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Abstract

In this thesis, we study penalized methods in time series and functional data

analysis.

In the first part, we introduce regularized periodograms for spectral analysis

of unevenly spaced time series. The regularized periodograms, called regularized

least squares periodogram and regularized quantile periodogram, are derived from

trigonometric least squares and quantile regression with Group Lasso penalty. A

simple model provides a theoretical justification for the use of regularized least

squares periodogram as a tool for detecting hidden frequency in the time series.

We give a data-dependent procedure for selection of the regularization parameter.

An extensive simulation studies are conducted to examine whether our periodogram

functions have the power to detect frequencies from the unevenly spaced time series

with big gaps and outliers.

In the second part, we propose a penalized likelihood approach for the estima-

tion of the spectral density of a stationary time series. The approach involves L1

penalties, which were shown to be an attractive regularization device for nonpara-

metric regression, image reconstruction, and model selection. We explore the use

of penalties based on the total variation of the estimated derivatives of spectral den-

sity. An asymptotic analysis of the integrated absolute error between the estimator

and the true spectral density is presented and gives a consistency result under cer-

tain regularity conditions. We also investigate the convergence of the total variation

penalized Whittle likelihood estimator to the true spectral density via simulations.

In the third part, we treat discrete time series data have as functional covariates

in functional regression models with a scalar response. We develop an efficient
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wavelet-based regularized linear quantile regression framework for coefficient esti-

mation in the functional linear model. The coefficient functions are sparsely repre-

sented in the wavelet domain, and we suppose that only a few of them are linked to

the response. Subsequently, we derive an estimator for the slope functions through

composite quantile regression and sparse Group Lasso penalty. We also establish

the rate of convergence of the estimator under mild conditions, showing that this

rate is dependent on both the sample size and the number of observed discrete

points for the predictive functions. Finally, we conduct a simulation study to figure

whether our method can identify relevant functional variables.

We illustrate the empirical performance of all the proposed methods on several

real data examples.
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Chapter 1

Introduction and Overview of the

Thesis

1.1 General Introduction

Penalized regression methods for statistical inference received lots of attention in

recent years. In the background of regularization, penalization was devised by

Tikhonov [77] for approximating the solution of a set of unsolvable integral equa-

tions. Similar concept is the basis for the ridge regression, which was formally

introduced by Hoerl and Kennard [37] about 40 years later. Penalized maximum

likelihood methods for density estimation were introduced by Good [31], who

suggested using Fisher information for the location parameter of the density as a

penalty functional. In 1996, Tibshirani [76] proposed the Lasso technique that in-

volves minimizing the residual sum of squares, subject to a constraint on the sum of

absolute value of the regression coefficients. A similar formulation was proposed

by Chen, Donoho, and Saunders [15] under the name basis pursuit, for denois-

ing using overcomplete dictionaries. The emergence of the least angle regression
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(LARS) algorithm of Efron, Hastie, Johnstone, et al. [25] provided an efficient so-

lution to the optimization problem underlying the Lasso. After that, penalization

techniques gained significant impetus in statistics, especially in the applications; an

enormous amount of work in statistics is dealing with penalization in a broad spec-

trum of problems. Comprehensive reviews are Bickel and Li [5], Hesterberg, Choi,

Meier, et al. [36], Fan and Lv [26], Vidaurre, Bielza, and Larrañaga [78], and the

references therein.

In high dimensional data analysis, penalized likelihood methods have been ex-

tensively applied for the simultaneous selection of important variables and estima-

tion of their effects. In the situation when the design matrix X and the response

vector Y are known, the penalized likelihood has a generalized formulation

n−1`(β) − pλ(β), (1.1)

where `(β) is the log-likelihood function and pλ(β) is a penalty function indexed

by the nonnegative regularization parameter λ. For example, we consider the linear

regression model Y = Xβ + ε with ε ∼ N(0, σ2I), then the Lasso estimation can

be defined as

min
β

{ 1
2n
||Y −Xβ||22 + λ||β||1

}
, (1.2)

where ||·||2 and ||·||1 denote the L2 norm and L1 norm, respectively. The major advan-

tage of the lasso is that it offers interpretable, stable models and efficient prediction

at a reasonable cost.

For function estimation, the roughness penalties are imposed to obtain a general

smoothing estimator. A traditional measure of roughness of a function is by its

integrated squared second derivative. For instance, we estimate a curve g from
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observations y j = g(t j) + ε j by minimizing the penalized residual sum of squared

min
g

{∑
j=1

(y j − g(t j))2 + λ||g(2)||22

}
.

The penalized method can be viewed as a way of quantifying the conflict between

smoothness and goodness-of-fit to the data, since the term of the residual sum of

squares measures how well g fits the data.

There is an enormous amount effort to explore alternatives form of both the

fidelity to the data and penalty functions to achieve modified objectives. For linear

regression, the function `(β) in (1.1) can be a quasi-likelihood or a loss function,

such as least absolute deviation, quantile regression, composite quantile regression.

For instance, the β can be estimated by the quantile regression

n∑
i=1

ρτ(yi − bτ − xT
i β), (1.3)

where ρτ(x) = τx+ + (1− τ)x− and bτ is an additive constant. For grouped variables,

Yuan and Liu [87] proposed a generalized Lasso, called the Group Lasso, to do

variable selection at the group level. Simon, Friedman, Hastie, et al. [72] introduced

a regularized model for linear regression with L1 and L2 penalties for the problems

with grouped covariates, which are believed to have sparse effects both on a group

and within group level. To estimate the conditional quantile function, Koenker, Ng,

and Portnoy [44] suggested a nonparametric approach based on minimizing total

variation penalties with quantile fidelity to the data.
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1.1.1 Spectral Analysis

Time series analysis, aimed at extracting meaningful statistics and other characteris-

tics of the data, is widely used in many areas, such as science, economics, medicine,

and others. An example of the discipline where the search for frequencies from un-

evenly spaced time series is an important topic, is astroparticle physics. In the

field of neuroscience, functional magnetic resonance imaging of brain-wave time

series may be used to study the differences in patterns of brain activation between

cases and controls in attention deficit hyperactivity disorder (ADHD) research; see

Paloyelis, Mehta, Kuntsi, et al. [61].

In general, there are two rather distinct approaches to time series analysis: the

frequency domain approach and the time domain approach. The simplicity of vi-

sualization of periodicities is the distinct advantage of the frequency approach,

whereas the time domain approach focuses on modeling some future value of a

time series as a parametric function of the current and past value. In this thesis,

we concentrate on the first approach, frequency domain analysis. More specifically,

our primary interest is related to periodic and/or systematic sinusoidal variations.

In the frequency domain, the partition of the various kinds of periodic variation

in a time series is accomplished by evaluating separately the variance associated

with each periodicity of interest. The variance profile over frequency is called the

spectral density. Let Xt be a real value stationary time series with mean µ and

autocovariance Cxx(k) = E[(Xt+k − µ)(Xt − µ)]. By the Wiener-Khintchine theorem,

there exists a monotonically increasing function F(ω) in the frequency domain such

that

Cxx(k) =

∫ π

−π

eikωdF(ω), (1.4)
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where the integral is a Riemann-Stieltjes integral, the function F is the spectral dis-

tribution function and i is the imaginary unit. From Lebesgue’s decomposition the-

orem, the spectral distribution function can be split into three components, discrete,

continuous, and singular. In our applications, we neglect—as is quite common in

the literature—the singular part, and assume that the spectral distribution consists

of a discrete and a continuous component. Using the Wold decomposition, every

stationary process can be represented as

Xt = X(d)
t + X(n)

t ,

where X(d)
t and X(n)

t are purely deterministic and purely nondeterministic, respec-

tively, corresponding to the decomposition of a spectral distribution to the discrete

and remaining parts. In Chapter 2, we consider the Cxx(k) is a sum of sinusoids; that

implies that the spectral distribution function is discrete. Technically, the results of

Chapter 2 are thus applicable only to discrete spectral distributions, to time series

with “point spectrum”. In Chapter 3, the autocovariance function, Cxx(k), of a sta-

tionary process is absolutely summable; that indicates that F is continuous with the

spectral density function f as

f (ω) =
dF(ω)
d(ω)

; 0 < ω < π. (1.5)

This function is also known as the power spectral function or the spectrum. The

results of Chapter 3 thus fully apply only to time series with continuous spectrum,

with the spectral distribution possessing a density. The autocovariance function
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then has the representation

Cxx(k) =

∫ π

−π

eikω f (ω)dω,

as the inverse transform of the spectral density, which in turn has the representation

f (ω) =
1

2π

∞∑
k=−∞

Cxx(k)e−ikω − π ≤ ω ≤ π. (1.6)

Let X1, . . . , Xn be a finite sample of size n. The sample autocovariance estimator

is then defined by Ĉxx(k) = 1
n

∑n−k
l=1 (Xl−µ)(Xl+k−µ). To estimate the spectral density,

the natural step is to plug in the sample autocovariance function in place of an

unknown autocovariance function in the formula (1.6). The resulting estimator (up

to the factor 1/2π) is called the periodogram

In(ω) =

n∑
k=−n

Ĉxx(k)e−ikω = n−1
∣∣∣∣∣ n∑

j=1

X je−iω j
∣∣∣∣∣2 − π ≤ ω ≤ π. (1.7)

In practice, the periodogram is a very useful tool for describing a time series

data set. If a time series has a strong sinusoidal signal for some frequency, then

there will be a peak in the periodogram at that frequency. The formula (1.7) also

shows why the periodogram is such a useful tool for searching periodicities: indeed,

a peak in In(ω) at the frequency ω = ω∗ indicates a possible periodic phenomenon

with the period p∗ = 2π/ω∗. Note that the periodogram is customarily calculated

at the Fourier frequencies ω = 2πk/n for some integer 0 < k ≤ n
2 . For more

background on time series analysis and its applications, refer to the monograph of

Shumway and Stoffer [69].

6



1.1.2 Functional Data Analysis

Functional data analysis (FDA) is about the analysis of information on curves, im-

ages, functions, or more general objects. It has become a major branch of non-

parametric statistic and is a fast evolving area as more data has arisen where the

observation can be viewed as a function. One of the standard functional linear

models relates functional covariates to a scalar response via

y = β0 +

∫
I

x(t)β(t)dt + ε, (1.8)

which has been studied extensively, see Wang, Chiou, and Müller [82], Morris [56].

A common method involves representing the covariate x(t) and the coefficient

function β(t) by a linear combination of known functional basis. Specifically, con-

sider an orthonormal basis φk, k ≥ 1, of the function space. Expanding both x(t)

and β(t) in this basis leads to x(t) =
∑∞

k=1 akφk and β(t) =
∑∞

k=1 βkφk. Model (1.8) is

seen to be equivalent to the linear model of the form

y = β0 +

∞∑
k=1

βkak + ε∗, (1.9)

where in implementation the sum on the right-hand side of the above equation is

replaced by a finite sum that is truncated at the first K term, and ε∗ is the error term

from the truncation and noise.

The simple functional liner model (1.8) can be extended to multiple functional

covariates x1(t), . . . , xm(t) , also including additional vector covariatesu = (u1, . . . , uq),

by

y = β0 +

m∑
l=1

∫
Il

xl(t)βl(t)dt + uTγ + ε, (1.10)
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where the interval Il is the domain of xl(t), ε is the error term. Hereafter, we set

I j = [0, 1] to simplify our model. We can expand the coefficient functions βl(t) in

term of suitable bases and estimate βl(t) and γ simultaneously. Full details of this

model are discussed in the context of the particular application in Chapter 4. For

more other linear models, see the monograph of Ramsay [64].

1.2 Contributions and Outline of the Thesis

The thesis is arranged into five chapters. The first chapter presents a brief intro-

duction to the penalized methods, the spectral density, and functional regression

models.

Many unevenly spaced time series coming from the natural sciences exhibit pe-

riodic structures where the series repeat approximately the same pattern over time.

Discovering their period and repetitive behavior they exhibit is an important task

toward understanding their characteristics. Due to the importance of detecting fre-

quency from the unevenly spaced time series, Chapter 2 makes a contribution to this

challenging problem. We devote to developing effective procedures to estimate the

frequency from the unevenly spaced time series. We construct two periodogram-

like functions, through penalized trigonometric least squares and quantile regres-

sion. To explain how the method works, we prove Theorem 2.3.1 to show the effect

of the proposed regularization under the orthonormal design. We adapt the stability

selection method of Meinshausen and Bühlmann [54] to select the regularization

parameter. The application of regularized periodograms significantly improves the

detecting rate. Simulation studies with different sample size and noise type are uti-

lized to validate the effectiveness of the proposed two periodograms. The capability

of frequency detecting from the unevenly spaced time series data with big gaps is
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demonstrated on real data.

Penalized likelihood methods have been applied successfully in nonparamet-

ric function estimation and variable selection problems. For instance, L1 penalty

usually enriches the models with variable selection and a reasonable bias-variance

trade-off. A number of penalties based on the L1 penalty have been proposed for

adaptation to specific types of problems or improvement of the statistical proper-

ties. In Chapter 3, we employ the total variation penalty to identify a local maxi-

mum in the spectral density while still maintaining the desired smoothness. Then,

logarithmic spectral density estimation is obtained as a result of minimizing our

objective function that combines the Whittle likelihood approximation and total

variation penalty. We also prove Theorem 3.3.6 to describe the asymptotic rate

of convergence of the estimator with the tuning parameter given in Lemma 3.3.5.

Finally, this methodology is illustrated with simulated and real data sets. A sim-

ulation study with autoregressive and moving average process provides the quan-

tification of the performance characteristic of the approach, in comparison to some

well-established methods; the latter include the L2 penalized likelihood method of

Pawitan and O’Sullivan [62], smoothed periodogram, and autoregressive spectral

density estimators. The Váh River example shows that our nonparametric spectral

density estimator appears to have some distinct advantage to capture local features.

In Chapter 4, we consider the variable selection problem in functional linear

quantile regression. The covariates are given as both functional and scalar types

while the response is scalar, and the conditional quantile for each fixed quantile in-

dex is modeled as a linear function of the covariates. Our approach to estimating the

coefficient functions is to use wavelet basis functions expansion. The advantages

with respect to the use of wavelet bases are that the resulting representation is spar-

sity with a few non-zero coefficients and that it is trivial to extend our approach to
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higher dimensional predictors. In order to select functional variables each of which

is controlled by multiple wavelet coefficients, we treat these coefficients as grouped

parameters and then apply the group Lasso penalty. Since the coefficient function

is sparsity expressed in the wavelet domain, we employ the Lasso to select a rela-

tively small number of nonzero wavelet coefficients. On the other hand, the Lasso

penalty imposes smoothness of the coefficient functions. We reformulate the final

optimization problem as the standard second order cone program and solve it by the

interior point methods. We also prove Theorem 4.4.1 that gives an asymptotic error

bound, the bound on the difference between our estimator and true functional coef-

ficients. This bound is explicitly specified in terms of the sample size, the number

of observed discrete point for the predictive functions and the smoothness of slope

functions. We give the finite sample performance of our procedure via a simulation

study to demonstrate that our estimator has the desired effect of group-wise and

within group sparsity. We also analyze the ADHD-200 fMRI dataset with 59 co-

variates. Our aim of the analysis is to select important brain regions that are related

to the ADHD index. The real data results confirm the effectiveness of the proposed

method and have been supported by other independent and different functional neu-

roimaging studies.

We end the thesis with conclusions in Chapter 5.
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Chapter 2

Regularized Periodograms

We propose the use of regularized least squares periodogram and regularized quan-

tile periodogram to detect frequency from unevenly spaced time series. To ex-

plain how the method works, we prove Theorem 2.3.1 to show the effect of the

proposed regularization under an idealized setting. The superiority of regularized

periodograms in handing big gaps and outliers in the time series is supported by

simulations. Two real-data examples are analyzed to illustrate the empirical perfor-

mance of the proposed procedure.

2.1 Introduction

Detection and estimation of periodic patterns from unevenly sampled time series

is a frequent problem in various fields of study, like genetics [1], seismology [4],

biological rhythm research [65], hematology [28], paleoclimatology [57], and as-

troparticle physics[52], [66], [75]. In all these articles, periodicity detection in un-

evenly spaced time series is a common work. The analysis of unevenly spaced time

series is an important task in science. Although there is an extensive theory for the
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analysis of equally spaced data, very little theory exists specifically for unevenly

spaced time series.

In particular, astronomical data generally suffer from incomplete sampling. A

number of factors influence the sampling of time series. For instance, the day-night

alternation or bad meteorological conditions may generate gaps in the time series.

Long-time observations are generally unevenly sampled, because of the telescope

schedule and other reasons. As an example we discuss the light curve depicted

in Figure (2.1), showing the observations of the radiation of slowly pulsating B-

star HD 123515, see De Cat and Aerts [21], Hall and Yin [34]. Besides of the

irregularities of the light curve, a certain additional correlated noise and outliers

also are typical for light curves in astroparticle physics.

Classical methods based on the periodogram are widely used by astronomers

and statisticians for unevenly spaced data; they can be traced to Lomb [52], Scargle

[66], Chen [16]. Recently, instances of its applications are to be found in De Cat

and Aerts [21], Hall and Li [33], Lévy-Leduc, Moulines, and Roueff [47]. They

are based on fitting a sinusoid of different trial periods to the unevenly sampled

time series using least squares regression and taking the respective goodness-of-

fit criterion as periodogram threshold. For multi-sine fitting, prewhitening method

such as CLEANEST algorithm of [29], widely used in astrophysics, removes the

peaks in the periodogram as single frequency components. However, these methods

may fail in some cases as pointed out by Bourguignon, Carfantan, and Böhm [6],

for example, the false peaks.

Compared to the least squares method, least absolute deviations is robust in that

it is resistant to outliers in the data. Li [48] employed the least absolute deviations

in the field of time series analysis. He derived a new type of periodogram, called

the Laplace periodogram, by changing least absolute deviations from least squares

12



(a)

(b)

Figure 2.1: (a) Light curve of HD 123515. (b) Zoom on the rightmost light curve
of HD 123515 from Julian Day 50544 to 50579
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in the harmonic regression procedure that produces the ordinary periodogram of

an evenly spaced time series. Moreover, the classical problem of estimating the

frequency of a sinusoidal signal from noisy observations where the noise has a

heavy-tailed distribution was considered. His simulations showed that the Laplace

periodogram provides an efficient alternative to the ordinary periodogram and gives

a more accurate estimator under the noise setting. Quantile periodograms are con-

structed from trigonometric quantile regression in Li [49], which can be viewed as

generalizations of the Laplace periodogram. Li [49] gave numerical and theoreti-

cal results to demonstrate the capability of the quantile periodograms for detecting

hidden periodicity in the quantiles. Inspired by the Laplace periodogram and the

success of quantile periodograms in the frequency estimation from evenly sampled

time series, we apply not only the least squares but also the quantile regression tech-

nique as the data fitting criterion to detect frequencies from unevenly sampled time

series.

We jointly estimate periodogram for all our interesting frequencies as an alter-

native to the usual harmonic regression procedure. Following recent works in the

last decade [15], [7], [55], we regard the problem of detecting frequency as an un-

derdetermined inverse problem where the spectrum is discretized in an arbitrarily

thin frequency grid. Chen, Donoho, and Saunders [15] developed a principle, called

Basis Pursuit, for decomposing a signal into an optimal superposition of dictionary

elements, where optimal means having the smallest L1 norm of coefficients among

all such decompositions. An illustrative example of frequency detection by using

the Lasso penalty was discussed in Meinshausen and Yu [55]. The results high-

light that the true frequencies are with high probability picked up by the Lasso and

coefficients of the true frequencies are much larger than the coefficient of the reso-

nance frequency with an appropriate choice of the penalty parameter. Meinshausen
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and Yu [55] also suggested that we can employ the Group Lasso, grouping together

the sine and cosine part of identical frequencies. The Group Lasso as an extension

of the Lasso to do the variable selection on (predefines) groups of variables in re-

gression models has become a popular model selection and shrinkage estimation

method in many applications [87]. The attractive property of Group Lasso is en-

forcing the structural sparsity. In our problem, the explanatory factor frequencies

are represented by the two input variables, the sine and cosine part of the frequen-

cies. Therefore, we adapt the Basis Pursuit principle where the optimal means

having the smallest L2 norm, the Group Lasso penalty, of coefficients. This results

in two periodogram-like functions, called the regularized least squares periodogram

and regularized quantile periodogram by minimizing least squares and quantile loss

function with the Group Lasso penalty, respectively.

To detecting frequencies from the unevenly sampled time series, we derived

the regularized least squares periodogram and regularized quantile periodogram. A

variant of these periodograms is developed in some details, with particular emphasis

on the optimization algorithm and on the selection of tuning parameters. Simulation

studies are conducted to measure the performance of these periodograms relative

to some well-established techniques such as adjusted periodogram in Hall and Li

[33], Laplace periodogram in Thieler, Backes, Fried, et al. [75] and Li [48]. In

addition, we apply these periodograms for detecting frequencies from the real light

curve HD 123515 which was also considered in Hall and Li [33]. It is shown that

our periodograms can identify the fourth important frequency while the adjusted

periodogram cannot.

The rest of this chapter is organized as follows. In Section 2.2, a unified con-

cept from which we construct the methods is generalized based on review classical

periodogram methods to detect frequencies. A simple example is given in Section
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2.3 to show that the effect of Group Lasso is equivalent to a shrinkage function. The

practical implementation, including optimization strategy and tuning parameter se-

lection, is presented in Section 2.4. Section 2.5 provides some simulation studies

to compare our regularized periodogram techniques with some other existing meth-

ods. To illustrate the power of the new methodology, more comprehensive analyses

of the light curve observed for HD 18764 and HD 123515 are given in Section 2.6.

2.2 Periodogram

Most of the popular periodogram methods are based on fitting a model to the folded

time series using least squares regression. This section considers the different cri-

terion to fit the observation data and defines the regularized periodogram.

2.2.1 Classic Periodogram

Spectral analysis is a critical approach to describe the fluctuation of time series

in term of sinusoidal behavior at various frequencies. It is well known that the

periodogram plays a major role in estimating the spectral density. The value of the

periodogram for a given frequency ω are obtained via fitting a sinusoidal with that

frequency to the analyzed series using the fitted model

α(ω) cos(ωt) + β(ω) sin(ωt), (2.1)

also with the added intercept, if the series is not centered (or considered centered)

about zero. For simplicity, we assume that the series is centered.

Given observed time series data {y(t j)}nj=1, we denote β̂n(ω) to be the least
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squares regression solution

β̂n(ω) := arg min
β∈R2
||Y −X(ω)β||22, (2.2)

where Y = (y(t1), . . . , y(tn))T is the n × 1 vector, X(ω) is the regression matrix

corresponding to the model (2.1). If the time series data {y(t j)}nj=1 is observed at

equidistant points tk = k∆, where ∆ is the sample period, then the ordinary peri-

odogram can be written as

In(ω) =
n
4
||β̂n(ω)||22, (2.3)

at any Fourier frequency; this is the same as the ordinary periodogram defined by

the discrete Fourier transform as the equation (1.7). Note that this formula also can

be rewritten as In(ω) = 1
n ||ŷ(ω)||22 with ŷn(ω) = X(ω)β̂n(ω).

The definition (2.3) given above applies to any time series: not only to equidis-

tantly sampled as above but also possible non-evenly sampled at arbitrary where

are ordered observation times {t j}
n
j=1. Consider the following least squares fitting

problem:

β̂n(ω) := arg min
β∈R2
||Y −A(ω)β||22, (2.4)

where the jth row of the matrixA(ω) isA j(ω) = [cos(ωt j−φ̃), sin(ωt j−φ̃)] and the

φ̃ is subject to the constraint:
∑n

j=1 sin(ω(t j − φ̃)) cos(ω(t j − φ̃)) = 0. Then so-called

Lomb-Scargle periodogram that defined by Lomb [52] and Scargle [66]

Pn(ω) =
1
2

 [
∑n

j=1 y j cosω(t j − φ̃)]2∑n
j=1 cos2 ω(t j − φ̃)

+
[
∑n

j=1 y j sinω(t j − φ̃)]2∑n
j=1 sin2 ω(t j − φ̃)

 , (2.5)
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can be rewritten as Pn(ω) = 1
n β̂n(ω)T (ATA)β̂n(ω) = 1

n ||ŷ(ω)||22, where ω could be

any real number.

The Lomb-Scargle periodogram provides an analytic solution and is, therefore,

both convenient to be used and efficient. Moreover, for evenly sampled data and

Fourier frequencies, the Lomb-Scargle periodogram (2.5) coincides with the ordi-

nary one, as defined by (2.3). Hence, this periodogram is a common and useful

tool in the frequency analysis of unevenly spaced data. However, due to the Lomb-

Scargle periodogram equivalent to least squares fitting of a sine wave, some robust

methods can be helpful if the observation data contain outliers. Schimmel [67]

provided some examples to illustrate that non-sinusoidal signals or outlying large

amplitude features can make more challenging the interpretation of Lomb-Scargle

periodogram and eventually lead to a misleading conclusion. This motivates us to

extend the capability of least squares techniques and then use of robust regression

for periodogram.

2.2.2 A Linear Model

As extension of (2.1), we consider the model as linear combination of an arbitrarily

large number N of sine waves with frequencies ωk = 2π fmax
k
N for k = 1, . . . ,N:

N∑
k=1

[
βk cos(ωkti) + βN+k sin(ωkti)

]
, (2.6)

where βk is unknown coefficient. When N = [n
2 ] and fmax = 0.5, we can obtain

ordinary periodogram by the solution from (2.2) with the regression matrix cor-

responding to the above model. Model (2.6) is linear and consider jointly a high

number N of potential frequencies, where we just need to estimate the (2N)×1 vec-

tor β = (β1, . . . , β2N)T . In the next subsection, we propose two methods to estimate
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these parameters, then use them to define our regularized periodograms.

There are two fundamental differences between the model (2.6) and the classic

multi-sine fitting approaches. In our model, the frequencies are fixed, and we just

need to estimate the coefficients. To detect the hidden periodicity, we also consider

a sparse solution, in which the whole spectrum can be estimated jointly.

2.2.3 Regularized Periodograms

The frequency resolution in model (2.6) is intrinsically limited by the discretization

step of the frequency grid fmax
N . To avoid missing frequencies in the true model,

we make the mesh of the frequencies becomes finer and finer, for example, N is

as large as we need. Thus, the size of unknown coefficients, 2N + 1, must be

vast to yield a resolution comparable to that of classic prewhitening methods, even

larger than the amount of data. In this case, an infinite number of unknown coef-

ficients βk supremely fit the data with model (2.6). Among all possible solutions,

our aim is to obtain the sparsest one that has the fewest non-zero elements in the

vector (
√
β2

1 + β2
N+1, . . . ,

√
β2

N + β2
2N)T . Given observed time series data {y(t j)}nj=1,

we generate the design matrixX corresponding to the model (2.6) and consider the

objective function

L(Y ,X ,β) + λ

N∑
i=1

√
β2

i + β2
i+N , (2.7)

where L(Y ,X ,β) is a general loss function, the tuning parameter λ > 0 balances

between data fidelity and the sparsity. The typical loss function used for parameter

estimation is the least squares loss function. In [6] and [7], a penalized least squares

method has been studied. Based on these, we define the regularized least squares
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periodogram (RLSP) througth the penalized linear regression solution

β̂nLS := arg min
β, β0

n−1||Y −Xβ||22 + λ

N∑
i=1

√
β2

i + β2
i+N , (2.8)

and the value of regularized least squares periodogram can be defined via the solu-

tion of the above problem as the form (2.3).

The least squares loss function is very sensitive to outliers in the observation

data. Therefore, instead of fitting the models mentioned above by least squares re-

gression, we may apply the quantile regression. Many robust loss functions have

been taken into account in [75], such as least absolute deviations, Tukey and Huber

loss functions. Li [48] derived the Laplace periodogram by using least absolute

deviation and showed an asymptotic distribution of the Laplace periodogram. He

also demonstrated that this type periodogram is effectiveness in dealing with con-

tamination data. After that, he generalized the Laplace periodogram to the quantile

periodograms by using quantile regression and demonstrated that the quantile pe-

riodograms not only share the property of the ordinary periodogram but also offer

a much richer view than the one provided by the ordinary periodogram [49]. More

specifically, Li [49] showed that the quantile periodogram could detect hidden pe-

riodicity in the quantiles. Based on these, we substitute the objective function of

quantile regression for the least squares loss function in the model (2.8). The reg-

ularized quantile periodogram version is obtained via the penalized linear quantile

regression solution

β̂nQ := arg min
β, β0

∑
t

ρτ(Yt − β0 −Xtβ) + λ

N∑
i=1

√
β2

i + β2
i+N . (2.9)

The periodogram value can be defined through β̂nQ as the form (2.3). Denote
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In,RLS P(·) and In,RQP(·) be the regularized least squares periodogram function and

regularized quantile periodogram function, respectively.

2.3 Orthonormal Design

To see clearly the effect of Group Lasso, we consider the particular case of an

orthonormal design with Σ̂ = n−1XT X = In×n, where X is a n × n design matrix. We

have the following theorem analogous to Lemma 2.1 in Bühlmann and Van De Geer

[10], which gives an explicit solution of the optimization problem (2.8) under this

case.

Theorem 2.3.1. Denote the vector Z = (Z1, Z2, . . . , Zn)T be the ordinary least

squares initial estimator that Z = n−1(XTY ). Then the solution of the problem

(2.8) equals

β̂ j(λ) = Z j(1 − λ/a j)+ and β̂ j+ n
2
(λ) = Z j+ n

2
(1 − λ/a j)+,

where (u)+ = max(u, 0) denotes the positive part of u and a j = 2
√

Z2
j + Z2

j+ n
2

for

j = 1, . . . , n/2.

Proof. To simplify, we denote the objective function by

Qλ(β) = n−1||Y −Xβ||22 + λ||β||1,2.

For a minimizer β̂(λ) of Problem (2.8), it is necessary and sufficient that the subd-

ifferential at β̂(λ) is zero. If the jth group component β̂2
j(λ) + β̂2

j+ n
2
(λ) , 0, then the
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ordinary first derivatives at β̂(λ) have to be zero:

∂Qλ(β)
∂β j

|β=β̂(λ) = 2n−1XT
j (Xβ − Y ) + λ

β j√
β j

2 + β2
j+ n

2

|β=β̂(λ) = 0,

∂Qλ(β)
∂β j+ n

2

|β=β̂(λ) = 2n−1XT
j+ n

2
(Xβ − Y ) + λ

β j+ n
2√

β j
2 + β2

j+ n
2

|β=β̂(λ) = 0,

whereX j is the jth column of the regression matrixX . Since the design matrixX

is an orthogonal matrix, the above two equations can be rewritten as

β j(2 +
λ√

β j
2 + β2

j+ n
2

)|β=β̂(λ) = 2Z j,

β j+ n
2
(2 +

λ√
β j

2 + β2
j+ n

2

)|β=β̂(λ) = 2Z j+ n
2
. (2.10)

We have either Z j , 0 or Z j+ n
2
, 0 because of the non-equality constraints β̂ j

2
(λ) +

β̂2
j+ n

2
(λ) , 0. Suppose that Z j , 0. Then the solution of above equations can be

expressed in the form of

β̂ j = sign(Z j)(|Z j| −
λ

2
√

1 + r2
j

), β̂ j+ n
2

= sign(Z j+ n
2
)(|Z j+ n

2
| −

λ|r j|

2
√

1 + r2
j

), (2.11)

where r j is the ratio of Z j+ n
2

to Z j, such as r j = Z j+ n
2
/Z j.

On the other hand, if the jth component satisfies the condition β̂2
j(λ)+β̂2

j+ n
2
(λ) = 0,

then the subdifferential at β̂(λ) has to include the zero element. Therefore, we have

two real numbers g j and g j+ n
2

with the constraint condition g2
j + g2

j+ n
2
≤ 1 such that

G j(β̂(λ)) + λg j = 0 and G j+ n
2
(β̂(λ)) + λg j+ n

2
= 0,
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where G(β) = −2n−1XT (Y − Xβ) is the gradient of n−1||Y − Xβ||22. This fact implies

that

Z2
j + Z2

j+ n
2
≤ λ2/4 if β̂ j

2
(λ) + β̂2

j+ n
2
(λ) = 0.

Note that if β̂ j
2
(λ) + β̂2

j+ n
2
(λ) , 0, we have

Z2
j + Z2

j+ n
2

= λ2/4 + (β2
j + β2

j+ n
2
) + λ

√
β2

j + β2
j+ n

2
> λ2/4.

We can now demonstrate the conclusion in this theorem by contradiction. If Z2
j +

Z2
j+ n

2
≤ λ2/4, then we have β̂ j

2
(λ) + β̂2

j+ n
2
(λ) = 0. Otherwise either β̂ j(λ) , 0 or

β̂2
j+ n

2
(λ) , 0 holds that implies Z2

j + Z2
j+ n

2
> λ2 and leads to a contraction. Analo-

gously, if Z2
j + Z2

j+ n
2
> λ2/4, then the inequality β̂ j

2
(λ) + β̂2

j+ n
2
(λ) > 0 holds. The

exact form of β̂ j in this theorem is coming from the system of equations (2.10)

solution. �

Consider an evenly sample time series with n = 100 and λ = 0.2. The regression

matrix is defined by the Fourier frequencies. By using Theorem 2.3.1, the value of

regularized least squares periodogram can be clearly rewritten as a function of the

ordinary periodogram,

In,RLS P(ωk) = gth(In(ωk)),

where gth(z) = sign(z)(|z| −
√
|z|)+ is a thresholding function depicted in Figure 2.2.

There, we show that the regularized least squares periodogram involves shrinkage,

either to zero or to a value which is smaller than the ordinary periodogram. Thus,

regularized least squares periodogram function yields a substantially sparser than

the ordinary periodogram in some sense that there are a few frequencies ωk such

that In,RLS P(ωk) > 0. Meanwhile, regularized least squares periodogram function

23



Figure 2.2: Threshold function gth(z).

keeps the major characteristics of the ordinary periodogram

2.4 Practical Implementation

The estimations in optimization problems (2.8) and (2.9) require two essential points

to be examined with precision. First, an efficient optimization algorithm is needed

in order to solve these two problems. Moreover, a practical rule is necessary for the

tuning parameter selection.

2.4.1 Optimization Algorithm

A variety of methods have been proposed for computing β̂nLS in 2.8, including

the group LARS approach of Yuan and Liu [87]. Following the recent work in

Koenker and Mizera [43], Group Lasso can be implemented as a special instance

of second-order cone program (SOCP), minimizing the square of quadratic norm

of the residuals while either bounding the penalty or adding it multiplied by a La-

grange multiplier λ to the objective function. These so-called SOCP include linear

24



constraints and the second-order cone constraints; the objective function is linear,

see details in Koenker and Mizera [43]. We utilize the R code in [43] to solve our

optimization problem (2.8).

For the quantile Group Lasso problem 2.9, we transform our original optimiza-

tion problem to the standard form of the SOCP. The following SOCP is equivalent

to (2.9):

arg min
n∑

i=1

τu+
i + (1 − τ)u−i + λ

N∑
j=1

l j

Subject to u−i ≤ Yti − β0 − Xtβ ≤ u+
i√

β2
j + β2

j+N ≤ l j (2.12)

u−i , u
+
i , I j ≥ 0 f or i = 1, . . . n, j = 1, . . . N.

In the problem (2.12), we introduce new variables, u+
i and u−i is the positive and neg-

ative part of the Yti −β0−Xtβ, respectively. The I j is an upper bound of
√
β2

j + β2
j+N .

2.4.2 Tuning Parameter Selection

Like any other penalized regression procedure, the performance of the regularized

periodograms critically depends on properly tuning parameter λ in (2.7). A general

criterion to choose the λ is the k-fold cross validation, which has been widely ap-

plied to various regression problem and usually gives a competitive performance.

Other common approaches depend on the AIC and BIC scores that trade off the

goodness of fit with model complexity. However, we concentrate on the frequency

estimation rather than prediction. In fact, we can take the detecting frequency as

the structure learning problem, estimation of model structure from data. Recently,

Meinshausen and Bühlmann [54] introduced a new method called stability selection

25



whose goal is to provide an algorithm for performing model selection in a structure

learning problem and controlling the number of false discoveries. There are two

main advantages over competing approaches: works in high-dimensional data and

provides control on the family-wise error rate in the finite sample setting other than

an asymptotic guarantee.

In the following, we adapt the stability selection algorithm for our case. Assume

that we fix the N and fmax in the model (2.6), then we generate our regression matrix

X corresponding to this model.

1. Define a candidate set of tuning parameters Λ and a subsample number M

2. For each value of λ ∈ Λ, do:

(a) Start with the full data set (Y ,X).

(b) For each s in 1,. . . M, do:

i. Subsample from the full data set without replacement to generate

a smaller dataset, given (Y(s),X(s)).

ii. Run the problem (2.8) or (2.9) on dataset (Y(s),X(s)) with pa-

rameter λ to get the coefficient β, compute the periodogram at each

different frequencies, then we obtain a frequency selection set Ŝ λ
i ,

the detail related to defining the selection set is given later.

(c) Given the selection sets from the M times subsample, calculate the

empirical selection probability for each frequency:

Π̂λ
k = P( fk ∈ Ŝ λ) =

1
M

M∑
i=1

I{k ∈ Ŝ λ
i }.

3. Given the selection probabilities for each frequency with different tuning pa-

rameters, respectively, then construct the final stable frequencies set accord-
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ing to the following definition:

Ŝ stable = { fk : max
λ∈Λ

Π̂λ
k ≥ πthr}.

We suggest two ways to define the thresholding value, and then the selection set Ŝ λ
i

just includes the frequencies with periodogram greater than this thresholding value.

First, we set a thresholding level by taking a small percentage, for example, 1%,

5% or 10%, of the maximum periodogram value. Second, the thresholding value is

the kth largest periodogram value. For instance, we set k=10, then each time just 10

frequencies with top 10 maximum periodogram values enter into the selection set.

Another thresholding parameter πthr needs to consider. Meinshausen and Bühlmann

[54] suggested the threshold values πthr ∈ (0.6 0.9). Conservatively, we can set the

interval as (0.5 0.8). Our real data examples show that the results vary little for this

threshold parameter and are not sensitive to the choices of λ. For instance, Figure

2.3 indicates that we can detect the true frequency with high probability when λ

belongs to a wide subinterval of Λ. These results consist with the conclusion in

Meinshausen and Bühlmann [54].

Our procedure identifies a set of stable frequencies that are selected with high

probability rather than simply finds the best value of λ ∈ Λ and then uses it in the

problem 2.8 or 2.9. With the stability selection, we do not simply select one model.

Instead, we choose all frequencies that occur in a large fraction of the resulting se-

lection sets. We keep frequencies with a high selection probability and disregard

those with low selection probabilities. In practice, we can plot the stability path for

each frequency which is potentially very useful for improved frequency estimation.

For every frequency f1, . . . , fN , the stability path is given by the selection probabil-

ities Π̂λ
k , λ ∈ Λ. It can be seen in Figure 2.3 that there is a frequency that stands out
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clearly from other frequencies.

2.5 Simulation Study

In this section, we present the empirical performance of the regularized periodograms

by using simulated data. For brevity in figures and tables, we use capital abbrevi-

ation RLSP standing for regularized least squares periodogram, RQP standing for

regularized quantile periodogram, AP and LP indicating respectively, adjusted peri-

odogram of Hall and Li [33], Laplace periodogram of Li [48] and Thieler, Backes,

Fried, et al. [75],

Suppose that data (ti, yi) are generated by the regression model,

yi = h(ti) + σεi, (2.13)

where h(·) is a continuous function and εi is the error term. The value of σ depends

on the noise sample variance of εi. Following the data setting in [48], the noise

is a normalized sequence error, normalized for each realization so that the sample

variance of the noise equals 0.5 and thus the SNR equal 1. In Subsections 2.5.1,

we consider that h(·) is a single periodic function. h(·) is extended to the case of

multi-periodic function in Subsection 2.5.2. For each data setting, the errors εi in

(2.13) are taken to be one of the following:

I. Standard normal distribution: N(0, 1),

II. Mixed variance normal distribution: 0.9N(0, 1) + 0.1N(0, 10),

III. Standard Cauchy distribution; C(0, 1).

The last two distributions may represent the case that outliers are presented.
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For all simulations, the tuning parameter λ is selected from the candidate set Λ,

including twenty-five grid points in a logarithmic sequence from e−3 to e2, by the

proposed procedure in Subsection 2.4.2. For each λ ∈ Λ, the probability for every

frequency to be selected was from the 50 times randomly subsampling without re-

placement at a subsample size n/2. Specifically, We define the thresholding values

by the 5% of the maximum value of RLSP and RQP in the step b(ii) of the selection

algorithm in Subsection 2.4.2. Finally, we keep the frequencies with a high selec-

tion probability and disregard those with low selection probabilities by setting the

exact cutoff πthr = 0.7. We set N = 500 and fmax = 1 for all different settings. In

quantile regression, we consider τ = 0.5.

2.5.1 Simulation Study for Single-period Model

Two models are that at (2.13), with h given by M1 and M2, respectively,

M1: h(t) = cos(0.152 × 2πt),

M2: h(t) = g(t/
√

2),

where g(t) defined as 1−cos(2πt2) on the interval [0, 1], extended to the real line by

periodicity. Model M1 is a sinusoidal signal, which has been investigated by Li [48]

with successive equally spaced points in time and the standard Cauchy error setting.

Hall and Li [33] studied the non-sinusoidal periodic function M2 with the standard

Gaussian noise. They took the design points ti to be the uniformly distribution on

the interval [0, n].

We study the performance of RLSP and RQR in the following three sampling

strategies. Strategy 1, we take 200 design points ti that follow the Uniform distribu-

tion on the interval [0, 200] and sort these points. Gaps are introduced by dismissing
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time points from strategy 1, see [29]. In strategy 2, we generate 200 available time

points by strategy 1, then eliminating t36∗k+27, . . . , t36∗(k+1) for k = 0, . . . , 4. Reorder

the rest 150 time points as t1, . . . t150 and remove t3k for k = 1, . . . , 50. This re-

duces the amount of available data from 200 to 100. These gaps can be explained

to simulate annual obscuration by the Sun and monthly obscuration by the moon.

In strategy 3, we have a gap 20 every 36 continuous time points via taking away

t36∗k+17, . . . , t36∗(k+1) for k = 0, . . . , 4 and a gap of 1 every 3 time points, reducing

the number of data from 200 to 66. Therefore, sample size is n = 200, 100, or 66.

Overall, there are nine settings considering all the factors for each model.

The performance of our proposed estimation procedures was compared to other

two periodogram estimation methods: the adjusted periodogram in Hall and Li

[33], Laplace periodogram in Li [48] and Thieler, Backes, Fried, et al. [75]. For the

adjusted periodogram and Laplace periodogram, we also apply the 50 times sub-

sampling with sample size n/2. In each time, we get the frequency selection set

based on the estimating value of adjusted periodogram and Laplace periodogram

of the subsampling dataset. Then, we calculate the empirical selection probability

for each frequency from 50 frequency selection sets. Finally, the set of stable fre-

quencies can be obtained from the empirical selection probability. We repeat our

simulation 200 times for each different data setting and calculate the fraction of

correctly found periods, referred to as the detection rate.

To compare performance of the four periodograms, namely RQP, RLSP, LP, and

AP, we list the detection rate for the periodic functions in M1 and M2. As showed

in Table 2.1, most of the cases, the regularized periodograms provide more accurate

frequency estimation for all data setting in respect of detection rate, especially in

small sample size. Apparently, regularized least squares periodogram method gives

the best detection rate when errors follow the standard normal distribution. How-
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ever, the detection rate of regularized least squares periodogram method is about

2% and 6% less than regularized quantile periodogram method with mixed normal

distribution and sample size 66 in, respectively M1 and M2. Comparably, when

errors are Cauchy distributed, the performance of the four methods has a more no-

ticeable difference. To be specific, in the M2 with sample size 66, the detection rate

in RQP method is about 13%, 19%, 41%, more than the detection rate from the

RLSP, LP, and the AP method, respectively.

Mode M1 M2
Dist n RLSP RQP LP AP RLSP RQP LP AP

200 1.000 1.000 1.000 1.000 0.938 0.880 0.625 0.627
I 100 1.000 1.000 1.000 0.993 0.922 0.895 0.610 0.665

66 0.988 0.983 0.965 0.950 0.760 0.703 0.517 0.550
200 1.000 1.000 1.000 1.000 0.927 0.902 0.585 0.637

II 100 1.000 1.000 0.990 0.988 0.868 0.915 0.620 0.623
66 0.973 0.990 0.985 0.958 0.688 0.740 0.578 0.547
200 0.998 1.000 1.000 0.995 0.887 0.970 0.785 0.573

III 100 0.995 1.000 1.000 0.965 0.880 0.943 0.703 0.647
66 0.865 1.000 1.000 0.877 0.665 0.890 0.608 0.487

Table 2.1: This table shows the detection rate of the 4 Methods from the 200 Monte
Carlo replicates for the model M1 and M2 with different error distributions.

2.5.2 Simulation Study for Two-period Model

A similar regression function used here is identical to that treated by Hall and Yin

[34] and Hall and Li [33]. In particular, the function h in the model (2.13) can be

represented as

M3: h(t) = 2.5 + sin(2πt/θ1 + φ1) + sin(2πt/θ2 + φ2), (2.14)
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where θ1 = 3, θ2 =
√

2, φ1 = π/4 and φ2 = π/12. Two phases, φ1 and φ2, are

introduced to bring a little difference between our function h(·) and the regression

function in Hall and Li [33]. The errors εi are also independently taken from three

different distributions. Sample size is n = 200, 100, or 66.

Table 2.2 contains the result of the simulation study in the detection rate for es-

timating the two unknown frequencies. We observe that regularized periodograms

largely improve the frequencies estimation of the four methods. The detection rate

in regularized periodograms is about 20% higher than the unpenalized methods

with the normal distribution errors. Moreover, when errors follow mixed normal

distribution, regularized quantile periodogram still performs better than other three

methods. In particular, for sample size 66 with standard normal distribution and

mixed normal distribution, the four periodograms fail to estimate the two frequen-

cies, meaning that they almost lose their estimation ability. In addition, regularized

quantile periodogram delivers the highest detection rate and provides a reliable es-

timation under the Cauchy error setting. In summary, our proposed regularized

periodograms are more efficient in frequencies estimation from the data including

outliers and big gaps.

2.6 Real Data Application

In this section, we focus on estimating the intrinsic frequencies on the ‘slowly pul-

sating B stars’ (SPBs) which are B-type variables pulsating in high-radial-order g-

modes with periods of the order of days, refer to [79]. This property indicates that

we can set fmax = 1 in this section. There is a series of papers study the frequencies

for the SPBs, see [79], [21]. We implement our method on two real examples. One

is HD 138764 with single period SPBs; another one is a multi-periodicity SPBs,
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θ1 θ2

Dist n RLSP RQP LP AP RLSP RQP LP AP
200 0.792 0.760 0.505 0.590 0.863 0.805 0.565 0.618

I 100 0.575 0.540 0.282 0.405 0.605 0.550 0.310 0.395
66 0.228 0.172 0.107 0.185 0.225 0.198 0.107 0.207
200 0.820 0.853 0.598 0.650 0.860 0.885 0.557 0.568

II 100 0.545 0.618 0.417 0.465 0.627 0.670 0.370 0.415
66 0.210 0.240 0.168 0.210 0.172 0.237 0.175 0.170
200 0.782 1.000 0.565 0.618 0.818 0.968 0.590 0.595

III 100 0.545 0.950 0.527 0.450 0.497 0.925 0.495 0.380
66 0.250 0.723 0.315 0.235 0.260 0.675 0.362 0.242

Table 2.2: This table shows the detection rate of four Methods from the 200 Monte
Carlo replicates for the model M3 with different error distributions.

called HD 123515. The two dataset were gathered by the Geneva P7 photometer of

the Geneva Observatory. All real dataset studied in this paper can be downloaded

from:

http://www.ster.kuleuven.be/˜roy/helas/

We thank Professor Conny Aerts for giving us above address.

2.6.1 Single SPBs: HD 138764

We now analyze the Geneva data for the star HD 138764. Thanks to the photo-

metric measurements of the HIPPARCOS mission, photometric variability of HD

138764 is beyond any doubt now. There are 89 time points with large gaps in the

Geneva data with the time recorded in Heliocentric Julian Date form. We implement

our regularized quantile periodogram to detect hidden frequency from this dataset.

Consider τ = 0.5 and N = 5000. The candidate set of tuning parameters Λ includes

50 grid points of equally spaced on the log-scale over [e−1, e3]. For each tuning pa-

rameter λ, we run the subsampling procedure 100 times. In each time, random pick

60 time points from the 89 ones and estimate the selection set based on the value of
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the regularized quantile periodogram from the subsample dataset. Especially, the

selection set includes the frequency whose regularized quantile periodogram value

is greater than the 1% of the maximum one. After 100 times, we compute the em-

pirical selection probability for each frequency under the fixed tuning parameter.

Finally, for each frequency, we obtain 50 empirical selection probabilities corre-

sponding to the 50 λ′s. We plot these probabilities as the function of λ that is the

stability path, see (2.3). Setting πthr = 0.8, we find the important intrinsic frequency

at f1 = 0.7944. This result confirms the conclusion of [21] that suggests a single

strong intrinsic frequency f1 = 0.7944 in the Geneva data. If we set πthr = 0.6, then

we may get two more frequencies, f2 = 0.7934 and f3 = 0.7930 that can be seen

as the aliases. If we set πthr = 0.45, then a new frequency f4 = 0.0326 enter into

the selection set. Here we are not concerned with astronomical explanations of this

frequency, but focus on the frequency estimation from astronomical data.

2.6.2 Binary SPBs: HD 123515

The data are treated by De Cat and Aerts [21], Hall and Yin [34], [33]. Waelkens

[79] conducted an analysis using the first 209 observations in the dataset. Later,

De Cat and Aerts [21] and Hall and Yin [34] also employed a periodogram-based

approach to treating a version of Waelkens’ dataset expanded to 630 observations.

The dataset consists of a few old measurements besides new ones gathered during,

and the time of measurements is separated by several years.

We first consider the regularized quantile periodogram. Let N = 8000, fmax = 1,

and M = 100. The set Λ contains a grid of 60 values of λ equally spaced on the

log-scale over [e−2, e4]. We take 400 observation points from the 630 samples to

generate a subsample each time. Figure 2.4a shows the result of the above process.
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Figure 2.3: Each curve is the stability path that represents the selected probability
for a fixed frequency corresponding to the 50 different λ′s. The red line is the stabil-
ity path for frequency f1 = 0.7944 and indicates that there might be one frequency
in the Geneva data HD 138764.
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f1 f2 f3 f4

Waelkens [79] 0.72861 0.68521 0.65928 0.45834
De Cat and Aerts [21] 0.72585 0.68528 0.65929 0.55198

Hall and Li [33] 0.72585 0.68531 0.65933
RQP 0.72584 0.68528 0.65928 0.55200

Table 2.3: Comparison of frequencies estimation result for the HD123515. There
are just three frequencies detected by Hall and Li [33].

There is no longer a clearly gap between the important frequencies and unimportant

ones. When πthr = 0.7, then five frequencies enter into the selection set correspond-

ing f1 = 0.725875, f2 = 0.688125, f3 = 0.68525, f4 = 0.6835 and f5 = 0.65925.

The order is not sorting by the value of periodograms. Setting the πthr = 0.5, we

obtain 11 significant frequencies concentrated in the interval [0.5, 0.75]. Borrow-

ing the idea of prewhitening, we consider the frequencies in the interval [0.5, 0.75]

and run above process again. The final result has been shown on the Figure 2.4b.

Three strong frequencies, f1 = 0.7258438, f2 = 0.6852812 and f3 = 0.6592813,

present in it by setting πthr ∈ [0.7, 0.8]. This result consists with the highest three

frequencies obtained in all of the earlier studies [21], [34], [33]. [79], see Table 2.3.

We conservatively select the fourth frequency at f4 = 0.552 by setting πthr = 0.5.

At the same time, there are many aliases frequencies of respectively, f1, f2 and f3

has been found. Implementing the same procedure for the regularized least squares

periodogram, we can also find the four relevant frequencies. Table 2.3 demonstrates

that our result meets the conclusion of most specialized astronomy literature, which

finds the important four frequencies.
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(a)

(b)

Figure 2.4: Estimated stability path for HD 123515 using RQP. Each curve is the
stability path that represents the selected probability for a fixed frequency corre-
sponding to the 60 different λ′s. (a) Red lines are the stability paths of the selected
frequencies selected by setting πthr = 0.7. The interval of interesting frequen-
cies is [0, 1]. (b) As for (a) but the interesting frequencies belong to the interval
[0.5, 0.75].
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Chapter 3

Nonparametric Spectral Density

Estimation by Total Variation

Regularization

We propose the total variation penalized Whittle likelihood approach to the non-

parametric estimation of the spectral density of Gaussian processes. Some asymp-

totic rates of convergence are established. A simulation study with autoregressive

and moving average process is conducted to compare the proposed method with

some other existing methods including L2 penalized likelihood method. Two real-

data sets are analyzed to illustrate the application of our method.

3.1 Introduction

Spectral analysis is a useful tool to analyze the frequency content in the time series.

For instance, the frequency content can be characterized by the spectral density of

a stationary time series. One could be interested in finding a few dominant fre-
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quencies or frequency regions, which correspond to multimodality in the spectral

density. Inference methods for multimodal spectral densities have been considered

by Davies and Kovac [20]. They used the taut string method to directly control the

number of peaks in the estimate spectral density. Anevski and Soulier [2] consid-

ered unimodal spectral density estimation for known mode that the spectral density

is a decreasing function on [0, π]. In this chapter, our objective is to develop the

application of the penalized likelihood method to estimate multimodal spectral den-

sity.

The penalized likelihood method has been established for nonparametric es-

timation of function parameters in a variety of setting including regression, den-

sity estimation, and time series analysis. Chow and Grenander [18] proposed a

L2 regularized approach, called the sieve method, to obtain a nonparametric max-

imum likelihood estimator (MLE) based on the Whittle likelihood. Pawitan and

O’Sullivan [62] defined a penalized MLE as the maximizer of the Whittle likeli-

hood with roughness. These two methods can be viewed as the L2 type penalized

Whittle likelihood estimation since the measure of the roughness of a function is by

its integrated squared mth derivative.

Naturally, we would like to replace the L2 penalties with L1 penalties in the

penalized Whittle likelihood method to obtain a new estimation principle. The L1

penalties interpreted as the roughness of the candidate function measured by the

total variation of their derivatives for function estimation. Koenker and Mizera

[39] developed a unified approach to total variation penalized, L1 penalty, den-

sity estimation offering methods that are capable of identifying qualitative features

like sharp peaks. An advantage of using L1 type penalties is known to be capable

of capturing sharp changes in the target function while still maintaining a general

smoothing objective. For example, we always calculate an appropriate spectral den-
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sity function and identify the hidden periodicities in the data with the peak which is

a sharp change in its derivative. This L1 type penalty contributions inherently exag-

gerates the contribution to the penalty of jumps and sharp bends in the density; in-

deed, density jumps and piecewise linear bends are impossible in the L2 framework

since the penalty evaluates them as infinitely rough. But total variation penalties are

happy to tolerate such jumps and bends. Therefore they are better suited to identi-

fying discrete jumps in densities or in their derivatives, for example identifying the

dominant frequencies in the spectral density. Consequently, our penalty approach

has the potential to capture local features in the density more efficiently than do

more global approximations method.

The goals of the present chapter are to derive a nonparametric L1 penalized

Whittle likelihood method for the estimation of the spectral density and to study it

in some detail. A particular emphasis is on establishing rates of convergence results.

We also provide quantification of the performance characteristics of the approach

relative to some well-established techniques, including the smoothed periodogram,

autoregressive spectral density estimator, by a simulation study with autoregressive

and moving average processes.

This chapter is organized as follows. The basic methodology, including the

algorithm to solve our optimization problem, is introduced Section 3.2. A result

describing the asymptotic rates of convergence of the estimator is presented in Sec-

tion 3.3. Some illustrations with simulated and real data are given in Section 3.4.

3.2 Methodology Development

We propose an estimator for the spectral density function, a penalized MLE with

the total variation penalties. An efficient algorithm is also given in this section.
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3.2.1 The Whittle Likelihood and Definition of the Estimator

Consider a real stationary Gaussian time series
{
Xt; t = 0,±1 . . .

}
with autocovari-

ance function Cxx(k) in (1.4). Then, the second order properties of the time series

are completely described by the spectral density function f in (1.6). We shall study

the estimation f from a finite sample {X0, X1, . . . , Xn}.

Most of the nonparametric estimation procedures are based on the periodogram

In(·). For a fixed ω ∈ (0, π), In(ω) has an asymptotic exponential distribution with

mean f (ω). Moreover, if two frequencies ω1 and ω2 are at least 2π/n apart, then

the covariance between In(ω1) and In(ω2) is of the order n−1. Let In,k and fn,k be the

periodogram and spectral density evaluated at the Fourier frequency ωn,k = 2πk/n,

k = 0,±1, . . . ,±v, where v = vn = [(n − 1)/2] is the greatest integer less than or

equal (n− 1)/2. Then the joint distribution of (In,1, . . . , In,v) may be approximate by

the joint distribution of v independent exponential random variables with mean fn, j

for the jth component. Whittle [84], [85] proposed a quasi-likelihood,

Ln( f |X1, . . . , Xn) =

v∏
k=1

e−In,k/ fn,k/ fn,k,

known as the Whittle likelihood in the literature. By using In,−k = In,k and fn,−k =

fn,k, an approximate negative log-likelihood of (In,−v, . . . , In,v) given the f is

Ln( f ) =
1
n

v∑
k=−v

{
log fn,k + In,k/ fn,k

}
, (3.1)

where we ignore the slight difference in the asymptotically distribution at k = 0, as

[62].
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Replacing f with a fixed function g in equation (3.1) as n→ ∞, we have that

Ln(g)→ L(g) =

∫ π

−π

{
log g(ω) + f (ω)/g(ω)

}
dω.

By Lemma 3.3.2, we have L(g) is minimized at g = f . Hence Ln(g) should be a

reasonable objective function for identification of the spectrum which is also a key

property of the Whittle likelihood. But this is not enough, since if we just solve the

optimization problem for any function g, then we get the estimate f (ω) = In(ω). It

is well known that this is not even consistent and cannot be accepted.

Our method is inspired by the penalized likelihood approach in [18], [62] and

[39]. Analogously, we propose to minimize objective function

Ln,λ(θ) = Ln(eθ) + λJ(θ),

involving roughness penalties of the logarithmic spectral density. The first term

Ln(eθ) should serve as the data fit criterion and J(θ) is a penalty function. The

benefit of the transformation to the logarithmic spectral density function is that it

obviates any worries about the non-negativity of the spectral density function. Also

we always view spectral densities on a logarithmic scale in practice. The parameter

λ > 0 controls the amount of smoothing: λ = 0 corresponds to the unpenalized

estimator or θ̂ = log In and λ = +∞ corresponds to the smoothest model.

Motivated by Koenker and Mizera [39], we consider J(θ) based on total varia-

tion of θ and its derivatives. Recall that the total variation of a function θ : Ω → R

is defined as ∨
Ω

θ = sup
m∑

i=1

|θ(ui) − θ(ui−1)|,

where the supreme is taken over all partitions, u0 < . . . < um of Ω, when θ is

42



absolutely continuous, we can write

∨
Ω

θ =

∫
Ω

|θ′(x)|dx.

We will focus on penalizing the total variation of θ(m−1), the m−1 derivative of the θ.

In fact, we restrict our attention to m = 2, rather then other possibilities, like m = 1,

which would be quite natural in the context of spectral density estimation, or m = 3,

as suggested for probability density estimation by Silverman [71]. Our choice of

m = 2 is the same as the choice prevailing in Pawitan and O’Sullivan [62], and also

conforms to the total-variation penalty, used in the regression setting, of Koenker,

Ng, and Portnoy [45]; see also Koenker and Mizera [39].

The penalty function J(θ) can be rewritten as

J(θ) =
∨

(−π, π)

θ(m−1) =

∫ π

−π

|θ(m)(ω)|dω,

under the assumption that θ(m−1) is absolutely continuous.

3.2.2 Computation

From the computational perspective, total variation based penalties fit comfortably

into modern convex optimization setting. The idea is based on the algorithm of

Koenker and Mizera [39]. Firstly, note that the first part of our objective function is

a convex function with respect to θ(ωn,k), see Lemma 3.3.2. Here, we just focus our

attention on penalizing derivatives of θ(ω) = log( f (ω)), in fact, other convex trans-

formations can be easily accommodated. Our preliminary experimentation with pe-

nalization of θm(ω) with m = 2. Restricting attention to θ′s for which θ is piecewise

linear on (−π, π), we can write J(θ) as an l1 norm of the second weighted differ-
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ences of θ(ω) evaluated at the Fourier frequency ωn,k. Because In(ω) are symmetric

about 0, and the resulting spectral density estimate θ(ω) is guaranteed symmetric

about 0, we just need to consider the interval (0, π). More explicitly, if θ(ω) is a

piecewise linear on the partition ωn,0 < ωn,1 . . . , ωn,v, so that

θ(ω) = αi + βiω ω ∈ [ωn,i, ωn,i+1],

then the penalty part can be rewritten as following:

J(θ) =
∨
(0, π)

(θ)′ =

v∑
i=0

|βi − βi−1| =
2π
n

v∑
i=0

|θ(ωn,i−1) − 2θ(ωn,i) + θ(ωn,i+1)|,

where we have imposed continuity of f in the last step and ignore. We can thus

parameterize function θ by the discrete function values θk = θ(ωn,k), this enables us

to write our problem as a convex program,

min
{ v∑

i=0

(
θn,i+In,ie−θn,i

)
+λ

v∑
i=0

(
u+

i +u−i
)∣∣∣∣∣Dθ−u++u− = 0, (θ,u+,u−) ∈ Rv+1×R2(v+1)

+

}
,

where D denotes a tridiagonal matrix containing the 2π/n factors for the penalty

contribution, θ = (θn,0, . . . , θn,v)T is a (v + 1)×1 vector, and u+ and u− represent the

positive and negative parts of the vectorDθ, respectively.

3.3 Asymptotic Approximation

In this section, we investigate the asymptotic rate of convergence of the estimator

under certain regularity conditions on the true spectral density and estimate of the
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log spectral density θn,λ. Our objective function can be write as

Ln,λ(θ) =

∫ π

−π

[θ(ω) + In(ω)e−θ(ω)]dω + λ
∨

(−π, π)

θ(m−1), (3.2)

where m ≥ 2, λ > 0 are constants. We can get the estimator by minimizing the

objective function over the set

A =

{
θ : θ(i) ∈ L1(−π, π), 0 ≤ i ≤ m

}
.

We apply the theory of [18] and [62] to approximate the asymptotic convergence

characteristics of the penalized likelihood estimator. For r > 0, let Wr
2 to be the

periodic Sobolev space on [−π, π]. The norm onWr
2 is denoted || · ||r and is given by

||g||2r =
∑

k

(1 + |k|2)r|ĝk|
2, (3.3)

where ĝk are the Fourier coefficients of g. A convergence result is obtained under

the following conditions.

C1: (xt : t ∈ Z) is a real stationary Gaussian process with the true spectral

density f0 that is bounded away from 0. Moreover, there exist a constant m,M

such that f0(ω) ∈ [m, M] for all ω ∈ [−π, π].

C2: The estimate of the log spectral density θn,λ is the minimizer of Ln,λ(θ) in

W
m+ 1

2
2 .

C3: θ0 = log f0 ∈W
m
2 .

Condition C1 guarantees that the log spectral density is well defined. By Sobolev

Embedding Theorem in [27], we have the conclusion, for any function f ∈ Wm+ 1
2

2 ,
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f is to be of differentiability class space Cm which means the derivatives f (1) . . . f (m)

exist and are continuous. Hence, we know our estimator θn,λ ∈ C
k. Condition

C3 is a smoothness condition. According to [62], the condition can be inter-

preted as a covariance summability condition of order l < m − 1
2 , for example∑

k(1 + |k|l)Cxx(k) < ∞. Note that Condition C3 also implies f0 ∈W
m
2 .

Under these conditions, the following result already shown on [35], [73] and [74].

Lemma 3.3.1. Let h(ω) be a continuous symmetric function on [−π, π]. Then with

probability 1,

∫ π

−π

h(ω)(In(ω) − f (ω))dω →n 0, (3.4)∫ π

−π

h(ω)(I2
n(ω) − 2 f 2(ω))dω →n 0, (3.5)∫ π

−π

h(ω)(log(In(ω)eγ − log f (ω))dω →n 0, (3.6)

where γ is the Euler’s constant. Moreover,
√

n
∫ π

−π
h(ω)(In(ω) − f (ω))dω converges

weakly to the normal distribution N(0, 2
∫ π

−π
h2(ω) f 2(ω)dω).

The equation (3.5) and (3.6) imply that the sequence
∫ π

−π
I2
n(ω)dω and

∫ π

−π
log In(ω)dω

is bounded with probability 1. The loss function in the right-hand side of (3.2) can

be rewritten as

Ln,λ(θ) =

∫ π

−π

[In(ω)e−θ(ω) − log(In(ω)e−θ(ω))]dω + λ
∨

[−π, π]

(θ)m−1 +

∫ π

−π

log In(ω)dω.

The following lemma is elementary, see [18]; we omit the proof.

Lemma 3.3.2. The function y(x) = x− log x is strictly convex on (0,∞) and attains

it unique minimum at x=1.
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By this Lemma, Ln,λ(θ) is bounded below with probability 1. Since In(ω) con-

verges weakly to f (ω), the following loss function is related to (3.2),

Lλ(θ) =

∫ π

−π

[θ(ω) + f (ω)e−θ(ω)]dω + λ
∨

(−π, π)

(θ)m−1, (3.7)

where m ≥ 2, λ ≥ 0 are constants. We minimize it and the minimum is taken over

A if λ > 0 and over

A′ = {θ : θ(i) ∈ L1(−π, π)},

in case λ = 0. Similarity to Condition C2, we also need a similar condition for the

minimizer of (3.7), for example

C4 There is a log spectral density θλ ∈ W
(m+ 1

2 )
2 which is the minimizer of

Lλ(θ) in A.

In fact, the solution θλ is unique by the strictly convex properties in the Lemma3.3.2.

Using this lemma again, we have

Lemma 3.3.3. For the λ = 0, the problem (3.7) has a unique solution θ0(ω) =

log( f (ω)) and any approximating sequence θk(ω) to the θ0(ω) satisfies

lim
k

∫ π

−π

∣∣∣∣∣e−θk(ω) f (ω) − 1
∣∣∣∣∣dω = 0.

Proof. In general, we have that limk

∫ π

−π
(hk(ω) − log hk(ω) − 1)dω = 0 implies

limk

∫ π

−π

∣∣∣hk(ω) − 1
∣∣∣ = 0. The proof of the lemma then follows by setting hk(ω) =

e−θk(ω) f (ω). �

For each θ(ω) ∈ A, we have Lλ(θλ) ≤ Lλ(θ)→λ L0(θ); therefore

lim sup
λ

L0(θλ) ≤ lim sup
λ

Lλ(θλ) ≤ min
A′

L0(θ). (3.8)
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Since Ln,λ(θn,λ) may be close to the Lλ(θλ), it is theoretically possible to choose λ(n)

such that

P(lim
n

L0(θn,λ(n)) = min
A′

L0(θ)) = 1. (3.9)

In order to verify (3.9), let us introduce a quantity

Dn,λ = max |Ln,λ(θ) − Lλ(θ)|,

where the maximum is taken over the set

Bλ =

{
θ : θ symmetric,

∫ π

−π

(θ(1)(ω))2dω ≤
C2

1

λ2 and ||θ||∞ ≤
6C1

λ

}
,

where C1 = 2π(M − log(m)/eγ) + 1. Next, we will show that θn,λ ∈ Bλ by Lemma

3.3.4, and under λn given in 3.3.5, the distance Dn,λn will go to 0 with probability 1.

Lemma 3.3.4. For each λ > 0 and small, we have P
(
θn,λ ∈ Bλ f or large n

)
= 1.

Proof. The inequality

Ln,λ(θn,λ) ≤ Ln,λ(0), (3.10)

implies that

λ

∫ π

−π

|θm
n,λ(ω)|dω ≤

∫ π

−π

In(ω)dω −
∫ π

−π

log In(ω)dω.

From the equation (3.4) and (3.6), it is not hard to show that when n is large enough,

we have

∫ π

−π

In(ω)dω −
∫ π

−π

log In(ω)dω ≤ 2π(M − log(m)/eγ) + 1 = C1.

Therefore, we have λ
∫ π

−π
|θm

n,λ(ω)|dω < C1 for the large n. Note that from condi-
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tion C2, we have θn,λ ∈ C
m. Using the Fourier series expansion θn,λ(ω) =

∑
ake(ikω),

we get

|ak| ≤

∫ π

−π
|θm

n,λ(ω)|dω

2π|k|m
<

C1

2λπ|k|m
,

with m ≥ 2 and k ≥ 1. By the Parseval’s identity,

∫ π

−π

(θ′n,λ(ω))2dω = 2π
∑
|kak|

2 ≤ 2π
∑
k,0

(
C1

2λπkm−1 )2 <
C2

1

λ2 .

We now verify that |a0| is bounded by a constant. By using the definition of a0

and (3.10) we have

2πa0+

∫ −π

π

In(ω)e−a0e−
∑

k,0 ake(ikω)
dω ≤

∫ π

−π

In(ω)dω ≤ (
∫ π

−π

f (ω)dω+1) < 2π(M+1),

for the large enough n.

Hence, we know a0 has a upper bound M + 1. If a0 has a lower bound, say a0 >

−4C1
λ
− 2 max(0, log 4

m ), then |a0| < max{M + 1, 4C1
λ

+ 2 max(0, log 4
m )}. Otherwise,

suppose that a0 < −4C1
λ
− 2 max(0, log 4

m ). We have the following inequality by the

fact that |ak| ≤ C1/2λπ|k|m

2π(M + 1) − 2πa0 >

∫ −π

π

In(ω)e−a0e−
∑

k,0 ake(ikω)
dω ≥ e−a0e−2C1/λ

∫ −π

π

f (ω)/2dω,

where the last step follows from (3.5) with large n. Apply the Taylor expansion to

obtain

∫ −π

π

f (ω)/2dω ≥ πm ≥ 4πea0/2+2C1/λ ≥ πea0e2C1/λ(a2
0/2 − 2a0).

The above two inequalities imply |a0| < 2
√

M + 1. Finally, we obtain that ||θ||∞ ≤
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∑
|ak| ≤ |a0|+

C1
λ
≤ max{M+1+ C1

λ
, 2
√

M + 1+ C1
λ
, 5C1

λ
+2 max(0, log 4

m )} ≤ 6C1
λ

. �

We also have θλ(ω) ∈ Bλ by the definition of θn,λ(ω), θλ(ω), and

L0(θn,λ) ≤ Lλ(θn,λ) ≤ Ln,λ(θn,λ) − Dn,λ (3.11)

≤ Ln,λ(θλ) − Dn,λ ≤ Lλ(θλ) − 2Dn,λ ≤ Lλ(θ0) − 2Dn,λ.

Let ηn(t) =
∫ t

0
[In(v) − E(In(v))]d(v). Integrating by parts gives

Lλ(θ) − Ln,λ(θ)

= 2
∫ π

0
[In(ω) − E(In(ω))]e(−θ(ω)dω +

∫ π

−π

[E(In(ω)) − f (ω)]e(−θ(ω)dω

= 2ηn(π)e(−θ(π)) + 2
∫ π

0
ηn(ω)e(−θ(ω))θ′(ω)d(ω) +

∫ π

−π

[E(In(ω)) − f (ω)]e(−θ(ω)dω.

Denote by Q1, Q2, Q3, respectively, the last terms in the above equation. By com-

puting the moments of ηn(t), it can be shown that

Lemma 3.3.5. For s = 1, 2, . . . , E(D2s
n,λ) ≤ Cs/(nλ2/ exp(12C1/λ))s, where Cs is a

constant depending only on s and M. Let c, δ be two constant with 0 < δ < 1, and

λ(n) =
12C1

(1 − δ) log n
.

If s is large enough, then we have the property thatE(
∑

n( Dn,λ(n)

λ(n) )2s) ≤ ∞ implying

P(Dn,λ(n) →n 0) = 1.

Proof. The proof is based on [38], [18]. It is known from Lemma 8.4 of [38] and

the proof of Lemma 2.6 in [18] that for s = 1, 2, . . .

E|ηn(t)| ≤ CsM2s/ns,
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where Cs is a constant depending only on s. Hence for each θ ∈ Bλ,

E|Q1|
2s ≤ C1M2se(12sC1/λ)/ns, (3.12)

and by the generalized Hölder’s inequality

E|Q2|
2s ≤ 22sπs−1

( ∫ π

0
e(−2θ(ω))(θ′(ω))2dω

)s
· E

( ∫ π

0
η2s

n (ω)dω
)

≤ C2

(
e(12C1/λ)/(nλ2)

)s
. (3.13)

As to the nonrandom term Q3, it follows from the equation (1.7) of [38] and the

equation (5.3) of [18] that there exists a constant C3 such that

|Q3| ≤ (C3M log n)
∫ π

−π

|θ′(ω)| exp (−θ(ω))dω/n

≤ C3M log n exp (C/λ)
∫ π

−π

|θ′(ω)|dω/n

≤ C4M log ne(6C1/λ)/(nλ) < C4Me(6C1/λ)/(
√

nλ). (3.14)

Combine (3.12), (3.13) and (3.14) together and the first of this lemma follows with

a different constant Cs.

If we take λ(n) = 12C1
(1−δ) log n , then we have

E[(
Dn,λ(n)

λ(n)
)2s] = O((

(log n)2

nδ
)s). (3.15)

Take s large enough, such as s > 1
δ
. The sequence {Dn,λ(n)} has the desired property

that E(
∑

n( Dn,λ(n)

λ(n) )2s) ≤ ∞ implying P( Dn,λ(n)

λ(n) →n 0) = 1. �

Theorem 3.3.6. Let λ(n) be given in Lemma (3.3.5). The estimator eθ(ω) is a strongly

L1 consistent estimator to the spectral density f .
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Proof. For each θλ, Lλ(θλ) ≤ Lλ(θ0)→λ L0(θ0); therefore

lim sup
λ

L0(θλ) ≤ lim sup
λ

Lλ(θλ) ≤ min
θ∈A

L0(θ),

and then by Lemma 3.3.3

lim
∫ π

−π

|e−θλ(ω) f (ω) − 1|dω = 0. (3.16)

From the definition of θn,λ θλ, we can obtain

L0(θn,λ) ≤ Lλ(θn,λ) ≤ Ln,λ(θn,λ) + Dn,λ ≤ Ln,λ(θλ) + Dn,λ ≤ Lλ(θλ) + 2Dn,λ.

By using Lemma 3.3.5, there is a sequence λ(n) such that

P(lim
n

L0(θn,λ(n)) = min L0(θ)) = 1;

it follows from Lemma (3.3.3) that

P(lim
m

∫ π

−π

|e−θn,λ(n)(ω) f (ω) − 1|dω→n 0) = 1.

Note that, if the λ(n) satisfy the condition of lemma 3.3.5, then we can easy show

that there is a large constant N > 0, such that for any n we have |θn,λ(n)(ω)| < N with

probability 1, hence we have

P(lim
m

∫ π

−π

|eθn,λ(n)(ω) − f (ω)|dω→n 0) = 1,

lim
n

E(
∫ π

−π

|eθn,λ(n)(ω) − f (ω)|dω)→n 0 = 1,
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where the second one is from f is also a bounded function. That is, eθn,λ(n)(ω) is a

strongly L1 consistent estimator of f . Therefore only the condition

P(|θn,λ(n)(ω)| < N) = 1,

needs to be verified. By the inequality (3.11) and using Lλ(θn,λ) ≤ Lλ(θ0) − 2Dn,λ,

we have

λ(n)
∫ π

−π

|θ(m)
n,λ(n)(ω)|d(ω) ≤ λ(n)

∫ π

−π

|θ(m)
0 (ω)|d(ω) − 2Dn,λ(n). (3.17)

Both side divided by λ(n), we have the
∫ π

−π
|θ(m)

n,λ(n)(ω)|d(ω) ≤ 2π||θ0||
2
m + 1 with the

large n. Note that the
∫ π

−π
|θ(m)

n,λ(n)(ω)|d(ω) has been bounded by a constant, not de-

pended on the λ(n). Applying the Fourier series expansion of θn,λ(n)(ω) again as

the proof of Lemma 3.3.4, we have ||θn,λ(n)||∞ ≤ max{M + 1 + l, 2
√

M + 1 + l, 5l +

2 max(0, log 4
m )} by replacing C1/λ as l, where l = 2π||θ0||

2
m + 1. �

3.4 Numerical Illustration

3.4.1 Simulation Study

In this section we investigate the finite sample behavior of our nonparametric to-

tal variation penalty estimator (PTVE) by comparing with following three existing

estimator of the spectral density.

Penalized Whittle Likelihood Estimator (PLE). This is the Whittle likelihood-

based estimator proposed by Pawitan and O’Sullivan [62]. The estimate is obtained

with the automatic selection of the smoothing parameter by using the iterative least

squares method to find the solution.
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Smoothed Periodogram Estimate (SPE). The periodogram at the discrete Fourier

frequencies are smoothed using the Daniell kernel.

Autoregression Spectral Estimator (ARE). An autoregression(AR) model is fit-

ted to the data, with the order selected by the Akaike information criterion (AIC),

and the spectral density of the fitted model is used as estimated.

Four different time series models are considered for the simulation study:

(M1): Xt = 1.372Xt−1 − 0.677Xt−2 + εt, εt ∼ N(0, 0.4982),

(M2): Xt = −.9Xt−4 + 0.7Xt−8 − 0.63Xt−12 + εt, εt ∼ N(0, 1),

(M3): Xt = 2.7607Xt−1 − 3.8106Xt−2 + 2.6535Xt−3 − 0.9238Xt−4 + εt, εt ∼ N(0, 1),

(M4): Xt = Yt + Zt, where Yt + 0.2Yt−1 + 0.9Yt−2 = εt + εt−2, and εt ∼ N(0, 1),

Zt ∼ N(0, 0.25).

The four processes have been used for simulation studies by various authors.

Model M1 has been considered in simulation studies in Künsch [46] and Bühlmann

[9]. Model M2 was first given by Wahba [80] and studied by Choudhuri, Ghosal,

and Roy [17] later. Percival and Walden [63] and Bühlmann [9] considered the

model (M3). Neumann [59] smoothed the spectral density of Model (M4), and

Davies and Kovac [20] investigated the numbers of peaks in the spectral density

function. From the Figure (3.1), the AR(2) process in M1 has relatively smooth

spectral density and exhibits a ’pseudo-periodic behavior’, whereas other processes

have few sharp spikes. The AR(4) process in M3 has two closed peaks and there is

a big jump in the spectral density of the model M4.

Dataset are generated for sample size n = 128, 256, 512 and 1024 with 1000

replicates in each case. In each replicate, the first 20,000 values of the generated

time series data are discarded to reach stationarity. Unfortunately, we do not have a
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Figure 3.1: Spectral density functions of Model (M1)–(M4).

theoretically optimal value for the smoothing parameter λ. To make comparisons,

we add a constraint condition that the Whittle likelihood of our estimator equals to

the likelihood of penalized Whittle likelihood estimator in each replication. All of

the estimates are computed for each sampled and compared in terms of L1 error or

integrated absolute error (IAE),

IAE = || f0 − f̂0||1 =

∫ π

−π

| f0(ω) − f̂0(ω)|d(ω).

Table (3.1) shows the mean L1 errors form these 1000 and their boxplots are pre-

sented in Fig(3.2).

As expected, the nonparametric estimators, PTVE, PLE, and SPE, outperform

the ARE in Model M4 but underperform in the Model M1, which is not that sur-

prising, given it is an autoregressive model. A bit surprising is the performance

55



that our method PTVE also outperform the ARE in the AR(12) process with the

small sample size. Perhaps one reason is that the ARE often underestimates the

order of the model, resulting in large errors. Although the PTVE mostly detects the

peaks correctly, it underestimates the magnitude of a sharp peaks, thus leading a

higher L1-error. In contrast, the PLE detects false spikes in small samples. Visually,

the PTVE provides a better fit to the true density than SPE for all sample size and

outperforms the PLE for all but very large samples.

Method n=128 n=256 n=512 n=1024
M1 Model

PTVE 0.952 0.712 0.509 0.390
PLE 0.948 0.699 0.497 0.383
ARE 0.793 0.581 0.399 0.289
SPE 0.880 0.699 0.566 0.505

M2 Model
PTVE 36.706 25.270 19.221 14.247

PLE 39.067 26.101 20.899 15.937
ARE 44.689 27.442 18.351 13.049
SPE 51.603 42.559 34.786 25.155

M3 Model
PTVE 679.567 506.266 473.628 432.377

PLE 669.560 531.387 516.272 469.315
ARE 647.494 434.230 297.374 206.267
SPE 784.127 631.770 546.992 397.393

M4 Model
PTVE 0.504 0.400 0.317 0.241

PLE 0.520 0.429 0.350 0.271
ARE 0.623 0.515 0.415 0.322
SPE 0.540 0.440 0.356 0.293

Table 3.1: Mean L1-error from the 1,000 Monte Carlo Replicates.
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Figure 3.2: The panels show boxplots of the the L1−errors from the 1,000 Monte-
Carlo Replicates. The Panel (a) shows the result for AR(2) process, (b) for AR(12),
(c) for AR(4) and (d) for ARMA(2,2). The letter beneath the boxplots indicate the
method; T stands for PTVE, introduced in this chapter, P, S, A, indicate respectively
PLE, SPE and ARE methods.
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3.4.2 Analysis of the Sunspot Dataset

Here, we analyze the well-known yearly sunspot dataset, which consists of the an-

nual average value of the daily index of the number of sunspots for the year 1700-

1987. Following the data processing in [17], we take the square root transformation

and subtract the mean to make the data look more symmetric and stationary. We

set λ = 0.039594 for PTVE such that this estimator has the same Whittle likelihood

value of the PLE. Apply the four procedures to produce the corresponding spectral

estimates. The estimates are plotted in Figure (3.3). PTVE and PLE reveal a large

peak of the spectral density at about ω0 = 0.0903 × 2π which consist with the peak

in periodogram IN(ω). However, the other two estimates display a peak at about

ω = 0.09375 × 2π which is different with the peak in periodogram. Also, the peak

indicates a strong periodic cycle of period length 2π/ω0 ≈ 11.

Figure 3.3: All four spectral estimates of the square root transformed Sunspot Data.
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3.4.3 Analysis of the Váh River Dataset

In this study, we analyze the average yearly discharge time series of the Váh River,

see 3.4, Liptovský Mikuláš water gauge (1931-2002, 72 measurements). The Váh

River is the longest river in Slovakia. It is created by the confluence of tributaries

Biely and Čierny Váh. Biely Váh flows from the hillside of Kriváň in High Tatras,

Čierny Váh originates under Král’ová Hol’a hill in Low Tatras. The Figure 3.5

shows the four estimators, comparing with the periodogram. Previous result showed

that there is a strong period of 3.5 years in the Váh river dataset. Clearly, the

periodogram reveals a large peak of the spectral density at ω1 = 0.27778 × 2π,

which corresponds to the period length 2π/ω1 = 3.6 closed to the period 3.5 years.

We obtain the ARE based on the MLE method as well as the AIC criterion, and

apply the automatic selecting smoothing parameter for PLE. Then, we select the

tuning parameter λ = 0.059914. PTVE reveals a peak of the spectral density at ω1

consistent with the peak of the periodogram and previous result. However, the SPE

and ARE show a little move of the peak, see the Figure 3.5. From the result, total

variation penalty method appears to have some distinct advantages when estimating

spectral density functions with sharply defined features, such as locally peaks.

We are grateful to Dr. Pavla Pekárová for kindly sending us the Váh river data.
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Figure 3.4: The yearly discharge time series of the Váh, period 1931-2002.

Figure 3.5: All four spectral estimates of the Váh Data. The letter P stands for
periodogram. The PTVE and periodogram reveal a peak at 0.27778×2π. The PLE,
ARE and SPE indicate a peak at ω = 0.27778×2π, 0.26389×2π and 0.26389×2π,
respectively.
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Chapter 4

Sparse Wavelet Quantile Regression

with Multiple Predictive Curves

We propose a penalized quantile regression method for fitting functional linear

models with scalar outcomes and multiple functional predictors. The functional

data are approximated by the wavelet basis, and the sparse Group Lasso penalty is

imposed to control the smoothness of coefficient functions and the sparseness of

the model. By utilizing wavelet bases, the approach can be extended to the setting

of two-dimensional predictors. We transfer our problem to an equivalent standard

second-order cone program and solve it. We also discuss asymptotic properties

of the proposed estimation, investigate finite sample performance with simulation

studies, and illustrate its application using a real data set from ADHD studies.

4.1 Introduction

Quantile regression, as introduced by Koenker and Bassett [41], plays an impor-

tant role in contemporary statistical learning and scientific discoveries. It has been
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widely used in various areas of economics [42], genetics [8], ecology [11] and

other disciplines. As an extension of ordinary least squares regression which focus

on the conditional means, quantile regression aims at estimating either the condi-

tional median or other quantiles of the response variable. There are at least three

advantages to consider conditional quantiles instead of conditional means. First,

quantile regression, in particular median regression, offers a more robust objective

compared with mean regression, in a sense that it is more resistant against out-

liers in responses. It is more efficient than mean regression when the errors follow

a distribution with heavy tails. Second, quantile regression is capable of dealing

with hereroscedasticity, the situation where the error variances depend on some

covariates. Finally, quantile regression can give a more complete picture on how

the responses are affected by the covariates especially when the tail behavior is

conditional on covariates. The monograph by Koenker [40] provides an excellent

summary of the history and recent development in quantile regression.

Consider the functional linear quantile regression model in which the condi-

tional quantile of the response is modeled as a linear function of a set of scalar

and functional covariates. In particular, for given τ ∈ (0, 1), the functional linear

quantile regression model is of the form

Qτ(yi|ui,xi(t)) = ατ + uT
i γτ +

∫ 1

0
xT

i (t)βτ(t)dt for i = 1, . . . , n, (4.1)

where Qτ(yi|ui,xi(t)) is the τ-th conditional quantile of yi given covariates ui and

xi(t), ατ is the intercept, γτ = (γ1τ, . . . , γpτ)T is a p × 1 vector of scalar coefficients,

ui(t) = (ui1, . . . , uip)T is a p×1 vector of scalar covariates, βτ(t) = (β1τ(t), . . . , βmτ(t))T

is a m × 1 vector of functional coefficients, and xi(t) = (xi1(t), . . . , xim(t))T is a

m × 1 vector of functional covariates. This model is an extension of functional lin-
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ear regression to the quantile regression case. To facilitate the estimation of βτ(t),

we usually require it to satisfy certain smoothness conditions and restrict it onto a

functional space. For example, we may require that its second derivative exist and

it belong to the Sobolev space W2,2; see Yuan and Cai [88]. Even in such a case,

the estimation is still an infinite dimensional problem.

To estimate functional coefficients βτ(t), the common practice is to project each

functional element of βτ(t) into a functional space with a finite functional basis.

Most of the existing methods are based on the functional principal component basis

([14]; [58]; [23]; [12]; [32]), and partial least square basis [22]. The success of

these approaches hinges on the availability of a good estimate of the functional

principal components for functional covariates or the qualitative responses. We can

also generate the basis independently of the data to avoid these constraints, such

as the B-spline basis of Cardot, Ferraty, and Sarda [13], wavelet basis of [92] and

others.

Our choice here is to represent the functional covariates in terms of the wavelet

basis. Although using a wavelet basis initially provides no dimension reduction, the

method we use to achieve dimension reduction relies on this sparsity property. For

a large variety of functions, we know that the wavelet decomposition allows good

representation of the function by using only a relatively small number of coeffi-

cients. Moreover, wavelets are particularly good at handling sharp, highly localized

features, including feature changes in space or time. Also, the wavelet transform is

computationally efficient and it is easy to extend our approach to multidimensional

functional variables by using the tensor product techniques.

Since wavelet bases are well suited for sparse representation of functions, re-

cent work considered combining them with sparsity-inducing penalties for regres-

sion with functional predictors by Zhao, Ogden, and Reiss [92], Wang, Nan, Zhu,
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et al. [83] and Zhao, Chen, and Ogden [91]. All of these have focused on L1 penal-

ization, also known as the Lasso, in the case of one functional predictor under the

wavelet domain. However, in many real-world problems, it is common to generate

hundreds or thousands of functional explanatory variables for one subject. Many

of the functional predictors may be unrelated to the responses. In these cases, we

can impose the shrinkage penalties on the effects of functional predictors to achieve

model selection and enhance interpretability and predictive capability. Gertheiss,

Maity, and Staicu [30] proposed an approach using a penalized likelihood method

that simultaneously controls the sparsity of the model and the smoothness of the

corresponding coefficient functions. Oliva, Póczos, Verstynen, et al. [60] presented

the functional shrinkage and selection operator (FussO), a functional analogue to

the Lasso, which efficiently finds a sparse set of functional response covariates to

regress a real-valued response against. The general idea behind these methods is

Group Lasso technique, regularization of each functional coefficient as a whole.

We extend these ideas to the setting of functional predictors by using sparse Group

Lasso. The L1 penalty can help us to identify the sparse representation of the rel-

evant functional coefficients and smooth these coefficients. Note that without the

smoothing property, interpretation of the influence of functional predictors on the

response is meaningless.

There are two major contributions of this chapter. First, we develop a vari-

able selection method for functional linear quantile model (4.1) based on penalized

quantile regression with wavelet basis. Our variable selection method combines se-

lection of the functional covariates and estimation of the smooth effects for the cho-

sen subset of covariates. By using wavelet basis, it is possible to extend our method

to deal with multidimensional functional covariates, such as 2D image predictors.

Under homoscedasticity assumption, we extend our techniques to penalized com-
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posite quantile regression. An efficient algorithm has been developed. Second, we

investigate asymptotic properties of our estimator when the functional covariates

are increasingly densely observed as the sample size increases.

The rest of the chapter is organized as follows. In Section 4.2, we review some

necessary background on wavelets and convert the functional linear quantile regres-

sion problem to a multiple linear quantile regression problem. In Section 4.3, we

develop one algorithm to solve our optimization problems and discuss the selection

of tuning parameters. Consistency properties of our estimation are provided in Sec-

tion 4.4. The proposed method is illustrated numerically in simulation results and

an application to a real data set from an ADHD study in section 4.5.

4.2 Wavelet-based Sparse Group LASSO

In this section, we first provide some necessary background on wavelets and then

project our data into the space generated by the wavelet basis. After that, we take

advantage of the sparse representation of the functions in the wavelet domain to

derive our penalized objective function.

4.2.1 Some Background on Wavelets

Wavelets are basis functions that can be used to efficiently approximate particular

classes of functions with few nonzero wavelet coefficients. The construction of a

wavelet basis for L2[0, 1] starts with two orthonormal basic functions: a scaling

function, ϕ(t), and a wavelet function, ψ(t), satisfying
∫ 1

0
ϕ(t) = 1 and

∫ 1

0
ψ(t) = 0.

The dilated and translated versions of the scaling and wavelet function are given by

ϕ jk(t) =
√

2 jϕ(2 jt − k), ψ jk(t) =
√

2 jψ(2 jt − k),
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where the integer j refers to the dilation and k is an integer that serves as a trans-

lation index. Given a primary resolution level j0, the wavelet bases define an or-

thonormal bases of L2[0, 1] via dilation and translation of ϕ and ψ as the collection

{
{ϕ j0,k}0≤k≤2 j0−1, {ψ j,k} j0≤ j, 0≤k≤2 j−1

}
. (4.2)

Moreover, the coefficient functions βlτ(t) in (4.1) can be expanded in the above

wavelet series by

βlτ(t) =

2 j0−1∑
k=0

al
j0kϕ j0k(t) +

∞∑
j= j0

2 j−1∑
k=0

dl
jkψ jk(t) for l = 1, . . . ,m, (4.3)

where al
j0k =

∫ 1

0
βlτ(t)ϕ j0,k(t)dt and dl

jk =
∫ 1

0
βlτ(t)ψ jk(t)dt, which are the approxima-

tion coefficients at the coarsest resolution j0 and the detail coefficients that charac-

terize the fine structures of βlτ(t), respectively.

Suppose that the functional predictors are discretely observed in the same set

of N = 2J equally spaced points. In such a case, we can not extract the local in-

formation of the curve finer than the resolution level J − 1. We obtain the wavelet

coefficients via the discrete wavelet transform (DWT); this is not a transformation

of the curves in L2[0, 1], but instead it is the transformation of the vector of dis-

crete observations in the curve. Denote W be an N × N matrix associated with

the orthonormal wavelet basis. By using DWT, the functional predictors can be

represented by a set of N wavelet coefficients:

xi = (xi1, . . . ,xim)T = (W TCi1, . . . ,W
TCim)T , (4.4)

where Cil is an N × 1 vector of wavelet coefficients from DWT of xil(t). Similarly,
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the wavelet series of coefficient functions βτ can be written as

βτ = (β1τ, . . . ,βmτ) = (W Tθ1τ, . . . ,W
Tθmτ)T , (4.5)

where θlτ is an N × 1 vector of wavelet coefficients from DWT of βlτ(t). Hereafter,

we denote Θ = (θT
1 , . . . ,θ

T
m)T and Ci = (CT

i1, . . . ,C
T
im)T be mN × 1 vectors, and

p = mN + q.

In this chapter, we require an orthonormal wavelet basis on [0, 1], such as those

in Daubechies’ family. Penalized regression methods introduced to functional lin-

ear model are based on the fact that a large class of functions can be well represented

by relatively few nonzero wavelet coefficients.

4.2.2 Model Estimation

We exploit the sparseness of wavelet decomposition and tackle our problem by ap-

plying L1 and L2 penalty to the wavelet coefficients of β(t) when fitting model (4.1).

Plugging the wavelet expansion (4.4) and (4.5) into (4.1) and using the orthonor-

mality ofW , we obtain a discrete version of model (4.1); expressed as

Qτ(yi|ui,xi(t)) = ατ + uT
i γτ +CT

i Θτ + ε∗i for i = 1, . . . , n, (4.6)

where ε∗i is the error term due to the replacement of integrals by averages.

We now aim at estimating the coefficients in (4.6). Meanwhile, we want to de-

tect a few number of functional predictors that are effective in predicting responses

and estimate the smooth effects of the chosen subset of functional predictors; sparse

Group Lasso penalty is useful for this purpose. The Group Lasso part achieves se-

lection of the functional predictors based on the preset grouping structure of the
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parameters θ jτs. The Lasso part imposes smoothness of the coefficients θ jτs by

controlling the number of basis functions. In fact, this sparsity is also implied by

using the wavelet basis. Thus, the parameters ατ, γτ, and Θτ can be estimated

by minimizing the loss function of quantile regression with some shrinkage con-

straints. That is

(α̂τ, γ̂τ, Θ̂τ) = arg min
α,γ,Θ

n∑
i=1

ρτ
(
yi − α − u

T
i γ −C

T
i Θ

)
+ Pλ1,λ2(Θ), (4.7)

where Pλ1,λ2(Θ) = λ1
∑m

l=1 ||θl||1 + λ2
∑m

l=1 ||θl||2 is the penalty function indexed by

the two tuning parameters λ1 ≥ 0 and λ2 ≥ 0.

To combine the information from multiple quantile levels, in particular, under

the condition that the effects of covariates are piecewise constant or continuous

across different quantile levels, Zou and Yuan [94] proposed composite quantile

regression, to simultaneously consider multiple quantile regression models at dif-

ferent levels. Such a regression is more efficient by combining the strength across

multiple quantile regression models. In particular, under the homoscedasticity as-

sumption (the model errors do not depend on covariates), all conditional regression

quantiles are parallel and we have the same coefficients but different intercepts.

Similarly, we can add the sparse Group Lasso penalty in composite quantile regres-

sion models. Denote 0 < τ1 < · · · < τk < 1. The composite quantile regression

estimates of (α,Θ,γ) with a sparse Group Lasso penalty are then

(α̂, γ̂, Θ̂) = arg min
α,Θ,γ

K∑
k=1

n∑
i=1

ρτk(yi − αk − u
T
i γ −C

T
i Θ) + Pλ1,λ2(Θ), (4.8)

where α = (ατ1 . . . . , ατK−1) is the intercept vector. Typically, we use the equally

spaced quantiles: τk = k
K , k = 1, 2, . . . ,K − 1. For notation simplicity, we denote
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Ln(α,Θ,γ) =
∑K

k=1
∑n

i=1 ρτk(yi − αk − u
T
i γ − C

T
i Θ) to be the objective function of

composite quantile regression, which is a mixture of the objective functions from

different quantile regression models. Since (4.7) is a special case of (4.8), we focus

hereafter on the composite quantile regression with the sparse Group Lasso.

4.3 Implementations

Two essential points need to be addressed in solving the optimization problem

(4.8). First, an efficient optimization algorithm must be derived to cope with the

large scale case at low computational cost. Moreover, a practical rule is needed for

choosing tuning parameters λ1 and λ2.

4.3.1 Algorithm

In this section, we transform the original problem to the standard form of second-

order cone programing (SOCP). We can then use some R packages to solve it.

Denote Θ+ = (θ+
1 , . . . ,θ

+
m) and Θ− = (θ−1 , . . . ,θ

−
m) to be the positive and neg-

ative part of Θ in the element-wise sense. Then we have Θ = Θ+ − Θ− and

||Θ||1 = ||Θ+||1 + ||Θ−||1. Each term in the objective function of composite quantile

regression can be also written as a linear constraint; for example,

−u−ki ≤ yi − αk − u
T
i γ −C

T
i (Θ+ −Θ−) ≤ u+

ki, u−ki ≥ 0, u+
ki ≥ 0,

where u+
ki and u−ki are two nonnegative slack variables. Finally, we deal with the L2

type penalty in Pλ1,λ2(Θ). We rewrite ||θl||2 in the constrain condition by introducing
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m slack variables to construct m standard quadratic cones; for instance

Q2N+1
l =

{
(νl,θ

+
l ,θ

−
l ) ∈ R2N+1|νl ≥

√
||θ+

l ||
2
2 + ||θ−l ||

2
2

}
,

where νl is a slack variable. Consequently, our convex optimization problem (4.8)

can be expressed as the following standard SOCP,

min
K∑

k=1

n∑
i=1

(τku+
ki + (1 − τk)u−ki) + λ1

m∑
l=1

(||θ+
l ||1 + ||θ−l ||1) + λ2

m∑
l=1

νl

subject to −u−ki ≤ yi − αk − u
T
i γ −C

T
i (Θ+ − Θ−) ≤ u+

ki√
||θ+

l ||
2
2 + ||θ−l ||

2
2 ≤ νl (4.9)

Θ+ � 0, Θ− � 0, νl ≥ 0, u−ki ≥ 0, u+
ki ≥ 0.

Once we get the solutions of Θ+ and Θ−, then we can return back to Θ by the

equation Θ = Θ+ − Θ−.

The above optimization problem is the exact equivalent of the optimization

problem (4.8) by the fact that either θ+
li

= 0 or θ−li = 0 would be held in the above

optimization problem. Otherwise, suppose there exist l and s0 such that θ+
ls0
> 0 and

θ−ls0
> 0, then we can reset

θ+
ls0

=


0 i f θ+

ls0
< θ−ls0

,

θ+
ls0
− θ−ls0

otherwise,
θ−ls0

=


0 i f θ+

ls0
> θ−ls0

,

θ−ls0
− θ+

ls0
, otherwise.

Under taking the new θ+
ls0

and θ−ls0
, we can see the value of objective function (4.9) in

the first part has no changes, however the value of rest part in the objective function

decrease, which is a contradiction. Therefore, these two expressions, (||θ+
l ||1+||θ−l ||1)

and
√
||θ+

l ||
2
2 + ||θ−l ||

2
2, are in fact ||θ+

l − θ
−
l ||1 and ||θ+

l − θ
−
l ||2 which are the L1 and L2
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norms of the θl, respectively. This implies (4.8) and (4.9) are identical.

Since there are various packages in R to solve the SOCP problem, such as

the package Rmosek, we can obtain the estimations by solving the equivalent

form (4.9).

4.3.2 Selection of Tuning Parameters

The proposed method involves tuning parameters that control the model complex-

ity. Specifically, λ1 and λ2 control the sparsity within group and group-wise sparsity,

respectively. In practice, for problems where we expect strong overall sparsity and

would like to encourage grouping we can set relative large λ1 and small λ2. In con-

trast, if we expect strong group-wise sparsity, but only mild sparsity within group,

we use small λ1 and large λ2. Until now, we do not have a certain model selection

for λ1 and λ2. In general, people usually pre-specify a finite set of values for the

regularization parameters, then use either a validation dataset or a certain model

selection criterion to pick the regularization parameters. Although many existing

criteria including AIC and K−fold cross validation could be potentially employed

to select the tuning parameters, Wang, Li, and Tsai [81] and Zhang, Li, and Tsai

[89] showed that the tuning parameters selected by AIC and cross validation may

fail to consistently identify the true model. Zhang, Li, and Tsai [89] introduced em-

ploying the generalized information criterion (GIC), encompassing the commonly

used AIC and BIC, for selecting the regularization parameter. Recently, Zheng,

Peng, and He [93] proposed a GIC-type uniform selector of the tuning parameters

for a set of quantile levels to avoid some of the potential problems with model se-

lection at individual quantile levels under the high dimension setting. Motivated by

these results, we select the practically optimal tuning parameters by minimizing a
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GIC given as

(λ̂1, λ̂2) = arg min
λ1,λ2

1
K

K∑
k=1

ln

1
n

n∑
i=1

ρτk (yi − ŷki)

 + φn||Θ̂λ1,λ2 ||0,

where Θ̂λ1,λ2 is the part of solution in the problem (4.8) by setting tuning parameter

as λ1 and λ2. Here || · ||0 denotes L0 norm (total number of non-zero elements in a

vector), and ŷki is calculated from (4.6) with τ = τk.

In addition, we can also select the tuning parameters by the validation set, see

[86], [50]. Simulation studies in Section 5 demonstrate satisfactory behavior of

the proposed parameters selection method, compared it with the validation dataset

method to select tuning parameters.

4.4 Consistency of the Wavelet-based Group Lasso

Estimator

In this section, we investigate the behavior of our wavelet-based spare Group Lasso

estimator when both n→ ∞ and N → ∞, meaning that the sample size n increases

and the curves, xi(t)s, are also more densely observed, respectively. Let Nn be the

number of discrete points at which the functional predictors xi j(t) are observed with

the sample size n. In order to derive the convergence rate of β̂ j(t) to β j(t), we need

the following assumptions as in [92].

A1 ε1, . . . , εn are independent with the same distribution F, with a density

function f (·) that is bounded away from zero and has a continuous and uni-

formly bounded derivative.

A2 There are two constants c1 and c2 such that the regression matrix A
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satisfies the eigenvalue condition

0 < c1 < λmin(
1
n
ATA) ≤ λmax(

1
n
ATA) < c2 < ∞,

where the ith row ofA isAi = (1,CT
i ,u

T
i ).

A3 There exists a constant M such that ||Ai||2 < M for all i.

A4 β j(t) is a d times differentiable function in the Sobolev sense and the

wavelet basis has v vanishing moments, where v > d.

A5 λ1 = O(
√

n), λ2 = O(
√

n) and n = Op(N4d).

A6 Nn
n → 0.

The above regularity conditions are reasonable for quantile regression with possibly

growing number of parameters. Condition A1 is standard for quantile regression,

see [41], [40], [90]. Condition A2 is a classical condition that has been assumed in

the linear model literature. Condition A3 can be found in [92]. Condition A4 guar-

antees that the space spanned by the wavelet basis is good to estimate the smooth

function, for example the approximation error goes to 0. The wavelet has v van-

ishing moments if and only if its scaling function ϕ can generate polynomials of

degree smaller than or equal to v. Then we have the following theorem.

Theorem 4.4.1. Let β̂ j be the estimator resulting from (4.8) and β j is the truth

coefficient function. If the assumptions A1-A6 hold, then

||β̂ j − β j||
2
2 = Op(

Nn

n
) + op(

1
N2d

n
).

Proof. First, we introduce some notation. The orthonormal wavelet basis set of

L2[0, 1] is defined as {ϕ j0k, k = 1, . . . , 2 j0} ∪ {ψ jk, j ≥ j0, k = 1, . . . , 2 j}. Without
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loss of generality, the wavelet bases are ordered according to the scales from the

coarsest level J0 to the finest one. Let VNn := Span{ϕ1, . . . , ϕNn} be the space

spanned by the first Nn basis function, for example, if Nn = 2 j0+t, then the collection

{ϕ j0k, k = 1 . . . , 2 j0} ∪ {ψ jk, j0 ≤ j ≤ j0 + t − 1, k = 1, . . . , 2 j} is the basis of

VNn . Let θ j
Nn

be an Nn × 1 parameter vector with elements θ j
k = 〈β j(t), ϕk〉. In

addition, let β j
Nn

be the functions reconstructed from the vector θ j
Nn

. Here β j
Nn

is a

linear approximation to β j by the first Nn wavelet coefficients, while β̂ j denotes the

functions reconstructed from the wavelet coefficients θ̂ j from (4.8).

By the Parseval theorem, we have ||β̂ j − β j||
2
L2

= ||θ̂
j
Nn
− θ

j
Nn
||22 +

∑∞
k=Nn+1 θ

j
k

2
. To

derive the convergence rate of β̂ j to β j, we bound the error in estimating β j
Nn

by β̂ j

and the error in approximating β j by βNn . By the Theorem 9.5 of Mallat [53], the

linear approximation error goes to zero as

∞∑
k=Nn+1

θ
j
t

2
= o(N−2d

n ). (4.10)

Let Υ0 = (α0,γ0,Θ0) be the true coefficients with Θ0 = (θ1
Nn
, . . . ,θm

Nn
). To

obtain the result, we show that for any given ε > 0, there exists a constant C such

that

Pr
{

inf
||v||=C

Ln

(
Υ0 + rnv

)
+ Pλ1,λ2

(
Θ0 + rnvθ

)
> Ln

(
Υ0

)
+ Pλ1,λ2

(
Θ0

)}
≥ 1 − ε,

(4.11)

where rn =
√

Nn/n and v = (v1, . . . , vk,vγ ,vθ) is a vector with the same length of

vector Υ0. This implies that there exists a local minimizer in the ball {Υ0 + rnv :

||v|| ≤ C} with probability at least 1 − ε. Hence, there is a local minimizer Υ̂ such

that ||Υ̂ − Υ0|| = Op(rn).

To show (4.11), we compare Ln(Υ0)+Pn(Θ0) with Ln(Υ0 +rnv)+Pn(Θ0 +rnvθ).
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By using the Knight identity,

ρτ(u − v) − ρτ(u) = −v%τ(u) +

∫ v

0
(I(u ≤ t) − I(u ≤ 0))dt,

where %τ(u) = τ − I(u < 0), we have

I := Ln(Υ0 + rnv) − Ln(Υ0)

=

K∑
k=1

n∑
i=1

[ρτk(eki − bki) − ρτk(eki)]

= −

K∑
k=1

n∑
i=1

[−bki%τk(eki)] +

K∑
k=1

n∑
i=1

∫ bki

0
(I(eki ≤ t) − I(eki ≤ 0))dt

= I1 + I2,

where eki = yi − α
0
τk
− uT

i γ
0 −CT

i Θ0 and bki = rnvk + rnu
T
i vu + rnC

T
i vθ. Note that

eki = εi − F−1(τk) + o(N−2d
n ), hence we have E(%τk(eki) = o(N−2d

n ). By the definition

of bki, we obtain I1 ≤ rn||v||(
∑s

k=1 ||
∑n

i=1 %τk(eki)AT
i ||) and

E||
n∑

i=1

%τk(eki)Ai||
2 = E||

mNn+1∑
j=1

n∑
i=1

n∑
l=1

ai jal jψτk(eki)ψτk(ekl)||

= Op(nNn),

which leads to E(I1) ≤ Op(rn
√

nNn)||v|| = Op(nr2
n)||v||.

Now, we consider the expectation of I2. Using the expression of eki, we get

E(I2) =

K∑
k=1

n∑
i=1

∫ bki

0
(Pr(eki ≤ t) − Pr(eki ≤ 0))dt

=

K∑
k=1

n∑
i=1

∫ bki

0
(F(F−1(τk) + o(N−2d

n ) + t) − F(F−1(τk) + o(N−2d
n )))dt

=

K∑
k=1

n∑
i=1

∫ bki

0
( f (F−1(τk) + o(N−2d

n ))t +
f ′(ξ)

2
t2)dt,
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where ξ lies between F−1(τk) + o(N−2d
n ) and F−1(τk) + o(N−2d

n ) + bki. Since there

exists M such that ||Ai||
2
2 < M, we have

max
1≤i≤n
|rnvk + rnC

T
i vθ| → 0.

Then, the lower bound of E(I2) is of the form

E(I2) =
1
2

r2
n

K∑
k=1

{[ f (F−1(τk) + o(N−2d
n )) + op(1)](gT

k AT Agk)}

≥
c1nr2

n

2
||v||22 min

k
{ f (F−1(τk) + o(N−2d

n )) + op(1)},

where gk is a vector, such as gk = (vk,v
T
θ ,v

T
u )T . Finally, since rn → 0 and ||v||2 ≤ C,

we have

II := Pn(Θ0 + rnvθ) − Pn(Θ0) ≤ λ1rn||vθ||1 + λ2rn

m∑
j=1

||vθ j ||2

≤ λ1rn

√
mN ||vθ||2 + λ2rnm||vθ||2

= Op(nr2
n ||vθ||2).

Since II is bounded by r2
n ||vθ||2 ,we can choose a C such that the II is dominated by

the term I2 on ||u|| = C uniformly. So Qn(Σ0 + rnu)−Qn(Σ0) > 0 holds uniformly on

||u|| = C. This completes the proof. �

Under some further conditions, the prediction error bound are given in the fol-

lowing theorem.

Theorem 4.4.2. Suppose x j(t) are square integrable functions on [0, 1] andF −1(τl) =
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0. If the assumptions A1-A6 hold, then

|ŷ − y|2 = Op(
Nn

n
) + op(

1
N2d

n
),

where y is the true response from (4.1), ŷ = α̂l + uT γ̂ +
∫ 1

0
x(t)β̂(t)dt.

Proof. The proof follows from 4.4.1 and the Cauchy-Schwarz inequality. We omit

the details. �

4.5 Numerical Studies

4.5.1 Simulations

In this section, we compare the finite sample performance of a number of different

methods, quantile Lasso and quantile Group Lasso, with regard to the functional

estimation error and the prediction error. We also examine the effectiveness of the

proposed modeling strategy by investigating whether our method selects functional

predictors appropriately. We use least-asymmetric wavelet of Daubechies with 6

vanishing moments for both the simulation study and the real data analysis, and fix

the ratio λ1/λ2 = 0.5.

The simulation in this section is based on 200 and 400 generated observations

of 12 functional covariates and 2 scalar covariates with a scalar response, extending

the simulation setup of [19] by including more functional predictors. In particular,

the model is of the form

yi = α + uT
i γ +

12∑
l=1

∫ 1

0
xil(t)βl(t)dt + σεi for i = 1 . . . , n,

whereui = (ui1, ui2)T with ui1 ∼ N(0, 1) and ui2 ∼ Bernoulli(0.5), and the coefficient
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γ = (0.32/256, 0.32/256)T .

We adapt the setting of [19] to generate Zil(t) on an equally spaced grid of 256

points in Tl in the following way:

Zil(t) = Gil(t) + εil, εil ∼ N
(
0,

(
.05rxil

)2
)
,

where rxil = maxi(Gil(t)) −mini(Gil(t)) and

Gi1(t) = cos(2π(t − a1)) + a2,T1 = [0, 1], a1 ∼ N(−4, 32), a2 ∼ N(7, 1.52),

Gi2(t) = b1t3 + b2t2 + b3t,T2 = [−1, 1], b1 ∼ N(−3, 1.22), b2 ∼ N(2, .52), b3 ∼ N(−2 , 1),

Gi3(t) = sin(2(t − c1)) + c2t,T3 = [0, π/3], c1 ∼ N(−2, 1), c2 ∼ N(3, 1.52),

Gi4(t) = d1 cos(2t) + d2t,T4 = [−2, 1], d1 ∼ U(2, 7), d2 ∼ N(2, .42),

Gi5(t) = e1 sin(πt) + e2,T5 = [0, π/3], e1 ∼ U(3, 7), e2 ∼ N(0, 1),

Gi6(t) = f1e−t/3 + f2t + f3,T6 = [−1, 1], f1 ∼ N(4, 22), f2 ∼ N(−3, .52), f3 ∼ N(1, 1),

Gil(t) = 5
√

2
49∑
j=1

cos( jπt)g j + 5h,Tl = [0, 1], g j ∼ N
0, (

1
j + 1

)2 , h ∼ N(0, 1), for l = 7, . . . , 12.

Collazos, Dias, and Zambom [19] considered only the first six functions as the

predictors. For simplicity, we convert each interval of definition, Tl, into [0, 1].

To introduce the correlation between each functional variables, the random data

Gil were converted in to the function data xil through the linear transformations as

follows:

xi1(t) =
√

0.84Zi1(t) + 0.4Zi6(t), xi2(t) =
√

0.98Zi2(t) + 0.1Zi1(t) + 0.1Zi5(t),

xi3(t) =
√

0.84Zi3(t) + 0.4Zi4(t), xi5(t) =
√

0.99Zi5(t) + 0.1Zi2(t),

xil(t) = Zil(t) for l = 4, 6, 7, . . . , 12.

78



We generate the functional coefficients based on the following 4 functions:

f1(t) = 0.03 f (t, 20, 60) − 0.05 f (t, 50, 20),

f2(t) = 4 sin(4πx) − sign(x − 0.3) − sign(0.72 − x),

f3(t) = −3 cos(2πt) + 3
et2

t3 + 1
,

f4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt),

where f (t, α, β) =
Γ(α+β)

Γ(α)Γ(β) t
α−1(1 − t)β−1. The function f1(t) has been considered in

the article of [92]; HeaviSine function, f2, is one of Donoho and Johnstone test

functions of [24] and is alway studied in the wavelet papers, such as [3]; f4 is

proposed by Lin, Bondell, Zhang, et al. [51].

Applying the DWT for f1, . . . , f4, we select the wavelet coefficients whose abso-

lute value are greater than .1, then β1(t), . . . β4(t) are generated based on the inverse

DWT of the selected coefficients, respectively. We normalized these slope func-

tions by setting ||βl(t)||2 = 1 for l = 1, 2, 3, 4. The rest of slope functions are zero,

for example, βl(t) = 0 for l = 5, . . . , 12. Under this setting, there are only first 4

functional variables to be relevant to the response. Sparse structure also exists in the

4 slope functions. Each of functional variables are calculated at N = 256 equally

spaced time points on [0, 1], and we apply the DWT with periodic boundary cor-

rection on each of the functional predictors. The slope functions are plotted in the

Figure 4.1. The error term ε is drawn from the 4 type distributions:

1. Standard normal distribution: N(0, 1),

2. Mixed-variance normal distribution: .95N(0, 1) + .05N(0, 10),

3. T distribution with 3 degrees of freedom: t3,
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Figure 4.1: Slope fucntions β1–β4.

4. Standard Cauchy distribution: C(0, 1).

Signal-to-noise (SNR) is an important measure that compares the level of a desired

signal to the level of background noise. In this section, we choose S NR =
µ

σ
, where

µ is the mean of signal, and σ is the standard deviation of the noise. In the above

four error distribution settings, we take SNR=1,5,10.

Denote the size of training data sets by n. Throughout this section, an inde-

pendent tuning data set and testing data set of size n and 10n, respectively, are

generated exactly in the same way as the training data set. The tuning parameters

are selected via a grid search based on two criteria. First, the tuning parameters for

the three methods are selected by minimizing a GIC with φn = 5pn, 5pn and pn for

the quantile sparse Group Lasso, the quantile Lasso and the quantile Group Lasso,

respectively, where pn = log(log(n)) log(log(p))/(10n). In the real data example,

we use exactly the same φn for these three methods. Second, we use the validation
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set to select the gold standard (GS) tuning parameters, see [50], [94], [86] that min-

imizes the tuning error in terms of the check loss function evaluated on the tuning

data. Similarly defined testing errors on the testing data set are reported. More ex-

plicitly, a test error refers to the average check loss on the independent testing data

set. Using these λ1, λ2’s, we calculated the prediction errors and the mean absolute

deviation with test data for each criterion.

We set τ = 0.5 and use 100 Monte Carlo runs for model assessment. Since

inferences on both the functional components β j and the prediction y are of interest,

we report the mean integrated square errors (MISE) of the functional coefficients,

which is given by

MISE =
1

12

12∑
l=1

256∑
j=1

(β̂l(t j) − βl(t j))2,

as well as the individual integrated square error (ISE) for each slope function. We

also evaluate the Monte Carlo averages for the proportion of correctly picked up

and dropped functional components, called group accuracy (GA) that is defined

as GA = E
((
|M̂ ∩ M0| + |M̂c ∩ Mc

0|
)
/12

)
where M0 and M̂ denote the set of indices

of the true functional variables and selected functional variables, respectively, such

as M0 = { j : β j(t) , 0} and M̂ = { j : β̂ j(t) , 0}. Analogously, we report the variable

accuracy (VA) that is similar to group accuracy through replacing the M0 and M̂

as the sets of non-zero wavelet coefficients’ indices. The mean absolute prediction

error (PE) is assessed using an the testing data set of size 10n for each Monte Carlo

repetition, and is defined as PE= E(|ŷ − y|).

To save the space, we only report the results of SNR=5. For the other two SNR

situations, the results are both in favor our method and displayed in the Appendix.

The simulation results for SNR=5 are summarized in Table 4.1 and 4.2. As shown

in Table 4.1, the quantile sparse group lasso in functional linear regression provides
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better estimation and prediction than the quantile lasso and the quantile group lasso.

In each error case, the gold standard criterion to select the tuning parameter always

performs slightly better than the GIC. Table 4.1 also shows that as the sample size

increases, the mean integrated errors and prediction error tend to be small, which

is consistent with the theoretical results. For the group accuracy, the Group Lasso

works better than the sparse Group Lasso and the Lasso in the majority of cases.

As expected, one finds that the Lasso performs quite good in terms of variable ac-

curacy. However, when we use the GIC to select the tuning parameters, the sparse

Group Lasso outperforms other two methods regarding group accuracy and variable

accuracy, especially for the larger sample size. Interestingly, in Table 4.2, the inte-

grated squared error of β1(t) is always less than the error of other slope functions.

Perhaps a simple explanation is that the β1(t) is more smooth than other functions,

see Figure 4.1. This is also supported by the theoretical analysis in the previous

section. Finally, similar comments essentially apply to the S NR = 1, 10.

4.5.2 Application to Real Data

We now apply the quantile sparse Group Lasso method to the dataset on atten-

tion deficit hyperactivity disorder from the ADHD-200 Sample Initiative Project.

ADHD is the most commonly diagnosed mental disorder of childhood and can per-

sist into adulthood. It is characterized by problems related to paying attention,

hyperactivity, or impulsive behavior. The dataset is the filtered preprocessed rest-

ing state data from New York University Child Study Center using the Anatomical

Automatic Labeling atlas. There are 172 equally spaced time courses in the filter-

ing and AAL contains 116 Regions of Interests (ROIs) fractionated into functional

space using nearest-neighbor interpolation. After cleaning the raw data that fails in
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GS GIC
n Noise M MISE GA VA PE MISE GA VA PE

Q 1.449 0.930 0.934 2.600 1.522 0.594 0.840 2.851
1 L 3.230 0.919 0.961 2.871 3.159 0.482 0.904 3.205

G 1.835 1.000 0.082 2.862 2.121 0.970 0.343 4.763
Q 1.372 0.960 0.934 2.466 1.516 0.623 0.835 2.796

2 L 3.023 0.932 0.960 2.749 3.086 0.496 0.905 3.142
G 1.802 1.000 0.082 2.781 2.068 0.973 0.326 4.476

200 Q 0.598 1.000 0.911 1.436 0.932 0.871 0.857 1.953
3 L 1.420 0.985 0.945 1.671 2.487 0.686 0.909 2.654

G 1.630 1.000 0.065 2.386 1.735 0.993 0.140 2.836
Q 1.284 0.972 0.934 2.326 1.497 0.617 0.829 2.755

4 L 2.826 0.927 0.958 2.625 3.135 0.490 0.907 3.145
G 1.775 1.000 0.075 2.656 2.043 0.976 0.295 4.225
Q 0.925 0.989 0.915 2.095 1.224 0.911 0.920 2.220

1 L 1.774 0.944 0.946 2.187 2.125 0.617 0.898 2.371
G 1.581 1.000 0.054 2.393 2.246 0.958 0.569 5.240
Q 0.842 0.995 0.911 1.954 1.105 0.967 0.937 2.058

2 L 1.640 0.965 0.947 2.040 1.853 0.729 0.912 2.190
G 1.549 1.000 0.056 2.306 2.263 0.957 0.582 5.294

400 Q 0.157 1.000 0.875 1.001 0.272 1.000 0.930 1.108
3 L 0.285 1.000 0.908 1.026 0.481 0.991 0.943 1.108

G 1.255 1.000 0.050 1.996 1.438 0.992 0.155 2.472
Q 0.738 0.996 0.909 1.785 0.995 0.983 0.939 1.910

4 L 1.469 0.978 0.947 1.860 1.737 0.735 0.906 2.052
G 1.505 0.999 0.054 2.194 2.102 0.969 0.499 4.490

Table 4.1: Simulation summary of SNR=5. The first column n is the size of training
data. The second column is the type of noise. The third column is the method we
used, Q for the quantile sparse Group Lasso, L for the quantile Lasso, and G for
the quantile Group Lasso. GS means λ was selected by the validation method (gold
standard). GIC means λ selected via the GIC criterion. MISE stands for mean
integrated errors. PE, GA and VA indicate prediction error, group accuracy and
variable accuracy, respectively.
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GS GIC
n Noise M ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

Q 0.116 0.585 0.331 0.385 0.133 0.550 0.322 0.387
1 L 0.289 0.758 1.386 0.734 0.318 0.618 1.136 0.732

G 0.351 0.675 0.359 0.447 0.372 0.728 0.370 0.648
Q 0.116 0.540 0.322 0.368 0.137 0.560 0.318 0.377

2 L 0.283 0.674 1.302 0.703 0.336 0.631 1.049 0.740
G 0.348 0.665 0.349 0.438 0.367 0.714 0.362 0.621

200 Q 0.051 0.162 0.163 0.214 0.077 0.311 0.221 0.267
3 L 0.105 0.204 0.614 0.468 0.238 0.460 0.939 0.610

G 0.332 0.605 0.297 0.395 0.342 0.632 0.313 0.446
Q 0.104 0.498 0.304 0.354 0.129 0.551 0.328 0.367

4 L 0.248 0.628 1.211 0.679 0.318 0.613 1.157 0.707
G 0.345 0.657 0.343 0.427 0.367 0.709 0.366 0.597
Q 0.074 0.321 0.217 0.293 0.091 0.470 0.265 0.353

1 L 0.141 0.318 0.729 0.532 0.155 0.377 0.719 0.575
G 0.325 0.590 0.285 0.381 0.363 0.731 0.399 0.752
Q 0.071 0.274 0.207 0.273 0.088 0.421 0.248 0.331

2 L 0.117 0.279 0.695 0.508 0.139 0.324 0.675 0.519
G 0.321 0.577 0.278 0.372 0.364 0.736 0.401 0.761

400 Q 0.010 0.018 0.063 0.065 0.016 0.045 0.094 0.115
3 L 0.012 0.017 0.139 0.110 0.018 0.034 0.234 0.187

G 0.295 0.446 0.205 0.308 0.311 0.504 0.244 0.375
Q 0.057 0.220 0.195 0.253 0.071 0.366 0.233 0.312

4 L 0.096 0.218 0.643 0.478 0.116 0.273 0.631 0.515
G 0.319 0.555 0.266 0.363 0.354 0.700 0.383 0.664

Table 4.2: Individual funtional L2 error of SNR=5. The first column n is the size
of training data. The second column is the type of noise. The third column is the
method we used. ISE1: ||β̂1 − β1||

2
2; ISE2: ||β̂2 − β2||

2
2; ISE3: ||β̂3 − β3||

2
2; ISE4:

||β̂4 − β4||
2
2.
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quality control or has missing data, we include 120 individuals in the analysis. Each

172 time courses is smoothed to 64 equally spaced time points for conveniently ap-

plying DWT. We also consider the other 8 scalar covariates, including gender, age,

handedness, diagnosis status, medication status, Verbal IQ, Performance IQ and

Full4 IQ. Finally, we have 59 ROIs as well as 8 scalar variables; each region has

64 equally spaced time points data. The response of interest is the ADHD index,

Conners’ parent rating scale-revised.

The objective of this application is to select the ROIs that significantly relate

to the ADHD index. We apply the proposed functional variable selection method

and compare the results with those of the quantile Lasso and the quantile Group

Lasso selection procedures by using the same wavelet basis functions. First, we

use the GIC criterion to select tuning parameters for each method. In a simulation

of 96 bootstrap samples from the dataset, we perform variable selection using the

proposed method, the quantile Lasso and the quantile Group Lasso with the fixed

tuning parameter from the previous step. Finally, the empirical distribution of each

slope function’s L2 norms is estimated from the 96 bootstrapping. The boxplot of

the L2 norm for each method has been shown in the Appendix, see Figure 4.2, 4.3,

4.4.

We sort the median of each slope function’s L2 norm, then do the selection by

setting the thresholding level as 10−5. The functional covariates we considered are

the ROIs of cerebellum, temporal, vermis, parietal, occipital, cingulum and frontal,

from the suggestion of data description. Table 4.3 shows the seven ROIs are selected

or not by the three methods. The right part of cerebellum, temporal and vermis are

selected by all methods. Our method also identify the left part. The selected impor-

tant regions for each method are shown in Table 4.4. They are ordered regarding

L2 norm. Table 4.3 and Table 4.4 reveal that most of our selected ROIs come from
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the seven suggested regions. Besides the seven regions, the three methods also give

other three common regions; right olfactory, right supraMarginal, and right caudate.

There is some evidence to suggest that the affected nodes include these other three

regions. Schrimsher, Billingsley, Jackson, et al. [68] drew a relationship between

caudate asymmetry and symptoms related to ADHD. This correlation is congruent

with previous associations of the caudate with attentional functioning. The conclu-

sion in [70] indicate the ROIs of supramarginal gyri is associated with the ADHD

symptom scores. Note that the right occipital region is identified by our method, but

not other two methods. These results confirm that the proposed variable selection

procedure outperforms the other two methods in this dataset.

Significant ROIs Q L G
Cerebellum R L R R
Temporal R L R L R
Vermis R L R L R L
Parietal R R L ×

Occipital R × ×

Cingulum × L ×

Frontal R L L R L

Table 4.3: Selected ROIs for the suggestion 7 regions, R and L indicate the region
has been selected from the right brain and left brain, respectively. The symbol ×
means the brain region has not been chosen.

4.6 Appendix
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M Significant ROIs
”Temporal R” ”Cerebelum R” ”Frontal R” ”Occipital R” ”Olfactory R”

Q ”SupraMarginal R” ”Caudate R” ”Vermis” ”Cuneus L” ”Parietal R”
”Frontal L” ”Precuneus R” ”Temporal L” ”Cerebelum L” ”Precentral R”
”Frontal R” ”Caudate R” ”Temporal R” ”Cuneus L” ”SupraMarginal R”

”Parietal R” ”Lingual L” ”Frontal L” ”Precuneus R” ”Vermis”
L ”Fusiform R” ”Pallidum L” ”Olfactory R” ”Precentral R” ”Cingulum L”

”Cuneus R” ”Parietal L” ”Temporal L” ”Angular L” ”Cerebelum R”
”Caudate R” ”Frontal R” ”Cerebelum R” ”Vermis” ”Olfactory R

G ”Temporal R” ”Precentral R” ”SupraMarginal R” ”Frontal L”

Table 4.4: Selected ROIs for the ADHD-200 fMRI Dataset.

Figure 4.2: Boxplot of L2 norm for each slope function, by using the quantile spare
Group Lasso method.
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GS GIC
n Noise M MISE GA VA PE MISE GA VA PE

Q 2.426 0.860 0.959 9.557 6.361 0.480 0.854 11.720
1 L 5.885 0.965 0.972 9.553 17.062 0.358 0.891 13.134

G 2.601 0.852 0.118 9.637 4.091 0.708 0.406 12.728
Q 2.322 0.876 0.958 8.833 6.013 0.509 0.857 10.968

2 L 5.592 0.968 0.971 8.844 16.564 0.363 0.891 12.760
G 2.619 0.870 0.123 8.973 4.473 0.704 0.374 11.844

200 Q 1.063 0.994 0.930 4.200 1.594 0.891 0.908 4.774
3 L 2.462 0.978 0.958 4.491 7.252 0.547 0.911 7.466

G 1.741 1.000 0.073 4.776 3.699 0.857 0.330 7.875
Q 2.252 0.925 0.958 7.967 5.795 0.510 0.856 10.353

4 L 5.332 0.983 0.971 8.012 15.874 0.365 0.891 12.401
G 2.402 0.920 0.113 8.099 4.152 0.751 0.404 11.165
Q 2.186 0.935 0.954 8.699 2.427 0.959 0.974 9.529

1 L 5.246 0.981 0.971 8.756 5.916 0.966 0.970 8.906
G 2.336 0.944 0.106 8.788 3.450 0.877 0.667 11.703
Q 2.126 0.954 0.954 8.083 2.414 0.963 0.976 9.030

2 L 4.962 0.983 0.970 8.153 5.175 1.000 0.974 8.206
G 2.234 0.973 0.102 8.182 2.742 0.898 0.718 11.403

400 Q 0.492 1.000 0.883 3.630 1.004 0.999 0.951 3.985
3 L 1.035 0.995 0.934 3.698 1.855 0.994 0.965 4.018

G 1.415 1.000 0.052 4.305 2.394 0.932 0.551 7.679
Q 2.008 0.962 0.950 7.301 2.338 0.965 0.975 8.258

4 L 4.602 0.983 0.970 7.394 5.991 0.967 0.968 7.634
G 2.133 0.983 0.102 7.376 3.250 0.888 0.692 10.880

Table 4.5: Simulation summary of SNR=1, as for Table 4.1.
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GS GIC
n Noise M ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

Q 0.186 0.822 0.673 0.684 0.270 2.415 0.749 0.654
1 L 0.629 1.004 3.197 0.987 1.073 3.883 3.019 2.129

G 0.407 0.901 0.537 0.693 0.529 1.851 0.555 0.868
Q 0.181 0.810 0.642 0.635 0.264 2.494 0.712 0.640

2 L 0.592 0.973 2.974 0.989 1.078 4.370 2.808 1.825
G 0.411 0.971 0.521 0.660 0.530 2.198 0.583 0.861

200 Q 0.087 0.394 0.252 0.315 0.112 0.646 0.322 0.383
3 L 0.197 0.520 1.067 0.640 0.575 1.677 1.619 1.045

G 0.342 0.645 0.330 0.422 0.438 1.729 0.497 0.737
Q 0.165 0.816 0.646 0.589 0.243 2.383 0.764 0.641

4 L 0.552 0.961 2.781 0.986 0.982 4.010 2.891 1.769
G 0.396 0.858 0.511 0.605 0.509 1.989 0.544 0.862
Q 0.163 0.830 0.593 0.565 0.189 0.801 0.616 0.817

1 L 0.565 0.973 2.692 0.966 0.549 1.176 2.773 1.060
G 0.387 0.837 0.492 0.598 0.453 1.339 0.422 1.041
Q 0.165 0.814 0.579 0.540 0.194 0.795 0.619 0.803

2 L 0.513 0.966 2.501 0.938 0.523 0.970 2.679 0.982
G 0.383 0.797 0.476 0.563 0.420 0.900 0.375 1.007

400 Q 0.038 0.133 0.137 0.177 0.070 0.393 0.241 0.298
3 L 0.065 0.147 0.456 0.350 0.123 0.404 0.814 0.500

G 0.312 0.516 0.242 0.344 0.383 0.778 0.405 0.802
Q 0.146 0.794 0.540 0.502 0.176 0.799 0.604 0.758

4 L 0.414 0.952 2.281 0.919 0.461 1.269 2.478 1.140
G 0.376 0.771 0.448 0.527 0.433 1.177 0.412 1.041

Table 4.6: Individual funtional L2 error when SNR=1, as for Table 4.2.
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GS GIC
n Noise M MISE GA VA PE MISE GA VA PE

Q 0.907 0.988 0.906 1.617 0.920 0.935 0.839 1.683
1 L 1.962 0.917 0.939 1.835 1.964 0.792 0.910 1.917

G 1.679 1.000 0.064 2.195 1.743 0.994 0.132 2.578
Q 0.898 0.992 0.912 1.576 0.913 0.943 0.840 1.662

2 L 1.866 0.932 0.942 1.784 1.917 0.790 0.912 1.888
G 1.669 1.000 0.067 2.172 1.779 0.989 0.161 2.857

200 Q 0.498 1.000 0.903 1.124 0.709 0.943 0.849 1.482
3 L 1.203 0.993 0.943 1.325 1.756 0.828 0.914 1.867

G 1.603 1.000 0.062 2.170 1.659 0.995 0.109 2.465
Q 0.842 0.992 0.915 1.502 0.911 0.943 0.843 1.656

4 L 1.774 0.952 0.944 1.709 1.928 0.792 0.913 1.904
G 1.656 1.000 0.065 2.116 1.722 0.996 0.125 2.420
Q 0.499 0.999 0.892 1.142 0.610 0.963 0.874 1.222

1 L 0.981 0.965 0.932 1.187 1.029 0.838 0.879 1.278
G 1.371 1.000 0.051 1.684 1.557 0.998 0.208 2.183
Q 0.458 1.000 0.890 1.069 0.565 0.981 0.897 1.145

2 L 0.902 0.975 0.933 1.114 0.927 0.867 0.894 1.190
G 1.361 1.000 0.052 1.665 1.567 0.996 0.216 2.275

400 Q 0.096 1.000 0.874 0.602 0.167 1.000 0.918 0.671
3 L 0.151 1.000 0.903 0.617 0.299 0.999 0.941 0.681

G 1.220 1.000 0.050 1.679 1.260 1.000 0.081 1.759
Q 0.410 1.000 0.891 0.981 0.515 0.978 0.899 1.067

4 L 0.837 0.988 0.934 1.025 0.866 0.898 0.898 1.105
G 1.336 1.000 0.050 1.627 1.494 0.997 0.175 2.075

Table 4.7: Simulation summary of SNR=10, as for Table 4.1.
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GS GIC
n Noise M ISE1 ISE2 ISE3 ISE4 ISE1 ISE2 ISE3 ISE4

Q 0.080 0.298 0.220 0.286 0.082 0.292 0.222 0.284
1 L 0.166 0.340 0.819 0.570 0.165 0.317 0.799 0.569

G 0.334 0.625 0.312 0.407 0.338 0.637 0.318 0.449
Q 0.081 0.299 0.216 0.282 0.087 0.294 0.218 0.277

2 L 0.158 0.315 0.776 0.559 0.177 0.321 0.746 0.565
G 0.334 0.621 0.310 0.403 0.342 0.641 0.318 0.477

200 Q 0.040 0.117 0.146 0.188 0.061 0.206 0.182 0.233
3 L 0.077 0.148 0.540 0.415 0.141 0.265 0.737 0.512

G 0.330 0.597 0.289 0.387 0.333 0.607 0.296 0.423
Q 0.072 0.270 0.211 0.271 0.080 0.293 0.227 0.273

4 L 0.137 0.293 0.751 0.543 0.171 0.308 0.788 0.549
G 0.333 0.618 0.306 0.397 0.337 0.630 0.319 0.435
Q 0.038 0.119 0.145 0.188 0.050 0.164 0.156 0.214

1 L 0.052 0.109 0.440 0.349 0.056 0.119 0.415 0.334
G 0.307 0.501 0.229 0.333 0.316 0.562 0.279 0.400
Q 0.036 0.100 0.141 0.173 0.046 0.146 0.157 0.202

2 L 0.044 0.094 0.412 0.327 0.050 0.099 0.385 0.309
G 0.305 0.498 0.227 0.330 0.316 0.560 0.278 0.413

400 Q 0.005 0.007 0.043 0.040 0.008 0.017 0.069 0.072
3 L 0.007 0.007 0.076 0.059 0.009 0.013 0.154 0.121

G 0.291 0.430 0.198 0.301 0.294 0.445 0.209 0.312
Q 0.028 0.080 0.135 0.160 0.038 0.122 0.150 0.191

4 L 0.039 0.076 0.397 0.306 0.043 0.085 0.380 0.294
G 0.302 0.485 0.223 0.325 0.311 0.532 0.263 0.388

Table 4.8: Individual funtional L2 error when SNR=10, as for Table 4.2.
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Figure 4.3: Boxplot of L2 norm for each slope function, by using the quantile Lasso
method.
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Figure 4.4: Boxplot of L2 norm for each slope function, by using the quantile Group
Lasso method.
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Chapter 5

Conclusion

This thesis concentrates on the penalty methods used in the time series and func-

tional data analysis.

In Chapter 2, we present two periodogram-like functions based on Group Lasso

regularization in the context of least squares and quantile regression to estimate

frequencies from unevenly spaced time series. Theorem 2.3.1 was proved to show

that the Group Lasso penalty simultaneously shrinks and selects frequencies, ow-

ing to the property that Group Lasso penalty attempts to shrink some frequencies’

regularized least squares periodogram toward exactly zero. A data-dependent pro-

cedure for selection of tuning parameter is given. These methods are validated on

the simulation and real data, and its superiority is verified by comparing with adjust

periodogram and robust periodogram methods.

The application of the total variation penalized Whittle likelihood to nonpara-

metric spectral estimation is developed in Chapter 3. The most important feature

of the proposed method is capable of capturing sharp changes in the target spectral

density function while still maintaining a general smoothing objective. We give the

strict mathematical proofs for the convergence of the estimator and establish an L1

94



consistency result for the estimator. By simulations and real data, we show that

the penalized method has the potential to capture local features in the density more

efficiently than do more global approximations methods, such as the AR spectral

estimators.

Chapter 4 expresses discrete time series data as a smooth function and then

draws information from the collection of functional data. We restrict the coefficient

function to the span of a wavelet basis and consider the variable selection problem

for quantile regression where variables are given as functional forms. We convert

the functional regression problem into a high dimensional variable selection prob-

lem by transforming each functional predictors into a set of wavelet coefficients

and then selecting good predictors of the response variable from among these via

sparse Group Lasso. We investigate asymptotic properties of the estimated regres-

sion functions through establishing an L2 consistency result. Our numerical study

and real data application suggest the promising performance of the procedure in

variable selection and function estimation.
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