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Abstract 

Background 

Allergic asthma is characterized by increased level of Interleukin-13 (IL-13) in the lungs. IL-13 

promotes eosinophilic infiltration in the airways by stimulating airway epithelial cells to release 

eotaxin-3 (CCL26) through the Janus activated kinase-2 (JAK-2)/signal transducer and activator 

of transcription 6 (STAT6) pathway. Eosinophil accumulation in the airways is a hallmark of 

allergic asthma. There is also evidence that bacterial products, such as LPS, affect the release of 

eosinophil chemotactic factors and may alter eosinophil accumulation in peripheral tissues. 

However, the effects of LPS on airway eosinophilia are incompletely understood. Thus, our aim 

was to study the effects of LPS on IL-13 -induced CCL26 induction in airway epithelial cells and 

the mechanisms of these effects. 

Methods  

We used LPS to mimic the bacterial insults on the airway epithelium. The human bronchial 

epithelial cell line BEAS-2B was stimulated with IL-13 (20 ng/ml) alone or in combination with 

LPS (10 μg/ml) for 24 hr. CCL26 mRNA levels were measured using quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) and CCL26 protein was measured in the 

supernatants of these cells using ELISA. STAT6 phosphorylation was measured by western blot. 

For NF-kB inhibition, BEAS-2B cells were pre-treated with 3 different NF-kB inhibitors, 

curcumin (10 μM), arctigenin (1 μM), and bengamide B (1 μM), for 2 hr before activation with 

IL-13 and/or LPS. 
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Results 

BEAS-2B cell activation with IL-13 for 24 hr strongly induced CCL26 mRNA expression (78.3 

± 3.9 fold over unstimulated cells, n=13, p < 0.001) and the release of CCL26 protein (1462 ± 

55.1 pg/ml , while there was no detection of CCL26 protein release in unstimulated cells, n=13, p 

< 0.001). Simultaneous treatment of BEAS-2B cells with LPS inhibited IL-13 -induced CCL26 

expression (n=13, p < 0.001) and CCL26 protein release (n=13, p < 0.001). IL-13 also induced 

STAT6 phosphorylation in BEAS-2B cells, which peaked at 30 min. STAT6 phosphorylation, 

was attenuated when cells were activated by IL-13 in the presence of LPS (n=3, p < 0.05). Pre-

incubation of the cells with NF-kB inhibitors prevented the LPS effect on IL-13 -induced CCL26 

upregulation and STAT6 phosphorylation. 

Conclusions 

LPS, a TLR-4 ligand, inhibits the effects of IL-13 on CCL26 expression in airways epithelial 

cells. This effect may be dependent on LPS interfering with JAK2/STAT6 signaling through NF-

kB activation. 
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1.1  Asthma Overview 

Asthma is a chronic inflammatory disease of the airways characterized by airway 

hyperresponsiveness (AHR) to a variety of stimuli such as histamine and methacholine and 

airway inflammation leading to remodeling. Asthma is characterized clinically by episodic 

reversible airway obstruction, shortness of breath, wheezing, chest tightness and airway 

remodeling (1,2). Asthma has become an epidemic, increasing in prevalence in urbanized 

populations worldwide, affecting 330 million in the world (3). There are almost 2.4 million 

Canadians aged 12 years and over that suffer from asthma (8.4 % of the general population, 

9.8% of females and 7.0% of males) (4,5). Asthma can severely compromise quality of life and 

even though not very common can even lead to death. According to asthma society report, 

asthma is the main reason of absenteeism from school and the third cause of work loss (6). In 

2015, there were more than 70,000 emergency room visits due to asthma in Canada (7).  

 

1.2  Asthma Pathogenesis: Genetic and Environmental Factors 

A complex interplay between genetic and environmental factors contributes to asthma 

pathogenesis. Asthma is a familial disease and has significant genetic contributions, with 

heritability estimates varying between 35% and 95% for asthma (8–18). Several studies showed 

that more than 118 genes are associated with asthma. Some of these genes affect the 

development of asthma and others change asthma severity or the patient's response to therapy. In 

related to this thesis,  IL-13, IL-4, FϲεRI-β, CCL11, CCL24 and CCL26 are some examples of 

genes that are associated with asthma (19–25).  

In addition to genetic factors, environmental factors also play a role in asthma pathogenesis. 
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Exposure to environmental factors such as allergens, air pollutants, diet, viruses, and bacteria can 

trigger asthma in genetically susceptible individuals (26). In related to bacteria, some studies 

showed bacterial infection is involved in asthma pathogenesis and highly associated with asthma 

exacerbations and AHR in asthmatic patients (27,28). However, bacterial infection and it is 

associated with asthma is matter of debate, increasing evidences suggesting exposure to normal 

microflora bacteria is beneficial for the development of the human immune system (20). These 

evidence support ‘the Hygiene hypothesis’ that state an environment rich in microbes provides 

protection against diseases. 

Altogether susceptibility and development of asthma are affected by internal as well as external 

factors. 

 

1.3  Asthma Phenotypes 

Asthma is a clinical disorder with many phenotypes and each phenotype can have biologic 

markers that  reflect the underlying disease such as eosinophilic or neutrophilic asthma and some 

phenotypes represent trigger- induced asthma such as allergic asthma and aspirin-exacerbated 

respiratory disease and exercise- induced asthma (31). The diversity of asthma phenotypes 

continues to make asthma a challenge to classify, and to treat. Here we will review primarily 

allergic asthma, the most common phenotype of asthma. 
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1.3.1 Allergic Asthma 

Allergic asthma usually starts in childhood and pathophysiology involves the inhalation of an 

allergen such as house dust mite or cockroach. These allergens trigger the immune response and 

activate different immune cells that they participate in allergic asthma. 

 

Cells Contributing to Allergic Asthma Pathogenesis 

When an allergen enters the body for the first time, an individual with an inherited predisposition 

to this allergen will begin to develop sensitization (specific IgE production). Allergen will 

interact with pattern recognition receptors (PRRs) and protease activating receptors on epithelial 

cells. This recognition can cause the activation of dendritic cells (DCs) which uptakes the 

allergen and present it to naïve CD4+ T cells in the lymph nodes.  CD4+ T cells will proliferate 

and differentiate to T helper cells including T helper 2 (TH2) cells (32). TH2 cells produce IL-4, 

which stimulates B cells to begin production of immunoglobulin E (IgE) antibodies. Secreted 

IgE circulates in the blood and binds to mast cells and basophils through an IgE receptor (FcεRI) 

(33,34). 

Upon a subsequent exposure to the same allergen, it will bind to IgE on the surface of mast cells 

and basophils and activate them. They will release inflammatory mediators (e.g. 

histamine, leukotrienes, and prostaglandins) into the surrounding tissue causing some features of 

asthma including vasodilation and bronchoconstriction and shortness of breath (35). 

Furthermore, this reaction attracts many other inflammatory cells to the site such as eosinophils, 

and neutrophils which are discussed below (36,37).  
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Epithelial Cells 

Epithelial cells form a first line of defense to protect underlying organs, such as the lungs, from 

potentially harmful external stimuli such as bacteria, viruses, toxins and also allergens (38). The 

airways, from the nose to the alveoli, are covered by a continuous epithelial sheet and are 

constantly exposed to the external environment. Epithelial cells are connected to each other by 

tight junction proteins such as zonula occludens, occludin, and claudin (38). This structure 

provides the airway with a physical barrier property to control transport of water, gasses, and 

ions. It also prevents inhaled pathogens and other environmental substances from penetrating or 

injuring the human airway.  

There are several different types of epithelial cells within the airways to provide its complex 

functionality (38). In the large airways, the epithelium is pseudostratified and contains goblet 

cells, ciliated, undifferentiated columnar, and basal cells. Goblet cells produce mucus, thick and 

viscous fluid, which serves as a lubricant and forms a viscoelastic blanket that covers the entire 

bronchial epithelium and helps to remove bacteria and other foreign particles from the airway 

(39). Ciliated cells are responsible for driving the tracheobronchial secretions toward the 

pharynx. Basal cells facilitate attachment of other epithelial cells to the basement membrane and 

give the epithelium of the larger airways its pseudostratified appearance. These cells gradually 

disappear from upper airways down to the alveoli (40,41). Basal cells can function as precursors 

to other airway epithelial cells in sites of injury by differentiating and restoring a healthy 

epithelial cell layer (42). In the small airways, the airway epithelium changes to columnar and 

cuboidal. The cells in small airway are similar, with relatively more ciliated cells, and some clara 

cells (43). In alveoli, there are alveolar type I and type II cells.  Alveolar type II cells are 
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responsible for surfactant production which increases pulmonary compliance and prevents the 

collapse of the alveoli at the end of exhalation by the decrease in surface pressure (44). Alveolar 

type II cells are progenitors for both types I and II cells (44).  

Airway epithelial cells can detect allergens using proteinase-activated receptors (PARs). PARs 

are G protein-coupled receptors (GPCRs) that are uniquely activated by proteases from 

allergens. In turn, these can alter epithelial tight junction proteins and increase epithelial 

permeability, which facilitate allergen entry and uptake by dendritic cells. The interaction 

between allergens and airway epithelium can cause the release of epithelial driven cytokines 

including IL-33 and TSLP that can activate the immune system. IL-33 and TSLP produced by 

epithelial cells regulate dendritic cell functions to facilitate TH2 cells differentiation and 

migration into the airway (45,46). 

In addition to allergens, airway epithelial cells are frequently exposed to bacteria and various 

bacterial products. They recognize conserved structural motifs in bacteria, termed pathogen -

associated molecular patterns (PAMPs) through surface receptors, both on the cell surface and in 

endosomes (47). These surface receptors must be exposed apically to recognize bacterial 

components present in the lumen of the airways (48). Under unstimulated conditions, these 

receptors are presented at low density on the cell surface that is likely to prevent excessive 

immune responses that might affect lung function (49). Airway epithelial cells can use 

antimicrobial activity (e.g. lysozyme, lactoferrin, secretory phospholipase A2, human beta 

defense (HBD) … etc.) as apart of pulmonary innate defense to eliminate invading bacteria 

without an inflammatory response or the activation of adaptive immunity (50). However, upon 

repeated bacterial stimulation more receptors are upregulated and recruited to the apical surface 

where they initiate the inflammatory response when this is required to clear the infection 
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(47,51,52). Airway epithelial cells recognize bacteria by pattern recognition receptors (PRRs) 

such as Toll like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors 

(NOD-like receptors (NLRs)) (51,52). For example, Toll like receptor-2 (TLR-2) recognizes a 

variety of microbial components, including lipoproteins/lipopeptides, lipoteicoic acid from 

Gram-positive bacteria, lipoarabinomannan from mycobacteria, and phenol soluble modulins 

from Staphylococci (53,54). TLR-4 recognizes lipopolysaccharide (LPS) found in the outer layer 

of gram-negative bacteria (55).  TLR-5 recognizes flagellin, the principal component of flagella, 

from both Gram-positive and Gram-negative bacteria (56). In addition to cell surface receptors 

that recognize microbial components, mammalian cells also have NLRs to recognize PAMPs in 

the cytosol of infected cells. The NLR family of proteins include many receptors of which 

nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 are expressed by airway 

epithelial cells (52). NOD1 recognizes peptidoglycans containing meso-diaminopimelate  (meso-

DAP) acid found mainly in Gram-negative bacteria (57,58). NOD2 recognizes muramyl 

dipeptide (MDP) in peptidoglycans of bacteria (59). These interactions induce the activation of 

innate as well as adaptive immune system and lead to production of chemokines and cytokines 

that induce the recruitment of immune cells into the lung. 

LPS is the most extensively studied member of pattern recognition molecules and it is ubiquitous 

in environment including allergens. LPS, a major component of gram negative bacteria, is known 

to contribute in asthma exacerbation, decrease in pulmonary function, and persistent wheezing 

(55,60–65). A survey of endotoxin in houses showed strong relationship between levels of 

household LPS and asthma exacerbations (60). Occupational exposure to dust has been known to 

be associated with decreased pulmonary functions and several studies revealed that the 

concentrations of LPS in the dust, but not the dust itself, was the reason of the decrease in 
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pulmonary function (61,62). Also, clinical studies showed that Inhalation of LPS was directly 

associated with a reduced lung function in healthy subjects (63,64). Moreover, a study in 

Denmark showed that colonization of Gram-negative bacteria Haemophilus 

influenzae and Moraxella caterrhalis in pharynx of new babies is associated with an increased 

persistent wheezing and asthma by age 5 (65).  

Here, we used LPS in vitro experiment to investigate about its effect on eotaxins produced by IL-

13 (Fig.3). 

LPS Detection and Signaling 

LPS binds to LPS-binding protein forming a molecular complex, which interacts with the surface 

molecule cluster of differentiation 14 (CD14). CD14 helps this molecular complex to be sensed 

by TLR-4 on the surface of cells such as epithelial cells, monocytes, macrophages and dendritic 

cells (DCs) (51,66,67). TLR-4 can be localized either at the cell surface or the endosomal 

compartments, depending on the cell type (68). In airway epithelium, TLR-4 mostly express on 

the apical and also have basolateral and endosomal distribution (55,69,70). TLR-4 activation 

recruits the adaptor protein myeloid differentiation primary response gene 88 (MyD88) and 

forms a MyD88-TLR complex that will activate several signaling pathways including 

ubiquitination and phosphorylation. Briefly, MyD88 activates interleukin-1 receptor-associated 

kinase 4 (IRAK4), which in turn induces IRAK1 phosphorylation. Following IRAK1 

phosphorylation both IRAK1 and IRAK4 leave the MyD88-TLR complex and bind with TNF 

receptor associated factor 6 (TRAF6) leading to its ubiquitination. Ubiquitination of TRAF6 

leads to activation of TGF-β activated kinase 1 (TAK1) and then TAK1 binds to the IκB kinase 

(IKK) complex. This results in phosphorylation of IκB and activation and nucleus translocation 

of nuclear factor kappa B (NF-κB) (Fig.1) (51,71–74).  
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NF-κB is ubiquitous transcription factor and activated in response to cytokines, mitogens, 

physical and oxidative stress, infection, and microbial products such as LPS. It is necessary for 

directing of several cytokines (e.g. TNF, GM-CSF, IL-6, IL-8, IL-12...etc.), chemokines (e.g. 

CXCL2), adhesion molecules (e.g. ICAM-1) and other proinflammatory proteins to be 

transcribed (75–79). In the airway epithelium, NF-kB expression found to be high in human 

asthmatics as well as in murine model of allergic airway inflammation (80–82). Finally, NF-κB 

activation in the airways of allergen-challenged mice is attenuated by TLR-4 gene deletion, 

suggesting that the importance of TLR-4 and its contribution to NF-κB signaling in asthma (83). 

LPS can also signal independently of MyD88 and NF-κB. In this case, TLR-4 activation by LPS 

recruits the adaptor protein TIR domain-containing adaptor protein inducing interferon-β (TRIF) 

and leads to type I interferons production (84). TRIF-dependent pathway involves the 

recruitment of the adaptor proteins TRIF and TRIF-related Adaptor Molecule (TRAM). TRAM-

TRIF signals activate the transcription factor Interferon Regulatory Factor-3 (IRF3) via TNF 

receptor-associated factor 3 (TRAF3). IRF3 activation induces the production of type I 

interferons (IFN-β) and IL-10 (84,85). 

The determination of LPS signaling may be influenced by the presence of CD14 and smooth or 

rough lipid A (component part of LPS). In the presence of CD14, LPS can induce TLR-4 

activation via both pathways (TRIF-dependent pathway and Myd88 dependent pathway). In the 

absence of CD14, smooth lipid A fails to induce TLR-4 activation, while rough lipid A induces 

signaling via only MyD88 dependent pathway (86).  

Moreover, Guillot et al. demonstrated that human bronchial epithelial cell lines (BEAS-2B) and 

human alveolar epithelial cell line A549 constitutively expressed TLR-4 and they also showed 
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the intracellular localization of this receptor (55). They also established that LPS-induced 

stimulation of these cells is dependent on the activation of TLR-4 signaling and intermediates 

MyD88 adaptor protein and NF-kB activation and not the other pathway (TRIF-dependent 

pathway) (55). 

Taken together, epithelial cells play important role in innate and adoptive immune response and 

contribute in many aspects of allergic asthma. 

 

Neutrophils 

Neutrophils are the most abundant innate immune cell in the body. They are the first immune 

cells to rapidly migrate to the site of infection to help fight infection through 

ingesting microorganisms (phagocytosis) and releasing enzymes that kill the microorganisms. 

Their migration and activation lead them to release elastase, and myeloperoxidase that help to 

kill invading pathogens. They also form neutrophil extracellular traps (NETs) that also kill 

pathogens extracellularly (36,37). Neutrophils express FcεRI and play an important role in 

allergic asthma pathogenesis (87). During allergen exposure, neutrophils infiltrate the lungs 

where they release an array of inflammatory mediators and cytokines. Neutrophil infiltration is 

associated with lung function impairment and the severity of asthma (88). Neutrophil numbers 

are not increased in airway secretions from patients with mild and moderate asthma, but Wenzel 

and coworkers have shown that neutrophil numbers are higher than normal in airway lavage 

from patients with severe asthma (89).  

The relationship between neutrophil infiltration and bronchoconstriction in asthma was 

investigated by Shaw and colleagues in almost 1,100 patients with asthma (90). They found a 

high number of neutrophils and eosinophils were associated with a low pre-bronchodilator first 
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second of forced expiratory volume (FEV1) and high numbers of neutrophils were associated 

with a low post- bronchodilator FEV1(90).  

Taken together, these studies demonstrate neutrophilic infiltration in the airway associated with 

severe asthma and indicate a possible link between neutrophilic infiltration and 

bronchoconstriction in asthma. 

 

Dendritic Cells 

DCs are the primary professional antigen presenting cells (APCs). They can be found in areas 

exposed to antigens including allergens. DCs can take up allergen from epithelial cells or directly 

uptake the allergen in case of disrupted epithelial cells, migrate to the lymph nodes and present 

the allergens to T cells and become activated and start their differentiation (32). DCs are 

regulated by cytokines released by epithelial cells in response to allergen exposure, such as 

granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin 

(TSLP), and IL-33. GM-CSF promotes the maturation of DCs and enhances their inflammatory 

functions. IL-33 and TSLP direct DC function to promote TH2 polarization. TSLP-activated DCs 

induce the expression of PGD2 receptor on TH2 cells in asthmatic airways, a mechanism through 

which DCs promote the expansion of TH2 memory cells and maintenance of TH2 commitment 

(91). The function of TSLP can be enhanced by IL-25 released by epithelial cells, eosinophils, 

and basophils after allergen exposure. Systemic depletion of DCs resulted in abrogated airway 

inflammation, mucus production and AHR in OVA challenge mice (92). Another study also 

showed that selective depletion of lung DCs in mice led to the elimination of features of asthma 

including eosinophilic inflammation, goblet cell hyperplasia, and AHR. Moreover, injection of 
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DCs in these mice restored these defects. However, injection with other APCs such as 

macrophages failed to restore these defects (93).  

Taken together, these results suggest a unique and vital role of DCs in allergic asthma 

development and exacerbation. 

 

Mast Cells 

Mast cells are derived from CD34+ progenitor cells circulating in peripheral blood and mature in 

the tissues (94,95). They can be found in surface, submucosa, and deep in the airway (35).  They 

express the high affinity FcεRI (33). During allergen exposure, allergen binds to IgE on the 

surface of mast cells and in turn activates mast cells to degranulate. Activated mast cells release 

inflammatory mediators such as tryptase, heparin, histamine, prostaglandin D2 (PGD2), and 

leukotriene C4 (LTC4) and cause bronchoconstriction and vasodilation (33,35).  Mast cells also 

secrete proinflammatory cytokines after activation such as IL-1, IL-3, IL-4, IL-5, IL-6, IL-8, IL-

10, IL-13, IL-16, TNF, transforming growth factor beta (TGF-β) and chemokines such as CCL2 

(Monocyte chemotactic protein 1; MCP-1), CCL3 (macrophage inflammatory protein- 1α; MIP-

1α), CCL4 (MIP-1β), CCL17 (thymus and activation-regulated chemokine; TARC) and CCL22 

(Macrophage-derived chemokine; MDC) (33,95–97) .  

Taken together, these proinflammatory mediators, cytokines, and chemokines play major roles in 

characteristic features of allergic asthma  

 

Basophils 

Basophils are also derived from CD34+ progenitor cells found in cord blood and peripheral 

blood (94).  Like mast cells, basophils express FcεRI and interactions between allergen and IgE 
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on surface of basophils stimulates the cells to release inflammatory mediators including 

histamine that eventually leads to bronchoconstriction and vasodilation (98). Basophils play a 

critical role in allergic asthma. They can act as APCs and differ from other APCs such as DCs 

due to their ability to produce IL-4 (99,100). Depletion of basophils impaired IL-4 production, 

whereas adoptive transfer of basophils in MHCII-deficient mice restored IL-4 production by 

CD4 T cells (34,101,102). Furthermore, basophils promote inflammation by releasing 

chemokines such as CCL3, CCL5 CCL7, CCL8, CCL11, CCL13, CCL24 and CCL26 that attract 

basophils and other pro-inflammatory cells into asthmatic lungs (103,104).  

Taken together, these proinflammatory mediators, cytokines, and chemokines play major roles in 

causing allergic asthma and especially in IL-4 production, and suggest that basophils play a 

critical role in allergic asthma. 

 

CD4+ T cells and T helper 2 (TH2) Cells 

CD4+ T cells are considered the essential regulators of the immune responses especially in 

allergic asthma. Upon allergen presentation to naïve CD4+ T cells, these cells will proliferate and 

differentiate into TH2 cells effector cells that are specialized in terms of the cytokines that they 

secrete in allergic asthma (105). TH2 cells play important role in the immune response against 

allergens. Increased presence of TH2 cells in allergic asthmatics categorized this disease as a TH2 

cell-driven disease (106). Cytokines produced by TH2 cells such as IL-4, IL-5, IL-9, and IL-13 

have been primarily implicated in causing features of asthma including airway inflammation, 

AHR, and mucus production (107).  
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Interleukin-4 (IL-4) 

IL-4 is a 17,492 dalton polypeptide with pleiotropic effects on many cell types including T cells, 

basophils, and mast cells (108,109). IL-4 binds to a heterodimeric receptor composed of IL-4 

receptor α -chain (IL-4Rα), which has high affinity to IL-4, and IL-2 receptor common γ -chain, 

(IL2R γc), which is shared with IL-2, IL-9, IL-7, and IL-15 receptors (110–112). IL-4 can also 

bind to another heterodimeric receptor composed of IL-4Rα and IL-13Rα1, which is shared with 

IL-13 (113). IL-4 plays a pivotal role in the nature of the immune response. In naïve CD4+ T 

cells, IL-4 binds to its receptor and induces proliferation and differentiation into TH2 cells and 

starts type 2 immune responses (114). IL-4 can instruct B cells to produce IgG1 and IgE in mice 

(115).  

 

Interleukin -13 (IL-13) 

IL-13 is a 15,816 dalton polypeptide with pleiotropic effects on many cell types including B 

cells, epithelial cells and monocytes (108). It was identified in 1993 by molecular cloning from 

activated human T-lymphocytes and described as a T cell - derived cytokine that can inhibit 

inflammatory cytokine production (116,117), however, subsequent studies indicated that IL-13 

possesses several unique effector roles which can result in recruitment of eosinophils, activation 

of macrophages, increased airway epithelial cell permeability and mucus production (118–120). 

The human IL-13 gene has been implicated in the induction of AHR and eosinophilic airway 

inflammation (121,122).  

IL-13 receptor (IL-13R) is a heterodimer consisting of IL-13 receptor alpha 1 (IL-13Rα1) and 

IL-4Rα. (113). This receptor is shared with IL-4, but IL-4-/-, and IL-4R-/- knockout mice 
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confirmed a non-redundant role for IL-13 in host immune responses (123). IL-13 receptor alpha 

2 (IL-13Rα2) is another receptor for IL-13 and has been suggested to be “a decoy receptor”. This 

receptor binds only to IL-13 and exists in a membrane-bound and a soluble form in mice. To 

date, no known soluble form of IL-13α2 has been detected in humans (124). Recent reports, 

however have shown that IL-13α2 has the ability to mediate IL-13 signaling. In a murine model 

of bleomycin-induced fibrosis, in vivo silencing of IL-13Rα2 with gene-specific small interfering 

RNAs (siRNAs) resulted in significantly reduced TGF-β1 production and collagen deposition in 

the lungs of mice. A study of IL-13 signaling in colorectal cancer demonstrated that IL-13Rα2 

can serve dual functions as both a decoy receptor and a mediator of mitogen-activated protein 

kinase signaling cytokine production (124–127). 

 

IL-13 Signaling 

 IL-13R is localized to the basolateral surface of epithelial cells (128). IL-13 binds to the IL-

13Rα1 subunit and recruits the IL-4Rα subunit to form the stable heterodimer, which is found on 

cells of non-hematopoietic origin (129). This dimerization will activate Janus Kinase-2 (JAK-2) 

that is constitutively associated with IL-13Rα1 subunit (130). JAK-2 will auto-phosphorylate and 

recruit STAT6 to the receptor complex. STAT6 is then phosphorylated and activated by JAK-2, 

resulting in translocation of STAT6 to the nucleus for binding to specific DNA elements in the 

promoter regions of IL-13 responsive genes and initiation of transcription (Fig.2) (119,126,129).  

 

IL-13 in Asthma 

The role of IL-13 in asthma has been studied extensively. Although IL-4 drives TH2 cell 

differentiation and development, it does not appear to be necessary for allergic asthma, which 
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suggests an important role for another cytokine (later recognized as IL-13) (131). Abundant 

evidence has shown that IL-13 directs many of the processes involved in allergic asthma. In 

atopic mild asthmatic patients, IL-13 expression was increased in bronchoalveolar lavage (BAL) 

fluid and cells after nasal allergen challenge (132). As mentioned above, in a genome-

wide association study (GWAS), multiple IL-13 polymorphisms have been identified and 

suggested to be associated with asthma susceptibility, bronchial hyperresponsiveness, and 

increased IgE levels (75). After allergen is inhaled, TH2 cells and innate lymphoid cells (ILC-2) 

secrete IL-13, which influences many cells involved in allergic asthma such as B cells, epithelial 

cells, and smooth muscle cells. In B cells, IL-13 can induce proliferation and increase IgE and 

IgG4 production in human (133). In airway epithelial cells, IL-13 can increase mucus secretion, 

airway permeability, and VEGF accumulation in the airway (122,131,132). IL-13 can also 

stimulate airway epithelial cells to produce eosinophil chemotactic factors such as eotaxins, 

leading to eosinophil infiltration in the airways, worsened airway inflammation and asthma 

exacerbations (Fig.3) (118,134). In smooth muscle cells, IL-13 can also mediate airway 

hyperresponsiveness (135).  

Taken together, these findings have demonstrated that asthma is associated with TH2 immune 

response and that IL 13 is an important cytokine involved in allergic asthma. 

 

Interleukin -5 (IL-5) 

IL-5 is 15,238 dalton polypeptide with pleiotropic effects on many cell types including basophils 

and eosinophils in humans (108,136,137). IL-5 was originally described as ‘T-cell replacing 

factor’ that is secreted from T cells to stimulate antibody production from activated B cells (138). 

The receptor for IL-5 consists of IL-5 receptor alpha (IL-5Rα), with low affinity to IL-5 and 
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common beta-chain (βc), which is shared with IL-3 and GM-CSF. IL-5, produced by Th2 cells, 

is essential for proliferation, and differentiation, maturation of eosinophils in the bone marrow 

and their release into the blood in mice and humans (137,139). Mepolizumab, reslizumab, and 

benralizumab, which are antibodies against IL-5 or IL-5R, induce decreases in blood and sputum 

eosinophils and in the rate of exacerbations, and in turn improve on lung function especially in 

asthma, corticosteroid-requiring asthma (140). 

 

Interleukin -9 (IL-9) 

IL-9 is 15,909 dalton polypeptide with pleiotropic effects on many cell types. The major source 

of IL-9 is TH2 cells and it can also be produced by mast cells (108,141).  The IL-9 receptor (IL-

9R) is composed of two subunits, IL-9R alpha chain (IL-9Rα), that binds to IL-9, and the IL2R 

γc, which is common to the IL-2, IL-4, IL-7 and IL-15 receptors (142). Since IL-9 shares its 

receptor with IL-2 and IL-4, it has been suggested that IL-9 can function similarly to IL-2 and 

IL-4. IL-9 promotes CD4+ T cells and Th2 cytokine production. Recent studies showed IL-9 has 

variable effects on regulatory T cell development (143).  

 

B Lymphocytes  

B cells are part of the adaptive immune system and can serve as APCs. They are derived from 

CD34+ progenitor cells in bone marrow and migrate to lymphoid organs such as lymph nodes 

and spleen (144). B cells express B cell receptors (BCRs) on their cell membrane, which bind to 

antigens and initiate specific antibody responses (144,145). B cells undergo an isotype switch to 

IgE to become IgE-producing plasma cells B cells which play an important role in allergic 
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sensitization. TH2 cells induce the switching process by IL-4 or IL-13. Also, interaction of the 

cell surface marker CD40 with its ligand (CD40L) expressed on activated T cells induces the 

switching process. Once IgE-positive B cells are formed, they can differentiate into IgE-

producing plasma cells. Finally, some plasma cells stay in the spleen while others return to the 

bone marrow or invade inflamed tissues, where they survive from several months to a lifetime in 

survival niches as resident, immobile cells (115,146) . 

 

Eosinophils 

Eosinophils were first observed by Wharton Jones in 1846 in unstained preparations of 

peripheral blood and were then described by Paul Ehrlich in 1879 in blood films stained using 

acidic dyes (147). He observed that these cells that contain many granules have high affinity for 

a pink synthetic dye (called eosin) that is produced by the action of bromine on fluorescein 

(147). Eosinophils are part of the innate immune system and derived from CD34+ progenitor 

cells. The transcription factor GATA1 is critical for their differentiation and maturation in bone 

marrow induced by cytokines such as IL-3, IL-5, and GM-CSF (137,148). IL-5 is the most 

selective for differentiation, proliferation, maturation, and survival of eosinophils, while IL-3 and 

GM-CSF alone cannot induce eosinophil development (137). Scientists observed the connection 

between the presence of eosinophils in BAL fluid and allergic asthma, and since then have tried 

to identify the role of eosinophils in asthma. Airway epithelial cells, fibroblast cells, and smooth 

muscle cells can recruit eosinophils to the site of inflammation when they are stimulated with IL-

4 and/or IL-13 (134,149–153). Eosinophils can exacerbate asthma by degranulation and release 

of proinflammatory molecules including: reactive oxygen species, eosinophil cationic protein 

(ECP), major basic protein (MBP), eosinophil peroxidase (EPO), eosinophil-derived neurotoxin 
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(EDN), cytokines, and chemokines all thought to be important in the underlying AHR and local 

inflammation, tissue damage, and necrosis (154–156). 

Upon allergen exposure, high numbers of eosinophils infiltrate the airway and the magnitude of 

their recruitment is associated with the severity of disease (157). Eosinophils also express MHC 

II and can act as APC, uptake antigens and present them to T cells in lymph nodes (158).  

 

Chemotaxis of Eosinophils 

There are several chemokines able to induce migration and activation of eosinophils, including 

eotaxins, CCL7, CCL13, and CCL5 (159–162). However, eotaxins are more effective eosinophil 

chemoattractant than CCL5 and more selective for eosinophil recruitment in vivo (163,164). 

Eotaxins are CC chemokines, produced by airway epithelial cells, airway smooth muscle cells, 

vascular endothelial cells, and macrophages (150–152). They are potent chemoattractants for 

eosinophils and recruit eosinophils by stimulating CC chemokine receptor 3 (CCR3), a G-

protein-coupled receptor (GPCR) on the eosinophil surface. CCR3 expression is restricted to 

cells involved in allergic inflammation such as Th2 cells, eosinophils, mast cells and basophils. 

Eotaxins also signal exclusively through CCR3 (165,166). 

 

Eotaxin-1/CCL11 

CCL11 was firstly identified in a guinea-pig model of airway allergic inflammation and named 

eotaxin (163). Later on it was renamed eotaxin-1 to differentiate it from two chemokines with 

similar functions, eotaxin-2 (CCL24) and eotaxin-3 (CCL26). CCL11 is constitutively expressed 

in the lung of healthy individuals and its levels increase in the lung and sputum following 
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allergen challenge (167). In both animals and humans CCL11 accounts for early recruitment of 

eosinophils in the lungs following allergen challenge (almost 6 hr of recruitment) but not for the 

sustained recruitment beyond 24 hr (151). CCL11-/- knockout mice show reduction in the number 

of eosinophils recruited in the lung after allergen challenge, but this reduction is moderate, and 

there are still enough eosinophils recruited to the lung to cause disease (168). CCL11 

neutralizing antibodies showed similar results, with decreased numbers of eosinophils in the 

bloodstream and the lung of allergen-challenged mice, but not complete inhibition of airway 

inflammation (169). This indicates CCL11 is not alone in the process of eosinophil recruitment 

and other family members of chemotactic factors such as CCL24 and CCL26 may be important. 

 

Eotaxin-2/CCL24 

CCL24 has physiological activity similar to that of CCL11 and shares almost 39% structural 

homology with it (165,166). Ying and colleagues found a correlation between 24-hr tissue 

eosinophilia and CCL24 expression in human allergen-induced cutaneous responses, suggesting 

that this cytokine may be important in late-stage allergen-induced inflammation. Increased 

CCL24 expression has also been shown in atopic and non-atopic asthmatics (170). 

 

Eotaxin-3/CCL26 

CCL26 also has physiological activity similar to that of CCL11 and CCL24. CCL26 levels were 

high in patients with atopic dermatitis, chronic rhinosinusitis, eosinophilic esophagitis, and 

Churg-Strauss vasculitis, all diseases where eosinophils play a significant pathogenetic role. This 

finding suggests an important role for CCL26 in the pathogenesis of eosinophilic diseases (171–

174). In asthmatic patients, Berkman and colleagues found that expression of CCL26 (not 
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CCL11 or CCL24 mRNA) was increased 24 hr after allergen challenge, suggesting that this 

chemokine may account for continuing eosinophil recruitment (167). In atopic dermatitis 

patients, CCL26 serum level but not CCL24 was found to be significantly high in these patients 

(172). In an ex-vivo study, CCL26 was found to be more effective on eosinophil migration in 

asthmatics than CCL11 or CCL24 (175). As for CCL11 and CCL24, CCL26 can be induced by 

IL-4 and IL-13 through activation of the IL-4Rα /STAT-6 pathway in vitro and can be attenuated 

by the glucocorticoid budesonide (176,177). 

Taken together, these results suggest a significant role of eotaxins, especially CCL26, in 

asthmatics and the recruitment of eosinophils to the airway. 

 

1.4  Rationale, Hypothesis, and Objectives 

 

1.4.1 Rationale 

Eosinophils are the hallmark of certain phenotypes of asthma and play a central role in the 

pathogenesis of asthma. They are found in increased numbers in blood and sputum in severe 

asthma and asthma exacerbations (178).  Many studies (such as studies targeting IL-5 and its 

receptor) have used different approaches to decrease eosinophilic infiltration in asthmatics. There 

is evidence that bacteria are clinically relevant contributors to asthma exacerbations (179–182). 

A study by Bass demonstrated a decrease in the eosinophil count in blood in experimentally 

induced bacterial infection in mice (181). Moreover, typhoid infection is well described to be 

associated with peripheral blood eosinopenia (low eosinophils) (182). A study by Lipkin of 75 

adult patients with positive blood cultures demonstrated that as the number of positive blood 

culture results per patient increased, the percentage of eosinophils in the peripheral blood 
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decreased (183). The rapid decrease in the number of eosinophils after bacterial infection 

suggests the ability of bacteria to prevent eosinophils recruitment through inhibiting eosinophil 

chemoattractant, such as eotaxins. Since human bronchial epithelium is a major source of 

eotaxins and their secretion results in the attraction of eosinophils into airways and they are 

frequently exposed to pathogens including LPS, we used an experimental model of in vitro 

cultured human bronchial epithelial cell line ( BEAS-2B) to study the effects of LPS in IL-13 -

induced CCL26 induction (Figure 3). 

 

1.4.2 Hypothesis 

We hypothesize that LPS, a product of gram negative bacteria, prevents the release of eotaxins 

from the airways epithelium and through this mechanism may decrease eosinophil accumulation 

in the airways. 

 

1.4.3 Objectives 

1. Study the effects of IL-13 on the production of eotaxins by human airway epithelial cells. 

2. Study the interaction between LPS and IL-13 and the induction of CCL26 from airway 

epithelial cells. 

3. Study the mechanisms mediating the inhibitory effect of LPS on IL-13 -induced CCL26 

production 
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Figure 1 

 

 

 

 

Figure 2 

 

 

 

 

Figure 2: IL-13 signalling pathway. Il-13 binds IL-13Rα1 which dimrizes with IL-4Rα and then 

induces JAK-2 to binds to their cytoplamic tail. JAK-2 autophosphorylates and recruit STAT6. 

STAT6 will phosphorylated by JAK-2 and then translocates into the nuclous, which will induce 

CCL26 mRNA transcription. 

 

Figure 1: LPS Signaling Pathway. LPS is detected by TLR-4 on the cell 

surface and recruit the adaptor protein MyD88 that will activate several 

signaling pathways including ubiquitination and phosphorylation. 

Ultimately, LPS activates NF-κB, a transcription factor, and induces 

transcription of proinflammatory mediators such as IL-6, TNF-α, and IL-8 
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Figure 3 

 

 

Figure 3: IL-13 -mediated eosinophils recruitment in allergic asthma. IL-13, a TH2 cytokine, plays an important role in allergic 

asthma. IL-13 induces epithelial cells to release eotaxins. Eotaxins will recruit eosinophils from blood into the lung and worsen 

the asthma symptoms. 
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Chapter 2 

 

Materials and Methods 
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2.1 Materials 

All materials/chemicals were used according to manufacturers’ instructions as well as the 

instruction of Environmental, Health and Safety (EHS) of the University of Alberta and Work 

Hazardous Materials Information System (WHMIS). 

 

2.1.1 Cell Culture: 

• Bronchial Epithelial Cell Line (BEAS-2B), from American Type Culture Collection 

(ATCC® CRL-9609), Manassas, Virginia, United State of America (USA). 

• Modified Eagle Medium (DMEM) 1 g/L D-Glucose, L-Glutamine, and 110 mg/L 

sodium pyruvate (Cat # 11885-092), Penicillin Streptomycin (Pen Strep) (Cat # 

15140-122), and Fetal Bovine Serum (FBS), Hyclone Defined (cat # SH30070.03) 

from Gibco® by Thermo Fisher Scientific, Waltham, Massachusetts, USA. 

• Trypsin/EDTA Solution (Cat # CC-5012), from Lonza, Allendale, New Jersey, USA. 

• Phosphate Buffered Saline (PBS) pH 7.4 (cat # P-5368), from Sigma-Aldrich, St. 

Louis, Missouri, USA. 

• Tissue Culture Flask –75 cm2 (cat # 353136), 25 cm2 (cat # 353108), and Tissue 

Culture Plate – 12 well (cat # 353043), from Falcon® by Thermo Fisher Scientific, 

Waltham, Massachusetts, USA. 
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2.1.2 Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-

qPCR): 

• RNeasy® mini kit (cat # 74104) and QIAshredder (Cat # 79654), from Qiagen, 

Hilden, Germany. 

• Axygen PCR® strip tubes PCR-0208-CP-C (cat # 321-10-061), from F Fisher 

Scientific by Thermo Fisher Scientific. 

• Oligo (dT)12-18 Primer (cat # 18418-012) , Deoxynucleotides (dNTPs) (cat # 

10297018), 5 X First Strand Synthesis Buffer (cat # y02321), DTT (0.1 M) (cat # 

y00147), RNaseOut™ Recombinant Ribonuclease Inhibitor (cat # 10777-019), and  

M – MLV Reverse Transcriptase (cat # 28025-013) from Invitrogen by Thermo 

Fisher Scientific. 

• TaqMan® Gene Expression Master Mix (cat # 4369016), TaqMan® gene Expression 

Assays CCL26 (cat # HS00171146-m1), IL-8 (cat # HS00174103-m1), and GAPDH 

(cat # HS02758991-g1), and UltraPure™ DNase/RNase-Free Distilled Water (cat # 

10977015), from Applied Biosystems ™ by Thermo Fisher Scientific. 

 

2.1.3 Enzyme-Linked Immunosorbent Assay (ELISA): 

• Human CCL26/Eotaxin-3 (cat # DY346) kit contains: Capture Antibody (cat # 

840501), Detection Antibody (cat # 840502), Standard (cat # 840503), and 

Streptavidin-HRP (cat # 890803), and Substrate Solution: Color Reagent A (cat # 

895000), and Color Reagent B (cat # 895001), from R&D Systems, Inc., 

Minneapolis, Minnesota, USA. 
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• Stop Solution (Sulfuric Acid solution 1N, H2SO4) (cat # SA212-4), Tween® 20 (cat # 

BP337-500) from F Fisher Scientific by Thermo Fisher Scientific. 

• Microtest™ 96-Well ELISA Plate (Cat # 353279), from Falcon® by Thermo Fisher 

Scientific. 

• Autowash II Microplate Washer WellWash TM from Labsystems by Thermo Fisher 

Scientific. 

• PowerWave XS Microplate Spectrophotometer from BioTek, from 

Winooski, Vermont, USA. 

• Bovine Serum Albumin (BSA) (cat # A3059-50G), from Sigma-Aldrich. 

• Reagent Diluent: 1% BSA in PBS, pH 7.2-7.4, 0.2 µm filtered 

• Wash Buffer: 0.05% Tween® 20 in PBS, pH 7.2-7.4 

 

2.1.4 Western Blot: 

• Purified Mouse Anti-Stat6 (cat # 611290), from BD Transduction Laboratories™, San 

Jose, California, USA. 

• Phospho-Stat6 (Tyr641) (cat # 9361), from Cell Signaling Technology®, Danvers, 

Massachusetts, USA. 

• Anti-JAK2 (phosphor Y1007+Y1008) antibody (cat # ab32101), Anti-JAK2 antibody 

(cat # ab108596) from Abcam. 

• IRDye® 800CW Goat (polyclonal) Anti-Rabbit IgG (H+L) (cat # 926-3221), IRDye® 680 

Goat Anti- Mouse IgG (H+L) (cat # 926-3220), from Li -Cor, Lincoln, Nebraska, USA. 

• Odyssey® Blocking Buffer (PBS) (cat # 927-40100), from Mandel Scientific, Guelph, 

Ontario, Canada. 
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• Mini-PROTEAN® TGX™ Gels 10 % (cat # 456-1034), Nitrocellulose Membranes, 0.2 

µm (cat # 162-0112), from Bio-Rad Laboratories, Hercules, California, USA. 

• 3 X Red Loading Buffer Pack (cat # B7709S), 30 X Reducing Agent 1.25 M DTT (cat # 

B7705S), from New England BioLabs® Inc, Ipswich, Massachusetts, USA. 

• Tween® 20 (cat # BP337-500), from Fisher Biotech. 

• RIPA Lysis Buffer System (Cat # sc-24948), from Santa Cruz Biotechnology, Dallas, 

Texas, USA that contains:  

➢ Vial 1: 1 X lysis Buffer: 1 X TBS, 1 % Nonidet P-40, 0.05 % Sodium deoxycholate, 

0.1 % SDS, and 0.004 % sodium azide. 

➢ Vial 2: PMSF in DMSO. 

➢ Vial 3: Protease inhibitor cocktail (PIC) in DMSO. 

➢ Vial 4: Sodium Orthovanadate in water. 

 

• 10 X Running Buffer, for 1 L: 

➢ 30.3 g Tris – Base (cat # T1503-10KG), from Sigma-Aldrich. 

➢ 10 g SDS (cat # 161-0302), from Bio-Rad Laboratories. 

➢ 144.15 g Glycine (cat # G48-12), from Sigma-Aldrich. 

➢ pH between 8.3 – 8.9 

 

• 1 X Transfer Buffer: 

• 9.09 g Tris – HCL (cat # BP153-1), from Fisher BioReagent® by Thermo Fisher 

Scientific. 

• 43.2 g Glycine (cat # G48-12), from Sigma-Aldrich. 
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• 600 ml 100 % Methanol (cat # A452-4), from Fisher Chemical by Thermo Fisher 

Scientific. 

• Top up to 3 L with double distilled H2O. 

 

2.1.5 Stimuli and Treatment: 

• Human Recombinant IL-13 (cat # 213-ILB), from R&D Systems, Inc. 

• Escherichia Coli (E. Coli) lipopolysaccharide (LPS) (cat #L4391-1MG), Sodium 

Orthovanadate (cat # 450243-10G), Cycloheximide Solution (cat # C4859-1ML), 

Actinomycin D (cat # A 4262), from Sigma-Aldrich. 

• Curcumin (cat # 2841), Arctigenin (cat # 1777), Bengamide B (cat# 5273), from Tocris 

Cookson, Bristol, United Kingdom 

2.2 Methods 

 

2.2.1 Cell Culture: 

BEAS-2B Cells aliquots (passage 39) were stored in liquid nitrogen. BEAS-2B cells were 

propagated (2 X 103 cells/ cm2) in DMEM medium supplemented with 10,000 units/ml of 

Penicillin, 10,000 ug/ml of Streptomycin, and 10 % FBS. The cells were cultured at 37°C, 5% 

CO2, and 90% humidity, and fresh media was added one day after passage and then every two 

days.  

2.2.2 Cell Stimulation: 

Experiments were performed in 12- well plates using cells between passages 43 and 60. The 

stimulations/treatments were preceded with 24 hr of starvation by using DMEM media with no 
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FBS to avoid any effect of FBS on BEAS-2B cells’ response. When BEAS-2B cells became 

confluent in T75 or T25 flasks, they were trypsinized, resuspended in a culture medium, and 

seeded into 12-well plate at a density of 5.0 × 104 cells per well. Upon 80-90 % confluency, the 

cells were serum deprived for 24 hr and then activated in fresh serum free media for up to 24 hr. 

Cells were activated with IL-13 (20 ng/ml), LPS (0.37 - 10 μg/ml) or the two in combination for 

2, 6, or 24 hr. 

To understand the mechanism of the LPS effect on IL-13 signaling, we added inhibitors of 

various signaling molecules activated by LPS or by IL-13 (e.g. curcumin, sodium orthovanadate, 

cycloheximide, actinomycin D … etc.) for the indicated time with or without washing the cells 

with PBS twice. 

 

2.2.3 RNA Extraction, Reverse Transcription and Quantitative Polymerase Chain 

Reaction (RT-qPCR): 

 

RNA Extraction: At the end of treatment in culture, the cells were washed with PBS and then 

3.5 µl β-mercaptoethanol was added into 350 μl RLT buffer which contains a guanidine 

isothiocyanate and used to lyse the cells. The cell lysate was added into QIAshredder tubes and 

centrifuged at full speed for 2 min for shredding and homogenizing the lysate. 350 μl of 70% 

ethanol was added to the lysate for “perfect binding condition” as mentioned per manufacturer's 

instructions. The lysate was then loaded onto RNeasy mini spin column tubes and centrifuged for 

15 sec at 8000 g. The flow through collection tube was discarded and 700 ul of buffer RW1 was 

added to the membrane/filter onto RNeasy spin column and centrifuged for 15 sec at 8000 g. 
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Again, the flow through collection tube was discarded and 500 μl of RPE buffer was added to the 

membrane/filter onto RNeasy spin column and centrifuged for 15 sec at 8000 g. The collection 

was discarded and another 500 μl of RPE buffer was added to the membrane/filter onto RNeasy 

spin column and centrifuged for 2 min at 8000 g.  Finally, the collection tube was removed and 

replaced with a 2 ml eppendorf tube from Qiagen kit. 30 μl RNA/DNA free water was added to 

the RNeasy spin column connected with the eppendorf tube and centrifuged for 1 min at 8000 g. 

The concentration of RNA eluted in 30 µl RNA/DNA free water was measured using 

NanoDrop™ 2000/2000c Spectrophotometers from Thermo Fisher Scientific. 1 µl of 

concentrated RNA was pipetted directly onto pedestal of the NanoDrop Spectrophotometer to 

measure the RNA concentration. 

Reverse Transcription: 0.5 μg of RNA was used for reverse transcription of complementary 

DNA (cDNA). 0.5 μg of oligo dT and 1μl of 10 mM dNTPs (final concentration - 0.5 mM 

dNTPs) with a specific amount of Ultra-Pure DNase/RNase-Free Distilled Water were added to 

make a total volume of 12 μl. The volume was heated to 65 °C for 5 min in PCR machine and 

cooled on ice. 4 µl first strand (FS) buffer, 2 µl Dithiothreitol (DTT), and 1 µl recombinant 

ribonuclease inhibitor (RNase out) were added and mixed into the volume and heated for 2 min 

37 °C in a PTC-100 programmable thermal controller machine from Bio-Rad Laboratories.  

Later, 1 µl of Moloney Murine Leukemia Virus (MMLV) enzyme, which is reverse 

transcriptase, was added, mixed and heated into the volume for 50 min at 37 °C, and finally 50 

min at 70 °C. cDNA is ready for PCR. 

Quantitative Polymerase Chain Reaction: qPCR was performed using Taqman gene 

expression assay according to the manufacturer’s instructions. Briefly, 2 ul of cDNA was mixed 

with 10 ul of gene expression master mix, 1 ul of Taqman gene expression assay and 7 µl of 
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sterile DNase/RNase free H2O for a final total volume of 20 µl then aliquoted into PCR Axygen 

8 - well strip tubes. Also, we did a no template (NTC) control, which they are samples without 

cDNA to detect any contamination of DNA. PCR was performed in an Eppendorf Master Cycler 

Real Plex machine from Thermo Fisher Scientific using 40 cycles of 95 °C for 15 sec, then 60 °C 

for a min.  

 

2.2.4 Enzyme-Linked Immunosorbent Assay (ELISA): 

The human CCL26/Eotaxin-3 DuoSet™ ELISA kit was used to measure CCL26 protein released 

from BEAS-2B cells. 96-Well ELISA Plates were coated by adding 100 µl of 1 µg/ml capture 

antibody, sealed with adhesive plate sealing, and incubated overnight at room temperature. Next 

day, the plate was washed 3 times with wash buffer using Autowash II Microplate Washer. 300 

µl Reagent diluent was added to each well and incubated at room temperature for 60 min to 

block non-specific binding to the capture antibody. The plate was washed again and 100 µl of 

samples and standards in reagent diluent were added, covered, and incubated for 2 hr at room 

temperature. The plate was washed again and 100 µl of detection antibody was added into each 

well, covered, and incubated for 2 hr at room temperature. The ELISA plate was washed as 

previous described and 100 µl of 1:200 streptavidin-HRP in reagent diluent was added to each 

well, covered, and incubated in dark area for 20 min at room temperature. 100 µl of substrate 

solution was added to each well, covered, and incubated in dark area for 20 min at room 

temperature. Finally, 50 µl of sulfuric acid (stop solution) was added to each well, gently tapped 

and mixed for 2-5 min. 
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The plate was read by PowerWave XS Microplate Reader from Bio Tek to determine the optical 

density of each well and a seven point for standard curve (from 4000 pg to zero pg) was been 

made using graph prism to calculate the concentration of CCL26 in the samples. 

 

2.2.5 Western Blotting: 

At the end of the cell treatments, the 12-well plate was placed on ice immediately and media 

were aspirated.  

Cell Lysate: 200 µl RIPA buffer containing Protease inhibitor cocktail (PIC) (1 ml of RIPA/20 

µl of PIC) were added to each well to lyse the cells. The lysate was vortexed and incubated at 4 

°C for 15 min for complete lysis. The lysate was then spun down at 16,000 g for 10 min to 

remove cell debris. Later, 150 µl of supernatant from lysated samples was transferred to 1.5 ml 

tubes and mixed with 75 µl of 3 X Red Loading buffer. The cell lysates were boiled for 5 min to 

break down the secondary structure of protein. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Gel Transfer 

and Immunoblot: The lysate was loaded in 10 % precast gel from Bio-Rad, and the gel was 

connected to Bio-Rad Power PAC 200 with 160 volts and constant amperage for 75 min to 

separate proteins based on size by gel electrophoresis. The proteins were then transferred into 0.2 

µm Nitrocellulose Membranes by electrophoresis transfer using transfer buffer and Bio-Rad 

device with 400 mA and constant voltage for one hr at 4 °C. Following transfer, the membrane 

was blocked with 50 % odyssey blocking buffer in PBS for 1 hr at room temperature on VWR® 

Rocking Platform Shaker. The membrane was then incubated in primary antibody containing 50 

% odyssey blocking buffer, 50 % PBS, and 0.05% Tween 20 at 4 °C overnight on the Shaker. 
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Next day, following three washings with washing buffer (0.05 % tween 20 in PBS) to remove 

unbound primary antibody, the membranes were incubated with the secondary antibody (diluted 

in 50 % odyssey blocking buffer, 50 % PBS, and 0.05% Tween 20) for 1 hr at room temperature 

on a shaker. Following the incubation, the membrane was washed again three times for 5 

min/wash. Finally, the membrane was washed with PBS to remove remaining washing buffer 

and then placed on Li-Cor Odyssey Scanner and ImageJ software was used to quantify protein 

bands. 

 

2.2.6 Statistics  

Statistical analysis was performed using one-way analysis of variance (ANOVA) when there 

were three or more sets of data or Students t-test (two-tailed) when there were only two sets of 

data to determine whether there were any statistically significant differences by using the 

GraphPad Prism 5 software, GraphPad Software, San Diego, CA. Statistical significance was 

achieved when P < 0.05. 
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Chapter 3 
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3.1 IL-13 Induced CCL26 but not CCL24 or CCL11 mRNA Upregulation 

in BEAS-2B Cells 

              It has been reported that airway epithelial cells produce several CCR3 ligands, such as 

CCL11/eotaxin-1, CCL24/eotaxin-2, and CCL26/eotaxin-3, both in vitro in response to TH2 

cytokines such as IL-13 and IL-4 and in vivo in response to allergen challenge or in asthma 

(151,167,169,184,185). To study whether IL-13 induces CCL11, CCL24 or CCL26 mRNA in 

the human bronchial epithelial cell line BEAS-2B, we stimulated BEAS-2B cells with IL-13 (20 

ng/ml) for 24 hr. IL-13 strongly upregulated CCL26 mRNA (78.3 ± 3.9 fold over unstimulated 

cells, n= 13, p < 0.001) (Fig.4) while there was no detection of CCL11 or CCL24 mRNA in 

resting or IL-13 activated cells. Since CCL26 was the only eotaxin induced by IL-13 on BEAS-

2B cells, we then studied in more detail IL-13-induced CCL26 mRNA upregulation in BEAS-2B 

cells. 

 

3.2 LPS Inhibited IL-13 -Induced CCL26 mRNA Expression in BEAS-2B 

Cells in a Concentration and Time - Dependent Manner 

                      LPS can induce a strong immune response and cause the release of critical 

proinflammatory cytokines through activation of TLR-4 in airway epithelium (186). To 

investigate the potential effect of LPS on eosinophilic chemoattractant induction by IL-13 

stimulation, BEAS-2B cells were incubated with IL-13 (20 ng/ml), LPS (10 μg/ml) alone or 

together for 24 hr. LPS on its own had no effect on CCL26 mRNA levels in BEAS-2B cells, but 

inhibited the effect of IL-13 on CCL26 mRNA levels (Fig.5, A).  
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Moreover, using trypan blue dye exclusion, we showed that there were 5.2 % dead cells in 

control cells, 4.7 % in IL-13 -treated cells, 5.4% in LPS -treated cells, and 5.4% in IL-13+LPS -

treated cells (experiment done once). These data indicate that the effect of LPS o0n CCL26 is not 

the result of cell toxicity. 

     A concentration of 10 μg /ml of LPS completely inhibited IL-13 -induced CCL26 

mRNA expression. To identify the lowest concentration of LPS that mediates inhibition, we 

stimulated cells with IL-13 (20 ng/ml) in the presence of different LPS concentrations (10, 3.33, 

1.11, and 0.37 μg/ml) for 24 hr. We found that concentrations of LPS from 10 to 1.11 μg/ml 

significantly inhibited IL-13 -induced CCL26 mRNA expression, while 0.37 μg /ml of LPS had 

no significant inhibitory effect (Fig.5, B). 

                 In initial experiments, we found that the 24 hr of incubation of IL-13 and LPS together 

leaded to complete inhibition of CCL26 mRNA upregulation. We next studied the time course of 

this effect. BEAS-2B cells were treated with IL-13 and LPS (10 μg/ml) for 2, 6, or 24 hr. LPS 

induced significant inhibition of IL-13 -induced CCL26 mRNA at 2 and 6 hr, but only at 24 hr it 

inhibited CCL26 induction completely (Fig.5, C).  

 

3.3 LPS Inhibited IL-13 -Induced CCL26 Protein Release from BEAS-2B 

Cells in a Concentration and Time - Dependent Manner 

                   The observation that LPS inhibited IL-13 -induced CCL26 mRNA expression was 

further confirmed at the protein level. We analyzed CCL26 protein released in supernatants of 

IL-13 and/or LPS stimulated BEAS-2B cells by ELISA. IL-13 stimulation strongly induced 

CCL26 protein release (1462 ± 55.1 pg/ml, compared to undetectable levels of CCL26 protein 
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release in unstimulated cells, n=13, p < 0.001), while LPS alone did not induce CCL26 release. 

LPS was able to inhibit (93% ± 4.4 % inhibition) IL-13 -induced CCL26 release when the cells 

were stimulated with IL-13 and LPS simultaneously (Fig.6, A). We also stimulated cells with IL-

13 (20 ng/ml) with different LPS doses (10, 3.33, 1.11, and 0.37 μg/ml) for 24 hr. Concentrations 

of LPS from 10 to 1.11 μg/ml inhibited IL-13 -induced CCL26 protein release, but 0.37 μg/ml of 

LPS mediated no inhibition (Fig.6, B). 

                LPS effect on IL-13 -induced CCL26 release following different co-incubation times 

was also evaluated. BEAS-2B cells were stimulated with LPS and IL-13 for 2 hr, 6 hr and 24 hr. 

Supernatants were collected and ELISA used to measure CCL26 release. LPS mediated 

significant inhibition of CCL26 protein release in the supernatant at all 3 time points tested 

(Fig.6, C).  

These results support the qRT-PCR results that showed decreased CCL26 mRNA expression in 

the presence of LPS (Fig.5). 

 

3.4 LPS Effect on IL-13 – Mediated Signaling 

                    IL-13 signaling involves tyrosine phosphorylation and receptor association of a 

number of downstream molecules including Janus kinase 2 (JAK-2) and Signal transducer and 

activator of transcription 6 (STAT6) (Fig.2). We hypothesized that inhibition of IL-13 -induced 

CCL26 mRNA upregulation by LPS was associated with inhibition of IL-13 -induced JAK-2 and 

STAT6 phosphorylation. To accomplish this, BEAS-2B cells were treated with IL-13 (20 ng/ml), 

LPS (10 μg/ml) or both for different periods up to 30 min. Western blot analysis showed IL-13 -

induced STAT6 phosphorylation was time dependent; within 5 min of activation slight 
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phosphorylation was observed, which peaked after 30 min of IL-13 stimulation (Fig.7, A). LPS 

alone did not induce STAT6 phosphorylation. However, when LPS was added to the cells 

together with IL-13 and incubated for 30 min, LPS reduced IL-13 -induced STAT6 

phosphorylation (Fig.7, B and C). 

 Previous studies have demonstrated STAT6 is tyrosine phosphorylated by JAK-2 kinase 

following IL-13 receptor activation. We next determined whether LPS also inhibits IL-13 -

induced JAK-2 phosphorylation. To investigate this postulate, BEAS-2B cells were treated with 

IL-13 (20 ng/ml), LPS (10 μg/ml) or both together for 30 min. Western blot analysis showed 

LPS alone did not induce JAK-2 phosphorylation. However, when LPS added together with IL-

13 to the cells and incubated for for 30 min, LPS significantly reduced IL-13 -induced JAK-2 

phosphorylation (Fig.7, D and E).  

 

3.5 LPS Inhibited IL-13 -Induced CCL26 mRNA Upregulation when It is 

Added Together With IL-13 as Well as 30 Min prior to IL-13 

stimulation. 

We have shown that simultaneous stimulation with LPS and IL-13 inhibited IL-13 -induced 

CCL26 and also decreased IL-13 -mediated JAK-2/STAT6 phosphorylation. IL-13 induced 

CCL26 is dependent on STAT6 phosphorylation and we showed that IL-13 -induced STAT6 

phosphorylation peaks after 30 min (187). Taken together, we hypothesized that to inhibit IL-13 

-induced CCL26, LPS needed to be added simultaneously with IL-13 or by 30 min after IL-13 

but not as late as 90 min after IL-13 when there is little phosphorylation of STAT6. To test this, 

BEAS-2B cells were incubated with one of either IL-13 for 30 and 90 min or LPS for 30 min and 
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then LPS was added to IL-13 -stimulated cells or IL-13 was added to LPS - stimulated cells and 

cells were incubated for a further 24 hr. We found that LPS inhibited CCL26 mRNA when it was 

added together with IL-13, as well as when added 30 min before or after IL-13 stimulation. 

However, LPS did not inhibited IL-13 -induced CCL26 mRNA when LPS was added to the 

culture media 90 min after the initiation of IL-13 stimulation (Fig.8). 

 

3.6 NF-κB Antagonists Prevented The Inhibitory Effect of LPS on IL-13 -

Mediated CCL26 mRNA Upregulation and Protein Release 

 NF-κB is a transcription factor and a central regulator of LPS effects. Thus, we postulated that 

LPS inhibition of IL-13 -induced CCL26 is mediated through NF-κB activation. To test this 

postulate, we incubated the cells with three different NF-κB inhibitors, curcumin (Curc.) (10 

µM), bengamide B (Beng. B.) (1 µM), and arctigenin (Arc.) (1 µM), separately for 2 hr before 

adding IL-13 alone, LPS alone or together for 24 hr. NF-κB inhibitors reduced the effect of LPS 

on IL-13 -induced CCL26 mRNA upregulation (Fig.9). However, curcumin and Bengamide B 

also enhanced IL-13 -induced CCL26 mRNA upregulation (Fig.9, A, C). We also tested LPS -

induced IL-8 mRNA upregulation, a known positive control for NF-κB activation when adding 

curcumin, an inhibitor of NF-κB. We found curcumin inhibited LPS -induced IL-8 mRNA 

upregulation (Fig.9, D). 

              These three NF-κB inhibitors also prevented the effect of LPS on IL-13 -induced 

CCL26 protein release (Fig.10). This result also supports the qPCR results (Fig.9). 
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3.7 Inhibition of New Protein Synthesis Prevented The Inhibitory Effect of 

LPS on IL-13 -Mediated CCL26 mRNA Upregulation. 

                    NF-κB is a transcription factor activated by LPS. When NF-κB becomes activated, it 

translocates to the nucleus and activates gene transcription. We showed that antagonists to NF-

κB prevented LPS from inhibiting IL-13 -induced CCL26. This observation may suggest that 

LPS-mediated NF-κB activation induced the synthesis of one or more proteins that are required 

for LPS-mediated CCL26 inhibition. To test this, BEAS-2B cells were incubated with the 

translational inhibitor cycloheximide (10 μg/ml), for 30 min before being stimulated with LPS 

and/or IL-13 for 24 hr. In the presence of cycloheximide, LPS did not inhibit IL-13 -induced 

CCL26 mRNA upregulation (Fig.11, A). We also did ELISA; just confirm there is no CCL26 

protein release by IL-13 in presence of cycloheximide (Fig.11, B).  

 

3.8 Tyrosine phosphatase inhibitor did not prevent the inhibitory effect of 

LPS on IL-13 mediated CCL26 mRNA upregulation. 

                   Above, we showed that LPS decreased tyrosine phosphorylation of JAK-2 and 

STAT6 in IL-13 mediated JAK-2/STAT6 phosphorylation. Therefore, we hypothesized 

activation of a tyrosine phosphatase activity might cause this reduction in tyrosine 

phosphorylation. To test this hypothesis, we incubated the cells with IL-13 alone or in 

combination with LPS for 24 hr in the presence or absence of tyrosine phosphatase inhibitor 

sodium orthovanadate (Na3VO4) (10 μM or 25 μM). As predicted, Na3VO4 enhanced IL-13 

effect on CCL26 mRNA. However, in the presence of Na3VO4, LPS inhibited IL-13 -induced 
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CCL26 mRNA; indicating that tyrosine phosphatase activity was not the cause of inhibitory 

effect of LPS on CCL26 mRNA (Fig.12).  
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Figure 4 

 

Figure 4: Effect of human recombinant IL-13 on CCL26/Eotaxin-3 mRNA expression by BEAS-2B, human airway epithelial 

cells. Cells were incubated in the presence or absence of IL-13 (20ng/ml) for 24 hr and then harvested and RNA isolated. CCL26 

mRNA was determined by qRT-PCR. There was no detection of CCL11 or CCL24 mRNA in resting or IL-13 activated cells. 

Results shown are “mean ± SEM” from 13 independent experiments. P < 0. 001 compares the value in IL-13 -stimulated cells 

with the unstimulated cells. P value and statistical analysis have been done by paired t-test analysis. 
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Figure 5 
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C) 

 

Figure 5: LPS effect on IL-13 -induced CCL26 mRNA in BEAS-2B cells. A) BEAS-2B cells were stimulated with IL-13 (20 

ng/ml) alone or in combination with LPS (10 μg/ml) for 24 hr. B) Different LPS doses were used in combination with IL-13 (20 

ng/ml). C) The cells were stimulated as described previously and incubated for 2 hr, 6 hr, and 24 hr. The cells were harvested and 

RNA isolated. CCL26 mRNA was determined by qRT-PCR. Results shown are mean ± SEM of values from 4 separate 

experiments. CCL26 mRNA was determined by qRT-PCR. P value and statistical analysis have been done by one-way ANOVA. 
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Figure 6 
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                   C) 

 
Figure 6: LPS effect on IL-13- induced CCL26 protein release in BEAS-2B cells supernatants. A) BEAS-2B cells were 

stimulated with IL-13 (20 ng/ml) alone or in combination with LPS (10 μg/ml) for 24 hr. B) Different LPS doses were used in 

combination with IL-13 (20 ng/ml). C) The cells were stimulated as described early and incubated for 2 hr, 6 hr, and 24 hr. The 

supernatants were collected and CCL26 was evaluated by ELISA. Results shown are mean ± SEM of values from 4 independent 

experiments. P value and statistical analysis have been done by one-way ANOVA analysis. 
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Figure 7 
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D) 

 

 

 

                         

E) 

 

Figure 7: Phosphorylation of STAT6 or JAK2 by IL-13 in BEAS-2B cells. A) Representative gel of western blot analysis of IL-

13 -induced tyrosine phosphorylation of STAT6 at different time points. B) Representative gel of western blot analysis of LPS 

and/or IL-13 -induced tyrosine phosphorylation of STAT6. C) Densitometric analysis of the ratio of phosphorylated STAT6 over 

total STAT6 in western blot experiments (n=4). D) Representative gel of western blot analysis of LPS and/or IL-13 -induced 

tyrosine phosphorylation of JAK2. E) Densitometric evaluation of the data in separated western experiments showing the ratio of 

phosphorylated STAT6 or JAK-2 from their total. The blots are representative of 4 independent experiments. P value compares 

the value in IL-13 alone with IL-13 in combination with LPS stimulation.  
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Figure 8 

 

 

 
Figure 8: LPS effect on IL-13 -induced CCL26 mRNA in BEAS-2B cells. BEAS-2B cells were stimulated with IL-13 (20 ng/ml) 

for 30 or 90 min before adding LPS (10 μg/ml) or LPS for 30 min before adding IL-13 without changing the culture media for 24 

hr. The cells were harvested and RNA isolated. CCL26 mRNA was determined by qRT-PCR. Results shown are mean ± SEM of 

values from 3 separate experiments. CCL26 mRNA was determined by qRT-PCR. P value and statistical analysis have been done 

by one-way ANOVA. 
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Figure 9 
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D) 

 

Figure 9: The effect of NF-κB inhibition by curcumin, arctigenin, and bengamide B on either LPS or IL-13 or both together in 

BEAS-2B cells. A, B, and C) BEAS-2B cells were pretreated with three different NF-kB inhibitors before LPS stimulation with 

or without IL-13. D) curcumin (curc) effect on LPS- induced IL-8 mRNA. CCL26 mRNA and IL-8 mRNA were determined by 

qRT-PCR Results shown are mean ± SEM of values from 5 independent experiments for curcumin results and 3 independent 

experiments for arctigenin (Arc) and bengamide B ( Beng.B). No significant difference between IL-13 alone and IL-13+LPS that 

pretreated with NF-κB inhibitor. 
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Figure 10 
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Figure 10: The effect of NF-κB inhibitors (curcumin, arctigenin, and bengamide b.) on LPS-stimulated BEAS-2B cells with or 

without IL-13. A, B, and C) BEAS-2B cells were pretreated with three different NF-κB inhibitors before LPS stimulation with or 

without IL-13. CCL26 release in supernatants was determined by ELISA. Results shown are mean ± SEM of values from 3 

separate experiments. No significant P value between IL-13 alone and IL-13+LPS that pretreated with NF-κB inhibitor. 
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Figure 11 

A) 

 

B)  

 

Figure 11: The effect of Protein synthesis inhibitor (cycloheximide) on LPS-stimulated BEAS-2B cells with or without IL-13. A) 

CCL26 mRNA was determined by qRT-PCR. B) CCL26 release in supernatants was determined by ELISA. Results shown are 

mean ± SEM of values from 4 separate experiments 
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Figure 12 

 

 

 

Figure 12: The effect of the tyrosine phosphatase inhibitor Na3Vo4 on LPS-stimulated BEAS-2B cells. The cells were stimulated 

as previously described with or without Na3Vo4. The cells were harvested and RNA isolated. CCL26 mRNA was determined by 

qRT-PCR. Results shown are mean ± SEM of values from 3 separate experiments. 
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Chapter 4 

Discussion and Future Direction 
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4.1 Discussion 

Since Paul Erlich’s discovery of eosinophils in 1879, the infiltration of eosinophils into the lung 

has been observed in conjunction with allergic asthma and suggested to be a significant 

contributor in the pathogenesis of asthma. Since then, numerous studies have revealed diverse 

and complex functionality of eosinophils in allergic asthma including: their ability to present 

antigens, secrete an array of cytokines and chemokines, degranulate, release lipid mediators, and 

induce T cell polarization (155). Increased numbers of eosinophils in blood and sputum have 

also been linked with asthma exacerbation and worsening of asthma symptoms (155,188). As a 

consequence of the diverse role of eosinophils in asthma, they have been identified as a target for 

therapeutic intervention. Indeed, therapeutic approaches are developing to eliminate eosinophils 

in patients suffering from airway eosinophilic infiltration, especially patients with severe, and 

frequently exacerbating asthma (189,190). Anti-IL-5 antibodies, as an example, have been 

developed to reduce the number of eosinophils in both sputum and blood, resulting in a reduction 

in the frequency of exacerbations and in the need for treatment with systemic glucocorticoids 

(191,192). Since epithelial cells produce eotaxins, eosinophilic chemotactic factors in response to 

TH2 cytokines such as IL-13 and IL-4, we used in vitro culture of human bronchial epithelial 

cells to test the effect of LPS on the induction of eotaxins by IL-13 stimulation.  

We have established that LPS inhibits IL-13 -induced CCL26 production. We also showed that 

the LPS inhibitory effect is mediated by reduction of JAK-2 and STAT6 phosphorylation 

through LPS-mediated NF-κB activation. These results may help to develop strategies that will 

lead to decreased eosinophils in airway 

                 Our laboratory observed that allergens such as house dust mite (HDM) and cockroach 

inhibited IL-13 -induced CCL26 in both primary human bronchial epithelial cells (NHBE) and 



 60 

the human bronchial epithelial cell line (BEAS-2B) (unpublished data by K Alzahrani and V 

Gandhi). We generated two hypotheses to explain this observation. One postulate was that this 

inhibition is a result of allergen -derived proteases acting through PARs. Another postulate was 

that this inhibition is due to the presence of LPS in the allertgen extract preparations we have 

been using. This thesis has focused on the second hypothesis, that LPS from contaminating 

bacteria mediated the effect of allergens in our previous studies, and therefore we investigated 

the effects of LPS on IL-13 induced eotaxins upregulation in airway epithelial cells. 

               Immunohistochemical (IHC) studies for eotaxins demonstrated that the bronchial 

epithelium has greater eotaxin intensity than other tissues in humans and mice (153,193,194). In 

this study, we used BEAS-2B cells instead of NHBE for a number of reasons; BEAS-2B cells 

are a homogeneous clone without the differences that that we and others have observed between 

NHBE cells of different origin, they have a longer lifespan thatn NHBE cells, and they are also 

easier to grow and less costly and therefore they represent an excellent in vitro experimental 

model of human airway epithelium. Moreover, BEAS-2B cells possess typical epithelial 

morphology and many functional characteristics similar with primary epithelial cells, such as 

squamous differentiation and expression of important adhesion molecules (195,196). Several 

studies have shown that IL-4 and IL-13 can activate bronchial epithelial cells by directly 

inducing the production of a number of chemokines, including CCL11, CCL24, and CCL26 

(184,185). IL-4 and IL-13 have overlapping functions due to a shared subunit in their receptor 

complexes (197). Numerous studies highlight important roles for IL-13 and its main subunit (the 

IL-13Rα1) in comparison with IL-4 in asthma. Studies in IL-13Rα1-/- mice established that 

certain features of asthma, including: eotaxin production, mucus production, airway resistance, 

fibrosis, and chitinase (pathogenic molecule associated with asthma severity) were completely 
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dependent on IL-13Rα1(198–201). Supernatant from TH2 cells administrated intranasally to 

naive mice induced eotaxin production along with lung eosinophilia. A neutralizing anti-IL-13 

antibody removed most of the eotaxin-inducing activity from TH2 supernatants, suggesting that 

IL-13 is more potent than IL-4 at inducing eotaxin in mouse bronchial epithelium in vivo (200). 

Thus, we used IL-13 but not IL-4 to stimulate the BEAS-2B cells to induced eotaxins. We found 

CCL26 was the only eotaxin detected by qPCR after 24 hr in both resting and IL-13 - activated 

BEAS-2B cells. In contrast, other studies have shown production of CCL11, CCL24, as well as 

CCL26 by IL-13 in BEAS-2B cells (177,185). The exact reasons for these differences from our 

results are not clear, although they used the same method for detection (qPCR). In addition, they 

used different BEAS-2B cells passage numbers as well as different culture media and different 

time of stimulation ( less than 24 hr) (177,185). These differences may explain the different 

results. Several studies have shown that CCL26 is produced in large amounts by human lung 

epithelial cells and also showed that CCL26 is significantly increased after 24 hr of allergen 

challenge (more IL-13 in BAL fluid) (167,185,202,203). These results support findings that 

CCL26 is more effective in recruiting eosinophils in human airways than CCL11 or CCL24 and 

thereafter we carried out our experiments with checking only CCL26. 

              Airway epithelium is a major portal of entry for pathogens and it employs several 

defense mechanisms (e.g. physical barrier..etc.) to eliminate airborne pathogens encountered in 

breathing, including LPS- contaminated airborne pathogens (41). Airway epithelium can detect 

LPS via TLR-4 and stimulate immune cells (72). Heterogeneity of LPS within a particular 

bacterial strain and it is contamination with other inflammatory components of the bacterial cell 

wall have complicated the use of LPS and choosing its working concentration. We chose 10 

μg/ml of LPS based on previous studies of BEAS-2B cells that showed this concentration of LPS 
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can induce NF-κB activation and other LPS-mediated response (e.g. JNK, MAPK, PI3-kinase, 

and tyrosine kinases) without affect the viability of the cells (including membrane integrity and 

cell degeneration) (186,204,205). Thereafter, we used 10 μg/ml as well as different LPS 

concentrations and we showed only 10 μg/ml of LPS completely inhibited CCL26 mRNA by IL-

13 stimulation and returned to the baseline (unstimulated cells). The viability of the LPS-treated 

cells with 10 μg/ml of LPS was determined and showed this concentration did not affect the 

viability.  

 

In another hand, IL-13 when it was first described in 1993, it is known as a T cell - derived 

cytokine that can inhibit several inflammatory cytokine productions including that were 

produced by LPS stimulation (117,206). Numerous studies demonstrated that IL-13 has 

inhibitory effect on LPS induce IL-6, IL-8 and TNF as well as NF-κB activation. This is 

controversial with our finding where we found the opposite whereas LPS inhibited IL-13 -

induced CCL26. Going back to those studies that showed inhibitory effect of IL-13 on LPS, they 

were different from the present study in the working concentration of LPS that they used. For 

example, Lotz al et. showed IL-13 inhibited LPS- mediated response by using 10 ng/ml of LPS 

in epithelial cells (207). Other studies by D'Andre et al. and Marie et al. showed IL-13 inhibited 

LPS- mediated response by used 1 ug/ml or 100 ng/ml of LPS in peripheral blood mononuclear 

cells (206,208). These studies along together with my study suggest this might be LPS 

concentration dependent and LPS concentration will determined the inhibitory effect of either 

LPS or the IL-13. This might explain that 370 ng/ml of LPS did not inhibit IL-13 -induced 

CCL26 and support the importance of high LPS concentration in order to overcome the 

inhibitory effect of IL-13 and cause inhibition of IL-13 -induced CCL26. 
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We also showed that inhibition of CCL26 mRNA upregulation and protein release can happen as 

early as 2 hr of adding IL-13 and LPS simultaneously, suggesting an early effect and crosstalk 

between LPS and IL-13 signaling pathways. To understand the mechanism of the inhibitory 

effect of LPS on IL-13 mediate signaling, we investigated the IL-13 signaling pathway. 

Dimerization of IL-13 receptor subunits enhances JAK-2 activity and leads to phosphorylation of 

tyrosine residues in the cytoplasmic domain of IL-13Rα1 (209,210). Then, these residues act as 

docking sites for STAT6. Studies of STAT6 wild type–transfected cells in mice showed 

significant increase in eotaxin protein secretion after IL-13 stimulation. Co-transfection with a 

mutant dominant negative STAT6 inhibited activation of the eotaxin promoter by IL-13 (177). 

These studies indicate that IL-13 stimulation of eotaxin expression in airway epithelial cells is 

dependent on STAT6 (177). Therefore, we investigated if the inhibitory effect of LPS on CCL26 

production by IL-13 associated with inhibition of IL-13 -induced STAT6 activation. Western 

blot analysis revealed that LPS inhibited IL-13 -mediated STAT6 phosphorylation, suggesting 

that the mechanism of inhibition occurred in the cytoplasm and in early event of IL-13 signaling. 

STAT6 must be tyrosine phosphorylated by JAK-2 for STAT6 dimerization and nuclear 

translocation to occur (130). We also checked JAK-2 phosphorylation by western blot. Like 

STAT-6, LPS inhibited IL-13 mediated JAK-2 phosphorylation. We concluded that the 

inhibition of STAT6 phosphorylation was a result of inhibiting of JAK-2 phosphorylation. In 

addition, western blot for JAK-2 and STAT6 phosphorylation revealed the inhibition occurred 

early in the signaling pathway of IL-13, indicating a possible interaction between LPS signaling 

and IL-13 signaling pathways.  



 64 

                  We continued studying the mechanism of LPS – mediated signaling cascades and we 

investigated the role of NF-κB, the central regulator of LPS effects and a prominent transcription 

factor. To determine the role of NF-κB in the LPS effect on IL-13 -induced CCL26, we first used 

curcumin to inhibit NF-κB activation. Curcumin, a component of the curry spice, recently 

received attention for its antioxidant, anti-inflammatory, and antitumor properties (211,212). The 

anti-inflammatory actions of curcumin seem to be closely related to the suppression of cytokine-

mediated NF-κB activation by blocking IκB kinase (IKK) activity in mouse epithelial cells. 

Curcumin also can block c-Jun/ Activator protein 1 (AP-1) pathway in mouse fibroblasts 

(213,214). Here, we have shown that curcumin removed the inhibitory effect of LPS in IL-13 -

induced CCL26. IL-8 mRNA upregulation by LPS is known to be dependent on NF-kB 

activation by LPS, therefore we checked the effect of curcumin on LPS induced IL-8 mRNA 

upregulation and we confirmed by qPCR that curcumin inhibited IL-8 mRNA upregulation. 

However, curcumin is considered to be general inhibitor for NF-κB and therefore, we used two 

other NF-κB inhibitors, bengamide B and arctigenin to clarify the role of NF-κB in this 

inhibitory effect. There are reports that bengamide B decreases IκBα phosphorylation and 

attenuates expression of TNF-α, IL-6 and MCP-1 by LPS stimulation (215). The anti-

inflammatory actions of arctigenin were documented through inhibition of c-Jun/AP-1 

activation, LPS-induced iNOS expression, LPS-induced TNF production, and NF-κB activation 

through inhibit IκBα phosphorylation and p65 nuclear translocation (216–218). Like curcumin, 

both arctigenin and bengamide B removed the inhibitory effect of LPS on IL-13 -induced CCL26 

mRNA upregulation and protein release. These results reveal the importance of NF-κB in the 

regulation of IL-13 -induced CCL26 production and raise a question about the function of NF-κB 

independent of being a transcription factor. Shen et al. provided evidence that NF-κB and 
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STAT6 can bind to each other in studies of co-immunoprecipitation and glutathione S-transferase 

pull-down assays (219). However, it is unknown if this interaction between NF-κB and STAT6 

occurs in the cytoplasm or the nucleus and therefore, it was important to determine if NF-κB 

functions as a transcription factor in this interaction and if new protein synthesis is a requirement 

for this NF-κB -mediated inhibition. 

                 Cycloheximide is an inhibitor of protein synthesis and exerts its effect through 

interfering with the movement of mRNA and transfer RNA (tRNA) in the translational 

elongation phase (220). We tested if new protein synthesis was associated with the inhibitory 

effect of LPS on IL-13 -mediated signaling by using cycloheximide. Cycloheximide removed 

inhibitory effect of LPS on IL-13 - induced CCL26 mRNA upregulation, suggesting that LPS 

stimulation activated NF-κB leading to the synthesis of new protein and subsequent the 

inhibition of CCL26. Therefore, we hypothesized that this newly synthesized protein might be a 

tyrosine phosphatase which would dephosphorylate JAK-2 and STAT6. Thus, we used a tyrosine 

phosphatase inhibitor, sodium orthovanadate. However, sodium orthovanadate did not remove 

the inhibitory effect of LPS, suggesting that a phosphatase was not involved. The newly 

synthesized protein induced by LPS stimulation could be different type of phosphatase such as 

serine or threonine phosphatase or could be other non-phosphatase molecules. 

 

4.3 Future Direction 

I have studied the effect of LPS, on IL-13 -induced eosinophilic chemoattractant, CCL26, using 

a BEAS-2B cell-based in vitro model. Despite my research progress, many questions remain, and 

the ground is fertile for continued investigations. The question about the mechanism of the effect 
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of LPS on IL-13 induced CCL26 remains unanswered. We have shown a role of NF-κB in the 

process of LPS inhibition in IL-13 -induced CCL26 and we have evidence that new protein 

synthesis is involved. 

However, it remains possible that a different phosphatase such as a serine - specific phosphatase, 

threonine-specific phosphatase, or histidine- specific phosphatase could be involved (221,222).  

The NF-κB inhibitors which were used here differ in their specificity and sensitivity in inhibiting 

NF-κB molecule. Therefore, silencing NF-κB by short interfering RNA targeting NF-κB is 

necessary to solidify our results with NF-κB antagonists.  

Suppressors of cytokine signaling 1 and 3 (SOCS -1 and SOCS -3) are known to be induced 

following IL-13 stimulation and work as negative regulators of IL-13 signalling and blocking 

JAK-2/STAT6 phosphorylation (223). It would be important to investigate the production of 

SOCS 1 and SOCS 3 following stimulation by either LPS or IL-13 or both together.  

We also showed LPS inhibited IL-13 – mediated JAK-2 phosphorylation. It would be 

appropriate to determine the dimerization of the two subunits of IL-13 receptor was inhibited by 

LPS stimulation or not. 
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