U S N

-

The quallty of this mlcrotorm is heav:ly dependent upon the

- quality of the original thesis submitted for microfilming.

~ Some- pages may haye indistinct print espeCIaIIy |t the -

Every effort hasheen made to ensure thé highest qual;ty of

freproductlon possible-

If'pages are missing, contact the unuversny which granted
the degree .

.

_ original pages were typed with a poor typewriter ribbon or

lf the university sent us an inferior photocopy

: Prewously copyngh}ed materla[s (journal arttcles pub

lished tests, etc’are not filmed.

‘\\ BN

Reproduct‘pn infullor inpart of thls microform is governed

by the Canadian Copynght Act,R.S.C. e1970 6. C-30.

©NL-339 {r. 88/04)

v o s 4

«

| .* National lerary . Bibliothéque nationale -
MTHW ofCanada. . ..~ duCanada |
- ;ﬁ; Canadian-Theses'Service Service des thée(e\s ca'nadiennes ) " .
~ % . L ) ! ) . .
& Ottawa, -Canada ! .. . y
K1A N4 ‘ a \
" o " . ‘ .
" ) .. b o -
’ | |
' ‘ )
) ‘ N ~ »
¢ T~ . .
) '.) , ’ i . : . . . * - N
. NOTICE T AVIS

eNqualité de c_ette,-\microtprme dépend grandement de la

ité de la thése soumis¢ au microfilmage. Nous avons

.tout fait pour assurer une quahte supérieure de repreduc-
tlon

© S'il_manque des pages, veuillez communuquer avec
B t‘umvers:te qui a conféré le grade

o . e

La quallte d'impression de certaines pages peut Iausser a.

+ desirer, surloul si les pages originales ont été dactylogra-

parvemr une photocopte de quallte mteneure

Les documents/quu font déja Iob|e d'un droit d'auteur

(artictes de revue,

tests publiés, .elc.) ne sont pas
microfilmes. .

¢

LA reproduction, méme partielle, de cetle mtcrotorme est’

.. soumise a la Loi canadnenne sur le droit dauteur SRC

1970, ¢. C-30.

. )

e

. phiées a 'aide d’'un ruban usé ou si ' uruversute nous a tatt '



THE UNIVERSITY OF ALBERTA

B

¢ ) f" 3 > ! ‘ o | g .
Cage 'y . Ng 0 '
: Color-critical Hypergraphs *
’ \-=="~ L. ) » L h / )
. ///' ;
/
BY. - |
y ) DONOVAN ROss HARE
l ' ) ——

& A THESIS '

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH-

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

‘

. K] : . . ,’ ,
DEPARTMENT OF MATHEMATICS

——
‘e

EDMONTON, ALBERTA
FALL 1987 .




. . Q . ’ .
Permission has beéen granted

to the National Library of

‘Canada ‘to microfilm this
thesis and to lend or sell
copies df the film.

The authror. (copyright owner)
has reserved other
publication rights, -and
neither the

.may be printed or otherwise
reproduced without his/he;
 written permission. -

¢

1EBN 0-315-40942-8

" du Canada 'de

thesis nor
extensive .extracts fro it

v

L'autorisation a &té accordée.
A 1la Bibliothéque nationale
-microfilmer
cette thése .et de préter ou

de. vendre des exemplaires du

film.

L' auteur (titulaire du d?b\l
d'auteur) se réserve 'le

,autres droits de publication-

ni la thése ni de “-longs
extraits de celle-ci ne
- doivent &tre imprimés ou

autrement reproduits sans son.
autorisation écrite.

e



J N
. THE UNIVERSITY OF ALBERTA

~ RELEASE FORM

NAME OF AUTHOR: Donovan Ross Hare . S

TITLE OF THESIS: = Color-critical Hyp,ei-graphs

-

DEGREE:  Master of Science

YEAR THIS DEGREE GRANTED: 1987

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY

to reproduce sing&e copies of this thesis and to, lend or'sell such copies for private,

.

<

scho'larfy or scientific résearch purposes only.
R . ) N . ! \ . : \
The author reserves other publ
sive extracts. from it may be pﬁnted or otherwise feproduéed without the author’s

written permission. ' v. ﬁ - '
. o : .

— NG

* Permanent Address:’
11036 86 Ave:nue
Edmonton, Alberta
Canada T6G OW9

»

-

Date: AU\%\,\_&'\' 2_\/ lqg—?

g

ication rights, and neither the thesis nor exten- °

1



THE UNIVERSITY OF ALBERTA

"FACULTY G‘F\GRADUATE STUDIES AND RESEARCH

;l‘h/en{l'dersigned c'ertify\tha.t they have read, and recommend to the Faculty |

Ya

of Graduate Studles and Research for acceptance, a thesxs entltlea Color-crmcal

~

Hypergraphs submitted by Donovan Ross Hare in partxal fulﬁllment of the

. ' gl
requirements for the degree of Master of Science. ~

~ - L AL pYF
- * ' 'Superv1sor

l rq.t /L-‘-\q /

| | 2\4

Date: W aZ,I /9&7



Ik

TO MY PARENTS CARL AND CLARA

1
)
e .
-
A L
4
¢
e .
U 1 &
. ] /
L
B -~
\
w

iv



ABSTRACT

4

This thesis investigates certain coloring problems in hypergraph theory. In Chap-

ter 1 we give.an overview. This includes definitions, examples, the statements of \

the problems, a brief history as well as some motivational material. Also included

is a section describing the new results of the thesis. Chapter 2 contains ghe proofs

of a number of results whiuch;ﬁertain to the problem of how few edges color-critical -

critical hypergraphs whose existence was not previously known._ All the proofs of

the thesis are constructive in nature. ‘ ¢
’ : - ‘

hypergraphs }nay have. In Chapter 3 we establish the existence of certain color-

.
e
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‘Chapter 1. Overview ,
1 0

~ 7
This thesis investigates certain Egloring problems in 'hypergraph theory. The

"intent of this chapter is to prov{ci\_;&gtivation and background material for the

problems being studied. In the first section we '\Five most of the basic definitions

and we give some examples that illustrate them. \.rWe refer to these exartples from

time to time later in this chapter and in subseczxént chapters. In section two we

_state the problems dealt with in the thesis and M the next section we provide a

brief history. We do not give an exhaustive survey of the literature, but we try to

m‘ention all of the main dévelopmen.t.s and we discuss all of the earlier work that

) ' . ®

has some bearing on ours. In the fourth section we formulate th:statements qf the

results that are ‘c;btained in\.\this thesis. We‘ explain how they relate to préviousl;'

kmown results and how they fit into the ovegall ‘picture. The proofs are giifer.l‘ in
‘ .

. MChapters 2 and 3. We shall need, in the later-chapters, a number of results of a

technical nature. We have found it convenient to collect these in on/e/plac and

have put them in the fifth section of this overview. The reader may wish to/ omit

o~

this section on first reading and refer to it as the need arises. M: the results
contained in this thesis are obtained by exploiting a certain general construction.

We describe this construction in the last se\tion of this chapter and make some

remarks as to how‘ it will be used.
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N .
1.1 Definitions ' . : ‘ _ . .
. - ‘ ’ .

We now give some of the basic definitions. The ‘term being defined is shown in

bold face type. As a ryJe, we do not explain set theortic terminology, since it is

.standard. We also do not explain the terminology for ordinary graphs.. In this

,. 'r.egard we follow Bollobds [B1]. A hypergraph'is an ordered pair (V, §), where V

is a finite nonempﬁ(‘set whose elements are called vertices and § is a collection of

nonempty subsets of V whose members are called edges. We shall usually assume

that there are no isolated vertices; that is, we assume V = |J G = | {,5‘, E € G}

Thus, when we refer to the hypergraph G we shall mean (U G,G). The order of

, .
a hypergraph is the number of its vertices, and the size of*a hypergraph is the
s

number of its -edges.

A hypergra,pb/g is n-uniform (or an n-graph) if each of its edges is an n-subset

of |J § for some n > 2; that is, if for all F € §, |F| = n for some n > 2. Observe

that a 2-graph is an ordinary graph. A hypergraph G is linear if ahy two of its

edges have at most one ver&ex in common; that is, if foralt E,F € G, E # F, we
have |[E N F| < 1. Note that a 2-graph is necessarily linear.
Let G be a hypergraph. A hypergraph X is a subgraph of § if ¥ C Q,Va.nd is a

proper subgraphif ¥ ¢ G. A ;ubgra.ph X of G is a spanning subgraph of G if

UX=UYg. IfE € G, then G — E is the subgraph obtained from § by removing the

edge B. H Lc UG, L#0,then G~ L={E:E€ G,ENL=0); thatis, § — L

. ‘ .
is the hypergraph consisting of all edges of § that do not contain any vertices of L.
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If ve |J G, we write G — v instead of § — {v}.

\

. Two hypergraphs G and X are isomorplic if there is a bijection 8:(J G.-» U ¥
. such that 0(E) is an edge of’)( if and onl\'y/ if E is an edge of §; that is, § is a bijection
which perserves edies If G and X are isomorphic hypergraphs Qh_&e vertex sets
are disjoint we say that X is a copy of G. When we siy that Gy, Gi, ..., G, are

copies of §, it is understood that the vertex sets of gl, 92, --., Gp are pairwise

. disjoint. e ‘ v

An r-coloring of a hypergraph is an assignment of r > 2 distinct colors (denoted
by 1, 2, ..., r) to its vertices so that none of its eAdges is monochromatic; that is,
no edge has all of its vertices assigned the same color. Equivalently, an r-coloring
of G is a partition of Ug into r sets Vi, V2, ..., V, so that foreach E€ G, E ¢ V;
for any 1. The sets Vi, Vs, ..., V, are called the color classes of the r-cbloring.: Vi
consists of those vertices that have been assigned color 1. If r is small, we frequently

[N

denote the colors by red, blue, greem, etc. The definition makes sense when r = 1,

but in that case the hypérgraph has no edges.

A hypergraph is r-colorable if it has an r-coloring. If a hypergraph is r-colorable
then it is necessarily (r + k)-colprable for every positive integer k. The chromatic
number of g .is the smallest integer r for which § is r-colorable. § is r-chromatic
if it has chromatic number r. Moreover, § is r-critical if it is r-chromatic and
all- of its proper suf)g;aphs al;e not. Observe that in order to show that an r-
chromatic hype‘r\gra.ph g‘ iﬁ; r-criti'éal it suffices to show that § - E is (r — 1)-

4
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, ‘colorable for each E é . A h&pergra.ph is critical 1f it is r-critical for ‘some"

integer r. .G is r-vertex-critical if it is r-chxgmaticv_é.nd,if' § —v is (r—1)-colorable -

for all vertices v .of §. A hypergraph is vertex-critical if it is r-vertex-critical -
. > ) * . « ‘ . .

] . A . . E
for some r. A critical hypergraphtis necessarily vertéx~critical.b’dt not vice versa.

F

Every r-chromatic ‘h}jpergraph has an r;eritic,al subgraph, and every r-vertex-critical

~

;hyp‘ex:grap_fx" has an r-critical spanning subgraph.

" An '_r-critirc‘al' n-u’ﬁifo.rm hypergraph of order m is called an (m,"n,‘r)‘-graph.
. “We now give some examples that illustrate some of };he above term;s..’

. ‘ . _ o o,

1

: E:Eamplc-l. The eoirzplctc }ifcr:‘tt'cal ri-g‘rap'h. '

LetM(n r) (n-—l)(r-—1)+1 nr>2 LetVbeasetofsxzeM(n r) and-let ) .

. 91 be the n~gra?&;e edges are all the n-subsets of V. That 91 is r-coloraBle
7 ; : 3 :
s cl_ear. Partltl n V into r sets, r — 1 of size n-— 1'and one set of size 1. ‘These
. . R : .\ .

—

sets form the color cla.sses of an r-colormg There.is no (r — 1)- colonng of gr If

.

_ there were, one of the coIor classes by the box prmcnple, would contam at/least n
fvertlces and hence an edge Thus g, is r-chromatxc %r any E € G1 we ma.y set

up Jn (r — 1) colormg of G61-E by lettmg E be a color class and lettmg the other

Cr - 2 color classes be r—2 pa.1rwxse xhs_]omt (n - 1)-subsets of VA E. It follows that . b

91‘ ls.;f-cn_txca‘l. |
vEJ:amplc 2. A (6 3 3) gra@ '
1

Let 93 be the 3-graph with vertex set V {1 2,3, 4 5 6} a.nd edge set(

’{{123}{125} {134}{146}{156}{23,6}{245} R
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{2,4 6} {3 4,5},{3,4, 6}} 92 is an example of a (6,3 3) éraph Even ‘though

e are dealing here w1th a sma.ll graph it may be mstru ve if we rov1de a bnef '
v 'p |

Ao
»

'"»a.rgument explalnmg’ why 92 is 3-critical. That G2 /lé 3- colorable is clea.r a.ny"

}

' pa.rtltlon of V into three sets of size 2 will nge a/é-colormg Tha.t 92 is not 2~’
: /

‘ colorable may be seen as follows: since every ;}.‘fsubse-t of V contains an edge of

7

G2, no 24ealo}ij1g can have a color class of g)’ée’A or more. Th\ls, if tHere were a -

;
£

. 2-coloring, each color class must have size;f‘ﬁ. However, it is easy to check that for

each 3-subset. E of V one 'of E ol; 14 \ E'fis an edge of Gz, ,a.rldvv've therefore h&ve a

t

b' » monochromatlc edge. Flnally, that 92 is 3-crxt1cal follows frorn the fact that if E A

° !

is an: edge of gz, then 92 - E ma.y be. 2-colored by coloring t.he vertlces of E red‘ o

and those of V\E blue Thx{ works because any two edges of G2 have nonempty;‘

‘

mtersectlon We remark t}rat there does not exist ‘a (6,3 3) graph w1th fewer than
10 edges / :
. A . T : -

. o -
E:camplc 3. A lz'n,e% (7,3,3)-graph_ .

Let 93 be the’ 3-gx:eph WIth vertex set V ={1,2,3,4,5,6. 7} and edges {1 2, 3}, :

{1 4, 5} {1 6 7} {’2 4 6} {2,5,7}, {3,4 7} {3 5,6}. Thxs hypergraph arises from

| )the well knowrl Fano pla.ne, PG(2,-2) (the prOJectlve geometry of dxmen’slon 2 over

ot

7

" the field of 2 elements). The vertices of -93.e the points of the plane’and the edge‘s '

¥

are the lines of the plane. See Fiéux_’e T.1.

With a little effort one may show the Gs is 3-chromatic. That it is 3-critical may

®

Ty be_seeri by noting that for an/y\ edge E we’ ma:y obtain a 2—c_olorin'g of G E E:T‘By
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" coloring E red and V\ E bll'.l'e. A glance at Figufe 1.1 makes this obvious.

We remark that linear (m,3,3)—gfaphs exists for m = 7 and m 2 9. No such . -
. . . ;‘q . . oo
graph exisls form < 7orm = &
\ .
1.2 Stﬁa,teménts of Problems
Perhaps the r;iost basic question that arises in connection with color critical hy-

pergraphs is that of existence-for whicl. values of m, n, r is there an (m,n,r)-graph

PR

or a linear (m,n,r)-graph? Ifa reasonable satisfactory answer to this question can
be found, there are other du‘wtidns' that naturally arise. 'Se.veral of these questions

are extremal problems; for example, what is the largest number of edges such a



T
Lgr'aph may ha.vg, or how sparse can such a graph b‘eia;» that is, how few edges ;:an
it héve? There are also.enumeration problems: for gxample, how many ;;airwise
no -isomox"phic (m,n,r)-gra.phs are there? Oné may also ask quesﬁons tonéernin:g
th&lassiﬁc;ﬁon or cha,racterizaiion of (m,rvi,r)-gr‘aphs“ Most of the literature in
the area is devoted to the existence problem, which is not completely solved, a.pdv
to the extremallproblems. This thesis falls iﬁto these categories.

We now formulate the questions that we investigate in this thesis. .

1(a) For given n and r, for which m do (m,n, r)-graphs exist?
(b) For those m for which (m, n, r)-graphs exist, what is the least number of edges
. o o

- such a graph may have? That is, what is the value of

E(m,n,r) = mm{|9| Gisan (m;n, r)-graph }7

(c) What is the least number of edges an r-critical n-graph may have? Here there

"is no restriction on the number of vertices. Equivalently, what is the value of

B(n,r) = min E(m,n,7)?
| N

Question 2.is identically posed except that we restrict the graphs to be linear,

with E*(m,n,r) and E* (n,r) defined in the natural way.

1.3 History

e

It is not suprising tha.t_the.se’q'uestions first arose for 2-graphs. Here problems

-1 and 2 coinci_de. We now discuss some of the main dévelopt’nén‘ts for ngra.phs.f;
_ : ’ , _

9

%
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llntﬂ,flrrther notice, grhph tvill mean 2-graph. While there are. a fevlr results on
r-critical graphs in the early literature on graph theory, they were ﬁrst studied
systematlcally by G.A. Dirac in the 1950’s (see (D1], [D2] and [D3]) It is a
straightforward exercise to show that the only 3-critical graphe are th)e odd cycles,
8o that E(2!+ 1,2,3) = fl..—l- 1, E(21, 2', 3) is not defined, é.nd E(2, 3) =3. Dirac was
.hoping that there might be some reasonable characterization of the 4-critical graphs
which vlrohld shed sdme light on the fa.mous Four bolor Prohlem (now a theorem).

No such charmcterlza.hon h@s been found and it seems unllkely that there is any
The reader should seé’ Chapter 11 of Ore’s book [01] for connections with the Four -
~ Color Problem and Bollobés (B2, Chapter 5] for aspects of r-critical graphs not

mentioned here. -

The complete graph on r vertices is _r—criticzll, and there is clearly no such graph of
smaller Qrdér.‘ For r > 4 Dirac constructed r—critlcal graphs of orfier ‘m form > r—l: 2
a..nd showed that no such graph exists.for m = r + 1. Thus Questions 1(a) and 1(c)
have b.eerr solved completely for graphs. Question l(b), however, has turned out to
. be of a greater leyel of difﬁeulty _a.nd a complete solution has not yet been fpuncl.

We summ'a;rize'a few of the key developments. We suppose r > 4 anti m2>r+2.

o

Since, in an r-critical graph, each vertex has degree at least r — 1 we get, as was

pointed out by Dirac [D2],

©
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The classical theorem of Brooks (see Bollob4s [B1, page 91)) imr\;!‘i‘e’sithat \
‘. -1) - ‘ T
E'(m,2,r)_>_r—n-£%—-—l+1. T g/
This is a slight improvement over the trivial bound given by (1), but it turns out,
- that (2) is actually equivalent to Brook’s Theorem, thus suggesting that it may be -
(‘ihiﬂicﬁ‘lf’to‘i‘mprove (2) substantially. One of the main results obtained by Dirac

[D3] is the following sharpening of (2):

(r—.1)+‘r—3. '(3j

¢ Bmarn) 2 -

m
2

T. Gallai publishéd:fwo important papers on color cfitical_ graphs [Gl],ﬁ[GZ]. In
[Gl]a he obtained a lower boﬁnd(fgr E(m,2,r) which, if m is large compafed to r,

is superior to (3); namely,

. m m(r —3) c 0
E(m,z,r.) 2 E—(T—l)-i-m ‘

(4)

4

‘Observe that/ the second term on ‘the right in (4) grows .ggearl'y')vi_{‘}i'”'m,'\iiki]e the

T el
. - L.t

‘ o ,;A < fo‘a ; ,;"_@“,.'-
corresponding term in (3) depends only on r, so that for large m, (4) is;a much

- stronger regult.

smaller such graphs. From his construction it may be deduced that - : -

'

mr- m 2
E(m,2,r) < — — . 5
(m,2,7) < o8 - (5
Furthermore, it follows from Hajés’ construction that : o

E(my+my - 1,2,7) < E(m1,2,r) + E(ma,2,r) = 1. (6)
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.

- From (6) and a variant of Fekete’s lemma on subadditive functions [F1], Hajés

deduced that there exists a number (2,r) such that, as m — oo,

I

g
E(m,2,r) = Sa(2,r) + o(1)) m. | ’ | .(7)

i .
From (4) and (5) it follows that

r—1 r—3 r - 1 '
> ~ < af(2,r) < - — . , 8
L 2\+2(r2—3)—'( r)_2 r—-1 _ ' ()'

-~ @ _, ST .
No value of a(2,r) has been determined and, in ?ut, nc; imprc;vemgnt.on the
bounds given by (8) have been obtained, althéurgh it has been coh}ectured [O1,
Chapter 11] that equality h‘cq;lds on the right in {8) for all r, * |
Insummary, v'vith regard to Question i(b), it is known that for each r > 4,
E(m,2,r) grows in an essentially lir'iear._fa_sl‘lic;ri with rr.c, but the precise nature of
t}:is growth has not been deterﬁlined. This completeé our discussion of the case of
2-graphs. | |
We now discuss the case n > 3. It will be'coﬁvénienﬁ if we follow roughly the
»éh;t'OnélogiCal developme.nt. Fo; this reason we bégin with Qﬁestion 1(c). P. Erciﬁs
and A.,Hajna.l‘ [El] raise the problem of determining the ieast ‘numbe:r of edgés a
3-critical n-graph may have. In our notation, t;hey ask for the value of E(n,3).

They remark that the collection of all n-subsets of a set of size 2n — 1 is a 3-critical

n-graph so that E(n,3) exists and satisfies

b

n

E(m1) < (z‘ff{j.f 1)_ o *(-’9)"
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In addition to the value E(2, 3) = 3 mentioned eérlie_{, only one value of E(n,3) has
Been detérmined, namely E(3,3) = 7. The graph'in Example 3 is a (7,3,3)-graph
'with. 7 edges and one rnay show that there isv no such grap‘h with fewer edges. That
E(4 3) < 35 follows from (9). B Toft [Tl] and P.D. Seymour [Sl] mdependently ’
found 3-cntlcal 4-graphs showing tha.t E (4 3) < 23. In the other dlrectlon P Aizley
and J.L. Selfmdge [Al] announced that via an extensive computer se'a,rch, they can
show that E‘(4,3) > 19, but no deéails of this have been publishéd.

Erdss (E2], [E3] pro’:/ed that for all n > 2, - .
it <Bmy <.y 0
| Vo,

AT
B

~
Considerable -effort has gone into the problem of i 1mprov1ng the bounds glven by

(10) (see (E4], [SZ] (J1], [E5] [H2], for example). The best upper bound currently

' known is that of M. Herzog.and J. Schonheim [H2] who proved that

- ‘/ B : %“V

© E(n,3‘)§c§(log2)n22" . . \

. ' : )
 and the best lower bound is that of J. Beck (B3] n{ho showed that for each ¢ > 0,

: xf n > nofe),

wr

a E(n,3) > 2", - o

o : 0 . _ S
%eck’sproof of (11) is complicdted. A much simplified version can be found in the

paper of J ) Spencer [S3].

The hypergraph that establishes (9) is the spécial case r = 3 of the graph in

©
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Example 1. It follows from Ex#mple 1 that E(n,r) exists and satisfies

sy (63 -

n

It is an attractive conjecture of Erdés [E6, page 282] that equality holds in (12) for
each fixed n, provided r'is sufficiently large. The argument used by Beck to prove

. a ‘
(11) gives, with only minor modifications in detail, _

E(n,r) >nd=¢(r—1)» . - (13)
" fot each € > 0 and each r > 3, provided n > nq(e,r).
. -
It should also be noted that Herzog and Schénheim [H2| proved that for all n > 3,
r>3

E(n, r) < e("‘z)/('_l) (log r— 1)n2 (r - l)n (14)' .

" but (14) is weaker that (12) for fixed n, and r la:ge,cér'npared to n. This ﬁerhaps
.+ lends some slim suppdrt to Erdés’ éonjecéture conérning (12).

This completes our surﬁma;ry of the main results concerning Question ll(c)..

‘'We turn ﬁow to ‘qﬁes‘tio‘ns 1(a) and 2(a). ‘Qu&tion l(a) has been solved com-’
pletely: (m,n, r)-graphs exist if and only if m 2 M(n,r) = (n - 1)(1’ -1)+ %\ This
‘was shown by H.L. Abbott and D. Hanso;x [A2] in the case r = 3 and by Toft (T1]
for r> 4. The hypergr;phs 'constructed in [A2] and [Tl] are not linear éra.phs and
thus the solution to Qpestioﬁ 1(;1) sheds no light on 2(a). E.rdés and ﬁajnal (E1]
Lst#te the p'roblem and _attri‘_bute:it to Gallai. They note tilat the Fano plane (the

- graph of Example 3) is a linear (7,3, 3)-graph, but they give no othér examples.

-



13

b -
i .

It is not im.t‘maciiatelyfﬂ obvious that such gra.'phs exist for n > 4.‘ Proofs of the ex-
dh. Abbott [A3] showed that for each n there is at least one
i M, 3)-graph- exists and Liu [Ll] showed that the argument

Jéyf%ciﬁc value of m was given. The proof uses Ramsey’s
2 ]

b -

terms of certain undetermined Ramsey Numbers. Erdés and Hajnal [E7] showed
by probabilistic rhethods that for each pair n, r there"a.re "arbitraﬂly large values

of m for which-linear (m,n,r)-graphs exist. A constructive proof of this was given

by L. Lovész [L2] and somewhat later Erdds and Lovasz [E8].gave another proof -

using proBa.bilistic methods which provided a'much better estimate for the least
, ‘ .
value of m in question. It should be noted that in the papers [E7], [L2], [E8] the

following stronger result is proved: there exist r-chromatic n-graphs containing no . |

t

cycles of length <lforanyr,n,l,r>3,n>21>2. We do not define a cycle in
‘a, hypergraph here but simply note that for n > 3, the condition that a hypergraph
has no cycle of length 2 is equivdlent to the conditiqn that it is linear. Yet another
) pl;oof of the existence of linear (rﬁ,n,3);graphs was given by A.W. Héles- and R.I.

Jewett (H3] in their paper on positional games. Imagine the game of tic-tac-toe

-

being played on a “board” of side n in k dimensions. A result, of Hales andAJewett. :

is that if k (= k(n)) is sufficiently large, the game cannot end in a draw. One

may think of two players alternately coloring the squares of the bo;rd' red and blue.’

-
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Since.one of thg playérs has to win, the;‘e must result a monocixroma_tic “line”’ . Thus
the hyper.graph whose vertices are the; squares and whoée édges are the lines 6f the
board is‘ (at least) 3—chromatic, and therefore contains a 3-critical s'ubgraph. Since
the graph is clearly linear, this esta.blighes the existence of a linear (m,n, 3)-graph
for some m. '
In [A4] Abbott and Liu show that for each pair n,r,n 2 3, r > 3, there are oﬁly
finitely many values of m for which linear (‘rn;n,r)-graphs do not exist. In other
words, for each pair n, r, there corresponds a least integef M*(n,r)such that for all‘

m > M‘-(n,r) there exists a linear (m,.n,r)-graph. Only one value of M*(n,r)has
been determined, namely M*(3,3) = 9. In Chapter 3 of this thesis we obtain ;ome” -
‘new results coricerning M* (4, 3) ﬂand M*(3,4).

This complete~s our summary of the iiterature concerning Question 1(a) and 2(a.)

As far as Question 2(c) is concerned we state only one result. Erdos and Lovdsz

[E8] prove that

2—5%3 < E*(n,3) < 6420n%4". ; | (15)
The reader should note that E*(n,3) ‘exhibits a much faster rate of.growth than
E(n,S) as can be seen by comparing (15)l with (10). Bolt-mds for E* (n, r), r > 4,
are also giv;en in [E8]; but they are complicated and since‘vy'e*de not need to refer
to them v‘e do not state them here. . \.} |

We now turn to Question ‘.l(b) and 2(b). Seymour [S4] a.nd\\D.R. WQodtall (W1], |

answering a question posed by.Erdos, independently showed that any 3-critical
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n-graph has at least as many edges as vertices, so that for m > M(n,3)

E(m,n,3) > m. | | (16)

~

In his thesis [L1], Liu showed that for each n > 3,
E(m,n,3) = m +.9(1), asm - 00, (17) *

where the constant implied by the O-notation depends only on n. M. Burstein
- [B4] proved the following stronger and very striking result: for each fixed n-and all
sufficiently large m,

E(m,n,3) = m. (18)

It i thus curious that while E(m,4,3) = m for large m, we do not know the least
m for which this is so, nor do we know the value of E(9;4,3) (see [E4] and [A5]).

In [L1], Liu showed. that the argument used by Seymour to prove (16)‘ and the
natural extension of the observation o.n which (1) is based may be used to show

that | ' .

E(m,n,r) zmax{l/{—/—?;—l}m. . _ (19)
Of course, (19) holds for E*(m,n,r) as well. In [L1] Liu also showed that for n > 3,

r > 3, the limits

a(n,r) = lim _____E"(m,n,r)
m—o0 m
and / -
/ X
a'(n,r) = lim ——————E (2,7, 7)

m-—+00 m
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exist and are finite. That a(2,r) exists for r > 4 is the result of Hajés mentioned

earlier.

It follows from (19) that
. r—1
a*(n,r) > a(n,r) > max {1, T} . (20)

Also, from (17) and (18) it follows that a(n,3) = 1 for n > 3.. The constructions
establishing (17), and (18) do not yield linear graphs except in the case n = 3,
where we get o (3,3) = 1. No other explicit values of a(n,r) or a*(n,r) have been
previously determined. We shall obtain some new information on these lir‘n‘its in

Chapter 2. v . )

1.4 Results of the Thesis

Chapter 2 of this thesis gives some new information on the numbers" a(n,r) and
a'(n,r) " As was noted in Section 1.3, a*(3,3) = 1 and a(n, 3) = 1for alln > 3. The
graphs of Erdés and Lovisz that establish the ﬁpper' bound in (15) have 320n‘2"
ve;tices and 6400n*4™ edges, so that the ratio of edges to vertices is ;bout (20)2".
Moreover, in their paper, they show that no 3-critical linear n-graph has fewer than
%'—;— vertic?ﬁ, so that in a 3-critical n-graph of smallest size the o;der of magnitgde
of the ratio of edges to vertices cannot be made appreciably .sma.ller than 2™. Alse, .

if one uses this graph of smallest order in conjunction with one of the constructions

in [A4] one may get an upper bound for a*({n;3) which, while its precise form will

-

be fairly complicated, is exponential in n. -

/\~

i
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One of the main results of this thesis is that for alln >3
“a'(n,3) =1, (21)

in sharp contrast to what one might have expected, given thﬁc remarks in the pre-
ceding paragraph.

We also obtain information concerning a(n,f) and a*(n,r) for r > 4.' Definitive
results should not be expect’.ed here, however, since even for n = 2, exact results are

not known (see (8)). We shall prove that, forr > 3,n > 3,
a(n,r +1) < a(n,r) +1 (22)

and
o (mor +1) < o (myr) + 1. - (23)

These inequalities, when combined with a(n,3) = a*(n,3) = 1 give
a(n,r) <r-—-2 . (24)

and

a’(n,r) < r—2. (25)

" Note that even though the gap between (20) and (24), (25) is fairly wide, the upper

™

bounds_given above are independent of n.

Denote by T = T'(n) the léast integer for which there exists a (T, n, 3)-graph with
: /
T edges. Such a T exists by the reS\(lt (18) of Burstein. We shall prove that

i

m/
2

<2- .
o(n,4) < 2 a(n—-1,4)T +1

(26)
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' This, when combined with (22), shows that for r > 4, strict inequality holds in
*(24). We do not know whether strict inequality holds in (25) for r > 4, or whether

*
=

(nr)<a<n.r) R .

Observe that in the case r=n+ 1 we get from {'20) that a(n n + 1) 2 1. We

‘shall prove that thxs ¢an be strengthened to

o n—2 T . -
alnn1)>14+ 222 o (27)

“but we can obtam no ymgrovement}over (20) for any other value of r and n.
The only value of T( ) Wthh is known is T(3) —é‘ Thus it is not feasible to
try to extra.ct from: (26) expl1c1t upper bounds for a(n 4) for n > 4, but it may be .

worthwhxle to record the results that come from (26) and (27) when n=23:

In Chapter”3 of this"—thés:i‘s‘ we .obta.in sorne\new_ information on the numbers
M (4, 3) and M* (3,4) As was noted in Sec:-ion 13, Abbott and’»Liuﬁ [Ad] showed

tha’LtM‘(3 3) =9. In his thesis, Liu showed -that' M‘Q(v%. 3) < 8928 and»M.“v(3 4) < V

62835 These were 1mproved in [Ad] to M* (4 3) < 124 and M* (3, 4) < 1399 and

in [AG] it was shown that M‘(3 4) < 719 ‘We'shall prove tha.t :

| . :
B M*(4,3) <51 @
S " . . o ' o
v e
a.nd
S M(3,4) <100 s ()



.. 1.5 Other Needed Results

| Appendix 1). The two examples that we need are the following: - .
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<

..
" We dgsc}nbe in thxs sectnon some techmca.l results that‘we shall need i in Chapters

1

2 and 3. As was mentxoned in the mtroductory paragraph of this overview, ‘the

re@der ma,x_ wxsh to omit thls section on first rea.’dymg and refer td it a&,the need

arises.

L o
1.5.1 Blwk'bcsigns

"~ A block design v . v arameters (v,b, r,k,')\), or a (v,b,r,k,A)-design, is an
’ . : N .- -

L ¢

arrange Z’Lo f v ou.:cts © .0 b sets, called blocks, such-tfxat each block contains
exactly. objects, each object occurs in exactly r dxfferent blocks, and every pa.lr

of objects occurs in exactly A blocks. The parameters are not'mdependent; simple

. counting arguments show that ‘ SR " v

vr=bk and (v-1)A=(k—1)r. . (30)
The connection with our work is that any (v,b, r,k,))-design is a k-graph whose

_vertices are the objects and whose edges are the blocks; and if A = 1, the k-graph

is linear. . - : o

‘We shall not need any of the general fhe<;ry of block designs’, but we need two

spec'iﬁr._ examples. As a general teference. see Hall ([H4_],. especially the table in

.

a) A (25,50, 8,4,1)-design.

We will use the (25, 50,8, 4, 1)-design whose objects are the 25 elements of Zsx 25

and whose blocks are obtained from {(0,0), (.1,0), (O,vl),'(4,4)_} and o |

o
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‘ - ’ ‘ ,
{(0 0), (2, 0) (o, 2) (3 3)} by addmg ea.ch element of Z; x-Z5 to both (Desngn #22

.m Hall’s ta.ble) It was verlﬁed by Abbott a.nd Liu that this- d&mgn is a linear

(,2_5,;4,=3)fgrap)1- -
b) A (31,155,15,3, l)-design. .
aWe will alse use the (31, 155, 15,3 1)-design whose objects are l.he elements of Zal
and whose blocks are obtained by addmg. each element of Z3; to the blocks {0 1,18},
{0,2,5}, {0 4,10}, {0 8,20}, {0 9, 16} (De51gn #101 in Hall’s table) We remark
tha_3 this design is a model of ~PG(4, 2), the projéctive geometry of d1~(9en.sion 4 over
tl;e .‘ﬁeld ol' 2 elements. The objects are tl}e poin;s of the geometry arld the bloeks
. arevt‘he lines. Rosa [R1) pldvedzthat l:his design ie 4-chromatic. It is not known

whether it is ‘critie‘al, but Liu verified that it is vertex-critical. It therefore contains

a linear (31, 3,4)-graph.

We remark that the rgrap.hs in Examples 2 and 3 in Section 1.2 are also block
) . N . . : - . LT : . |
slésigns; the (6,3,3)-graph is a (6, 10,5, 3,2)-design and the linear (7,3;3)-graph is

a (7,7,3,3,1)-design.

~1.5.2 Dl'ﬂ'crehcc S_ets
A set D = {d;,dg.‘,.‘...' ,d;} of integefs is a diﬁ'erence set if ne pbsitive inleger

.has more than one representatlon in the form dj — d, Let & be a mteger and let-

D+k {d1 +k, dy +k ..ydt +k}. We call D+k a trapslate qf D._The folleying !

sxmple lemma. explains how difference sets may be used to contruct linear graphs.
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LEMMA 1.1. Let D= {d;,dz, .,dt} be a dzﬂ'erence set. Then any two dxstmct

A

translates of D' have at most one eIement in common

(3]

PROOF: Let k; and k; Be integers, ko > Icl. Suppese'sl-, s2 € (D+k;))N(D + kg)

“Then 81 = 'd,-,#ﬂkl dg, + k2, and sz dj, + ki = dg; + k2, for some 1 < :1, 12, J1,

J2 <t. Hence k3 — k; = d,-l«— di, = djl,— ds,. Since D is a differe.nce set, ] = 7}

and iz = jj s0 that 8 = s3. Thus | (D + &) N (D + k2) | < 1. N

A consequence of\this_ lemma is that ahy finite collection of translates of D gives"

the edge set of a linear graph.

. 1.5.8 The Erdés - Hanani Theorem . -

In provmg that a*(n,r + 1) <a‘(n,r) +1 we shall need to have at our dlsposal

certain structures whlch are almost’l‘ block desngns with A = 1. The precise result

we use is'the followmg theorem of Erdds and Hanani [E9, Theorem 1] which we

" formulate as a lemma.

LEMMA 1.2, Let S be a set ofs:ze v, and letk > 2 ‘Let B be maximal coIlectzon
k-subsets of S such that no pair of elements occurs in more than one member of B.

Tben o o : . C oy
" ' 18] 1

‘vl—lolo% v k(k—1)

“

" Note that if there were a.(v,b,r,k A) desngn, the number b of blocks would be

%&—f— by (30).
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1.6 A General _Construction

- Most of tﬁe proofs of this thesis involve"construct\ions of new hypergraphs from

existing ones. In this section ¥e describe a construction which will be used several .

times in subsequent chapters.

Fors=1,2,...,1,let g.-' be a linear (rri‘;ﬁ,n,r;)-ngaph, E; an edge of g;,‘ax_xd vi a

vertex of E;. Let v be a new vertex. Let

L . o
(UE\&A)U@}v c

L ((F\{wPU{v} ifweEF
‘F—{F‘ 4, , ifv.-¢F.-

Let G be the hypergraph+ .« edges are:

i) the edge’'E
ii) the edges F', F € G; for some ¢, 1 <1 < L.

Less formally, G is the hypergraph thain‘ed from the graphs §; by i(ientifying

each v¢ with v. The ‘edge E is' just the union of the E;, with v; replaced by v (see

c e

Figure 12) ' 7
We say that § is a long edgé graph and we refer to E as the long edge. We
s}»lall.‘use‘ the notation
G =(G,E,v) QB (Gi, Eivvi). (3

rd

‘The long edge graph § given by (31) ‘has the properties given in the following

Py

lemma.
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Fig. 1.2
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3

LEMMA 1.3 (LONG EDGE).
a) the size of the long é'dge‘is In—-1)+1 .

b) G has order (Z::l m,-) -l+1
‘ : . “
"¢) § ~ E is n-uniform and linear S B T

d) G — E is (r — 1)-colorable and in any (r —1)-coloring of § ~E,E is monochro-

»

. s matic.
-

PROOF: a), b) and c) a.fe clear. An (r.— 1)-_colori_ng of G\ E induces an Q-—' 1)-

~ coloring of each G; — E,-,ui = i, 2, ..., I, if we color vertex v; the same l.color as -
- .vertex v. Since g} is r-éritical, E; must bé mono._chromat:.ic‘v, and sir;ce each v,,is
colored the same as v, every _E'.- must be the same color. ThusjE is monochn_)matic,
and d) holds also. . : . O
We now make some brief comments a’sito hc;w the long edge construction will

" be used in the sﬁbsequent work.u We hépe that the;e ;_émmehts will make the

ar#umenf;s seem less ad héc, and thét there is, rgnhing t}irough them, a éommon ‘.

' & ‘ ‘ . \x‘_,_—/’—

theme.

In many of the proofs in Chapters 2 and 3 we shall need to construct r-chromatic -
graphs which contain large r-critical subgraphs. The long édge grai_)hs, or variants o% A
them will play a central role in these constructions. Our graphs will be constructed

in stages. At the first stage we construct an r-chr_oma.t.ic long edge graph 'G. At
I : : : .

-

the second stage we delete the long edge E and add some new vertices and edges

80 as to get a graph ¥ which contains § — E as a subgraph. Some of the new edges

[} . :')\\
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Wt . -

will have vertices in common with E. Our object will be to show that X contains a

large r-ctitical subgraoh. Note that in o.ttempting to (r — 1)-color ¥ we are forced,

ﬁy pa.rt‘._d) of the‘Long Edge Lemma:, to color.all of the Qertices of E the same.

If the new edges‘ are chosen appropriately (the way'in whicn they are chosen will,

of course, depend on the¢ problem at hand) the fact that E is monochrjmatxc will -

1mpose hmxtatxons as to how the colors are assigned to the rest of the graph The

goal is to show that the lim-itations are severe enough to rule out’the possibility
0 .

. of any (r — 1)-coloring of X, but not severe enough to rule out the possibility of

(r = 1)-coloring ¥ — F where F is any edge in some large subgraph H' of X.

~

The detaxls will of course vary from one sntuatlon to another. In fact, we shall

\

sometimes need to show that the whole graph X is r-éritical, in wh'lch case there

has to be considerable care taken at the first 'stage of the construction. This is

especially so in the proofs of (28) and (29).

'We make a few remarks as to how the proofs are presented. It is frequently the

case in combinatorial mathematics that when trying to eéf.ablish the existence of 2

C

combinatorial object with certain r ‘perties the hard part is the actual finding of

the objecf (if there is one). The werit. . 1, that it has the desired properties may

be much more straightforward. "his seems 1o Le the case in some of the questions

)

~ dealt with in this thesis, and our precentas . of the proofs of the results have been

influenced by this. Our work involves the construction of hypergraphs for which

certain coloring properties are claimed. In each case we give complete details of the

s
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construction, and when we sta.‘te that a particula'x: hypergraph X is r-critical, we
exhibit an expl_icit (r - 1)-coloring of X — F for éa'ch‘F € X. However, we sometimes
omit some (or all) of the de.tails, ;)f the verification-that a cert‘a.in‘ (r— 1)-col<;ri;1g is,
in féct,'such-, éspecially if the verification is straightforwa.rd or similar to one that

has been described earlier in the thesis. -
R



' Chapter 2. Estimates of a'(n,r) and a(n,r)

4
T

In this'chapter we present the proofs of the results concerning a* (n,r) and a(n,r)

‘stated in Section 1.4.

THEOREM 2.1.. a*(n,3) =1, n>3.
' g

PROOF: Since a*(n,3) > a(n, 3) = 1 it is only necessary to prove that a*(n,3) < 1.
Moreover, since a*(3,3) = 1 (see Section 1.3) we may suppose that n > 4. Let D =
{dy,d3,... ,dn—3} be a diﬂ'erence_s_et such that 1 = d; < dz <...<dp3g <dp-3.
Lett =dn,_g and s =t + 2. Lgt m = M‘k(n,?») and fort=1,2,...,3s,let §; bea
linear (n;,n,3)-graph, E; be an edge of §;, v; be a vertex of E;, and let v be a new

vertex. Let 9 be tl}e long edge graph.

§=(6.Ev) =€D (6 Eiri) .-

=]

It is straightforward to verify, using the definition of s, that

—
. -

El=s(n—1)+1> (t+1)(n—2) + [%J +t. | (32)

Let Sy, S2, ..., S bg pairwise disjc;int subsefis of E of size n — 2 and let z, f;, f2,
ceey f[ﬂ y k1, hz, ..., he be distinct elements of E not contained in any of the S;.

Let G’ be a copy of G. Let 81, S3, ..., Si;; be pairwise disjo';nt (n ?éj-éubéets of
the long edge E' of G', and let f], f}, ..., f1, |» hi, k), - .., b} be distinct elements

1)

of E' not occuring in any of the S!. That such sets and vertices may be chosen

-~

follows from (32).

27
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Let k be a positive integer and let 1,2, ..., (k+ 1)t and 1, 2, ..., (k+ 1)t be

" new vertices. For i =0, 1,..., kt — 1, let D+ = {d; FLG T 6. g T i)
For.i=1,2,.;.,tandforj=1,2,...,kt——lpgth,-g_H- = hi, hfpyy = hi.
Let Xi be the hypergraph whose edges are:
i) those of § — E and 9'—.E'
i) F={fi,/as.- 2 frg1: fis for--- Sy }
iii) Ay =S;U{x,1} |
iv)I«‘,-:S;aLJ{zT?_l_,i}' fori=23,...,¢ -
v) F;
Vi) Hi = (DFT=D) Ufhiyt+i) fori=1,2,..., kt

vii) Hy = (D45 - 1) U{h,,EF3} fori=1,2,..., kt

Slu{i,f} fori=1,2,...,¢t

viii) Hy =S, U{(k + 1)t - 1,(k + 1)t}.

Then Xj is clearly n-uniform. By appealing to Lemima 1.1 on difference sets and

-

on recalling how ¢t is chosen (t = d,—2), it is straightfqrward to verify that Xi is
linear. . . 7

M is 3-chromatic by the following argument. Suppose, to the contraﬁ, that Xg is ‘
2—colorab)é and color it .red ;nd blue. Then the sets E and E' will be monochromatic
by Lemma 1.3, part d). If E and E' were assigned the sa.ine color, E,:}would be
: : v
monochromatic. Thus we may suppose, without loss of generality, that E is red

and E' is blue. It follows that the sets S; and the vertices z, hy, ha, ..., he, f1, fi,

-++y f{g] are red, and the sets S and vertices h{, h5, ..., A, fi, fi, ... f[,“ are
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* -~

blue. Vertex 1 must be colored blue since otherwise F} would be red. This, in turn,
forces 1 to t:e reci since otherwise F'; would be blue. Let j > 1 and suppose we
"have proved that for 1 < < j, vertex 1 is colored blue and vertex 1 is colored red
If ] <t theﬁ‘the edge F; forces vertex j to be colored blue. This, in turn, forces
vertex j to be colored red since <;.thedfwise F; would be blue. If t + 1 < 5 < (k+1)¢
then edge H,--t forces vertex j to be colored blue‘, and and Similiaw j—;
ensures vertex j is f:olored red. It follows, by induction, that 1, 2, ..., (k+ 1)t must
be blue @d the vertices 1, 2, ..., m must be red. But then H,:‘ is'blue, a
colntradiction; Thus X is not 2-colorable. If a£ the last step in the ab;)ve argumen£

we were to color (k + 1)t green we would get a 3-coloring of Nx. Therefore Xi is

3-chromatic.

»

_}(k may not be 3-critical. However, if k is la.rge X will contain a large critical
subgraph. Let X} be a 3-critical subgraph of ‘Xx. We prove that for y = 1, 2, ...,
kt —1, Hj, H; are édges of X;. It will suffice to exhibit 2-colorings of ¥y — H; and
Xy — TI—, The idea is to exploit the fact that in our attempt to 2-color ¥ we were
forced to color 1, 2, ..., (k + 1)t blue and 1, 2, ... , m red. Hdwever; if we
delete I/I, or _I?,- we gain some flexibility and are able to complete the 2-coloring
of the resulting graph. The details now follow. Let j € {1,2,... ,kt — 1}. Color
G—E and §' — E' red and blue s;) that E is red and E' is blue. Color vertices 1, 2,
ety —1 red and color vertices 1,2,.. »t+ 7 — 1 blue. Note that at this stage

there is no monochromatic edge. The coloring of the rest of the graph will depend
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on whether we are considering H; or Hj.

| Consider Hj. Color verticest+j +2landt+7+2lred, I =0,1,..., I}%’L ,
and color the verticest +35+2(+1and? +J + 2l + 1 blue,{ =0, 1, ..., [—"L“’f—‘— :
Then the (deleted) edge H; is red. However, since {t+5- l,t_-rf} Cc Hj, Hjis not -~
monochromatic. Moreover, "since {t+T-1,t+{}CHand {t+!-1,t + [} C Hp;
H; and H| are not monochromatic, ! = y+1, 742, ..., kt. Finally, vertex t('k+ 1)-1
is colored opposite to vertex t(k + 1) since one is numbered evenly and the other is

\
numbered oddly, and hence the edge Hy is not monochromatic. Therefore Xy — H;
is 2-colorable, and hence H; ig an edge of ¥|.
Consider H{. Color vertices t +j + 2! and t + 3 + 2] blue, I =0, 1, ..., [B%J—J ,

and color the verticest +57+2l+1andt+ )+ 2l +1red,l =0, 1,..., [—%:—J

The preceding argument now applies with only obvious changes.

Let ¢ be the number of edges of type i) to v). Note that ¢ depends only on the
) . N ~3
graphs §; and the difference set D and thus only on n. The number of vertices of

X, is at least 2(kt+1 - 1), and since X is a subgraph of X it has at'most ¢+ 2kt +1

edges. Hence

o (n,3) < lim L2k _
k—oo 2(kt + ¢t — 1)

¥ .
_THEOREM 2.2. a*(n,r+1) < a*(n,r) +1, n,r>3.

PRQQF,: The argument uses the long edge construction and the theorem-of Erdos

\

and Hanani given in Section 1.5.3 as Lemma 1.2. .
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Let m = M*(n,r +1),1 > 2, and let G be the long edge graph

\
) !

- §=(6.Ev) = D(6:. Biywi)
1=1
where each §; is a linear (m, n,r+1)-graph with t edges. Let 8 = { M, Mz oo Mp}
be a maximal ‘collection of (n — 1)-subsets of the ylong cdge E such that every 2-
subset of E is contained in at most one member of B. 8 is a linear (n — 1)-graph
‘and, by the result of Erdés and Hanani (with v = I(n - 1)+ 1and k = n— 1) we
ve |

p= (—'—ln;-:%—li(l +o(1)), as | — oo. (38)
N

Choose [ so large that p > M*(n,r). (33) ensuges that thls is possible. Let ¥
bg a linear (p,n,r)-graph with ¢ = E*(p,n,r) edges. Let the vertex set of 7 be
(21,72, 1 2p} and let M = {My U {£1},Ms U{z2}s... ;MU {zp}}. Let Nbe .
the hypergraph whose edges. are those of § — E, ¥ and M. Then X is n-unifotm
‘and linear (see Figul:gi,L). |

We show that ¥ is (r+ 1)-chromatic. S‘uppose, to the contrary, that we can r-color
X in colors 1, 2, ..., r. Then by Lemma 1.3, the long edge F ifs mZmochrq tic.
So, without loss of generality, suppose FE is colore(d r. Now no ve?texo»f \;" can
be colored with color r for otherwise there would be a monochromatic edée of M.
" Hence the subgraph F must be colored in col:ors 1,2,..., r— 1. But ¥ is r-critical,

- a contradiction. Hence X is not r-colorable. It is clearly (r + 1)-colorable and

therefore X is (r + 1)-chromatic.






33
o .
The hypergraph X may not be critical, but it does contain a large (r + 1)-crmcal'
subgraph. Let X' be an (r + 1)-critical subgraph of )( We prove that M C X', In
order to do this it suffices to ex}»elibit an r-coloring of X — M, where M = Mj U {.'z:,'}
,fpr some je{1,2,...,n}- Since ¥ is r-critical we can Z(r —1)-color ¥ — z; in colors
1‘, 2,...,r—1. Color § inr éolors‘ 1,’7? ., r, so that the long édge E is colored r.
. Then v; may also be colored r and we have an r-coloring for ¥ — M. Thus M .C X '

X' has at least I(n—1) + 1+p vertices (the number of vertices of M) and’ at most

At -1)+gq + p &dges (the number of edges of ¥ ). Thus

' At -1 p
a'(n,r+1)$lim (-ltatp
- = e n—1)+1+p ‘ |
CoMewegen
P , P
—lim I+1 by (33)
=a'(n,r) +1 ' since ¢ = E*(p,n,r).
Y D
COROLLARY 2.3. Forn,r >3, .
. Y.

&

. \\“ . —-1'» . ) " . .
N ,max{l,rﬁ_}Sa‘(n,r)Sr—Z.

", i

X I3 v ¥ . ‘ AN
PROOF: The upper bound follows by induction using Theorems 2.1 and 2.2. The

-

¢ lower bound is from (20) e I

'Remark: It would be of interest to decide how o (n, r) depends upon n. In this

Pt
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regard iti v;ould be useful to know whether for fixed n, .
: Sl

©

exists. ' That Ly = % follows from (8), but we can make no progress with this

problem for n > 3. A-Ntote, however, that if L, exists it satisfies ;1; < L, <1by

]

~ Corollary 2.3.. |

We now prove the ahalog of Theorem 2.2 for a(n,r).

THEOREM 2.4. a(n,r +1) < a(n,r) + 1, n,r> 3.

PROOF: Let ¢ = M(n — l,f) and let G be a (¢,n — 1, r)-graph with edges E;, E,,

, Ep. Let m > M(n,r) and let A, 2y ooy Fp be copies of an (m,n,r)-graph with

- k= E(m,n,r) edges. Moreover, let S be a set of new vertices of size r(n —2) +1.

Let )‘ to be the .hype’rgr_aph whose edges are: - 5
1) thoseof?;,:-l 2, p
) the pm edges of the form E; U {v}, where v is a vertex of .7,, i=1,2,...,p

—

iii) a.ll edges of the form §' U {g} where S’ is an (n - 1) subset of § and gisa

vertexﬁ of g.

(n=2)+1 and is

Then ¥ has order a—pm+q+r(n 2) +1, s1zepk+pm+q(
n-uniform (see Figure 2.2).

We show that ¥is {(r +1 \-chromatic.- Supp()se, to the contrai*y, that ¥ has an

r-colormg in colors 1, 2, “r. Then by the box prmcnple, there is some (n — 1)

subset S".of S of size n — 1 which is monochromatic. Suppose S! is colored 1. Then

Ky
Xy

i&@
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~ Fig. 2.2
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no vertex of G can be color’ed-‘l since otherw:xsg there would be a monochromatic

. que of 'type iii). 'i‘hus the verticeg of G are colored in colors 2; 3,...,r. Since §
is r-critical, Ej is quiochromatic for some | j €{1,2,...,p}. Suppose E; is colored
r. Then a;l the vertices of; % ﬁlugt be colored 1, 2,...,r -1, sinc‘e otherwise tilefe
.‘would be‘ a monochromatiq edge of type ii). -However, 5 is r-criticéxi, and thus
there is a monochromatic edge of type i).- This' is‘a. contradiction. Thus X ’i’s not
r-colorable. There is, however, an (r‘+ 1)—£oloring of X. Color G and each % in
colors 11," 72, sl Partition S into r + 1 sets S1, Sz, ..., Sp41 each of size at most
n— é, and color" each 've:rtex of S; with color i. Since any (n — 1)-subset S’ of. S
‘must intersect at ;least two of the Sj, nc;. edge of type iii) is monochromatic. Thus
X is (r + 1)-chromatic.

‘a

- The following argument shows that X 1s (r + 1)-critical. Let F be an edge of X

We need to exhibit an r-coloring of ¥ — F._
Case 1 F is an edge of type i).

Then F € ¥ for some j € {1, 2,... ,p-}. Since F; is r-c;;itical, (r ——‘1)-color 5 —F
in colors 1, 2, ... r — 1. Fo; t# 3, r:color- % in colors 1, ‘2, vees r.’ Since G is
r-critical, (r — i)—color ] - E, in colors 2, 3, , r so that edge E; is colored _r. 
: Partition S intoA r sets Sy, Sz? ceny Spy where S1 has size n — 1 and fhe rest ha..;re ,

size n —2. Assign color ¢ to each vertex of S;. Note that edge S; U {g} of X is not

. monochromatic for all vertices g of § since Sy is colored 1 and § does not use 1.



Case 2 F is an edge of type ii).

Then F = E; U {v} for some j € {1,2,...,p} and some‘vefteié vof . (r ——'1)-
color j — v in colors 1, 2, ..., ¥ — 1. For i # j, r-c;)lorb %, incolors 1, 2, ..., r.
(r —.1)-color g — E; colors 2, 3, . . , T 80 tfxa.t E; is colored r. I‘;artition S into r
sets Sy, Sz, ..., Sy where S; has size n - 1 and all others have size n — 2 Assign
color ¢ to each vertex of S. Finally, assign color r to, vertex v.

Case 3 F fs an edge of type iii). X |
| Then F = S'U{g} for some (n —1)-subset S’ of S-and some vé;tex gof §. r-color
G and each of the % in colors 1, 2; ..., r. Partition S into r sets Sy, Sg; veiy Sy
where S, = S’ and Xa.'ll other sets in the partition have size n — 2. Assign color 1 to
) each vertex of S;.

Therefore X is (r + 1)-critical. The ratio of the number of edges pf X to the

number of vertices is

pht gt g(rg ) A4 14 (10 )

n—1

m -2 1_ ; 9 n—2)+1
p tgt+r(n-2)+1 1{rpm~+£(—)——pm

_If we let m tend to infinity and keep in mind that n, p, ¢, r are fixed and k =

E(m,n,r — 1), we get

o k ,
a(n,r+1) < lim —+1=a(n,r) +1.

m—oo m

¢ o 0O
¢
" It follows from Theorem 2.4 and a(n,3) = 1 that a(n,r) < r—2forn,r > 3. We

now establish a result which shows that 's_trict inequality holds for r > 4.
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THEOREM 2.5. Let n >3 and let T (= T(n)) be the least integer for which there

exists a (T,n,3)-graph wkb‘ T edges. Then

+
i

2

<2- .
afn,4) < a(n —1,4)T 1

I'd

PROOF: Letp > M(n—1,4) a.r‘ld let G be a.(p, n—1,4)-graph with¢ = E(p,n—1,4)
edges, E;,"E’g, ...y Bq. Let 7, }'2,,..;., 7, be copies of a (T,n,3)-gr;§;h with T
edge‘s.v For ¢ = 1,2,...,q let My ={E;u {v}‘| v is a vertex of %}. Let ¥ be the
hypergr;;phf whose edges are those of % and of M, 1="1,2,..., q.

We show that X is 4-éhromatic. Suppose we try to 3—<_:ol<;r X red; blue and green.
Since § is 4-c..ritic;.l “some E; € g'wiil Se monochromatic. Suppose E;j is red. If
some vert.ex of ¥; were red, f.‘}xere would be a red edge in M 5. Thus the vertices of X
‘are colored blue and green. However, this contradicts the fact that % is “3.-cr§tica.l.
Thus X is not 3-colorable. X is clearly 4—color§ble z;nd hence 4-chromatic.

Next we’show that ¥ is.4-c;i£ical. To do this §v.e need to gi‘ve‘a. 3-coloringof ¥ — F-
Aflor each F Ec)(.

If F € ¥ for some j‘é {1,2,... ,q},‘2-c_olq\r - F red and blueso that F' is red,
3-color G — E; red, bTﬁe/and gx;een so that Ej is green, and for ¢ # 5 3-color % fed, V
blue, and green. This is a 3-coloring of ¥ — F. - -

. If F € M; for some j € {1,2,... ,q}; then F = E; U {v} for some vertex v éf %
3-color % a.nd G — Ej red, blue a.ndérée_n so that v is the only green vertex of ¥;

and E; is green. Thié is a. 3-colbring of X — F.

It follows that _)( is 4-_-critical. Moreover, it is n-uniform and has ¢T + p vertices

N3
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1 B +

and 2¢T edges. 'i‘herefore,

, 2qT ~
(i) < lim 2L fim2- -2 _=2- 2 .
_ poo qT +p  p—oo 1+ﬂp1 1+a(n—1,4)T

a
COROLLARY 2.6. Forn 2> 3,r > 4,
r—1 ‘
.ma.x{l, T} <a(n,4)<r-2.
PROOF: By induction using Theorems 2.4 and 2.5, and (20). ‘ \\., ]

Our next result deals with the problem of improving the lower bound for a(n,r)

»

given .by (20). We get from (20) . . .o

a(n,r) > r—1 \{?}n +1 and  afn,r) 21 inallcases. (34)

n

The first inequality in (34) is based on the fact th?.t in an r-critical hypergraph each
vertex is contained in at least br — 1 edges. T}Tl'xslif we aré‘)iné to improve ‘on (34)
in thecase r > n + 1, we need to show that a vertex of a ‘large r-critical n-graph,
on.the average, is contained in more lthan r—1 edgés. We shall prove that this is s§
in the case r =n+1; tha.t is, we shail prove a(ri,ri + 1) > 1. Our pl:OOf of this may
appea.;' to be somewhat unmotivated; so'Qe make a few comments vyhit;h m&e it
appear less ai;tiﬁcail. The proof is not direc,t. ‘We take an (m,n,r +1)-graph G and

we manufacture from it an (n+ 1)-critical 2-graph G. The manufacturing process is

" such that if G has few edges, G will also be ‘sparse, 0 sparse, in fact, that (}a.llai‘s
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3

~ lower bound for a(2,n + 1) given by (8) will be violated. It will then follow that §
must have many edges. When gll of this is made precise, the resdlt of Theorem 2.7

will follow. 4 \

We point out that the idea of tackﬁng problems on hypergraphs by reducing them
to problems about 2-graphs, or conversely of obtaining results about 2-graphs from

hypergraphs, is not a new one. It has been used successfully &réseveml occ‘asion's.

~ IS

See [L2| and [T2] for example.

THEOREM 2.7. Forn >3,

(/ ) ' -
i 2
afn,n+1) > 1+ z

n?
PROOF: Let m > M(n,n'~}: 1) and let G be a (m,n,n + 1)-graph with p =

E(m,,n,_n:+v 1) edges, Ey, E3, ..., E;. Fori =1,2,..., plet G; be a copy of

K™, the complete 2-graph on n vertices. For each 1 set up a2 matching M; (in the

ordinary graph theoretic sense; see [B1, (ihaptef 3]) between the vertices of E; and

AR ‘ .
the of vertices of G;. Let G to be the 2—g9ph whose edges are those of M; and

Gi,1=1, 2, cees P Then G has (n + ('2‘)) p edges gnli m + np vertices (se-e Figure
2.3). -
" We show that tG is (n + 1)-chromatic. Suppose, to the contrary, that G has a
n-coloring. Since G is (n +—-1)-cri£ical, there results a monochro\xg.g.vtic edge Ej ’of g,
j€{1,2,... ,p}. The.color‘ of E; cannot be' a.ssigned to any vertex of CY'J-,’ because

of the matching M;. Thus G; must be (n — 1)-colored. But this is not possible



Fig. 2.3
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since G; = K", an n-critical graph. Thus G is n&f n-colorable. It is clear that G »
has an (n + 1)-coloring and it is thus ‘(n + 1)-chrommtic.

We next show that G is (n + 1)-critical. Let uv be an edge of G. We need to
exhibit an n-coloring of G — uv.
Case 1 t;v is an edge o}' Gj for some j. €{1,2,...,p}. )

(n — 1)-color Gj — uv in colors 1, 2, ..., n — 1, and n-color G — Ej in colors 1,
2,...,n80 that color n is assigned to E,. Then n-color. G for t # 7 in célors 1, 2,
..., n so that no edge of M; is monochromatic.
Case 2 uvvis and edge of M;j fqrﬁ some j € {1,2,:. .. »P}

Without loss of generality, suppose u is a vertex of G and v is a vertex of Ej.
(n —1)-color Gj —u incolors 1,2, ..., n —1, n-color § — Ej incolors 1, 2, ..., n
so that color n is assign;:d to E;. Assign color n to u and n-color G; for ¢ # j in -

colors 1, 2, ..., n so that no edge of M; is monochromatic.

G is an (m + np,2,n + 1)-graph, and thereforeng

-Mm+nmmn+n<(n+GNP=n@+1Y

m+np - m+np ,?(%H“n)'
- (I ) gf' ,: AR -

Let m — oo. This gives VS

a(2,n+1) < "q+”' . (35)

2 (ai n,n+l§ + n) /’-»)
From the theorem of Gallai (the left inequality in (8)) we get ’
-2
a(2,n +1) > g o (36)

2(n? +2n - 2)
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and from (35) and (36) it follows that

2

n_
n? -

a(nyn+1)>1+

PR > — -

The above results give a bound on «(3, 4).

10 35
COROLLARY 28. & < a3,4) < 35.

PROOF: The lower bound is immediate from Theorem 2.7. To get the upper bound,
observe that T'(3) = 7 and (2,4) < £ by the result of Hajés (see(8)). The upper
. \

bound then follows from Theorem 2.5. ' O



Chapter 3. Upper Bounds for M*(4,3) and M*(3,4)

This chapter contains the proofs of the improved upper bounds for M*(4,3) and

M*(3,4) stated in Section 1.4.

pa
¢

THEOREM 3.1. M"*(4,3) < 51.

PROOF: The proof is based on five constfuc%ions, three of which are new, and two
, ,

of which are given in [A4]. The most important of these, from the point of view
of this theorem, is the first one, since it establishes the existence of (m, 4,3)-graphs
for all m > 55. We point out also that it uses a variant of the ideas on which the
proof of Thgorem 2.1is based.

Let Sl'; {m | there exists a linear (m, 4,3)-graph}.
Note: In this proof, when we Say'that we 2-color a hypergraph we will mean that-
we 2-color it red and blue. It is hoped that this assumption will facilitate the reading

S

of the proof.

4

CONSTRUCTION 1. If my, mg € S| thenm € Sy for m > m; + mg + 5.

Let 9(&3 a linear (m,,4,3)-graph and §; be a linear (ms,4,3)-graph. Let
Al
Ey = {a,b,¢c,d} be an edge of G,, E2 = {e,f,¢;h} be an edge of G;. Let t be a

positive integer and for 1 < ¢ <t let

{c,i+1,i+3,i+4), ifi=

1 (mod 4)

g ) (BitLit3itd}, fi=2 (mod4)
) {byi+1,i+3,i+4}, ifi=3 (mod 4)
{9,8+1,14+3,5+4}, ifi=0 (mod 4)

N © 44
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and let ) s 'f
{fih,t +2,t +4}, ift =1 (mod 4) 03
e ) {edt 244}, it =2 (mod 4) B
) {figt+2,t+4}, ift=3 (mod 4) fxx;;‘i nt
{a,d,t +2,t +4}, te=o0 (mod 4). A 'u'w, o
* - g‘
Let X; be the hypergraph whose edges are S
i) those of Gy — E| and G2 — E;
ii) {c,d,c, f}’ {a’ b,C,l}, {C,h, 1)2}) {b!d’ 2)3} and {gv 1'3v4}'
i) Hi,1=1,2,...,¢ ) .
iv) Hf. : | .
v

Mt is a 4-graph and it is not difficult to check, using the fact that {1,3,4} is a -
. . 2 ' '
difference set, that X; is linear. The number of vertices of k*mx +my+t+4.

We need to show that X; is 3-aritical for each ¢t > 1. We do this by induction on t.

.
# [

We first show that }; is 3-chromatic. Suppose, to the contrary, that X; is 2-
colorable and 2~cc§it. Since G; and §; are 3-critical, edgﬁs E, and FE,; will b:e
monocilromatic, and edge {c,d,e, [} forces them to have opposite colors. So without
loss of g;enerality, suppose E; is red and E is blue. Then edge {a,b,¢,1} ensures
vertex 1 is colored blue, aﬁd hence edge {e, h,1,2} ensures vertex 2 is coloredvrcd.
Furthermore, vertex 3 must be blue because of edge {b,d,2,3} and hence-edge
{g,1,3,4} forces verteﬁc 4 to be red. Finally, edge H; ensures vertex 5 is colored
blue. But then edge Hj is blue, a contradiction. If, however, at the last step we
were to éoior vertex 5 green we would get a 3-co}lor'mg for X;. Therefore X; is

~

3-chromatic.
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We now show that }) is 3-critical. Let E be an edge of X;. We need to exhibit ,
. . , . v ~ L e . )

"

'.a-2-coloring:)(1 - E_,. — \
. ’a ) ) o : ' I
" Case 1 E isanedgeof G — E1. # - -

27c61<;r gl ~ E 80 tﬁai dis réd and {a,b,c} is not réa. ‘2-’co_1<;r G2 — E; so that
?Ez is blué. ‘Color ‘1, 3 a.nd 5 red, and color 2 arixc}\4.blue. _
. _C__b_;;c_z Eisanedge of Go— Fp.” - |
' ) ;2~cqloxt G2 - E‘so_,‘:that ¢ is blue and {f,g,h} is not Vblu_e. 2-color 91 — E, so that »
E@réd. If g is(retfi‘, color 1,3 a.nd'4 blue, and color 2 a.ndFS‘I:ed. Ifg‘i‘sv blue_t,}'lenj

color 1,3 and 5 bliu'e, ar;d color 2 and 4 red. . o .‘ i

. Case 3 E is not an edgé Jfgl or of g,.

q 2—color 91 E; and gz - E;. Ey and E2 will be monochromatlc

~— .

~. 1, 2, 3,v4, 5 acgordmg to the following table.

: E « ° . red
f - ;{C, d1c1 f} . EI’EZ N
| ] {a" b, c, 1} s E1v1a4)5
. {e1ha112} ] E1'13v4
oL {6,4,2,3) By, 5, i
- BT {0,1,3,4) Ey, 25
b k Lo Hl = {6)2141~§} El’2y4’.5‘ . /
Fo ' - L Hl‘ = {f’hs,aj} . El$2,4'

vThereforé Hy is 3-critical. Supﬁose-now tha_ > 1 -“ﬁéithat X is 3-critical Wé

ﬁ . za‘
deduce that }lg.,,lw 3-critical. Note tha.t )(¢+1 = (}(t H, )5U {H¢+1 ’Ht+1} We

: need to ﬁrst show that )(¢+1 is 3-chromat1c Suppose tod;ixe ccmtra.ry, that )(H.l is

. 2-colorable‘.a.m{ 2-color it. Then H’, is monochromatxc by .the mductlon hyppth&sls,
i ‘ : s - o . 7 :



a7
a.nd without loss of generality et it be 'ré""a“'.'fSince G - El a.nd 92 — Ej3 are su-bgraphs’ »
of ¥y~ H, the edges E, a.nd E3 must be a.ssngned opposxte colors (the edge {c d, € 9i }

s also an. edge of X — H} ) Hence, the set H¢+1 \{t + 5} must be monochromatlc,

Ki

and since Hy is red Heyy \ {t+5} must be—t’ed Hence vertex ¢ +5 must be: colored

—

blue. Then the set Iig\l \ {t.+ 3} is blue, a.nd hence vertex t + 3 must be colored
) red. But since Ht‘ is red and 't} +4 is only in. edges H; and H{ if we re-'color.vertex
t + 4 blue we will have-a 2-coloring for. )(t, a.contrediction. However.,‘by '2-colorin‘g
Xt — H; (this is possible by the induction hypothesios') and by coloring vertex t + 5
‘ . green, we have a 3-coloring for H;i . Therefore, Meyr is 3-chromatic.

We now show that Ni4g ‘- is critical.\ Let E be an edge of Xty1 . We need to show .

‘that ¥pyy — E is 2-colorable. ol

Case 1 E = H},;.

2-color X — H{ and assign to t + 5 the color not assigned to ¢ + 4.
! K ‘

’ CGSCZE=HH.1.
. {

. 2-color ¥y — H} a.nd‘assign tot+5 the.co?or not assigned tot+3.
Case 3 E ={c,d,e, f}.

2-color G; — E; and §; — E; s,o'th_a.t. E, and E; are both red. Color 1, 2, ...,

t+ 5"'blu\e.

k)
-\

Casé 4 E is an e&‘ge of 61 -

I . "‘

2-color G1—E s0 that di is tujd and {a, b c}%g no‘t red. %color?z — E3 so0 that E;

N

is blue Color ‘the odd numbered vertlc? red and the even numbered vert:ces blue.
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| : _ngg!g_&Eigmedgeofgg — Es.
2-‘colo:' 92 ’ E' 80 that f is blue .and {e, 9, h} is not blue. 2-color 91 - E; so tha.tll
El is red If gis red color 1 and 3 blue 2 red all other odd numbered vertlces red, |
and all other even vertices blue. If g is blue color 1 and all even n;xmbered vertices

blue and all other odd numbered vertices red.

Case 6 E is not one of the edges covered by Cases 1-5.
2-color ¥; — E. This is possiblé by the inductioﬁ hypothesis. Since G, — E) a{ld

(3

G2 — Eg‘are subgraphs of ¥ — E, and since 91' and §; are 3-critical, E and E; ;;,A:;,.‘.-’

are monochromatxc Since {c d,e,f} is an edge of Xy — E E1 and E'2
ae d;fferént\;olors. Thg only vertex that has not been wolored s t —P.S
_cgritained only.in,‘ H,"H ‘and Hyy, . Assign tot + 5'the ;olor not a
t + 3. Then Ht‘+l ié not monochromatic..AIf t+2 and.t' +4 are colored
then Hyyy is .not ?hon.oc‘hromatic‘. .If t+2andt+.4 are coioréd the same, then |
since in the 2-color1ﬁg of ¥ — E, H‘ is not monochromatic and smce F ’ ﬂHt and‘ <

E;n Ht+1 are ho'n-empty for some j € {1,2}, the edge Hyy, is not mohochromatic

““in this case also. Thus we have a 2-coloring for X¢qy1 — Fl.-

It follows that ”)(g is 3-critical for all t > 1 and thus that m ie S; for m >

3

my +mga + 5. - .

Note The (25 50,8, 4 1)-de81gn given as exa.mple' a) in Section 1.5.1is an exam‘ple
.of a lmea.r (@ y3)- graph Thus, if we take m; = m, = 25 in Construction 1, we

find that m E S; for all m > 55.
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CONSTRUCTION 2. Ifmy, mg € S) thenm; + ma +1€ S;.

;"lf;This is a special case of-one of the constructions given in [A4], so we do not give
the details here. -
~ Note If we take m, = mq = 25 we see that 51 € Sj.

CONSTRUCTION 3. Ifmj, m; € Sy then my+ mg + 4 € 5.

This is another of the constrictions given in. (A4], so we do not give the details
here.
Note If we take m; = mq = 25 jn Co_ﬁ%tion 3 we see that 54 € 5.
CONSTRUCTION 4. Ifm;, my € S; then m; + my + 3 € S.

Let G; be a linear (my,4,3)-graph and G, be a linear (m3,4,3)-graph. Let

E, = {a,b,¢c,d} be an edge of §i, E3 = {e, f,9,h} be an edge of Gz,-and let 1, 2, 3

‘be new‘ vertices. Let X be the hypergraph whosve‘edg:es are:
i) th§se of G1 — E; and 92 —~ E, | -
i) {c,;i,c,f}, {a, b,e,1}, {e,9,h,2}, {b, d,2,3}, {f,h,1,3}.
T};en X is linear, 4-unifox;m and has orde;' my + hz + 3 (see Figure 3.1).

&

‘We show.that ¥ is 3-chfc;matiq. S.uppose,- to the donfrary, that X has a 2-coloring

~ and 2-color it. Since §; and §; are 3-critiéal, edges E; and E; will‘bt;. monochro- -

matic, and must be assigned different colors, since othe;;;vise edge {c,d,e, f} wbuld,
be monochromatic. Without loss of generality, suppose E; is red and E, is blue.

Then, a glance at the edges in ii) reveals that no matter h%w the colors-are assigned
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to 1, 2 and 3, there must be a monochromatic edge. Thus X has no 2-coloring. X
is clearly 3-colorable and hence 3-chromatic.’
NQ"#v we show that ¥ is 3-critical. Let-E be an edgg of X. | We need to exhibit a
2-coloring of X - E.
_Q_@Q Eisan edgei of 91 — E;.
i—colér 61 — E so tha;t d is red and {a? b, ¢} is not re‘d'; 2-col§r‘ 92 - E; ;o that -
Ej is i)lué; Color 1 and 2 red and 3 blue. | | |
M FE xs an edge (;f G2 — E,.
2-color §; — E so that f is blue aan {e,g,h} is not blﬁe. 2-color Gy - E} so that
- Ej is red:-Color 1 and 2 blue and 3 red. |

Case 3 E is not an edge of 91 -—‘E'l or of G — Ej.

»
» ' ¢
2-color §i — Ey and G; — E;. E; and E; are then monochromati¢. We may

obtain a 2-coloring of ¥ — E by choosing the colors of E; and E; and assigning '

colors to 1, 2, 3 according to the following table.

E. red Blue

{C,d, e"f} ‘ ElaE2 19213
'{a,b,‘c,l} Ey 1,2 E,,3
{C,‘g,h,Z} El’3 ,E2’1$2
{6,d,2,3} En23 | Eol
' {f,h,l,'3}_ E,2 E;,1,3

- , . 9
Thus ¥ is 3-critical. Since ¥ has order my + ma +3, m; +my +3€ S§;.

Note If we take m; =my = 25 in Construction 4 we find that 53 € S;.
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- GONSTRUCTION 5. 52€ 1. - ;

We shall need to estabhsh a special property of-the linear (25 4 3) graph given
by the (25 50, 8,4,1)- desngn Let us-denote this graph by D;. The property that

P

we need is the followxng
(P1) There exists an edge E = {a,b, ¢,d} of D, such that for any vertex v #¢,d

of D, there is a 2-coloring of D; — v i'nswhich ¢ and d are assigned the same coior.

Recall that the vertices of D; are the elements of Zs x Zs and the edges are
obtained by adding e&h element of';’s x 25 to {(0,0),(1,0), (0, 1) (4,4)} and
uom@ouommm}wumwmnwnmmmr |
E = {(0,0), (1,0),(0,1), (4,4)} where ¢ = (0,0) and d = (1,0).
'cmerueaon(on(on(LnJLQJLQszJznJmQJ&nJ@m,
(4,0),(4,2),{4,4)} = 4. | | |

If v = (2,0), the following is a 2-coloring of D; — v in which‘(.0,0) and (1,0) are

red.

h ~red [(0,0) (1,0):(0,4) (1,1) (1,3) (1,4) (2,1) '(2,4) (3,1) (3,2) (3,4) (4,r)
blue | (0,1) (0,2) (0.3) (1,2) (2,2) (2,3) (3,0) (3.3) (4.0) (4,2) (4,3) (4.4)

?

We do not give explicit 2-colorings ef Dy — v for other v €A sinee they may pe ‘
cbtained from this one via translates by a'ppropria.te elernents of Zs x gs. The -
reader should see Figure 3.2 a).

In thxs figure (and the three succeedmg figures) the dots represent the 25 elements

of Zs X Zg thh the standard Cart%xan coordmate system ((0 0) is at lower left
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Fig. 3.2 a) . Fig. 3.2 b)

corner. of th}e figure). A white dot regresenté a red vertex and ar black dof. dot
_represents a blue.vertex. The box indicates the_deleted.veﬂrtex. _In Figure 3.2.a.) a
translat‘e of the edge {(0,,0),(2,0),(0,2), (3,3)} is drawn and in Figure 3.2 b) _onelb
of {(0,0), (1,0), ((2,,1__), (4,4)} is drawn. To obtain a 2-coloring of D, —v', one simply.
searchés a -ﬁgu’rtA: for any two horizontally.adja(;,ent veftices which have the same
color (vertxc&s @ the sa'me row and on the sides of the figure are also considered
adjacent). One then translates the coordinate system of the figure so that these
vertices beco'me (0,0) and (1,0) in the new }syst‘eni. J& is then a 2-co[oring of

Dy —v..
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Case 2 v €-{(0,3),(3,0), (3,4), (4,3)}.
‘A The folloWi-ng is a 2-coloring of Dy —v for v = (3, 4) (see Figure 3.2 b). The others

may be obtained via suitable translations of this one.

blue | (0,0) (1,0).(0,1) (0,3) (0,4) (1,2) (1,4) (2,1) (24) (3,1) (3,2) (4,1) (4,2)
red ((0,2) (1,1) (1,3) (2,0) (2,2) (2,3) (3,0) (3,3) (4,0) (4,3) (4,4)

Case 3 v € {(2,2),(2,4),(3,1),(4,1)}.
The following 2-coloring of D; — v works for v = (2,4) (see Figure 3.3 a).

Again, translations of this coloring work for the others.

blue[(00) (L) (0.1) (04) (L1) (13) (2) (2.2) (32) (3:0) (41) (4.2)
red | (02) (0,3) (1,2) (1,4) (2,0) (2.3) (3.0) (3.1) (3,3) (4.0) (4,3) (4:4)
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Case 4 v = (1,2).

The following is a suitable 2—cdloring of D, —v.

red [ (0,0) (19) (0,1) (02) 49.8) (L1) (20) (2.1) (2.2) (23) (2.4) (3:3) (4.1)
blue| (8,4) (13) (L4) (30) (3.) (3.2) (34) (4.0) (4:2) (43) (4.9

We now return to the construction of a linear (52,4,3.)-gra,ph. Let D, be the
,V‘linear (25,4,3)-gfa1->h and E = {a,b, c,d} its special edge. Let G; and Gz be copies
of D, and let E, = {a,b,c,d} and i:?; = {e, f,g,h} be the copies of the speciﬁl edge
E (with e= (0,0) and f = (1,0)5. Let z,v, 1, 2,3, 4 bé new vertices. Let ¥ be the
hypergraph obtaine(i;as follows: First, we identify ¢ and e with z and d and f with -
y. (Here ~the reader may find it helﬁful t‘o th'mk of this as a variant of the long edée'
construction- the set {a,b, :z:,y,g,h} will play the role of the long edge). X also
 contains the edges: {a,b, z,1}, {a,v,9,2}, {b,y,h 3} {z, g,h 4},and {1,2,3,4}. X
is linear, 4-uniform, and has order 52. See Figure 3.4.

A< ¥ is 3-chromatic by the following argument. Suppose,Jtc’) the contrary, X is
2-colorable and 2-color it. Siri;e G1 and 93 are 3-critical, E£; and E; are monochkro-
matic, and because _o% the identification process, {a,b, x,g, g,h} is monocﬂhromatic&.
But now one of the ‘added edges le monochromatic, a contradiction. Thus X has no -

. 2-coloring. It is easi}y geen to be 3-colorable and is thus 3-chromatic.

We do not know whether ¥ xs 3-critical. We shall now show, however, that it is
&Vertex-criticﬂ and thus contains.a 3-cxjiticalvspanning .subgraéh. .To do thié we

need t_é exhibit a 2-coloring of X — v for-each vertex v of .
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‘Fig. 3.4
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~ Case 1v€{1,2,3,4}.

2-color G; — E; and §; — E; so &m} E, aad E; are red. Color z and y red, and
(1,2,3,4}\ {v} blue. ' |
Case 2v =z or y
" Suppose v = z. 2-color G; — ¢ and Gz — e so that vertices d and f are red. Color
1, 2 red and 3, 4 blue. This is a 2-coloring for ¥ — z. The case v = y is similar.-
g@_g v is a vertex of le-— {c,d}.

2-color Gy —v so that ¢ and d are red. This'can be done, by (P1). 2-color G2 — E;

so that E; is red ¢olor 1, z and y red and color 2, 3 and 4 blue. This induces a

.

2—coloring: of ¥ —v.
Case 4 v is a vertex of:(}g ~{e,f}. .
2-color‘Q2 —v so that e and f are red. Thiscan be done, by (P l)‘.f2-‘color 61— E
so that E| is red. Color 4, z and y red and color 1, 2 and 3 blue. This induces a

2-coloring of ¥ — v. | | |
Therefore X is 3-vertex-critical and hence contains a iinea.r (52,4,3)—?raph. This

§

completes the proof of Theorem 3.1. O

3



THEOREM 3.2. M?!(3,4) < 100.

i

PROOF: We ﬁive six constructions from which the theorem may be deélgced. The

; i

§ main construction is the first one—from it alone we may deduce that M*(3, 4) < 160,
a considerable improve?nent over the bound of 719 given in [A8)]. It also gives linear
(m,3,4)-g'raphs for a few valies of m < '160. The remaining five constructions
.enable us to fill the interval {100, 159]. |
Note: Unlessstated otherwise, we make the assumption in this proof that 3-coloring
of a hypergraph will mean a 3-coloring usiﬁg the colors red, blue and green. We
will also make the assumption that a'2'—coloring of a Hypergraph w;ll be in colors

B [ ]
red and blue. . #

.'A

E;, and let v be, amew ve‘i'tex_'%Let Q.M%m k}ie long edge grap

k-
gu Ea‘v) A@ (gh Eh vt)

s :
- £l 1

Let t satisfy

¢ §{7910 11,. (““)'} 2<i<s
{9, 10, 11,... ,("“)} =7 (37)
"{l+1 l+21+3,... Gy 1>8

Let m = m”gg- ; et mg - l + 1 +t ‘We show that there exists a linear
. P o . ]

‘. (m,3, 4)-gtapi§g :
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Let L be a linear (t,3,3)-graph and label its vertices vy, va, ..., v;. Let M;,
Mz, ..., M; be distinct 2-subsets of the loﬁg edge E so that Ji_, M; = E. This
requires 2¢t > 2l + 1 and (since |E| = 2l +1) ¢t < (2’;" ). Thusl+1<t< (u;l )\
and this condition is satisfied. Of course, we cannot allow t < 7 or t = 8 in the case

! <7 since then no linear (t,3, 3)-graph exists. -

Let M = {M; U {Ul},Mg U{va},..., Mt U{v}} and let ¥ be the hypergraph

whose edges are those of G — E, £ and M. X is 3-uniform, linear and has order m.

»

We show that X is 4-critical.

We first show that X is 4-chromatic. Suppose, to the contrary, that X is 3-

colorable and 3-color it. By Lemma 1.3, the long@*ﬂ;is monochromatic. We
may supposg it is red. No vertex of £ can be colored red, because otherwise there
o 2 a )

‘ "’would be a monochromatic edge in M. Thus the vertices of L are colofed blue

and green. However, [ is 3-critical, and we get a contradiction. Thus X is not

-
-0

3-colorable. It is clear that X is 4-colorable and therefore 4-chromatic.

X is a;lso 4-critical by the following argument. Let F be an edge of X. We need

to.show that ¥ — F is 3-colorable.

Case 1 F is an edge of L. | ' -
2-color £ — F sothat F is red. 3-color § — E so that’ E is green.

Case 2 F is an edge of M. ? "

We have F = iM,- U {v;} for some j € {1,2,... ,t}. 3-color G — E so that E is

green. 3-color £ so that v; is the only vertex in L colored green.

-~

4
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N N
_C’__Flsanedgeofg E. e .

" We' have F € Gj for some j G {1, 2,. l} For { # j, 3-color 9. ——P,- eo that |
E; isgreen. 3ecolor Q, — F so that vertex v; is green. Color v green Slhce, in the
3:coloring of G;—F, Ej is not monechromatxc there is a y e E; whlch 1; not green '

Since U M; = E y € Mk for some * € {1,2,. t} 3—color L so that vy is ; the -

. only green vertex of 'E. ’i*his mduces a 3-color1ng of ¥ — F.

it

Thus ¥ is 4—cnt1cal and hence a lmear (m 3 4) graph exxsts

Ne te ‘Let bz = {m [ there exists a lmear (m,3 4) graph} The (31 155,15, 3, 1)-

design glven as Exejnple b)‘ in §ectlon 1».4.1 contams,a linear (31,3 4)-g‘raph, If. we

et g‘ be a copy of thls grapi.. we find, after domg some sx;nple calculatxons based on

N
(37) that m € S; for m > 160. Furthermore, the followmg numbers < 160 arein Ss:

,\.i=2:‘_68,70‘\,71‘ A “« _

153 98,100,101, 102, . .., 112

“
-

=

AN

| =4: 128,130, 131,132, ..., 157 o ’ » %
W =5 158.
The rernaqining five constructions must tferefore establish the exi.{t&;&{?ﬁ linear
‘(m,3,4)-graphs for ,

f/ - m=113,114,115,...,126,127,129,159. . L (38)

"
'CONSTRUCTION 2. A linear (m,3,4)-graph for m € {115,117,118,119,... ,127}.

‘Recall that the (31,155,15,3,1)-design may be described as follows: its objects

9. ‘ / e !



61

are tit Snts of Z3) 'a.nd its blocks obtained from
{o 1, 18} {0 2,5}, {0,4, 10}, {0,8,20}, {o 9, 16} ‘ o

by transla.tmg each of these by ea,ch element of Z3;. Denote the desxgn by D;. We - -

~shall need to know that Dz has the followmg property:

' l

(P2) IfF= {a, b, c} is an edge of Dz hen for any vertex v of Dz, other than b or

¢, there exists a 3—cobr1ng of Dy — v in which b and ¢ are colored the same.

In order to show this note first that since Dz is a model of PG’(4 2) there is no
loss of generality in assummg that F ={0,1, 18} and e =0,b =1,¢ = 18 (all
lines are alike in a projective geometry). We now exhibit four 3-colormgs of Dz

o T B

in which 1 and 18 are assigned the same color. Each of these 3-color1~ngs will be

3-colorings for Dz — v in which 1 anid 18 are assigned the same color by translating

 the color classes by ~v (modulo 31), for each v listed above the colormgs

"Forve {0 2, 3 4,7,8, 9 11, 12(1,17 21,26}, the 3-coloring ist

red [1 2 3 4 5 10 15 18 24 29
blue | 6 8 9 12 16 17 20 23 27 30
green| 7 11 13 14 19 21 22 25 26 28

- — . ' }d‘
- . %,

Forve {5 15 20, 22, 23 24 25 29}, the 3-colormg is:

, yed |12 4 5 6 10 13 14 18 27 ~_ )
: . blue | 3 8 12 17720 21.23 25 29 30 . | -
green| 7 9 11 15 16 19 22 24 26 28

: Foi' v, L€ {6 16, 19} the 3-colorrng is:.

e Ted 11 2 4 5 8 9 10, 16 18 20 °

# s - blue’[3 13 14 15 17 21 24 25 29 30
Lt 7 green[6 7 11 12 19 22 23 26 27 28




'-,wr ' ‘

" Forve {10 13,27,28 30}, the 3-colonng has colormg classes

’ red |1 410 13 14 18 21 25 26 28
’ - blue [ 25 7 8 9 11 16 19 20 22 .
' green| 3 6 12 15 17 23 24 27 29 30

Thas (P2) holds’ | , |
Remark' 'I“he.above colorings were obtained in the foltowing way. We found aA3- '
.colormg, with the help of a computer, that worked for a partlcular v‘and @n took
as many tran:latlons of thls colormg as possxble We then chose a v not covered by

these, found a 3-coloring that worked 'for it and then took translates of this coloring, ,
and so on. __ , ., : , é
: We now describe the construction. Let D; be the graph given above, and let Go,

g o

Gi.and 92 be coples of a 4-cr1t1cal spanmng subgraph of Dy. Note that (P2) holds

4 ’

for each 9.-. For : =‘0 1,2, let E; = {vl , 02», v,} be «the special edge of G;. Let z be

a new vertex Let G be the hypergraph whose edges are: &

) those of Gi — E,,“: =0,1,2 _ | 5

It is straightforward to check that § is 3-chromatic. We make a simple ‘bt
lirnportan‘t obsefvation. In any 3-coloring of G, Ey, E; and"Eg‘ are mon'ochrornatic
: - ' *

ii) {v{,u_;',z}, i=0,1,2.
Qu

<

and at least two of them are assigned the same.color. (That Eo, E; and Ez are

. ,rhonochromatlc is clear and if no two of theni have the same color, there would be

»

- a monchromatic edge of type ii)) .The importance of this’~observation is that the m

.- --under consideration lie between those covered by the case | = 3 of Constructi‘on 1
' ‘ : ‘ ¢ , . .

1
&



R

63

(where the long‘ed"ge has size 7) and the case l =4 '(wher'e the long edge has size
i
9) Here EoU Ey U E3 will pla.y the role sxmxlar ta that played by the long edge in ‘}

Oy
W

~ previous constructxons . " P ' .
We cortinue with the¥ construction. For 1 =0, 1, 2 define ¢ by ¢/ =1 + 1 mod 3,
0< 4 <2 Let

¢

S P R v '
M ={vi,v3}, My={vz,v3}

and for j =1, 2, 3 let

) . . :.v., .,'  . h . .
Mipp = {v1,vj}, Mjs ={v3,0;}, Mje = {v3,vj}.

4

iThese s'etsé‘a.’re' —é-subsets of E; U Ey. The reason for describing them in this way
will become apparent later. Note that {v,vi} and {v{,vi} are net included.
Fori =0, 1, 2, let £; be a linear (p,-,3,3l)-graph so that pi € {7,9,10,11},

(hence py + P2t ps € {21,23,24,25,...,33)). It may be checked that ea‘ch' L

has a 3-colormg in which the color classes Vi, V2, V3 satxsfy |Vl | > 3 and {V5| >
» ma.x{2 p; — 6} Let the ver/ces of f“ ’oe la.belled B8, .0, lp‘, , and suppose that

the la.bellmg is such that I, 1} € V2 a.nd 13' L, e Vl and in case P #1, Lj‘+’a evd
for]—12 ,p,-vS T _ '

® ) ’ ¢ _
%For i= o 1,2 let M; = {{l‘}uM},{l‘}uMz, ‘{1".}UM".}.‘ Let ¥ be the

s e

hypergraph whose edges are those of G, L; and M‘, { = 0 1 a.nd 2. The reader_

should see Flgure 3 5.:

A
X Vji@«unlbm, lmea.r (smce {v,,vz} is not a subset of a.ny member of M;) and

B BN

S,

s has order 94 + p; + p2 +p3

s
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We show. tha.t Xis 4 chromatic. Suppose.that N is 3 colomkle agd 3-color it.

. T "I .
Then, by the observatxon made earher Ey, By, and E; are mo }lrdmat'lc a.;j at
‘I

ap
4 .
f o

“ -
—

least two of- them, say E, and E.r have the sa,me color,- ga.y red. .Gmce E,
| ;—1 M‘, no vertex of L; can be colored red, since otherwxse there evould be a
monochroma.tic edge in M;. Thus £; must be-2—colored, contradicting the fact that
L ie 3-criticel. It follows that X ie not 3-colorable. It is clear that ¥ is 4-colorable

and hence 4—chromatic.

We do not know whether ¥ is 4-critical. It is enough, however, to show that it is .

4-vertex-critical and thus coritains a 4-critical spanning subgraph.. Let v be a vertex

of X. We need to show that ¥ — v is 3-colorable.
Case 1 v is a vertek of Gi for some k € {0,1,2}, v ¢ {vE vk}

3-color Gy — v so that v1 is red and {vz, } is 'vg;een. It is.possible to do fhiis .
| by (P2). 3-color Qy — Ep and Qku Ey so that Ey is red and E'ku is blue (here
K = (¥')!). Color vertex z gfeex}_. Then no edge of § is monochromatic. '3-color
nﬁk s;o that.VI"., is blue, Vi is green and V¥ 1s red. 3-color Ly .so., that V¥ is red,
| Yl"' is blue a.nd V3"' is gfeen. 3;color £ so that ‘sz " is red, V.lkl " s blue ar‘;d V3"’ T

is green. Then no edgve'_of M; or E,: is monocherm‘atic.‘for 1=0,1,2.

Case 2 v = vj for some k € {0,1, 23B%¢

LY

3-color Gx — v, gy —_ E'y and G — Epr so that Ek is green Ey is red and Ew




as E'.r
_Q_qg__ﬁv-—vs forsomekE{O 1, 2}

For s = 03 1, 2, we may 3-color §; — E; so that E'k.a.rld Eu ere red, and Ey is
blue. Color ‘z green»:i For ¢ = k', ¥, 3-color L; so that V} is not a.Ssigned the same
coler as Ey. Color ﬂkeso that Vit is blue, v} i;z green arrd V4 is red. “i\loté that Mé‘,

M7 and (m case px # 7) Ma are not subsets of any edge of X—v,and if py #17,

thenlﬁs eV} ,fOI‘J = 1,42,...,pk—-8,a.n'dso’edgeM+8U{lﬁs} = {lJ-+8,v2,vj }

is not monochromatic. ’ '
. Cased v = z..

For t = 0, 1, 2, we may 3-color Gi — E; so that Ey is red E; is blue and E2 is
green, a.nd 3-color £, so that V2 is not,_ assngned the sa.me color as E;.
Case 5 v is a vertex of Ly for’some k € {0 1 2}.
_Fori=0,1, v2, we may 3-color ‘g, E 50 that E, and Ey are red and Ew is
blue. éolo}' ‘zogreen. 2-color Ly —v blue and green. For 1 = k', k", 3-color £; so
"E'that Vli is. blue, V-j is green and V; isred.

\ . - .
It follows tha.t Hi is 4-vertex-cr1t1cal and thus contains a 4-critical spannmg sub-

(@
graph

Eotg If we delete from the list glven in (38) those va.lues of m covered in Construction

2, we ge% the followmg va.lues of m > 1 for which we n_eed_ tq ‘_”.'?.ab“"h the e)gistence
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CONSTRUCTION 3. If my, ma €S2 thenm; +mq + )1 € 5;.

Let G; be a lmear (m1,3 4)-graph, 93 be a lmea.r (mg,3 4)-graph, E; = {a b,c}
K _be an edge of 1 and E; = {d,e, f} be an edge of G3. Let B be the lmear (11, 3,3)-

graph"with edges {1,2,3}, {1,4,9}, {1.,5, 11}, {1,6,7}, {1, 8,10}, {?,6, 11}, {3,5,6},
{3,7,11}, -{4,5, 7}, {4,8,11}, {5,8,9}, {9, 10,11}. Let M be the linear 3-graph
with edges {l,a,b}, {2‘,‘a,c}, {é,b, c}, {i,d, e}, {2',ld,f}“, {3,e,f}', {4,q,d}, {5, a,e},
- {6,4q,f}, {7,b,d}, {8,b,¢}, {9,0, f}, {10,_c,d}., {11,¢,e}. Let X be the hypergraph

whose edges are those of G; — Ey, G2 — Ez, £ and M.

A is l‘inear,‘?,—uniform and has order my + mg + 11. X is 4—chr§matic by the
" following argument. "Su'ppose, té the contrra.ry., X is 3-colorable and 3-color it. Then
E a.nd E; are monbchrorﬁatiC. If they have diﬂ'erent cdlors: E, ;ed ,~E2 blue, the
first six edges hsted in M force 1, 2 and 3 to be green thus gwmg a monochromatlc
edge (namely {1 2,3}) in L. Thus E; and E, ha.ve the same color say red Since
L is 3-critical some vgrtex of £ must be:colored red. This implies that there is a
red edge in M‘,‘a. cont’radict_iyon. Thus X is not 3-;olor;1bl;3. It is clearly 4'—c610r$blé .

and thus 4-chromatic. ' '

We now show that ¥ is 4-critical. Let E be an edge of ¥. We need to show that

X — E is 3-colorable.
Casel E is an edge‘ of L.

2-color £ — E and 3-color 61— Ey and‘gz — E, so't'ha.t E; and E; are green.

»
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_C’M.VE is an edge of M o ~ L '}‘
Let j be the vertex of £ contained in E. 3-color £ so that vertex _1:' is the only
- green vertex. 3-celor G — {5‘1 and 9§ - Eg so that E; and E; are green.
~Case 3 E is an edge of §; -'.El._ ) _ oL
‘ U3-color G1 — E and G, — E; so that a is red and E; is green. If all:three colors
~are used on E; let b be blue and ¢ be green. 3-color £ so that 4 is the only green
vertex ef £ This gives a 3-coloring of ¥ — E. Otherwise, one color, which we may_
take to be green, is. not used in E1. Thus either {a,b} is red, {a,c} is red, or {b c}
is blue. 2-color £ ~{1,2,3} red and gteen so that {1,2,3} is red and re—color 1 end ‘1;.,
2 blue This gives a 3-coloring of ¥ — E.
-MEisaned.geofgz— |
Color G, - E and g; - I“J‘l so that d ie red and E; is green. If all threeu colors
are used ‘on Ej, let e be blue and f be green;' 3-color £ so that 4 is the only green
vertex of L. This is a 3-coloring of ¥ — g_.QOthé"‘rwise, one color, which we may take
‘to be green, is not used in E;. Thus ithet a%‘{d,;e} is red, {d, f} is red, or {e, f} is
blue. 2-color £ — {1,2,3} red and green so that {1,2,3} is red and re-color 1 ahd_.

2 blue. Thisis a 3-colormg of ¥ — E.

It follows that X is fi@g@lcal and hence that m; + mqo + 11 € Sz

ﬁm 7
) CONSTRUCTION 4 ?ml, mg € Sy then my + my +12€ S,.
e~

Let G, G2, ‘Efs," E, be as in Construction ‘3. Let L be the linear (12, 3, 3)-graph

whose edges are: {1,2,3}, {1,4,5}, {1,6, 78,9}, {2,4,8}, {2,6,9}, {2,5,7},
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{3,4,6},3,7,8}, {3,5,9}, {5,6,10}, {5,8,11}, {6,8,12}, {10,11,12}. Let M be

the same as in Constructjon 3, but with the additional edge {12,¢, f}. Let X be
the linear 3-graph whose edges are those of G, — Ey, G2 — E3, £ and M.
| vThe argument used in Construction 3, with no changes, shows that ¥ is 4-critical.

We do not give the details. Since ¥ has order m; +m3+12 we have m; +m2+12 € S3.

Note Construction 4, with m; = mg = 31 shows that 74 € S3. ‘Constru&ion 1,

with | = 2, m; = 74, my = 31, and t = 9 or 10 shows that 113 and 114 are in Sj.

Construction 3, withm; =mg = 74’, shows that 159 E Sg. Thus three of values in

(39) are removed, leaving just mn = 116 and m.= 129.

CONSTRUGTION -5. A Hnear (116,3,4)—g1"aph.

The construction is complicated. We make a few rernarks which may serve to
»

‘motivate the main idea. We wish to exploit the long edge notion. The case | = 3 of

Construction 1 gives a linear (115, 3,4)-graph. The long edge: (of size 7) is not quite

long enough to cover the case m = 116. Our construction is gbiven in two stages.

. At the first stage we construct a 3-chromatic 3-graph in which in every 3-coloring

a certain set of 8 vertices is forced to be monochromatic. This set of 8 vertices will
then play the role of the long edge.

'We.‘ proceed to the details. For ¢ =1, 2, 3 let G be a copy of the linear (31, 3,4)-

" graph, and let E‘ be an édge of Gi. For 1 =2,3 1et v; be a vertex of E;. I;et v be

a new vertex. Let § be the long edge graph obtained from Gz and Gs:

9=(9,E, v)= (G2, Ez,v2) €D (Qs,Es,ﬁs)-

b
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Let E; = {a,b,c} and label the vertices of 'Qso that E = {d,e, f,g,h} where
{d,e} c UGz {8} U Gs and f-=v. Let 1, 2 and 3 be new vertices and let ¥

(

be the graph whose edges are:

i) those of Gy — Ey and G — E

ii) {a,b,1}, {a,¢,2}, {b,¢,3}, {d,e,1}, {d, f,2}, {e, f,3}
i) {1,2,3). N .
¥ is 3-colorable. Thev key observation is’-that in any 3-coloring of ¥ the set
{a,b,¢, d,c,f,g,h} = E' is monochromatic. To see this, consider a’3-colori.ng of ¥.
By Lemma 1.3, E must be monochromatic. Also Ej, is monochromatic. If E; and
Ez have diﬁg}ent colors, then these colors cannot be used to color 1, 2 or 3 since
otherwise t}here would vb_e a monochrofnatic edge of type iii). But then {i,?,ﬁ} .is
monochromatic. It follows that in ax;y 3-color.'mg of ¥ the set E' is mon(;chro’matic.
¥ has 95 vertices. We now ﬁonstruct a linear 3-graph of order i16 which con-
tains ¥ as a subgraph. Let 1, 2, ..., 21 be newv vertices and lét £ be the linear
(21,3,3)-graph with edges {1,4,5}, {1,6,7}, {1;8,9}, {2,4,8}, {2,6,9, {2,5,7},
{3,4,6}, {3,7,8}, £8,5,9}, {5,6, 16}, {5,8,11}, {6,8,12}, {10,11,13}, {10, iz, 14},
{11,12,18}, {13,14,16}, {13,15,17}, {14, 15,18}, {16,17, 19}, {16, 18,20},
{17, 18,21},_{19,20,21}. and let M be the iinear 3-graph witz edges {1,a,d},
(2a,ch, (3,1}, (464} (5,hed, (60,11, (T, (rcreh, (46,1}, (10,6,
{11, q,h}, {12,b,§}, {13,b, 4}, {14,;,g}, {15,c,hi; {16,d,g}, {17,d,h}, {18,¢c,9},

{19,¢,h}, {20, f, g}, {21, , h}.

7
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Let X be the hypergraph whosé edges are those of ¥, £ and M. The reader should

see Figure 3.6.

X is a linear 3-graph of order 116. We show that ¥ is 4-critical.

First observe that X is 4-chromatic. If there were a 3-coloring, the set E' would
be monochrpmatic. Then the color éssigned to E' cannot be use'd to. color L since
otherwise there would be a monochromatic edge in M. Thus £ must be colored in
2 colors, contradicting the fact that L is 3-critical. Hence X is not 3-colorabie. It

is clearly 4-colorable and therefore 4-chromatic.

We now show that ¥ is 4-critical. Let F be an edge of ¥. We need to shoW that

X — F is 3-colorable.

, Case 1 F is an edge of G, — E;. \

+ 3-color Gy — F so that a is red and {b,c} is'not red. 3-color § — E so that E is

blue, and 3-color L so that 1 is the only blue vertex of L. lTher-l no edge of M is

monochromatic since in {1, a,d}, 1 is blue and a is red and each of the remaining

: Mges\of M has a red or green vertex from £ and a blue vertex from E.

Case 2 F is an edge of ¥ — E.

Let F' = (F\ {v})U{v:}ifve Fandset F' = F other\;vise. We give details for
the case F’ € G — E;. The case involving 93‘—E3 is similar. 3-color G; — F" so that
v is blfi% ind {J,c} IS not blue. 3-color Gy —E; and §3 - E3 éo that E; and E; are
blue. Color 1 red a.ndfi gr.een; Then no/edge of type ii) or iii) is monochromatic.

Now one of the vertices of d or ¢ is not blue. If d is not -blue, 3-color L so that 1is -
, . , ' S,

. . F” o ) - . . ¥ d_
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the only blue vertex éf £. Then no edge of M is monochromatic since in {1,a,d}, 1
_ ) <

is blue and d is not and the rest of the edges of M have a blue vertex from E\UE;

- \ . * '
and a red or a green vertex frop L (it is important to note that {d,e} is not a
subset of any edge of M). If d is blue, then e is not blue and we may 3-color £ so

’
that 2 is the only blue vertex of £.Eln both cases we get a 3-coloring of ¥ — F.
Case 3 F is an edge of L.

3-col.or 61 — E; and G — E so that E; and E are blue. Color 1 red and 2, 3 green.

-
2-color £ — F red and green so that F is green.’

Case 4 F is an edge of type ii) or iii).
. [ . ' )
8-color G; — Ey-and § — E so that E, is blae and E is red. If F = {1,2,3} then

color F green. If F is of type‘ii) let s bevthe vertex‘cor?mon to F and {i,i,ﬁ}: Co‘lor

- 1 50 that F is monochromatic and color the othfaf verjices of {i,‘ﬁ,ﬁ} green. 3-color
' 4

L so that 1 is the only red vertex in L. Thegﬁ’gge of M is monochromatic: in

{1,a,d}, 1is red and a bluev, a ‘d the resf: of the edges from M have a blue or green

vertex from L, and a red vertex f om E.

7

Case 5 F is an edge of M.

5

3]2(;& 61 — Ey and G — E so that E; and E are blu&Color 1and?2 red,and 3
green. Let ) be the vertex of ¥ which is also a vertex of £ and 3-color L so that j
is the only blue vertex of £. Then no edge of M — F ;@gnonochromatic since each

such edge contains a red or a green vertex from £ and a blue vertex from E, U E.

-

It follows that ¥ is a 4-critical and is therefore a linear (116,3,4)-graph.



. m) F‘ I\{c, d} (the shott edge) G R < ’v[.i:;

-

J ‘ S L - 14
E N i . ) . .(ﬁ -

* There remams only one other valuhf m > 100 to dlspose of, namely m o= 129

'(xt is the value mxssed hi the case l =3 o’f Construct’o 1 because of -the lack ofa L

linea’.’r_. (8, 3, 3)-gra.ph). In our sea.rch for a linear (129, 3,4)~gra’ph we had to a.bandon

the ideé. of using a.\'(ariant of the long edge construction. 129 is near the‘ lower end
P . . - : L ] ) . ) . . . ’ . ‘
of t‘ne‘block of consectiﬁve numbers cov’eted by the case l =3 of Construction-1. .

2 -

80 tha.t the idea used. i in Constructlon 5 does not apply Also 1t is _]ust misséd by -
-Constructlon 2 since it is clea.r from Constructxon 2 that the numbers p;, pg, pgg'

;occurrmg there cannot exceed 11 In ox‘der for 1t to work here wé W%}Id have to:

have P+ p2+ ps' 35.

S

'C‘ONSTRUCTION__G. A linear (129,3,4)-graph.

' ‘We describe the construction in two steps. S L
b : . N T L, o

The ﬁrst step is to obtain a hneg 4- cntlca.l gra.ph in whxch all edges except one .

“have sxze 3 and one edge has sizé 2 We refer to it as a short edge graph Let G1-
- and G; be coples of the lmea.r (31 3 ,4)- graph Let E'1 = {a b, c} be an edge of Q; °

’a.nd Eg = {d e, f} be an edge of 92 Let 1,2 and 3 be new vertxces and iet 7 be -

T o
the hypergraph whose ecrges are: & o
a .. : !

) those of 91 E1 and“gz - Ez o

.\. °
‘ A

s

u) {a,b,,l} {a,c 2} {‘b c, 3} {d c,l} {d f,2} e, f,3}, k 53,2’3}“ ,

{

Nae tha.t F- F‘ is 3-umform, lmear and has order 65 (see Fxgure 3 7) -

- o i

? It xseasy to check tha.t Fi is 4-chroma.t1c We show tha.t it is 4-cr1t1ca.l Let Fe ?

et
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o .is green. Cblor 1 and 2 blue and 3 red.

blue. - RPN 7

. Case 2 F is a.nredge of Go— Eq. - e,

76

We need to exhlbxt a 3—colormg of 7 E.

Caachusanedgeonl L . '

3-color Gy — F so that ¢ is red and {a, b}i is not red. 3-color §; — E2 so that E,
is green. Color 1 red and 2 and 3 blue. '

i

._3-color G1 — F so that d is red and {e,f}-is not red. 3-color G1 — E; so that El C

K

2

C’aac 3 F is an edge of type u) _____ ) e
@ : ¢ . ‘ - e . \
~ 3-color 91 -E and G2 —E'z 80 f.hat ’El is red and Eg is blue. If F={1,2,3}, color

F green, cherwxse, ={R-V F' where F’ C E'l or F’ . E('\j JE {1 2,3}.

.Color.vertex j bfue if ' C E, a.nd red 1f F' C Ez Color {1 2,3}\ _7} green

Casc4F F. . . o

¥

'3-color491 - E1 and gg ~ s eo that E; U E, ie g;een. ‘Coior'l red and 2 and 3‘ :

It follows that ¥ jsd.critical. e
. It follows tha I?Mcn ical. | | |
Let a.nd v}-z ble copies of the short eage graph ¥ described above. Let the short

L4

[ -

edges of # and H/be F} = {u,v} and F; = {:c,yf ' respecti;rely{ Let z be a new

vertex azxd let X be the hypergraph obtamed from 74 a.nd fz by 1dent1fy1ng v and

V-
z thh z. )'{ isa lm&.r 3~graph—1n the 1dent1ﬁcat10n process "the short edges merge

’

50 as to give a smgle edge of snze.3— and has order 129 (see Fxgure 3.8).

Lo j ‘?:' : ‘
It is stralghtforward to check tha.t: )(ﬁlswi-chromatlc )( is a.lso 4-cr1t1ca.l Let F be,
. “ : @a}g : N L WU .

3"

B[ A Y co - ]
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an edge of ¥. Without loss of generality 'we may suppose that F € 7 — Fy'. 3-color

# — F so that u is red and v is blue. 3-color 7; — F} so that, F} is blue. Color z |
blue. -This yields a 3-coloring of ¥ — F. Hence A, is 4-critical
This completes the proof of. ’I‘Jxeb}&m‘-&z. O
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