In this experiment, a combination of untargeted metabolomics and 

transcriptomics techniques were conducted to systematically elucidate the metabolites and 

genes expressed in the E. coli UM146 strain after exposure to catechol.  In addition, this study 

will provide more insights into gene regulation and genetic responses of E. coli towards 

aromatic compounds, which could be applicable in bioremediation and sustainable industries.  

2.2. Materials and Methods  

2.2.1. Chemical reagents 

Salts required to make M9 minimal media were purchased from Fisher Scientific. 

Catechol, glucose, phenol, protocatechuic acid, pyrocatechuic acid, benzoic acid, 

benzaldehyde, 1,2,4-benzenetriol, and quinone were purchased from Sigma-Aldrich. All other 

reagents were purchased from Sigma-Aldrich unless otherwise specified. HPLC grade water, 

deuterated 2,2-dimethyl-2-silapentane-5 sulfonate (DSS-d6), potassium phosphate monobasic, 

potassium phosphate dibasic, and D2O (99.9%) were purchased from Sigma-Aldrich (Oakville, 

Canada). The 2-chloropyrimidine-5-carboxylic acid (98%) was purchased from ArkPharm 

(Libertyville, USA). The Amicon (1.5 mL) 3 kDa molecular weight cut-off (MWCO) filtration 

units were purchased from Millipore Sigma (St. Louis, United States). The NMR tubes (3 mm) 

were purchased from Bruker Ltd. (Milton, Canada). Compounds for NMR standards were 

purchased from Millipore, Sigma, AK Scientific Inc., or Tokyo Chemical Industry Co. Ltd.   

2.2.2. Strains, media, substrate, and culture conditions 

E. coli UM146 strain was used in this study. This strain was previously isolated from 

the ileum of Crohn’s patients, and their genome sequence is publicly available in NCBI 
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(Accession number: NC_017632). The overnight culture of the E. coli UM146 strain was 

grown from a single, independent colony in LB medium (Sigma-Aldrich). Overnight culture 

was sub-cultured into flasks containing M9 minimal media. 1L of M9 minimal media was 

prepared using 6g sodium phosphate (Na2HPo4), 3g potassium phosphate (KH2PO4), 0.5g 

sodium chloride (NaCl), 1g ammonium chloride (NH4Cl), 1 mL 1M magnesium sulphate 

(MgSO4), 1ml 0.1M calcium chloride (Cacl2), and 10 ml 10% (w/v) glucose (1 mg/mL). Salts 

in M9 minimal media were sterilized by autoclaving for 20 minutes at 121°C. Glucose, 

magnesium sulphate, and calcium chloride were filtered and added to the media after 

autoclaving salts. The initial pH of the media was maintained to ~7.0.  

Sterile catechol was added to the M9 minimal media (with and without glucose) for the 

treatment group, and only glucose was added to the M9 minimal media (no catechol) for the 

control group. The choice of catechol concentration was based on several factors such as 

solubility, sedimentation (higher concentration of catechol leads to the formation of sediments), 

detectable presence of secondary metabolites (metabolites below 5 ppm not noticeable in 

NMR), and shoulder peaks (typically very low in concentration) near catechol. Initially, 

different concentrations of catechol (0.75 mg/ml, 1 mg/ml, and 1.5 mg/ml) were used to 

observe the impact of catechol on the growth of E. coli UM146 strain. Based on the results of 

different concentrations, 0.75 mg/mL catechol was used for transcriptomics and metabolomics 

study.  

The experiment was performed in both aerobic and anaerobic conditions. Anaerobic 

conditions were maintained by purging with nitrogen (N2) gas. All cultures were incubated at 

37◦C under a shaking incubator (200 rpm) for 24hrs. Growth was measured in a 

spectrophotometer (Model: Spectrophotometer UV/Vis Eppendorf BioPhotometer Plus 6132). 

Samples intended for transcriptomic analysis were collected during the exponential growth 

phase, contrasting with the metabolomics study, which were collected after 24 hrs. Three 

replicates were used for each experimental condition (encompassing the control and treatment 

group) to maintain statistical significance.  

2.2.3. RNA extraction and quality check 

Total RNA was isolated using Trizol and QIAgen RNeasy mini kit. TRizol 

manufactured protocol was modified for RNA isolation. Collected samples at the exponential 

growth phase were centrifuged for 10 minutes at 4,000 rpm to separate cells from the media. 

Cell volume was maintained at 10% of the lysis reagent.  An optimized amount (~350 µL) of 
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TRizol was added and homogenized using a pipette. 70 µL of chloroform was added to the 

homogenate, and vigorously vortexed for 10-15 seconds. Samples were incubated on ice for 

15 minutes and centrifuged at 12,000g for 15 minutes at 4◦C to get phase separation. The 

aqueous phase was transferred to a new tube and precipitated with 200 µL isopropanol. 

Samples were incubated on ice for 10 minutes and centrifuged for 15 minutes at 12,000g at 

4◦C. Supernatant was removed, and pellet was washed with 500 µL of 75% ethanol by flicking. 

Washed pellet was centrifuged for 10 minutes at 7,500g at 4◦C. Collected pellet was air-dried 

for 2-3 minutes and eluted with 50 µL of RNAse-free water. Eluted RNA re-purified using 

Qiagen RNeasy mini kit and followed the manufacturing protocol (RNeasy® Mini Kit quick 

start, catalog number: 74104). DNAse treatment was performed at the end of the RNA isolation 

using Invitrogen™ TURBO DNA-free™ Kit. The quality of the isolated RNA was analyzed 

at optical density (OD) 260/280 ratio using Nanodrop (Thermo Scientific). Based on the 

nanodrop results, final quality check was performed using Bioanalyzer (Agilent 2100 

Bioanalyzer system). Isolated RNA with RIN (RNA integrity number) >7 was considered for 

RNA sequencing.  

2.2.4. Library preparation 

Genome Quebec performed the library preparation and sequencing. Total RNA and its 

integrity were measured using the LabChip GXII (PerkinElmer) instrument. QIAseq FastSelect 

(-5S/16S/23S Kit 96rxns) was used to remove rRNA from 250 ng of total RNA. The NEBNext 

RNA First Strand Synthesis and NEBNext Ultra Directional RNA Second Strand Synthesis 

Modules were used to create cDNA (New England BioLabs). The NEBNext Ultra II DNA 

Library Prep Kit for Illumina (New England BioLabs) was used for the remaining library 

preparation steps. Adapters and PCR primers were purchased from New England BioLabs. 

Libraries were quantified using the Revised Primers-SYBR Fast Universal kit and the Kapa 

Illumina GA (Kapa Biosystems). The LabChip GXII (PerkinElmer) instrument was used to 

determine the average size of the fragment. After normalizing and pooling the libraries, 

samples were denatured in 0.05N NaOH and neutralized using HT1 buffer. According to the 

manufacturer's guidelines, the pool was loaded at 225 pM on an Illumina NovaSeq S4 lane 

using the Xp protocol. The run was performed for 2x100 cycles (paired-end mode). At a 1% 

level, a phiX control library was mixed with libraries. RTA v3.4.4 was used for base calling. 

The samples were then demultiplexed to produce fastq reads using the program bcl2fastq2 

v2.20. More than 10 million reads were generated per sample.  
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2.2.5. RNA-seq data analysis 

RNA-seq data analysis was performed using Galaxy Australia server 

(https://usegalaxy.org.au/). FASTQC in GALAXY was used to read quality reports. Adaptor 

sequences were removed using Cutadapt. Reads were mapped to the E. coli UM146 reference 

genome (NCBI accession: NC_017632) using Bowtie2. It uses a quick and memory-efficient 

method to align sequence reads with long reference sequences. Stringtie was used to map reads 

to each gene. Identification of differentially expressed genes was estimated using DESeq2. 

Finally, functional enrichment was conducted using ECMDB 2.0 (https://ecmdb.ca/), 

BRENDA (https://www.brenda-enzymes.org/index.php), Rhea (https://www.rhea-db.org/) 

Uniport (https://www.uniprot.org/), EcoCyc (https://ecocyc.org/) and ShinyGO 0.80 

(http://bioinformatics.sdstate.edu/go/). To compare the gene expression patterns of treated and 

untreated (control) samples, differential gene expressions (DEGs) were set to log2 fold-change 

≥ 0 and adjusted p-value ≤ 0.05. Volcano plot was generated using GALAXY. Heatmap was 

displayed using the R programming language.  

2.2.6. Sample preparation for metabolomics analysis 

2.2.6.1. Extracellular metabolites extraction 

Control and treated samples were centrifuged at 14,000 rpm for 20 minutes at 4°C. 200 

μL supernatant was aliquoted to a new Eppendorf tube with 50 ul buffer X (750 mM phosphate 

buffer with 5 mM DSS and 10% D2O). The mixture was vortexed for 1 minute and centrifuged 

at 10,000 rpm for 5 minutes at 4°C. Samples were lyophilized and fractionated using three 

solvents, including hexane, ethyl acetate, and methanol to remove salts. After salt removal, 

individual extracts were run separately in LC-MS/MS, GC-MS, and NMR. 

2.2.6.2. Intracellular metabolites extraction 

Control and treated samples were centrifuged at 5,000 rpm for 5 minutes at 4°C. 

Phosphate-buffered saline (PBS) was added to the collected pellet and resuspended using 

vortexing. Samples were placed into -80°C freezer for an hour. Samples were kept on ice for 

10-15 minutes for thawing. Thawed samples were vortexed for 1-2 minutes. This freezing-

thawing-vortexing cycle was repeated 7-10 times to break the cells to release the intracellular 

metabolites. Samples were centrifuged at 14,000 rpm for 20 minutes at 4°C.  

https://usegalaxy.org.au/
https://www.uniprot.org/
https://ecocyc.org/
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2.2.7. Orbitrap analytical conditions 

LC-MS/MS analyses were conducted with an Ultimate 3,000 UHPLC system (Thermo 

Scientific®, MA, USA) coupled to an Orbitrap mass spectrometer which is equipped with a 

heated electrospray ionization (H-ESI) source. Prior to analysis, external mass calibration was 

done in accordance with manufacturer instructions. Chromatographic separation was 

conducted on a ZORBAX C18 column (2.1 × 100 mm I.D., particle size 3.5 μm). The column 

temperature was set at 50°C, maintained by a Dionex UltiMate 3,000 RS analytical column 

heater. Mobile phases were binary mixtures: water (eluent A) and methanol (eluent B), both 

with 0.1% formic acid. Gradient elution started at 100% A and 0% B, followed by: 0–13 min 

100% B, 13–15 min 100% B, 15–15.2 min 100% B, 15.2–20 min 0% B. The total run time was 

20 min. The flow rate was set at 5 µL s−1 and the injection volume was 5 µL. Metabolites were 

analyzed under both positive and negative electrospray ionization (ESI) modes. The ESI 

conditions in each run were set: spray voltage 3.20 KV in positive mode and -3.2 KV in 

negative mode, heated capillary temperature 320°C, sheath gas flow rate 55 U, auxiliary gas 

flow rate 20 U, sweep gas flow rate 1 U, auxiliary heater temperature 370°C, and S-lens RF 

level 55. The settings for dd-MS2 data acquisition were as follows: resolution - 17500 fwhm; 

automatic gain control (AGC) target - 1e5; maximum injection time - 50 ms; loop count - 5; 

and isolation window - 4 m/z. Data acquisition conditions were set over a mass range of 80–

1200 m/z to enhance the compound identification.  

2.2.8. LC-MS/MS data analysis 

Raw data obtained from the Orbitrap instrument were converted to mzML format using 

msConvert. The spectra were processed in Metaboanalyst 5.0, MZmine2, XCMS, and MS-

DIAL using the following modules: (1) Metaboanalyst: peak picking (min_peakwidth - 6.0, 

max_peakwidth - 25.0, ppm - 10, mzdiff - 0.01, snthresh - 10.0, prefilter - 6.0, noise - 1E7, 

value of prefilter - 1E6), peak alignment and peak annotation settings were kept default; (2) 

XCMS:  noise filtration was set to 1E6, and rest of the settings were kept default; (3) MZmine2: 

mass detector (centroid), ADAP chromatogram builder (min group size in #of scans - 5, group 

intensity threshold - 1E6, m/z tolerance 0-5 ppm), feature detection - chromatogram 

deconvolution, spectral deconvolution - hierarchical clustering, isotope peak grouper - 

deisotoped, filtering - peak filter, alignment - RANSAC aligner, and normalization – liner; (4) 

MSDIAL: ionization type – soft ionization, separation type – chromatography, MS method 

type – conventional, data type – centroid, ion mode – negative / positive, minimum peak height 

- 1E6, and rest of the settings were kept default.  
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Selection and determination of metabolites were performed based on several criteria: 

(1) comparing control, treated, and blank samples. Also, pure catechol solution was analyzed 

to check if there were any degraded products from catechol. Metabolites identified in control, 

blank, and pure catechol solution were removed from the treated group; (2) Metaboanalyst, 

XCMS, MZmine2, and MS-DIAL suggested compounds further confirmed with fragmentation 

pattern matching [either from MONA (https://mona.fiehnlab.ucdavis.edu/) / Massbank Europe 

(https://massbank.eu/MassBank/) or predicted using CFM-ID 4.0 

(https://cfmid.wishartlab.com/], dot product similarity score (>0.52) (Schollée et al., 2017), and 

retention time comparison with the authentic standards.  

2.2.9. GC–MS analysis 

Gas chromatography–quadrupole mass spectrometry analysis was conducted by 

Agilent 7890 A/5975C GC system equipped with HP-5MS fused silica capillary column 

(Agilent J&W Scientific, 30 m × 0.25 mm × 0.25 μm). 2 µL of each extracted sample was 

injected at a split ratio of 10:1. The inlet, and the MS transfer line were set at 250, and 280 

respectively. The initial oven temperature was held at 50°C with 1 min hold time and then 

ramped at a rate of 1°C/min to 60°C temperature, after which the temperature ramped to 300°C 

at a rate of 20 °C/min with 5 min hold time. The flow rate of the helium carrier gas was 

1 mL/min. Electron ionization (EI) energy was set at 70 eV. Mass spectra data acquisition with 

full-scan spectra (50–600 m/z) were acquired at a scan speed of 2 spectra per second after a 

solvent delay of 3 min. Alkane standard (C8-C20) was run before and after the sample run to 

calculate the retention indices.  

2.2.9.1. GC-MS data processing  

Raw data were converted to netCDF format and processed using AnalyzerPro XD 

within default settings. AnalyzerPro XD automatically processes the data, including raw signal 

extraction, deconvolution, baseline filtering, peak identification, and integration. It searches 

metabolites against commercially available databases such as the National Institute of 

Standards and Technology (NIST) 20 version NIST 2.4. The mass spectral fragmentation 

pattern and retention indices of each suggested compound by AnalyzerPro XD were further 

confirmed with the NIST 20 spectral library. Retention indices (RI) was calculated using the 

following formula obtained from NIST, Ix = 100n + 100(tx-tn) / (tn+1 − tn); where tn and tn+1 are 

retention times of the reference n-alkane hydrocarbons eluting immediately before and after 

chemical compound “X”; tx is the retention time of compound “X”. 

https://mona.fiehnlab.ucdavis.edu/
https://massbank.eu/MassBank/
https://cfmid.wishartlab.com/
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The criteria were set to screen the potential metabolites: (1) fragmentation pattern 

similarity score (>50%) (Prodhan et al., 2019), and (2) retention index (threshold: library or 

estimated RI +/- 35) (Degnan et al., 2023). Moreover, identified metabolites in control, blank, 

and pure catechol solution were removed from the treated group. 

2.2.10. NMR analysis 

200 ul of sample was aliquoted to an eppendorf tube with 50 ul buffer X (750 mM 

phosphate buffer with 5 mM DSS and 10% D2O). The mixture was vortexed for 1 minute and 

centrifuged at 10000 rpm for 5 minutes at 4°C. 1D-1H NMR spectra were obtained on a Bruker 

AVANCE III 700 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped with 

a triple resonance 5 mm CryoProbe. Samples were acquired with automation using a SampleJet 

sample changer. The samples were stored at 5 - 10 °C and each sample was pre-warmed to 25 

°C before insertion into the spectrometer. Spectra for metabolomics analysis were acquired 

using a 1D 1H NOESY (noseypr1d), with 2s pre-saturation pulse for water suppression, a 50 

ms mixing time with water saturation, and a 4s acquisition time. A sweep width of 12 ppm was 

used. Spectra with poor line shape or linewidths greater than 1 Hz were reacquired. For 

profiling with Chenomx, the NOESY spectra were processed with an exponential line 

broadening such that the DSS peak width was 1 Hz, and manual baseline correction was 

applied. For manual profiling, samples were quantified using the Chenomx NMR Suite version 

8 (Chenomx, Inc. Alberta, Canada) using a combination of the software-provided 700 MHz 

compound library and an in-house compound library acquired at 700 MHz. 2D 1H-13C HSQC 

(hsqcedetgpsisp2.3) and 2D 1H-1H TOCSY (dipsi2esgpph) NMR spectra were also acquired 

for some samples. The HSQC spectra were acquired with 64 scans and a resolution of 2048 by 

256 points, a relaxation delay of 1.5 sec, and an acquisition time of 113 ms. The TOCSY spectra 

were acquired with 16 scans and a resolution of 16384 by 512 points, with a relaxation delay 

of 1.5 sec, and acquisition time of 975 ms, and a mixing time of 80 ms. TOCSY and HSQC 

data analysis was conducted in COLMAR within default settings. 

2.2.11. In vitro enzymatic and spontaneous reactions 

Metabolites detected in different analytical platforms were subjected to in vitro assays 

and reactions to confirm whether these were produced through enzymatic or spontaneous 

reactions. A total of 13 reactions (one enzymatic and the rest of spontaneous reactions) were 

performed under identical culture conditions such as 37°C temperature, 24 hrs incubation, and 

200 rpm. The concentration of each metabolite was 5 mM, and these reactions were conducted 
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in slightly acidic condition (pH: 6-7). Individual reactions were performed between catechol 

and six compounds, including glycerol, valeric acid, sodium carbonate, acetic acid, glyoxylate, 

and acetyl-coA. Similarly, ethanol was separately incubated with protocatechuic aldehyde, 

quinol, and 4-hydroxybenzoate. Another 48h hrs experiment was performed with 

protocatechuate, ethanol, and methanol, followed by 5 mM mixture of protocatechuate and 

ethanol incubated for 24 hrs, afterwards methanol was added and further incubated for 24 hrs. 

Besides, phenol was incubated with acetyl-coA for 24 hrs following similar conditions 

maintained to grow bacteria. Additionally, one enzymatic reaction was conducted with 

different concentrations of polyphenol oxidase (1U, 5U, 25U, 50U, 500U, 1000U, and 2000U) 

and 5 mM catechol. 500U of polyphenol oxidase (without the catechol) was used as a control. 

Samples were quantified using the Chenomx NMR Suite version 8 (Chenomx, Inc. Alberta, 

Canada). Compounds that are not present in the Chenomx library, their chemical shifts were 

predicted either from HMDB 5.0 (https://hmdb.ca/) or NMRdb (http://www.nmrdb.org/).  

2.2.12. Generation of 3D protein homology model 

The three-dimensional structure of each enzyme involved in the catechol metabolism 

of E. coli UM146 was predicted using AlphaFold 2 (Jumper et al., 2021). AlphaFold works 

based on a neural network model, which was trained using a large dataset of known protein 

structures and corresponding sequences to predict protein structure with high accuracy. 

AlphaFold generated best model was selected for docking studies. 

2.2.13. Ligand preparation, docking grid generation and molecular docking 

PDB formatted twelve metabolite structures (adenosine, 3-(acetylthio)isobutyric acid, 

catechol, glycine, 4-hydroxybenzoate, hydroxyquinol, L-dopa, phenol, quinol, 2-

octaprenylphenol, 2-octaprenyl-6-methoxyphenol, and riboflavin) were generated using 

Marvin (https://marvinjs-demo.chemaxon.com/latest/demo.html). MGLTools_win32_1.5.6 

was used to create PDBQT files of each ligand and protein. Polar hydrogen addition and grid 

box preparation for protein was conducted in MGLTools. Autodock_vina_1_1_2_win32.msi 

was used for docking to show the binding energy of ligand-receptor interaction. Discovery 

Studio 2021 software was used to visualize the predicted protein structure, ligands, and their 

interaction (Systems D., 2021). 

2.3. Results 

https://hmdb.ca/
http://www.nmrdb.org/
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2.3.1. Effects of catechol exposure on growth of E. coli UM146 strain 

E. coli UM146 didn’t grow in catechol containing minimal media without glucose. 

DNA condensation or cell aggregation was observed at levels ≥ 1 mg/mL of catechol (including 

glucose) under aerobic condition. The use of 0.75 mg/mL of catechol (including glucose) didn’t 

result in any DNA condensation or cell aggregation in both aerobic and anaerobic conditions. 

Therefore, 0.75 mg/mL of catechol was used in treated condition, as well as for downstream 

analysis. 

Figure 2.1. Growth curve of E. coli UM146 after catechol exposure in both aerobic (A) 

and anaerobic (B) conditions. The optical density (OD) was measured at different time points 

of incubation. Red and black color depicts treated and control samples respectively. Dice and 

rectangular symbols were used to indicate the time points of measuring the optical density 

(OD).   

The starting concentrations of catechol in aerobic and anaerobic conditions were 6.731 

mM and 6.751 mM respectively. Following a 24 hrs incubation period, the concentration 
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decreased to 5.797 mM (under aerobic condition) and 6.44 mM (under anaerobic condition). 

A total of 13.87% and 4.61% of catechol was consumed under aerobic and anaerobic conditions 

respectively. Figure 2.1 shows the growth curve of E. coli UM146 during treated and control 

conditions. In the presence of catechol, E. coli UM146 exhibited delayed and reduced growth 

compared to control across both aerobic and anaerobic conditions. The doubling time of E. coli 

UM146 were 42 ± 5 min and 69.5 ± 5 min in aerobic and anaerobic conditions respectively. In 

minimal media under aerobic condition, the doubling time of E. coli B and E. coli MG1655 

were reported 40-64 min (Plank & Harvey, 1979; Thakur et al., 2010).  In response to catechol, 

a steady doubling time was observed, with an expansion to 158.5 ± 5 min during aerobic 

condition and 123 ± 5 min under anaerobic condition.  

2.3.2. Effect of catechol stress on genetic level 

2.3.2.1. Overall differential expression of genes  

In the presence and absence of catechol, gene-expression study of the E. coli UM146 

strain was conducted using whole-transcriptome analysis. The extracted RNAs were of high 

quality with RIN (RNA integrity number) >8.2 (S Table 2.1). Reads of catechol-treated 

samples and their mapping rates were reported in S Table 2.2 (supplementary section). The 

quality score (Q) of all the sequences was 36. The standard base quality score ranges from 30-

40, and an average quality score above 33 is considered a high-quality sequence (Sheng et al., 

2017).  Each sequence achieved the quality standards for downstream analysis as per the results 

of fastQC reports (including per tile sequence quality, per base sequence content, per sequence 

GC content, and per base N content).  More than 30 million raw sequencing reads were 

generated for each sample. Overall alignment rates were above 97% (S Table 2.2). Since the 

sequencing data were of high quality, exclusively adaptor sequences were removed as low-

quality reads.  

Principal component analysis (PCA) was conducted to display the similarity or 

variability between groups (Figure 2.2). In both aerobic and anaerobic conditions, control and 

treated groups were distributed in the negative and positive regions of PC1, indicating a 

significant difference between the two groups. Variations were also observed among treated 

samples in both conditions. The reasons behind the variations could be sequencing depth, 

sequencing artifacts, viscosity, biological variation, and contamination while handling the 

samples. 
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 Figure 2.2. Principal component analysis of treated and control samples in both 

anaerobic (A) and aerobic (B) conditions. In the horizontal axis, PC1 represents the maximum 

difference between groups; and in the vertical axis, PC2 represents secondary differences 

between groups. 1, 2, and 3 indicate replicate number. 

Variations between replicates could result in observed differences by random chances 

rather than true biological differences. To minimize the false positive results, multiple 

comparison corrections, including Benjamini–Hochberg false discovery rate was conducted 

under DESeq2 analysis. Besides this, z-score calculation, box plot, and Grubbs' test were 

employed to identify and remove the outliers. DEGs analysis represents 669 upregulated and 

691 downregulated genes under anaerobic condition (Figure 2.3). A significant difference was 

noted in aerobic condition, with the upregulation of 746 genes and the downregulation of 392 

genes (Figure 2.3).  

(A) 
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Figure 2.3. A volcano plot representation of the differentially expressed genes in E. 

coli UM146 under catechol exposure in both (A) anaerobic, and (B) aerobic conditions. Red, 

gray, and blue color represents upregulated, not significant, and downregulated genes.  

(A) 

(B) 
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Figure 2.4. A graphical representation of gene set enrichment of E. coli UM146 under 

catechol treatment in both anaerobic (A) and aerobic (B) conditions. Fold enrichment is 

presented in X-axis. Red, purple, and blue color denote high, medium, and low FDR 

respectively. Enrichment FDR cut-off was set <0.05.  

Gene set enrichment analysis (GSEA) revealed a number of pathways affected due to 

catechol exposure in aerobic and anaerobic conditions (Figure 2.4). Notable transcriptomic 

changes were observed in both conditions. Figure 2.5 displays a comparison between aerobic 

and anaerobic conditions, detailing the number of genes linked to key pathways altered by 

catechol exposure. In comparison to anaerobic condition, limited gene expression was observed 

(A) 

(B) 
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across multiple pathways (except flagellar assembly, and cysteine and methionine metabolism) 

in aerobic condition. 

Figure 2.5. A visual contrast between aerobic and anaerobic conditions with 

differentially expressed genes across key metabolic pathways under catechol exposure. Gene 

numbers are presented in X-axis. Light blue and grey color represent anaerobic and aerobic 

conditions respectively.  

Figures 2.8-2.9, Figure 2.17, and Figures 2.20-2.21 illustrate two-component systems, 

mismatch repair system, and biofilm formation respectively, with highlighting the observed 

upregulated and downregulated genes. Other pathways (including glycolysis-gluconeogenesis, 

pentose phosphate pathway, biotin metabolism, glutathione metabolism, amino sugar and 

nucleotide sugar metabolism, methane metabolism, folate one-carbon metabolism, and 

cysteine and methionine metabolism) with indicating upregulated/downregulated genes were 

displayed in S Figure 2.1- S Figure 2.14.  

2.3.2.2. Influence of catechol exposure on two-component systems 

Bacteria possess a signal transduction system (referred to as two-component system)  

to sense, respond and adapt to changes in their environment (Skerker et al., 2005). Bacteria use 

this system for survival and resilience across diverse conditions.  In the present study, catechol 

treatment led to a distinctive gene expression profiling, particularly in the two-component 

system across both aerobic and anaerobic conditions.   

In anaerobic condition, a set of genes (including atoC, barA, cheA, cpxA, cusB, cusC, 

dctA, dcuB, degP, dnaA, fdnH, glnG, glnL, hybC, hybO, kdpD, kdpE, mdtA, nary, ompC, phoA, 
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rcsA, rcsC, rcsD, safA, uhpC, wecC, zraR) exhibited upregulation, suggesting an activated 

response to catechol induced stress (Figure 2.6). barA gene is an integral component of the 

sensory kinase system (Chavez et al., 2010). The observed upregulation of the barA gene 

signifies its involvement in sensing extracellular signals, particularly in response to catechol. 

The elevated expression of the cheA gene (a central regulator of bacterial chemotaxis) enabled 

cells to navigate along or away from catechol. ompC and ompF genes encode for porins, 

allowing the transfer of small molecules (Mizuno et al., 1988). The differential regulation of 

ompC (upregulated) and ompF (downregulated) genes, indicating E. coli UM 146 controlled 

the influx of catechol and nutrients through the adjustment of the permeability of the outer 

membrane. The upregulation of rcsC and rcsD genes suggests an activation of the Rcs system 

due to catechol-induced envelope stress or damage. cpxA gene also activated due to envelope 

stress. This activation leads to the upregulation of the degP gene, which encodes a protease 

involved in protein quality control and stress response. The upregulation of glnG, glnL, and 

narY genes implies catechol-induced stress causes a change in nitrogen metabolism. Moreover, 

an increased expression of atoC, hybC, hybO, kdpD, kdpE, mdtA, phoA, uhpC, wecC, and zraR 

genes denotes that E. coli UM146 facilitated cellular response to enhance stress resistance by 

modifying cell membrane properties and adapting metabolic pathways.  The downregulation 

of multiple genes denoting E. coli UM146 strain made collective adjustments to prioritize 

essential processes such as cellular homeostasis and survival chances in diverse conditions. A 

more detailed overview of each of the gene’s involvement in the particular two-component 

system is shown in Figure 2.8. 

Likewise anaerobic condition, distinct changes were observed in the two-component 

system under aerobic condition (Figure 2.7). The upregulation of rcsB and rcsD genes activated 

the Rcs system to sense envelope damage. The increased expression of the ompC gene activates 

the outer membrane system to restrict the entry of toxic substances (such as catechol) inside 

the cell.  The upregulation of the baeR gene prompted the multidrug resistance to regulate the 

MdtABC-efflux pump. The upregulation of mdtB and tolC genes suggested MdtABC-TolC 

efflux complex acted together to confer resistance to catechol. The upregulation of the envZ 

gene implies E. coli UM146 monitored and adapted to osmolarity changes due to the presence 

of catechol. Increased expression of the rpoN gene indicates alternative sigma factor 54 (RpoN) 

regulates stress resistance genes. A set of genes (including arnB, appB, atoB, basR, bass, cheY, 

cusB, cusF, cusR, fdnI, glnL, kdpE, motA, narH, narI, narW, narZ, tar, and uhpT) were 

downregulated in response to catechol in aerobic condition. The downregulation of these genes 



 

49 
 

implies a strategic shift in cellular priorities (such as energy conservation, reduced metabolic 

load, and adaptive response) during catechol induced stress. Figure 2.9 represents more details 

about the individual genes involvement in the particular two-component system with 

highlighting their expression level (upregulation/downregulation). 

 

 Figure 2.6. Heatmap showing gene expression changes associated with two component 

systems induced by catechol exposure under anaerobic condition. The vertical color scale at 

the right side of the heat map represents the intensity of data values. The highest level of 

expression is shown by ‘Red’ color, and the lowest level is represented by ‘Navy’ color. 

Adjusted p-values are displayed beside the gene name. 
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Figure 2.7. Heatmap showing gene expression changes associated with two component 

systems induced by catechol exposure under aerobic condition. The vertical color scale at the 

right side of the heat map represents the intensity of data values. The highest level of expression 

is shown by ‘Red’ color, and the lowest level is represented by ‘Navy’ color. Adjusted p-values 

are displayed beside the gene name. 
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Figure 2.8. Effect of catechol exposure on two component systems under anaerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

treated and control groups. Green, orange, and red color indicate upregulated, 

downregulated, and expressed genes respectively.     
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Figure 2.9. Effect of catechol exposure on two component systems under aerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

treated and control groups. Green, orange, and red color indicate upregulated, 

downregulated, and expressed genes respectively.     

2.3.2.2. Effects of catechol on efflux pump 

 Efflux pumps are transmembrane protein systems that extrude substances from cellular 

interior to the external environment (Pages et al., 2011; Pagès & Amaral, 2009). In the present 

study, catechol stress significantly affected the expression levels of genes involved in efflux 

pumps (Figure 2.10). In anaerobic condition, catechol treatment led to the upregulation of five 

genes, and the downregulation of three genes associated with the efflux pump. Catechol stress 

induced the major multiple drug efflux system, including AcrAB-TolC, Cus, MdtABC-TolC, 

and MdtK. Genes such as acrZ, mdtA, and cusC were upregulated by 0.72, 1.09, and 1.34 log2 
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fold, respectively, and emrE_2, sotB, and mdtK genes were downregulated by -0.76, -0.96, and 

-0.44 log2 fold, respectively. Conversely, under aerobic condition, catechol caused 

upregulation of four genes (acrA, acrB_1, acrB_2, and mdtB) and downregulation of eight 

genes (cusC, emrD, kefC, macA, mdfA, mdtF, mdtL, and tolC) involved in efflux pump.  

Figure 2.10. Heatmap showing gene expression changes associated with efflux pump 

induced by catechol exposure under both anaerobic (A) and aerobic (B) conditions. The 

vertical color scale at the right side of the heat map represents the intensity of data values. The 

highest level of expression is shown by ‘Green’ color, and the lowest level is represented by 

‘Red’ color. Adjusted p-values are displayed beside the gene name. 
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2.3.2.3. Impact of catechol exposure on stress responsive genes 

In the presence of catechol, the expression of a number of genes associated with 

different stress responses (including osmotic, pH, cold, and heat) was altered under both 

aerobic and anaerobic conditions (Figure 2.11 & Figure 2.12). Also, the USP (universal stress 

proteins) gene family was modulated due to catechol treatment in both conditions. USP genes 

exhibited differential expression, being upregulated in aerobic condition, and downregulated 

under anaerobic condition. Genes related to cold shock were upregulated in anaerobic condition 

and downregulated in aerobic condition. All the heat shock genes (except clpA) showed 

enhanced expression in both conditions. Under aerobic and anaerobic conditions, sigma factor-

associated genes displayed elevated expression except for the rpoN and rpoS genes, which 

showed downregulation specifically in anaerobic condition. The genes associated with stress 

responses such as osmotic and pH, exhibited a varied expression pattern observed in both 

conditions.  

Figure 2.11. Heatmap showing exposure of catechol induced expression of different 

stress responsive genes under aerobic condition. The vertical color scale at the right side of 

the heat map represents the intensity of data values. The highest level of expression is shown 

by ‘yellowgreen’ color (100%), and the lowest level is represented by ‘darkblue’ color (100%). 

Adjusted p-values are displayed beside the gene name. 
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Figure 2.12. Heatmap showing exposure of catechol induced expression of different 

stress responsive genes under anaerobic condition. The vertical color scale at the right side of 

the heat map represents the intensity of data values. The highest level of expression is shown 

by ‘yellowgreen’ color (100%), and the lowest level is represented by ‘darkblue’ color (100%). 

Adjusted p-values are displayed beside the gene name. 

2.3.2.4. Catechol causes membrane damage  

 PSP (phage shock protein) system is involved in membrane stress, typically when 

bacterial cells are infected by bacteriophages (Joly et al., 2010). RCS system is a regulatory 

network involved in capsule synthesis and responds to environmental conditions such as 

envelope stress, and osmotic stress (J. Meng et al., 2021; Pando et al., 2017).  DEGs analysis 

revealed that both PSP and RCS systems were altered due to catechol treatment under both 

aerobic and anaerobic conditions (Figure 2.13). 
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Figure 2.13. Heatmap showing gene expression changes associated with membrane 

damage induced by catechol exposure under both anaerobic (A) and aerobic (B) conditions. 

The vertical color scale at the right side of the heat map represents the intensity of data values. 

The highest level of expression is shown by ‘orange’ color (100%), and the lowest level is 

represented by ‘darkcyan’ color (100%). Adjusted p-values are displayed beside the gene 

name. 

Moreover, catechol exposure changed the expression level of genes related to solvent 

tolerance, reactive oxygen species, detoxification, and cellular redox balance (Figure 2.14). 

Solvent tolerance-related genes such as marA and soxS showed increased expression in both 

conditions. Superoxide dismutase (SOD) enzyme catalyzes the conversion of superoxide 

radicals (O2
.−) to hydrogen peroxide (H2O2) and oxygen (Fridovich, 1997; Netto et al., 1996; 

Zhao et al., 2021). SOD encoding genes were downregulated during anaerobic condition, 

whereas only the sodA gene exhibited upregulation in aerobic condition. Catalase and alkyl 

hydroperoxide enzymes are involved in the detoxification system and protect cells from 

oxidative damage (Imlay & Linn, 1988). The expression of the alkyl hydroperoxide-encoding 

gene ahpC was upregulated, while the catalase enzyme-encoding gene katE was either 

downregulated (during anaerobic condition) or not significant (during aerobic condition). 
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Thioredoxin (Trx) and glutaredoxin (Grx) play a key role in controlling cellular redox balance 

(Holmgren, 2001). Expression of all thioredoxin and glutaredoxin-encoding genes (grxA, grxB, 

grxC, and trxC) exhibited upregulation in aerobic condition, however under anaerobic 

condition, trxC and grxB genes showed upregulation and downregulation respectively.  

Figure 2.14. Visual representation of catechol induced gene expression changes 

associated with solvent tolerance, reactive oxygen species, detoxification, and cellular redox 

balance under both anaerobic (A) and aerobic (B) conditions. The vertical color scale at the 

right side of the heat map represents the intensity of data values. The highest level of expression 

is shown by ‘Green’ color, and the lowest level is represented by ‘Red’ color. Adjusted p-values 

are displayed beside the gene name. 
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 2.3.2.5. Effect of Catechol on DNA damage 

According to the DEGs analysis catechol exposure elicited DNA damage in E. coli 

UM146, leading to alterations in 86 genes (comprising 45 genes upregulated and 41 genes 

downregulated) under anaerobic condition (Figure 2.15), and 55 genes (40 genes upregulated 

and 15 genes downregulated) during aerobic condition (Figure 2.16).  

Figure 2.15. Heatmap showing gene expression changes associated with DNA damage 

induced by catechol exposure under anaerobic condition. The vertical color scale at the right 

side of the heat map represents the intensity of data values. The highest level of expression is 

shown by ‘Red’ color (100%), and the lowest level is represented by ‘Navy Blue’ color (100%). 

Adjusted p-values are displayed beside the gene name.  
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Figure 2.16. Heatmap showing gene expression changes associated with DNA damage 

induced by catechol exposure under aerobic condition. The vertical color scale at the right 

side of the heat map represents the intensity of data values. The highest level of expression is 

shown by ‘Red’ color (100%), and the lowest level is represented by ‘Navy Blue’ color (100%). 

Adjusted p-values are displayed beside the gene name. 

Under catechol exposure, E. coli UM146 made a strategic response to mitigate DNA 

damage by activating the DNA mismatch repair system. Based on DEGs analysis, all the genes 

(except xseA) were upregulated in the DNA mismatch repair pathway during anaerobic and 

aerobic conditions respectively (Figure 2.17).  
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Figure 2.17. Effect of catechol exposure on DNA mismatch repair pathway under 

anaerobic (A) and aerobic (B) conditions. Differentially expressed genes were determined 

using Deseq2 analysis comparing treated and control groups. Green, orange, and red color 

indicate upregulated, downregulated, and expressed genes respectively. 

2.3.2.6. Cell cycle control, division, and cell wall biogenesis 

Catechol treatment-induced gene expression associated with cell cycle control, 

division, and cell wall biosynthesis. Of the total 30 genes, an equal number of genes (15) were 

upregulated and downregulated in anaerobic condition (Figure 2.18 A). Although in aerobic 

condition, amongst the 26 genes, nearly all genes (22) were upregulated except arnB, arnD, 

arnT, and yedR (Figure 2.18B). 
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Figure 2.18. Heatmap showing gene expression changes associated with cell cycle 

control, division, and cell wall biosynthesis induced by catechol exposure under anaerobic (A) 
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and aerobic (B) conditions. The vertical color scale at the right side of the heat map represents 

the intensity of data values. The highest level of expression is shown by ‘Red’ color, and the 

lowest level is represented by ‘Blue’ color. Adjusted p-values are displayed beside the gene 

name. 

2.3.2.6. Impact of catechol exposure on virulence factor, biofilm formation and flagellar 

assembly 

A set of genes related to virulence factors were modulated due to catechol treatment. 

The differential expression analysis revealed that catechol exposure causes a transcriptional 

change of 22 genes in anaerobic condition, with 10 genes upregulated and 12 genes 

downregulated (Figure 2.19A). Similarly, during aerobic condition, 14 genes exhibited altered 

expression patterns, with 6 genes upregulated and 8 genes downregulated (Figure 2.19B).  
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Figure 2.19. Heatmap showing gene expression changes associated with virulence 

factor induced by catechol exposure under both anaerobic (A) and aerobic (B) conditions. The 

vertical color scale at the right side of the heat map represents the intensity of data values. The 

highest level of expression is shown by ‘Orange’ color, and the lowest level is represented by 

‘Royal Blue (#0935ca)’ color. Adjusted p-values are displayed beside the gene name. 

Impact of catechol exposure on biofilm formation illustrated in Figure 2.20 (anaerobic) 

and Figure 2.21 (aerobic). The upregulation of rscC, rscD, rcsA, and csgD genes signifies that 

catechol exposure causes envelope stress which leads to enhanced biofilm formation in 

anaerobic condition (Figure 2.20). In contrast to anaerobic condition, there was no influence of 

catechol exposure on the biofilm formation under aerobic condition (Figure 2.21). 
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Figure 2.20. Effect of catechol exposure on biofilm formation under anaerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

treated and control groups. Green, orange, and red color indicate upregulated, 

downregulated, and expressed genes respectively. 

Figure 2.21. Effect of catechol exposure on biofilm formation under aerobic condition. 

Differentially expressed genes were determined using Deseq2 analysis comparing treated and 

control groups. Green, orange, and red color indicate upregulated, downregulated, and 

expressed genes respectively. 

Flagella are whip-like appendages that are involved in bacterial motility (Haiko & 

Westerlund-Wikström, 2013). Catechol exposure results in the downregulation of genes related 

to the flagellar assembly under anaerobic condition (Figure 2.20), while there were no changes 

observed during aerobic condition (Figure 2.21). 
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2.3.3. Determination of potential metabolites involved in catechol detoxification pathway 

Raw data of each control and treated samples were obtained from LC-MS/MS, and 

analyzed in Metaboanalyst, XCMS, MZmine2, MS-DIAL, and SIRIUS. A total of 9 

metabolites were detected (via LC-MS/MS) involved in the catechol detoxification pathway in 

both conditions (Table 2.1). All the metabolites identified using LC-MS/MS were further 

confirmed with either commercially available analytical standards or fragmentation pattern 

comparison. GC-MS analysis determined a total of 12 metabolites in aerobic condition, and 4 

metabolites in anaerobic condition (Table 2.1). However, out of 24 detoxification products, 

only one compound, named quinol was identified using NMR. Metabolites and their 

fragmentation pattern comparison were shown in S Figure 2.15-2.24.   

Table 2.1. List of detoxification products determined in treated samples under aerobic and 

anaerobic conditions.  

Metabolite Name Condition Analytical 

Instrument 

SMILES RT p-

value 

Phenol A/An LC-MS/MS Oc1ccccc1 3.58 <0.01 

Quinol A LC-MS/MS OC1=CC=C(O)C=C1 3.81 <0.01 

Pyrogallol A/An LC-MS/MS Oc1cccc(O)c1O 2.38 <0.01 

4-Hydroxybenzoate A/An LC-MS/MS Oc1ccc(cc1)C([O-])=O 4.4 <0.01 

Protocatechuic aldehyde A/An LC-MS/MS C1=CC(=C(C=C1C=O)O)O 4.42 <0.01 

2,4-

Dihydroxyacetophenone 

A/An LC-MS/MS CC(=O)C1=C(C=C(C=C1)O)O 7.04 <0.01 

Protocatechuate A/An LC-MS/MS C1=CC(=C(C=C1C(=O)O)O)O 3.576 <0.01 

4-Nitrocatechol A/An LC-MS/MS C1=CC(=C(C=C1[N+](=O)[O-])O)O 5.71 <0.01 

Vanillate A LC-MS/MS COC1=C(C=CC(=C1)C(=O)O)[O-] 5.31 <0.01 

Dioxydiphenol A/An LC-MS/MS C1=CC=C(C(=C1)O)OOC2=CC=CC=C2

O 

6.63 <0.01 

3-Methyl catechol A/An LC-MS/MS CC1=C(C(=CC=C1)O)O 6.4 <0.01 

4-Ethoxybenzoic acid 

ethyl ester 

A GC-MS CCOC1=CC=C(C=C1)C(=O)OCC 18.34 <0.01 

O-valeryl catechol A GC-MS CCCCC(=O)OC1=CC=CC=C1O 18.06 <0.01 

4-Ethoxyphenol A GC-MS CCOC1=CC=C(C=C1)O 16.80 <0.01 

2-Methoxy-1,3-

benzodioxole 

A GC-MS COC1OC2=CC=CC=C2O1 17.43 <0.01 

2-Hydroxymethyl-1,4-

benzodioxan 

A GC-MS C1C(OC2=CC=CC=C2O1)CO 17.89 <0.01 

2-Coumaranone A GC-MS C1C2=CC=CC=C2OC1=O 16.83 <0.01 

2-Phenoxyphenol A/An GC-MS C1=CC=C(C=C1)OC2=CC=CC=C2O 18.48 <0.01 

Methyl 1,3-

benzodioxole-2-

carboxylate 

A GC-MS COC(=O)C1OC2=CC=CC=C2O1 17.05 <0.01 

Ethyl Vanillin A/An GC-MS CCOC1=C(C=CC(=C1)C=O)O 17.47 <0.05 

2-Methoxyphenol A GC-MS COC1=CC=CC=C1O 14.32 <0.01 

2'-

Hydroxyacetophenone 

A/An GC-MS CC(=O)C1=CC=CC=C1O 15.29 <0.01 

Catechol Carbonate A/An GC-MS O=C1OC2=CC=CC=C2O1 14.76 <0.01 

2-propoxyphenol An GC-MS CCCOC1=CC=CC=C1O 16.40 <0.01 
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* p-values obtained from Welch’s t-test after comparing peak area of treated and control 

samples. Abbreviation: A - Aerobic, An – Anaerobic; RT – Retention time; Treated – E. coli 

UM146 strain grew on glucose and catechol containing minimal media; Control – E. coli 

UM146 strain grew on glucose containing minimal media (no catechol).  

2.3.4. Polyphenol oxidase assay  

Enzymatic reactions of catechol substrate and polyphenol oxidase enzyme resulting in 

the formation of phenol, mequinol, and 2-Methyl-4-propylphenol, identified via GC-MS 

compared with control.  

2.3.5. Unveiling of genes involved in catechol detoxification pathway 

Genes that were involved in each step of the catechol detoxification pathway (Figure 

2.30 & Figure 2.31), were reported either from published articles or stated in ECMDB2.0, 

BRENDA, Rhea, and Uniprot databases. In case of the absence of queried gene product in the 

E. coli UM146 strain, BLAST (Basic Local Alignment System Tools) was conducted to find 

the relevant sequences, followed by evaluating the corresponding domain.  

2.3.5.1. ubiD gene is responsible for decarboxylase activity in E. coli UM146 strain 

Protocatechuate decarboxylase enzyme catalyzes the conversion of catechol to 

protocatechuate (He & Wiegel, 1996). Protocatechuate decarboxylase is annotated to 55% 

identical to gallate decarboxylase (Lactobacillus plantarum) (Marshall, Payne, et al., 2017). 

Protocatechuate decarboxylase along with gallate decarboxylase, phenolic acid decarboxylase, 

and vanillic acid decarboxylase enzymes shares the same ubiD domain, which is part of the 3-

octaprenyl-4-hydroxybenzoate decarboxylase enzyme (Figure 2.22). NCBI protein accession 

numbers F9US27 and P94405 reported that decarboxylase enzymes (such as gallate 

decarboxylase, protocatechuate decarboxylase, phenolic acid decarboxylase, 4-

hydroxybenzoate decarboxylase, and vanillic acid decarboxylase) encoded by ubiD gene. 

Therefore, ubiD gene encoding 3-octaprenyl-4-hydroxybenzoate decarboxylase enzyme is 

proposed to be catalyzing the catechol to protocatechuate step, phenol to 4-hydroxybenzoate 

and 2-methoxyphenol to vanillate steps respectively. Gallate decarboxylase enzyme isolated 

from Lactobacillus plantarum, reported to be an indistinguishable ubiD like protein which have 

decarboxylase activity (Jiménez et al., 2013). UbiD family decarboxylase enzyme from E. coli 

UM146 strain is 26%, 31% and 100% identical to protocatechuate decarboxylase, phenolic 

acid decarboxylase and 3-octaprenyl-4-hydroxybenzoate decarboxylase respectively (Table 

2.2). However, protocatechuate decarboxylase (Klebsiella aerogenes) shows 99.60% sequence 
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identity with the UbiD family decarboxylase enzyme (E. coli strain 1571837), while phenolic 

acid decarboxylase (E. coli O157:H7) exhibits 65% sequence identity with UbiD family 

decarboxylase (E. coli strain 88504). Protocatechuate decarboxylase and phenolic acid 

decarboxylase retrieved from other species such as Pseudomonas, klebsiella, and Bacillus, 

indicates ~28-30% sequence identity to UbiD family decarboxylase enzyme of E. coli UM146. 

All these sequences were retrieved from very divergent species compared to E. coli UM146, 

therefore the similarity was low although they have the same UbiD domain.  

Table 2.2. List of enzymes and their identity with the 3-octaprenyl-4-hydroxybenzoate carboxy-

lyase enzyme of E. coli UM146 strain. 

Enzyme name Species Accession  Identity 

Gallate decarboxylase/Protocatechuate 

decarboxylase 

Lactiplantibacillus 

plantarum WCFS1 

F9US27 26% 

Phenolic acid decarboxylase/ Vanillate 

decarboxylase/ 4-hydorxtbenzoate 

decarboxylase 

Bacillus Subtilis P94405 31% 

ubiD family decarboxylase/3-

octaprenyl-4-hydroxybenzoate carboxy-

lyase 

Shigella sonnei (strain 

Ss046) 

Q3YVC4 100% 

*Similarity / identity threshold: >40% 

Figure 2.22. Conserved domain comparison among phenolic acid decarboxylase, 

gallate decarboxylase and 3-Octaprenyl-4-hydroxybenzoate decarboxylase. A) Phenolic acid 

decarboxylase/Vanillate decarboxylase/4-hydorxtbenzoate decarboxylase (Uniprot: P94405); 

B) Gallate decarboxylase/ Protocatechuate decarboxylase (Uniprot ID: F9US27); and C) 3-

A) 

B) 

C) 
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Octaprenyl-4-hydroxybenzoate decarboxylase (NCBI accession: WP_000339804). Domain 

analysis was conducted using NCBI conserved domain. 

Figure 2.23. Comparison of substrate binding pocket in ubiD protein (Escherichia coli 

UM 146) with (A) catechol, (B) 2-methoxyphenol, (C) phenol, and (D) 2-octaprenylphenol 

(positive control). UbiD is shown in silver, substrates in red, residues in blue, and arrows in 

dark red color. Docking was conducted using Autodock_vina_1_1_2_win32.msi. The center of 

the grid map was X (106), Y (70) and Z (102); and the autogrid calculation was set as 11.594× 

-2.204× 0.088 Å. 
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Docking was performed between 3-octaprenyl-4-hydroxybenzoate decarboxylase 

(UbiD) enzyme and each of the metabolites (separately), including catechol, phenol and 2-

methoxyphenol. UbiD enzyme binds to catechol, phenol, 2-methoxyphenol and 2-

octaprenylphenol (positive control) with an affinity energy of -4.8 Kcal/mol, -4.6 Kcal/mol, -

5.0 Kcal/mol and -7.2 Kcal/mol respectively (Table 2.3). All these substrates including the 

positive control bind to the same active site of UbiD enzyme with key residues (arginine 180, 

arginine 192, and aspartate 290) (Figure 2.23). Crystal structure of UbiD enzyme from 

Escherichia coli reported that this enzyme performs it’s activity through the same active site 

residues (including, arginine 180, arginine 192, and aspartate 290) (Marshall, Fisher, et al., 

2017). UbiD enzyme catalyzes the para-carboxylation of catechol with residues (glutamate 

289, arginine 171, arginine 188, and lysine 363) in the presence of prenylated FMN (prFMN) 

cofactor (Payer et al., 2017). UbiD enzyme undergoes decarboxylation of aromatic substrates 

(such as conversion of 4-hydroxybenzoate to phenol) by virtue of UbiD domain dynamics 

motion (Marshall et al., 2021).   

2.3.5.2. yfiH gene encodes polyphenol oxidase in E. coli UM146 strain 

yfiH gene encodes purine nucleoside phosphorylase which is 82% identical to 

polyphenol oxidase (Figure 2.24). According to NCBI conserved domain analysis, purine 

nucleoside phosphorylase has polyphenol oxidase domain (Figure 2.25). Moreover, polyphenol 

oxidase possesses the domain of yfiH similarly to purine nucleoside phosphorylase, which is 

encoded by the yfiH gene. Since purine nucleoside phosphorylase share the same domains and 

is 82% identical to polyphenol oxidase, it can be inferred that purine nucleoside phosphorylase 

is the same polyphenol oxidase enzyme in E. coli UM146 strain.  

Figure 2.24. Pairwise alignment comparison between polyphenol oxidase and purine 

nucleoside phosphorylase. Polyphenol oxidase (Accession: EFI4485732.1) and purine 
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nucleoside phosphorylase from Escherichia coli NYVetLIRN-212 and E. coli UM146 

respectively. Alignment was conducted using Clustal Omega. 

Figure 2.25. Conserved domain comparison between polyphenol oxidase and purine 

nucleoside phosphorylase. (A) polyphenol oxidase (Accession: EFI4485732.1) from 

Escherichia coli NYVetLIRN-212 strain and (B) purine nucleoside phosphorylase from E. coli 

UM146 strain. Domain analysis was conducted using NCBI conserved domain.  

Docking was conducted between catechol and purine nucleoside phosphorylase (Figure 

2.26). Purine nucleoside phosphorylase (E. coli UM146) interacts with catechol with an affinity 

energy of -4.5 kcal/mol (Table 2.3). Likewise, purine nucleoside phosphorylase, catechol 

exhibits binding to the identical active site of polyphenol oxidase (Escherichia coli Str. 

NYVetLIRN-212) with an affinity energy of -4.0 Kcal/mol (Figure 2.26). Similar to catechol, 

the positive control, adenosine binds to the same binding pocket of purine nucleoside 

phosphorylase (Figure 2.26). Phenylalanine162 is identified as the active site in both purine 

nucleoside phosphorylase and polyphenol oxidase, consistent with the prior findings indicating 

that phenylalanine261 serve as the catalytic site of catechol oxidase (synonym of polyphenol 

oxidase) (Siegbahn, 2004).  

Polyphenol oxidase enzyme catalyzes the oxidation of catechol to dibenzo[1,4]dioxin-

2,3-dione (Nair & Vining, 1964). There is no presence of dibenzo[1,4]dioxin-2,3-dione 

compound in this experiment, rather than a related dioxin compound named 2-hydroxymethyl-

1,4-benzodioxan identified, which is proposed to be produced from catechol via the same 

enzymatic mechanism. It is also evident that polyphenol oxidase has tyrosine hydroxylase 

activity (performs identical function as phenol hydroxylase) (Wu et al., 2017). In the present 

study, the polyphenol oxidase assay with catechol resulted in phenol. Therefore, yfiH gene 

encoding polyphenol oxidase enzyme is proposed to be catalyzing the catechol to phenol step. 

A) 

B) 
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Figure 2.26. Comparison of substrate binding pocket of purine nucleoside 

phosphorylase and polyphenol oxidase. (A) & (C) Representation of binding interaction of 

purine nucleoside phosphorylase (Escherichia coli UM 146) with catechol and adenosine 

(positive control) respectively, (B) Representation of binding interaction of polyphenol oxidase 

(Escherichia coli Str. NYVetLIRN-212) with catechol. Proteins are shown in silver, substrates 

in red, residues in blue, and arrows in dark red color. Docking was conducted using 

Autodock_vina_1_1_2_win32.msi. The center of the grid map was X (106), Y (104) and Z 

(106); and the autogrid calculation was set as -0.047× -1.566× 6.053 Å. 
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2.3.5.3. 4-hydroxybenzoate to 4-ethoxybenzoic acid ethyl ester step 

Several studies reported that esters groups attached to the aromatic compounds can be 

hydrolyzed by the esterase enzyme (Bornscheuer, 2002; Saghir et al., 2022). 4-

Nitrophenylacetate is converted into p-nitrophenol by esterase enzyme (Saghir et al., 2022). 

Esterase from Enterobacter cloacae catalyzes the conversion of 4-hydroxybenzoate into 

parabens (Valkova et al., 2003). Therefore, in the present study, esterase enzyme (encoded by 

the ypfH gene) is proposed to be catalyzing the conversion of 4-hydroxybenzoate to 4-

ethoxybenzoic acid ethyl ester (Ethyl paraben). Docking was performed between esterase 

enzyme and substrates, including 4-hydroxybenzoate and 3-(acetylthio)isobutyric acid 

(positive control) (Figure 2.27). Both substrates (4-hydroxybenzoate and 3-

(acetylthio)isobutyric acid) bind to the same binding pocket of esterase enzyme with an affinity 

energy of -4.2 Kcal/mol and -3.4 Kcal/mol respectively (Table 2.4). Aspartate27, histidine23, 

Serine111, and histidine191 are the active site residues of esterase enzyme which perform the 

hydrolytic cleavage activity. Ser-His-Asp catalytic triad is reported to be the active site of 

esterase enzyme (Pseudomonas putida IFO12996) (Elmi et al., 2005).  

 

A)

B)
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Figure 2.27. Comparison of substrate binding pocket of esterase with 4-

hydroxybenzoate and 3-(acetylthio)isobutyric acid respectively. (A) & (B) Representation of 

binding interaction of esterase with 4-hydroxybenzoate and 3-(acetylthio)isobutyric acid 

(positive control) respectively. Protein is shown in silver, substrates in red, residues in blue, 

and arrows in dark red color. Docking was conducted using Autodock_vina_1_1_2_win32.msi. 

The center of the grid map was X (42), Y (50) and Z (34); and the autogrid calculation was set 

as 5.948× -6.948× -4.904 Å. 

2.3.6. Exploring binding sites of enzyme-metabolite interaction 

AlphaFold2 generated 3D structure of each of the enzymes was highly accurate with a 

confidence score of above 93%. The enzyme-metabolite interaction and their binding energies 

were reported in Table 2.3. 

Table 2.3. List of binding energies between enzymes and substrates. 

 Enzyme Name  EC number Species Substrate Binding 

energy, 

kCal/mol 

1 3-Octaprenyl-4-

hydroxybenzoate 

decarboxylase 

4.1.1.98 Escherichia coli 

UM 146 

2-octaprenylphenol 

(Positive control) 

-7.2 

Glycine (negative control) -2.6 

Catechol -4.8 

Phenol -4.6 

2-Methoxyphenol -5.0 

Shigella sonnei Catechol -4.8 

Phenol -4.5 

2-methoxyphenol -4.9 

2 Purine nucléoside 

phosphorylase  

2.4.2.1 Escherichia coli 
UM 146 

Adenosine (Positive 

control) 

-5.1 

Glycine (negative control) -2.3 

Catechol -4.5 

Polyphenol oxidase 1.10.3.1 Escherichia coli 
Str. NYVetLIRN-

212 

Adenosine (Positive 

control) 

-5.1 

Glycine (negative control) -2.3 

Catechol -4.0 

3 Esterase 3.1.1.1 Escherichia coli 

UM 146 

3-(acetylthio)isobutyric 

acid (positive control) 

-3.4 

Glycine (negative control) -2.3 

4-hydroxybenzoate -4.2 

2.3.7. Catechol detoxification pathway 

Expression profiling of candidate genes involved in catechol detoxification pathway 

were displayed in Figure 2.30. Catechol detoxification pathway follows 2 and 4 routes in 

anaerobic and aerobic conditions respectively. These include: (A) carboxylation of catechol to 

protocatechuate (both conditions), (B) oxidative cyclization of catechol to 2-hydroxymethyl-
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1,4-benzodioxan (aerobic condition), (C) methylation of catechol to 2-methoxyphenol (aerobic 

condition), and (D) dehydroxylation of catechol to phenol (both conditions) (Figure 2.28 & 

2.29). (A) In the catechol to protocatechuate route, carboxylation of catechol into 

protocatechuate catalyzed by the ubiD gene encoding 3-octaprenyl-4-hydroxybenzoate 

decarboxylase enzyme (proposed). The underlying mechanism of the reduction of 

protocatechuate to protocatechuic aldehyde, and protocatechuic aldehyde to ethyl vanillin steps 

were unknown. (B) In catechol to 2-hydroxymethyl-1,4-benzodioxan route, oxidative 

cyclization of catechol into 2-hydroxymethyl-1,4-benzodioxan catalyzed by yfiH gene 

encoding purine nucleoside phosphorylase enzyme (proposed). (C) In catechol to 2-

methoxyphenol route, catechol reacted with dimethyl carbonate to form 2-methoxyphenol, 

which afterwards converted into vanillate by ubiD gene encoding 3-octaprenyl-4-

hydroxybenzoate decarboxylase enzyme (proposed). (D) In catechol to phenol route, the 

transformation of catechol into phenol is mediated by polyphenol oxidase enzyme (proposed). 

The conversion of phenol into other compounds follows two different routes: (i) phenol to 

quinol step, the underlying mechanism is unknown; and (ii) phenol to 4-hydroxybenzoate step, 

which is catalyzed by ubiD gene encoding 3-octaprenyl-4-hydroxybenzoate decarboxylase 

enzyme (proposed). 4-hydroxybenzoate served as a precursor to converted into several 

metabolites including 2,4-dihydroxyacetophenone, 4-ethoxybenzoic acid ethyl ester and 

quinol. The conversion of 4-hydroxybenzoate to 2,4-dihydroxyacetophenone and quinol is 

unknown. The ypfH gene encoding esterase enzyme performed the catalytic role to convert 4-

hydroxybenzoate into 4-ethoxybenzoic acid ethyl ester (proposed).  
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Figure 2.28. Detoxification pathway of catechol during anaerobic condition. Arrows 

represent the single/reversible steps. Distinct colors indicate the metabolites detected in the 

respective analytical platform. Italics depict the gene name for enzymatic reactions. ‘SP’ 

indicates spontaneous reactions. 
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Figure 2.29. Detoxification pathway of catechol during aerobic condition. Arrows 

represent the single/reversible steps. Distinct colors indicate the metabolites detected in the 

respective analytical platform. Italics depict the gene name for enzymatic reactions. ‘SP’ 

indicates spontaneous reactions.     
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Figure 2.30. Heatmap showing gene expression changes associated with detoxification 

pathway induced by catechol exposure under anaerobic and aerobic conditions. The vertical 

color scale at the right side of the heat map represents the intensity of data values. The highest 

level of expression is shown by ‘Red’ color, and the lowest level is represented by ‘Navy’ color. 

Adjusted p-values are displayed beside the gene name. 

2.3.7.1. Spontaneous reactions: an insight into chemical transformations 

Besides the enzymatic reactions, there were several metabolites (including, methyl 1,3-

benzodioxole-2-carboxylate, 2-methoxy-1,3-benzodioxole, catechol carbonate, 2-

coumaranone, 3-methyl catechol, 2-propoxyphenol, o-valeryl catechol, 2-phenoxyphenol, 4-

ethoxyphenol, 2-methoxyphenol, 4-nitrocatechol and dioxydiphenol) identified which are 

proposed to be produced from catechol via spontaneous reactions.  

Catechol is a highly reactive molecule which produces 2,2-disubstituted and 2-

monosubstituted 1,3-benzodioxoles from ketones and aldehydes (Jin et al., 2001). Following a 

similar mechanism, the formation of methyl 1,3-benzodioxole-2-carboxylate and 2-methoxy-

1,3-benzodioxole is hypothesized to occur when catechol reacts with methyl glyoxylate and 

methyl formate respectively (Figure 2.31). Presence of methyl glyoxylate in the treated samples 

confirmed through comparing the fragmentation pattern generated by CFM-ID 4.0 (S Figure 

2.18P). However, the exact mass of methyl format is 60.0520. In LC-MS/MS analysis, the 

lowest mass range was set to 80. Therefore, the fragmentation pattern of methyl formate was 

not viable to examine. Formic acid was detected in treated samples using NMR. For 

metabolomics study, methanol solvent was used to prepare the samples. Hence, it is possible 

formic acid reacted with methanol to produce methyl formate.  

The reaction of catechol and dimethyl carbonate has been reported to produce catechol 

carbonate, 1,2-dimethoxybenzene, 2-methoxyphenol, and 3-methylcatechol (Reaxys reaction 

ID: 10307995) (Vijayaraj & Gopinath, 2006).  Dimethyl carbonate was detected using LC-

MS/MS analysis. As dimethyl carbonate wasn’t commercially available, a reaction was 

P.adjGene
<0.05

<0.001

<0.005

<0.001

<0.001
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performed between catechol and carbonic acid for 24 hrs and identified catechol carbonate 

using GC-MS and NMR (S Figure 2.19(Q) & S Figure 2.25). Another study reported that 

catechol reacts with methanol to form 2-methoxyphenol and methylcatechols in the presence 

of acid catalysts (Ardizzi et al., 2007). A reaction was conducted among catechol, carbonic 

acid and methanol without water for 24 hrs, resulting in catechol carbonate, 2-methoxyphenol 

and 1,2-dimethoxybenzene (determined using GC-MS). All this evidence confirmed that 2-

methoxyphenol and 3-methylcatechol can be produced from catechol when it reacts with 

methanol and dimethyl carbonate. Notably, catechol and carbonic acid reaction form light 

bronze color, which suggests that the light bronze color occurring during bacterial culture 

(aerobic condition) originates from oxidation of catechol carbonate. 

The formation of o-valeryl catechol is proposed to occur when catechol undergoes 

reaction with α-ketoisovaleric acid. The presence of α-ketoisovaleric acid in the treated samples 

was confirmed by NMR.  

The mechanism by which 2-coumaranone is produced from catechol is not clearly 

understood. A reaction was conducted between catechol and acetic acid maintaining little 

acidic condition (pH 6.4~7) for 24 hrs. No catalyst was used while performing the reaction. 

The expected compound (2-coumaranone) wasn’t detected upon NMR, LC-MS/MS and GC-

MS analysis. Technically, there are numerous factors exist in bacterial culture. It is likely these 

factors might have a role to act as a catalyst which influenced the formation of 2-coumaranone 

from catechol.  

2-propoxyphenol can be produced from catechol when it reacts with 1-chloropropane 

(Reaxys reaction ID: 20394784). The exact mass of 1-chloropropane is 78.54038 g/mol, which 

is lower than the mass range set to LC-MS/MS analysis. It is unable to check the presence of 

1-chloropropane in the treated samples.  

The mechanism behind the formation of 4-nitrocatechol from catechol is unclear. 

Studies reported that 4-nitrocatechol can be produced from catechol reacting with nitrate (NO3
-

)  (Rana et al., 2023). Still to date, there were no studies reported the production of nitrate by 

the E. coli UM146 strain. Generally, nitrate reductase enzyme catalyzes the reduction of nitrate 

(NO3
-) to nitrite (NO2

-) (Campbell, 1999). Nitrate reductase A enzyme encoded by narG, narH, 

and narI genes. narZ and narU genes encode for  nitrate reductase Z, and nitrate:nitrite 

transporter respectively. According to DESeq2 analysis, all these genes related to nitrate 

regulation are either downregulated or not significant in treated samples in both aerobic and 
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anaerobic conditions. More groundwork is needed to know the excat mechnaism of the 

conversion of catechol to 4-nitrocatechol. 

In the individual reactions involving catechol with glycerol, valeric acid, acetic acid, 

glyoxylate, and acetyl-CoA, no reaction products were detected upon analysis using NMR.  

Although not directly derived from catechol, several metabolites including, 4-

ethoxyphenol, phenoxyphenol, 2’-hydroxyacetophenone, protocatechuic aldehyde and ethyl 

vanillin are intermediates in the catechol detoxification pathway, originating from other 

metabolites.  

Quinol and ethanol reaction was aimed to investigate the presence of 4-ethoxyphenol. 

The anticipated 1H NMR spectrum of quinol and ethanol reaction compared with the spectrum 

of 4-ethoxyphenol, indicating the presence of an unknown compound. The sample of quinol - 

ethanol reaction was subjected to LC-MS/MS and GC-MS for further confirmation of the 

presence of 4-ethoxyphenol. Results of LC-MS/MS analysis suggested a different compound, 

named 4-ethoxyphenyl 4-butylbenzoate. It is likely that dissociation of 4-ethoxyphenyl 4-

butylbenzoate into 4-ethoxyphenol occurred during the gaseous-phase of GC-MS. Notably, no 

catalyst was used while performing the experiment, indicating the potential involvement of 

other factors or catalyst in the formation of 4-ethoxphenol during bacterial culture. Another 

reaction suggested by Reaxys (reaction ID: 54356680), where quinol reacts with diethyl 

carbonate to produce 4-ethoxyphenol. However, there was no presence of diethyl carbonate in 

the treated samples. Further investigation is required to unveil the underlying mechanism of 

the formation of 4-ethoxphenol from quinol.  

In the presence of reactive oxygen species (ROS) such as •OH and/or SO4•− , phenol 

forms phenoxy radical, which subsequently combines with phenol to form  phenoxyphenols 

(Huang & Zhang, 2022). Following a similar mechanism, 2-phenoxyphenol can be produced 

from phenol when it reacts with phenoxy radical. ROS originates from molecular oxygen 

(Forooshani et al., 2017). Also, it is reported that hydrogen peroxide (H2O2), superoxide (O2
−), 

singlet oxygen (1O2), and hydroxyl radical (•OH) can be generated from catechol under 

different oxidizing conditions such as autoxidation, chemical-induced oxidation, and metal ion-

mediated oxidation (Kalyanaraman et al., 1985; Meng et al., 2015; Razaviamri et al., 2021). In 

addition,  under certain oxidation conditions, bacteria itself can produce ROS as a byproduct 

during aerobic respiration (H. Li et al., 2021). DEGs analysis suggested that sodA gene is highly 
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expressed during aerobic condition in catechol treated samples. The sodA gene encodes 

superoxide dismutase which produces hydrogen peroxide from superoxide (Steinman, 1988). 

The formation of 2’-hydroxyacetophenone is proposed to be produced from phenol 

through its reaction with acetic acid (Reaxys reaction ID: 643074). The presence of acetic acid 

in the treated samples was detected via NMR.  

Pyrogallol is produced from catechol through a hydroxylation reaction. It was reported 

that catechol reacts with hydroxyl radical (•OH) to form 1,2,4-trihydroxybenzene (Chen et al., 

2020). Following a similar mechanism, pyrogallol can be produced from catechol. 

Protocatechuic aldehyde and ethyl vanillin were determined using LC-MS/MS and GC-

MS respectively. Enzymatic and spontaneous reactions were explored to elucidate the process 

by which protocatechuic aldehyde and ethyl vanillin produced from protocatechuate. However, 

the specific mechanism underlying the conversion of protocatechuate to protocatechuic 

aldehyde and ethyl vanillin remains unclear. To investigate further, a reaction was performed 

between protocatechuate and ethanol for 24hrs to assess the formation of any potential products 

such as protocatechuic aldehyde. No discernible changes or products were detected under these 

conditions. Notably, enzymes such as vanillin dehydrogenase or aromatic aldehyde 

dehydrogenase posses ALDH_HBenzADH domain which catalyzes the conversion of 

protocatechuate to protocatechuic aldehyde (Rhea reaction ID: 72539), although aromatic 

aldehyde dehydrogenase enzyme is particularly absent in E. coli UM146. Additionally, other 

relevant enzymes such as aldehyde dehydrogenase A lack the ALDH_HBenzADH domain. 

Moreover, the downregulation of the aldA gene was observed in the catechol treated samples. 

Further investigation is required to elucidate the mechanism underlying the formation of 

protocatechuic aldehyde from protocatechuate. To investigate the mechanism behind the 

formation of ethyl vanillin, a reaction was conducted between protocatechuic aldehyde and 

ethanol without any catalyst for 24hrs. However, no additional compounds or ethyl vanillin 

were detected via NMR. Whether it is possible that other factors may contribute to the 

conversion of protocatechuic aldehyde into ethyl vanillin during culture, requiring additional 

research.    

2.4. Discussion 

The diverse microbial community in the human gastrointestinal system plays a major 

role in health, nutrition, immunity, and disease (Guinane & Cotter, 2013). This complex 

molecular crosstalk and the mutualistic relationship between gut bacteria and hosts maintain 



 

81 
 

intestinal homeostasis (El Aidy et al., 2013). Recent advances in characterizing the gut bacterial 

by-products from food digestion provide interesting findings such as gut bacterial degradation 

of dietary fiber to short-chain fatty acids (SCFA); bile acids to secondary bile acids; 

phosphatidylcholine, choline, and L-carnitine from trimethylamine-N-oxide (TMAO) (Mazhar 

et al., 2023; Simó & García-Cañas, 2020; Ussher et al., 2013). Uremic toxins produced by 

bacterial digestion of polyphenols or amino acids can cause serious harm to the heart, kidney 

and liver (Wishart, 2019). Some of these uremic toxins include indole derivatives such as 

indoxyl sulphate, which arises from the breakdown of tryptophan (Leong & Sirich, 2016). 

Indoxyl sulfate is widely associated with vascular and renal diseases (Leong & Sirich, 2016). 

Gut bacteria also produce beneficial metabolites from food digestion (Rowland et al., 2018). 

Isoflavonoids have a protective role in human diseases such as cardiovascular disease, 

osteoporosis, breast cancer, prostate cancer, and menopausal symptoms (Pejčić et al., 2023). 

The by-products from the metabolism of isoflavones by gut bacteria are more physiologically 

active than the precursors. Aromatic compounds, whether serving as precursors or produced as 

byproducts, are toxic in nature and hazardous to animal health (Oliphant & Allen-Vercoe, 

2019). Bacteria found in natural environments or contaminated areas can break down aromatic 

hydrocarbons (Seo et al., 2009). Potential catalytic sources for the biodegradation of organic 

molecules are soil microorganisms. In aerobic and anaerobic conditions, a variety of bacteria 

can biodegrade hazardous organic substances, improving the clean-up of various habitats such 

as water, soil, and wastewater (Jothimani et al., 2003). It is necessary to decipher the complex 

interconnected bacterial responses to the presence of aromatic chemicals to get an overall 

understanding of how aromatic catabolic processes function in connection to their genome and 

environmental context. In the present study, the E. coli UM146 strain was exposed to catechol 

to observe whether it could consume the catechol and produce byproducts. In the case of 

toxicity to catechol, another objective was to determine the effect of catechol on the virulence 

factors in E. coli UM146. 

2.4.1. Catechol treatment: toxicity or catabolism 

 A slowed growth trend was observed in response to catechol across both aerobic and 

anaerobic conditions (Figure 2.1). Moreover, no diauxic growth was detected, indicating that 

the E. coli UM146 strain solely utilized glucose as carbon source. These results clearly signify 

that catechol inhibited the growth of E. coli UM146. This observation was anticipated, given 

that previous studies used catechol and catechol derivatives as antimicrobial agents (Baptista 

et al., 2019; Kocaçalişkan et al., 2006). At a level of ∼100 μg/mL, phytochemicals such as 
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gallic acid, eugenol, quercetin, piperine, and menthol were toxic to E. coli (Sharma et al., 2019). 

Another investigation revealed that a number of individual pure phenolic compounds, 

including catechin, caffeic acid, gallic acid, protocatechuic acid, quercetin, and rutin, exhibited 

antibacterial effects against pathogenic E. coli (Vaquero et al., 2007). A combined effect of 

gallic acid and catechin showed growth-inhibitory effects on E. coli (Díaz-Gómez et al., 2014).  

Although catechol showed toxicity towards E. coli UM146, it utilized as a carbon source for a 

number of different bacterial species, including Desulfobacterium sp. Strain, Thauera 

aromatica. T. aromatica type strain K172, Azoarcus sp. Strain EbN1, Pseudomonas putida and 

Pseudomonas cepacia ATCC 29351, Ralstonia, Azotobacter, and Pseudomonas species (Ding 

et al., 2008, 2008; Gorny & Schink, 1994; Hamzah & Al-Baharna, 1994; Ornston & Stanier, 

1966; Suvorova & Gelfand, 2019).  

2.4.1.1. Does ortho or meta cleavage route exist in catechol metabolism of E. coli UM146? 

Most of the studies of catechol metabolism were conducted using bacteria found in 

nature under aerobic/anaerobic conditions, and/or by co-metabolic degradation processes 

(Aghapour et al., 2013, 2013; Ding et al., 2008; Gorny & Schink, 1994; Ornston & Stanier, 

1966, 1966; Zheng et al., 2019). The co-metabolic degradation process refers to the 

transformation of a compound into a chemically changed form by the microorganism, or using 

enzymes by performing in-vitro reactions, resulted in a target compound. Pseudomonas putida 

degrades catechol into 3-ketoadipate, as defined by the co-metabolic process (Ornston & 

Stanier, 1966).  In aerobic condition, catechol degradation occurs via either the intradiol ortho 

cleavage or extradiol meta cleavage route. The major by-product of catechol intradiol ortho 

cleavage is cis, cis-muconic acid, which subsequently transformed into muconolactone, 3-

oxoadipate, succinate and acetyl-coA. 2-hydroxymuconic semialdehyde is produced from 

catechol via extradiol meta cleavage route, which afterward converted into 2-oxo-penta-4-

enoate, followed by the production of 4-hydroxy-2-oxo-valeriate, acetaldehyde, and pyruvate. 

Biological degradation of catechol in wastewater follows a meta-cleavage route (Aghapour et 

al., 2013). Exposure of catechol towards E. coli UM146, neither ortho nor meta cleavage routes 

were observed. Standards of major ortho cleavage metabolites such as cis, cis-muonic acid, 

and 3-oxoadipate were run in LC-MS/MS and NMR. There was no observed presence of cis, 

cis-muonic acid, and 3-oxoadipate metabolites within the treated samples. Catechol 1,2-

dixoygenase enzyme catalyzes the production of cis, cis-muconic acid. However, catechol 1,2-

dixoygenase enzyme is absent in the E. coli UM146 strain. Several reports indicated that UbiD 
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enzyme have the catechol 1,2-dixoygenase activity and holds the potential to convert catechol 

into cis, cis-muconic acid (Jensen et al., 2021; Weber et al., 2017).  

MZmine2 (LC-MS/MS data analyzing software) suggested the presence of catechol 

meta cleavage metabolite (2-hydroxymuconate semialdehyde) in the treated samples. As 2-

hydroxymuconate semialdehyde wasn’t available for commercial purchase, CFMID 4.0 was 

used to generate the fragmentation pattern and compared with the treated samples. This 

comparison revealed that the E. coli UM146 strain didn’t transform catechol into 2-

hydroxymuconate semialdehyde. To further verify, expression of xylF and xylG genes, crucial 

for the transformation of 2-hydroxymuconate-6-semialdehyde into other forms, was examined. 

xylF and xylG gene encoding enzymes (such as 2-hydroxymuconate-6-semialdehyde hydrolase 

and 2-hydroxymuconate-6-semialdehyde dehydrogenase enzyme, respectively) involved in the 

conversion of 2-hydroxymuconate semialdehyde into other forms. 2-hydroxymuconate-6-

semialdehyde hydrolase (encoded by xylF gene) catalyzes the conversion of 2-

hydroxymuconate-6-semialdehyde into 2-oxopent-4-enoate; while 2-hydroxymuconate-6-

semialdehyde is transformed into (2Z,4E)-2-hydroxyhexa-2,4-dienedioate, catalyzed by 2-

hydroxymuconate-6-semialdehyde dehydrogenase (encoded by xylG gene). According to 

DESeq2 analysis, catechol exposure had no effect on the expression of both xylF and xylG 

genes.  All this reasoning justifies that there was no catechol ortho/meta cleavage route existing 

in the E. coli UM146 strain. 

2.4.1.2. Genetic changes due to catechol toxicity 

 Aromatic compounds are highly hydrophobic in nature (Díaz et al., 2001). Typically, 

they are toxic to microbes by accumulating in and disrupting cell membranes (Díaz et al., 

2001). E. coli uses several strategies to facilitate biodegradation and biotransformation of 

aromatic compounds. Bacteria increase solvent tolerance by expressing marA, robA, and soxS 

genes to confer against hydrophobic toxic aromatic compounds (Aono et al., 1998). E. coli 

activates the efflux pumps by overexpressing AcrA, AcrB, and TolC genes which mediates 

extrusion of the aromatic toxic compounds (Aono et al., 1998; de Bont, 1998). Catechol is an 

aromatic compound which contains two hydroxyl groups (-OH) attached to the benzene ring. 

The properties of catechol are hydrophilic in nature and toxic to animals and microbes 

(Schweigert et al., 2001). Cyclization of catechol during redox reactions forms semiquinone 

radicals and ortho-benzoquinone, which leads to the accumulation of reactive oxygen species 

(Schweigert et al., 2001). Catechol also forms stable complexes reacting with different metal 

ions. Metal-catechol complex, redox cyclized products, and reactive oxygen species (ROS) 
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cause DNA damage in cells through different mechanisms such as directly interacting with 

DNA molecules, causing modifications in DNA bases, or inducing breaks in the DNA strands 

(Schweigert et al., 2001). Besides DNA strand breakage, ROS also can impair lipids, and 

proteins (Deller et al., 2008; Patridge & Ferry, 2006). Moreover, S-adducts are formed by 

electrophilic quinones, which impair cellular thiols and cause thiol-specific stress in cells 

(Rodriguez et al., 2005). Collectively, in the present study, an inhibition response model was 

observed, wherein catechol initially induces damage to the cell envelope and DNA. As a 

reaction, E. coli UM146 responded by activating DNA repair system, cell division, and cell 

wall biogenesis, and modulated other metabolic pathways (such as glycolysis-gluconeogenesis, 

biotin metabolism, amino sugar metabolism and nucleotide metabolism, pentose-phosphate 

pathway, methane metabolism, cysteine, and methionine metabolism, one carbon pool by 

folate). Changes in metabolic pathways due to catechol exposure were presented in S Figure 

2.1-S Figure 2.14. Additionally, catechol exposure influenced several physiologically active 

systems including, two-component systems, efflux pump, and other systems related to stress in 

E. coli UM146. Due to catechol treatment, two main envelope stress-responsive systems (Psp 

and Rcs) were identified in E. coli UM146, both of which exhibited upregulation during aerobic 

and anaerobic conditions (Figure 2.13). Psp, Cpx, Bae, Rcs, and σE become activated due to 

styrene exposure in E. coli NST74 (Machas et al., 2021). Efflux systems, including AcrAB-

TolC, Cus, MdtABC-TolC, and MdtK were responsive in response to catechol in E. coli 

UM146 (Figure 2.10). AcrAB-TolC RND efflux pumps were activated because of styrene 

exposure in E. coli NST74 (Machas et al., 2021). Two-component systems were induced owing 

to catechol exposure in E. coli UM146, with modulation of 34 and 45 genes in aerobic and 

anaerobic conditions respectively (Figure 2.8 - Figure 2.9). Gallic acid induced the expression 

of 33 genes related to two-component systems in E. coli strain W3110 (Liu et al., 2022). 

Overexpression of marA and soxS genes suggests that E. coli UM146 increased solvent 

tolerance level to tackle the toxicity of catechol (Figure 2.14). Also, E. coli UM146 activated 

the efflux pump to mediate the expulsion of aromatic toxic compounds by increasing the 

expression of AcrA and Tolc genes. A similar finding was observed in E. coli NST74, which 

controlled the toxicity of styrene by increasing the solvent tolerance level, and through the 

activation of the efflux pump (Machas et al., 2021). Besides these, catechol exposure elicited 

varied effects on the virulence factors of E. coli UM146, causing upregulation of 10 genes and 

downregulation of 12 genes in anaerobic condition, while inducing upregulation of 6 genes and 

downregulation of 8 genes under aerobic condition (Figure 2.19). However, there was no 

impact of catechol exposure on the biofilm formation and flagellar assembly under aerobic 
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condition (Figure 2.21). Notably, under anaerobic condition, catechol treatment exhibited 

contrasting responses, with biofilm formation demonstrating upregulation of genes and 

flagellar assembly showing downregulation of genes (Figure 2.20). An example of one such 

mechanical stress induction to biofilm formation was observed in E. coli CFT073 (Chu et al., 

2018). Catechol has adhesion properties and can elicit siderophore activity, which overall plays 

an important role in biofilm formation (Saiz‐Poseu et al., 2019; Tahmasebi et al., 2022). 

Likewise catechol, other phytochemicals such as 4-hydroxybenzoic, gallic, vanillin and 

epicatechin, cinnamic, sinapic, ferulic, and chlorogenic acids enhanced biofilm formation in 

Pseudomonas aeruginosa.  

2.4.1.3. Strategies used by E. coli UM146 to mitigate the toxic effects of catechol 

Bacteria use biochemical transformation strategies such as acetylation, deamination, 

decarboxylation, demethylation, glycosylation, hydrolysis, ring cleavage, and sulfation to 

convert the toxic molecules to a non-toxic/less toxic substances (P. Li et al., 2020). Following 

a similar way, E. coli UM146 strain mediated the biotransformation of toxic catechol to other 

compounds to mitigate the toxic effects. Catechol is converted into protocatechuate, phenol, 

pyrogallol, and 2-hydroxymethyl-1,4-benzodioxan via carboxylation, dehydroxylation, 

hydroxylation, and cyclization process respectively. Phenol produced through the 

dehydroxylation process, followed by another round of carboxylation and hydroxylation steps 

transformed into 4-hydroxybenzoate and quinol respectively. Likewise, 4-hydroxybenzoate 

was converted into 2,4-dihydroxyacetophenone, 4-ethoxybenzoic acid ethyl ester, and quinol.  

Azoreductase, encoded by azoR gene, are flavoenzymes that are involved in the 

detoxification of azo compounds (Misal & Gawai, 2018). In this experiment, catechol treatment 

causes upregulation of azoR gene in both aerobic and anaerobic conditions. The bio-

transformed or spontaneously produced compounds through the catechol detoxification 

pathway may react with arylhydrazines to form azo compounds, which are later detoxified by 

azoreductase enzyme to a simpler or non-toxic form. The formation of azo compounds through 

the reactions between catechol and catechol derivatives with arylhydrazines reported in (Petran 

et al., 2020).  

2.4.2. Unknown challenging metabolites  

In LC-MS/MS analysis, many annotated features were identified as false positive. It 

was observed that MS-data analyzing software considered daughter ions (electrically charged 

product of a particular parent ions) as individual parent ions, which leads to false positive 

results. A benchmarking experiment was conducted to discuss this detail in Chapter 3. It was 
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surprising that a limited numbers of metabolites were detected in positive mode. Poor 

separation or co-eluting peaks were observed in the positive mode, which resulted in false 

positive metabolites. Methanol and water along with 0.1% formic acid were used as a mobile 

phase in positive mode. The use of 0.1% formic acid could be the probable reason of co-eluted 

peaks in the chromatogram. Instead of formic acid, other solutions such as ammonium acetate 

or ammonium formate can use alongside water-methanol as a mobile phase in positive mode 

(Manier et al., 2019). This possibly improves the signals or resolution of the chromatogram, 

with identification of more compounds in positive mode.   

Contrarily, a different issue was observed in NMR results. Many unknown compounds 

were detected under 700 MHz NMR (S Figure 2.26 & 2.27). The annotated compounds 

obtained from LC-MS/MS analysis were considered for the generation of chemical shifts. 

Predicted chemical shifts overlayed with the chemical shifts of unknown compounds (detected 

in NMR). Chemical shift comparison didn’t provide any insight. The reasoning behind that is 

explained with a benchmarking experiment in Chapter 3. Other approaches were considered 

including collection of fractions using HPLC, and 2D-NMR (HSQC and TOCSY) analysis. 

These strategies also couldn’t reveal the identity of these unknown compounds. In 

HSQC/TOCSY analysis, the high concentration of substrate overlapped the areas, which 

certainly affected the determination of other metabolites.  

2.4.3. Limitations of the study 

This study was designed and performed using available resources and laboratory 

guidance. Yet, there were some limitations. First, the anaerobic condition was maintained by 

purging nitrogen gas instead of the anaerobic chamber. Bacteria, media, and substrates weren’t 

kept in the anaerobic chamber before the experiment. Second, for the metabolomics study, the 

experiment wasn’t performed using isotope-labeled substrates due to budget constraints. Third, 

enzyme-metabolite interactions were performed using Autodock Vina. As the binding affinities 

were predicted using computational algorithms, it may vary with the actual experimental 

results.  

2.5. Conclusion  

Metabolomics and transcriptomics techniques were used to characterize metabolites 

and genes associated with the interactions of catechol and E. coli UM146. Untargeted 

metabolomics analysis led to the determination of 16 and 23 metabolites associated with the 

detoxification of catechol under anaerobic and aerobic conditions respectively. Moreover, 
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transcriptomics analysis suggested that 2 and 3 genes are linked to the catechol detoxification 

pathway in anaerobic and aerobic conditions respectively. The involvement of UbiD enzyme 

in the catechol metabolic pathway is highly versatile and performs multiple functions. Further 

investigation is required to uncover the actual role of UbiD enzyme in the E. coli UM146 strain. 
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Chapter 3 

Uncovering False Positives in Metabolomics: Insights from Benchmarking 

Approaches 

3.1. Introduction 

Untargeted metabolomics is a powerful analytical technology with diverse applications 

in a wide range of research fields, including clinical biomarker discovery, identifying bioactive 

compounds for disease progression, studying drug efficacy and toxicity, and environmental 

toxicological research (Qiu et al., 2023; Ruan et al., 2022). Liquid chromatography high-

resolution mass spectrometry (LC-HRMS) has emerged as a prominent platform among other 

tools for untargeted metabolomics due to the high throughput, sensitivity, specificity, and broad 

coverage of small molecule detection (Guo & Huan, 2020; Kunzelmann et al., 2018). LC-

HRMS detects tens to thousands of features, where not all the features are biologically relevant 

(Johnson et al., 2016; Uppal et al., 2016). Many of the identified features represent background 

signals due to improper sample processing (Coble & Fraga, 2014). Multiple signals from the 

same analyte led to false positive features (FPFs). Extracted Ion Chromatograms (EICs) and 

detection of chromatographic peaks from the EICs are the initial stages of the preprocessing 

workflow (Myers et al., 2017). These steps enable the identification and relative quantitation 

of analytes. Any discrepancies in these steps can affect entire data processing steps including 

subsequent statistical and metabolic pathway analysis (Ju et al., 2019). Screening and removing 

these FPFs are of foremost importance in metabolomics studies. A combination of multiple 

strategies is used to remove FPFs, including 1) setting signal to noise ratio (SNR) threshold 

level to compare the low signal intensities with background signals; 2) accurate retention time 

alignment of chromatographic peaks; 3) relative standard deviation filtering across samples; 4) 

blank and control subtraction from the samples; 5) isotope filtering; 6) incorporating quality 

control samples; 7) grouping of different adduct types; 8) consideration of neutral loss; 9) 

analyzing shape and co-elution pattern of chromatographic peaks; 10) comparing 

fragmentation pattern with authentic standards or databases; and 11) isomer resolution 

(Schrimpe-Rutledge et al., 2016). Several proprietary and open-source software packages have 

been developed to automate the filtering process. Arguably Metaboanalyst, XCMS, and 

MZmine2 are the most widely used software packages used to analyze the LC-HRMS data. 

These software uses different approaches to process the raw data to screen and filter the 

features.  
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Likewise LC-HRMS, nuclear magnetic resonance (NMR) is a complementary 

technique in metabolomics research (Letertre et al., 2021). NMR provides detailed structural 

information. NMR can detect metabolites in low concentrations, typically micromolar (μM) to 

millimolar (mM) range (Goldansaz et al., 2017). A combination of both techniques (NMR and 

LC-HRMS) yields a more extensive and comprehensive understanding of metabolomics 

research.  

The objective of the study was to discuss the reproducibility of untargeted 

metabolomics using different analytical techniques. To do this, a synthetic mixture and a single 

pure compound solution were analyzed to observe the variability of the results. Moreover, this 

study will assist in deciding the reliability of popular software packages in LC-HRMS analysis.  

3.2. Methods and materials 

3.2.1. Chemical reagents 

All the chemicals required to prepare defined mixture (cytosine, alanine, kynurenine, 

homovanillic acid, lysine, myo-inositol, beta-hydroxybutyric acid, thymine, pyruvic acid, 

deoxycytidine, serine, asparagine, succinic acid, tryptophan, deoxycytidine monophosphate, 

citric acid, uridine, 5-methyluridine, taurine, 2-pyrocatechuic acid, benzyl alcohol, phenol, 

tyramine, phenylethylamine, spermidine, 2,3-butanediol, deoxyadenosine monophosphate, 

valeric acid) were purchased from Sigma-Aldrich. HPLC grade water, deuterated 2,2-

dimethyl-2-silapentane-5 sulfonate (DSS-d6), potassium phosphate monobasic, potassium 

phosphate dibasic, and D2O (99.9%) were purchased from Sigma (Oakville, Canada). The 2-

chloropyrimidine-5-carboxylic acid (98%) was purchased from ArkPharm (Libertyville, USA). 

The Amicon (1.5 mL) 3 kDa molecular weight cut off (MWCO) filtration units were purchased 

from Millipore Sigma (St. Louis, United States). The NMR tubes (3 mm) were purchased from 

Bruker Ltd. (Milton, Canada). Compounds for NMR standards were generally purchased from 

Millipore, Sigma, AK Scientific Inc., or Tokyo Chemical Industry Co. Ltd.   

3.2.2. Preparation of defined mixture 

A total of 28 compounds with purity of ≥98-99% were used to prepare the defined 

mixture. 5 mM stock was prepared in water for each chemical. Required amounts were taken 

from each stock to prepare 75 µM concentrated defined mixture. A 0.22-micron filter was used 

to clean the samples before running in LC-MS and NMR.  
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3.2.3. Preparation of a single concentrated pure solution 

The compounds used to prepare the defined mixture were not entirely (100%) pure. 

Contaminates may arise from the compounds. Among the compounds utilized to make the 

defined mixture, lysine was one of them. Different concentrations (5 mM, 25 mM, 50 mM. 85 

mM and 900 mM) of lysine solutions were prepared and subjected to NMR.  To determine the 

contaminants, it was required to eliminate the lysine from the highly concentrated (900 mM) 

lysine solution.  

3.2.3.1. Resin based column chromatography 

Different cation and anion exchange columns were used to remove the lysine from the 

concentrated lysine solution. Both cation exchange resins (DOWEX R50 WX8, H+ and 

Amberlyte IRC-120H, H+) exhibit comparable cation exchange properties owing to their 

negatively charged sulphonic acid (-SO3H) functional groups. Bead size and physical 

appearance is different in both resins. Amberlyte IRC-120H, H+ and DOWEX R50 WX8, H+ 

comprise macropores and gel-type resins respectively, which results in slight differences in 

their performance.  Conversely, both anion exchange columns have different functional groups. 

Amberlyte IRA402 chloride form and Amberlyst A-26 (OH) resins contain chloride ion and 

hydroxyl ions respectively. Due to the distinct functional groups, these anion exchange 

columns operate differently. The anionic part (carboxylate, -COO-) of lysine may interact with 

the positively charged functional group of cationic resins, and the cationic part (amine, -NH2) 

of lysine possibly bind to the negatively charged functional group of anionic resins. A 

concentrated lysine solution was passed through the resins and fractions were collected. After 

lyophilization, concentrated fractions were run in NMR and Orbitrap to determine the 

contaminants.   

3.2.3.2. Liquid-liquid extraction 

Besides the column-based chromatography technique, derivatization and liquid-liquid 

extraction were also conducted to extract the contaminates from the lysine solution. A 5% 

phenyl isothiocyanate (PITC) solution was prepared by mixing 1900 µL water, 1900 µL of 

pyridine, 1900 µL of ethanol, and 300 µL of PITC. 10 µL 900 mM of lysine stock was 

transferred to a glass vial. 2 mL of 5% PITC solution into the same glass vial was added. 

Derivatization was conducted at room temperature for 20 minutes. Samples were dried using a 

nitrogen evaporator. After that, samples were reconstituted separately using 200 µL of water, 

d4-methanol, and sodium hydroxide (0.1M NaOH). 200 µL of ethyl acetate was added to the 

sample reconstituted using NaOH. The tube containing sodium hydroxide and ethyl acetate 
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was thoroughly vortexed for 30 seconds, shaken at 1,000 rpm for 10 minutes, and centrifuged 

for 18,000 × g for 15 minutes. The aqueous layer was collected for NMR measurement. 50 µL 

NMR buffer was added to all reconstituted samples. The tubes were thoroughly vortexed for 

30 seconds and centrifuged at 1,000 rpm for 10 min. Samples were transferred to 3 mm tubes 

for NMR run.  

3.2.4. LC-HRMS analysis 

LC-HRMS analyses were conducted with an Ultimate 3,000 UHPLC system (Thermo 

Scientific®, MA, USA) coupled to a Orbitrap mass spectrometer which is equipped with a 

heated electrospray ionization (H-ESI) source. Prior to analysis, external mass calibration was 

done in accordance with manufacturer instructions. Chromatographic separation was 

conducted on a ZORBAX C18 column (2.1 × 100 mm I.D., particle size 3.5 μm). Column 

temperature was set at 50°C, maintained by a Dionex UltiMate 3000 RS analytical column 

heater. Mobile phases were binary mixtures: water (eluent A) and methanol (eluent B), both 

with 0.1% formic acid. Gradient elution started at 100% A and 0% B, followed by: 0–7.8 min 

40% B, 7.8–9 min 40% B, 9–9.1 min 0% B, 9.1–10 min 0% B. The total run time was 10 min. 

Flow rate was set at 5 µL s−1 and the injection volume was 5 µL.  Metabolites were analyzed 

under both positive and negative electrospray ionization (ESI) mode. The ESI conditions in 

each run were set to spray voltage 3 KV in positive mode and -3 KV in negative mode, heated 

capillary temperature 299.57°C, sheath gas flow rate 59.82 U, auxiliary gas flow rate 30 U, 

sweep gas flow rate 1.2 U, auxiliary heater temperature 529.80°C, and S-lens RF level 60. The 

settings for full scan and dd-MS2 data acquisition were as follows: resolution - 50000 fwhm; 

automatic gain control (AGC) target - 1e5; maximum injection time - 50 ms; loop count - 5; 

and isolation window - 4 m/z. Data acquisition conditions were set over a mass range of 50–

750 m/z to enhance the compound identification.  

3.2.4.1. Mass spectrometry data analysis 

Raw data obtained from the Orbitrap instrument were converted to mzML format using 

msConvert. Blank was used as a control for both the defined mixture and single pure solution 

experiment. The spectra were processed in Metaboanalyst 5.0, XCMS, and MZmine2 using the 

following modules: 1. Metaboanalyst: peak picking (min_peakwidth - 6.0, max_peakwidth - 

25.0, ppm - 10, mzdiff - 0.01, snthresh - 10.0, prefilter - 6.0, noise - 1E7, value of prefilter - 

1E7), peak alignment and peak annotation settings were kept default; 2. XCMS:  noise filtration 

was set to 1E6, and rest of the settings were kept default; 3. MZmine2: mass detector (centroid), 
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ADAP chromatogram builder (min group size in #of scans - 5, group intensity threshold - 1E6, 

m/z tolerance 0-5 ppm), feature detection - chromatogram deconvolution, spectral 

deconvolution - hierarchical clustering, isotope peak grouper - deisotoped, filtering - peak 

filter, alignment - RANSAC aligner, and normalization – liner. Metaboanalyst, XCMS, and 

MZmine2 suggested compounds further confirmed with fragmentation pattern matching, and 

retention time compared with the authentic standards.  

3.2.5. NMR analysis 

200 µL of sample was aliquoted to an eppendorf tube with 50 µL buffer X (750 mM 

phosphate buffer with 5 mM DSS and 10% D2O). The mixture was vortexed for 1 minute and 

centrifuged at 10000 rpm for 5 minutes at 4°C. 1H NMR spectra were obtained on a Bruker 

AVANCE III 700 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped with 

a triple resonance 5 mm CryoProbe. Samples were acquired with automation using a SampleJet 

sample changer. The samples were stored at 5 - 10 °C and each sample was pre-warmed to 25 

°C before insertion into the spectrometer. Spectra for metabolomics analysis were acquired 

using a 1D 1H NOESY (noseypr1d), with 2s pre-saturation pulse for water suppression, a 50 

ms mixing time with water saturation, and a 4s acquisition time. A sweep width of 12 ppm was 

used. Spectra with poor line shape or linewidths greater than 1 Hz were reacquired. For 

profiling with Chenomx, the NOESY spectra were processed with exponential line broadening 

such that the DSS peak width was 1 Hz, and manual baseline correction was applied. For 

manual profiling, samples were quantified using the Chenomx NMR Suite version 8 

(Chenomx, Inc. Alberta, Canada) using a combination of the software-provided 700 MHz 

compound library and an in-house compound library acquired at 700 MHz.  

3.2.6. Sensitivity and Specificity  

Sensitivity and specificity were calculated using the following formulas: 

sensitivity = True positive / (True positive + False negative), and  

specificity = True negative / (False positive + True negative).  

3.2.7. Statistical analysis 

Blank was considered as control for the defined mixture and single pure lysine 

experiments. Metabolites were determined by comparing the experimental and control groups. 

Statistical test was performed using Welch’s t-test comparing the peak area of each metabolite 

in control and treated samples.  

3.3. Results 
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3.3.1. Benchmarking: Mixture of compounds 

3.3.1.1. Features determination 

Metaboanalyst 5.0, XCMS, and MZmine2 software packages were used to detect the 

features in both ionization modes (negative and positive). Figure 3.1 exhibits the number of 

features determined by all three software. Metaboanalyst identified 158 and 123 features in 

negative and positive modes respectively. XCMS determined 34 features (in negative mode) 

and 62 features (in positive mode), which is relatively less than the number of features 

suggested by Metaboanalyst. In negative mode, MZmine2 exhibited 146 distinct features, with 

125 overlapping with the features of Metaboanalyst (Figure 3.1). Conversely, in positive mode, 

MZmine2 displayed 72 features, a number in proximity to the 62 features observed by XCMS. 

There is an overlap of 125 (in negative mode) and 58 (in positive mode) features between 

Metaboanalyst 5.0 and MZmine2. Metaboanalyst 5.0 and XCMS exhibited an intersection of 

32 and 53 features in negative and positive mode respectively. A total of 31 features (in 

negative mode) and 53 features (in positive mode) shared by MZmine2 and XCMS. Moreover, 

the small overlapping section signifies a consistent detection of 29 features in negative mode 

and 47 features in positive mode within all three software.  

 

Figure 3.1. Venn diagram represents the number of features determined by 

Metaboanalyst, XCMS and MZmine2. Synthetic mixture was analyzed by LC-HRMS in both 

negative and positive mode.  
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3.3.1.2. Sensitivity and specificity of Metaboanalyst, XCMS and MZmine2 

A set of 28 compounds was used to prepare the synthetic mixture. The exact mass and 

retention time were manually checked for each compound. No exact mass and retention time 

were detected for 8 compounds (benzyl alcohol, phenol, tyramine, phenylalanine, spermidine, 

2,3-butanediol, deoxyadenosine monophosphate, and valeric acid) in negative mode and 4 

compounds (2,3-butanediol, deoxyadenosine monophosphate, pyruvic acid, and valeric acid) 

in positive mode. All these compounds were considered as true negatives. Among the pool of 

28 compounds, Metaboanalyst identified 14 compounds in negative mode and 15 compounds 

in positive mode, followed by XCMS detected 14 and 18 compounds in negative and positive 

mode respectively. Meanwhile, MZmine2 was able to determine 15 compounds in negative 

mode and 16 compounds in positive mode. Sensitivity and specificity were calculated in three 

ways, including a) all features, b) putative ID (PID), and c) putative ID & true positive (PID28). 

Sensitivity and specificity comparisons were displayed in Figure 3.2 and Figure 3.3. 

Considering all features and PID, the sensitivity of all the software was similar in positive 

mode. Variability was observed while calculation was conducted based on PID28, XCMS 

(75%) provided better sensitivity compared to Metaboanalyst (58.33%) and MZmine2 

(66.67%). The specificity of Metaboanalyst in the criteria of considering all features is 44.44%, 

which is quite lower than XCMS (96.09%) and MZmine2 (100%). Considering PID and 

PID28, all these software provided 100% specificity in positive mode (Figure 3.2). In negative 

mode on all criteria, the sensitivity of three-software’s exhibited similar results. Metaboanalyst, 

XCMS, and MZmine2 provided 100% specificity on PID and PID28 in negative mode (Figure 

3.3). Nonetheless, Metaboanalyst demonstrated a specificity rate of 66.67%, whereas other two 

software yielded a higher specificity rate of 100% (Figure 3.3). 
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Figure 3.2. (A) Sensitivity and (B) specificity of Metaboanalyst, XCMS, and MZmine2 

in positive mode. Features were accounted for in three ways (considering all features, 

considering features based on putative ID, and considering features based on putative ID & 

true positive sorting based on 28 compounds) to calculate the sensitivity and specificity.  

 

(B) 

(A) 
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Figure 3.3. (A) Sensitivity and (B) specificity of Metaboanalyst, XCMS, and MZmine2 

in negative mode. Features were accounted for in three ways (considering all features, 

considering features based on putative ID, and considering features based on putative ID & 

true positive sorting based on 28 compounds) to calculate the sensitivity and specificity. 

3.3.2. Benchmarking: pure (≥98%) lysine solution 

3.3.2.1. Results of lysine sample on different platform 

According to NMR analysis, two unknown peaks were detected at 2.05 ppm and 3.95 

ppm (Table 3.1). The intensity of the unknown contaminant is 0.26% compared to the lysine. 

Few other compounds such as methanol, ethanol, and tert-butyl alcohol were detected in the 

lysine sample. Besides NMR analysis, 100 µM lysine was run in Orbitrap. There were 15 and 

24 features detected in LC-MS and LC-MS/MS analysis respectively (Table 3.2 & 3.3). 

(B) 

(A) 
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Metaboanaylst, XCMS, and MZMine2 suggested one to fourteen compounds for each feature. 

Chemical shifts of each suggested compound were retrieved from NMRdb or HMDB. There 

was no potential match of the chemical shifts for those compounds (except lysine) compared 

with the actual lysine sample. No unknown contaminants were also identified in HSQC and 

TOCSY analysis.  

Table 3.1. List of chemical shifts and features of compounds determined in concentrated lysine 

(85 mM) using 1H-NMR analysis. 

 

Table 3.2. List of features determined from 100 uM lysine using LC-MS analysis. 
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Table 3.3. List of features determined from 100 uM lysine using LC-MS/MS analysis. 

3.3.2.2. Results of liquid-liquid extraction and resin-based column chromatography 

No unknown compounds were detected in the liquid-liquid extraction experiment. In 

another way to determine the unknown contaminants, a very concentrated lysine solution (900 

mM) was passed through the resins. Removal of concentrated lysine wasn’t successful within 

cationic resins (DOWEX R50 WX8, H+ and Amberlyte IRC-120H, H+). The use of anionic 

resin, Amberlyt A-26 (OH), led to the effective removal of the concentrated lysine. Collected 

fractions contained the desired unknown contaminant named, 2-piperidinone, which was 

subsequently determined in NMR. The utilization of anionic resin-based column 

chromatography was effective in determining the previously unknown contaminant (2-

piperdinone) in the lysine solution (Figure 3.4).   
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Figure 3.4. Presence of 2-piperidinone in a concentrated lysine solution determined 

using resin-based column chromatography and 1H-NMR analysis. (A) Profiling of 2-

piperidinone using Chenomx. (B) Overlay of spiked 2-piperidinone. The concentration of 2-

piperidinone before and after spiking was 40.2 uM and 50.8 uM respectively. Black and green 

color denote before and after spiking respectively. (C) Overlay of 2-piperidinone before and 

after separation from concentrated lysine solution. Black and blue color indicate before and 

after separation respectively. Chemical shift of 2-piperdinone at 1.74 ppm was submerged by 

concentrated lysine. 

(C) 

(A) 

(B) 
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Figure 3.5. Comparison between predicted and actual chemical shifts of 2-

piperidinone. (A) & (B) represents the predicted chemical shifts of 2-piperidinone generated 

using NMRdb and HMDB respectively. (C) exhibits the actual chemical shifts of 2-

piperidinone.  

(A) 

(C) 

(B) 
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3.3.2.3. False positive results  

L-lysine were run in Orbitrap instrument at different collision energies, including 10V, 

20V and 40V in both positive and negative ionization mode. All the spectra in negative and 

positive ionization mode were displayed in Figure 3.6 and Figure 3.7 respectively.  

Figure 3.6. Experimental spectra of L-lysine at different collision energies in negative 

ionization mode.  (A) 10V, (B) 20V, and (C) 40V.  
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Figure 3.7. Experimental spectra of L-lysine at different collision energies in positive 

ionization mode.  (A) 10V, (B) 20V, and (C) 40V. 
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MS-data analysis was conducted using Metaboanalyst, XCMS, and MZmine2, and the 

results were presented in Table 3.2-3.3. All these software works by extracting and annotating 

the features. Metaboanalyst, XCMS, and MZmine2 together extracted 15-24 features for ≥98% 

pure lysine. An interesting observation was found after comparing L-lysine spectra (including 

the fragmentation) with the results of MS-data analyzing software (Table 3.4). Metaboanalyst, 

XCMS, and MZmine2 considered the daughter ions of L-lysine as individual precursor ions 

and afterward annotated those ions separately. Moreover, these software considered the 

isotopes and adducts of these daughter ions, and suggested more compounds, indeed these all 

are false positive results. 

Table 3.4. Comparison between MS-analyzing software results and L-lysine spectra to 

determine false positive results.  

m/z Isotopes Adducts Comments False 

positive 

84.08122 
  

Daughter Ion  Yes 

129.1023 
  

A low intensity ion beside 130.086 in 

Figure 3.7 (C) 

Yes 

130.086 [M]+ [M+H-NH3]+ 146.105 Daughter Ion (146.105) + H - NH3 = 

130.086 

Yes 

131.0893 [M+1]+ [M+H]+ Daughter Ion (130.086) + H = 

131.0893 

Yes 

145.0971 
  

Precursor Ion Yes 

147.1123 [M]+ [M+H]+ 146.105 Precursor Ion (146.105) + H = 

147.1123 

No 

148.1156 [M+1]+ 
 

Precursor Ion (147.1123) + 1 = 

148.1156 

Yes 

191.076 
 

[M+2Na-H]+ Precursor Ion (146.105) + 2Na – H = 

191.076 

Yes 

169.0941  [M+Na+NH3]+129.079 

 

Daughter Ion (129.079) + Na + NH3 = 

169.0941 

Yes 

3.4. Discussion 

False positive results significantly impact downstream analysis leading to erroneous 

results (Pirttilä et al., 2022).  In this experiment, a synthetic mixture was analyzed to test the 

reproducibility of Metaboanalyst, XCMS, and MZmine2. All features identified by 

Metaboanalyst, XCMS, and MZmine2 were subject to thorough manual checking in the 

chromatogram. The features determined by XCMS and MZmine2 were confirmed as positive 

by manual checking. Among the features suggested by Metaboanalyst regarding synthetic 

mixture, a subset of 5-10% features didn’t display any observable peaks by manual checking 

in the chromatogram, considered as false positive features. Upon consideration of PID28, the 

rate of sensitivity of Metaboanalyst, XCMS, and MZmine2 was low (Figure 3.2 & 3.3). 
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Technically, the measure of software’s performance lies in its ability to achieve the expected 

results by suggesting only required features. In the analyzed synthetic mixture, XCMS detected 

34 features in negative mode and 62 features in positive mode (Figure 3.1). Conversely, 

Metaboanalyst identified 158 features in negative mode and 123 features in positive mode, 

followed by MZmine2 determined 146 and 72 features in negative and positive mode 

respectively (Figure 3.1). According to the scale of a number of feature detections in response 

to a synthetic mixture (28 compounds), XCMS exhibited limited features with coverage of 

more compounds compared to Metaboanalyst, and MZmine2. Although the defined mixture 

encompasses 28 compounds, it is unclear whether more than 30 features were determined by 

Metaboanalyst, XCMS, and MZmine2 (Figure 3.1). Perhaps, these features represent the 

formation of new compounds while compounds were mixed to prepare the synthetic mixture. 

Another reason could be the purity (98-99%) of the compounds. To address these, a 

concentrated solution of a single compound, named lysine (purity ≥98%), was run in NMR and 

Orbitrap. Applying the 1H-NMR technique, a few compounds such as methanol, ethanol, and 

tert-butyl alcohol were detected in the lysine solution. These compounds were reported as 

common NMR contaminants (Fulmer et al., 2010; Gottlieb et al., 1997). In analyzing the lysine 

solution, NMR was able to detect one unknown compound at 2.33 ppm and 3.22 ppm. Besides 

the NMR analysis, results of LC-MS and LC-MS/MS analysis suggested 15 and 24 features 

respectively for the lysine solution. Annotation of each feature reported multiple compounds, 

comprising in total of 56 compounds. Chemical shifts of 56 compounds were overlaid with the 

unknown compound detected in NMR regarding the lysine solution. Chemical shift comparison 

was unsuccessful in exploring the identity of the unknown compound. Hence, anionic resin-

based column chromatography and 1H-NMR was able to determine the identity of the unknown 

compound, 2-piperidinone. Among the three software packages, only Metaboanalyst was able 

to determine the unknown compound, 2-piperidinone. The predicted chemical shifts of 2-

piperidinone didn’t align properly with the unknown chemical shifts of L-lysine [Figures 3.5 

(A) & (B)]. This instance exemplifies the impact of a predicted chemical shift on the results. 

There is a high chance that prediction may provide wrong chemical shifts for compounds. 

Besides the chemical shift comparison, the MS-fragmentation pattern of lysine at different 

collision energy compared with the results of Metaboanayst, XCMS, and MZmine2. All these 

software considered the daughter ions (129.079 and 84.08123) as precursor ions, and 

incorporated adducts and isotopes to annotate, which eventually suggested more false positive 

results.  
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Overall, the rate of sensitivity and specificity of all three software packages close in 

proximity. It is challenging to conclude which software performs well and gives less false 

positive results. In negative mode (regarding 28 compounds mixture), XCMS worked better in 

determining essential features to cover the compounds used to make the synthetic mixture. 

Although for the lysine solution, Metaboanalyst was able to accurately identify the unknown 

contaminant than XCMS and MZmine2. Indeed, different software packages have distinct 

advantages; some work better in negative mode, and some in positive mode. For a new 

biomarker discovery study, ease of use of Metaboanalyst and MZmine2 could be a good option. 

For comparison-based (disease vs non-diseased) studies, researchers can decide to use XCMS 

as it detects fewer false positive features than others. Metaboanalyst and XCMS are more user-

friendly platforms than MZmine2. Hence, users will get more flexibility in MZmine2 to 

customize the workflows. Moreover, MZmine2 has a deisotope option which is not in 

Metaboanalyst and XCMS. MZmine2 provides the choice to manually select the databases 

(PubChem, HMDB, KEGG, and MetaCyc), while Metaboanalyst and XCMS are only limited 

to the HMDB and METLIN databases respectively. Metaboanalyst integrates multi-omics 

options such as enrichment analysis, pathway analysis, and linking gene metabolite 

interactions. Many users prefer Metaboanalyst due to the vast options of statistics and graphical 

interference. Besides these software packages, people also prefer to use MS-DIAL and SIRIUS 

for the LC-MS/MS analysis. The advantage of using MS-DIAL as it provides the option of 

comparing the fragmentation pattern with the experimental/in-silico databases. SIRIUS 

elucidates rule-based structural information from the fragmentation patterns. It ranks features 

and structures based on different scores such as confidence score, SIRIUS score, and zodiac 

score. SIRIUS declared that the identification rate is 70% for the challenging datasets (Dührkop 

et al., 2019). MS-DIAL and SIRIUS were not used in this experiment as the synthetic mixture 

was scanned in MS1 (full scan). MS-DIAL and SIRIUS work better while the dataset is in MS2 

scanned. The full scan provides more features than MS2. Guo and Huan et al. discussed and 

compared the results of full scan, data-dependent acquisition (DDA), and data-independent 

acquisition (DIA). The full scan allows a comprehensive view of the entire dataset. DDA 

prioritizes and selects the high intense parent ions for fragmentation in subsequent scans. DIA 

works within the selected m/z range for each scan. The choice of selection depends upon 

research objectives. Besides these options in untargeted metabolomics, to improve the filtering 

procedures researchers developing new algorithms and strategies, including IP4M (Liang et 

al., 2020), asari (Li et al., 2023), UmetaFlow (Kontou et al., 2023), metaX (Wen et al., 2017), 

openNAU (Sun et al., 2022), DecoMetDIA (Yin et al., 2019) and DIAMetAlyzer (Alka et al., 
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2022), etc. To date, there is no study conducted to compare the reliability of these packages. 

More groundwork requires to compare the performance of IP4M, asari, UmetaFlow, metaX, 

openNAU, DecoMetDIA, DIAMetAlyzer with traditional software packages, including 

Metaboanalyst, XCMS, MZmine2, MS-DIAL, and SIRIUS. Therefore, the selection and 

combination of software packages should be carefully weighed in untargeted metabolomics 

upon the purpose of the study. 

3.5. Conclusion  

Reproducibility in untargeted metabolomics is very challenging. XCMS provided less 

false positive features compared to Metaboanalyst and MZmine2 regarding the defined 

mixture. In contrast, for the single pure lysine solution, only Metaboanalyst identified the 

unknown contaminant (2-piperdinone). Moreover, all the MS-data analyzing software counted 

daughter ions of L-lysine as precursor ions, which resulted in false positive metabolites. Taken 

together, due to different aspects, it’s worth considering multiple softwares for MS-based 

untargeted metabolomics data analysis.  
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Chapter 4: Concluding remarks 

4.1. Summary  

LC-HRMS, GC-MS, and NMR are modern cutting-edge metabolomics techniques. 

Now-a-days these techniques are considered to be the gold standard for characterizing small 

organic molecules in targeted and untargeted manner. The inclusion of untargeted 

metabolomics and transcriptomics is a new area in genomics to answer biological questions.  

In this thesis, I provided a brief overview of bacterial metabolite identification using 

untargeted metabolomics techniques. Chapter 2 is a reference framework for the 

characterization of metabolites and genes involved in the catechol detoxification pathway in E. 

coli UM146. Many false positive results were detected while analyzing MS data. To see the 

reproducibility of results, a comparison was conducted using a synthetic mixture. The results 

of the comparison were discussed in Chapter 3.  Regarding the defined mixture which 

comprises 28 compounds, the performance of XCMS was better in determining minimum 

features with coverage of more compounds. Under the benchmarking project, another 

experiment was performed with ≥98% pure lysine to identify the contaminants in it. 

Contaminants were determined using resin-based column chromatography and 1H-NMR. 

Among the three MS data analyzing software, it was apparent that only Metaboanalyst was 

able to determine the unknown contaminant (2-piperidinone) in the lysine solution. 

Metaboanalyst, XCMS, and MZmine2 suggested other metabolites (excluding 2-piperidione 

and lysine) considered false positives. The outcomes of the MS analysis of the defined mixture 

and single pure solution experiment underscore the importance of not relying exclusively on 

one software result. Across the board, none of the MS data analyzing software provides 

accurate results. In an effort to achieve optimum output, it is required to use different MS-data 

analyzing software to compare the results, and finally validate the results with authentic 

standards.  

4.2. Future directions 

4.2.1. Chapter 2 

Genes that are shown involved in the catechol detoxification pathway require further 

validation using quantitative real-time polymerase chain reaction (qRT-PCR) and CRISPR-

Cas9 technique. The metabolomics aspect posed the main challenges in this study, involving 

the application of untargeted approaches to characterize both known/unknown metabolites. 

Each of the software utilized for metabolomics analysis indicated over 400 features for each 
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sample, with the potential of multiple metabolites within each feature (exact mass). 

Consequently, the estimated number of metabolites for each sample was approximately 

600~700.  It was very time-intensive to compare the fragmentation pattern and chemical shifts 

for each of the annotated compounds. Prior to pursuing these approaches, the collection of 

fractions using preparative-HPLC and then running the fractions in different analytical 

instruments could reduce the amount of time, and effort required to characterize these 

metabolites. Moreover, besides the metabolomics and transcriptomics techniques, the inclusion 

of proteomics followed by isolation and characterization of enzymes using the western-blot 

technique would give more accurate results.  

Sample collection for transcriptomics and metabolomics analysis occurred at different 

time points.  Samples for transcriptomics analysis were deliberately obtained at the exponential 

phase to get the total RNA, where m-RNA was predominated over ribosomal RNA (rRNA) 

and transfer RNA (tRNA).  Due to the onset of secondary metabolite production by bacteria 

during the stationary phase, samples for metabolomics analysis were collected at the 24 hrs 

time point. To examine whether E. coli UM146 strain is capable of producing catechol ortho-

cleavage or meta-cleavage metabolites (such as cis, cis-muconic acid, 3-oxoadipate, and 2-

hydroxymuconate semialdehye), an optimal approach would be collecting samples for 

metabolomics analysis at several time points (2 hrs, 4 hrs, 8 hrs, 12 hrs and 24 hrs). It is worth 

considering that metabolites generated through ortho or meta cleavage route, enable bacteria 

to consume it and transform it into another metabolite.  

4.2.2. Chapter 3 

It is necessary to compare the features of different software packages to get a reliable 

result. To determine the reproducibility accurately, it is required to design and prepare the 

synthetic mixture using isotope-labeled compounds. Moreover, there is a need to link 

fragmentation pattern prediction software (such as CFM-ID 4.0) with Metaboanalyst, XCMS, 

and MZmine2. It would be even more remarkable if these software packages used the algorithm 

of CFM-ID 4.0 to generate and compare fragmentation patterns with confidence scores when 

presenting any features or annotated compound. This strategy can reduce the time and effort 

needed to accomplish such activities manually. Moreover, developers of Metaboanalyst, 

XCMS, and MZmine2 may also think about including the algorithm of rule-based structure 

prediction options like SIRIUS. One score from fragmentation pattern comparison and another 

score from rule-based structure prediction may allow users to screen and sort the features 
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easily, which would be a more robust approach in MS-based untargeted metabolomics data 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

110 
 

References 

Aghapour, A. A., Moussavi, G., & Yaghmaeian, K. (2013). Biological degradation of catechol in 

wastewater using the sequencing continuous-inflow reactor (SCR). Journal of Environmental 

Health Science & Engineering, 11(1), 3. https://doi.org/10.1186/2052-336X-11-3 

Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). 

Phenolic compounds: Current industrial applications, limitations and future challenges. Food 

& Function, 12(1), 14–29. https://doi.org/10.1039/d0fo02324h 

Alka, O., Shanthamoorthy, P., Witting, M., Kleigrewe, K., Kohlbacher, O., & Röst, H. L. (2022). 

DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-

independent acquisition in metabolomics. Nature Communications, 13(1), 1347. 

https://doi.org/10.1038/s41467-022-29006-z 

Aono, R., Tsukagoshi, N., & Yamamoto, M. (1998). Involvement of outer membrane protein TolC, a 

possible member of the mar-sox regulon, in maintenance and improvement of organic solvent 

tolerance of Escherichia coli K-12. Journal of Bacteriology, 180(4), 938–944. 

https://doi.org/10.1128/JB.180.4.938-944.1998 

Ardizzi, M., Ballarini, N., Cavani, F., Chiappini, E., Dal Pozzo, L., Maselli, L., & Monti, T. (2007). 

Environmentally friendly, heterogeneous acid and base catalysis for the methylation of 

catechol: Chances for the control of chemo-selectivity. Applied Catalysis B: Environmental, 

70(1–4), 597–605. https://doi.org/10.1016/j.apcatb.2006.02.028 

Aura, A.-M. (2008). Microbial metabolism of dietary phenolic compounds in the colon. 

Phytochemistry Reviews, 7(3), 407–429. https://doi.org/10.1007/s11101-008-9095-3 

Aura, A.-M., O’Leary, K. A., Williamson, G., Ojala, M., Bailey, M., Puupponen-Pimiä, R., Nuutila, 

A. M., Oksman-Caldentey, K.-M., & Poutanen, K. (2002). Quercetin Derivatives Are 

Deconjugated and Converted to Hydroxyphenylacetic Acids but Not Methylated by Human 

Fecal Flora in Vitro. Journal of Agricultural and Food Chemistry, 50(6), 1725–1730. 

https://doi.org/10.1021/jf0108056 



 

111 
 

Baptista, J., Simões, M., & Borges, A. (2019). Effect of plant-based catecholic molecules on the 

prevention and eradication of Escherichia coli biofilms: A structure activity relationship 

study. International Biodeterioration & Biodegradation, 141, 101–113. 

https://doi.org/10.1016/j.ibiod.2018.02.004 

Baral, B., Akhgari, A., & Metsä-Ketelä, M. (2018). Activation of microbial secondary metabolic 

pathways: Avenues and challenges. Synthetic and Systems Biotechnology, 3(3), 163–178. 

https://doi.org/10.1016/j.synbio.2018.09.001 

Barbuto Ferraiuolo, S., Cammarota, M., Schiraldi, C., & Restaino, O. F. (2021). Streptomycetes as 

platform for biotechnological production processes of drugs. Applied Microbiology and 

Biotechnology, 105(2), 551–568. https://doi.org/10.1007/s00253-020-11064-2 

Bertini, I., Briganti, F., & Scozzafava, A. (1994). Aliphatic and aromatic inhibitors binding to the 

active site of catechol 2,3-dioxygenase from Pseudomonas putida mt-2. FEBS Letters, 343(1), 

56–60. https://doi.org/10.1016/0014-5793(94)80606-3 

Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., 

Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., 

Goeden, M. A., Rose, D. J., Mau, B., & Shao, Y. (1997). The complete genome sequence of 

Escherichia coli K-12. Science (New York, N.Y.), 277(5331), 1453–1462. 

https://doi.org/10.1126/science.277.5331.1453 

Blaut, M., Schoefer, L., & Braune, A. (2003). Transformation of flavonoids by intestinal 

microorganisms. International Journal for Vitamin and Nutrition Research. Internationale 

Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International De Vitaminologie 

Et De Nutrition, 73(2), 79–87. https://doi.org/10.1024/0300-9831.73.2.79 

Bode, H. B., Bethe, B., Höfs, R., & Zeeck, A. (2002). Big Effects from Small Changes: Possible 

Ways to Explore Nature’s Chemical Diversity. ChemBioChem, 3(7), 619. 

https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9 

Bornscheuer, U. T. (2002). Microbial carboxyl esterases: Classification, properties and application in 

biocatalysis. FEMS Microbiology Reviews, 26(1), 73–81. https://doi.org/10.1111/j.1574-

6976.2002.tb00599.x 



 

112 
 

Boruta, T., & Bizukojc, M. (2016). Induction of secondary metabolism of Aspergillus terreus ATCC 

20542 in the batch bioreactor cultures. Applied Microbiology and Biotechnology, 100(7), 

3009–3022. https://doi.org/10.1007/s00253-015-7157-1 

Bowman, A. P., Blakney, G. T., Hendrickson, C. L., Ellis, S. R., Heeren, R. M. A., & Smith, D. F. 

(2020). Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI 

Mass Spectrometry Imaging by 21-T FT-ICR MS. Analytical Chemistry, 92(4), 3133–3142. 

https://doi.org/10.1021/acs.analchem.9b04768 

Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of 

endophytic bacteria. Current Opinion in Biotechnology, 27, 30–37. 

https://doi.org/10.1016/j.copbio.2013.09.012 

Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 

11(1), 21–32. https://doi.org/10.1038/nrmicro2916 

Breinig, S., Schiltz, E., & Fuchs, G. (2000). Genes involved in anaerobic metabolism of phenol in the 

bacterium Thauera aromatica. Journal of Bacteriology, 182(20), 5849–5863. 

https://doi.org/10.1128/JB.182.20.5849-5863.2000 

Buchmann, D., Schwabe, M., Weiss, R., Kuss, A. W., Schaufler, K., Schlüter, R., Rödiger, S., 

Guenther, S., & Schultze, N. (2023). Natural phenolic compounds as biofilm inhibitors of 

multidrug-resistant Escherichia coli – the role of similar biological processes despite 

structural diversity. Frontiers in Microbiology, 14, 1232039. 

https://doi.org/10.3389/fmicb.2023.1232039 

Campbell, W. H. (1999). NITRATE REDUCTASE STRUCTURE, FUNCTION AND 

REGULATION: Bridging the Gap between Biochemistry and Physiology. Annual Review of 

Plant Physiology and Plant Molecular Biology, 50, 277–303. 

https://doi.org/10.1146/annurev.arplant.50.1.277 

Cavalli, A., Salvatella, X., Dobson, C. M., & Vendruscolo, M. (2007). Protein structure determination 

from NMR chemical shifts. Proceedings of the National Academy of Sciences, 104(23), 

9615–9620. https://doi.org/10.1073/pnas.0610313104 



 

113 
 

Chavez, R. G., Alvarez, A. F., Romeo, T., & Georgellis, D. (2010). The physiological stimulus for the 

BarA sensor kinase. Journal of Bacteriology, 192(7), 2009–2012. 

https://doi.org/10.1128/JB.01685-09 

Chen, X., Liu, X., Wang, H.-B., Cui, K.-P., Weerasooriya, R., He, S.-L., Li, G.-H., Pan, J., & Zhou, 

K. (2020). Ce3+ triggers fenton-like processes in neutral solutions for effective catechol 

degradation. Environmental Engineering Research, 27(1), 200519–0. 

https://doi.org/10.4491/eer.2020.519 

Cheng, K.-J., Jones, G. A., Simpson, F. J., & Bryant, M. P. (1969). Isolation and identification of 

rumen bacteria capable of anaerobic rutin degradation. Canadian Journal of Microbiology, 

15(12), 1365–1371. https://doi.org/10.1139/m69-247 

Chu, E. K., Kilic, O., Cho, H., Groisman, A., & Levchenko, A. (2018). Self-induced mechanical stress 

can trigger biofilm formation in uropathogenic Escherichia coli. Nature Communications, 

9(1), 4087. https://doi.org/10.1038/s41467-018-06552-z 

Clavel, T., Fallani, M., Lepage, P., Levenez, F., Mathey, J., Rochet, V., Sérézat, M., Sutren, M., 

Henderson, G., Bennetau-Pelissero, C., Tondu, F., Blaut, M., Doré, J., & Coxam, V. (2005). 

Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal 

women. The Journal of Nutrition, 135(12), 2786–2792. 

https://doi.org/10.1093/jn/135.12.2786 

Coble, J. B., & Fraga, C. G. (2014). Comparative evaluation of preprocessing freeware on 

chromatography/mass spectrometry data for signature discovery. Journal of Chromatography 

A, 1358, 155–164. https://doi.org/10.1016/j.chroma.2014.06.100 

Coelho, L. M., Rezende, H. C., Coelho, L. M., De Sousa, P. A. R., Melo, D. F. O., & Coelho, N. M. 

M. (2015). Bioremediation of Polluted Waters Using Microorganisms. In N. Shiomi (Ed.), 

Advances in Bioremediation of Wastewater and Polluted Soil. InTech. 

https://doi.org/10.5772/60770 

Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A., & Lajolo, F. M. (2019). The Two-Way 

Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic 

Diseases. Frontiers in Nutrition, 6, 188. https://doi.org/10.3389/fnut.2019.00188 



 

114 
 

Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., 

Eghbalnia, H. R., Sussman, M. R., & Markley, J. L. (2008). Metabolite identification via the 

Madison Metabolomics Consortium Database. Nature Biotechnology, 26(2), 162–164. 

https://doi.org/10.1038/nbt0208-162 

d’Oelsnitz, S., Kim, W., Burkholder, N. T., Javanmardi, K., Thyer, R., Zhang, Y., Alper, H. S., & 

Ellington, A. D. (2022). Using fungible biosensors to evolve improved alkaloid biosyntheses. 

Nature Chemical Biology, 18(9), 981–989. https://doi.org/10.1038/s41589-022-01072-w 

Dass, C. (2007). Fundamentals of Contemporary Mass Spectrometry. John Wiley & Sons, Inc. 

https://doi.org/10.1002/0470118490 

Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug 

Discovery, 2(2), 114–122. https://doi.org/10.1038/nrd1008 

de Bont, J. (1998). Solvent-tolerant bacteria in biocatalysis. Trends in Biotechnology, 16(12), 493–

499. https://doi.org/10.1016/S0167-7799(98)01234-7 

Degnan, D. J., Bramer, L. M., Flores, J. E., Paurus, V. L., Corilo, Y. E., & Clendinen, C. S. (2023). 

Evaluating Retention Index Score Assumptions to Refine GC-MS Metabolite Identification 

[Preprint]. Bioinformatics. https://doi.org/10.1101/2023.01.26.525730 

Delgado, A. M., Issaoui, M., & Chammem, N. (2019). Analysis of Main and Healthy Phenolic 

Compounds in Foods. Journal of AOAC International, 102(5), 1356–1364. 

https://doi.org/10.5740/jaoacint.19-0128 

Deller, S., Macheroux, P., & Sollner, S. (2008). Flavin-dependent quinone reductases. Cellular and 

Molecular Life Sciences: CMLS, 65(1), 141–160. https://doi.org/10.1007/s00018-007-7300-y 

Desmarchelier, P., & Fegan, N. (2002). ESCHERICHIA COLI. In Encyclopedia of Dairy Sciences 

(pp. 948–954). Elsevier. https://doi.org/10.1016/B0-12-227235-8/00158-9 

Díaz, E., Ferrández, A., Prieto, M. A., & García, J. L. (2001). Biodegradation of aromatic compounds 

by Escherichia coli. Microbiology and Molecular Biology Reviews: MMBR, 65(4), 523–569, 

table of contents. https://doi.org/10.1128/MMBR.65.4.523-569.2001 



 

115 
 

Díaz-Gómez, R., Toledo-Araya, H., López-Solís, R., & Obreque-Slier, E. (2014). Combined effect of 

gallic acid and catechin against Escherichia coli. LWT - Food Science and Technology, 59(2), 

896–900. https://doi.org/10.1016/j.lwt.2014.06.049 

Ding, B., Schmeling, S., & Fuchs, G. (2008). Anaerobic Metabolism of Catechol by the Denitrifying 

Bacterium Thauera aromatica—A Result of Promiscuous Enzymes and Regulators? Journal 

of Bacteriology, 190(5), 1620–1630. https://doi.org/10.1128/JB.01221-07 

Dong, Z., & Chen, Y. (2013). Transcriptomics: Advances and approaches. Science China Life 

Sciences, 56(10), 960–967. https://doi.org/10.1007/s11427-013-4557-2 

Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. 

C., Rousu, J., & Böcker, S. (2019). SIRIUS 4: A rapid tool for turning tandem mass spectra 

into metabolite structure information. Nature Methods, 16(4), 299–302. 

https://doi.org/10.1038/s41592-019-0344-8 

Dutta, N. K., Tornheim, J. A., Fukutani, K. F., Paradkar, M., Tiburcio, R. T., Kinikar, A., Valvi, C., 

Kulkarni, V., Pradhan, N., Shivakumar, S. V. B. Y., Kagal, A., Gupte, A., Gupte, N., Mave, 

V., Gupta, A., Andrade, B. B., & Karakousis, P. C. (2020). Integration of metabolomics and 

transcriptomics reveals novel biomarkers in the blood for tuberculosis diagnosis in children. 

Scientific Reports, 10(1), 19527. https://doi.org/10.1038/s41598-020-75513-8 

Ebrahimi, P., Nilsson, M., Morris, G. A., Jensen, H. M., & Engelsen, S. B. (2014). Cleaning up NMR 

spectra with reference deconvolution for improving multivariate analysis of complex mixture 

spectra: Improving multivariate analysis of NMR data by reference deconvolution. Journal of 

Chemometrics, 28(8), 656–662. https://doi.org/10.1002/cem.2607 

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., 

Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. 

Science (New York, N.Y.), 308(5728), 1635–1638. https://doi.org/10.1126/science.1110591 

El Aidy, S., Hooiveld, G., Tremaroli, V., Bäckhed, F., & Kleerebezem, M. (2013). The gut microbiota 

and mucosal homeostasis: Colonized at birth or at adulthood, does it matter? Gut Microbes, 

4(2), 118–124. https://doi.org/10.4161/gmic.23362 



 

116 
 

Elmi, F., Lee, H.-T., Huang, J.-Y., Hsieh, Y.-C., Wang, Y.-L., Chen, Y.-J., Shaw, S.-Y., & Chen, C.-

J. (2005). Stereoselective Esterase from Pseudomonas putida IFO12996 Reveals α/β 

Hydrolase Folds for D -β-Acetylthioisobutyric Acid Synthesis. Journal of Bacteriology, 

187(24), 8470–8476. https://doi.org/10.1128/JB.187.24.8470-8476.2005 

Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., Raftery, D., 

Alahmari, F., Jaremko, L., Jaremko, M., & Wishart, D. S. (2019). NMR Spectroscopy for 

Metabolomics Research. Metabolites, 9(7), E123. https://doi.org/10.3390/metabo9070123 

Fan, T., Ren, R., Tang, S., Zhou, Y., Cai, M., Zhao, W., He, Y., & Xu, J. (2023). Transcriptomics 

combined with metabolomics unveiled the key genes and metabolites of mycelium growth in 

Morchella importuna. Frontiers in Microbiology, 14, 1079353. 

https://doi.org/10.3389/fmicb.2023.1079353 

FAQ: E. Coli: Good, Bad, & Deadly: “What is true for E. coli is true for the elephant.” (2011). 

American Society for Microbiology. http://www.ncbi.nlm.nih.gov/books/NBK562895/ 

Fiege, H., Voges, H.-W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., Fujita, Y., Buysch, H.-J., 

Garbe, D., & Paulus, W. (2000). Phenol Derivatives. In Wiley-VCH Verlag GmbH & Co. 

KGaA (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry (p. a19_313). Wiley-VCH 

Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a19_313 

Fleschhut, J., Kratzer, F., Rechkemmer, G., & Kulling, S. E. (2006). Stability and biotransformation 

of various dietary anthocyanins in vitro. European Journal of Nutrition, 45(1), 7–18. 

https://doi.org/10.1007/s00394-005-0557-8 

Flores, G., Ruiz del Castillo, M. L., Costabile, A., Klee, A., Bigetti Guergoletto, K., & Gibson, G. R. 

(2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, 

metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. 

https://doi.org/10.1016/j.jff.2015.04.022 

Forooshani, P. K., Meng, H., & Lee, B. P. (2017). Catechol Redox Reaction: Reactive Oxygen 

Species Generation, Regulation, and Biomedical Applications. In Y. Ito, X. Chen, & I.-K. 

Kang (Eds.), ACS Symposium Series (Vol. 1252, pp. 179–196). American Chemical Society. 

https://doi.org/10.1021/bk-2017-1252.ch010 



 

117 
 

Fouillaud, M., & Dufossé, L. (2022). Microbial Secondary Metabolism and Biotechnology. 

Microorganisms, 10(1), 123. https://doi.org/10.3390/microorganisms10010123 

Fridovich, I. (1997). Superoxide Anion Radical (O·2̄), Superoxide Dismutases, and Related Matters. 

Journal of Biological Chemistry, 272(30), 18515–18517. 

https://doi.org/10.1074/jbc.272.30.18515 

Frisvad, J. C. (2012). Media and Growth Conditions for Induction of Secondary Metabolite 

Production. In N. P. Keller & G. Turner (Eds.), Fungal Secondary Metabolism (pp. 47–58). 

Humana Press. https://doi.org/10.1007/978-1-62703-122-6_3 

Fritsche, W., & Hofrichter, M. (2005). Aerobic Degradation of Recalcitrant Organic Compounds by 

Microorganisms. In H.-J. Jördening & J. Winter (Eds.), Environmental Biotechnology (pp. 

203–227). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/3527604286.ch7 

Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, 

J. E., & Goldberg, K. I. (2010). NMR Chemical Shifts of Trace Impurities: Common 

Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the 

Organometallic Chemist. Organometallics, 29(9), 2176–2179. 

https://doi.org/10.1021/om100106e 

Garton, G. A., & Williams, R. T. (1948). Studies in detoxication. 17. The fate of catechol in the rabbit 

and the characterization of catechol monoglucuronide. Biochemical Journal, 43(2), 206–211. 

https://doi.org/10.1042/bj0430206 

Gleńsk, M., Hurst, W. J., Glinski, V. B., Bednarski, M., & Gliński, J. A. (2019). Isolation of 1-(3’,4’-

Dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol from Grape Seed Extract and 

Evaluation of its Antioxidant and Antispasmodic Potential. Molecules (Basel, Switzerland), 

24(13), E2466. https://doi.org/10.3390/molecules24132466 

Goldansaz, S. A., Guo, A. C., Sajed, T., Steele, M. A., Plastow, G. S., & Wishart, D. S. (2017). 

Livestock metabolomics and the livestock metabolome: A systematic review. PLOS ONE, 

12(5), e0177675. https://doi.org/10.1371/journal.pone.0177675 



 

118 
 

Gorny, N., & Schink, B. (1994). Anaerobic degradation of catechol by Desulfobacterium sp. Strain 

Cat2 proceeds via carboxylation to protocatechuate. Applied and Environmental 

Microbiology, 60(9), 3396–3400. https://doi.org/10.1128/aem.60.9.3396-3400.1994 

Gottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR Chemical Shifts of Common Laboratory 

Solvents as Trace Impurities. The Journal of Organic Chemistry, 62(21), 7512–7515. 

https://doi.org/10.1021/jo971176v 

Guinane, C. M., & Cotter, P. D. (2013). Role of the gut microbiota in health and chronic 

gastrointestinal disease: Understanding a hidden metabolic organ. Therapeutic Advances in 

Gastroenterology, 6(4), 295–308. https://doi.org/10.1177/1756283X13482996 

Guo, J., & Huan, T. (2020). Comparison of Full-Scan, Data-Dependent, and Data-Independent 

Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted 

Metabolomics. Analytical Chemistry, 92(12), 8072–8080. 

https://doi.org/10.1021/acs.analchem.9b05135 

Gupta, S. K., & Shukla, P. (2016). Advanced technologies for improved expression of recombinant 

proteins in bacteria: Perspectives and applications. Critical Reviews in Biotechnology, 36(6), 

1089–1098. https://doi.org/10.3109/07388551.2015.1084264 

Haiko, J., & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and 

virulence. Biology, 2(4), 1242–1267. https://doi.org/10.3390/biology2041242 

Hamzah, R. Y., & Al-Baharna, B. S. (1994). Catechol ring-cleavage in Pseudomonas cepacia: The 

simultaneous induction of ortho and meta pathways. Applied Microbiology and 

Biotechnology, 41(2), 250–256. https://doi.org/10.1007/BF00186968 

Handbook of Pharmacogenomics and Stratified Medicine. (2014). Elsevier. 

https://doi.org/10.1016/C2010-0-67325-1 

Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. D. (2014). Bayesian 

deconvolution and quantification of metabolites in complex 1D NMR spectra using 

BATMAN. Nature Protocols, 9(6), 1416–1427. https://doi.org/10.1038/nprot.2014.090 

Harvey, A. (2008). Natural products in drug discovery. Drug Discovery Today, 13(19–20), 894–901. 

https://doi.org/10.1016/j.drudis.2008.07.004 



 

119 
 

Harwood, C. S., Burchhardt, G., Herrmann, H., & Fuchs, G. (1998). Anaerobic metabolism of 

aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 22(5), 

439–458. https://doi.org/10.1111/j.1574-6976.1998.tb00380.x 

Hassan, M. A., Al-Sakkaf, K., Shait Mohammed, M. R., Dallol, A., Al-Maghrabi, J., Aldahlawi, A., 

Ashoor, S., Maamra, M., Ragoussis, J., Wu, W., Khan, M. I., Al-Malki, A. L., & Choudhry, 

H. (2020). Integration of Transcriptome and Metabolome Provides Unique Insights to 

Pathways Associated With Obese Breast Cancer Patients. Frontiers in Oncology, 10, 804. 

https://doi.org/10.3389/fonc.2020.00804 

Hattula, M. L., Wasenius, V.-M., Reunanen, H., & Arstila, A. U. (1981). Acute toxicity of some 

chlorinated phenols, catechols and cresols to trout. Bulletin of Environmental Contamination 

and Toxicology, 26(1), 295–298. https://doi.org/10.1007/BF01622093 

He, Z., & Wiegel, J. (1996). Purification and characterization of an oxygen-sensitive, reversible 3,4-

dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Journal of 

Bacteriology, 178(12), 3539–3543. https://doi.org/10.1128/jb.178.12.3539-3543.1996 

Ho, C. S., Lam, C. W. K., Chan, M. H. M., Cheung, R. C. K., Law, L. K., Lit, L. C. W., Ng, K. F., 

Suen, M. W. M., & Tai, H. L. (2003). Electrospray ionisation mass spectrometry: Principles 

and clinical applications. The Clinical Biochemist. Reviews, 24(1), 3–12. 

Hoerr, V., Zbytnuik, L., Leger, C., Tam, P. P. C., Kubes, P., & Vogel, H. J. (2012). Gram-negative 

and Gram-Positive Bacterial Infections Give Rise to a Different Metabolic Response in a 

Mouse Model. Journal of Proteome Research, 11(6), 3231–3245. 

https://doi.org/10.1021/pr201274r 

Holmgren, A. (2001). Thioredoxin and Glutaredoxin: General Aspects and Involvement in Redox 

Regulation. In E.-M. Aro & B. Andersson (Eds.), Regulation of Photosynthesis (Vol. 11, pp. 

321–330). Springer Netherlands. https://doi.org/10.1007/0-306-48148-0_19 

Horak, I., Engelbrecht, G., van Rensburg, P. J. J., & Claassens, S. (2019). Microbial metabolomics: 

Essential definitions and the importance of cultivation conditions for utilizing Bacillus species 

as bionematicides. Journal of Applied Microbiology, 127(2), 326–343. 

https://doi.org/10.1111/jam.14218 



 

120 
 

Hoult, D. I., Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E., & Seeley, P. J. (1974). 

Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature, 252(5481), 

285–287. https://doi.org/10.1038/252285a0 

Huang, C.-J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in 

Escherichia coli and its recent advancements. Journal of Industrial Microbiology & 

Biotechnology, 39(3), 383–399. https://doi.org/10.1007/s10295-011-1082-9 

Huang, K., & Zhang, H. (2022). A comprehensive kinetic model for phenol oxidation in seven 

advanced oxidation processes and considering the effects of halides and carbonate. Water 

Research X, 14, 100129. https://doi.org/10.1016/j.wroa.2021.100129 

Hudson, K. M., Shiver, E., Yu, J., Mehta, S., Jima, D. D., Kane, M. A., Patisaul, H. B., & Cowley, M. 

(2021). Transcriptomic, proteomic, and metabolomic analyses identify candidate pathways 

linking maternal cadmium exposure to altered neurodevelopment and behavior. Scientific 

Reports, 11(1), 16302. https://doi.org/10.1038/s41598-021-95630-2 

Hughes, E. J., & Bayly, R. C. (1983). Control of catechol meta-cleavage pathway in Alcaligenes 

eutrophus. Journal of Bacteriology, 154(3), 1363–1370. 

https://doi.org/10.1128/jb.154.3.1363-1370.1983 

Idle, J. R., & Gonzalez, F. J. (2007). Metabolomics. Cell Metabolism, 6(5), 348–351. 

https://doi.org/10.1016/j.cmet.2007.10.005 

Imlay, J. A., & Linn, S. (1988). DNA Damage and Oxygen Radical Toxicity. Science, 240(4857), 

1302–1309. https://doi.org/10.1126/science.3287616 

Jarvis, D. A. (1982). Deconvolution of Absorption Spectra. Physics Bulletin, 33(9), 334–334. 

https://doi.org/10.1088/0031-9112/33/9/042 

Jensen, E. D., Ambri, F., Bendtsen, M. B., Javanpour, A. A., Liu, C. C., Jensen, M. K., & Keasling, J. 

D. (2021). Integrating continuous hypermutation with high-throughput screening for 

optimization of cis,cis-muconic acid production in yeast. Microbial Biotechnology, 14(6), 

2617–2626. https://doi.org/10.1111/1751-7915.13774 

Jiménez, N., Curiel, J. A., Reverï¿½n, I., de las Rivas, B., & Muï¿½oz, R. (2013). Uncovering the 

Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation. 



 

121 
 

Applied and Environmental Microbiology, 79(14), 4253–4263. 

https://doi.org/10.1128/AEM.00840-13 

Jin, T.-S., Zhang, S.-L., Wang, X.-F., Guo, J.-J., & Li, T.-S. (2001). An Efficient and Convenient 

Method for Preparation of 2,2-Disubstituted and 2-Monosubstituted 1,3-Benzodioxoles from 

Ketones and Aldehydes with Catechol Catalysed by ZrO 2 /SO 4 2-. Journal of Chemical 

Research, 2001(7), 289–291. https://doi.org/10.3184/030823401103169801 

Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards 

mechanisms. Nature Reviews Molecular Cell Biology, 17(7), 451–459. 

https://doi.org/10.1038/nrm.2016.25 

Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., Stumpf, M. P. H., & Buck, M. 

(2010). Managing membrane stress: The phage shock protein (Psp) response, from molecular 

mechanisms to physiology. FEMS Microbiology Reviews, 34(5), 797–827. 

https://doi.org/10.1111/j.1574-6976.2010.00240.x 

Jothimani, P., Kalaichelvan, G., Bhaskaran, A., Selvaseelan, D. A., & Ramasamy, K. (2003). 

Anaerobic biodegradation of aromatic compounds. Indian Journal of Experimental Biology, 

41(9), 1046–1067. 

Ju, R., Liu, X., Zheng, F., Zhao, X., Lu, X., Zeng, Z., Lin, X., & Xu, G. (2019). Removal of false 

positive features to generate authentic peak table for high-resolution mass spectrometry-based 

metabolomics study. Analytica Chimica Acta, 1067, 79–87. 

https://doi.org/10.1016/j.aca.2019.04.011 

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., 

Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., 

Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). 

Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. 

https://doi.org/10.1038/s41586-021-03819-2 

Kalyanaraman, B., Felix, C. C., & Sealy, R. C. (1985). Semiquinone anion radicals of 

catechol(amine)s, catechol estrogens, and their metal ion complexes. Environmental Health 

Perspectives, 64, 185–198. https://doi.org/10.1289/ehp.8564185 



 

122 
 

Karlovsky, P. (Ed.). (2008). Secondary metabolites in soil ecology. Springer. 

Kaufmann, R. (1995). Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: A 

novel analytical tool in molecular biology and biotechnology. Journal of Biotechnology, 

41(2–3), 155–175. https://doi.org/10.1016/0168-1656(95)00009-f 

Kawabata, K., Sugiyama, Y., Sakano, T., & Ohigashi, H. (2013). Flavonols enhanced production of 

anti-inflammatory substance(s) by Bifidobacterium adolescentis: Prebiotic actions of 

galangin, quercetin, and fisetin. BioFactors (Oxford, England), 39(4), 422–429. 

https://doi.org/10.1002/biof.1081 

Kittana, H., Gomes-Neto, J. C., Heck, K., Juritsch, A. F., Sughroue, J., Xian, Y., Mantz, S., Segura 

Muñoz, R. R., Cody, L. A., Schmaltz, R. J., Anderson, C. L., Moxley, R. A., Hostetter, J. M., 

Fernando, S. C., Clarke, J., Kachman, S. D., Cressler, C. E., Benson, A. K., Walter, J., & 

Ramer-Tait, A. E. (2023). Evidence for a Causal Role for Escherichia coli Strains Identified 

as Adherent-Invasive (AIEC) in Intestinal Inflammation. mSphere, 8(2), e0047822. 

https://doi.org/10.1128/msphere.00478-22 

Knezevic, S., Ghafoor, A., Mehri, S., Barazi, A., Dziura, M., Trant, J. F., & Dieni, C. A. (2021). 

Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation 

and regulation of carbohydrate metabolism. PharmaNutrition, 17, 100273. 

https://doi.org/10.1016/j.phanu.2021.100273 

Kocaçalişkan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as 

allelochemicals. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 61(9–10), 639–

642. https://doi.org/10.1515/znc-2006-9-1004 

Kontou, E. E., Walter, A., Alka, O., Pfeuffer, J., Sachsenberg, T., Mohite, O. S., Nuhamunada, M., 

Kohlbacher, O., & Weber, T. (2023). UmetaFlow: An untargeted metabolomics workflow for 

high-throughput data processing and analysis. Journal of Cheminformatics, 15(1), 52. 

https://doi.org/10.1186/s13321-023-00724-w 

Koppel, N., Maini Rekdal, V., & Balskus, E. P. (2017). Chemical transformation of xenobiotics by the 

human gut microbiota. Science, 356(6344), eaag2770. 

https://doi.org/10.1126/science.aag2770 



 

123 
 

Krastanov, A. (2010). Metabolomics—The State of Art. Biotechnology & Biotechnological 

Equipment, 24(1), 1537–1543. https://doi.org/10.2478/V10133-010-0001-Y 

Krause, D. O., Little, A. C., Dowd, S. E., & Bernstein, C. N. (2011). Complete genome sequence of 

adherent invasive Escherichia coli UM146 isolated from Ileal Crohn’s disease biopsy tissue. 

Journal of Bacteriology, 193(2), 583. https://doi.org/10.1128/JB.01290-10 

Krishnamurty, H. G., Cheng, K. J., Jones, G. A., Simpson, F. J., & Watkin, J. E. (1970). Identification 

of products produced by the anaerobic degradation of rutin and related flavonoids by 

Butyrivibrio sp. C3. Canadian Journal of Microbiology, 16(8), 759–767. 

https://doi.org/10.1139/m70-129 

Krumholz, L. R., & Bryant, M. P. (1986). Eubacterium oxidoreducens sp. Nov. Requiring H2 or 

formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Archives of 

Microbiology, 144(1), 8–14. https://doi.org/10.1007/BF00454948 

Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor 

Protocols, 2015(11), pdb.top084970. https://doi.org/10.1101/pdb.top084970 

Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using 

Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22(2), 151–159. 

https://doi.org/10.1016/j.bej.2004.09.006 

Kunzelmann, M., Winter, M., Åberg, M., Hellenäs, K.-E., & Rosén, J. (2018). Non-targeted analysis 

of unexpected food contaminants using LC-HRMS. Analytical and Bioanalytical Chemistry, 

410(22), 5593–5602. https://doi.org/10.1007/s00216-018-1028-4 

Lee, H. C., Jenner, A. M., Low, C. S., & Lee, Y. K. (2006). Effect of tea phenolics and their aromatic 

fecal bacterial metabolites on intestinal microbiota. Research in Microbiology, 157(9), 876–

884. https://doi.org/10.1016/j.resmic.2006.07.004 

Lelli, V., Belardo, A., & Maria Timperio, A. (2021). From Targeted Quantification to Untargeted 

Metabolomics. In X. Zhan (Ed.), Metabolomics—Methodology and Applications in Medical 

Sciences and Life Sciences. IntechOpen. https://doi.org/10.5772/intechopen.96852 

Leong, S. C., & Sirich, T. L. (2016). Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. 

Toxins, 8(12), 358. https://doi.org/10.3390/toxins8120358 



 

124 
 

Letertre, M. P. M., Giraudeau, P., & de Tullio, P. (2021). Nuclear Magnetic Resonance Spectroscopy 

in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. 

Frontiers in Molecular Biosciences, 8, 698337. https://doi.org/10.3389/fmolb.2021.698337 

Li, H., Zhou, X., Huang, Y., Liao, B., Cheng, L., & Ren, B. (2021). Reactive Oxygen Species in 

Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. 

Frontiers in Microbiology, 11, 622534. https://doi.org/10.3389/fmicb.2020.622534 

Li, P., Su, R., Yin, R., Lai, D., Wang, M., Liu, Y., & Zhou, L. (2020). Detoxification of Mycotoxins 

through Biotransformation. Toxins, 12(2), 121. https://doi.org/10.3390/toxins12020121 

Li, S., Siddiqa, A., Thapa, M., Chi, Y., & Zheng, S. (2023). Trackable and scalable LC-MS 

metabolomics data processing using asari. Nature Communications, 14(1), 4113. 

https://doi.org/10.1038/s41467-023-39889-1 

Liang, D., Liu, Q., Zhou, K., Jia, W., Xie, G., & Chen, T. (2020). IP4M: An integrated platform for 

mass spectrometry-based metabolomics data mining. BMC Bioinformatics, 21(1), 444. 

https://doi.org/10.1186/s12859-020-03786-x 

Liu, L., Ma, X., Bilal, M., Wei, L., Tang, S., Luo, H., Zhao, Y., Wang, Z., & Duan, X. (2022). 

Toxicity and inhibition mechanism of gallic acid on physiology and fermentation 

performance of Escherichia coli. Bioresources and Bioprocessing, 9(1), 76. 

https://doi.org/10.1186/s40643-022-00564-w 

Lofrano, G., Rizzo, L., Grassi, M., & Belgiorno, V. (2009). Advanced oxidation of catechol: A 

comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination, 249(2), 

878–883. https://doi.org/10.1016/j.desal.2009.02.068 

M. Shuikan, A., N. Hozzein, W., M. Alzharani, M., N. Sandouka, M., A. Al Yousef, S., A. Alharbi, 

S., & Damra, E. (2021). Enhancement and Identification of Microbial Secondary Metabolites. 

In A. Najjari, A. Cherif, H. Sghaier, & H. Imene Ouzari (Eds.), Extremophilic Microbes and 

Metabolites—Diversity, Bioprospecting and Biotechnological Applications. IntechOpen. 

https://doi.org/10.5772/intechopen.93489 

Machas, M., Kurgan, G., Abed, O. A., Shapiro, A., Wang, X., & Nielsen, D. (2021). Characterizing 

Escherichia coli’s transcriptional response to different styrene exposure modes reveals novel 



 

125 
 

toxicity and tolerance insights. Journal of Industrial Microbiology & Biotechnology, 48(1–2), 

kuab019. https://doi.org/10.1093/jimb/kuab019 

Mamyrin, B. A. (2001). Time-of-flight mass spectrometry (concepts, achievements, and prospects). 

International Journal of Mass Spectrometry, 206(3), 251–266. https://doi.org/10.1016/S1387-

3806(00)00392-4 

Manier, S. K., Keller, A., Schäper, J., & Meyer, M. R. (2019). Untargeted metabolomics by high 

resolution mass spectrometry coupled to normal and reversed phase liquid chromatography as 

a tool to study the in vitro biotransformation of new psychoactive substances. Scientific 

Reports, 9(1), 2741. https://doi.org/10.1038/s41598-019-39235-w 

March, R. E. (2009). Quadrupole ion traps. Mass Spectrometry Reviews, 28(6), 961–989. 

https://doi.org/10.1002/mas.20250 

Marshall, S. A., Fisher, K., Ní Cheallaigh, A., White, M. D., Payne, K. A. P., Parker, D. A., Rigby, S. 

E. J., & Leys, D. (2017). Oxidative Maturation and Structural Characterization of Prenylated 

FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis. The 

Journal of Biological Chemistry, 292(11), 4623–4637. 

https://doi.org/10.1074/jbc.M116.762732 

Marshall, S. A., Payne, K. A. P., Fisher, K., Titchiner, G. R., Levy, C., Hay, S., & Leys, D. (2021). 

UbiD domain dynamics underpins aromatic decarboxylation. Nature Communications, 12(1), 

5065. https://doi.org/10.1038/s41467-021-25278-z 

Marshall, S. A., Payne, K. A. P., & Leys, D. (2017). The UbiX-UbiD system: The biosynthesis and 

use of prenylated flavin (prFMN). Archives of Biochemistry and Biophysics, 632, 209–221. 

https://doi.org/10.1016/j.abb.2017.07.014 

Mazhar, M., Zhu, Y., & Qin, L. (2023). The Interplay of Dietary Fibers and Intestinal Microbiota 

Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods, 12(5), 1023. 

https://doi.org/10.3390/foods12051023 

McDonald, T., Holland, N., Skibola, C., Duramad, P., & Smith, M. (2001). Hypothesis: Phenol and 

hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in 

leukemia. Leukemia, 15(1), 10–20. https://doi.org/10.1038/sj.leu.2401981 



 

126 
 

Meng, H., Li, Y., Faust, M., Konst, S., & Lee, B. P. (2015). Hydrogen peroxide generation and 

biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomaterialia, 17, 160–

169. https://doi.org/10.1016/j.actbio.2015.02.002 

Meng, J., Young, G., & Chen, J. (2021). The Rcs System in Enterobacteriaceae: Envelope Stress 

Responses and Virulence Regulation. Frontiers in Microbiology, 12, 627104. 

https://doi.org/10.3389/fmicb.2021.627104 

Meselhy, M. R., Nakamura, N., & Hattori, M. (1997). Biotransformation of (-)-epicatechin 3-O-

gallate by human intestinal bacteria. Chemical & Pharmaceutical Bulletin, 45(5), 888–893. 

https://doi.org/10.1248/cpb.45.888 

Meyer, H.-P., & Schmidhalter, D. R. (2014). The History and Economic Relevance of Industrial Scale 

Suspension Culture of Living Cells. In H.-P. Meyer & D. R. Schmidhalter (Eds.), Industrial 

Scale Suspension Culture of Living Cells (pp. 1–38). Wiley-VCH Verlag GmbH & Co. 

KGaA. https://doi.org/10.1002/9783527683321.ch00 

Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. 

(2017). Phenolic Compounds: Functional Properties, Impact of Processing and 

Bioavailability. In M. Soto-Hernndez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), 

Phenolic Compounds—Biological Activity. InTech. https://doi.org/10.5772/66368 

Misal, S. A., & Gawai, K. R. (2018). Azoreductase: A key player of xenobiotic metabolism. 

Bioresources and Bioprocessing, 5(1), 17. https://doi.org/10.1186/s40643-018-0206-8 

Mittal, R. D. (2015). Tandem Mass Spectroscopy in Diagnosis and Clinical Research. Indian Journal 

of Clinical Biochemistry, 30(2), 121–123. https://doi.org/10.1007/s12291-015-0498-9 

Mizuno, T., Kato, M., Jo, Y. L., & Mizushima, S. (1988). Interaction of OmpR, a positive regulator, 

with the osmoregulated ompC and ompF genes of Escherichia coli. Studies with wild-type 

and mutant OmpR proteins. The Journal of Biological Chemistry, 263(2), 1008–1012. 

Mlynárik, V. (2017). Introduction to nuclear magnetic resonance. Analytical Biochemistry, 529, 4–9. 

https://doi.org/10.1016/j.ab.2016.05.006 



 

127 
 

Mosele, J., Macià, A., & Motilva, M.-J. (2015). Metabolic and Microbial Modulation of the Large 

Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules, 

20(9), 17429–17468. https://doi.org/10.3390/molecules200917429 

Moussavi, G., Barikbin, B., & Mahmoudi, M. (2010). The removal of high concentrations of phenol 

from saline wastewater using aerobic granular SBR. Chemical Engineering Journal, 158(3), 

498–504. https://doi.org/10.1016/j.cej.2010.01.038 

Muthubharathi, B. C., Gowripriya, T., & Balamurugan, K. (2021). Metabolomics: Small molecules 

that matter more. Molecular Omics, 17(2), 210–229. https://doi.org/10.1039/d0mo00176g 

Myers, O. D., Sumner, S. J., Li, S., Barnes, S., & Du, X. (2017). Detailed Investigation and 

Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic 

Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data. 

Analytical Chemistry, 89(17), 8689–8695. https://doi.org/10.1021/acs.analchem.7b01069 

Nair, P. M., & Vining, L. C. (1964). ENZYMIC OXIDATION OF CATECHOL TO 

DIPHENYLENEDIOXIDE-2,3-QUINONE. Archives of Biochemistry and Biophysics, 106, 

422–427. https://doi.org/10.1016/0003-9861(64)90210-3 

Nalbantoglu, S. (2019). Metabolomics: Basic Principles and Strategies. In S. Nalbantoglu & H. Amri 

(Eds.), Molecular Medicine. IntechOpen. https://doi.org/10.5772/intechopen.88563 

Neilson, A. H., Allard, A., Hynning, P., & Remberger, M. (1991). Distribution, fate and persistence of 

organochlorine compounds formed during production of bleached pulp. Toxicological & 

Environmental Chemistry, 30(1–2), 3–41. https://doi.org/10.1080/02772249109357638 

Nerli, S., McShan, A. C., & Sgourakis, N. G. (2018). Chemical shift-based methods in NMR structure 

determination. Progress in Nuclear Magnetic Resonance Spectroscopy, 106–107, 1–25. 

https://doi.org/10.1016/j.pnmrs.2018.03.002 

Netto, L. E. S., Chae, H. Z., Kang, S.-W., Rhee, S. G., & Stadtman, E. R. (1996). Removal of 

Hydrogen Peroxide by Thiol-specific Antioxidant Enzyme (TSA) Is Involved with Its 

Antioxidant Properties. Journal of Biological Chemistry, 271(26), 15315–15321. 

https://doi.org/10.1074/jbc.271.26.15315 



 

128 
 

Nisar, A. (2022). Medicinal Plants and Phenolic Compounds. In F. A. Badria (Ed.), Biochemistry 

(Vol. 26). IntechOpen. https://doi.org/10.5772/intechopen.99799 

Njiru, C., Xue, W., De Rouck, S., Alba, J. M., Kant, M. R., Chruszcz, M., Vanholme, B., Dermauw, 

W., Wybouw, N., & Van Leeuwen, T. (2022). Intradiol ring cleavage dioxygenases from 

herbivorous spider mites as a new detoxification enzyme family in animals. BMC Biology, 

20(1), 131. https://doi.org/10.1186/s12915-022-01323-1 

Ntie-Kang, F., Telukunta, K. K., Fobofou, S. A. T., Chukwudi Osamor, V., Egieyeh, S. A., Valli, M., 

Djoumbou-Feunang, Y., Sorokina, M., Stork, C., Mathai, N., Zierep, P., Chávez-Hernández, 

A. L., Duran-Frigola, M., Babiaka, S. B., Tematio Fouedjou, R., Eni, D. B., Akame, S., 

Arreyetta-Bawak, A. B., Ebob, O. T., … Ludwig-Müller, J. (2021). Computational 

Applications in Secondary Metabolite Discovery (CAiSMD): An online workshop. Journal of 

Cheminformatics, 13(1), 64. https://doi.org/10.1186/s13321-021-00546-8 

Oldiges, M., Lütz, S., Pflug, S., Schroer, K., Stein, N., & Wiendahl, C. (2007). Metabolomics: Current 

state and evolving methodologies and tools. Applied Microbiology and Biotechnology, 76(3), 

495–511. https://doi.org/10.1007/s00253-007-1029-2 

Oliphant, K., & Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: 

Major fermentation by-products and their impact on host health. Microbiome, 7(1), 91. 

https://doi.org/10.1186/s40168-019-0704-8 

Öman, T., Tessem, M.-B., Bathen, T. F., Bertilsson, H., Angelsen, A., Hedenström, M., & 

Andreassen, T. (2014). Identification of metabolites from 2D 1H-13C HSQC NMR using 

peak correlation plots. BMC Bioinformatics, 15(1), 413. https://doi.org/10.1186/s12859-014-

0413-z 

Omokhefe Bruce, S. (2022). Secondary Metabolites from Natural Products. In R. Vijayakumar & S. 

Selvapuram Sudalaimuthu Raja (Eds.), Secondary Metabolites—Trends and Reviews. 

IntechOpen. https://doi.org/10.5772/intechopen.102222 

On the Evaluation, I. W. G. (1999). Other Data Relevant to an Evaluation of Carcinogenicity and its 

Mechanisms. In Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen 

Peroxide. International Agency for Research on Cancer. 



 

129 
 

Ornston, L. N., & Stanier, R. Y. (1966). The conversion of catechol and protocatechuate to beta-

ketoadipate by Pseudomonas putida. The Journal of Biological Chemistry, 241(16), 3776–

3786. 

Pagès, J.-M., & Amaral, L. (2009). Mechanisms of drug efflux and strategies to combat them: 

Challenging the efflux pump of Gram-negative bacteria. Biochimica et Biophysica Acta 

(BBA) - Proteins and Proteomics, 1794(5), 826–833. 

https://doi.org/10.1016/j.bbapap.2008.12.011 

Pages, J.-M., Amaral, L., & Fanning, S. (2011). An Original Deal for New Molecule: Reversal of 

Efflux Pump Activity, A Rational Strategy to Combat Gram-Negative Resistant Bacteria. 

Current Medicinal Chemistry, 18(19), 2969–2980. 

https://doi.org/10.2174/092986711796150469 

Pando, J. M., Karlinsey, J. E., Lara, J. C., Libby, S. J., & Fang, F. C. (2017). The Rcs-Regulated 

Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar 

Typhimurium. mBio, 8(3), e00808-17. https://doi.org/10.1128/mBio.00808-17 

Patridge, E. V., & Ferry, J. G. (2006). WrbA from Escherichia coli and Archaeoglobus fulgidus is an 

NAD(P)H:quinone oxidoreductase. Journal of Bacteriology, 188(10), 3498–3506. 

https://doi.org/10.1128/JB.188.10.3498-3506.2006 

Payer, S. E., Marshall, S. A., Bärland, N., Sheng, X., Reiter, T., Dordic, A., Steinkellner, G., 

Wuensch, C., Kaltwasser, S., Fisher, K., Rigby, S. E. J., Macheroux, P., Vonck, J., Gruber, 

K., Faber, K., Himo, F., Leys, D., Pavkov-Keller, T., & Glueck, S. M. (2017). Regioselective 

para -Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase. 

Angewandte Chemie International Edition, 56(44), 13893–13897. 

https://doi.org/10.1002/anie.201708091 

Pejčić, T., Zeković, M., Bumbaširević, U., Kalaba, M., Vovk, I., Bensa, M., Popović, L., & Tešić, Ž. 

(2023). The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. 

Antioxidants, 12(2), 368. https://doi.org/10.3390/antiox12020368 



 

130 
 

Pellack-Walker, P., Walker, J. K., Evans, H. H., & Blumer, J. L. (1985). Relationship between the 

oxidation potential of benzene metabolites and their inhibitory effect on DNA synthesis in 

L5178YS cells. Molecular Pharmacology, 28(6), 560–566. 

Petran, A., Popa, A., Hădade, N. D., & Liebscher, J. (2020). New Insights into Catechol Oxidation – 

Application of Ammonium Peroxydisulfate in the Presence of Arylhydrazines. 

ChemistrySelect, 5(30), 9523–9530. https://doi.org/10.1002/slct.202002370 

Philipp, B., Kemmler, D., Hellstern, J., Gorny, N., Caballero, A., & Schink, B. (2002). Anaerobic 

degradation of protocatechuate (3,4-dihydroxybenzoate) by Thauera aromatica strain AR-1. 

FEMS Microbiology Letters, 212(1), 139–143. https://doi.org/10.1111/j.1574-

6968.2002.tb11257.x 

Pirttilä, K., Balgoma, D., Rainer, J., Pettersson, C., Hedeland, M., & Brunius, C. (2022). 

Comprehensive Peak Characterization (CPC) in Untargeted LC–MS Analysis. Metabolites, 

12(2), 137. https://doi.org/10.3390/metabo12020137 

Plank, L. D., & Harvey, J. D. (1979). Generation Time Statistics of Escherichia coli B Measured by 

Synchronous Culture Techniques. Journal of General Microbiology, 115(1), 69–77. 

https://doi.org/10.1099/00221287-115-1-69 

Prodhan, M. A. I., Shi, B., Song, M., He, L., Yuan, F., Yin, X., Bohman, P., McClain, C. J., & Zhang, 

X. (2019). Integrating comprehensive two-dimensional gas chromatography mass 

spectrometry and parallel two-dimensional liquid chromatography mass spectrometry for 

untargeted metabolomics. The Analyst, 144(14), 4331–4341. 

https://doi.org/10.1039/C9AN00560A 

Puupponen-Pimiä, R., Nohynek, L., Hartmann-Schmidlin, S., Kähkönen, M., Heinonen, M., Määttä-

Riihinen, K., & Oksman-Caldentey, K.-M. (2005). Berry phenolics selectively inhibit the 

growth of intestinal pathogens. Journal of Applied Microbiology, 98(4), 991–1000. 

https://doi.org/10.1111/j.1365-2672.2005.02547.x 

Qiu, S., Cai, Y., Yao, H., Lin, C., Xie, Y., Tang, S., & Zhang, A. (2023). Small molecule metabolites: 

Discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy, 

8(1), 132. https://doi.org/10.1038/s41392-023-01399-3 



 

131 
 

Rafiei, A., & Sleno, L. (2015). Comparison of peak-picking workflows for untargeted liquid 

chromatography/high-resolution mass spectrometry metabolomics data analysis: Comparing 

peak picking of LC/HRMS data. Rapid Communications in Mass Spectrometry, 29(1), 119–

127. https://doi.org/10.1002/rcm.7094 

Rahman, M. (2015). Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and 

Bioassay. In Evidence-Based Validation of Herbal Medicine (pp. 495–513). Elsevier. 

https://doi.org/10.1016/B978-0-12-800874-4.00023-4 

Rahouti, M., Steiman, R., Seigle-Murandi, F., & Christov, L. P. (1999). Growth of 1044 strains and 

species of fungi on 7 phenolic lignin model compounds. Chemosphere, 38(11), 2549–2559. 

https://doi.org/10.1016/S0045-6535(98)00462-7 

Rana, M. S., Bradley, S. T., & Guzman, M. I. (2023). Conversion of Catechol to 4-Nitrocatechol in 

Aqueous Microdroplets Exposed to O 3 and NO 2. ACS ES&T Air, acsestair.3c00001. 

https://doi.org/10.1021/acsestair.3c00001 

Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., 

Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., & Wishart, D. S. (2015). Accurate, Fully-

Automated NMR Spectral Profiling for Metabolomics. PLOS ONE, 10(5), e0124219. 

https://doi.org/10.1371/journal.pone.0124219 

Razaviamri, S., Wang, K., Liu, B., & Lee, B. P. (2021). Catechol-Based Antimicrobial Polymers. 

Molecules, 26(3), 559. https://doi.org/10.3390/molecules26030559 

Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I., & Ferreira, D. (2007). Antioxidant, antimalarial 

and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from 

Punica granatum L. Planta Medica, 73(5), 461–467. https://doi.org/10.1055/s-2007-967167 

Řezanka, T., Spížek, J., Přikrylová, V., & Dembitsky, V. M. (2004). Four New Derivatives of 

Trihomononactic Acids fromStreptomyces globisporus. European Journal of Organic 

Chemistry, 2004(20), 4239–4244. https://doi.org/10.1002/ejoc.200400276 

Rigo, M., Alegre, R. M., Bezerra, J. R. M. V., Coelho, N., & Bastos, R. G. (2010). Catechol 

biodegradation kinetics using Candida parapsilopsis. Brazilian Archives of Biology and 

Technology, 53(2), 481–486. https://doi.org/10.1590/S1516-89132010000200029 



 

132 
 

Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B. (2012). Targeted Metabolomics. Current 

Protocols in Molecular Biology, 98(1). https://doi.org/10.1002/0471142727.mb3002s98 

Rockwood, A. L., Kushnir, M. M., & Clarke, N. J. (2018). Mass Spectrometry. In Principles and 

Applications of Clinical Mass Spectrometry (pp. 33–65). Elsevier. 

https://doi.org/10.1016/B978-0-12-816063-3.00002-5 

Rodriguez, C. E., Fukuto, J. M., Taguchi, K., Froines, J., & Cho, A. K. (2005). The interactions of 

9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a 

potential site for toxic actions. Chemico-Biological Interactions, 155(1–2), 97–110. 

https://doi.org/10.1016/j.cbi.2005.05.002 

Romero, P. R., Kobayashi, N., Wedell, J. R., Baskaran, K., Iwata, T., Yokochi, M., Maziuk, D., Yao, 

H., Fujiwara, T., Kurusu, G., Ulrich, E. L., Hoch, J. C., & Markley, J. L. (2020). 

BioMagResBank (BMRB) as a Resource for Structural Biology. In Z. Gáspári (Ed.), 

Structural Bioinformatics (Vol. 2112, pp. 187–218). Springer US. 

https://doi.org/10.1007/978-1-0716-0270-6_14 

Rout, M., Lipfert, M., Lee, B. L., Berjanskii, M., Assempour, N., Fresno, R. V., Cayuela, A. S., Dong, 

Y., Johnson, M., Shahin, H., Gautam, V., Sajed, T., Oler, E., Peters, H., Mandal, R., & 

Wishart, D. S. (2023). MagMet: A fully automated web server for targeted nuclear magnetic 

resonance metabolomics of plasma and serum. Magnetic Resonance in Chemistry: MRC. 

https://doi.org/10.1002/mrc.5371 

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut 

microbiota functions: Metabolism of nutrients and other food components. European Journal 

of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8 

Roze, L. V., Chanda, A., Wee, J., Awad, D., & Linz, J. E. (2011). Stress-related transcription factor 

AtfB integrates secondary metabolism with oxidative stress response in aspergilli. The 

Journal of Biological Chemistry, 286(40), 35137–35148. 

https://doi.org/10.1074/jbc.M111.253468 



 

133 
 

Ruan, X., Wang, Y., Zhou, L., Zheng, Q., Hao, H., & He, D. (2022). Evaluation of Untargeted 

Metabolomic Strategy for the Discovery of Biomarker of Breast Cancer. Frontiers in 

Pharmacology, 13, 894099. https://doi.org/10.3389/fphar.2022.894099 

Ruiz, N., & Silhavy, T. J. (2022). How Escherichia coli Became the Flagship Bacterium of Molecular 

Biology. Journal of Bacteriology, 204(9), e0023022. https://doi.org/10.1128/jb.00230-22 

Saghir, S. A., Ansari, R. A., & Munir, S. T. (2022). Fate of chemicals following exposure III: 

Metabolism (biotransformation). In Reference Module in Biomedical Sciences (p. 

B9780128243152000506). Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00050-6 

Saiz‐Poseu, J., Mancebo‐Aracil, J., Nador, F., Busqué, F., & Ruiz‐Molina, D. (2019). The Chemistry 

behind Catechol‐Based Adhesion. Angewandte Chemie International Edition, 58(3), 696–

714. https://doi.org/10.1002/anie.201801063 

Sajed, T., Marcu, A., Ramirez, M., Pon, A., Guo, A. C., Knox, C., Wilson, M., Grant, J. R., 

Djoumbou, Y., & Wishart, D. S. (2016). ECMDB 2.0: A richer resource for understanding the 

biochemistry of E. coli. Nucleic Acids Research, 44(D1), D495–D501. 

https://doi.org/10.1093/nar/gkv1060 

Sala-Trepat, J. M., & Evans, W. C. (1971). The meta cleavage of catechol by Azotobacter species. 4-

Oxalocrotonate pathway. European Journal of Biochemistry, 20(3), 400–413. 

https://doi.org/10.1111/j.1432-1033.1971.tb01406.x 

Schiffman, C., Petrick, L., Perttula, K., Yano, Y., Carlsson, H., Whitehead, T., Metayer, C., Hayes, J., 

Rappaport, S., & Dudoit, S. (2019). Filtering procedures for untargeted LC-MS metabolomics 

data. BMC Bioinformatics, 20(1), 334. https://doi.org/10.1186/s12859-019-2871-9 

Schneider, H., & Blaut, M. (2000). Anaerobic degradation of flavonoids by Eubacterium ramulus. 

Archives of Microbiology, 173(1), 71–75. https://doi.org/10.1007/s002030050010 

Schollée, J. E., Schymanski, E. L., Stravs, M. A., Gulde, R., Thomaidis, N. S., & Hollender, J. (2017). 

Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related 

Micropollutants and Transformation Products. Journal of the American Society for Mass 

Spectrometry, 28(12), 2692–2704. https://doi.org/10.1007/s13361-017-1797-6 



 

134 
 

Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted 

Metabolomics Strategies-Challenges and Emerging Directions. Journal of the American 

Society for Mass Spectrometry, 27(12), 1897–1905. https://doi.org/10.1007/s13361-016-1469-

y 

Schweigert, N., Zehnder, A. J., & Eggen, R. I. (2001). Chemical properties of catechols and their 

molecular modes of toxic action in cells, from microorganisms to mammals. Environmental 

Microbiology, 3(2), 81–91. https://doi.org/10.1046/j.1462-2920.2001.00176.x 

Scigelova, M., & Makarov, A. (2009). Advances in bioanalytical LC–MS using the OrbitrapTM mass 

analyzer. Bioanalysis, 1(4), 741–754. https://doi.org/10.4155/bio.09.65 

Seo, J.-S., Keum, Y.-S., & Li, Q. X. (2009). Bacterial degradation of aromatic compounds. 

International Journal of Environmental Research and Public Health, 6(1), 278–309. 

https://doi.org/10.3390/ijerph6010278 

Seyedsayamdost, M. R. (2019). Toward a global picture of bacterial secondary metabolism. Journal 

of Industrial Microbiology & Biotechnology, 46(3–4), 301–311. 

https://doi.org/10.1007/s10295-019-02136-y 

Sharma, A., Shivaprasad, D. P., Chauhan, K., & Taneja, N. K. (2019). Control of E. coli growth and 

survival in Indian soft cheese (paneer) using multiple hurdles: Phytochemicals, temperature 

and vacuum. LWT, 114, 108350. https://doi.org/10.1016/j.lwt.2019.108350 

Sheng, Q., Vickers, K., Zhao, S., Wang, J., Samuels, D. C., Koues, O., Shyr, Y., & Guo, Y. (2017). 

Multi-perspective quality control of Illumina RNA sequencing data analysis. Briefings in 

Functional Genomics, 16(4), 194–204. https://doi.org/10.1093/bfgp/elw035 

Shi, S., Yang, L., Yang, C., Li, S., Zhao, H., Ren, L., Wang, X., Lu, F., Li, Y., & Zhao, H. (2021). 

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in 

Pseudomonas putida ND6. Journal of Microbiology and Biotechnology, 31(2), 259–271. 

https://doi.org/10.4014/jmb.2009.09026 

Shulman, R. G., Brown, T. R., Ugurbil, K., Ogawa, S., Cohen, S. M., & Den Hollander, J. A. (1979). 

Cellular Applications of 31 P and 13 C Nuclear Magnetic Resonance. Science, 205(4402), 160–

166. https://doi.org/10.1126/science.36664 



 

135 
 

Siegbahn, P. E. M. (2004). The catalytic cycle of catechol oxidase. JBIC Journal of Biological 

Inorganic Chemistry, 9(5), 577–590. https://doi.org/10.1007/s00775-004-0551-2 

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2015). Spectrometric identification 

of organic compounds (Eighth edition). Wiley. 

Simó, C., & García-Cañas, V. (2020). Dietary bioactive ingredients to modulate the gut microbiota-

derived metabolite TMAO. New opportunities for functional food development. Food & 

Function, 11(8), 6745–6776. https://doi.org/10.1039/D0FO01237H 

Singh, D., Mishra, K., & Ramanthan, G. (2015). Bioremediation of Nitroaromatic Compounds. In M. 

Samer (Ed.), Wastewater Treatment Engineering. InTech. https://doi.org/10.5772/61253 

Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G., & Laub, M. T. (2005). Two-component 

signal transduction pathways regulating growth and cell cycle progression in a bacterium: A 

system-level analysis. PLoS Biology, 3(10), e334. 

https://doi.org/10.1371/journal.pbio.0030334 

Smith, R. W. (2013). Mass Spectrometry. In Encyclopedia of Forensic Sciences (pp. 603–608). 

Elsevier. https://doi.org/10.1016/B978-0-12-382165-2.00250-6 

Srey, S., Jahid, I. K., & Ha, S.-D. (2013). Biofilm formation in food industries: A food safety concern. 

Food Control, 31(2), 572–585. https://doi.org/10.1016/j.foodcont.2012.12.001 

Steinman, H. M. (1988). Bacterial Superoxide Dismutases. In M. G. Simic, K. A. Taylor, J. F. Ward, 

& C. Von Sonntag (Eds.), Oxygen Radicals in Biology and Medicine (pp. 641–646). Springer 

US. https://doi.org/10.1007/978-1-4684-5568-7_101 

Stevens, J. F., & Maier, C. S. (2016). The Chemistry of Gut Microbial Metabolism of Polyphenols. 

Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe, 15(3), 425–

444. https://doi.org/10.1007/s11101-016-9459-z 

Subramanyam, R., & Mishra, I. M. (2007). Biodegradation of catechol (2-hydroxy phenol) bearing 

wastewater in an UASB reactor. Chemosphere, 69(5), 816–824. 

https://doi.org/10.1016/j.chemosphere.2007.04.064 



 

136 
 

Subramanyam, R., & Mishra, I. M. (2008a). Co-degradation of resorcinol and catechol in an UASB 

reactor. Bioresource Technology, 99(10), 4147–4157. 

https://doi.org/10.1016/j.biortech.2007.08.060 

Subramanyam, R., & Mishra, I. M. (2008b). Treatment of catechol bearing wastewater in an upflow 

anaerobic sludge blanket (UASB) reactor: Sludge characteristics. Bioresource Technology, 

99(18), 8917–8925. https://doi.org/10.1016/j.biortech.2008.04.067 

Sun, Q., Xu, Q., Wang, M., Wang, Y., Zhang, D., & Lai, M. (2022). openNAU: An open-source 

platform for normalizing, analyzing, and visualizing untargeted metabolomics data [Preprint]. 

Bioinformatics. https://doi.org/10.1101/2022.08.31.506116 

Suvorova, I. A., & Gelfand, M. S. (2019). Comparative Genomic Analysis of the Regulation of 

Aromatic Metabolism in Betaproteobacteria. Frontiers in Microbiology, 10, 642. 

https://doi.org/10.3389/fmicb.2019.00642 

Svenson, A., & Hynning, P.-Å. (1997). Increased aquatic toxicity following photolytic conversion of 

an organochlorine pollutant. Chemosphere, 34(8), 1685–1692. https://doi.org/10.1016/S0045-

6535(97)00025-8 

Tabanelli, T., Cailotto, S., Strachan, J., Masters, A. F., Maschmeyer, T., Perosa, A., & Cavani, F. 

(2018). Process systems for the carbonate interchange reactions of DMC and alcohols: 

Efficient synthesis of catechol carbonate. Catalysis Science & Technology, 8(7), 1971–1980. 

https://doi.org/10.1039/C8CY00119G 

Tahmasebi, H., Dehbashi, S., Nasaj, M., & Arabestani, M. R. (2022). Molecular epidemiology and 

collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent 

Pseudomonas aeruginosa isolates from wound infections. Scientific Reports, 12(1), 7791. 

https://doi.org/10.1038/s41598-022-11984-1 

Takagaki, A., & Nanjo, F. (2013). Catabolism of (+)-Catechin and (−)-Epicatechin by Rat Intestinal 

Microbiota. Journal of Agricultural and Food Chemistry, 61(20), 4927–4935. 

https://doi.org/10.1021/jf304431v 



 

137 
 

Takagaki, A., & Nanjo, F. (2015). Bioconversion of (−)-Epicatechin, (+)-Epicatechin, (−)-Catechin, 

and (+)-Catechin by (−)-Epigallocatechin-Metabolizing Bacteria. Biological & 

Pharmaceutical Bulletin, 38(5), 789–794. https://doi.org/10.1248/bpb.b14-00813 

Thakur, C. S., Brown, M. E., Sama, J. N., Jackson, M. E., & Dayie, T. K. (2010). Growth of wildtype 

and mutant E. coli strains in minimal media for optimal production of nucleic acids for 

preparing labeled nucleotides. Applied Microbiology and Biotechnology, 88(3), 771–779. 

https://doi.org/10.1007/s00253-010-2813-y 

Thirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An Introductory 

Chapter: Secondary Metabolites. In R. Vijayakumar & S. S. S. Raja (Eds.), Secondary 

Metabolites—Sources and Applications. InTech. https://doi.org/10.5772/intechopen.79766 

Thomas, S. N. (2019). Mass spectrometry. In Contemporary Practice in Clinical Chemistry (pp. 171–

185). Elsevier. https://doi.org/10.1016/B978-0-12-815499-1.00010-7 

Tobacco smoking. (1986). IARC Monographs on the Evaluation of the Carcinogenic Risk of 

Chemicals to Humans, 38, 35–394. 

Tortorello, M. L. (1999). ESCHERICHIA COLI O157 | Escherichia Coli O157:H7. In Encyclopedia 

of Food Microbiology (pp. 646–652). Elsevier. https://doi.org/10.1006/rwfm.1999.0540 

Tsao, R. (2010). Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2(12), 1231–1246. 

https://doi.org/10.3390/nu2121231 

Turi, K. N., Romick-Rosendale, L., Ryckman, K. K., & Hartert, T. V. (2018). A review of 

metabolomics approaches and their application in identifying causal pathways of childhood 

asthma. Journal of Allergy and Clinical Immunology, 141(4), 1191–1201. 

https://doi.org/10.1016/j.jaci.2017.04.021 

Tzounis, X., Vulevic, J., Kuhnle, G. G. C., George, T., Leonczak, J., Gibson, G. R., Kwik-Uribe, C., 

& Spencer, J. P. E. (2008). Flavanol monomer-induced changes to the human faecal 

microflora. The British Journal of Nutrition, 99(4), 782–792. 

https://doi.org/10.1017/S0007114507853384 



 

138 
 

Uppal, K., Walker, D. I., Liu, K., Li, S., Go, Y.-M., & Jones, D. P. (2016). Computational 

Metabolomics: A Framework for the Million Metabolome. Chemical Research in Toxicology, 

29(12), 1956–1975. https://doi.org/10.1021/acs.chemrestox.6b00179 

Ussher, J. R., Lopaschuk, G. D., & Arduini, A. (2013). Gut microbiota metabolism of l-carnitine and 

cardiovascular risk. Atherosclerosis, 231(2), 456–461. 

https://doi.org/10.1016/j.atherosclerosis.2013.10.013 

Vaidyanathan, S. (2005). Profiling microbial metabolomes: What do we stand to gain? Metabolomics, 

1(1), 17–28. https://doi.org/10.1007/s11306-005-1104-6 

Valkova, N., Lépine, F., Labrie, L., Dupont, M., & Beaudet, R. (2003). Purification and 

characterization of PrbA, a new esterase from Enterobacter cloacae hydrolyzing the esters of 

4-hydroxybenzoic acid (parabens). The Journal of Biological Chemistry, 278(15), 12779–

12785. https://doi.org/10.1074/jbc.M213281200 

Van Den Heuvel, R. L., Leppens, H., & Schoeters, G. E. (1999). Lead and catechol hematotoxicity in 

vitro using human and murine hematopoietic progenitor cells. Cell Biology and Toxicology, 

15(2), 101–110. https://doi.org/10.1023/a:1007573414306 

van der Kloet, F. M., Buurmans, J., Jonker, M. J., Smilde, A. K., & Westerhuis, J. A. (2020). 

Increased comparability between RNA-Seq and microarray data by utilization of gene sets. 

PLOS Computational Biology, 16(9), e1008295. https://doi.org/10.1371/journal.pcbi.1008295 

van Santen, J. A., Jacob, G., Singh, A. L., Aniebok, V., Balunas, M. J., Bunsko, D., Neto, F. C., 

Castaño-Espriu, L., Chang, C., Clark, T. N., Cleary Little, J. L., Delgadillo, D. A., Dorrestein, 

P. C., Duncan, K. R., Egan, J. M., Galey, M. M., Haeckl, F. P. J., Hua, A., Hughes, A. H., … 

Linington, R. G. (2019). The Natural Products Atlas: An Open Access Knowledge Base for 

Microbial Natural Products Discovery. ACS Central Science, 5(11), 1824–1833. 

https://doi.org/10.1021/acscentsci.9b00806 

Vaquero, M. J. R., Alberto, M. R., & De Nadra, M. C. M. (2007). Antibacterial effect of phenolic 

compounds from different wines. Food Control, 18(2), 93–101. 

https://doi.org/10.1016/j.foodcont.2005.08.010 



 

139 
 

Vijayaraj, M., & Gopinath, C. (2006). Selective production of methoxyphenols from 

dihydroxybenzenes on alkali metal ion-loaded MgO. Journal of Catalysis, 243(2), 376–388. 

https://doi.org/10.1016/j.jcat.2006.08.009 

Vinayavekhin, N., & Saghatelian, A. (2010). Untargeted Metabolomics. In F. M. Ausubel, R. Brent, 

R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, & K. Struhl (Eds.), Current 

Protocols in Molecular Biology (p. mb3001s90). John Wiley & Sons, Inc. 

https://doi.org/10.1002/0471142727.mb3001s90 

Vining, L. C. (2007). Roles of Secondary Metabolites from Microbes. In D. J. Chadwick & J. Whelan 

(Eds.), Novartis Foundation Symposia (pp. 184–198). John Wiley & Sons, Ltd. 

https://doi.org/10.1002/9780470514344.ch11 

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. 

Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484 

Weber, H. E., Gottardi, M., Brückner, C., Oreb, M., Boles, E., & Tripp, J. (2017). Requirement of a 

Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial 

Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. 

Applied and Environmental Microbiology, 83(10), e03472-16. 

https://doi.org/10.1128/AEM.03472-16 

Wen, B., Mei, Z., Zeng, C., & Liu, S. (2017). metaX: A flexible and comprehensive software for 

processing metabolomics data. BMC Bioinformatics, 18(1), 183. 

https://doi.org/10.1186/s12859-017-1579-y 

Weng, C., Peng, X., & Han, Y. (2021). Depolymerization and conversion of lignin to value-added 

bioproducts by microbial and enzymatic catalysis. Biotechnology for Biofuels, 14(1), 84. 

https://doi.org/10.1186/s13068-021-01934-w 

Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision 

medicine. Nature Reviews Drug Discovery, 15(7), 473–484. 

https://doi.org/10.1038/nrd.2016.32 



 

140 
 

Wishart, D. S. (2019). Metabolomics for Investigating Physiological and Pathophysiological 

Processes. Physiological Reviews, 99(4), 1819–1875. 

https://doi.org/10.1152/physrev.00035.2018 

Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., 

Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-

Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: 

The Human Metabolome Database for 2022. Nucleic Acids Research, 50(D1), D622–D631. 

https://doi.org/10.1093/nar/gkab1062 

Wishart, D. S., Oler, E., Peters, H., Guo, A., Girod, S., Han, S., Saha, S., Lui, V. W., LeVatte, M., 

Gautam, V., Kaddurah-Daouk, R., & Karu, N. (2023). MiMeDB: The Human Microbial 

Metabolome Database. Nucleic Acids Research, 51(D1), D611–D620. 

https://doi.org/10.1093/nar/gkac868 

Wishart, D. S., Sayeeda, Z., Budinski, Z., Guo, A., Lee, B. L., Berjanskii, M., Rout, M., Peters, H., 

Dizon, R., Mah, R., Torres-Calzada, C., Hiebert-Giesbrecht, M., Varshavi, D., Varshavi, D., 

Oler, E., Allen, D., Cao, X., Gautam, V., Maras, A., … Cort, J. R. (2022). NP-MRD: The 

Natural Products Magnetic Resonance Database. Nucleic Acids Research, 50(D1), D665–

D677. https://doi.org/10.1093/nar/gkab1052 

Wu, Q., Yan, D., Chen, Y., Wang, T., Xiong, F., Wei, W., Lu, Y., Sun, W.-Y., Li, J. J., & Zhao, J. 

(2017). A redox-neutral catechol synthesis. Nature Communications, 8, 14227. 

https://doi.org/10.1038/ncomms14227 

Wu, X., Xu, J., Yang, X., Wang, D., & Xu, X. (2023). Integrating Transcriptomics and Metabolomics 

to Explore the Novel Pathway of Fusobacterium nucleatum Invading Colon Cancer Cells. 

Pathogens, 12(2), 201. https://doi.org/10.3390/pathogens12020201 

Yao, J., Dyson, H. J., & Wright, P. E. (1997). Chemical shift dispersion and secondary structure 

prediction in unfolded and partly folded proteins. FEBS Letters, 419(2–3), 285–289. 

https://doi.org/10.1016/S0014-5793(97)01474-9 

Yesiltepe, Y., Nuñez, J. R., Colby, S. M., Thomas, D. G., Borkum, M. I., Reardon, P. N., Washton, N. 

M., Metz, T. O., Teeguarden, J. G., Govind, N., & Renslow, R. S. (2018). An automated 



 

141 
 

framework for NMR chemical shift calculations of small organic molecules. Journal of 

Cheminformatics, 10(1), 52. https://doi.org/10.1186/s13321-018-0305-8 

Yin, W.-B., Reinke, A. W., Szilágyi, M., Emri, T., Chiang, Y.-M., Keating, A. E., Pócsi, I., Wang, C. 

C. C., & Keller, N. P. (2013). bZIP transcription factors affecting secondary metabolism, 

sexual development and stress responses in Aspergillus nidulans. Microbiology (Reading, 

England), 159(Pt 1), 77–88. https://doi.org/10.1099/mic.0.063370-0 

Yin, Y., Wang, R., Cai, Y., Wang, Z., & Zhu, Z.-J. (2019). DecoMetDIA: Deconvolution of 

Multiplexed MS/MS Spectra for Metabolite Identification in SWATH-MS-Based Untargeted 

Metabolomics. Analytical Chemistry, 91(18), 11897–11904. 

https://doi.org/10.1021/acs.analchem.9b02655 

Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in 

metabolomics analysis. The Analyst, 137(2), 293–300. https://doi.org/10.1039/c1an15605e 

Zhang, F., Robinette, S. L., Bruschweiler-Li, L., & Brüschweiler, R. (2009). Web server suite for 

complex mixture analysis by covariance NMR: Web server suite for complex mixture 

analysis by covariance NMR. Magnetic Resonance in Chemistry, 47(S1), S118–S122. 

https://doi.org/10.1002/mrc.2486 

Zhang, Z., Zhang, F., Deng, Y., Sun, L., Mao, M., Chen, R., Qiang, Q., Zhou, J., Long, T., Zhao, X., 

Liu, X., Wang, S., Yang, J., & Luo, J. (2022). Integrated Metabolomics and Transcriptomics 

Analyses Reveal the Metabolic Differences and Molecular Basis of Nutritional Quality in 

Landraces and Cultivated Rice. Metabolites, 12(5), 384. 

https://doi.org/10.3390/metabo12050384 

Zhao, H., Zhang, R., Yan, X., & Fan, K. (2021). Superoxide dismutase nanozymes: An emerging star 

for anti-oxidation. Journal of Materials Chemistry B, 9(35), 6939–6957. 

https://doi.org/10.1039/D1TB00720C 

Zhao, Q., Shen, H., Liu, J., Chiu, C.-Y., Su, K.-J., Tian, Q., Kakhniashvili, D., Qiu, C., Zhao, L.-J., 

Luo, Z., & Deng, H.-W. (2022). Pathway-based metabolomics study of sarcopenia-related 

traits in two US cohorts. Aging, 14(5), 2101–2112. https://doi.org/10.18632/aging.203926 



 

142 
 

Zheng, X., Zhou, C., Liu, Z., Long, M., Luo, Y.-H., Chen, T., Ontiveros-Valencia, A., & Rittmann, B. 

E. (2019). Anaerobic biodegradation of catechol by sediment microorganisms: Interactive 

roles of N reduction and S cycling. Journal of Cleaner Production, 230, 80–89. 

https://doi.org/10.1016/j.jclepro.2019.05.058 

Zhong, M., & Zhou, Q. (2002). [Molecular-ecological technology of microorganisms and its 

application to research on environmental pollution]. Ying Yong Sheng Tai Xue Bao = The 

Journal of Applied Ecology, 13(2), 247–251. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

143 
 

APPENDIX: Supplementary tables and figures 

Appendix A: Chapter 1 

S Table 1. List of studies that reported microbial bioactive compounds synthesis in response 

to secondary metabolite containing media. 

Substrate Product condition Bacteria Profiling 

technology 

References 

(-)-catechin (C) 1-(3,4-dihydroxyphenyl)-

3-(2,4,6-

trihydroxyphenyl)propan-

2-ol 

a Adlercreutzia 

equolifaciens 

MT4s-5 

1, 2, 3  Takagaki et 

al. 2015 

(-)-catechin (C) 4-hydroxy-5-(3,4-

dihydroxyphenyl) valeric 

acid (3R) 

and (4R)-5-(3,4-

dihydroxyphenyl)-γ-

valerolactone 

a Flavonifractor 

plautii MT42 

1, 2, 3  Takagaki et 

al. 2015 

(-)-epicatechin (EC) 4-hydroxy-5-(3-

hydroxyphenyl)valeric 

acid; 4-oxo-5-(3, 4-

dihydorxyphenyl)valeric 

acid; 4-oxo-5-(3-

hydorxyphenyl)valeric 

acid; 1-(4-hydroxyphenyl)-

3-(2, 4, 6-

trihydroxyphenyl)propan-

2-ol                                                                                                                                       

a Microbial 

Consortium 

4, 5 , 6, 7 Takagaki et 

al. 2013 

(-)-epicatechin (EC) (2S)-1-(3,4-

dihydroxyphenyl)-3-(2,4,6-

trihydroxyphenyl)propan-

2-ol (1S) 

a Adlercreutzia 

equolifaciens 

MT4s-5 

1, 2, 3  Takagaki et 

al. 2015 

(-)-epicatechin (EC) (2S)- 

1-(3-hydroxyphenyl)-3-

(2,4,6-trihydroxyphenyl) 

propan-2-ol 

(2S) 

a Eggerthella lenta 

JCM 9979 

1, 2, 3  Takagaki et 

al. 2015 

(-)-epicatechin (EC) (4R)-4-hydroxy-5-(3,4-

dihydroxyphenyl) valeric 

acid (3R) 

and (4R)-5-(3,4-

dihydroxyphenyl)-γ-

valerolactone (4R) 

a Flavonifractor 

plautii MT42 

1, 2, 3  Takagaki et 

al. 2015 

(-)-epicatechin gallate pyrogallol; 5-(3,4-

dihydroxyphenyl)-ç- 

valerolactone; 4-hydroxy-

5-(3,4-

dihydroxyphenyl)valeric 

acid; 3-(3-

hydroxyphenyl)propionic 

acid; and 

m-coumaric acid 

a 
 

2, 4, 5 , 6, 7 Kohri et al. 

2003 

(+)-catechin (+C) 4-hydroxy-5-(3-

hydroxyphenyl)valeric acid   

a Microbial 

Consortium 

4, 5 , 6, 7 Takagaki et 

al. 2013 

(+)-catechin (C) (2R)-1-(3,4-

dihydroxyphenyl)-3-(2,4,6-

trihydroxyphenyl)propan-

2-ol (1R) 

a Adlercreutzia 

equolifaciens 

MT4s-5 

1, 2, 3  Takagaki et 

al. 2015 

(-)-epicatechin 3-hydroxyphenylpropionic 

acid (3-OH-PPr) and 3-

phenylpropionic acid (3- 

PPr); 3,4-

dihydroxyphenylvaleric 

a Microbial 

Consortium 

8, 9 Aura et al. 

2008 
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acid; 3-

hydroxyphenylvaleric acid 

(+)-catechin (C) 3-hydroxyphenylpropionic 

acid (3-OH-PPr); 3-

hydroxyhippuric 

acid 

a human faecal 

microbiota 

10, 18, 4 Griffiths et 

al. 1964, 

Das Y et al. 

1971, Das P 

et al. 1971, 

Meselhy etl 

a. 1997, 

Meng et al. 

2002, 

Mulder et 

al. 2005 

(+)-catechin (C) 3-hydroxyphenylpropionic 

acid (3-OH-PPr) ; 3-

phenylpropionic acid (3- 

PPr); 3,4-

dihydroxyphenylvaleric 

acid 

a Microbial 

Consortium 

8, 9 Aura et al. 

2008 

(+)-catechin (C) (2R)-1-(3-hydroxyphenyl)-

3-(2,4,6-

trihydroxyphenyl)- 

propan-2-ol (2R) 

a Eggerthella lenta 

JCM 9979 

1, 2, 3  Takagaki et 

al. 2015 

(+)-catechin (C) 1- (3-hydroxyphenyl)-3-

(2,4,6-trihydroxyphenyl)-

propan-2-ol; 1-(3,4-

Dihydroxyphenyl)-3-

(2,4,6-trihydroxyphenyl)-

propan-2 

a Microbial 

Consortium 

11, 12 , 4 Groenewou

d et al. 1984 

(+)-catechin (C) (4S)-4-hydroxy-5-(3,4-

dihydroxyphenyl) valeric 

acid; (3S) and (4S)-5-(3,4-

dihydroxyphenyl)-γ-

valerolactone (4S) 

a Flavonifractor 

plautii MT42 

1, 2, 3  Takagaki et 

al. 2015 

(+)-epicatechin (EC) (4S)-4-hydroxy-5-(3,4-

dihydroxyphenyl) valeric 

acid; (3S) and (4S)-5-(3,4-

dihydroxyphenyl)-γ-

valerolactone (4S) 

a Flavonifractor 

plautii MT42 

1, 2, 3  Takagaki et 

al. 2015 

anthocyanins 
 

a Microbial 

Consortium 

2, 4 Flores et al. 

2015 

Crotonate  Acetate and butyrate a Eubacterium 

oxidoreducens 

13, 14, 1 Krumholz et 

al. 1986 

Eriodictyol 3-(3,4-

dihydroxyphenyl)propionic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

kaempferol 4-hydroxyphenylacetic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

Luteolin 3-(3,4-

dihydroxyphenyl)propionic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

luteolin-7-glucoside 3-(3,4-

dihydroxyphenyl)propionic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

Naringenin 3-(4-hydroxyphenyl) 

propionic acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

Phloretin 3-(4-hydroxyphenyl) 

propionic acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

Quercetin 3,4-dihydroxyphenylacetic 

acid, butyrate and acetate 

a Eubacterium 

oxidoreducens 

13, 14, 1 Krumholz et 

al. 1986 

Quercetin derivatives 3-hydroxyphenylacetic 

acid 

a Microbial 

Consortium 

4 Aura et al. 

2002 

Quercetin 3,4-Dihydroxyphenylacetic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000, 

Schneider et 

al. 1999, 
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Aura et al. 

2002 

Quercetin Alphitonin a Eubacterium 

ramulus 

4, 5, 6 Blaut et al. 

2003 

Quercetin-3-glucoside 3,4-Dihydroxyphenylacetic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

Rutin 3,4-dihydroxyphenylacetic 

acid, 3-

hydroxyphenylacetic acid 

a Microbial 

Consortium 

4 Aura et al. 

2002 

Taxifolin 

(Dihydroquercetin) 

3,4-dihydroxyphenylacetic 

acid 

a Eubacterium 

ramulus 

2, 3 Schneider et 

al. 2000 

3,4,5-

Trihydroxyphenylacetic 

acid 

3,5-dihydroxyphenylacetic 

acid, 3- 

hydroxyphenylacetic acid 

a 
 

10 , 13 Griffiths et 

al. 1972 

3,5-

Dihydroxyphenylpropioni

c acid 

3-hydroxyphenylpropionic 

acid 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

5,7 - Dihydroxy - 3',4',5'- 

trimethoxyflavone 

3,5-

dihydroxyphenylpropionic 

acid 

a 
 

10 , 13 Griffiths et 

al. 1972 

Tricin (5,7,4'-trihydroxy-

3',5'-dimethoxyflavone) 

3,5-

dihydroxyphenylpropionic 

acid 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

Tricetin (5,7,3',4',5'-

pentahydroxyflavone). 

3,5-

dihydroxyphenylpropionic 

acid 

and 3-

hydroxyphenylpropionic 

acid 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

Delphinidin (3,5,7,3',4', 

5'-hexahydroxyflavylium 

chloride) 

Unknown metabolite Da 

and Db 

a 
 

10 , 13 Griffiths et 

al. 1972 

Glycoside myricitrin 3,5-dihydroxyphenylacetic 

acid (1.8mg), 3-

hydroxyphenylacetic 

acid (trace), the aglycone 

myricetin (0.66mg) and 

3,4,5-

trihydroxyphenylacetic 

acid (0.56mg) 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

Myricitrin (myricetin 3-

rhamnoside).  

3,5-dihydroxyphenylacetic 

acid (1.8mg), 3-

hydroxyphenylacetic 

acid (trace), the aglycone 

myricetin (0.66mg) and 

3,4,5-

trihydroxyphenylacetic 

acid (0.56mg) 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

Myricetin  3,5-dihydroxyphenylacetic 

acid 

(1.58mg), 3-

hydroxyphenylacetic acid 

(trace), 3,4,5- 

trihydroxyphenylacetic 

acid (0.62mg) 

a Microbial 

Consortium 

10 , 13 Griffiths et 

al. 1972 

(-)-epicatechin 3-o-gallate Gallic acid; pyrogallol; 1-

(3’,4’-dihydroxy-phenyl)-

3-(2”,4”,6”-

trihydroxyphenyl)propan-

2-ol; 

1-(3’-hydroxyphenyl)-3-

(2”,4”,6”-

trihydroxyphenyl)propn-2-

ol; 

5-(3’,4’-

dihydroxyphenyl)Ɣ-

a Microbial 

Consortium 

5 , 6 Meselhy et 

al. 1997 
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valerolactone; 

5-(3’-hydroxyphenyl) Ɣ-

valerolactone; 

5-(3’,4’-

dihydroxyphenyl)valeric 

acid; 

5-(3’-

dihydroxyphenyl)valeric 

acid; 

3’,4’-

dihydroxyphenyl)propionic 

acid; 

3’-hydroxyphenyl 

propionic acid; 

5-(3’-

methoxyphenyl)valeric 

acid; 

2”,3”-dihydroxyphenoxyl 

(3’,4’-

dihydroxyphenyl)propionat

e 

chlorogenic acid 3-(3-hydroxyphenyl)- 

propionic acid 

a Microbial 

Consortium 

2, 8, 3 Rechner et 

al. 2004 

Naringin 3-(4-hydroxyphenyl)-

propionic acid; 3-

phenylpropionic acid 

a Microbial 

Consortium 

2, 8, 3 Rechner et 

al. 2004 

Rutin 3- 

hydroxyphenylacetic acid 

and 3-(3-hydroxyphenyl)-

propionic acid 

a Microbial 

Consortium 

2, 8, 3 Rechner et 

al. 2004 

cyanidin-3-glucoside Cy-1, cyanidin aglycone; 

Cy-2 protocatechuic acid; 

Cy-3, a minor unidentified 

metabolite; Cy-4, the other 

unidentified 

conjugate 

a Microbial 

Consortium 

15 , 4 Aura et al. 

2005 

malvidin-3-glucoside syringic and vanillic acid a Microbial 

Consortium 

16, 17, 8 Fleschhut et 

al. 2006 

peonidin-3-glucoside syringic and vanillic acid a Microbial 

Consortium 

16, 17, 8 Fleschhut et 

al. 2006 

cyanidin-3-glucoside protocatechuic 

acid 

a Microbial 

Consortium 

16, 17, 8 Fleschhut et 

al. 2006 

malvin malvidin-3-glucoside; 

syringic acid 

a Microbial 

Consortium 

16, 17, 8 Fleschhut et 

al. 2006 

pelargonidin- 

3-sophorosid-5-glucoside 

(Pg-glu/soph) 

4-hydroxybenzoic acid a Microbial 

Consortium 

16, 17, 8 Fleschhut et 

al. 2006 

Chlorogenic acid Ferulic acid; m-Coumaric 

acid; 3-

Hydroxyphenylpropionic 

acid 

a N/A 3 Gonthier et 

al. 2003 

Caffeic acid Ferulic acid; Isoferulic 

acid; 3-

Hydroxyphenylpropionic 

acid 

a N/A 3 Gonthier et 

al. 2003 

Abbreviations: 1, UV; 2, HPLC; 3, LC-MS/MS; 4, LC-MS; 5, 1H NMR; 6, 13C NMR; 7, Optical 

Rotation; 8, GC-MS; 9, GC×GC–TOF; 10, Paper Chromatography; 11, Column Chromatography; 12, 

Preparative TLC; 13, TLC; 14, Gas Chromatography; 15, HPLC-DAS; 16, HPLC-DAD; 17, 

HPLC/MS; 18, NMR; a, anaerobic. 
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Appendix B: Chapter 2 

S Table 2.1. List of yield and quality of each RNA samples. 

Sample 

type 

Condition Replicate 

Number 

Concentration Volume 

(uL) 

260/280 

ratio 

Total 

RNA 

(ng) 

RIN 

Control Anaerobic 1 80 ng/ul 31 1.97 2480 9.5 

Control Anaerobic 2 57 ng/ul 31 1.94 1767 9.7 

Control Anaerobic 3 72 ng/ul 31 1.99 2232 9.7 

Treated Anaerobic 1 32 ng/ul 31 1.98 992 9.5 

Treated Anaerobic 2 29 ng/ul 31 2 899 9.5 

Treated Anaerobic 3 52 ng/ul 31 1.99 1612 9.7 

Control Aerobic 1 180 ng/ul 31 1.98 5580 8.3 

Control Aerobic 2 159 ng/ul 31 1.99 4929 8.7 

Control Aerobic 3 255 ng/ul 31 1.98 7905 9.2 

Treated Aerobic 1 382 ng/ul 31 2.01 11842 9.1 

Treated Aerobic 2 307 ng/ul 31 2 9517 9.2 

Treated Aerobic 3 264 ng/ul 31 2 8184 9.1 

    

S Table 2.2. List of number of reads, quality and overall mapping alignment rate. 

Sample 

type 

Condition Replicate 

number 

Quality 

score, Q 

Number 

of reads 

Overall 

alignment 

rate, % 

Control Anaerobic 1 36 37403496 98 

Control Anaerobic 2 36 48287642 97.78 

Control Anaerobic 3 36 36623237 97.83 

Treated Anaerobic 1 36 35771972 98.83 

Treated Anaerobic 2 36 38005872 98.11 

Treated Anaerobic 3 36 46373360 98.1 

Control Aerobic 1 36 37283463 97.9 

Control Aerobic 2 36 36548187 98 

Control Aerobic 3 36 37472353 97.14 

Treated Aerobic 1 36 37512049 98.55 

Treated Aerobic 2 36 42123446 98.09 

Treated Aerobic 3 36 46686029 98.08 
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S Figure 2.1. Effect of catechol exposure on glycolysis-gluconeogenesis pathway under 

aerobic condition. Differentially expressed genes were determined using Deseq2 analysis 

comparing control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 
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 S Figure 2.2. Effect of catechol exposure on glycolysis-gluconeogenesis pathway 

under anaerobic condition. Differentially expressed genes were determined using Deseq2 

analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 
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S Figure 2.3. Effect of catechol exposure on pentose phosphate pathway under aerobic 

(A) and anaerobic (B) conditions. Differentially expressed genes were determined using 
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Deseq2 analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 

 S Figure 2.4. Effect of catechol exposure on biotin metabolism under aerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 
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S Figure 2.5. Effect of catechol exposure on biotin metabolism under anaerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 
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  S Figure 2.6. Effect of catechol exposure on glutathione metabolism under aerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 

 

 

 

 

 

 

ybdK

gshB

gnd

speE

speE

zwf

Upregulated

Downregulated

Legend



 

154 
 

S Figure 2.7. Effect of catechol exposure on glutathione metabolism under anaerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 
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S Figure 2.8. Effect of catechol exposure on amino sugar and nucleotide sugar 

metabolism under aerobic condition. Differentially expressed genes were determined using 

Deseq2 analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 

murB

murP

crr

nagA

nank

nanA

nagB

arnA arnB arnA arnD
ptsG

ptsG

malX

anmK

murA

pgi

glk

galE

galk

fcl

glk

Upregulated

Downregulated

Legend



 

156 
 

 S Figure 2.9. Effect of catechol exposure on amino sugar and nucleotide sugar 

metabolism under anaerobic condition. Differentially expressed genes were determined using 

Deseq2 analysis comparing control and treated groups. Green and red color indicates 

upregulated and downregulated genes respectively. 
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S Figure 2.10. Effect of catechol exposure on methane metabolism under aerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green and red color indicates upregulated and downregulated 

genes respectively. 
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 S Figure 2.11. Effect of catechol exposure on methane metabolism under anaerobic 

condition. Differentially expressed genes were determined using Deseq2 analysis comparing 

control and treated groups. Green, orange, and red color indicates upregulated, 

downregulated, and expressed genes respectively. 
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S Figure 2.12. Effect of catechol exposure on one carbon metabolism under aerobic 

(A) and anaerobic (B) conditions. Differentially expressed genes were determined using 

Deseq2 analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 
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S Figure 2.13. Effect of catechol exposure on cysteine and methionine metabolism 

under aerobic condition. Differentially expressed genes were determined using Deseq2 

analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 
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S Figure 2.14. Effect of catechol exposure on cysteine and methionine metabolism 

under anaerobic condition. Differentially expressed genes were determined using Deseq2 

analysis comparing control and treated groups. Green, orange, and red color indicates 

upregulated, downregulated, and expressed genes respectively. 
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S Figure 2.15. Comparison of fragmentation pattern of 4-hydroxybenzoate, 4-

nitrocatechol, and protocatechuic acid, and 1,2,4-benzenetriol with standards. (A), (B), (C) 

and (D) represents fragmentation pattern of 4-hydroxybenzoate, 4-nitrocatechol, 

protocatechuic acid, and 1,2,4-benzenetriol. All these metabolites were identified in LC-

MS/MS in negative mode. 
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S Figure 2.16. Comparison of fragmentation pattern of (E) 3-methylbenzoic acid, (F) 

vanillic acid, (G) phenol, and (H) hydroquinone with standards. 3-Methylbenzoic acid and 

vanillic acid were identified in negative mode, and phenol and hydroquinone were identified 

using LC-MS/MS in positive mode. 
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Rt similarity score:                            1.0000 

Dot product similarity score:             0.9142 

Accurate mass similarity score:        0.9997 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.9798 

Accurate mass similarity score:        0.9998 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.5568 

G) 

E) F) 

H) 
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S Figure 2.17. Comparison of fragmentation pattern of I) 2,4-dihydroxyacetophenone, 

J) trans-caffeic acid, K) protocatechuic aldehyde, and L) 4-hydroxycoumarin with standards. 

All metabolites were identified using LC-MS/MS in negative mode. 

 

 

 

Accurate mass similarity score:       1.0000 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.5568 

Accurate mass similarity score:       1.0000 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.5985 

Accurate mass similarity score:        0.9999 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.7095 

Accurate mass similarity score:        0.9998 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.7367 

I) J) 

K) L) 
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S Figure 2.18. Comparison of fragmentation pattern of (M) 7-hydroxycoumarin, (N) 

dioxydiphenol, and (O) 7-hydroxy-2-oxo-2H-chromene-3-carboxylic acid with standards. (P) 

Fragmentation pattern of methyl glyoxylate was predicted using CFM-ID 4.0 and compared 

with the experimental sample. These metabolites were identified using LC-MS/MS in negative 

mode. 

 

 

Accurate mass similarity score:        0.9991 

Rt similarity score:                         0.9987 

Dot product similarity score:             0.5846 

O) 

Accurate mass similarity score:        0.9991 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.7564 

M) 

Accurate mass similarity score:        0.9972 

Rt similarity score:                            1.0000 

Dot product similarity score:             0.5849 

N) 

P) 

Accurate mass similarity score:        0.9991 

Rt similarity score:                         0.9987 

Dot product similarity score:             0.5846 
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S Figure 2.19. Comparison of fragmentation pattern of (Q) Catechol carbonate, and 

(R) 2-coumaranone with NIST2.4 database. These metabolites were identified using GC-MS. 

Calculated Retention Index: 1282 

Semi-standard non-polar retention index (n-alkane scale): 1249 

Estimated non-polar retention index (n-alkane scale): 1272 

Calculated Retention Index: 1125.65 

AI predicted non-polar retention index (n-alkane scale): 1158 

Q) 

R) 
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S Figure 2.20. Comparison of fragmentation pattern of (S) 4-ethoxyphenol, and (T) 2-

methoxy-1,3-benzodioxole with NIST2.4 database. These metabolites were identified using 

GC-MS. 

 

Calculated Retention Index: 1120 

Estimated non-polar retention index (n-alkane scale): 1162 

AI predicted non-polar retention index (n-alkane scale): 1153 

Calculated Retention Index: 1333 

Standard non-polar retention index (n-alkane scale): 1350 

     ’               

S) 

T) 



 

168 
 

 

S Figure 2.21. Comparison of fragmentation pattern of (U) 4-Ethoxybenzoic acid ethyl 

ester, and (V) Ethyl vanillin with standards of NIST2.4 database. These metabolites were 

identified using GC-MS. 

 

 

Calculated Retention Index: 1556.77 

Semi-standard non-polar retention index (n-alkane scale): 1522 

AI predicted non-polar retention index (n-alkane scale): 1567 

U) 

Calculated Retention Index: 1424.94 

Semi-standard non-polar retention index (n-alkane scale): 1460 

Standard non-polar retention index (n-alkane scale): 1433 ± 15 

V) 
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S Figure 2.22. Comparison of fragmentation pattern of (W) 2-Phenoxyphenol, (X) 2-

Methoxyphenol with standards of NIST2.4 database. These metabolites were identified using 

GC-MS. 

 

            

            

            

       

Calculated Retention Index: 1093 

Semi-standard non-polar retention index (n-alkane scale): 1090 ± 3 

Calculated Retention Index: 1573 

Semi-standard non-polar retention index (n-alkane scale): 1547 

AI predicted non-polar retention index (n-alkane scale): 1567 

Y) 

X) 

W) 
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S Figure 2.23. Comparison of fragmentation pattern of (Y) 2-Hydroxymethyl-1,4-

benzodioxan, and (Z) O-valeryl-1,2-benzenediol with standards of NIST2.4 database. These 

metabolites were identified using GC-MS. 

 

 

Calculated Retention Index: 1487.54 

Estimated non-polar retention index (n-alkane scale): 1448 

AI predicted non-polar retention index (n-alkane scale):1452 

Calculated Retention Index: 1512.21 

Estimated non-polar retention index (n-alkane scale): 1579 

AI predicted non-polar retention index (n-alkane scale): 1534 

Y) 

Z) 
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S Figure 2.24. Comparison of fragmentation pattern of (A1) Methyl 1,3-benzodioxole-

2-carboxylate, and (B1) 2-propoxyphenol of NIST2.4 database. These metabolites were 

identified using GC-MS.        

  

 

Calculated Retention Index: 1283.91 

Estimated non-polar retention index (n-alkane scale): 1289 

AI predicted non-polar retention index (n-alkane scale): 1251 

B1) 

Calculated Retention Index: 1367.35 

Estimated non-polar retention index (n-alkane scale): 1352 

AI predicted non-polar retention index (n-alkane scale):1350 

A1) 
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S Figure 2.25. Determination of catechol carbonate in the reaction between catechol 

and carbonic acid. Catechol carbonate was detected in 700 MHz NMR.  Water was used to 

prepare the experimental sample. Referenced spectra of catechol carbonate was prepared 

using deuterated chloroform, reported in the article (Tabanelli et al., 2018).   
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 S Figure 2.26. NMR analysis detected unknown compounds in catechol treated 

samples (extracellular) under anaerobic condition. Overlapping peaks (such as chemical shifts 

at 6.95, 6.85 and 2.21 ppm) designated by light red color.  
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 S Figure 2.27. NMR analysis detected unknown compounds in catechol treated 

samples (intracellular) under anaerobic condition. Overlapping peaks (such as chemical shifts 

at 8.26, 6.96, 6.86, 4.37, 4.35 and 2.21 ppm) designated by light red color.  

 

 


