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How do animal territories form
and change? Lessons from 20 years
of mechanistic modelling

Jonathan R. Potts1 and Mark A. Lewis1,2

1Department of Mathematical and Statistical Sciences, Centre for Mathematical Biology, and 2Department of
Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Territory formation is ubiquitous throughout the animal kingdom. At the indi-

vidual level, various behaviours attempt to exclude conspecifics from regions of

space. At the population level, animals often segregate into distinct territorial

areas. Consequently, it should be possible to derive territorial patterns from

the underlying behavioural processes of animal movements and interactions.

Such derivations are an important element in the development of an ecological

theory that can predict the effects of changing conditions on territorial popu-

lations. Here, we review the approaches developed over the past 20 years or

so, which go under the umbrella of ‘mechanistic territorial models’. We

detail the two main strands to this research: partial differential equations and

individual-based approaches, showing what each has offered to our under-

standing of territoriality and how they can be unified. We explain how they

are related to other approaches to studying territories and home ranges, and

point towards possible future directions.
1. Introduction
Territoriality occurs widely throughout the animal kingdom, observed in taxa

as diverse as mammals, birds, insects and fishes. Territories are spatial regions,

defended against conspecifics, for the purpose of using resources and providing

mating opportunities. Different species use a wide variety of tactics to defend

territories, such as deposition of visual or olfactory cues, fighting or ritualistic

displays, with records of such behaviour dating back as far as the seventeenth

century [1,2]. While theoretical biology has a rich history of analysing pattern

generation from microscale interactions to macroscale [3], it was not until

about 20 years ago that population-level territorial patterns were modelled

analytically as emerging from individual-level interaction events between

similar animals [4] (although see [5] for an early example of segregation

emergence between animals with highly differing behavioural traits).

Historically, much modelling of space use has been based on phenomenolo-

gical descriptions of the areas used by animals, such as drawing a minimum

convex polygon around location fixes to construct a plausible home range [6],

or assuming that space use will correspond with food availability, as with

resource selection analysis [7]. These approaches have become increasingly soph-

isticated over the years, through models such as kernel density estimators and

Brownian bridges, leading to realistic descriptions of spatial patterns [8,9].

While accurate description is valuable, prediction requires a solid understand-

ing of the individual-level mechanisms that give rise to observed spatial patterns.

The construction of quantitative, predictive ecology that can foresee the impact of

environmental change on species’ ability to survive and reproduce is a vital chal-

lenge for twenty-first century science. The rapid changes currently occurring in

many of the Earth’s ecosystems force animals to respond before they can adapt,

attempting as best they can to make use of the new environments they find them-

selves in. By uncovering the behavioural mechanisms underlying their choice of

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.0231&domain=pdf&date_stamp=2014-04-16
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area as they move and interact with one another, it may become

possible to predict the effects of habitat variation on the spatial

structure of a population.

On the more theoretical side, mechanistic territorial models

provide a key step towards constructing a statistical mechanics

for ecological systems [10]. This programme seeks to find

quantitative theories explaining how ‘macroscopic’ ecosystem

patterns derive from ‘microscopic’ individual processes, in

analogy with the laws linking macroscopic physical properties,

such as pressure and temperature, to the behaviour of the

underlying system of molecules. Although ecosystems con-

taining living creatures are more complex than collections of

molecules, the general principle of beginning with a random

walk model, then using mathematical analysis to derive prop-

erties of the system, has already borne much fruit in movement

ecology research [11,12]. Therefore, scientists are gradually

moving towards the goal of building a predictive ecologi-

cal theory based on the concept of statistical mechanics, by

constructing the jigsaw puzzle one piece at a time.

The specific puzzle-piece that relates to building models of

space use from territorial interactions, which is the focus of this

review, began when Lewis & Murray [4] constructed and ana-

lysed one-dimensional advection–diffusion equations based

on scent deposition of wolves and the subsequent avoidance

response of neighbouring packs. Since then, this formulation

has been refined to take account of the precise details of move-

ment and interaction events, generalized to the biologically

realistic two-dimensional case and extended to account for

environmental effects [13,14]. It has been successfully used to

test hypotheses about the underlying causes of territory size

and shape and demonstrate the effects of population change

on territorial structure [15]. Recently, it has also been applied

in the sociological context of human gang territories [16].

This wide variety of applications both demonstrates that

there exist general mathematical structures behind the multi-

farious territorial interaction mechanisms residing in the

natural world, and shows the effectiveness of mechanistic

modelling at answering hitherto unsolved biological questions.

Three years ago, there was a further fundamental

advancement in our understanding of territory formation

and dynamics [17]. The authors stripped down the model

of scent-mediated conspecific avoidance to a very simple,

individual-based model (IBM) of territory formation, which

was analysed from the ground up, without taking the

mean-field limits used in the advection–diffusion approach

[15]. Although qualitatively similar territory patterns

emerged in this model, it also displayed a number of features

not present in the advection–diffusion approach, most nota-

bly details of the timescale over which territory boundaries

shift, as well as an ability to quantify the longevity of scent

mark cues purely by examining the evolution of animal

locations over time [18,19].

The purpose of this paper is to give a detailed review of the

progress in both approaches to territorial modelling, which

relate mainly to terrestrial mammalian carnivores, but have

recently been extended to birds [20]. We explain how a recently

proposed formalism can unify the two frameworks and relate

them to the fields of resource selection analysis and collective

animal behaviour, two areas of ecology that have separately

evolved rich histories of modelling and data analysis. Finally,

we give a perspective into the future of mechanistic territory

modelling and how we see its place in helping to answer

pressing questions in current ecological research.
Throughout, we are careful to distinguish territorial for-

mation from the related concept of home range emergence

[21,22]. While territorial interactions are often key in the for-

mation of home ranges, they are not a necessary mechanism,

with home ranges often forming in the absence of conspecific

avoidance. The underlying localization processes in these

cases may, for example, result from resource attraction or site

fidelity owing to memory [23]. Although the examination of

home range formation in the absence of conspecific avoidance

interactions is beyond the scope of this review, we include a

section (‘Home range emergence’) where we explain how

mechanistic territory models fit into the general effort of under-

standing home range formation. For a good recent review of

home range analysis, instead see [22], or [24] in the context

of mechanistic modelling.
2. The dynamical systems set-up
Mathematical models for animal movement take a variety of

forms. Normally, one might think of tracking an animal’s

location at fixed time intervals. In this case, a movement

kernel would describe the distribution of step lengths and

movement directions from one time step to the next [11,12].

However, local environmental conditions, such as terrain or

prey, or territorial signals, such as scent marks, would also

feed into the movement kernel [15,25]. An animal may bias

movement away from steep terrain or might take shorter

steps in regions with high prey density. Territorial signals,

such as scent marks, could also affect the direction of move-

ment through avoidance of foreign scent marks or attraction

towards familiar scent marks [15].

To complicate matters, some of these factors, such as terrain,

are external to the animals, whereas others, such as prey density

or scent mark density, involve negative or positive feedbacks as

animals modify their local environments, a process sometimes

referred to as stigmergy [26]. One way of accounting for these

effects is to create an IBM with reasonable behavioural rules

that involve changes to the local environment and responses to

environmental conditions. The IBM could be simulated to

explore the suite of possible outcomes. A particular example of

this approach is given later, in the section ‘An individual-

based approach’. First, however, we examine an alternative

approach, which attempts to approximate the probability

density function (PDF) of the animal or group of animals.
3. Probability density function approach
Although the precise location of the animal at any point in time

is uncertain, the range of possible locations of the animal can

still be described using a PDF. This modelling approach simu-

lates the time evolution of the PDF as territorial interactions

reshape it [15]. Thus, rather than requiring multiple stochastic

simulations, the PDF approach involves a single simulation

that tracks the expected space use of the animal over time.

The basic tool for moving from individual descriptions

to PDFs is the master equation [11,12]. This is an iterative

equation that describes the PDF of the animal at a time t þ t

in terms of the PDF at time t and a dispersal kernel describing

the individual movement patterns. The kernel is based on an

individual-level description of the animal’s movement

between t and t þ t. Many individual-level processes have

been proposed for movement between successive locations,
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Figure 1. Mechanistic territorial model applied to coyote populations. These
relocation data for coyote from different packs, denoted by different colours,
are fitted using the method of maximum-likelihood. The model posits that
animals move randomly and avoid foreign sent marks by moving back
towards their den site or organizing centre (triangles). The scent marks
(not shown) have their own dynamics where there is a constant low level
of marking, with foreign scent marks causing an over-marking response.
Full details of the model are given in Moorcroft et al. [13]. Reproduced
with permission from Moorcroft et al. [13]. (Online version in colour.)
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such as step selection functions [27], Brownian motion [9] and

state–space models [28]. The master equation provides the

bridge between these individual-level descriptions of move-

ment and more ‘macroscopic’ space-use patterns described

by the PDF.

The classical method for analysing master equations

involves using the Fokker–Planck equation to approximate

the movement model. This allows one to go from the

kernel-based description of movement for individuals,

including environmental conditions and feedbacks, via

the master equation, to a system of advection–diffusion

equations that track the expected space use over time. The

resulting system of equations can be simulated on a computer

or analysed mathematically to predict the emergence of

territorial patterns.

Early applications of the Fokker–Planck approach focused

on determining the behavioural ingredients needed for terri-

torial pattern formation [4]. They asked: what behavioural

interaction terms, including scent-marking, will give rise to

the spontaneous formation of territories? The simplest model

involved two packs interacting in one spatial dimension, each

producing scent marks that cause avoidance movement by

the other pack. Each pack was modelled as moving back

towards its den site when it encountered foreign scent marks.

It turns out that this simple model is sufficient to generate

territories [4]. The addition of positive feedback, through

enhanced scent-marking over foreign scent marks, gives rise

to bowl-shaped patterns of scent marks, with the edges of the

bowl describing heightened scent densities found at the edge

of the territories [29]. It also gives rise to buffer zones between

territories, where neither pack would go. Both these features

have been studied extensively in wolf (Canis lupus) territories

in northeastern Minnesota, and the fact that simple behaviour-

al rules give rise to such realistic emergent patterns is a

persuasive argument as to the model’s validity [4].

Realistic models for animal territories must include multiple

spatial dimensions, as well as the spatial distribution of external

factors, such as resource and topography. A second generation

of sophisticated two-dimensional advection–diffusion models

has been developed so as to include these factors [15]. By

using the method of maximum-likelihood to connect the

models with data, hypotheses about the factors driving territor-

ial pattern formation can be tested from the space-use patterns

as measured by radiotelemetry data. This method was applied

to test the role of scent-marking on coyote (Canis latrans) terri-

torial patterns in the Hanford Arid Lands Ecosystem [13]

(figure 1) and additional impacts of topography and prey

distribution on these patterns in the Lamar Valley region of

Yellowstone [14]. Here, the connection between advection–

diffusion models for territorial patterns and classical hypothesis

testing is new, and it provides a powerful approach for

connecting mechanistic movement models with data.

As these advection–diffusion models have become more

mainstream, new applications have extended the modelling

theory. For example, the process of shifting territories, as new

groups form and old groups split, has been very recently

explored using the advection–diffusion approach applied to

an extensive dataset for territorial meerkats in South Africa

[30]. These mechanistic models have also been reapplied in

a new context, to the formation of gang territories in the

Hollenbeck region of Los Angeles [16]. Here, natural barriers

to gang movement, including rivers and freeways, replaced

the topography component in the models.
4. An individual-based approach
(a) The modelling framework
An alternative approach to advection–diffusion modelling

was proposed in reference [17], whereby the animals were

modelled on a discrete lattice, and analysis was performed

without first taking a mean-field limit. It is well known that

when interactions are rare, as is often the case with territorial

animals, continuum models can give very different results

to the underlying IBM [31]. Therefore, it is important to

examine whether there are aspects of territoriality that exist

in an individual-based approach, but are not present in

reaction–advection–diffusion systems.

The so-called ‘territorial random walk’ models animals as

nearest-neighbour lattice random walkers, each of whom

deposits scent as it moves, which lasts for a finite amount of

time, the ‘active scent time’ (TAS), after which other (conspeci-

fic) animals no longer respond to the mark as fresh (figure 2).

They are able to move to any nearest-neighbour lattice site

unless the site contains active scent of a conspecific, in other

words unless that site is in the conspecific’s territory [19].

An advantage of this approach is that it provides a natural

definition of the animal’s territory at any point in time: the

set of lattice sites containing active scent of that animal.

This readily corresponds to the definition from Burt [21] of

a territory being ‘any defended area’. This definition is

contrasted with that of a home range, the latter being ‘that

area traversed by the individual in its normal activities of

food gathering, mating and caring for young’ [21]. In more

mathematical terminology, this might be called the utilization
distribution of an animal as measured over a period of time

spent engaging in such ‘normal’ daily activities.

The territories that emerge from these lattice models are

not static, but change slowly over time, typically much



6

5

4

3

2

1

1 2 3 4 5

territory of walker 1

territory of walker 2

position of walker 1

position of walker 2

(b)(a)

Figure 2. The individual-based territoriality model with example output. The left-hand panel represents a hypothetical snapshot in time of the position of two
territorial random walkers (animals), the red and blue dots, and their territories, represented by the red and blue open circles, respectively. If a red (blue) open circle
is present at a lattice site, it means that the red (blue) animal has been in that location sometime in the past TAS timesteps. The absence of any scent marks at
coordinates (5,1), (2,3) and (2,4) implies that no animal has occupied those coordinates within a time TAS, i.e. this is interstitial area. The next time the blue animal
moves, it can go to any of the four adjacent lattice sites with equal probability, whereas the red animal is constrained to move either up or right. The right-hand
panel demonstrates the sort of home range patterns that can arise from such a model. Reproduced from Giuggioli et al. [17]. (Online version in colour.)
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slower than the movement of the animals themselves. As a

consequence, when measured over a finite time window,

the utilization distributions (home ranges) of animals in

adjacent territories will overlap slightly. Such overlapping

home ranges are common in territorial systems, but contrast

with the concept of contiguous territories or territories

separated by buffer zones [4]. That both home ranges and ter-

ritories emerge in conceptually separate, but clearly defined

ways from this model enables rigorous qualification of the

traditional descriptive differences [21].

If the movement of the animals has no intrinsic localiz-

ation process, then home range overlap will steadily enlarge

as the time window is increased, without ever stabilizing.

The urban foxes (Vulpes vulpes) studied by Potts et al. [19]

lack such a central place attraction, but many animals do

have a bias in their movement towards a den or nest site

[15]. Incorporating this bias into the IBM approach causes

stable home ranges to emerge, despite the territory borders

remaining in constant flux [18].

The main bulk of work on individual-based territorial

models has so far been based on full territorial exclusion,

where animals completely avoid areas containing conspecific

territory marks. However, it is typical for animals to exhibit a

certain amount of curiosity and probing on the territory

border, pushing into recently marked areas a small amount

before subsequently retreating. Indeed, such a process has

recently been shown to occur in populations of Amazonian

birds [20]. In reference [26], the patterns emerging from a

process of partial exclusion in an IBM were studied, giving

qualitatively realistic patterns of overlapping home ranges.
(b) Mathematical analysis
An advantage of the individual-based approach is that

it explains the phenomenon of moving territory borders,

sometimes called the ‘elastic disc hypothesis’, which has

been observed in species from a variety of taxa (see references

in Potts et al. [19]), ever since the seminal paper of Huxley
[32]. A disadvantage is that it is highly computationally

intensive to fit stochastic IBMs to data.

To circumvent this issue, approximate analytic versions

of the simulation models that describe the movement of

animals in side fluctuating territory borders were constructed

in one-dimension [33] and two-dimensions [18,34]. These

were solved exactly, giving expressions that are readily

fitted to data on animal movement [19]. The models are

based on the observation from simulation output that terri-

tory borders exhibit slow random movement that constrain

the animals’ intrinsic diffusive motion. As such, para-

metrizing them requires knowledge of the territory border

movement and they do not, in themselves, contain infor-

mation about the scent-marking process. Therefore, fitting

data to these models does not give any information about

the active scent time.

However, there turns out to be a ‘parameter collapse’ of the

simulation output to a universal curve relating the generalized

diffusion constant of the territory border, K, to a dimensionless

input parameter Z, so that K ¼ aD exp (�bZ) for particular

constants a and b reported in reference [33] in one-dimension

and [19] in two-dimensions. Here, Z ¼ TASr
2D in one-

dimension and Z ¼ TASrD in two-dimensions, where r is the

population density and D is the intrinsic diffusion constant of

the animal. This enables users of this modelling approach to

extract the active scent time from details of the border move-

ment that, in turn, can be extracted from movement data via

the approximate analytic model (figure 3).

An important, unsolved issue from this approach is to

understand analytically why the parameter collapse to

K ¼ aD exp (�bZ) is observed, and whether it holds for all par-

ameter values or just those analysed in references [19,33]. Some

initial steps towards this end were made in reference [35], where

the authors noted that this trend is related to the drift prob-

ability of one territory boundary into its neighbour, via a first

passage time argument. This drift probability can be thought

of as the amount of pressure one territory exerts on a neighbour.

Although this surprisingly challenging mathematical problem
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Figure 3. Using individual-based territoriality models to extract scent long-
evity from location data. Location data can be fitted to the analytic model of
[34] using the methods of [19] to give information about the territory border
movement, K, the animal’s intrinsic diffusion constant, D, and the population
density r. Analysis of the IBM from [17] then gives a universal curve K ¼
aDexp(2bDrTAS) [19], which can be used, together with the information
on K, D and r, to obtain an estimate of the active scent time, TAS.
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provided a key step forward, much more needs to be done to

understand fully this parameter collapse.
(c) Ecological and epidemiological lessons
Applying this model to animal location data enables quanti-

fication of both the interaction process, that is the active scent

time, and the amount of intrinsic flexibility in the territorial

structure, that is the border diffusion constant K. By using

data before and after an outbreak of mange in Bristol’s red

fox population [19], it was possible to quantify how both

the territorial structure and the behaviour of foxes changed

as the disease spread through the population.

These changes turned out to be quite dramatic, having

important consequences for modelling epizootics in territor-

ial populations. The study showed that it is not accurate to

assume that the animals, even those that do not have the dis-

ease, will necessarily maintain their behavioural patterns.

Large amounts of government money rely on good under-

standing of such disease spread, notably the recent decision

to cull badgers by the UK government to stop the spread of

bovine tuberculosis [36]. This decision itself was based

upon the controversial notion that badgers will not change

their territorial structures as a result of disturbing the popu-

lation through culling [37, §§3.6.9–10]. The approach of [19]

gives perhaps the first mechanistic theory that explains why

such assumptions are likely to be false, so the underlying

modelling framework could prove useful in helping

governments make better-informed decisions.
5. Fit to the movement process or the
territorial pattern?

When applying mechanistic territory models to data,

researchers have generally tended to fit the emergent territor-

ial patterns to relocation data, regardless of whether they

have used advection–diffusion or IBM approaches [14,19].

A different approach fits models to the fine-scale movement

and interaction processes, then uses them to derive the result-

ing space-use patterns [12]. An advantage of the former
approach is that it does not rely on the availability of detailed

movement data. A disadvantage is that the fitting procedure,

typically based on a maximum-likelihood approach [14],

requires that animal locations be independent samples of

the utilization distribution. Obtaining sets of points that are

approximately independent usually requires using a small

subsample of the data, which can mean discarding a lot of

information [15].

Fitting a model directly to the underlying movement and

interaction processes, on the other hand, allows one to make

use of all the location data available. Owing to advances in

global positioning satellite technology over recent years,

fine-scaled animal movement data are becoming increasingly

common, making such model fitting possible. Once such a

model has been parametrized, it is possible to use either

simulation or mathematical analysis to derive the resulting

territorial patterns [20]. Because these patterns are not them-

selves fitted to the positional data, as in previous approaches,

this approach is far more conservative in answering whether

a model is sufficient to produce territorial patterns (figure 4).

The procedure used in this analysis is based around the

notion of a step selection function [27], which gives the

probability f(xjy, E) of moving from position y to x, given infor-

mation about the surrounding landscape E. Moorcroft &

Barnett [38] noted that this is precisely equivalent to the move-

ment kernel of mechanistic territory and home range models.

Therefore, by fitting step selection functions to data, using

methods such as in reference [39], it is possible to parametrize

a mechanistic movement model, which can, in turn, be used

to derive space-use patterns in a mathematical and non-

speculative fashion, using techniques developed in reference

[15]. By coupling together step selection functions for different

animals [20], interactions can also be explicitly incorporated in

this modelling approach.
6. Optimality and game theory
Although a mechanistic model with fixed parameters, may, on

average, describe animal movement behaviours, individuals

may modulate their behavioural responses, responding to

local conditions so as to optimize fitness [40]. Mathematically,

this could be achieved by a modification of parameters in the

mechanistic model. However, when more than one group is

simultaneously involved in optimizing, the appropriate frame-

work to describe interactions is actually in terms of a game [41].

It turns out the issue of buffer zones between wolf terri-

tories provides a fascinating context for the application

of game theory. This is because there is a strong positive corre-

lation between the locations of the buffer zones and heightened

densities of the primary prey species for wolves in northeastern

Minnesota, white-tailed deer. The deer appear to thrive in these

buffer zones owing to reduced predation pressure. This begs

the question as to why the territorial wolves do not simply tres-

pass into the buffer zones between territories and consume the

precious prey species before neighbouring packs take the

opportunity. After all, animals are seldom mindless automata,

obeying fixed behavioural rules, and it is natural to ask how

these rules might adapt so as to maximize fitness.

The idea that territorial movement behaviour can be modi-

fied so as to improve a wolf pack’s fitness is quite reasonable

biologically but is a challenge to address quantitatively [41].

An early attempt to model optimal behavioural responses of
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use patterns

—

—

predicted change in space use after removal of one
pack, validated against data

—

Figure 4. Fit to the process or the pattern? (a) gives a schematic of the modelling scheme for mechanistic models where we fit data to the territorial pattern
[15,19]. (b) How this process differs when we fit the data to the movement and interaction processes [20]. (Online version in colour.)
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territorial wolves in this complex spatial predator–prey

dynamic used the theory of differential games to show con-

ditions under which buffer zones would persist and why
they might break down [42]. Packs were assumed to modulate

their movement behaviour so as to attempt to maximize food

intake while minimizing the chance of hostile altercations
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with neighbours. A key result from this analysis showed that

buffer zones can persist as evolutionarily stable outcomes, pro-

viding the penalty for interpack altercation is high, and,

crucially, providing there always remains a random com-

ponent of movement, describing the uncertainty inherent to

wolf movement. This area of coupling spatially explicit territor-

ial models to game theory is in its infancy, and there is a real

opportunity for new analysis.
hing.org
Proc.R.Soc.B

281:20140231
7. The related concept of home range
Any animal that maintains a territory will ipso facto have a

home range. However, the converse is not true. Many animals

exhibit home range behaviour without actively defending a ter-

ritory, for example caribou herds [43]. Consequently, much

effort has gone into examining the mechanisms that cause the

formation of home ranges in the absence of conspecific avoid-

ance processes (e.g. see Grimm & Railsback [44] for various

IBM approaches to this). Although we focus here on models

that incorporate territorial interactions, it is worth giving a

brief overview of other home range models as they are often

closely related. Detailed reviews can be found elsewhere [22,24].

Models of home range emergence in the absence of territor-

ial interactions typically involve fidelity to a particular place

or places. To generate this fidelity, models often assume that

there is an underlying memory process [45]. As animals

move, they will remember where they have gone in the recent

past and modify their future movements accordingly. These

modifications may cause biases towards sites that they have

recently visited [23], towards patches of particularly abundant

resources that they recall visiting [46], or away from places

where predators have been recently encountered [46].

Once this exploratory phase is over and the home

range established, the animal’s movement mechanisms may

simply be described as a bias towards desirable sites. This

idea naturally leads to the use of site fidelity models as

good way to estimate home ranges from data, the so-called

movement kernel density estimator (MKDE) [47]. By expli-

citly incorporating movement processes, such as Brownian

bridges [9], these models can give better estimation of

home range distributions than traditional methods such as

(ordinary) kernel density estimation [8] or minimum convex

polygons [6]. It remains an interesting open question as to

whether MKDE can be improved further by the inclusion

of territorial interactions.
8. ‘Non-mechanistic’ territory models
Over a decade ago, Adams [48] made a thorough review of

territorial models, including mechanistic models. However,

the term ‘mechanistic’ was used in a much broader sense

than in this paper, and included ‘geometric models’ of terri-

tory borders, whereby the territory is assumed to exist

a priori, but its size and shape are affected by the behaviour

of its inhabitants. For example, Adams [49] describes a

model of fire ants (Solenopsis invicta), where the pressure on

a territory border increases with biomass and decreases

with the square of the distance to the nest site. This is used

to predict the relative sizes and shapes of neighbouring

territories. However, the reasons behind the choice of these

particular determinants of territory pressure are purely

descriptive, and not derived from underlying processes.
Models of the ants’ movements and interactions such as

reviewed in this paper could potentially help parametrize

this model in a more mechanistic, and less speculative, way.

Adams [48] also reviews game-theoretic cost–benefit

models and models of territory establishment. While the

former have since been integrated into the mechanistic frame-

work [42], the latter have yet to be understood from detailed

descriptions of individual movements and interactions.

The phenomenon of dispersal and re-establishment, often by

adolescent animals, is very important for understanding popu-

lation dynamics, disease spread and range expansion. Models

that have been so far proposed in this regard tend to be based

around the work of Fretwell & Lucas [50] which posits that an

animal will establish a territory wheresoever its fitness is maxi-

mized, often using an economic cost–benefit framework [51].

Although some models have considered the costs of movement

and interactions, e.g. Stamps & Krishnan [52], and more recent

studies have modelled movement on a course scale of approxi-

mately 10 time steps per lifetime [53], to the best of our

knowledge, none explicitly model the fine-scale movement

and interactions that take place during territory establish-

ment. Incorporating these ideas may give a more accurate

understanding of the territorial dynamics that occur during

dispersal and re-establishment.
9. Unsolved problems and future directions
Although mechanistic models have been successfully used to

test hypotheses about the processes that cause territorial pat-

terns to form, e.g. [13,14], the approach is typically based

around testing which model fits the data best out of a set of

hypothesized models, without seeking to understand how

close the best model is to empirical reality. This is a major short-

coming for two reasons. First, though the best model may be

significantly better than the others, this does not mean that it

is sufficient to describe the data with enough accuracy to

make accurate predictions about possible future scenarios.

Second, without a quantitative measurement of closeness of a

model to the data, it is not possible to tell when the model is

complex enough to have identified all the key processes under-

lying territory formation. If mechanistic models are going to

help turn ecology into a truly predictive science, then there is

a pressing need to fill this gap.

Another challenge is to understand better how and when

the IBM and advection–diffusion approaches differ, and

when each should be applied. Typically, mean-field partial

differential equation (PDE) approaches work well when there

are large numbers of individuals. In other circumstances, as

is often the case with territorial animals where a single individ-

ual or pack is defending the territory, it makes sense to check

results of PDE studies against the underlying IBM to ensure

that the predictions are accurate.

The main advantage of the PDE approach is that it

gives analytic formulae that obviate the need for excessive

simulation analysis. Thus, as long as the results are similar

to the underlying IBM, such analysis is very convenient.

While there exist accurate analytic approximations to the

IBM territory models proposed so far, they do not expli-

citly incorporate the territorial interaction parameter, TAS

[18,33,34]. To remedy this, it is necessary either to create

an analytic model that links the border movement to the

interaction process, a programme that was initiated in [35],



rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140231

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 A

pr
il 

20
21

 

or to construct more accurate deterministic approximations

than traditional mean-field methods allow. One possible

avenue in the latter direction might be to use van Kampen’s

methods [54], which have successfully been used to find ana-

lytic reasons for disparities between mean-field and IBM

approaches in biological systems [31].

All mechanistic models so far have been based around

what might be called ‘stigmergent’ interactions [26]. That is,

interactions that are mediated by modification of the environ-

ment. A classic example is scent or pheromone deposition.

One animal deposits scent, adding to the environmental

cues at that point. Sometime later, another animal responds

to this cue by altering its behaviour. Other stigmergent pro-

cesses include visual cues or vocal cues. The latter do not

persist in the environment per se but rather exist in other ani-

mals’ cognitive maps of the environment, who hear the cue

and may respond several days later to the memory of it by

avoiding the area from whence it came [55].

While most applications of mechanistic territory models

so far have been regarding scent-marking mammals, it is

straightforward to translate the ideas to other stigmergent

processes, as evidenced by the use of this concept to model

vocal cues in birds [20]. However, it is not so obvious how

one might construct mechanistic models that incorporate

direct interactions such as fighting and ritual displays, as

observed in a variety of species [56]. In some bird popu-

lations, for example, neighbours may actively move every
so often to a specific place on the territory border, whereupon

they challenge the neighbouring flock to a territorial battle,

which often consists of an aggressive display rather than

actual physical contact. The outcome of such a battle may

determine whether or not one of the flocks is able to advance

its boundary and increase its territory [55]. Such complex

behaviour is perhaps tricky to model and analyse from a

mechanistic perspective, but is a necessary aspect to examine

in order to understand fully how territories form and change.

We end by reiterating the idea that home range formation

appears to be largely governed by one or both of two factors:

territorial interactions and a cognitive map of the envi-

ronment [57]. The latter may include various aspects of

knowledge, such as those about resource availability, preda-

tion probability or other environmental covariates. One of the

most important challenges for the future will be integrating

these two important aspects of spatial localization to form

an accurate, predictive theory of how space-use patterns

emerge from the detailed, varied and complicated behaviours

of interacting animals.
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