In compliance with the Canadian Privacy Legislation some supporting forms may have been removed from this dissertation.

While these forms may be included in the document page count, their removal does not represent any loss of content from the dissertation.

**University of Alberta** 

# SYNERGISTIC EFFECT DURING THE SEQUENTIAL INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN NATURAL WATERS

By

Kaushik Biswas



of the requirements for the

DEGREE OF DOCTOR OF PHILOSOPHY

IN

ENVIRONMENTAL ENGINEERING

### DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

# EDMONTON, ALBERTA, CANADA FALL 2003



National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisisitons et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 0-612-87939-9 Our file Notre référence ISBN: 0-612-87939-9

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou aturement reproduits sans son autorisation.



### **University of Alberta**

### Library Release Form

### Name of Author: Kaushik Biswas

**Title of Thesis:** Synergistic effect during the sequential inactivation of *Cryptosporidium* oocysts in natural waters

Degree: Doctor of Philosophy

Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.

Date submitted to the Faculty of Graduate Studies and Research:  $29^{4}A06.2007$ 

### UNIVERSITY OF ALBERTA

### FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommended to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled SYNERGISTIC EFFECT DURING THE SEQUENTIAL INACTIVATION OF *CRYPTOSPORIDIUM* OOCYSTS IN NATURAL WATERS submitted by KAUSHIK BISWAS in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING

Dr. D. W. Smith (Supervisor)

Dr. M. Belosevic (Co-supervisor)

Dr. I. D./Buchanan (Chair)

Dr. J. Leonard

Dr. A. Chu (External Examiner)

Date Approved: 27 Aug, 2003

### **DEDICATION**

I dedicate this thesis to my parents, my sister, and my wife, Sanchita, for their love, support, and inspiration throughout this work.

#### ABSTRACT

*Cryptosporidium parvum* oocysts are known to be a frequent cause of waterborne diseases. Earlier studies have shown that sequential treatment of *C. parvum* oocysts with oxidants in buffered de-ionized water can lead to synergistic inactivation of parasites. The purpose of this study was to provide a detailed evaluation of the synergistic effect of *C. parvum* inactivation in natural waters instead of buffered de-ionized water.

It was found that, for the range of experimental conditions investigated, the magnitude of the synergistic effect of sequential treatment of *C. parvum* with ozone followed by free chlorine in five high pH (8) natural waters was considerably lower than previously reported for buffered de-ionized water. However, in the two low pH (6) natural waters, the magnitude of the synergistic effect was comparable to that previously reported for buffered de-ionized water. It was concluded that the inhibition of synergistic effect in the high pH natural waters tested was in part due to alkalinity or pH and in part due to other unidentified water quality characteristics.

For ozone followed by monochloramine sequential treatment, the magnitude of the synergistic effect measured in the natural waters was comparable to that previously reported for buffered de-ionized water for the conditions studied. Statistically significant impacts of ozone pre-treatment level, pH, and water quality were observed on the synergistic effect. For those water treatment plants able to provide sufficient contact times, ozone followed by monochloramine may be a practical means of achieving additional *C. parvum* inactivation credit due to the synergistic effect.

For the inactivation of *C. parvum* oocysts using ozone only, a linear Chick-Watson model was found to be adequate for describing the inactivation kinetics in the studied natural waters. The results with the Chick-Watson model indicated a statistically significant effect of temperature, batch-to-batch variation of the oocysts resistance to ozone, and the oocysts age on the inactivation kinetics of *C. parvum* after treatment with ozone. The individual water quality parameters, including pH, did not affect the inactivation kinetics significantly. Based on the Chick-Watson model, ozone disinfection design criteria for the inactivation of *C. parvum* in natural water were established.

### ACKNOWLEDGEMENT

The author would like to express his sincere gratefulness to his supervisor, Dr. Daniel W. Smith of the Environmental Engineering Program, and co-supervisor, Dr. Miodrag Belosevic of the Department of Biological Sciences. The author would also like to make a special acknowledgement to Dr. Gordon Russell Finch, who served as the author's original supervisor for one month until his untimely death in January 2000. Dr. Finch supplied many of the initial ideas for the work described in this thesis.

The author would like to specially thank Dr. Stephen Craik of the Environmental Engineering Program (University of Alberta) for his continued advice, support and help during the course of this work. Many other individuals like Cezary Kucharski, Shannon Lefevbre, Sarah Delorenzo and Emmanual Guigard contributed in many ways in Dr. Belosevic's laboratory for the parasitology work.

The author would like to thank the American Water Works Association Research Foundation, the United States Environmental Protection Agency, the National Science and Engineering Research Council, and the University of Alberta, for providing financial and infrastructural support for the work of this thesis.

Last, but not the least, the author would like to thank all his colleagues for their support and cooperation during the program.

# TABLE OF CONTENTS

| CHAPTER 1:     | INTRODUCTION                                 |          |
|----------------|----------------------------------------------|----------|
| 1.1 CHALLENG   | es in Water Treatment                        | 1        |
| 1.2 SEQUENTIA  | L TREATMENT FOR MICROORGANISM REDUCTION      | 2        |
| 1.3 RESEARCH   | OBJECTIVES                                   | 3        |
| CHAPTER 2:     | LITERATURE REVIEW                            | <u>4</u> |
| 2.1 BACKGROU   | IND OF CRYPTOSPORIDIUM PARVUM                | 4        |
| 2.1.1          | Cryptosporidium Parvum                       | 4        |
| 2.1.2          | General Biology                              | 4        |
| 2.1.3          | Effects on Human Health                      | 7        |
| 2.1.4          | Waterborne Diseases                          | 8        |
| 2.1.5          | Detection                                    | 9        |
| 2.1.6          | Viability Determination                      | 10       |
| 2.1.7          | Drinking Water Treatment                     | 11       |
| 2.1.8          | Regulatory Requirements                      | 13       |
| 2.2 KINETIC M  | ODELING                                      | 15       |
| 2.3 Ozone in V | WATER TREATMENT                              | 17       |
| 2.3.1          | Reaction and Decomposition of Aqueous Ozone  | 18       |
| 2.3.2          | Mechanisms of Inactivation                   | 19       |
| 2.3.3          | Inactivation of <i>C. parvum</i> on Ozone    | 20       |
| 2.4 Chlorine   | IN WATER TREATMENT                           | 21       |
| 2.4.1          | Chemistry of Chlorine and Chlorine Compounds | 21       |
| 2.4.2          | Mechanisms of Inactivation                   | 22       |
| 2.4.3          | Inactivation of C. parvum by Chlorine        | 24       |
| 2.5 SEQUENTIA  | L TREATMENT FOR MICROORGANISM REDUCTION      | 25       |
| 2.6 Hypothesi  | IS OF SYNERGY IN NATURAL WATERS              | 28       |

| CHAPTER 3:        | MATERIALS AND METHODS                                           |        |
|-------------------|-----------------------------------------------------------------|--------|
| 3.1 PARASITO      | DLOGY METHODS                                                   | 30     |
| 3.1.              | .1 Production of C. parvum Oocysts                              | 30     |
| 3.1.              | .2 Oocyst Sample Concentration                                  |        |
| 3.1               | .3 Infectivity in Neonatal CD-1 Mice                            |        |
| 3.2 CHEMICA       | LS AND APPARATUS                                                |        |
| 3.2               | .1 Chlorine                                                     |        |
| 3.2               | .2 Monochloramine                                               |        |
| 3.2               | .3 Ozone                                                        |        |
| 3.2               | .4 Oxidant Demand-Free Glassware                                |        |
| 3.2               | .5 Reactor Vessels                                              |        |
| 3.2               | .6 Temperature Control                                          | 35     |
| 3.2               | .7 pH Adjustment                                                |        |
| 3.3 SCOPE AN      | ID STUDY APPROACH                                               |        |
| 3.4 Protoco       | L FOR EXPERIMENTAL TRIALS                                       |        |
| 3.5 KINETIC N     | MODELING                                                        |        |
| 3.5.              | .1 Interpretation of Infectivity Data with the Logistic Dose Re | sponse |
| Мо                | del                                                             |        |
| 3.5.              | .2 Chick-Watson Model and the I.g.H Model                       | 41     |
| 3.6 STATISTIC     | CS                                                              | 42     |
| 3.6               | .1 Multiple Linear Regression Analysis                          | 42     |
| 3.6               | .2 Confidence Interval of the Difference Between Two Slopes     | 43     |
| 3.7 NATURAL       | WATER SAMPLES                                                   | 44     |
| 3.8 TARGET E      | EXPERIMENTAL CONDITIONS                                         | 46     |
| <b>CHAPTER 4:</b> | SEQUENTIAL INACTIVATION OF C. PARVUM USIN                       | ٩G     |
| <b>OZONE FOLI</b> | OWED BY FREE CHLORINE IN NATURAL WATERS                         |        |
| 4.1 PART I: 1     | Preliminary Sequential Trials                                   |        |
| 4.1.              | .1 Experimental Plan                                            |        |

|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                       |
|---|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|   |                                                                                                        | 4.1.2 Results and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
|   | 4.2 PAR'                                                                                               | T II: FACTORIAL DESIGNED EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                       |
|   |                                                                                                        | 4.2.1 Experimental Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                       |
|   |                                                                                                        | 4.2.2 Results and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62                                                       |
|   |                                                                                                        | 4.2.3 Statistical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69                                                       |
|   | 4.3 PAR                                                                                                | T III: LOW PH NATURAL WATER EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                                       |
|   |                                                                                                        | 4.3.1 Experimental Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                                       |
|   |                                                                                                        | 4.3.2 Results and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74                                                       |
|   | 4.4 CON1                                                                                               | frol Trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                       |
|   | 4.5 Disc                                                                                               | USSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81                                                       |
|   |                                                                                                        | 4.5.1 Effect of pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                       |
|   |                                                                                                        | 4.5.2 Effect of Water Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                       |
|   |                                                                                                        | 4.5.3 Effect of Ozone Pre-treatment and Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86                                                       |
|   |                                                                                                        | 4.5.4 Comparison with Other Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87                                                       |
|   |                                                                                                        | ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |
| C | HAPTER                                                                                                 | <b>R 5:</b> SEQUENTIAL INACTIVATION OF <i>C. PARVUM</i> WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
| C | CHAPTER<br>DZONE F                                                                                     | R 5: SEQUENTIAL INACTIVATION OF <i>C. PARVUM</i> WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S88                                                      |
| C | CHAPTER<br>DZONE F                                                                                     | R 5: SEQUENTIAL INACTIVATION OF <i>C. PARVUM</i> WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S 88                                                     |
| C | CHAPTER<br>DZONE F<br>5.1 INTRO                                                                        | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>S88</b>                                               |
|   | CHAPTER<br>DZONE F<br>5.1 INTRO<br>5.2 EXPE                                                            | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>RIMENTAL DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>S88</b><br>88                                         |
|   | CHAPTER<br>DZONE F<br>5.1 INTRO<br>5.2 EXPE<br>5.3 RESU                                                | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>S88</b><br>88<br>88<br>90                             |
|   | CHAPTER<br>DZONE F<br>5.1 INTRO<br>5.2 EXPE<br>5.3 Resu<br>5.4 Control                                 | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>ERIMENTAL DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>S88</b><br>88<br>90<br>90                             |
|   | CHAPTER<br>DZONE F<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT                         | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>ERIMENTAL DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>S88</b><br>88<br>90<br>99<br>99                       |
|   | CHAPTER<br>DZONE F<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT<br>5.6 DESIG            | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>ERIMENTAL DESIGN<br>ILTS<br>IROL TRIALS<br>ISTICAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>S88</b><br>88<br>90<br>90<br>99<br>99<br>90           |
|   | CHAPTER<br>DZONE F<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT<br>5.6 DESI<br>5.7 DISC | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>S88</b><br>                                           |
|   | CHAPTER<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT<br>5.6 DESIG                       | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>RRIMENTAL DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>S88</b><br>                                           |
|   | CHAPTER<br>DZONE F<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT<br>5.6 DESI<br>5.7 DISC | R 5: SEQUENTIAL INACTIVATION OF <i>C. PARVUM</i> WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>S88</b><br>88<br>90<br>90<br>90<br>90<br>90<br>90<br> |
|   | CHAPTER<br>DZONE F<br>5.1 INTR<br>5.2 EXPE<br>5.3 RESU<br>5.4 CONT<br>5.5 STAT<br>5.6 DESI<br>5.7 DISC | R 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH<br>OLLOWED BY MONOCHLORAMINE IN NATURAL WATER<br>ODUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUCTION<br>DUC | <b>S88</b><br>88<br>90<br>90<br>90<br>90<br>90<br>90<br> |

| WATERS112                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6.1 INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 6.2 Experimental Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 6.3 RESULTS AND ANALYSIS113                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 6.3.1 Control Trials115                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 6.3.2 Comparison of the Results with I.g.H Model Predictions116                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 6.3.3 Chick-Watson Model and Design Criteria120                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 6.4 DISCUSSIONS129                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 6.4.1 Comparison with Previous Studies                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 6.4.2 Effect of Water Quality130                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 6.4.3 Effect of Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 6.4.4 Oocyst Batch and Oocyst Age                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CHAPTER 7: GENERAL DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 7.1 Synergism and its' implications                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 7.1 Synergism and its' implications    132      7.2 Problem Revisited    133                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 7.1 Synergism and its' implications       132         7.2 Problem Revisited       133         7.3 Implications for water treatment utilities       134                                                                                                                                                                                                                                                                                                                               |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS       132         7.2 PROBLEM REVISITED       133         7.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES       134         7.3.1 Ozone Followed By Free Chlorine Sequential Treatment       134                                                                                                                                                                                                                                                  |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS       132         7.2 PROBLEM REVISITED       133         7.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES       134         7.3.1 Ozone Followed By Free Chlorine Sequential Treatment       134         7.3.2 Ozone Followed By Monochloramine Sequential Treatment       136                                                                                                                                                                    |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS       132         7.2 PROBLEM REVISITED       133         7.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES       134         7.3.1 Ozone Followed By Free Chlorine Sequential Treatment       134         7.3.2 Ozone Followed By Monochloramine Sequential Treatment       136         7.3.3 Ozone Treatment Only       137                                                                                                                       |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138                                                                                                                                                                              |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS139                                                                                                                                 |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS8.1 CONCLUSIONS139                                                                                                                  |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS8.1 CONCLUSIONS1398.2 RECOMMENDATIONS141                                                                                            |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138CHAPTER 8:CONCLUSIONS AND RECOMMENDATIONS1398.1 CONCLUSIONS1398.2 RECOMMENDATIONS141REFERENCES143                                                                             |  |  |
| 7.1 SYNERGISM AND ITS' IMPLICATIONS1327.2 PROBLEM REVISITED1337.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES1347.3.1 Ozone Followed By Free Chlorine Sequential Treatment1347.3.2 Ozone Followed By Monochloramine Sequential Treatment1367.3.3 Ozone Treatment Only1377.4 FUTURE SCOPE OF SYNERGISM138CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS8.1 CONCLUSIONS1398.2 RECOMMENDATIONS1398.2 RECOMMENDATIONS141REFERENCES143APPENDIX A : WATER QUALITY ANALYSIS OF THE NATURAL WATER |  |  |

# CHAPTER 6: OZONE INACTIVATION OF C. PARVUM IN NATURAL

| APPENDIX B :RESULTS OF NEONATAL CD-1 INFECTIVITY ANALYIS FOR |
|--------------------------------------------------------------|
| ALL EXPERIMENTAL TRIALS                                      |
| APPENDIX C :OZONE PRIMARY TREATMENT INFORMATION FOR EACH     |
| SEQUENTIAL TREATMENT TRIAL                                   |
| APPENDIX D :SECONDARY TREATMENT INFORMATION FOR EACH         |
| SEQUENTIAL TREATMENT TRIAL                                   |
| APPENDIX-E :HISTOGRAMS OF MEASURED INFECTIVITY REDUCTION OF  |
| C. PARVUM OOCYSTS IN THE CONTROL TRIALS FOR THE NATURAL      |
| WATERS                                                       |
| VITA AUCTORIS                                                |

## LIST OF TABLES

| 3.1 Logistic dose-response models for neonatal CD-1 mice exposed to different batches                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of C. parvum oocysts40                                                                                                                                                                                                                             |
| 3.2 Description of the natural waters used for experiments                                                                                                                                                                                         |
| 3.3 Selected measured water quality parameters for the natural waters used in the                                                                                                                                                                  |
| experimental trials46                                                                                                                                                                                                                              |
| 4.1 Calculated Chick-Watson rate constants for natural water A for ozone followed                                                                                                                                                                  |
| by free chlorine sequential treatment at 22°C55                                                                                                                                                                                                    |
| 4.2 Calculated Chick-Watson rate constants for natural water B for ozone followed                                                                                                                                                                  |
| by free chlorine sequential treatment at initial pH 6.056                                                                                                                                                                                          |
| 4.3 Calculated Chick-Watson rate constants for natural water C for ozone followed                                                                                                                                                                  |
| by free chlorine sequential treatment at 21°C57                                                                                                                                                                                                    |
| 4.4 Estimated free chlorine Ct products required for a 1 log-unit synergistic effect in                                                                                                                                                            |
| the natural waters A, B and C for ozone followed by chlorine sequential                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| treatment                                                                                                                                                                                                                                          |
| 4.5 The 2 <sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61                                                                                                                                                  |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine</li> </ul>                                       |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>treatment</li></ul>                                                                                                                                                                                                                       |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |
| <ul> <li>4.5 The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment61</li> <li>4.6 Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D</li></ul> |

| 4.11 Calculated Chick-Watson rate constants for ozone followed by free chlorine                     |
|-----------------------------------------------------------------------------------------------------|
| sequential trials with natural waters F and G78                                                     |
| 4.12 Estimated free chlorine Ct products required for a 1 log-unit synergistic effect for           |
| ozone followed by free chlorine sequential trials in Types F and G water79                          |
| 4.13 Comparison of Ct required for 1 log-unit synergistic effect between buffered de-               |
| ionized water and natural waters for ozone followed by free chlorine                                |
| sequential treatment                                                                                |
| 4.14 Biologically mediated reactions affecting pH in natural water systems85                        |
| 5.1 The 2 <sup>4-1</sup> design matrix for ozone followed by monochloramine sequential treatment.89 |
| 5.2 Calculated Chick-Watson rate constants for ozone followed by monochloramine                     |
| sequential trials with natural water D96                                                            |
| 5.3 Calculated Chick-Watson rate constants for ozone followed by monochloramine                     |
| sequential trials with natural water E97                                                            |
| 5.4 Estimated monochloramine Ct products required for a 1 log-unit synergistic effect               |
| for ozone followed by monochloramine sequential treatment in the designed                           |
| experiment                                                                                          |
| 5.5 Summary of synergistic effect determinations for the factorial design experiments               |
| with ozone followed by monochloramine sequential treatment100                                       |
| 5.6 Results from the factorial design experiment of the sequential trials using ozone and           |
| monochloramine sequential treatment represented in terms of scaled variables101                     |
| 5.7 ANOVA analysis results of the sequential trials with natural waters D and E using               |
| ozone followed by monochloramine103                                                                 |
| 5.8 Monochloramine Ct requirements for the synergistic inactivation of C. parvum due                |
| to ozone followed by monochloramine sequential treatment in natural waters                          |
| D and E at pH 8.1105                                                                                |
| 5.9 Comparison of model predictions of Ct required for 1 log-unit synergistic effect                |
| between laboratory de-ionized water and natural waters for ozone followed                           |
| by monochloramine sequential treatment at pH 8106                                                   |

| 6.1 Experimental conditions of the ozone inactivation trials with C. parvum done in the |
|-----------------------------------------------------------------------------------------|
| natural waters A to G113                                                                |
| 6.2 Mean infectivity reduction of all the control trials in natural waters              |
| 6.3 Comparison of the I.g.H. model prediction versus the measured inactivation119       |
| 6.4 Summary of the ozone inactivation data at their respective conditions               |
| 6.5 Comparison of the Chick-Watson model prediction versus the measured                 |
| inactivation127                                                                         |
| 6.6 Ct requirements for ozone inactivation of C. parvum at various conditions           |
| based on the Chick-Watson model developed for natural waters A to G128                  |
| A.1Water quality analysis of the natural water samples used in experiments163           |
| B.1 Neonatal CD-1 infectivity analysis for experimental trials with natural water A166  |
| B.2 Neonatal CD-1 infectivity analysis for experimental trials with natural water B172  |
| B.3 Neonatal CD-1 infectivity analysis for experimental trials with natural water C181  |
| B.4 Neonatal CD-1 infectivity analysis for experimental trials with natural water D189  |
| B.5 Neonatal CD-1 infectivity analysis for experimental trials with natural water E204  |
| B.6 Neonatal CD-1 infectivity analysis for experimental trials with natural water F219  |
| B.7 Neonatal CD-1 infectivity analysis for experimental trials with natural water G223  |
| C.1 Ozone primary treatment information for sequential experimental trials              |
| with natural water A228                                                                 |
| C.2 Ozone primary treatment information for sequential experimental trials              |
| with natural water B229                                                                 |
| C.3 Ozone primary treatment information for sequential experimental trials              |
| with natural water C230                                                                 |
| C.4 Ozone primary treatment information for sequential experimental trials              |
| with natural water D231                                                                 |
| C.5 Ozone primary treatment information for sequential experimental trials              |
| with natural water E232                                                                 |
| C.6 Ozone primary treatment information for sequential experimental trials              |
| with natural water F                                                                    |

| C.7 Ozone primary treatment information for sequential experimental trials        |  |
|-----------------------------------------------------------------------------------|--|
| with natural water G234                                                           |  |
| D.1 Secondary treatment information for sequential trials with natural water A236 |  |
| D.2 Secondary treatment information for sequential trials with natural water B237 |  |
| D.3 Secondary treatment information for sequential trials with natural water C238 |  |
| D.4 Secondary treatment information for sequential trials with natural water D240 |  |
| D.5 Secondary treatment information for sequential trials with natural water E243 |  |
| D.6 Secondary treatment information for sequential trials with natural water F246 |  |
| D.7 Secondary treatment information for sequential trials with natural water G247 |  |

## LIST OF FIGURES

| 2.1 Schematic layout of <i>Cryptosporidium parvum</i> life cycle                        |
|-----------------------------------------------------------------------------------------|
| 3.1 Illustration of the <i>Ct</i> approach used to measure a synergistic effect         |
| 4.1 Effect of sequential treatment with ozone and free chlorine on C. parvum oocysts in |
| natural water A at (a) pH 7.8 and (b) initial pH 6.0 at 22 °C51                         |
| 4.2 Effect of sequential treatment with ozone and free chlorine on C. parvum oocysts in |
| natural water B at (a) 21 °C and (b) 2 °C at initial pH 652                             |
| 4.3 Effect of sequential treatment with ozone and free chlorine on C. parvum oocysts in |
| natural water C at (a) pH 7.6 and (b) initial pH 6 at 21 °C53                           |
| 4.4 Effect of ozone and free chlorine treatment on C. parvum oocysts in natural water D |
| at (a) pH 8.1 and (b) initial pH 6 at 21 °C63                                           |
| 4.5 Effect of ozone and free chlorine treatment on C. parvum oocysts in natural water D |
| at (a) pH 8.1, 3 °C and (b) initial pH 6 at 5 °C64                                      |
| 4.6 Effect of ozone and free chlorine treatment on C. parvum oocysts in natural         |
| water E at (a) pH 8.1 and (b) initial pH 6 at 21 °C65                                   |
| 4.7 Effect of ozone and free chlorine treatment on C. parvum oocysts in natural water E |
| at (a) pH 8.1 and (b) initial pH 6 at 1 °C66                                            |
| 4.8 Effect of ozone and chlorine sequential treatment on C. parvum oocysts in natural   |
| water F at (a) 21 °C and (b) 5 °C at pH 6.376                                           |
| 4.9 Effect of ozone and chlorine sequential treatment on C. parvum oocysts in natural   |
| water G at pH 5.8 and 5 °C77                                                            |
| 5.1 Effect of ozone and monochloramine treatment on C. parvum oocysts in natural        |
| water D at (a) pH 8.1 and (b) initial pH 6 at 21 °C92                                   |
| 5.2 Effect of ozone and monochloramine treatment on C. parvum oocysts in natural        |
| water D at (a) pH 8.1 and (b) initial pH 6 at 5 °C93                                    |
| 5.3 Effect of ozone and monochloramine treatment on C. parvum oocysts in                |
| natural water E at (a) pH 8.1 and (b) initial pH 6 at 21 °C94                           |

| 5.4 Effect of ozone and monochloramine treatment on C. parvum oocysts in natural      |
|---------------------------------------------------------------------------------------|
| water E at (a) pH 8.1 and (b) initial pH 6 at 1 °C95                                  |
| 5.5 Fit of the linear regression model for predicting the synergistic effect of ozone |
| followed by monochloramine sequential treatment for the inactivation of $C$ .         |
| parvum oocysts in natural waters104                                                   |
| 6.1 Ozone inactivation of C. parvum oocysts in the natural waters at pH 6 to 8114     |
| 6.2 Comparison of measured infectivity reductions by ozone to Incomplete Gamma        |
| Hom (I.g.H) kinetic model predictions at 21 to 22°C and pH values of 6.0 to           |
| 8.0 in (a) waters A, B, C and (b) waters D, E, and F117                               |
| 6.3 Comparison of measured infectivity reductions by ozone to Incomplete Gamma Hom    |
| (I.g.H) kinetic model predictions at 3°C and pH values of 6.0 to 8.0 in               |
| the natural waters B, D, E, F, and G118                                               |
| 6.4 Fit of the Chick-Watson model for predicting the ozone inactivation of C. parvum  |
| oocysts in natural waters A to G at pH 6 to 8 and temperatures of                     |
| (a) 21 °C and (b) 3 °C126                                                             |
| E.1 Histograms of measure infectivity reduction of C. parvum oocysts in the control   |
| trials for natural waters A, B, and C249                                              |
| E.2 Histograms of measure infectivity reduction of C. parvum oocysts in the control   |
| trials for natural waters D and E250                                                  |
| E.3 Histograms of measure infectivity reduction of C. parvum oocysts in the control   |
| trials for natural waters F and G251                                                  |

# LIST OF ABBREVIATIONS, UNITS, AND SYMBOLS

| a                   | empirical constant                                                          |
|---------------------|-----------------------------------------------------------------------------|
| AWWA                | American Water Works Association                                            |
| AwwaRF              | American Water Works Association Research Foundation                        |
|                     |                                                                             |
| b                   | empirical constant                                                          |
| B                   | average of all the trials of the ozone inactivation of the oocysts per unit |
|                     | ozone $Ct$ for a particular batch and temperature $[\log/(mg \cdot min/L)]$ |
|                     |                                                                             |
| с                   | empirical constant                                                          |
| °C                  | degrees Celsius                                                             |
| С                   | oxidant concentration at time $t$ , (mg/L)                                  |
| Ct                  | product of the concentration and contact time (mg·min/L)                    |
| $C_{\mathrm{avg}}$  | geometric average of $C_0$ and $C_{f}$ , (mg/L)                             |
| $C_{ m f}$          | oxidant residual measured at the end of the applied contact time, (mg/L)    |
| $C_0$               | oxidant concentration measured at time zero, (mg/L)                         |
| $Cl_2(aq)$          | free chlorine (aqueous)                                                     |
| $Cl_2(g)$           | free chlorine (gas)                                                         |
| Ct <sub>1-log</sub> | Ct required for 1 log-unit synergistic effect, (mg·min/L)                   |
| CI                  | statistical confidence interval                                             |
|                     |                                                                             |
| d                   | estimated infectious oocysts in the inoculum of each mouse, (No./mouse)     |
| $d_0$               | total number of oocysts in each inoculum as counted by hemacytometer,       |
|                     | (No./mouse)                                                                 |
| DBPs                | disinfection by products                                                    |
| DI                  | deionized                                                                   |
| DPD                 | (N,N-diethyl-p-phenylenediamine)                                            |

| FBRR             | Filter Backwash Recycling Rule (U.S. EPA)                                           |
|------------------|-------------------------------------------------------------------------------------|
| GWUDI            | Groundwater Under Direct Influence (U.S. EPA)                                       |
|                  |                                                                                     |
| H <sub>2</sub> O | water                                                                               |
| HOCI             | hypochlorous acid                                                                   |
|                  |                                                                                     |
| ICR              | Information Collection Rule                                                         |
| IESWTR           | Interim Enhanced Surface Water Treatment Rule (U.S. EPA)                            |
| ID <sub>50</sub> | estimated oocyst dose for 50% of infection of the CD-1 neonatal mice in a           |
|                  | cohort                                                                              |
|                  |                                                                                     |
| k                | first-order Chick-Watson rate constant, (min <sup>-1</sup> )                        |
| k'               | inactivation rate constant for linear relationship                                  |
| <i>k</i> ''      | inactivation rate constant for a particular microorganism                           |
| k <sub>d</sub>   | first-order chemical disinfectant disappearance rate constant, (min <sup>-1</sup> ) |
| $k_1$            | inactivation rate constant for secondary treatment alone, (min <sup>-1</sup> )      |
| $k_2$            | inactivation rate constant for secondary treatment following ozone primary          |
|                  | treatment, (min <sup>-1</sup> )                                                     |
|                  |                                                                                     |
| L                | likelihood function for normally distributed errors                                 |
| L                | litre (in unit)                                                                     |
| LT1ESWTR         | Long Term 1 Enhanced Surface Water Treatment Rule (U.S. EPA)                        |
| LT2ESWTR         | Long Term 2 Enhanced Surface Water Treatment Rule (U.S. EPA)                        |
|                  |                                                                                     |
| MCL              | maximum contaminant level                                                           |
| MCLG             | maximum contaminant level goal                                                      |
| m                | empirical kinetic model parameter                                                   |

| mg/L     | milligram per litre |
|----------|---------------------|
| mg·min/L | units of Ct product |
| min      | minute              |

| N                  | number of surviving oocysts at time t                                |
|--------------------|----------------------------------------------------------------------|
| $N_0$              | number of oocysts at time zero                                       |
| n                  | empirical kinetic model parameter                                    |
| na                 | not available                                                        |
| $NH_4^+$           | ammonium ion                                                         |
| NH <sub>2</sub> Cl | monochloramine                                                       |
| NHCl <sub>2</sub>  | dichloramine                                                         |
| NCl <sub>3</sub>   | trichloramine                                                        |
|                    |                                                                      |
| O <sub>3</sub>     | ozone                                                                |
| OCI <sup></sup>    | hypochlorite ion                                                     |
|                    |                                                                      |
| Р                  | proportion of mice in a cohort scoring positive for a given inoculum |
|                    |                                                                      |
| SWTR               | Surface Water Treatment Rule (U.S. EPA)                              |
|                    |                                                                      |
| Т                  | temperature (°C)                                                     |
| TCR                | Total Coliform Rule (U.S. EPA)                                       |
| TOC                | total organic carbon (mg/L)                                          |
| t                  | contact time (min)                                                   |
|                    |                                                                      |
| U.S. EPA           | United States Environmental Protection Agency                        |
|                    |                                                                      |
| X                  | oocyst inoculum (log-units) given to each neonate CD-1 mouse         |

| $X_1$                 | regression model input representing ozone primary treatment level (log-             |
|-----------------------|-------------------------------------------------------------------------------------|
|                       | units)                                                                              |
| $X_2$                 | regression model input representing temperature (°C)                                |
| <i>X</i> <sub>3</sub> | regression model input representing pH                                              |
| $X_4$                 | regression model input representing water quality                                   |
|                       |                                                                                     |
| ${\cal Y}_{\rm i}$    | observed inactivation for the i <sup>th</sup> trial                                 |
| y                     | measured inactivation (log-units)                                                   |
| Y <sub>i</sub>        | positive $(Y_i 1)$ or negative $(Y_i 0)$ infection of the mice                      |
| Y                     | regression model output representing the magnitude of the synergistic               |
|                       | effect $[(k_2 - k_1) \times 10^4]$                                                  |
| Ŷ                     | I.g.H model prediction (log-units)                                                  |
|                       |                                                                                     |
| γ                     | incomplete gamma function                                                           |
| α                     | level of statistical significance                                                   |
| β                     | model parameters: for the logistic response model, refer to $\beta_o$ and $\beta_1$ |
| β                     | optimal model prediction of $\beta$                                                 |
| θ                     | empirical constant                                                                  |
| µg/mL                 | microgram per millilitre                                                            |

### **CHAPTER 1: INTRODUCTION**

### **1.1 CHALLENGES IN WATER TREATMENT**

In the earlier part of the twentieth century the introduction of chlorination and filtration in drinking water treatment saved millions of lives throughout the world. Before chlorination the outbreaks of waterborne diseases like cholera and typhoid were quite common. Thus the prevention of outbreaks due to pathogenic microorganisms in public drinking water is considered to be one of the most significant achievements of the last century. In North America, chlorination was regarded as the most effective option against all pathogenic microorganisms both in terms of cost and treatment. For several years few questions were asked about the efficacy of chlorination and hence there was little room for improvement or alternative investigations. However, during the latter part of the twentieth century the water treatment industry was challenged by more resistant pathogens like Giardia lamblia and Cryptosporidium parvum. Several disease outbreaks were reported due to these waterborne pathogens (Smith and Rose 1998; Fayer et al. 2000; MacKenzie et al. 1994). This prompted the exploration of alternatives such as ozone, monochloramine, chlorine dioxide and UV radiation. At the same time, people became more and more aware and concerned about the potential long-term human health effects due to ingestion of chemical byproducts formed during chlorination or other chemical treatment processes. All these factors led to new challenges for the water treatment industry to come up with a novel and cost effective solution for striking a balance between the risk of microbial contamination and the long-term health effects due to chemical byproducts.

Today the microorganism reduction approach in water treatment is evolving in response to the need to more rigorously protect public health.

preset.

### **1.2 SEQUENTIAL TREATMENT FOR MICROORGANISM REDUCTION**

Ingestion of Cryptosporidium spp. oocysts can cause the disease cryptosporidiosis, a potentially life-threatening diarrheal illness in persons with underdeveloped or suppressed immune systems (Colford et al. 1996; Gerba et al. 1996). Water suppliers for a long time have been concerned that conventional treatment methods may not be a sufficient barrier to waterborne transmission of cryptosporidiosis. The enhanced surface water treatment rule (ESWTR) under development in the United States will include requirements for Cryptosporidium parvum inactivation. The long contact time (t) and high chemical dose (C) needed to achieve Ct values required for C. parvum inactivation raise the issues of chemical by-products formation and feasibility as well as cost of compliance with future regulations. Free and combined chlorine have limited capabilities to inactivate C. parvum (Korich et al 1990, Gyürék et al. 1997). Ozone and chlorine dioxide can effectively inactivate C. parvum (Finch et al. 1994, Korich et al. 1990). However, the levels of ozone or chlorine dioxide required to achieve oocyst inactivation may lead to problems with chemical byproducts formation.

Synergism is the cooperative interaction of two or more substances, or phenomena, producing a greater total effect than the sum of their individual effects (University of Wisconsin-Stevens Point). Studies at the University of Alberta and elsewhere have shown that ozone primary treatment followed by either chlorine or chloramines secondary treatment can achieve levels of inactivation that are greater than those predicted based on simple addition of the inactivations expected for each chemical alone (Li et al 2001 a, b; Driedger et al 1999 a, b). Thus there appears to be a synergistic effect of the sequential treatment on inactivation of the oocysts. The limitation of these studies was that they were conducted exclusively in prepared laboratory buffers and may not necessarily be representative of inactivation of *Cryptosporidium* spp., and there is a need to include, if confirmed, the synergistic effect of sequential treatment. A previous study (Oppenheimer et al., 2000) of *Cryptosporidium* spp. inactivation in natural waters suggested that initial microorganism reduction with ozone can enhance the

inactivation achieved by secondary exposure to chlorine in natural waters. The authors of that report, however, concluded that additional data are required to more fully define water quality effects.

### **1.3 RESEARCH OBJECTIVES**

The purpose of this study was to provide a more detailed evaluation of the synergistic effect during sequential treatment of *Cryptosporidium* spp. oocysts in natural waters. The specific research objectives were:

- To quantify the synergistic effect of ozone primary treatment followed by either chlorine or monochloramine secondary treatment in various natural surface waters.
- To determine which of the following experimental factors have a significant impact on the synergistic effect:
  - 1. the type of secondary treatment (free chlorine or monochloramine);
  - 2. the level of primary ozone treatment;
  - 3. the pH of the water;
  - 4. the temperature of the water; and
  - 5. the quality of the water.
- To compare the synergistic effect measured in the natural waters to that observed in prepared laboratory buffers (Li et al 2001b).
- To determine the ozone inactivation kinetics of *C. parvum* in natural waters and establish an ozone inactivation design criteria of *C. parvum* in natural waters.

### **CHAPTER 2: LITERATURE REVIEW**

### 2.1 BACKGROUND OF CRYPTOSPORIDIUM PARVUM

#### 2.1.1 Cryptosporidium parvum

*Cryptosporidium* spp. are unicellular parasitic microorganisms known to infect a variety of vertebrate animals. *C. parvum* is the species that causes the gastrointestinal disease in humans known as cryptosporidiosis. E.E. Tyzzer in 1912 (Current and Garcia 1991) first described the life cycle stages of *C. parvum* in the gut of laboratory mice. However, for 48 years it remained relatively obscure, as it appeared to be of no economic, medical or veterinary importance. In 1976 the first case of cryptosporidiosis in humans was reported (Nime et al. 1976) and in 1985 the first documented outbreak of human cryptosporidiosis due to contamination of water supply was reported (D'Antonio et al. 1985). In 1993, interest in *C. parvum* expanded dramatically following a massive waterborne outbreak in Milwaukee, WI, involving an estimated 403, 000 persons (Fayer et al. 2000). Following that incident the general public, public health agencies, agricultural agencies and groups, environmental engineers and agencies, suppliers of drinking water, and others expressed concern and initiated studies on *C. parvum* with emphasis on developing methods for detection, prevention and treatment.

### 2.1.2 General Biology

*Cryptosporidium* spp. are intercellular protozoan parasites. The sporozoite of the parasite has specialized organelles, which assist the parasite in host cell penetration. These include rhoptries (electron-dense, tubular paired structures which are often posteriorly enlarged) and small elongate electron-dense micronemes (convoluted tubules, rod-shaped granules), which extend longitudinally in the anterior part of the body and may be attached to the rhoptries (Crawford and Vermund 1988). The species causing disease in humans is *C. parvum*. *C. parvum* appears to lack host specificity and has been

shown to cross-infect 79 different mammalian species, (O'Donoghue 1995; Tzipori and Griffiths 1998) including rodents, ruminants, dogs and humans.

Human and calf *Cryptosporidium* spp. isolates studied in mice, chick embryos, and cell cultures have six stages in the life cycle (Crawford and Vermund 1988). They are as follows (Figure 2.1):

*Excystation:* Excystation is the first stage, which involves the escape of four infective sporozoites through a sutural junction in the oocyst wall, invasion of the epithelial cells of the gastrointestinal tract and formation of trophozoites.

*Merogony:* The second stage in the life cycle is merogony (asexual multiplication) initiated after the sporozoites attach themselves to the surface of the host epithelial cell. During merogony, the trophozoite or type I meront undergoes nuclear divisions producing either six or eight nuclei. The nuclei migrate to the periphery of the parasite and form type I merozoites. The type I merozoites appear randomly arranged in a spherical mass within the parasitophorous vacuole, from which the type I meront releases six or eight type I merozoites. These merozoites may attach themselves to uninfected microvilli and repeat the asexual cycle, yet another means of autoinfection, or may form type II meronts.

*Gametogony:* The third stage, gamete formation, occurs when type I merozoites undergo secondary merogony, becoming type II meronts. Each type II meront forms four type II merozoites arranged longitudinally, with the anterior ends of all four merozoites directed away from the feeder organelle. These type II merozoites, which are shorter and broader than the type I merozoites, are released by rupture of the parasitophorous vacuole and penetrate the microvillous border of intestinal epithelial cells.

*Fertilization:* During the fourth stage of the life cycle, fertilization, the microgametes attach to the host cell membrane covering the macrogamete. Upon penetration, the diploid oocyst is formed.

*Oocyst wall formation:* The fifth stage is oocyst wall formation. The outer oocyst wall is made by type I wall-forming bodies and the inner wall, by type II wall-forming bodies.



Figure 2.1 Schematic layout of Cryptosporidium parvum life cycle

*Sporogony:* The sixth stage is sporogony of the oocyst, which occurs within the parasitophorous vacuole. The sporont separates from the oocyst residium and divides into four sporoblasts, which become the long slender sporozoites. Sporozoites are released from the thin-walled oocysts soon after the oocysts have been released from the parasitophorous vacuole. Most, but not all, thick-walled oocysts pass through the gut without excysting.

The oocyst stage of the parasite's life cycle is of interest to the water industry. Two forms of oocyst are shed by an infected host (Current 1990). One population is characterized by a thin oocyst wall and is thought to be the primary means for autoinfection. This form of oocyst does not survive for very long outside the infected host. The other form of oocyst is characterized by a robust, thick oocyst wall, and is believed to survive for several weeks in the external environment. This form of the oocyst is the primary means by which this parasite distributes itself throughout a host population. The two autoinfective stages in the life cycle contribute to the severity of the illness and also result in excretion of large number of parasites by infected hosts.

### 2.1.3 Effects on Human Health

Small numbers of *C. parvum* oocysts can contaminate even treated drinking water, and ingestion of these oocysts can cause diarrheal disease in normal as well as immunocompromised hosts. In a relevant study (DuPont et al. 1995) it was found that an oral dose of 30 *C. parvum* oocysts was found to be sufficient to cause infection in healthy adult humans. The median infective *C. parvum* dose ( $ID_{50}$ ) was determined to be 132 oocysts. However, for immunocompromised people and children the infective dose is probably much lower.

Unlike immunocompetent adults, people with AIDS are susceptible to a devastating form of cryptosporidiosis manifested by chronic, voluminous diarrhea (Gellin and Soave 1992). *C. parvum* is a recognized cause of diarrhea, particularly among children, in developing countries. Several studies have suggested that cryptosporidiosis is most common in children younger than 1 year (Sallon et al. 1991; Newman et al. 1994).

### 2.1.4 Waterborne Diseases

Numerous surveys revealed that *C. parvum* is relatively widespread in surface waters (LeChevallier and Norton 1996; LeChevallier et al. 1991; Ongerth and Stibbs 1987; Hayes et al. 1989). In the United States and the United Kingdom, *Cryptosporidium* spp. oocysts have been found in over 80% and 50% of untreated surface waters, and in 26% and 37% of treated drinking waters, respectively (Smith and Rose 1998).

*Cryptosporidium parvum* has become the most important recognized pathogen in drinking water in the United States (U.S.). Fecal contamination of waterways has led to massive outbreaks. Several well-documented outbreaks of cryptosporidiosis in drinking water in the U.S. affected from 500 to 400, 000 persons (Fayer et al. 2000). Rivers, lakes, springs, and groundwater have all been implicated as sources of this pathogen. About 19 major outbreaks due to cryptosporidiosis have occurred in the U.S., the U.K., and Japan (Smith and Rose 1998). The worst among these was the outbreak in the City of Milwaukee, Wisconsin (U.S.) in 1993 in which as many as 403, 000 persons were affected by this disease.

Cryptosporidiosis outbreaks have occurred in public water systems using conventional treatment processes that were in compliance with federal and local regulations at the time of the outbreak (Solo-Gabriele and Neumeister 1996). The available epidemiological information and the quality of monitoring information are insufficient to estimate the risk of cryptosporidiosis from consumption of potable water (Craun et al. 1998). Analytical risk assessment approaches based on information from the human dose-response studies have often been used to establish the acceptable levels of infectious *C. parvum* oocysts in drinking water and to determine water treatment requirements (Haas et al. 1996; Rose et al. 1991). In North America, in drinking water treatment plants, an estimated 4.5 log-units of oocysts have been estimated to be the average reduction requirements based on an acceptable level of annual infection risk of 1 in 10, 000 persons (LeChevallier et al. 1995).

### 2.1.5 Detection

The two basic steps involved in oocyst detection are (1) concentration of the oocysts, due to the low numbers of parasites that are typically found in the sample, and (2) identification of oocysts in the concentrated sample (Nieminski et al. 1995). The reference method for concentration of oocysts involves the use of membrane filters (Methods 1622 and 1623: EPA 821-R01-026 and EPA 821-R-99-006). However, the recoveries of the parasites are low and in general range from 9.5% in river water to 59% in tap water (Robertson et al. 1992; Rose 1990).

At present the most accepted technique for detection of parasites in concentrated environmental water samples is the immunomagnetic separation, followed by immunofluorescence (IFA) staining or polymerase chain reactions (PCR) (Di Giovani et al. 1997 a, b). In this technique small magnetic beads with covalently attached anti-C. parvum monoclonal antibodies are added to the concentrated water sample. C. parvum oocysts present in the sample bind to the antibody and can be removed from the sample by attraction of the bead/C. parvum oocyst complex to a magnet. C. parvum oocysts are dissociated from the beads through an acid wash (1M HCl). The resulting suspension is then stained with a fluorescently labeled anti-C. parvum monoclonal antibody and the preparation examined using epi-fluorescence microscopy (Belosevic et al. 2000). The immunofluorescence method has utility for determining the presence and density of protozoan contamination within a watershed, providing design criteria for calculating the size and complexity of the water treatment process, and can be used to evaluate the effectiveness of cyst reduction through various stages of treatment. Disadvantages of the method include low recovery efficiencies (5 to 25%), long processing times (at best 1 to 2 days, but typically 1 to 2 weeks), the need for a highly trained analyst, high cost (approximately \$300 per sample), inability to discriminate viable or virulent strains, and cross-reactivity with several species of Cryptosporidium spp. (Fayer 1997).

#### 2.1.6 Viability Determination

In the water industry one of the ongoing challenges is the determination of viability. Dead parasites in finished water are of little concern since they do not have the ability to cause diseases. Ideally, the best test for determining viability is the ability to cause disease in human beings. But, this is unethical and hence animals have been used as surrogates for infection. The technique used for viability determination is called "animal infectivity". However, animal infectivity is tedious, difficult and expensive and is not readily amenable to normal laboratory analysis in the water industry. Further, infections in laboratory animals do not necessarily reflect the infectious process in humans (Belosevic et al. 2000). Although laboratory animals may become infected with *C. parvum* they often do not show overt signs of disease. Nevertheless, animal infectivity is regarded as the "gold standard" for determining the viability of *C. parvum*.

"In-vitro excystation" is another common method used to determine the viability of *C. parvum* oocysts. In-vitro excystation techniques attempt to mimick the conditions of in-vivo digestion. The oocysts excyst in response to proteolytic digestion (usually in the presence of bile salts) resulting in the subsequent release of infectious sporozoites. The number of intact oocysts, empty shells and sporozoites is indicative of the number of viable organisms present in the original suspension (Rennecker et al. 1999). However, there are several assumptions in this method. Firstly, the oocysts that do not excyst are not viable and therefore are incapable of causing infections. But it is possible that those oocysts, which do not excyst in-vitro, may still be infectious. Secondly, it is assumed that the oocysts excysting in-vitro are viable and hence infectious. In the same way it is feasible that the mechanisms mediating oocyst excystation are independent of the viability of the oocyst (Belosevic et al. 2000). It has been reported in the literature that invitro excystation often over-estimates viability and infectivity of *C. parvum* oocysts (Black et al. 1996).

Another technique, which is commonly used to measure viability of *C. parvum* oocysts is the in-vitro cell culture assay. In these assays, oocysts are excysted and the suspension containing infectious sporozoites are inoculated on cultured epithelial cells.

Sporozoites invade the cells and proceed to replicate within the intracellular environment of the cell. Parasites are detected within the cell cultures by a variety of techniques including immunofluorescence (Slifko et al. 1997), polymerase chain reaction (PCR; DiGiovanni et al. 1997a, b), or reverse transcription PCR (Rochelle et al. 1997). The major advantage of the cell culture assays is that the initial establishment of the parasites can be determined. However, the main assumptions regarding in-vitro excystation also apply to the cell culture assays since the latter requires in-vitro excystation as the initial step for initiation of infection.

Other assays for viability determination of *C. parvum* oocysts include immunomagnetic capture PCR (Di Giovani et al. 1997b), dye permeability assays (Campbell et al. 1992; Belosevic et al. 1997a, b) and fluorescence in-situ hybridization techniques (Vesey et al. 1997). Of all the methods, only animal infectivity provides direct information about the ability of a particular parasite to infect the host.

#### 2.1.7 Drinking Water Treatment

Well-designed and properly operated conventional water treatment processes provide physical removal of *C. parvum* to a certain degree. Prevention of waterborne disease in drinking water starts from protection of source waters from contamination. Protected watersheds generally have lower oocyst levels than sites receiving agricultural, sewage, or urban runoff. No studies have quantified the relative contribution of various sources of contamination. Source-water protection is an area where additional research is warranted.

Physical removal of oocysts through coagulation, sedimentation, and filtration is the primary barrier against waterborne cryptosporidiosis (Pett et al. 1994). Effective coagulation of *C. parvum* oocysts has been achieved using alum, ferric chloride and polyaluminium chloride (Nieminski 1994). When coagulation was optimized, an oocyst removal of 2 log-units was demonstrated during both conventional and direct filtration processes, using anthracite coal and sand media (Nieminski et al. 1995; Ongerth and Pecoraro 1995; Patania et al. 1995). It was also found that when coagulation is properly
controlled the total *Cryptosporidium* spp. removal can be improved by an order of magnitude and also the removal is sometimes greater than the total removal of turbidity, particles and spores (Dugan et al. 2001). Non-conventional processes, such as slow sand filtration (Logsdon 1988), dissolved air flotation (Plummer et al. 1995) and diatomaceous earth filtration (Ongerth and Hutton 2001; Schuler and Ghosh 1990; Schuler et al. 1991), have also been shown to be effective for reduction of *C. parvum* oocysts. Microfiltration and ultrafiltration membrane processes can remove all oocysts (Adham et al. 1994). However, application of membranes is currently limited to smaller communities with relatively clean water sources.

In general, treatment of *C. parvum* is more difficult than other pathogens mainly because of its smaller size, lower sedimentation rate and greater resistance to microbial inactivation. In a study (LeChevallier et al. 1996) of 71 surface water treatment plants examined on multiple occasions, oocysts were detected in 39 (54.9%) treatment plant effluents and 15 of the systems were effluent positive in multiple occasions.

Microbial reduction using chemical treatment has always been the major barrier for control of microbial contaminants in water. Chlorine-based chemical treatment of water generally has a low level of effectiveness for oocyst inactivation. As much as 80 mg/L of free chlorine or monochloramine for 90 minutes is required for 1 log-unit oocyst inactivation (Korich et al. 1990). For control of waterborne pathogens a combination of filtration and chemical treatment is necessary. The results of one study (LeChevallier et al. 1996) showed that an average plant would need to provide 2.0 log units of inactivation using chemical treatment along with effective particle removal to meet the  $10^{-4}$  annual risk of *Cryptosporidium* spp. infection goal. This greater resistance of *C. parvum* to chlorination, together with the goal of reducing the formation of health-related chlorination by-products, encouraged the exploration and application of alternative oxidant chemicals like chlorine dioxide and ozone.

## 2.1.8 Regulatory Requirements

In 1989, the United States Environmental Protection Agency (U.S. EPA) introduced the Surface Water Treatment Rule (SWTR), which established the maximum contaminant level goals (MCLGs) of zero for *Giardia lamblia*, viruses and *Legionella* spp. The SWTR includes treatment technique requirements for filtered and unfiltered systems that are intended to protect against the adverse health effects of exposure to *Giardia lamblia*, viruses, and *Legionella* spp., as well as many other pathogenic organisms. The requirements include the following: (1) maintenance of a disinfectant residual in the distribution system; (2) removal and/or inactivation of 3 log-units of *Giardia* and 4 log-units of viruses; (3) combined filter effluent performance of 5 NTU (Nephlometric Turbidity Unit) as a maximum and 0.5 NTU at 95<sup>th</sup> percentile monthly for treatment plants using conventional treatment or direct filtration (with separate standards for other filtration technologies); (4) watershed protection and other requirements for unfiltered systems (U.S. EPA 1989).

U.S. EPA promulgated the Total Coliform Rule (TCR) in 1989. The TCR (U.S. EPA 2001) established a MCLG of zero for total and fecal coliform bacteria, and a maximum contaminant level (MCL) based on the percentage of positive samples collected during a compliance period. Under the TCR, no more than 5 percent of distribution system samples collected in any month may contain coliform bacteria (no more than 1 sample per month may be coliform positive in those systems that collect fewer than 40 samples per month). The number of samples to be collected in a month is based on the number of people served by the system.

The Information Collection Rule (ICR), a monitoring and data reporting rule, was promulgated by US EPA in 1996. The ICR (U.S. EPA 2001) required systems to collect source water samples, and in some cases, finished water samples, monthly for 18 months, and test them for *Giardia* spp., *Cryptosporidium* spp., viruses, total coliforms, and either fecal coliforms or *E. Coli*. The ICR also required systems to determine the concentrations of a range of disinfection byproducts in different parts of the treatment plant and

distribution system. The rule also required systems to provide specified operating and engineering data to the U.S. EPA.

The Interim Enhanced Surface Water Treatment Rule (IESWTR) introduced by the EPA in 1998 was to improve the control of microbial pathogens, specifically *C. parvum*, and address risk tradeoffs between pathogens and chemical oxidant byproducts (U.S. EPA 2001). It applies to public water systems serving 10, 000 or more people that use surface water or ground water under the direct influence of surface water (GWUDI). The key features of IESWTR include: a maximum contaminant level goal (MCLG) of zero for *C. parvum*; 2 log-unit of *C. parvum* removal requirements for systems that filter; strengthened combined filter effluent turbidity performance standards of 1 NTU as a maximum and 0.3 NTU at the 95<sup>th</sup> percentile monthly, based on 4-hour monitoring for treatment plants using conventional treatment or direct filtration and requirements for individual filter turbidity monitoring.

The Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) is based upon the microbial control provisions established by the IESWTR for large systems through extending similar requirements to small systems (U.S. EPA 2001). The LT1ESWTR applies to public water systems using surface water or GWUDI as sources and which serve fewer than 10, 000 people. Similar to IESWTR, the LT1ESWTR establishes 2 log-unit *C. parvum* removal requirements for systems that filter, and strengthened combined filter effluent turbidity performance standards.

In June 2001, U.S. EPA promulgated the Filter Backwash Recycling Rule (FBRR) to increase protection of finished drinking water supplies from contamination of *C. parvum* and other microbial pathogens (U.S. EPA 2001). The FBRR requirements will reduce the potential risks associated with recycling contaminants removed during the filtration process. The FBRR provisions apply to all systems that recycle the backwash water from the filtration units, regardless of population served.

Current drinking water regulations requiring 2 log-unit removal of *C. parvum* may be adequate for many systems, but U.S. EPA believes that additional protection is needed for systems with greater vulnerability to this pathogen. Such systems include those with high source water *Cryptosporidium* spp. levels and those, which do not provide filtration. Hence, U.S. EPA has proposed the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) to provide for increased protection against microbial pathogens in public water systems, which use surface water sources. The proposed LT2ESWTR focuses on *Cryptosporidium* spp., which is a protozoan pathogen that is widespread in surface waters. U.S. EPA is particularly concerned about *Cryptosporidium* spp. because it is highly resistant to inactivation by standard treatment practices. In addition to that, the proposed LT2ESWTR is intended to ensure that systems maintain adequate steps to reduce formation of by-products during chemical oxidant treatment of water (U.S. EPA 2001).

### **2.2 KINETIC MODELING**

In the early 20<sup>th</sup> century, a study (Chick 1908) proposed that the inactivation of microorganisms by chemical agents is a rate-governed process that is analogous to a bimolecular chemical reaction where one reactant is some vital component in the bacterial protoplasm and the other is the chemical agent. The rate equation was described as:

$$\frac{dN}{dt} = kN$$
 Equation 2.1

where N is the number of surviving bacteria at a given time and k is the rate constant. Since the rate was also found to be a function of concentration, Watson (1908) proposed the modified rate equation:

$$-\frac{dN}{dt} = kC^n N$$
 Equation 2.2

where C is the concentration of the chemical agent and n is known as the coefficient of dilution. n can also be regarded as the number of molecules required to react with one

molecule at a vital component of a microorganism to cause a lethal effect. Integration of Equation 2.2 yields the generalized form of the pseudo first-order Chick-Watson rate law:

$$-\ln\frac{N}{N_0} = kC^n t$$
 Equation 2.3

where  $N_0$  is the initial number of live microorganisms and N is the number of surviving microorganisms after time t. If n is equal to unity, the level of inactivation is proportional to the simple product of the oxidant concentration, C, and the contact time, t. Expressing equation 2.3 in terms of base 10 logarithmic form:

$$-\log \frac{N}{N_0} = k' C'' t \qquad \text{Equation 2.4}$$

If n is equal to unity, the level of inactivation is proportional to the simple product of the oxidant concentration, C, and the contact time, t.

$$-\log \frac{N}{N_0} = k'Ct$$
 Equation 2.5

Equation 2.5 is simple and extensively used for design and regulatory purposes. U.S. EPA uses the *Ct* product in Equation 2.5 as the main criteria for design and performance analysis of microorganism reduction processes (Malcolm Pirnie Inc. and HDR Engineering Inc. 1991).

The observed microorganism inactivation often deviates from the Chick-Watson rate law and tend to exhibit non-linear behaviour. *Shoulder* behaviour occurs when the initial rate of inactivation is very low and results in an apparent lag between the addition of the chemical and the onset of measurable inactivation. *Tailing* behaviour is also observed when the rate of inactivation decreases with an increase in exposure. However, it is often not clear whether the differences in reported kinetic behaviour is due to the true

difference in responses due to chemical inactivation of the microorganism, or from the difference in experimental protocols used between the various studies.

Several alternative kinetic models have been proposed. Some of them like the multi-target, series-event and Monod model are based on proposed reaction mechanisms (Gyürék and Finch 1998). Others like the Hom and the rational model are based solely on empirical observations. A few studies have rigorously compared different models, but none of them emerged as a universal solution for all situations. The Chick-Watson model was found to fit as well as the Hom and Monod models for inactivation of coliform bacteria by chlorine when the concentration of chlorine was constant (Haas and Karra 1984a). On the other hand the Selleck model was preferred when chlorine demand and decomposition was significant (Haas and Karra 1984b). The Hom model was found to better represent inactivation of G. lamblia cysts by free chlorine than the Chick-Watson model when the two models were compared using maximum likelihood method (Haas and Heller 1990). Zhou and Smith (1994) compared five different models using statistical techniques, representing three basic phenomena for the case of E. coli inactivation by ozone in a completely mixed reactor. The models which are more complex than the Chick-Watson model provided only a marginal better fit than the Chick-Watson model with a dilution coefficient of n = 3.3. On the other hand, the Hom model was found to be the best among the different models tested, in order to describe the inactivation of heterotrophic plate count bacteria (Gyürék and Finch 1998). In another recent study (Clark et al. 2002), a Ct equation based on first order kinetics was developed for the application of ozone for controlling C. parvum oocysts in drinking water. The Ct equation was developed using standard statistical techniques, and both field and bench scale data. The authors tried to account for the variations in different water types, oocyst strains and nature of bioassay techniques by using a safety factor in their estimation of Ct values.

# **2.3 OZONE IN WATER TREATMENT**

The first large-scale installation of ozone generation facilities for drinking water treatment was started in 1893 in the Netherlands. Due to the recognition of chlorination

as a much less expensive alternative, interest in the use of ozone for microorganism reduction declined significantly in North America. However, the new environmental regulations requiring protozoan inactivation and reduction of chlorination by-products have generated a marked increase in the use of ozone for water treatment in the United States.

## 2.3.1 Reaction and Decomposition of Aqueous Ozone

Ozone chemistry in aqueous solution is complex and the precise nature of the various reactions depends on the type of compounds present in the water. The mechanism of ozone decomposition in water has been a source of significant controversy. However, the models of Staehelin and Hoigné (1982) and by Tomiyasu et al. (1985) are well recognized. Staehlein and Hoigné (1982) concluded that the rate of ozone decomposition in pure water is limited by reaction with hydroxide ions in the initiation step, and hence for a given pH, the decomposition of ozone in pure water should be first order with respect to ozone. Tomiyasu et al. (1985) proposed an expression that included both first and second-order terms to describe the rate of disappearance of ozone in pure waters.

In natural waters, the presence of organic and inorganic matter complicates the determination of ozone decomposition rates. However, it is well established that the rate of decomposition of molecular ozone in natural waters increases with pH and in the presence of hydrogen peroxide, and decreases in the presence of scavenging agents such as carbonate or bicarbonate ions, alkyl groups and tertiary alcohols (Staehlein and Hoigné 1985). Yuteri and Gurol (1988) proposed a first-order rate expression to describe the disappearance of ozone in natural waters. The rate constant of the expression was described as a function of pH, total organic carbon (TOC) and alkalinity of the water.

Hoigné and Bader (1994) proposed a two-step process for describing the ozone decomposition in natural waters. In the first step, ozone is consumed by very rapid reactions within seconds of addition of the ozone to the water. In the second step, a much more gradual decomposition of ozone takes place, which can be approximated by a first-order process. The authors commented that it is generally difficult to predict the rate of

ozone decomposition based solely on the analytical characterization of the water. Oke et al. (1998), however, observed that a first-order decomposition is valid only for clean water. For natural surface waters it provided a poor fit of the ozone decomposition profile. The authors proposed a modified model in which they were unable to correlate the ozone decomposition model parameters with that of the measured water quality parameters.

Ozone reactions in water are influenced by temperature (Morooka et al. 1979; Roth and Sullivan 1983). In general it is difficult to predict the effect of temperatures on the overall ozone decomposition rate in natural waters (Hoigné and Bader 1994). Hence, direct measurement of ozone decomposition in natural waters is preferred rather than prediction.

#### 2.3.2 Mechanisms of Inactivation

In conventional ozonation process, the chemical species primarily responsible for microorganism inactivation is believed to be the molecular ozone. Hydroxyl radicals are not expected to play a significant role as biocidal agents since they are likely to be consumed by reaction with dissolved substrates before they have an opportunity to react with dispersed particles (Hoigné and Bader 1975). Experimental evidence tends to support the molecular ozone hypothesis. It was found that conditions that are favourable for increased hydroxyl radical formation, such as basic pH, UV light and addition of hydrogen peroxide did not enhance inactivation of bacteria or viruses beyond the effect of molecular ozone alone (Farooq et al. 1977; Harakeh and Butler 1985).

In spite of the many experimental studies with ozone, there is little consensus on the mode of action of ozone on microorganisms. Due to chemical selectivity, molecular ozone shows different rates of reaction with different cellular biomolecules. It was found that polysacharrides, phospholipids and amine sugars react slowly with ozone and hence the chemical action of ozone on the cell wall is expected to be weak (Langlais et al. 1991). On the other hand, amino acids and nucleic acids react very rapidly and hence the proteins in the cell membrane and nucleic acids within the cell are potential sites of ozone attack (Langlais et al. 1991). One study postulated that ozone does not permeate the cells, but rather attacks the bacterial cell wall, alters the cell membrane permeability and finally causes either lysis or leakage of cell components (Scott and Lesher 1963) while others proposed that ozone permeates the bacterial cell membranes and degrades the DNA (Hamelin and Chung 1974; Ishizaki et al. 1987). The primary mode of action of ozone against viruses has been proposed to damage the capsid protein (Kim et al. 1980; Sproul et al. 1982), direct damage of the nucleic acid within the capsid (Roy et al. 1981), or a combination of the both (Shinriki et al. 1988). Hunt and Mariñas (1999) observed that most of the *E. coli* cells exposed to ozone were non-viable even before any structural changes occurred in the cells. This suggested that ozone permeates the cell and the lethal effect is by damage to biochemical molecules or processes within the cell.

Microbial inactivation in natural waters and wastewaters present an additional degree of complexity because ozone will also react with dissolved, colloidal, and particulate matter. These reactions might interfere with some of the reactions responsible for microbial inactivation. Hence, designing disinfection reactors might require the simultaneous consideration of all reactions affecting the concentration of dissolved ozone and ultimately the inactivation process (Hunt and Mariñas 1999).

#### 2.3.3 Inactivation of C. parvum on Ozone

Several studies have been done with ozone and *C. parvum* (Peeters et al. 1989; Korich et al. 1990; Ransome et al. 1993; Finch et al. 1993b; Gyürék et al. 1999; Finch and Li 1999; Rennecker et al. 1999; Oppenheimer et al. 2000; Li et al. 2001b). The results of all these studies are complicated by the diversity in the experimental protocols and the variation of the ozonation conditions. In terms of experimental protocol, the differences include the oocyst source host, viability determination method, type of water matrix and the type of reactors used for ozone exposure. Differences may have been due to the specific strain of oocysts used, oocyst purification and storage methods and also the age of the oocysts. Further, the analytical methods used to measure the dissolved ozone and the method of Ct calculation may also affect comparisons between studies. All these resulted in a considerable variation in the *Ct* products required for inactivation of *C*. *parvum*. This variation creates confusion among water professionals involved in developing engineering design or performance criteria for ozonation systems.

Among all the previous studies with ozone, the most comprehensive were the ones conducted by Finch and coworkers using animal infectivity for oocyst viability determination (Finch et al. 1993b; Finch et al. 1994; Finch and Li 1999; Gyürék et al. 1999; Li et al. 2001b). These researchers used very well-defined protocols, a quantitative mouse infectivity assay to determine the inactivation kinetics of the *C. parvum*-ozone system, and used them to develop engineering design and performance criteria. In their studies the researchers used ultra-pure water to minimize extraneous ozone reactions. They configured a unique batch reactor system that provided continuous monitoring of the dissolved ozone system. Infectivity reduction was measured using a neonatal CD-1 mouse model and was interpreted quantitatively using a logistic oocyst dose-response model (Ernest et al. 1986; Finch et al. 1993a). In the dose response experiments quality control was ensured, by determining the infective properties of each batch of oocysts.

# **2.4 CHLORINE IN WATER TREATMENT**

# 2.4.1 Chemistry of Chlorine and Chlorine Compounds

Chlorine may be used as a disinfectant in the form of compressed gas under pressure that is dissolved in water at the point of application, solutions of sodium hypochlorite, or solid calcium hypochlorite. The three forms are chemically equivalent because of the rapid equilibrium that exists between dissolved molecular gas and the dissociation products of hypochlorite compounds.

$$Cl_2(g) \Leftrightarrow Cl_2(aq)$$
 Equation 2.6

$$Cl_2(ag) + H_2O \Leftrightarrow H^+ + HOCl + Cl^-$$
 Equation 2.7

# $HOCl \Leftrightarrow OCl^- + H^+$

The term "free available chlorine" is used to refer to the sum of the concentrations of molecular chlorine (Cl<sub>2</sub>), hypochlorous acid (HOCl), and hypochlorite ion (OCl<sup>-</sup>). As a result of a disproportionation reaction, an aqueous equilibrium exists between the free chlorine species HOCl and OCl<sup>-</sup>. The proportion of the species that exist in water, are very much dependent on pH. The majority of the free chlorine is in the HOCl form at pH 6.0, whereas at pH 8.0 the majority exists in the OCl<sup>-</sup> form (Haas 1999).

In presence of ammonium ions, free chlorine reacts in a stepwise manner to form chloramines. This process is depicted in the following equations:

$$NH_4^+ + HOCl \Leftrightarrow NH_2Cl + H_2O + H^+$$
 Equation 2.9

$$NH_{2}Cl + HOCl \Leftrightarrow NHCl_{2} + H_{2}O$$
 Equation 2.10

$$NH_2Cl + HOCl \Leftrightarrow NCl_3 + H_2O$$
 Equation 2.11

The compounds, monochloramine  $(NH_2Cl)$ , dichloramine  $(NHCl_2)$ , and trichloramine  $(NCl_3)$ , each contribute to the total (or combined) chlorine residual in water. The term "total available chlorine", refers to the sum of free chlorine compounds and reactive chloramines. The simultaneous application of chlorine and ammonia or the application of ammonia prior to the application of chlorine, resulting in a stable combined residual, has been a long-standing practice at many utilities (American Water Works Association 1999).

## 2.4.2 Mechanisms of Inactivation

Several studies have been done on the nature of the inactivation mechanism of chlorine on bacteria, cysts and spores (Fair et al. 1948; Green and Stumpf 1946; Chang

1944). However, the inactivation mechanism of viruses by chlorine and other oxidants has never been resolved. Once taken into the environment of the living organism, chlorine may enter into a number of reactions with critical components causing inactivation (American Water Works Association 1999). In bacteria, respiratory, transport, and nucleic acid activity are all adversely affected (Venkobachar et al. 1975, 1977). In bateriophage f2, the mode of inactivation appears to be disruption of the viral nucleic acid (Dennis et al. 1979). With poliovirus, the protein coat, and not the nucleic acid, appears to be the critical site for inactivation by free chlorine (Fujioka et al. 1985). It is generally agreed that the relative efficiency of various chemical oxidant compounds is a function of the rate of diffusion of the active agent through the cell wall. It is assumed that after penetration of the cell wall is accomplished, the oxidant compound has the ability to attack the enzyme group, whose destruction results in death to the organism (White 1999).

HOCl is the most effective of all the chlorine residual fractions. The germicidal efficiency of HOCl is due to the relative ease with which it can penetrate cell walls. This penetration is comparable to that of water, and can be attributed to both its modest size (low molecular weight) and its electrical neutrality (absence of an electrical charge). The OCl<sup>-</sup> ion, on the other hand due to its' -ve charge, is considered to be a relatively poor oxidant (Fair et al. 1948, Chang 1944). There is considerable support for this hypothesis by several investigators (Faust and Aly 1998).

For monochloramine, it was found that for the same conditions of contact time and temperature, and a pH in the range of about 6 to 8, it will take at least 25 times more combined available chlorine than free available chlorine to produce the same germicidal efficiency (Kabler 1953). This difference in potency of monochloramine and HOCl might be explained by the difference in their oxidation potentials, assuming that the action of chloramines is of an electrochemical nature rather than one of diffusion as in the case of HOCl (White 1999). In a different study (Jacangelo et al. 1991) the mode of action of monochloramine on *E. coli* B was found to be inhibition of typical protein-associated biological activities such as bacterial transport, respiration, and, substrate dehydrogenation.

# 2.4.3 Inactivation of *C. parvum* by Chlorine

Several studies have confirmed that free chlorine alone is not effective against *Cryptosporidium parvum* at doses and contact times that are commonly used in water treatment (Korich et al. 1990; Ransome et al. 1993; Gyürék et al. 1997). The data in these studies indicated that chlorine can achieve some sort of inactivation of *Cryptosporidium* spp., but at very high concentrations and contact time.

Korich et al. (1990) used oocysts in oxidant demand free phosphate buffer for chlorine treatment. Viability was determined using Balb/c mice, in-vitro excystation and vital dyes. The authors reported 2 log-units of inactivation of oocysts exposed to 80 mg/L of chlorine for 90 minutes. Ransome et al. (1993) tested inactivation of *C. parvum* in groundwater buffered at a pH of 7 at 10°C. Viability of the oocysts was determined using excystation. Less than one log-unit of reduction in viability was achieved at an approximate dose of 1000 mg/L of free chlorine for 24 hours. A comprehensive investigation was done by Gyürék et al. (1997) using *C. parvum* oocysts in demand-free phosphate buffer at a pH of 6 and 8 maintained at 25°C. Viability was measured using animal infectivity. The authors reported 0.5 to 1 log-unit inactivation of the oocysts at pH 6 for *Ct* values ranging from 60 to 1,032 mg.min/L. Less than 0.5 log-unit of inactivation was observed for *Ct* values ranging from 60 to 240 mg·min/L.

In spite of the inability of chlorine to effectively inactivate *C. parvum*, the number of utilities using chlorine seems to remain unchanged from 1978 to 1998 in about 165 large and medium sized utilities in the United States (AWWA Water Quality Division Disinfection Systems Com., 2000).

Much lower credit is given for microorganism reduction per unit of chloramines residual per unit contact time compared to chlorine, chlorine dioxide and ozone. However, chloramines have been increasingly recognized as an effective means to control by-products of chemical treatment and biofilm growth in distribution systems despite their poor instantaneous biocidal efficacy.

Korich et al. (1990) reported a one log-unit of *C. parvum* inactivation after exposure of 80 mg/L of monochloramine for 90 minutes in demand-free phosphate buffer

at a pH of 7 and 25°C. Ransome et al. (1993) found a reduction in excystation of approximately 73 % after the treatment of oocysts at 3 mg/L of monochloramine for 24 hours. Gyürék et al. (1997) studied the effect of monochloramine on oocysts at 22°C in phosphate-buffered water at pH 8. The authors reported Ct values ranging from 3, 300 to 7, 000 mg·min/L to achieve 1-log unit inactivation of oocysts.

# **2.5 SEQUENTIAL TREATMENT FOR MICROORGANISM REDUCTION**

A number of studies have been conducted on the use of multiple oxidants, for inactivation of microorganisms in drinking water applications. In earlier studies, mixtures of oxidants were investigated typically in simultaneous application to an aqueous solution. Kouame and Haas (1991) demonstrated a synergistic effect on inactivation of E. coli when free chlorine and monochloramine were both present in a continuous stirred tank reactor system at pH 8 and 20°C. These authors noted that the synergistic effect increased with contact time. Katz et al. (1994) studied the effect of chlorine dioxide and chlorine combinations on the inactivation of indicator organisms contained in activated sludge effluent. These authors reported improved inactivation of total coliforms, fecal coliforms, fecal streptococci, and coliphages following combined application of 5 mg/L each of chlorine dioxide and chlorine, but they did not report the inactivation from separate application of the disinfectants. It is therefore, difficult to assess a synergistic effect from their results. Kott et al. (1980) studied the effects of ozone and chlorine applied individually, sequentially and combined on the inactivation of Salmonella typhimurium, poliovirus type 1 and T<sub>2</sub> and T<sub>3</sub> coliphages in secondary wastewater and artificially polluted tap water. These authors reported that simultaneous application of ozone and chlorine was superior to sequential application.

A proprietary device that produces an ill-defined mixture of chemical oxidants purported to include free chlorine, ozone and chlorine dioxide, has been reported to cause substantial inactivation of indicator bacteria, anaerobic spores and encysted parasites (Sobsey et al. 1998; Venczel et al. 1997). Recent chemical analysis confirmed high concentrations of free chlorine but could not detect ozone or chlorine dioxide in the

mixed oxidant solution (Bubnis et al. 1998). In another study, where the conditions reported by Venczel et al. (1997) were repeated, the inactivation of *Cryptosporidium* spp. was no different than that expected from free chlorine alone. While the two studies appeared to use the same protocols for the experiments, Venczel et al. (1997) used a tissue culture assay to determine the viability of the oocysts.

Finch et al. (1995) reported superior inactivation of *Cryptosporidium* spp. oocysts when using free chlorine followed by monochloramine in deionized water at room temperature when compared to either disinfectant alone. This led to a series of preliminary experiments studying the phenomenon (Finch et al. 1997; Gyürék et al. 1997). A more complete investigation of chemical treatment combinations reported that synergistic effects on *Cryptosporidium* spp. may be hindered at cold temperatures (Finch et al. 1997). However, once a threshold Ct of the primary oxidant was applied, there was a progressive increase in inactivation of *Cryptosporidium* spp. with increasing Ct of the secondary disinfectant. Ozone-based processes were found to be the best followed by chlorine dioxide processes.

Driedger et al. (1999) studied ozone followed by monochloramine sequential inactivation of *C. parvum* oocysts using in-vitro excystation as a viability assay. The authors reported a five-fold increase in the inactivation rate for monochloramine after 0.26 log-units of ozone primary treatment (ozone Ct = 1.4 mg.min/L) versus no primary treatment. Rennecker et al. (2000a and 2001) and Driedger et al. (2001) used an *in vitro* excystation assay to study sequential inactivation of *C. parvum* oocysts suspended in de-ionized water in batch reactors. They observed that semi-log curves of inactivation ratio versus free or combined chlorine concentration-time (*Ct*) product were characterized by an initial lag phase, in which little inactivation occurred, followed by a region at higher *Ct* in which the inactivation, pre-treatment with ozone reduced the duration of the lag phase and increased the post-lag first-order rate of inactivation during subsequent exposure to free or combined chlorine. Gross oocyst inactivation was greater than that predicted based on simple addition of the inactivation expected for each chemical acting alone and a synergistic effect was claimed. Recently, the same research group (Corona-

Vasquez et al. 2002) found that the kinetics of primary inactivation with ozone and free chlorine has a relatively strong temperature dependence (increases with decreasing temperature), and vary both with oocyst lot and oocyst age.

Finch et al. (2000) and Li et al. (2001b) used mouse infectivity assays to measure the viability of C. parvum oocysts suspended in phosphate buffered de-ionized water and exposed to various combinations of chemical oxidants. Although they did not observe the initial lag phase reported by the researchers using the in vitro excystation assay, they concluded that pre-treatment with ozone increased the first-order rate of inactivation during subsequent exposure to free and combined chlorine and thereby generated a measurable synergistic effect. Finch et al. (2000) found that ozone followed by free chlorine at pH 6 or ozone followed by monochloramine at pH 8 generated a measurable synergistic effect on the inactivation of C. parvum oocysts. Gross inactivation with sequential treatment increased linearly with the free chlorine Ct product. A decrease in temperature reduced the magnitude of the synergistic effect. Li et al. (2001b) conducted a series of sequential treatment experiments with different combinations of disinfectants to determine the synergistic effect in buffered de-ionized water. A significant synergistic effect was observed for ozone-based sequential inactivation, and some extra benefit was also found for chlorine dioxide-based sequential inactivation at high Ct of the secondary treatment. The factors that were found to significantly affect sequential inactivation included the level of primary inactivation, the Ct product of the secondary treatment and the temperature of the water. The gross inactivation after primary treatment was observed to increase linearly with the Ct product of the secondary treatment. Both the gross kill and the synergistic effect were favored at higher water temperatures. For 1.6 log-units of ozone primary kill, the efficacy of free chlorine or monochloramine secondary treatment on a total available chlorine basis was comparable.

Very few studies on synergistic effect of disinfectants on *C. parvum* oocysts suspended in natural waters have been reported. A number of natural water experiments at a variety of temperature and pH combinations using ozone alone and chlorine dioxide alone and in combination with free chlorine and monochloramine have been performed at the laboratories of the Environmental Engineering and Science Program and the

Department of Biological Science of the University of Alberta. Many of these proprietary studies are not in the public domain. A general observation was that synergistic effects were apparent, but not at the levels expected based on studies conducted in buffered deionized water. Temperature and water quality were speculated as factors affecting the outcome.

Oppenheimer et al. (2000) conducted a limited number of sequential disinfection experiments with C. parvum oocysts suspended in different natural waters and using a mouse infectivity assay to determine oocyst viability. In their studies, they found some evidence of a synergistic effect when chlorine or chloramines were applied following ozone primary treatment. However, the synergistic effect was inconsistent in the various waters tested. They cited the limited precision of the animal infectivity assay and a poor understanding of the factors responsible for the synergistic effect in the natural water environment. The Oppenheimer et al. (2000) study is the only reported study of sequential treatment of C. parvum in natural waters.

## **2.6 HYPOTHESIS OF SYNERGY IN NATURAL WATERS**

A general hypothesis for the mechanism of synergy is that the strong oxidants in the primary treatment increase the permeability of the oocyst wall by physically damaging or altering its' surface properties. Without pre-treatment, diffusion of both free chlorine and monochloramine through the oocyst wall is the rate-limiting step in the diffusion-reaction process. Since ozone is a very strong oxidant, and it can oxidize many organic materials including lipid and proteins, it was postulated earlier (Li et al. 2001b) that the ozone pre-treatment increased oocyst wall permeability by weakening the oocyst wall. For natural waters, a similar mechanism will probably be true. However, the microorganisms may acquire physical protection in water as a result of their being adsorbed to the enormous surfaces provided by clays, silt, and organic matter. Such particles, with the adsorbed microorganisms, may aggregate to form clumps. Organisms themselves may also aggregate or clump together so that the organisms that are on the interior of the clump are shielded from the disinfectant and are not inactivated. Organisms may also be physically embedded within particles of fecal material, or within larger organisms (National Academy

of Sciences, 1980). Microbial inactivation in natural waters using chemical oxidants, also presents an additional degree of complexity. The oxidants react with dissolved, colloidal, and particulate matter, and these reactions might interfere with some of the reactions responsible for microbial inactivation.

## **CHAPTER 3: MATERIALS AND METHODS**

#### **3.1 PARASITOLOGY METHODS**

### 3.1.1 Production of C.parvum Oocysts

*C. parvum* oocysts used in this study were originally obtained from Dr. Harley Moon (National Animal Disease Control Center, Ames, Iowa) and are known as the Iowa strain. Previously established methods for *C. parvum* oocyst production and purification from Holstein calves were used (Finch et al. 1994; Finch et al. 1995; Finch et al. 1997). Calves aged 2 to 4 days were infected with *C. parvum* oocysts and maintained on a diet of electrolyte solution. Feces collected from the calves were first passed through descending series of sieves (400 $\mu$ m to 75  $\mu$ m). Oocysts were purified from the sieved feces by cesium chloride gradient centrifugation (Kilani and Sekla 1987). The calf diet of electrolyte solution reduced the lipid content of the feces and eliminated the need for a sucrose centrifugation pre-purification step. Stock suspensions of purified oocysts were stored at 4°C in deionized water with antibiotics (100  $\mu$ g/mL streptomycin, 100  $\mu$ g/mL gentamicin, 100 U/mL penicillin) and 0.01% Tween.

#### **3.1.2 Oocyst Sample Concentration**

Samples of oocysts from experimental trials were centrifuged at 27,  $000 \times g$  for 10 min to concentrate the oocysts for inoculation into neonatal CD-1 mice. The supernatant was aspirated and the cell pellet re-suspended in deionized water. Oocysts were counted in quadruplicate using a hemacytometer and appropriate dilutions prepared in deionized water for mouse infection. For each experimental sample, 2 to 3 dilutions of oocysts were prepared and cohorts of 5 mice were inoculated with each dilution. A typical dilution set would result in inoculations of 1, 000; 10, 000; and 100, 000 oocysts per mouse. Control samples of the experimental parasites were subjected to all the same

processing and handling steps applied to the treatment samples, with the exception of exposure to the treatment chemicals. Controls were used on each experimental day.

### **3.1.3 Infectivity in Neonatal CD-1 Mice**

A neonatal mouse model was used to evaluate infectivity of *C. parvum* (Ernest et al. 1986; Finch et al. 1993). Breeding pairs of outbred CD-1 mice were obtained from the Charles River Breeding Laboratories (St. Constant, Quebec, Canada). The neonates were housed in litters with a lactating dam. The animals were given food and water; and were housed in cages with covers fitted with a 0.22  $\mu$ m filter in a specific pathogen-free (P-2 level) animal facility. Mice were inoculated intragastrically five days after birth with a known number of oocysts suspended in 50  $\mu$ L of deionized water. Intragastric inoculation was preformed using a ball-point neonate feeding needle (24 gauge syringe, Popper and Sons Inc., New York, USA) attached to a tuberculin syringe.

The infectivity of the oocysts was determined 7 days after infection. The mice were killed by cervical dislocation and the large intestine (rectum to 30 mm anterior to the caecum) was removed and placed in 10 mL of Milli-Q<sup>®</sup> water. The intestine was homogenized for 45 to 60 s in a Sorvall Omni-Mixer and the homogenate placed in a 15 mL polypropylene test tube. The suspension was centrifuged at  $2000 \times g$  for 15 min. The supernatant was then removed and the pellet was re-suspended in 10 mL of deionized water containing 0.01% Tween 20 and centrifuged at  $2000 \times g$  for 15 minutes. After centrifugation, the supernatant was discarded and 20  $\mu$ L of the viscous pellet was removed and placed into a 6 mL polystyrene flow cytometer test tube fitted with a 35  $\mu$ m sieve (Becton Dickinson). The intestinal homogenate was forced through the sieve by adding 400 µL of 1% bovine serum albumen (BSA) in phosphate buffered saline (PBS). Samples were allowed to incubate for 15 minutes at room temperature, in order to block non-specific absorption of the monoclonal antibody. One hundred  $\mu$ L of a 1:400 dilution of fluorescein labeled anti-C. parvum oocyst monoclonal antibody (ImmuCell), diluted in 1% BSA, was subsequently added to each sample and incubated at 37°C for 30 minutes. The resulting suspension was examined for the presence of parasites using flow

cytometry (Neumann et al. 2000). Settings for the flow cytometer (FACSCalibur, Becton-Dickinson, San Jose, CA) were as follows: forward side scatter – photodiode voltage equivalent to E00, AmpGain 4.00; side light scatter – photomultiplier voltage set to 402, AmpGain 4.00; FL1 - photomultiplier voltage set to 470. All flow cytometric analysis was done at a high flow rate using PBS as the sheath fluid. Fifty thousand events were collected for each intestinal homogenate sample. The maximum number of events failing into the specified regions (i.e. size, internal complexity, and fluorescence) from uninfected mouse intestinal homogenates was used as the baseline criterion for determining whether a mouse was infected with *C. parvum*. This upper limit corresponded to a value of 1.25% of the gated events. Mouse homogenates having gated events greater than this value were scored as infected, and those less than or equal to this value were scored as non-infected. At regular intervals (4 months), flow cytometric results were confirmed using conventional microscopy methods (Neumann et al. 2000).

# **3.2 CHEMICALS AND APPARATUS**

#### **3.2.1** Chlorine

Free chlorine stock solution was prepared daily by adding an appropriate aliquot of purified sodium hypochlorite solution (6% available chlorine, BDH Inc., Poole, England) into oxidant demand-free de-ionized water to give a concentration of about 300 mg/L. Chlorine concentration was determined by the DPD procedure (Eaton et al. 1995); and occasionally in some trials were checked by the forward amperometric titration method (Eaton et al. 1995) using a Cl Titrimeter Fisher Scientific model 397 and phenylarsine oxide. The stock chlorine solution was stored at 4°C in dark refrigerated conditions during the day of the experiment.

## **3.2.2 Monochloramine**

Ammonium chloride stock solution (1000 mg/L, AnalaR grade, BDH Inc., Poole, England) was used to prepare monochloramine solutions for use in experiments. A daily

working monochloramine solution was prepared by mixing appropriate volumes of sodium hypochlorite and ammonium chloride stock solutions in pH 8.0 oxidant demandfree buffer solution to yield a  $150 \pm 10 \text{ mg/L}$  combined chlorine solution with a chlorine:nitrogen weight ratio of 3:1. After initial mixing, the solution was stirred for 30 minutes. The concentration of free chlorine and combined chlorine were then measured using the DPD procedures for free and total chlorine; and occasionally were checked by the forward amperometric titration method (Eaton et al. 1995) using a Cl Titrimeter (Fisher Scientific model 397, Edmonton, AB) and phenylarsine oxide. Chlorine colorimetric DPD measurements were found to be approximately 0 to 6 % higher relative to amperometry for both free chlorine and total chlorine. This discrepancy in chlorine measurements between DPD and amperometry has been reported elsewhere (Gordon et al. 1992). The DPD measurements were eventually used for the experiments, as it was very convenient and easy to measure. For preformed monochloramine stock solutions, the fraction of total chlorine measured as free chlorine, following 30 minute of mixing, using the colorimetric DPD and amperometry was 0 to 2 % and 0 to 3 % respectively. The free available chlorine concentration was subtracted from the total available chlorine concentration to determine the monochloramine concentration in the stock.

# 3.2.3 Ozone

Ozone gas was generated from extra dry oxygen feed gas using a water-cooled corona discharge generator (Model T-816, Welsbach Ozone Systems Corporation, Sunnyvale, CA). Concentrated ozone stock solution was prepared by bubbling oxygen carrier gas containing approximately 4 percent ozone (v/v) through 400 mL of refrigerated (4°C) deionized water for a minimum of 20 min. Ozone concentration in the stock solution was approximately 40 mg/L. The ozone solution was used within 3 min of removing it from the gas stream. Ozone residual concentrations in the stock were determined by direct ultraviolet absorbance measured at 260 nm on a diode-array spectrophotometer (HP 3452A Hewlett Packard Co., Wilmington, DE). A molar absorption coefficient of 3, 300 M<sup>-1</sup> cm<sup>-1</sup> was used (Hart et al. 1983).

# 3.2.4 Oxidant Demand-Free Glassware

All glassware used in experiments was initially cleaned using a detergent specifically designed (Sparkleen 2, Fisher Scientific Co., Pittsburgh, PA) for laboratory glassware. After the initial cleaning all glassware was rinsed three times with deionized water including an acetic acid rinse. The disinfection reactor, stir bar, pipette tips and other glassware that made contact with the test solution were made ozone demand-free before use. It was found earlier (Li et al. 2001b) that ozone demand-free water and utensils were also chlorine demand-free. Therefore, laboratory procedures were streamlined to follow the ozone demand-free protocols and calling the prepared water and utensils "oxidant demand-free" (ODF). Openings in the glassware were covered with fresh aluminum foil to prevent dust from entering the glassware.

### **3.2.5 Reactor Vessels**

The reactor vessels used for all experiments were 250 or 500 mL Erlenmeyer flasks that were made oxidant demand-free. Parasite suspensions in the flask were stirred using a Teflon-coated magnetic stir bar. The agitation speed was sufficient to ensure rapid and complete mixing of the added chemicals but without creating a significant vortex.

When working with ozone, free chlorine and monochloramine, reactor vessels were covered with aluminum foil to minimize volatilization and photodecomposition of disinfectants. A diode-array spectrophotometer (Hewlett-Packard Model 8452A, Palo Alto, CA) with a 10 mm light path and 35  $\mu$ L flow through cell was operated in a closed loop to continuously monitor the ozone concentration in the flask as described elsewhere (Finch et al. 1994; Li et al. 2001b). A molar absorption coefficient of 3, 300 M<sup>-1</sup> cm<sup>-1</sup> was used (Hart et al. 1983).

# **3.2.6 Temperature Control**

Temperature in the reactor was controlled by a water bath with a microprocessor control (Model 3545, Lab-Line Instruments Inc., Chicago, IL). When low temperature was needed for the experiment, the water bath was maintained at a constant low temperature by using submerged cooling coils connected to a separate refrigerator unit. During experiments, the reactors were submerged in the water bath. Stirring for individual reactors was provided by submersible magnetic stirrers (Model 230, VWR Canlab, Mississauga, Ont).

## 3.2.7 pH Adjustment

Prior to each experimental trial, the pH of the water sample to be used was measured using an Accumet Model 25 pH/Ion Meter (Fischer Scientific). For those trials conducted at lower pH, 1 M sulfuric acid was added to the water sample with constant stirring until the pH of the water stabilized at the desired level. The pH was left to stabilize at the target overnight and was adjusted if necessary.

# **3.3 SCOPE AND STUDY APPROACH**

The data in this study were collected in controlled bench-scale experiments using prepared oocysts suspended in different natural surface waters. The natural waters chosen for experiments varied significantly in the measured water quality parameters. Animal infectivity using an established neonatal CD-1 mouse model was used to measure oocyst viability before and after treatment. The magnitude of the synergistic effect was interpreted according to the Ct analysis depicted in Figure 3.1. This hypothetical figure shows the measured infectivity reduction as a function of the secondary Ct product. The level of inactivationresulting from exposure to the secondary chemical, either with or without ozone primary treatment, was considered to be proportional to the Ct value. The measurements shown at a Ct of zero for the sequential treatment represent the infectivity



Figure 3.1 Illustration of the *Ct* approach used to measure a synergistic effect. The hypothetical data set shown in this chart would have been obtained for a single natural water, pH, temperature and primary ozone treatment level. A synergistic effect is measured when  $k_2 > k_1$ .

reduction after application of the primary oxidant (ozone), but before addition of the secondary oxidant.

The *Ct* experimental approach was adopted for measurement of a synergistic effect in this study versus single point measurements. With replicated experimental trials, as illustrated in Figure 3.1, confidence intervals on the values of  $k_1$  and  $k_2$  were determined and inferences about the statistical significance of the synergistic effect were made. Measurement of infectivity loss at both high and low *Ct* values provided a check on the validity of the linear assumption.

# **3.4 PROTOCOL FOR EXPERIMENTAL TRIALS**

Approximately 130 to 200 mL volume of water sample and a preparation of oocysts  $(25 \times 10^6 \text{ or } 50 \times 10^6)$  were added to each reactor. The reactor was placed in the water bath, and stirred. The suspension was left for 1/2 hour to equilibrate to the target temperature. The protocols for sequential (ozone followed by free chlorine or monochloramine) treatment, secondary disinfectant treatment (free chlorine or monochloramine alone) and control treatment (no chemicals added) were as follows:

Sequential Treatment, Reactor 1: At the start of the primary treatment, an aliquot of ozone stock solution was transferred to the stirred suspension in the reactor using a pipett (Oxford Macroset Labware, St. Louis, MO) fitted with an ODF tip. The volume of ozone stock solution added was based on the target initial ozone concentration for the particular experiment. During the course of the ozone contact period, four 10 mL samples of water were extracted from the flask using a similar pipette fitted with an ODF tip. The samples were immediately analyzed for dissolved ozone using the indigotrisulphonate method with a molar absorbance coefficient of 20 000 M<sup>-1</sup>cm<sup>-1</sup> (Eaton et al. 1995). For natural waters, the indigo-trisulphonate method was preferred over direct UV absorbance at 260 nm for measurement of dissolved ozone concentration. Although both methods were used, the latter method was seriously limited by interference from absorbing substances present in some natural waters. The measured ozone concentrationtime profile in the reactor was fitted to a first-order decay equation of the form C = $C_0 \exp(-k_d t)$ . For each experimental trial, the initial ozone concentration,  $C_0$ , and the firstorder decay rate constant,  $k_{d}$ , were estimated using least-squares regression. After the desired contact time, sodium formate (200 µL of 1M) was added to quench the remaining ozone. At this point a 40 mL sample was extracted from the flask for C. parvum oocyst infectivity analysis to determine the level of inactivation after ozone treatment.

An aliquot of stock free chlorine or monochloramine solution was then added to obtain the target initial free or combined chlorine concentration. After 3h, a 40 mL sample was collected for infectivity analysis. After an additional 2h or 13 h, sodium

sulphite was added to neutralize any remaining free chlorine or monochloramine and the remaining flask contents were collected and concentrated for infectivity analysis. Free chlorine or monochloramine concentrations were determined at the beginning of the exposure period (immediately after chlorine addition), after 3 hours and at the end of the exposure period (prior to sulphite addition). The concentrations were determined at the beginning at the beginning ( $C_0$ ) and at the end ( $C_f$ ) of the contact time using the DPD (N,N-diethyl-p-phenylenediamine) free chlorine or total chlorine methods (Eaton et al. 1995). DPD reagents were supplied by Hach Co. (Loveland, MI). Using these measured concentrations, the geometric average free chlorine or total chlorine concentrations were determined as follows:

$$C_{avg} = \sqrt{(C_0 \times C_f)}$$
 Equation 3.1

The geometric mean was chosen for determining the chlorine concentrations because this is the most appropriate representation of integrated chlorine exposure for 1<sup>st</sup> order decay. The first-order decay of chlorine was verified in preliminary experiments on the natural waters. Use of an arithmetic average would have introduced a bias, although a relatively small one, into the determination of  $C_{avg}t$ .

Secondary Treatment Alone, Reactor 2: Exposure of the oocysts to the secondary chemical alone was carried out in a manner identical to the sequential treatment with the exception that ozone addition, ozone concentration measurement and the post-ozone oocyst sample collection steps were eliminated.

**Control, Reactor 3:** This reactor flask was maintained under constant stirring at the same temperature as the other two flasks and for the same total sequential inactivation contact time (ozone + chlorine or monochloramine) as reactor 1. No ozone, chlorine and monochloramine were added. Aliquots of sodium formate and sodium sulfite were added at the same times as in reactor 1. Reactor contents were collected at the end of the

exposure period for oocyst infectivity analysis. The control trials were done only to determine if any significant inactivation of the oocysts occurred due to natural water alone or due to oocyst storage, handling and processing steps.

#### **3.5 KINETIC MODELING**

#### 3.5.1 Interpretation of Infectivity Data with the Logistic Dose Response Model

The reduction in oocyst infectivity was interpreted as the infectivity reduction i.e.  $-\log(N/N_0)$ , where N is the number of infective oocysts in the suspension after exposure to the oxidant chemicals and  $N_0$  is the number prior to exposure. For each trial, the inactivation ratio (in log-units) was estimated from

$$-\log\left(\frac{N}{N_0}\right) = \log\left(\frac{d}{d_0}\right)$$
 Equation 3.2

where d is the estimated number of infectious oocysts in the inoculum of each mouse trial and  $d_0$  is the total number of oocysts in the same inoculum as determined by hemacytometer count. The proportion of mice infected 7 days post-inoculation, P, was determined for each cohort using previously described methods. The estimated infectious dose, d, was then estimated using a logistic dose response model for *C. parvum* oocyst infectivity in the neonatal CD-1 mice. The form of the model is (Neter et al. 1989):

$$\pi' = \ln \left[ \frac{P}{(1-P)} \right] = \beta_0 + \beta_1 \log d \qquad \text{Equation 3.3}$$

In Equation 3.3, *P* is the proportion of animals in a cohort that become infected subsequent to ingesting a specified live inoculum, *d*, of oocysts. The parameters of the logistic model,  $\beta_0$  and  $\beta_1$ , were determined for each batch of oocysts used in the experimental trials in oocyst dose response experiments. For dose reponse, cohorts of 10 neonatal CD-1 mice were inoculated with levels of inoculums ranging from 25 to 200

oocysts (1 cohort per inoculum level) per mouse. The number of animals positive for infection at each dose level was determined using previously described methods. Parameters of the logistic model were estimated from the results of the dose response experiments by maximizing the natural logarithm of the likelihood function,  $\ln L$ , for binary data, given by Brand et al. 1973:

$$\ln L = \sum_{i=1}^{\alpha} Y_i (\beta_0 + \beta_1 X_i) - \sum_{i=1}^{\alpha} \ln[1 + \exp(\beta_0 + \beta_1 X_i)] \qquad \text{Equation 3.4}$$

In Equation 3.4, the subscript  $i = 1, 2, ..., \alpha$  represented each individual mouse used in the dose response experiment,  $X_i$  was the inoculum size for each mouse, and  $Y_i$  was the binary score (0 = not infected, 1 = positive) of each mouse after 7 days. The likelihood function was maximized and the model parameters estimated using the Solver function in Microsoft Excel 98<sup>®</sup>.

Dose response experiments were conducted for each batch of oocysts used in these experiments and during each experimental week. For a given batch of oocysts, the results of the weekly dose response experiments were pooled and analyzed by the methods described above. The *C. parvum* oocysts used in this research came from 8 batches. The ID<sub>50</sub> (the infectious dose which caused the infection of 50% of the CD-1 mice cohort) and their logistic dose-response model parameters are summarized in Table 3.1. The 90% confidence limits of the model parameters,  $\beta_0$  and  $\beta_1$ , are also provided in the Table 3.1.

The  $ID_{50}$  in neonatal CD-1 mice ranged from 54 to 205 oocysts per animal. In an earlier study (Gyürék et al. 1999), an  $ID_{50}$  of 60 to 347 oocysts per animal for *C. parvum* infection was reported. The variations in  $ID_{50}$  among the different batches of oocysts confirmed earlier findings that the dose-response is batch specific. Individual dose-response models for each batch of oocysts are, therefore, necessary to ensure a high quality infectivity analysis.

| Batch<br>No. | Number<br>of mice<br>used for<br>the model | Number<br>of<br>cohorts | $\hat{\boldsymbol{\beta}}_0$ (± 90 % CI <sup>a</sup> ) | $\hat{\beta}_1 \ (\pm 90 \ \% \ \mathrm{CI}^{\mathrm{a}})$ | ID <sub>50</sub> (± 90 % CI <sup>a</sup> )<br>(oocysts per<br>mouse) |
|--------------|--------------------------------------------|-------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|
| 35           | 269                                        | 31                      | -9.89 (-10.2, -9.6)                                    | 5.17 (5.0, 5.3)                                            | 82 (65, 110)                                                         |
| 36           | 159                                        | 16                      | -5.63 (-5.9, -5.3)                                     | 3.21 (3.0, 3.4)                                            | 57 (36, 93)                                                          |
| 37           | 120                                        | 12                      | -8.48 (-8.8, -8.1)                                     | 4.77 (4.6, 5.0)                                            | 60 (42, 82)                                                          |
| 38           | 240                                        | 24                      | -4.80 (-5.0, -4.5)                                     | 2.78 (2.7, 2.9)                                            | 54 (36, 71)                                                          |
| 39           | 240                                        | 28                      | -4.33 (-4.5, -3.8)                                     | 2.06 (1.9, 2.3)                                            | 126 (45, 234)                                                        |
| 40           | 199                                        | 20                      | -5.38 (-5.6, -5.1)                                     | 2.68 (2.6, 2.8)                                            | 102 (66, 143)                                                        |
| 41           | 320                                        | 32                      | -6.64 (-6.9, -6.4)                                     | 3.26 (3.1, 3.3)                                            | 108 (87, 168)                                                        |
| 60           | 80                                         | 8                       | -6.40 (-7.8, -6.9)                                     | 2.77 (3.0, 3.4)                                            | 205 (108, 376)                                                       |

Table 3.1: Logistic dose-response models for neonatal CD-1 mice exposed to different batches of *C. parvum* oocysts

<sup>a</sup>CI=Confidence Interval

# 3.5.2 Chick-Watson Model and the I.g.H Model

A generalized microorganism inactivation rate law that includes first-order disappearance of the disinfectant chemical can be written as (Gyürék and Finch, 1998):

$$\frac{dN}{dt} = -k'' m N^{x} C_{0}^{n} e^{-k_{a} n t} t^{m-1}$$
 Equation 3.5

where dN/dt = rate of microorganism inactivation; k"= inactivation rate constant for the particular microorganism; N = number of infective microorganisms at the contact time t (min);  $C_0$  = the initial concentration of the chemical (mg/L);  $k_d$  = the rate constant of the first-order disinfectant decay (min<sup>-1</sup>); and m, n, x = empirical constants. Assuming x = m = 1, and integrating the equation yields the following equation for inactivation under conditions of first-order disappearance of the chemical:

$$\log \frac{N}{N_0} = -\frac{k}{k_d n} (C_0^n - C_f^n)$$
 Equation 3.6

where  $C_f =$  chemical concentration at the end of the contact time (mg/L) and is calculated as  $C_f = C_0 \exp(-k_d t)$ . The model can be simplified by assuming n = 1 and a constant chemical concentration. This reduces to the well-known Chick-Watson form where inactivation is expressed in terms of an average Ct model product:

$$\log \frac{N}{N_0} = -kC_{avg}t$$
 Equation 3.7

where  $C_{avg}$  is some average measure of the disinfectant concentration. In the case where n and m are not unity, but x is, integration of Equation 3.5 gives the Incomplete Gamma Hom (I.g.H) model, which can be used to describe the shoulder effect and tail-off effect of the inactivation curves (Haas and Joffe, 1994):

$$\log \frac{N}{N_0} = -\frac{mkC_0^n}{(nk_d)^m} \cdot \gamma(m, nk_d t), \ m > 0, \ nk_d t \ge 0 \qquad \text{Equation 3.8}$$

The incomplete gamma function,  $\gamma(m, nk_d t)$ , can be conveniently solved in Microsoft Excel 98 using the following combination of statistical functions: GAMMADIST ( $nk_d t$ , m, 1, true) × EXP(GAMMALN(m)).

# **3.6 STATISTICS**

#### **3.6.1 Multiple Linear Regression Analysis**

To determine which experimental factors had a significant impact on the synergistic effect, a model of the following form was regressed to the outcomes of the experiments:

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4$$
 Equation 3.9

where  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$  and  $a_4$  represent the model parameters;  $X_1$ ,  $X_2$ ,  $X_3$  and  $X_4$  represent the independent variables and Y represents the dependent variable in the equation. Multiple regression analysis was done using the regression tool in Microsoft Excel 98 (Draper and Smith, 1966). Model terms were rejected or retained based on the statistical significance of the coefficients  $a_0$ ,  $a_1$  ...etc. at the 90% confidence level (backward elimination technique). For a model term to be considered significant at the 90% level, the computed *p*-value for the associated parameter,  $a_1$ , was less than 0.1. (Note: the *p*-value is the probability of making a Type I error in a hypothesis test in which the null hypothesis is  $a_i = 0$ ).

#### 3.6.2 Confidence Interval of the Difference Between Two Slopes

In order to compare the slopes  $(k_2 \text{ and } k_1)$  of two linear lines, the following test statistic was used (Zar 1984):

$$t = \frac{k_2 - k_1}{s_{b_2 - b_1}}$$

Equation 3.10

where the standard error of the difference between regression coefficients is

$$s_{b_2-b_1} = \sqrt{\frac{\left(s_{Y,X}^2\right)_p}{\left(\sum x^2\right)_1} + \frac{\left(s_{Y,X}^2\right)_p}{\left(\sum x^2\right)_2}}$$

Equation 3.11

and the pooled residual mean square is calculated as

$$\left(s_{Y,X}^{2}\right)_{p} = \frac{\left(residualSS\right)_{1} + \left(residualSS\right)_{2}}{\left(residualDF\right)_{1} + \left(residualDF\right)_{2}}$$
Equation 3.12

where  $x_i = (X_i - \overline{X})$ , X = independent variable, Y = dependent variable, SS = sum of squares, DF = degrees of freedom and the subscripts 1 and 2 refers to the two regression lines being analyzed. The critical value of t for this test has  $(k_1-2)$  and  $(k_2-2)$  degrees of freedom (i.e., the sum of the two residual degrees of freedom), which is  $v = k_1 + k_2 - 4$ . The 1- $\alpha$  confidence interval for the difference between two slopes,  $k_2$  and  $k_1$ , is

$$(k_2 - k_1) \pm t_{\alpha(2),\nu} s_{k_2 - k_1}$$

Equation 3.13

#### **3.7 NATURAL WATER SAMPLES**

Seven different surfaces water sources were investigated as part of this study. A description of each water sample is provided in Table 3.2. The shipping time of the water samples ranged from 1 to 7 days. Once received the waters were stored in dark bottles at 4°C during the entire experimental period. The experimental period ranged from 7 days to as high as 4 months. Note that six sources were untreated raw waters while the seventh (A) was partially treated. In order to better categorize the experimental waters, each sample was submitted to an external laboratory (EnviroTest Laboratories, Edmonton, AB) for a comprehensive water quality analysis. The results of these analyses are compiled in Table A.1 of Appendix A. A summary of selected water quality parameters for each sample is provided in Table 3.3. B is the only water, which was not filtered before distribution by the concerned utility. As the information in Table 3.3 indicates, it was difficult to place these different natural waters into convenient categories. While the waters A to E were high in conductivity, total dissolved solids, alkalinity and hardness compared to waters F and G. F and G on the other hand were high in colour.

The natural waters used in this study were not assayed for the presence of oocysts prior to testing. The prepared oocysts were added to the natural waters before experiments in very high concentration (25 to 50 million into 200 mL). It was considered highly unlikely that oocysts would naturally be present in the water samples at

concentrations that even approached this order of magnitude. The expense of determining natural background oocysts concentration, therefore, was foregone.

| Water | Utility<br>Partner | Water Source                | Treatment                                              | Time of<br>Year<br>Sampled |
|-------|--------------------|-----------------------------|--------------------------------------------------------|----------------------------|
| Α     | *EPCOR             | North Saskatchewan<br>River | Coagulated,<br>Flocculated, Lime-<br>Softened, Settled | Spring                     |
| В     | Winnipeg           | Shoal Lake Reservoir        | None                                                   | Winter                     |
| С     | Philadelphia       | Schulkyll River             | None                                                   | Spring                     |
| D     | <sup>b</sup> AWWSC | Mississipi River            | None                                                   | Fall                       |
| Е     | Calgary            | Glenmore Reservoir          | None                                                   | Winter                     |
| F     | Port Hardy         | Tsulquate River, BC         | None                                                   | Spring                     |
| G     | Vancouver          | Seymour Watershed           | None                                                   | Fall                       |

| - |     | 4  | ~   | -        | -0 |        |       |       |                     |              |                 |       | ~    | •                   |
|---|-----|----|-----|----------|----|--------|-------|-------|---------------------|--------------|-----------------|-------|------|---------------------|
| 1 | ah  | le | 3.  | 2:       | 1) | escrit | ntion | ۱ ot  | the                 | natural      | waters          | used  | tor  | exneriments         |
|   | ~~~ | ** | ~ ~ | transfor | ~  | ACAT I |       | 4 0 4 | <b>U</b> I <b>U</b> | TTOPPOPT POT | 1 1 0 0 0 0 X D | ~~~~~ | **** | A170 A1 11191101100 |

<sup>a</sup>EPCOR Water Services, Edmonton, AB, Canada

<sup>b</sup>American Water Works Service Company, St. Louis, MO

| Parameters                            | Water | Water<br>B | Water<br>C | Water | Water<br>E | Water<br>F | Water<br>G |
|---------------------------------------|-------|------------|------------|-------|------------|------------|------------|
| РН                                    | 7.8   | 7.7        | 7.6        | 8.1   | 8.1        | 6.3        | 5.8        |
| Conductivity (µS/cm)                  | 294   | 175        | 604        | 498   | 496        | 27         | 16         |
| Alkalinity (mg/L)                     | 93    | 79         | 75         | 162   | 181        | 9          | 8          |
| Total dissolved solids,<br>TDS (mg/L) | 171   | 89         | 348        | 290   | 279        | 13         | 9          |
| Hardness (mg/L)                       | 151   | 87         | 169        | 224   | 245        | 9          | 6          |
| Total Organic<br>Carbon, TOC (mg/L)   | na    | 6.3        | 1          | 6     | <1         | 4          | 2          |
| Colour (TCU)                          | na    | na         | 8          | 15    | <3         | 30         | 20         |
| Turbidity (NTU)                       | 0.87  | 0.26       | 5.1        | 47    | 1.6        | 0.15       | 0.49       |

Table 3.3: Selected measured water quality parameters for the natural waters used in the experimental trials

na = analysis result not available

# **3.8 TARGET EXPERIMENTAL CONDITIONS**

*Water Quality:* The natural waters A, B, and C were chosen randomly without taking the water quality into consideration as they were used only for the preliminary trials. The natural waters D and E were chosen to represent two extremes of water quality (Table 3.3). Water D was collected from a river water source subject to run-off conditions during the spring and represents relatively poor quality water with high turbidity, colour and TDS. Water E was collected from a reservoir during the fall and represented relatively good quality water that was low in turbidity, colour and TDS. It is important to note that some of the parameters like conductivity, alkalinity, total dissolved solids and hardness were similar in both waters. The natural waters F and G were specifically chosen to represent low pH (6.0) natural waters. While the waters F and G were high in

colour, they were also lower in conductivity, alkalinity, TDS, pH and hardness than the other waters.

Primary Ozone Treatment: Based on the knowledge from previously published studies regarding the effect of ozone on C. parvum oocysts suspended in buffered deionized water, similar ozone Ct values will result in very different levels of inactivation at  $1^{\circ}$ C versus 21°C. Hence inactivation levels of 0.7 and 1.7 log-units were used to characterize primary treatment targets rather than Ct values. The Ct values were manipulated to achieve these two inactivation levels at each temperature based on the kinetic model predictions of Li et al. (2001b). In practice, the ozone demand and rate of decay were difficult to predict and reproduce in the natural waters. This made it difficult to consistently achieve the target oocyst inactivation. As a result, some deviations from the infectivity reduction targets and trial-to-trial variability in the measured infectivity reduction after the ozone treatment were encountered.

Secondary Oxidant: Inactivation of oocyts was measured after various levels of exposure to the secondary oxidant measured as the Ct product. In general, the experimental Ct values ranged from 1 000 to 5 000 mg·min/L. However, under certain circumstances, the Ct products greater than 2 500 mg·min/L resulted in inactivation that was beyond the detection limit of the neonatal CD-1 mouse assay. Hence, the range of experimental Ct products was reduced to a range of 500 to 2 500 mg·min/L for those trials. In either case, inactivation by exposure to the secondary oxidant was interpreted using the Chick-Watson rate constant, k, as described in Equation 3.7.

*pH:* The pH of the natural waters A to E, used in the experiments was restricted to a fairly narrow range of pH 7.6 to 8.1 (Table 3.3). In order to investigate the effect of pH, the pH of these water samples (A to E) in some of the trials was adjusted to a pH of 6.0 by adding concentrated sulfuric acid. The samples were then exposed to ambient air with gentle stirring overnight to ensure that the pH was stabilized at the target of 6.0. Despite this stabilization period, the pH of the experimental water was observed to slowly drift upward during the experimental time period of exposure to the secondary oxidant. This
time period sometimes extended to 16 hours. These experiments, therefore, were not conducted at a truly constant pH of 6.0. They, therefore, were identified as "initial pH 6.0". This represents an important difference from earlier experiments conducted with phosphate buffered de-ionized water in which the pH was essentially constant throughout the experiment (Li et al. 2001b). The phenomenon has important implications for the interpretation and analysis of this study. The addition of a buffer to these natural waters may have stabilized the pH; however, the original characteristics of the natural waters would have changed and hence it was not done.

The natural waters F and G had a low pH near 6.0. The pH varied little ( $\pm$  0.3) during the course of the experiment for these waters and hence was considered stable at pH 6.0.

*Temperature:* Both high and low temperature levels were investigated. The high temperature was 21°C. During several of the low temperature trials the refrigeration unit on the water batch malfunctioned and the target temperature of 1°C could not be maintained. The actual experimental temperature was recorded as 5°C. The unit was later repaired and the 1°C temperature target was maintained in other trials.

# CHAPTER 4: SEQUENTIAL INACTIVATION OF C. PARVUM USING OZONE FOLLOWED BY FREE CHLORINE IN NATURAL WATERS

The aim of the experiments reported in this chapter was to determine whether there was a synergistic inactivation of *C. parvum* oocysts after treatment with ozone followed by free chlorine in natural waters and to determine the important factors that might influence that synergistic effect. The experimental work was divided into three main parts (Part I, II, and III). These are as follows:

#### **4.1 PART I: PRELIMINARY SEQUENTIAL TRIALS**

### **4.1.1 Experimental Plan**

Very little information was available about sequential inactivation trials in natural waters from previous studies. As a result it was difficult to design experiments without conducting some preliminary studies on the natural waters. Hence, Part I of this chapter describes some limited sequential trials that were conducted in 3 natural waters to better understand their behaviour under different conditions. The specific trials conducted were as follows:

- trials with natural water A at 21°C for both high and low ozone treatment levels at the natural pH of 7.8 and with the initial pH 6;
- trials with natural water B at 21°C and 2°C for both high and low ozone treatment levels and with the initial pH 6.0; and
- 3. trials with natural water C at 21°C for both high and low ozone treatment level at the natural pH of 7.6 and with the initial pH 6.0.

#### 4.1.2 Results and Analysis

The results of the ozone followed by free chlorine sequential treatment trials with natural waters A, B, and C are shown in Figures 4.1 to 4.3. Details of the infectivity

reduction for these trials are provided in Tables B.1, B.2, and B.3 of Appendix B. Details of the ozone primary treatment conditions are provided in Tables C.1, C.2, and C.3 of Appendix C. Details of the secondary treatment conditions with free chlorine are provided in Tables D.1, D.2, and D.3 of Appendix D. In Figures 4.1 to 4.3, the total C. *parvum* infectivity reduction, measured after various levels of exposure to the free chlorine, was plotted versus the average free chlorine Ct. Note that each datum in these figures represents the results of a single mouse infectivity assay for a single experimental trial. The infectivity reductions of the oocysts due to ozone pretreatment alone are indicated by the data points at free chlorine Ct = 0.

The synergistic effect was interpreted in terms of the rate of inactivation during exposure to the free chlorine. The inactivation rate constant, k, was determined from the slope of the infectivity reduction versus free chlorine Ct plots. This assumes that C. *parvum* inactivation by free chlorine can be adequately described by first-order (n = 1) Chick-Watson type kinetics, where, the rate constant, k, is equal to the slope of the Ct plot (Equation 3.7). For each data set, the slope, or k values and the associated 90% confidence interval were computed, using standard least-squares linear regression techniques. If k for the sequential treatment was found to be greater than the k for the secondary treatment alone, then this was interpreted as evidence of a synergistic effect (Figure 3.1).

In a few cases, the trial result was above the upper detection limit of the infectivity assay. That is, none of the mice in the group that received the largest inoculum (typically 100 000 oocysts) became infected. These points are indicated by the > sign in the figure legends. The infectivity reductions for these data were then set at the detection limit (i.e. by assuming one mouse in the cohort was infected) and were used for the calculation of k using the least square method. Using this approach, the computed k values were biased toward a conservative interpretation of the effectiveness of the given treatment. Often these data were found to lie close to other data points for which the infectivity result was within the detection limit.



Figure 4.1 Effect of sequential treatment with ozone and free chlorine on *C. parvum* oocysts in natural water A at (a) pH 7.8 and (b) initial pH 6 at 22 °C.



Figure 4.2 Effect of sequential treatment with ozone and free chlorine on *C. parvum* oocysts in natural water B at (a) 21 °C and (b) 2 °C at initial pH 6.



Figure 4.3 Effect of sequential treatment with ozone and free chlorine on *C. parvum* oocysts in natural water C at (a) pH 7.6 and (b) initial pH 6 at 21 °C.

In other cases, the infectivity results were less than the lower detection limit (indicated by "o" in the figure legends) of the infectivity assay. That is, all the mice in the lowest inoculum group became infected. Using these data would have tended to bias the computed k values toward a less conservative interpretation of the effectiveness of the given treatment. Therefore, below detection limit trial results shown in the figures were not used to compute the k values.

The calculated Chick-Watson rate constants, *k*'s, for each of the trials shown in Figures 4.1 to 4.3 are provided in the Tables 4.1 to 4.3. The 90% confidence intervals on the values of *k*, also reported in Tables 4.1 to 4.3. If the computed 90% confidence interval on the value of *k* did not include zero, the computed *k* was determined to be statistically different from zero. The result of this test is indicated in the fifth column of Tables 4.1 to 4.3. If the computed *k* value ( $k_2$ ) for chlorine inactivation with ozone primary treatment was greater than the computed *k* value ( $k_1$ ) for chlorine inactivation without primary treatment, then this was considered as evidence of a synergistic effect (Figure 3.1). The difference between the slopes ( $k_2$ - $k_1$ ) was considered to be statistically significant when the level of significance (*p*-values) of the test statistic (Section 3.6.2 in Chapter 3) was less than 0.1. The last column in each of the tables (4.1 to 4.3) indicates if the synergistic effect measured with ozone primary treatment was statistically significant at the 90% confidence level (p < 0.1).

The results obtained with ozone and free chlorine sequential treatment (Figures 4.1 to 4.3) can be summarized as follows:

In natural water A at pH 7.8 and 22 °C (Figure 4.1 a, Table 4.1) a synergistic effect was significant for high ozone primary treatment but was not significant for low ozone primary treatment. However, the lack of significance may have been due to the lack of sufficient data for the low ozone primary treatment condition. When the initial pH was 6.0, similar results were obtained for both high and low ozone pretreatment (Figure 4.1 b).

Table 4.1: Calculated Chick-Watson rate constants for natural water A for ozone followed by free chlorine sequential treatment at 22 °C

| Figure<br>No.                           | pH   | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | k<br>± 90 % CI <sup>a</sup><br>(× 10 <sup>4</sup><br>L/mg/min) | <sup>b</sup> Significant<br>k | $(k_2 - k_1)$<br>$\pm 90 \% \text{ CI}^a$<br>$(\times 10^4$<br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>( <i>p</i> -values) |
|-----------------------------------------|------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|
| - · · · · · · · · · · · · · · · · · · · | 7.8  | 1.6                                                   | 5.2<br>(2.7,7.7)                                               | Yes                           | 3.6<br>(1.2, 6.1)                                                        | Yes<br>(0.01)                                                 |
| 4.1<br>(a)                              | 7.8  | 0.49                                                  | 1.7<br>(-11, 15)                                               | ďNo                           | 0.09<br>(-1.5, 1.7)                                                      | No<br>(0.91)                                                  |
|                                         | 7.8  | 0                                                     | 1.5<br>(0.35, 2.7)                                             | Yes                           |                                                                          |                                                               |
|                                         | °6.0 | 2.28                                                  | 8.7<br>(7.0, 10.4)                                             | Yes                           | 4.3<br>(2.1, 6.6)                                                        | Yes<br>(0.004)                                                |
| 4.1<br>(b)                              | °6.0 | 1.01                                                  | 6.6<br>(2.6, 10.6)                                             | Yes                           | 2.3<br>(-0.26, 4.9)                                                      | No<br>(0.14)                                                  |
|                                         | °6.0 | 0                                                     | 4.3<br>(1.9, 6.8)                                              | Yes                           |                                                                          |                                                               |

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Lack of significance may be due to the lack of sufficient number of data points <sup>e</sup>Initial pH 6.0

 In natural water B at 21°C, there was evidence of a small synergistic effect for low ozone primary treatment when the initial pH was 6.0 (Figure 4.2 a). When the temperature was decreased to 2°C (Figure 4.2 b), there was evidence of a small synergistic effect for both high or low ozone primary treatment, though the secondary inactivation rate constants were not statistically significant (Table 4.2). In natural water C at the natural pH of 7.6 and at 21°C synergistic effect was evident for low ozone pre-treatment but not for high ozone pre-treatment (Figure 4.3 a, Table 4.3). When the initial pH was adjusted to 6.0 (Figure 4.3 b), statistically significant synergistic effect was observed for both high and low ozone pre-treatment (Table 4.3).

| Figure<br>No. | Temp.<br>(°C) | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | k<br>± 90 % CI <sup>a</sup><br>× 10 <sup>4</sup> L/mg/ min | <sup>▶</sup> Significant<br>k | $(k_2-k_1)$<br>$\pm 90 \% \text{ CI}^a$<br>$(\times 10^4$<br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>( <i>p</i> -values) |
|---------------|---------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|
| 42(a)         | 21            | 2.7                                                   | 1.4<br>(0.1, 2.7)                                          | Yes                           | 0.86<br>(0.12, 1.6)                                                    | Yes<br>(0.06)                                                 |
|               | 21            | 0.86                                                  | 2.6<br>(1.9, 3.3)                                          | Yes                           | 2<br>(1.4, 2.6)                                                        | Yes<br>(0.00005)                                              |
|               | 21            | 0                                                     | 0.6<br>(0.035, 1.2)                                        | Yes                           |                                                                        |                                                               |
|               | 2             | 2                                                     | 1.6<br>(-0.2, 3.4)                                         | No                            | 2.1<br>(1.5, 2.7)                                                      | Yes<br>(0.000006)                                             |
| 4.2 (b)       | 2             | 0.16                                                  | 0.8<br>(-0.1, 1.7)                                         | No                            | 1.3<br>(0.8, 1.8)                                                      | Yes<br>(0.0002)                                               |
|               | 2             | 0                                                     | -0.5<br>(-0.9, -0.08)                                      | No                            |                                                                        |                                                               |

Table 4.2: Calculated Chick-Watson rate constants for natural water B for ozone followed by free chlorine sequential treatment at initial pH 6.0

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1

Table 4.3: Calculated Chick-Watson rate constants for natural water C for ozone followed by free chlorine sequential treatment at 21°C

| Figure<br>No. | pН               | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | k<br>$\pm 90 \% CI^{a}$<br>(× 10 <sup>4</sup><br>L/mg/min) | <sup>b</sup> Significant<br>k | $(k_2-k_1)$<br>± 90 % CI <sup>a</sup><br>(× 10 <sup>4</sup><br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>( <i>p</i> -values) |
|---------------|------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|
| 4.2 (a)       | 7.6              | 1.7                                                   | 1.2<br>(-0.2, 2.6)                                         | No                            | 1.0<br>(0.22, 1.8)                                                       | Yes<br>(0.04)                                                 |
| 4.3 (a)       | 4.3 (a) 7.6      | 0.43                                                  | 1.4<br>(0.34, 2.5)                                         | Yes                           | 1.2<br>(0.6, 1.9)                                                        | Yes<br>(0.005)                                                |
|               | 7.6              | 0                                                     | 0.18<br>(-0.17, 0.53)                                      | No                            |                                                                          |                                                               |
|               | <sup>d</sup> 6.0 | 1.7                                                   | 5.2<br>(3.8, 6.6)                                          | Yes                           | 3.4<br>(2.4, 4.4)                                                        | Yes<br>(0.00008)                                              |
| 4.3 (b)       | <sup>d</sup> 6.0 | 0.65                                                  | 4.1<br>(3.0, 5.1)                                          | Yes                           | 2.3<br>(1.4, 3.2)                                                        | Yes<br>(0.0004)                                               |
|               | <sup>d</sup> 6.0 | 0                                                     | 1.8<br>(0.9, 2.6)                                          | Yes                           |                                                                          |                                                               |

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Initial pH 6.0

In general, evidence of a synergistic effect with ozone followed by free chlorine was found for each of the natural waters and for most of the experimental conditions investigated. In some cases, however, the measured synergistic effect was not statistically significant (Tables 4.1 to 4.3). This is because the magnitude of the synergistic effects was of the same order as the error associated with measurement of oocyst infectivity. Based on experience from previous studies (Gyürék et al., 1999), the typical variation in the neonatal CD-1 mouse assay is in the order of  $\pm 0.7$  log-units. For the experimental *Ct* ranges investigated, the additional level of inactivation due to the secondary treatment with chlorine, following the ozone exposure, was typically less than 1.0 log-unit. One of the important outcomes of these initial experiments was the realization that, given the experimental variability, measurement of a statistically significant synergistic effect for any given water at a selected treatment conditions would require replicate trials.

To help compare the magnitudes of the synergistic effect measured in the different waters and at the various treatment conditions, Ct products required for a 1 log-unit synergistic effect were estimated according to:

$$Ct_{1-\log} = \frac{1}{k_2 - k_1}$$
 Equation 4.1

Here  $k_1$  represents the rate constant for the secondary oxidant alone and  $k_2$  represents the rate constant for the secondary oxidant after ozone primary treatment (i.e. sequential). Values of  $k_1$  and  $k_2$  used in the computation of  $Ct_{1-\log}$  were taken from Tables 4.1 to 4.3. The *Ct* products required for 1 log-unit synergistic effect thus estimated are compiled in Table 4.4. The last column of Table 4.4 indicates whether " $k_2$ - $k_1$ " for each test condition was statistically significant when tested at the 90 % confidence level. A statistically significant synergistic effect was observed in most of the trials. However, their magnitude was small and variable. In addition, a wide range of  $Ct_{1-\log}$  product was calculated. No obvious trends or relationships between the magnitude of the synergistic effect and experimental variables such as temperature and water quality are evident from the information in Table 4.4.

| Water | Test<br>Conditions        | Ozone Pre-<br>Treatment<br>Level<br>(log-units) | Ct Required for<br>1 Log-Unit<br>Synergistic Effect<br>(mg×min/L) | Statistically significant? |
|-------|---------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------|
| A     | 21°C, pH 8.5              | 1.6                                             | 2 700                                                             | Yes                        |
| А     | 21°C, pH 8.5              | 0.49                                            | Too large to measure                                              | No                         |
| A     | 21°C, pH 6.0°             | 2.3                                             | 2 300                                                             | Yes                        |
| А     | 21°C, pH 6.0°             | 1.01                                            | 4 300                                                             | No                         |
| В     | 21°C, pH 6.0°             | 2.7                                             | 11 600                                                            | Yes                        |
| В     | 21°C, pH 6.0 <sup>a</sup> | 0.86                                            | 5 000                                                             | Yes                        |
| В     | 2°C, pH 6.0ª              | 2                                               | 4 700                                                             | Yes                        |
| В     | 2°C, pH 6.0ª              | 0.16                                            | 7 500                                                             | Yes                        |
| С     | 21°C, pH 6.0ª             | 1.7                                             | 2 900                                                             | Yes                        |
| С     | 21°C, pH 6.0ª             | 0.65                                            | 4 400                                                             | Yes                        |
| С     | 21°C, pH 7.6              | 1.7                                             | 9 900                                                             | Yes                        |
| С     | 21°C, pH 7.6              | 0.43                                            | 8 100                                                             | Yes                        |

Table 4.4: Estimated free chlorine *Ct* products required for a 1 log-unit synergistic effect in the natural waters A, B, and C for ozone followed by chlorine sequential treatment

<sup>a</sup>Initial pH 6.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## **4.2 PART II: FACTORIAL DESIGNED EXPERIMENTS**

After the initial phase of this study, the experimental plan was refined. Based on the experience gained in Part I the level of variability in the outcomes of the animal infectivity assays, relative to the magnitude of the synergistic effect, was identified as a limiting factor for the reliable determination of a synergistic effect. It was concluded that the measurement of a synergistic effect with a satisfactory degree of statistical confidence required replicate experimental trials. Therefore in Part II of this study, a modified experimental approach for the determination of a synergistic effect on *C. parvum* inactivation in the natural waters was developed. This procedure called for triplicate trials at each experimental condition with separate measurements of inactivation after ozone primary treatment, and after two different levels of secondary *Ct* product for each replicate (Figure 3.1). This was complemented by triplicate trials of the secondary treatment with no ozone primary treatment.

Using the new procedure for measurement of the synergistic effect, a factorial experimental design was developed using two additional natural water samples. The primary objective of the factorial design was to determine if the following experimental variables had an effect on the magnitude of the measured synergistic effect:

1. pH;

2. temperature;

3. ozone primary treatment level; and

4. water quality.

# 4.2.1 Experimental Plan

The levels of the experimental factors that were selected for investigation and the design matrix are described in Table 4.5. In this table, the levels of the experimental factors are scaled from -1 to +1. The four factors were addressed in a  $2^{4-1}$  fractional

|   | Factors                   | Experimental Factor Targets |                     |  |  |
|---|---------------------------|-----------------------------|---------------------|--|--|
|   | 1 400015                  | -1                          | 1                   |  |  |
| 1 | Natural Water             | D                           | Е                   |  |  |
| 2 | Ozone Pre-treatment Level | Low (0.7 log-unit)          | High (1.7 log-unit) |  |  |
| 3 | pH                        | Initial pH 6.0              | 8.1                 |  |  |
| 4 | Temperature (°C)          | 1                           | 21                  |  |  |

Table 4.5: The 2<sup>4-1</sup> design matrix for ozone followed by free chlorine sequential treatment

| Trial No. |    | <sup>a</sup> Factor Levels in Scaled-Units |    |                    |            |  |  |  |
|-----------|----|--------------------------------------------|----|--------------------|------------|--|--|--|
|           | 1  | 2                                          | 3  | <sup>b</sup> 4=123 | Replicates |  |  |  |
| 1         | 1  | 1                                          | 1  | 1                  | 3          |  |  |  |
| 2         | -1 | 1                                          | 1  | -1                 | 3          |  |  |  |
| 3         | 1  | -1                                         | 1  | -1                 | 3          |  |  |  |
| 4         | -1 | -1                                         | 1  | 1                  | 3          |  |  |  |
| 5         | 1  | 1                                          | -1 | -1                 | 3          |  |  |  |
| 6         | -1 | 1                                          | -1 | 1                  | 3          |  |  |  |
| 7         | 1  | -1                                         | -1 | 1                  | 3          |  |  |  |
| 8         | -1 | -1                                         | -1 | -1                 | 3          |  |  |  |

<sup>a</sup>Identification of the factors is provided at the top of the table

<sup>b</sup>Dummy factor used to generate the fractional factorial design.

design that consisted of a total of eight experimental conditions. The factorial design approach was chosen in order to investigate a larger number of variables while keeping the total number of experimental trials required to an acceptable level. A half-fraction design such as this permits all the main effects to be determined free of interactions with other main effects or two factor interactions. It also permits two factor interactions to be determined if higher order interactions are assumed to be negligible (Box and Hunter, 1978). To address the variability inherent in the mouse infectivity assay, and to permit statistical interpretation of the results, each experimental condition was replicated twice (i.e. three experimental trials for each experimental condition).

#### 4.2.2 Results and Analysis

Figures 4.4 to 4.7 show the results of experiments completed at the various experimental conditions specified by the fractional factorial design matrix (Table 4.5) for the sequential trials with ozone followed by free chlorine. Details of the infectivity reduction for these trials are provided in Tables B.4 and B.5 of Appendix B. Details of the ozone primary treatment conditions are provided in Tables C.4 and C.5 of Appendix C. Details of the secondary treatment conditions with free chlorine are provided in Tables D.4 and D.5 of Appendix D. The data sets in Figures 4.4 to 4.7 were modeled using the first-order (n = 1) Chick-Watson analysis (Equation 3.7), and the first-order Chick-Watson rate constants, k, were calculated using least-squares linear regression. The outcomes of triplicate trials are also shown in the figures as individual data points. That is, each datum represents a single infectivity analysis result. In many cases it was difficult to replicate the *Ct* condition exactly.

The data points in Figures 4.4 and 4.6 for which the infectivity assay were unusually higher or lower than the detection limit (indicated by "o" in the figure legends) were not used for calculating k. For example, the above detection limit data points (0, 2.6), (615, 3.3) and (1467, 3.9) in Figure 4.4 (b), were not used for calculating k. This is because these three data points were generated in the same sequential treatment trial in which the inactivation due to ozone alone was unusually high. However, depending on the circumstances, certain data points (indicated by > in the figure legends) for which the infectivity analysis was greater than the upper detection limit were set at the detection limit of the data points and were used in computation of the k (Figure 4.6 b).

The computed rate constants and associated 90% confidence intervals are provided in Tables 4.6 and 4.7. A small synergistic effect was evident at the lower temperature for water D and at the higher temperature for water E (Table 4.6 and 4.7). However, in general, there was no evidence of a synergistic effect with ozone followed by free chlorine sequential treatment for the waters D and E.



Figure 4.4 Effect of ozone and free chlorine treatment on *C. parvum* oocysts in natural water D at (a) pH 8.1 and (b) initial pH 6 at 21 °C.



Figure 4.5 Effect of ozone and free chlorine treatment on *C. parvum* oocysts in natural water D at (a) pH 8.1, 3 °C and (b) initial pH 6 at 5 °C.



Figure 4.6 Effect of ozone and free chlorine treatment on *C. parvum* oocysts in natural water E at (a) pH 8.1 and (b) initial pH 6 at 21 °C.



Figure 4.7 Effect of ozone and free chlorine treatment on *C. parvum* oocysts in natural water E at (a) pH 8.1 and (b) initial pH 6 at 1 °C.

Table 4.6: Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water D

| Fig.<br>No. | pH               | Temp<br>(°C) | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | k<br>± 90 % CI <sup>a</sup><br>(×10 <sup>4</sup><br>L/mg/min) | <sup>b</sup> Significant<br>k? | $(k_2-k_1)$<br>$\pm 90 \% \text{ CI}^a$<br>$(\times 10^4$<br>L/mg/min) | <sup>°</sup> Significant<br>Synergistic<br>Effect?<br>( <i>p</i> -values) |
|-------------|------------------|--------------|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|
|             | 8.1              | 21           | 2.2                                                   | 1.4<br>(-0.7, 3.5)                                            | No                             | -0.54<br>(-2.1, 1.1)                                                   | No<br>(0.65)                                                              |
| 4.4<br>(a)  | 8.1              | 21           | 0.2                                                   | 1.5<br>(0.54, 2.5)                                            | Yes                            | -0.43<br>(-1.4, 0.54)                                                  | No<br>(0.44)                                                              |
|             | 8.1              | 21           | 0                                                     | 1.9<br>(0.78, 3.1)                                            | Yes                            |                                                                        |                                                                           |
| 4.4<br>(b)  | <sup>d</sup> 6.0 | 21           | 1.5                                                   | 3.2<br>(0.7, 5.7)                                             | Yes                            | 0.71<br>(-0.86, 2.3)                                                   | No<br>(0.44)                                                              |
| -           | <sup>d</sup> 6.0 | 21           | 0                                                     | 2.8<br>(1.4, 4.2)                                             | Yes                            |                                                                        |                                                                           |
| 4.5<br>(a)  | 8.1              | 3            | -0.1                                                  | 0.75<br>(-0.3, 1.8)                                           | No                             | 0.48<br>(-0.27, 1.2)                                                   | No<br>(0.28)                                                              |
|             | 8.1              | 3            | 0                                                     | 0.28<br>(-0.3, 0.85)                                          | No                             |                                                                        |                                                                           |
| 4.5<br>(b)  | <sup>d</sup> 6.0 | 5            | 0.25                                                  | 1.9<br>(1.2, 2.5)                                             | Yes                            | 1.4<br>(0.65, 2.2)                                                     | Yes<br>(0.0056)                                                           |
|             | <sup>d</sup> 6.0 | 5            | 0                                                     | 0.46<br>(-0.5, 1.4)                                           | No                             |                                                                        |                                                                           |

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Initial pH of 6.0

Table 4.7: Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural water E

| Fig.<br>No. | pН               | Temp.<br>(°C) | Ozone<br>Primary<br>treatment<br>Level<br>(log-<br>units) | $k \pm 90\%$ CI <sup>a</sup> (×10 <sup>4</sup> L/mg/min) | <sup>b</sup> Significant<br><i>k</i> ? | $(k_2-k_1)$<br>± 90 % CI <sup>a</sup><br>(× 10 <sup>4</sup><br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>(p-values) |
|-------------|------------------|---------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|
| 4.6 (a)     | 8                | 21            | 2.1                                                       | 0.78<br>(-0.32, 1.9)                                     | No                                     | 1.1<br>(0.17, 2.0)                                                       | Yes<br>(0.056)                                       |
|             | 8                | 21            | 0                                                         | -0.32<br>(-0.5, -1.1)                                    | Yes                                    | 4                                                                        |                                                      |
| 4.7 (a)     | 8                | 1             | 1.1                                                       | 1.05<br>(-0.21, 2.3)                                     | No                                     | 0.53<br>(-1.1, 2.1)                                                      | No<br>(0.57)                                         |
|             | 8                | 1             | 0                                                         | 0.52<br>(-0.6, 1.6)                                      | No                                     |                                                                          |                                                      |
| 4.6 (b)     | <sup>d</sup> 6.0 | 21            | 2.8                                                       | 2.1<br>(1.1, 3.1)                                        | Yes                                    | -0.5<br>(-1.5, 0.5)                                                      | No<br>(0.39)                                         |
|             | <sup>d</sup> 6.0 | 21            | 0                                                         | 2.6<br>(1.6, 3.6)                                        | Yes                                    |                                                                          |                                                      |
| 4.7 (b)     | <sup>d</sup> 6.0 | 1             | 0.74                                                      | 0.37<br>(-1.0, 1.8)                                      | No                                     | 0.53<br>(-0.55,1.6)                                                      | No<br>(0.4)                                          |
|             | <sup>d</sup> 6.0 | 1             | 0                                                         | -0.16<br>(-0.92, 0.6)                                    | No                                     |                                                                          |                                                      |

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Initial pH 6.0

### 4.2.3 Statistical Analysis

The objective of the factorial design was to determine which experimental variables had a statistically significant impact on the measured synergistic effect. The results of the factorial designed experiment for ozone followed by free chlorine sequential treatment are summarized in Table 4.8. The synergistic effect is represented as the difference between the rate of inactivation induced by the secondary treatment after primary treatment  $(k_2)$  and without primary treatment  $(k_1)$ . In the tables this is given by the value of " $k_2$ - $k_1$ ". Even though the measured synergistic effect was not statistically significant in a number of the experimental trials, these results were still used in the foregoing statistical analysis. Although several of the individual determinations of

Table 4.8: Summary of synergistic effect determinations for the factorial design experiments with ozone followed by free chlorine sequential treatment

| Result<br>No. | Natural<br>Water | Synergistic Effect<br>$k_2$ - $k_1$<br>(×10 <sup>4</sup> L/mg/min) | Ozone<br>Primary<br>Treatment<br>(log-units) | Temperature<br>(°C) | pН |
|---------------|------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------|----|
| 1             | D                | -0.54                                                              | 2.2                                          | 21                  | 8  |
| 2             | D                | -0.43                                                              | 0.2                                          | 21                  | 8  |
| 3             | D                | 0.71                                                               | 1.5                                          | 21                  | 6  |
| 4             | D                | 0.48                                                               | -0.1                                         | 3                   | 8  |
| 5             | D                | 1.4                                                                | 0.25                                         | 5                   | 6  |
| 6             | E                | 1.1                                                                | 2.1                                          | 21                  | 8  |
| 7             | E                | -0.5                                                               | 2.8                                          | 21                  | 6  |
| 8             | Е                | 0.53                                                               | 1.1                                          | l                   | 8  |
| 9             | E                | 0.53                                                               | 0.74                                         | 1                   | 6  |

synergy were found to be statistically insignificant, the measured values were incorporated into the statistical analysis as elimination of these measurements of synergy or setting the values to zero would have reduced the power of the statistical analysis and would have tended to introduce bias into the statistical analysis. The statistical resolving power of the pooled datasets will be much greater than the individual measurements of synergistic effect because it comprises a much larger number of infectivity measurements. Assuming that the standard deviation of the infectivity measurements is constant, the standard error of the pooled data set will be much smaller than that of the individual measurements of synergistic effect. This is similar to the pooling of data sets for common statistical operations such as the Analysis of Variance (ANOVA).

The results summarized in Table 4.8 were analyzed using multiple linear regression to determine which experimental factors had a significant impact on the synergistic effect. To facilitate the multiple linear regression analysis, the levels of the experimental factors in Table 4.8 were first scaled so that the levels of each ranged from approximately -1 to +1. The scaling is described in Table 4.9. Using the scaled values of the variables a multi-linear model of the form of equation 3.9 was regressed to the outcomes. The dependent variable in equation 3.9, Y represented the magnitude of the synergistic effect,  $k_2$ - $k_1$ , and the independent variables  $X_1$ ,  $X_2$ ,  $X_3$ , and  $X_4$  represented ozone primary treatment level, temperature, pH, and water quality, respectively. Regression analysis was done using the regression tool in Microsoft Excel 98 described earlier (Draper and Smith, 1966).

The results of the regression analysis indicated that for the ozone and free chlorine sequential trials (Table 4.8), none of the experimental factors were statistically significant at the 90% confidence level. The *p*-values for each of the computed parameters,  $a_i$ , were greater than 0.10 and Equation 3.9 was reduced to:

 $\hat{Y} = 0.42$ 

Equation 4.2

Table 4.9: Results from the factorial design experiment of the sequential trials using ozone and free chlorine sequential treatment represented in terms of scaled variables

| Factors                                      | -1             | 1   |
|----------------------------------------------|----------------|-----|
| Ozone Primary Treatment Level<br>(log units) | 0.7            | 1.7 |
| Temp. (°C)                                   | 1              | 21  |
| рН                                           | Initial pH 6.0 | 8.1 |
| Natural Water                                | D.             | E   |

|               | Synergistic<br>Effect<br>(Y) | Scaled Experimental Variables            |                            |                         |                       |  |  |
|---------------|------------------------------|------------------------------------------|----------------------------|-------------------------|-----------------------|--|--|
| Result<br>No. |                              | Ozone Primary<br>Treatment Level $(X_1)$ | Temp.<br>(X <sub>2</sub> ) | рН<br>(X <sub>3</sub> ) | Water Quality $(X_4)$ |  |  |
| 1             | -0.54                        | 2                                        | T                          | 1                       | -1                    |  |  |
| 2             | -0.43                        | -2                                       | 1                          | 1                       | -1                    |  |  |
| 3             | 0.71                         | 0.6                                      | 1                          | 1                       | -1                    |  |  |
| 4             | 0.48                         | -2.6                                     | -0.8                       | 1                       | -1                    |  |  |
| 5             | 1.4                          | -1.9                                     | -0.6                       | -1                      | -1                    |  |  |
| 6             | 1.1                          | 1.8                                      | 1                          | tenný                   | 1                     |  |  |
| 7             | -0.5                         | 3.2                                      | 1                          | -1                      | 1                     |  |  |
| 8             | 0.53                         | -0.2                                     | -1                         | 1                       | 1                     |  |  |
| 9             | 0.53                         | -0.92                                    | -1                         | -1                      | 1                     |  |  |

Equation 4.2 implies that, within the experimental ranges investigated, the synergistic effect was unaffected by the experimental variables and was constant at an average value 0.42.

The computed 90% confidence interval on the average value was 0.01 to 0.86. This synergistic effect was, therefore, statistically significant. Using equation 4.1, this synergistic effect implies that on average a free chlorine Ct of 23 800 mg·min/L was required to achieve 1 log-unit of synergistic effect.

It is very likely that the synergistic effect was actually influenced by some of the experimental variables to some degree. But it is possible that the effect of the variables may have been too small to be measurable relative to the variation inherent in the infectivity assay.

It appears that for the two natural waters, chlorine seems to be ineffective as a secondary oxidant since a synergistic effect was absent in most of the sequential trials. Although the experimental conditions used for each secondary oxidant differed somewhat, partly due to the nature of the fractional factorial experimental design and partly due to practical experimental limitations, there was considerable overlap (see Tables 4.6 and 4.7). One of the limitations of the preceding regression analysis is that it was not possible to investigate the effect of individual water quality characteristics because only two waters were investigated in the factorial designed experiments.

To facilitate a comparison between the magnitudes of the synergistic effect measured in the different waters at the various treatment conditions, the *Ct* products required for a 1 log-unit synergistic effect were estimated using equation 4.1. The calculated *Ct* products are compiled in Table 4.10. The last columns of Table 4.10 indicate whether " $k_2$ - $k_1$ " for each test condition was statistically significant when tested at the 90 % confidence level. The very large  $Ct_{1-\log}$  values in Table 4.10 clearly indicate the ineffectiveness of sequential treatment with ozone and free chlorine for generating a synergistic effect with either the high quality (E) or low quality (D) water. In some cases it was not possible to calculate a meaningful synergistic effect because the value of  $k_2$  was less than the value of  $k_1$ . The high *Ct* products required for 1 log-unit synergistic effect for waters D and E are consistent with the findings for the A, B, and C waters. Table 4.10: Estimated free chlorine *Ct* products required for a 1 log-unit synergistic effect for ozone followed by free chlorine sequential trials in the designed experiment

| Natural<br>Water | Water Conditions | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | Ct Required for<br>1 log-unit<br>synergistic Effect<br>(mg×min/L) | Statistically significant? |
|------------------|------------------|-------------------------------------------------------|-------------------------------------------------------------------|----------------------------|
| D                | 21°C, pH 8.1     | 2.2                                                   | Too large to measure                                              | No                         |
| D                | 21°C, pH 8.1     | 0.2                                                   | Too large to measure                                              | No                         |
| D                | 21°C, pH 6.0ª    | 1.5                                                   | 25 000                                                            | No                         |
| D                | 3°C, pH 8.1      | -0.1                                                  | 21 000                                                            | No                         |
| D                | 5°C, pH 6.0ª     | 0.25                                                  | 6 900                                                             | Yes                        |
| E                | 21°C, pH 8.1     | 2.1                                                   | 12 800                                                            | Yes                        |
| Е                | 21°C, pH 6.0ª    | 2.8                                                   | Too large to measure                                              | No                         |
| Е                | 1°C, pH 8.1      | 1.1                                                   | 18 800                                                            | No                         |
| E                | 1°C, pH 6.0ª     | 0.74                                                  | 27 000                                                            | No                         |

<sup>a</sup>Initial pH 6.0

### **4.3 PART III: LOW PH NATURAL WATER EXPERIMENTS**

The trials in Part III were conducted after the experiments of Part I and II when it was realized that one of the major limitations in all the previous trials was the inability to conduct the experiments in natural waters at a stable pH of 6.0. In order to overcome the problem, a set of additional trials was done with natural waters having a low pH near about 6.0. The trials helped us to understand whether pH was responsible for the lack of synergistic effect of *C. parvum* in natural waters for ozone followed by free chlorine sequential treatment.

#### **4.3.1 Experimental Plan**

The experimental plan was to conduct a set of sequential trials with two low pH (6.0) natural waters (Type F and G) using ozone followed by free chlorine sequential treatment. The specific sequential trials done were as follows:

- 1. ozone followed by free chlorine sequential treatment at low ozone pretreatment (0.7 log units inactivation) at 21°C and pH 6.3 in Type F water;
- 2. ozone followed by free chlorine sequential treatment at high ozone pretreatment (1.7 log units inactivation) at 5°C and pH 6.3 in Type F water;
- 3. ozone followed by free chlorine sequential treatment at high ozone pretreatment (1.7 log units inactivation) at 5°C and pH 5.8 in Type G water.

#### 4.3.2 Results and Analysis

Figures 4.8 and 4.9 show the results of experiments conducted with ozone followed by free chlorine sequential treatment in low pH natural waters (Types F and G). Details of the infectivity reduction for these trials are provided in Tables B.6 and B.7 of Appendix B. Details of the ozone primary treatment conditions are provided in Tables C.6 and C.7 of Appendix C. Details of the secondary treatment conditions with free

chlorine are provided in Tables D.6 and D.7 of Appendix D. Similar to Parts I and II, the data sets in Figures 4.8 and 4.9 were modeled using the first-order (n=1) Chick-Watson analysis (Equation 3.7) and the first-order Chick-Watson rate constants, k, were calculated using linear least squares regression.

The data point in Figure 4.8 (indicated by > in the figure legend) for which the infectivity analysis was greater than the upper detection limit were set at the detection limit of the data points and were used in the computation of "k". The computed rate constants and associated 90 % confidence intervals are provided in Table 4.11. There was a statistically significant synergistic effect observed for both Types F and G water under the studied conditions.

To facilitate a comparison between the magnitudes of the synergistic effect measured in the two waters at the various treatment conditions, the Ct products required for a 1 log-unit synergistic effect were estimated using equation 4.1. The calculated Ctproducts are compiled in Table 4.12. The last column of Table 4.12, indicate whether " $k_2$  $k_1$ " for each test condition was statistically significant when tested at the 90 % confidence level. Although the synergistic effect was statistically significant at the 90% confidence level in only 1 of the 3 experiments, the measured synergistic effects were between 3 and 16 times greater than the mean synergistic effect measured in the part I and part II experiments. For natural water F at 21°C, pH 6.3 and an ozone primary treatment equivalent to 0.8 log-unit the synergistic effect was highly significant statistically (p =0.004). In fact, in this experiment the infectivity reduction at the highest chlorine  $C_{avet}$ value tested (2 100 mg·min/L) was beyond the detection limit of the neonatal CD-1 mouse assay; that is none of the mice was positive for infection (Figure 4.8 a). In this case, the value of  $k_2$  was computed by setting the value of the log survival ratio to the detection limit of 3.1 for this datum. The true synergistic effect may, therefore, have been greater than the computed value of 91 x  $10^{-5}$  L/mg/min.

One of the key observations in Table 4.12 was that the Ct required for 1 log-unit synergistic effect, was very low compared to the Ct requirements for almost all the previous (A to E) waters at pH 8. This indicates that the synergistic effect was higher in waters F and G compared to the synergistic effect observed in waters A to E.



Figure 4.8 Effect of ozone and free chlorine sequential treatment on *C. parvum* oocysts in natural water F at (a) 21 °C and (b) 5 °C at pH 6.3.



Figure 4.9 Effect of ozone and chlorine sequential treatment on *C. parvum* oocysts in natural water G at pH 5.8 and 5 °C.

Table 4.11: Calculated Chick-Watson rate constants for ozone followed by free chlorine sequential trials with natural waters F and G

| Figure<br>No. | pH  | Temp.<br>(°C) | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | k ± 90%<br>CI <sup>a</sup><br>(×10 <sup>4</sup><br>L/mg/min) | <sup>b</sup> Significant<br>k? | $(k_2-k_1)$<br>$\pm 90 \% \text{ CI}^a$<br>$(\times 10^4$<br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>(p-values) |
|---------------|-----|---------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
|               | 6.3 | 21            | 0.81                                                  | 11.3<br>(5.8, 16.8)                                          | Yes                            | 9.1                                                                    | Yes                                                  |
| 4.8 (a)       | 6.3 | 21            | 0                                                     | 2.2                                                          | No                             | (4.8, 13.4)                                                            | (0.0035)                                             |
| 4.8 (b)       | 6.3 | 5             | 1.5                                                   | 3.6<br>(1.2, 5.9)                                            | Yes                            | 1.99                                                                   | No<br>(0.14)                                         |
|               | 6.3 | 5             | 0                                                     | 1.6<br>(-0.8, 4.0)                                           | No                             |                                                                        |                                                      |
| 4.9           | 5.8 | 5             | 1.9                                                   | 5.1<br>(1.8, 8.4)                                            | Yes                            | 2.5<br>(-0.57, 5.7)                                                    | No<br>(0.17)                                         |
|               | 5.8 | 5             | 0                                                     | 2.6 (-0.7, 5.9)                                              | No                             |                                                                        |                                                      |

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1

Table 4.12: Estimated free chlorine *Ct* products required for a 1 log-unit synergistic effect for ozone followed by free chlorine sequential trials in Types F and G water

| Natural<br>Water | Water Conditions | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | Ct Required for<br>1 log-unit<br>Synergistic Effect<br>(mg×min/L) | Statistically<br>significant? |
|------------------|------------------|-------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|
| F                | 21°C, pH 6.3     | 0.81                                                  | 1 100                                                             | Yes                           |
| F                | 5°C, pH 6.3      | 1.5                                                   | 5 000                                                             | No                            |
| G                | 5°C, pH 5.8      | 1.9                                                   | 4 000                                                             | No                            |

#### **4.4 CONTROL TRIALS**

The reduction in infectivity in the control trials of all the sequential trials with ozone followed by free chlorine, ranged from -0.8 to 1.0 log-unit. This range was slightly greater than the -0.7 log-unit to 0.7 log-unit range that is typical for untreated control samples when using the neonatal CD-1 mouse assay. Histograms showing the reduction in infectivity of the oocysts in the control reactors for each natural water, are presented in Appendix E. The mean inactivation in the positive controls of all the sequential trials with ozone followed by free chlorine was 0.1 log-unit indicating that exposure to the experimental water matrices and the various processing steps had little effect on mean oocyst infectivity. This also suggests that exposure of the oocysts to natural waters alone had little effect on oocyst infectivity, but may have increased the variability in the infectivity assay. The control trials served primarily as a quality assurance for the experiments.

Table 4.13: Comparison of *Ct* required for 1 log-unit synergistic effect between buffered de-ionized water and natural waters for ozone followed by free chlorine sequential treatment

|                             |                                 | <sup>a</sup> Ozone               | $Ct_{1-\log}$ (mg×min/L) |                                |  |
|-----------------------------|---------------------------------|----------------------------------|--------------------------|--------------------------------|--|
| Natural Water<br>Conditions | Buffered<br>Water<br>Conditions | Pre-<br>Treatment<br>(log-units) | Natural<br>Water         | <sup>b</sup> Buffered<br>Water |  |
| 21°C at initial             | 21°C at                         | 04                               | °23 800                  | 560                            |  |
| pH 6.0                      | pH 6.0                          | 0.4                              | 2.5 000                  |                                |  |
| 1°C at initial              | 1°C at                          | 04                               | °23 800                  | 8 700                          |  |
| pH 6.0                      | pH 6.0                          | 0.4                              |                          |                                |  |
| 21°C at initial             | 21°C at                         | 16                               | °23 800                  | 710                            |  |
| pH 6.0                      | pH 6.0                          | 1.0                              |                          |                                |  |
| 1°C at initial              | 1°C at                          | 16                               | °23 800                  | 2 300                          |  |
| pH 6.0                      | pH 6.0                          | 1.0                              | 2.5 000                  |                                |  |
| 21°C at pH                  | 21°C at                         | 0.8                              | <sup>d</sup> 1 100       | Not available                  |  |
| (Water F)                   | pH 6.0                          |                                  |                          |                                |  |
| 5°C at pH 6.3               | 5°C at                          | 1.5                              | <sup>d</sup> 5 000       | Not available                  |  |
| (Water F)                   | pH 6.0                          | 1.5                              | 2 000                    |                                |  |
| 5°C at pH 5.8<br>(Water G)  | 5°C at<br>pH 6.0                | 1.9                              | °4 000                   | Not available                  |  |

<sup>a</sup>These are ozone primary treatment targets and were not necessarily achieved in individual experiments

<sup>b</sup>Model predictions of Li et al. (2001b) calculated using Equation 4.1 of this study <sup>c</sup>Model predictions in this study calculated using Equations 4.1 and 4.2 <sup>d</sup>Calculated from the results of low pH natural water F using Equation 4.1

°Calculated from the results of low pH natural water G using Equation 4.1

# **4.5 DISCUSSION**

The study with ozone followed by free chlorine sequential treatment in the different natural waters was conducted mainly to determine the extent of synergistic effect and the influencing factors. Among all the previous studies for determining the synergistic effect using ozone followed by free chlorine, the more comprehensive were the ones conducted by Li et al (2001b). More importantly these researchers used very similar protocols as this study including a quantitative mouse infectivity assay to determine the inactivation kinetics of C. parvum-ozone system and used them to develop engineering design and performance criteria. However, all those studies were conducted in buffered de-ionized water. Nevertheless, a comparison of the studies with buffered deionized water and natural water of this study will help us to find whether the model and design criteria developed in buffered de-ionized water is applicable in natural waters. In Table 4.13, the model predictions of the free chlorine Ct products required for 1 log-unit of synergistic effect are summarized using the information from this study with natural waters and the information from the study done by Li et al. (2001b) with buffered deionized water. For the natural waters, the predictive equations 4.1 and 4.2 were used to generate the estimates of synergistic effect. Results of the experiments with natural waters F and G were also included for comparison purposes.

#### 4.5.1 Effect of pH

For ozone followed by free chlorine sequential trials in natural waters, the results obtained were categorized into two groups: one with higher pH (waters A to E with pH 8) and the other with lower pH (waters F and G with pH 6). In the high pH waters (Table 4.13), the measured synergistic effect was strongly inhibited and was significantly less compared to that of the buffered de-ionized water from the earlier study of Li et al. (2001b). The magnitude of the synergistic effect determined in the high pH natural water samples was between 3 and 42 times smaller than previously reported for buffered de-ionized water (Li et al. 2001b) at temperatures 1°C and 21°C respectively. For the low pH

waters on the other hand, the synergistic effect was found to be higher, compared to the high pH waters. The  $Ct_{1-\log}$  values were found to be considerably lower and they were comparable to those of earlier studies with buffered de-ionized water (Table 4.13). The results were thus consistent with the hypothesis that high pH and alkalinity limited the synergistic effect in natural waters A to E.

Water pH was an important factor influencing effectiveness of chlorine as a disinfectant. A general hypothesis for the mechanism of the synergistic effect was that the primary treatment with ozone increases the permeability of the oocyst wall by oxidative attack. The HOCl molecule can then more readily penetrate into the interior of the oocyst to inactivate the more vulnerable sporozoites (Li et al. 2001b). Hypochlorous acid, HOCl, which is the predominant form of free chlorine at pH 6 is generally considered to be a more effective biocidal agent than hypochlorite ion, OCI, the predominant form at pH 8. In de-ionized water, 96% of the free chlorine exists in the HOCl form at pH 6.0, whereas at pH 8.0 only 26% exists in the HOCl form (Haas 1999). The DPD assay used to measure free chlorine in this study, however, does not distinguish between HOCl and OCI species or relative biocidal effectiveness at different pH. The high pH natural waters were naturally buffered by carbonate/bicarbonate alkalinity. In order to investigate the effect of a reduction to pH of 6 on the synergistic effect, the pH of the high pH natural waters was adjusted to 6 in some of the trials by adding acid. However, during the experiment, the pH was observed to slowly drift upward during the period of exposure to the secondary oxidant. Li et al (2001b) on the other hand conducted their experiments in de-ionized water that was well buffered at a pH of 6.0. Thus it may be hypothesized that the synergistic effect of ozone followed by free chlorine in the high pH natural waters was inhibited mainly as a result of a pH effect.

In general, pH change in natural waters is a complex phenomenon, governed by several factors. Natural waters acquire their chemical characteristics by dissolution and by chemical reactions with solids, liquids, and gases with which they have come into contact. Waters vary in their chemical composition, but these variations are at least partially understandable if the environmental history of the water and the chemical

reactions of the rock-water-atmosphere systems are considered (Stumm and Morgan, 1996).

The pH of most natural waters is controlled by reactions involving the carbonate system. In natural waters containing significant amount of  $CaCO_3$  (calcite) like the ones used in this study, the amount of  $CaCO_3$  dissolved depends on the initial  $CO_2$  concentration and on the extent to which the  $CO_2$  in the water can be replenished by exchanging with a gas phase. If  $CO_2$  is not replenished (the system is closed to exchange of  $CO_2$  gas), the amount of calcite that natural water can dissolve is essentially limited by the amount of  $CO_2$  present initially, since dissolution follows the equation

$$CaCO_3 + H_2O + CO_2 \Leftrightarrow Ca^{+2} + 2 HCO^{-1}$$
 Equation 4.3

If the system is open to  $CO_2$ , the  $CO_2$  from the gas phase will be transferred to replace the CO<sub>2</sub> consumed by dissolution of calcite. In this case, the dissolution of calcite is not limited by the availability of CO<sub>2</sub>. More calcite will dissolve under open-system conditions than under closed-system conditions. In the present study, the raw waters were stored at 4°C in closed vessels, and hence were under "closed-system condition". Before the experiments, the waters were taken out of the vessels and were kept under "opensystem condition". In the past, differences have been observed between field and laboratory determinations of the pH values that are ascribed to the carbonate system. Such differences were observed by Roberson et al. (1963), who examined the ground and surface waters of Sierra Nevada, California (Faust and Aly, 1981). The time interval between the field and laboratory determinations ranged from 5 to 120 days, which was similar to the period used for this study. In their study there were some indications that laboratory determinations made within one week showed somewhat smaller changes than samples stored for longer periods of time. There seemed to be a tendency for waters with a "low" total carbonate content to gain CO<sub>2</sub> and to show a decrease in pH value, whereas waters with a "high" total carbonate content tended to lose  $CO_2(g)$  to the atmosphere and to show an increase in pH value. In the present study most of the waters had high total
carbonate content. When transferred from a closed system to an open sytem, the waters might have lost  $CO_2(g)$  to the atmosphere and hence showed the increase in the pH value.

In other cases it has been found earlier (Stumm and Morgan, 1996) that when a large quantity of acid is discharged into a natural water system containing CaCO<sub>3</sub> solids, an initially large decrease in the pH of that system occurs. The final pH change is much less than the initial decrease. This is mainly attributed to the buffering capacity of many natural waters. The decrease in pH resulting from the addition of the acid leads to the dissolution of solid calcium carbonate and the establishment of a new equilibrium position. To test this explanation for the pH change phenomena observed during this study, samples of the high pH natural waters were filtered through 0.22  $\mu$ m filters prior to pH adjustment. Despite the filtration step, a similar increase in pH was observed during the free chlorine contact time. This indicated that pH of the studied natural waters was not controlled entirely by reactions involving the carbonate system. The experience in the laboratory during this study therefore suggests that, in water treatment practice, it may be difficult to promote a synergistic effect on *C. parvum* in alkaline waters by filtration followed by pH reduction using a mineral acid.

In natural waters, often, more significant than the buffer contribution of dissolved carbonic species are the many heterogeneous chemical, biochemical, and physical processes that occur in waters in their natural surroundings. Dissolution and deposition of minerals, ion exchange equilibria between soluble components and silicate minerals or clays, photosynthesis and biologic respiration, and aeration are typical processes affecting buffer action in natural water systems (Weber and Stumm, 1963). Other biologically mediated reactions like the ones mentioned in Table 4.14, also affect the pH of the natural waters. Thus, the pH of natual water is determined essentially by the interactions of biological activities and heterogeneous and homogeneous equilibria. The dissolved-carbonate system, then, although an important mediator and indicator of the buffer capacity of natural waters, represents only a fraction of the total capacity rather than the sole or principle buffering agent (Weber and Stumm, 1963).

| Process                 | Reaction                                                                                                       | Effect on pH |
|-------------------------|----------------------------------------------------------------------------------------------------------------|--------------|
| Photosynthesis          | $6\mathrm{CO}_2 + 6\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 + 6\mathrm{O}_2$ | Increase     |
| Respiration             | $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$                                                                | Decrease     |
| Methane<br>Fermentation | $C_6H_{12}O_6 + 3CO_2 \rightarrow 3CH_4 + 6CO_2$                                                               | Decrease     |
| Nitrification           | $\mathrm{NH}^{4+} + 2\mathrm{O}_2 \rightarrow \mathrm{NO}_3^- + \mathrm{H}_2\mathrm{O} + 2\mathrm{H}^+$        | Decrease     |
| Denitrification         | $5C_6H_{12}O_6 + 24NO_3 + 24H^+ \rightarrow 30CO_2 + 12N_2 + 42H_2O$                                           | Increase     |
| Sulfide Oxidation       | $\mathrm{HS}^{-} + \mathrm{2O}_{2} \longrightarrow \mathrm{SO}_{4}^{-2} + \mathrm{H}^{+}$                      | Decrease     |
| Sulfate Reduction       | $C_6H_{12}O_6 + 3SO_4^{-2} + 3H^+ \rightarrow 6CO_2 + 3HS^- + 6H_2O$                                           | Increase     |

\*Table 4.14: Biologically mediated reactions affecting pH in natural water systems

<sup>\*</sup>Table obtained from Weber and Stumm, 1963.

#### 4.5.2 Effect of Water Quality

According to the regression analysis in Section 4.2.3, the effect of water quality was found to be insignificant on the synergistic effect in the high pH natural waters. However, it is possible that due to the inhibition of the synergistic effect (Table 4.13) in the high pH natural waters, the effect of water quality may have been diminished. With the low pH natural waters, the  $Ct_{1-\log}$  values (Table 4.13) were comparable to that of the earlier studies with buffered de-ionized water. The  $Ct_{1-\log}$  values for waters F and G though close, were about two times greater than that of buffered de-ionized water under identical conditions. Natural waters F and G were similar in terms of the measured water quality parameters, such as total organic carbon, colour, and turbidity (Table 3.3). Since the conditions were identical (including pH) for both the waters F and G and that of the buffered de-ionized water, this may be an indication of a water quality effect. The dataset

obtained with natural waters F and G in part III is limited and this makes it difficult to draw firm conclusions regarding the influence of water quality characteristics on the synergistic effect. However, they do suggest a possible role of other water quality characteristics in determining the synergistic effect in natural waters F and G.

# 4.5.3 Effect of Ozone Pre-treatment and Temperature

The regression analysis done with high pH natural waters demonstrated that the effect of ozone pretreatment level and temperature was found to be insignificant on the synergistic effect. In contrast to the results of this study with high pH natural waters, both the level of ozone pre-treatment and temperature had significant effects on the magnitude of the synergistic effect in earlier studies with buffered de-ionized water (Li et al. 2001b). By definition, ozone pre-treatment must be an important variable at some level if a synergistic effect exists. The magnitude of the synergistic effect measured in this study with high pH waters, however, was relatively small compared to the experimental variability. Due to this inhibition of the synergistic effect in high pH natural waters, the effect of ozone pre-treatment level and temperature may have been inhibited. The effects of ozone pre-treatment level and temperature, therefore, may simply have been too small to detect with statistical significance against the background variability.

In the two sets of experiments with natural water F, the synergistic effect measured at 21°C was more than 5 times that measured at 5°C for comparable ozone primary treatment levels. This temperature dependence was similar to that reported by Li et al. (2001b) indicating that temperature probably played a role in determination of the synergistic effects in natural waters, much like as it has been reported to do in buffered de-ionized water. The effect of ozone pretreatment also may have been significant in the low pH waters. However, in this study sufficient data were not available to make such a conclusion. The dataset obtained with natural waters F and G in part III was limited and this makes it difficult to draw firm conclusions regarding the influence of ozone primary treatment level on the synergistic effect.

### **4.5.4** Comparison with Other Studies

A comparison of this study with the study by Li et al. (2001b) has already been discussed. There were also some other studies conducted earlier by different research groups (Oppenheimer et al. 2000, Driedger et al. 2000, Rennecker et al. 2000, Corona-Vasquez et al. 2002), which investigated the synergistic effect of ozone followed by free chlorine sequential treatment of *C. parvum*.

Studies conducted by Oppenheimer et al. (2000) in different natural waters found the synergistic effect to be inconsistent in the various waters tested. They cited the limited precision of the animal infectivity assay and a poor understanding of the factors responsible for the synergistic effect in the natural water environment.

Other research groups conducted their experiments in buffered de-ionized water and used in-vitro excystation as a method of viability assessment. Driedger et al. (2000) found a high influence of pH on the synergistic inactivation of *C. parvum*. The greatest level of synergy was observed at pH 6; synergy decreased as pH increased until no synergy was observed at pH 8.5. This is consistent with the findings of this study, indicating that hypochlorous acid is the main component of the free chlorine species, which was responsible for the *C. parvum* inactivation. Contrary to the findings of this study, Rennecker et al. (2000a) concluded a high dependence of synergistic effect on temperature. A stronger synergy was observed at a lower temperature. The rate of free chlorine inactivation was 1.1 and 2.8 times faster than the corresponding rate of ozone primary inactivation at the respective temperatures of 30 and 10°C.

# CHAPTER 5: SEQUENTIAL INACTIVATION OF C. PARVUM WITH OZONE FOLLOWED BY MONOCHLORAMINE IN NATURAL WATERS

# **5.1 INTRODUCTION**

The purpose of the experiments described in this chapter was to provide a detailed evaluation of the synergistic effect during the inactivation of *C. parvum* oocysts in natural waters for ozone followed by monochloramine sequential treatment. The specific research objectives were to determine which of the following experimental factors have a significant impact on the synergistic effect for ozone followed by monochloramine sequential treatment; (1) level of primary ozone treatment; (2) pH of the water; (3) temperature of the water and (4) quality of the water.

#### **5.2 EXPERIMENTAL DESIGN**

The approach adopted for the determination of the synergistic effect was similar to that of the earlier experiments with ozone followed by free chlorine sequential treatment. A  $2^{4-1}$  factorial designed experiment was used to investigate the synergistic effect in two natural waters. The design matrix and the levels of the experimental factors are described in Table 5.1. The  $2^{4-1}$  fractional factorial experiment permits determination of the main effects of four experimental factors (or variables) with only eight experimental settings and ensures that the main effects are free from confounding with second-order interaction effects (Box et al. 1978). Triplicate trials at each experimental condition were conducted for ozone, and monochloramine, as well as the control trials.

| Factors |                           | Experimental Factor Targets |                     |  |  |
|---------|---------------------------|-----------------------------|---------------------|--|--|
|         | 1 40015                   | -1                          | 1                   |  |  |
| 1       | Natural Water             | D                           | Е                   |  |  |
| 2       | Ozone Pre-treatment Level | Low (0.7 log-unit)          | High (1.7 log-unit) |  |  |
| 3       | pH                        | Initial pH 6.0              | 8.1                 |  |  |
| 4       | Temperature (°C)          | 1                           | 21                  |  |  |

Table 5.1: The 2<sup>4-1</sup> design matrix for ozone followed by monochloramine sequential treatment

| Trial No. |    | No. of |    |                    |            |
|-----------|----|--------|----|--------------------|------------|
|           | 1  | 2      | 3  | <sup>b</sup> 4=123 | Replicates |
| 1         | 1  | 1      | 1  | . <u>I</u>         | 3          |
| 2         | -1 | 1      | 1  | -1                 | 3          |
| 3         | 1  | -1     | 1  | - 1                | 3          |
| 4         | -1 | -1     | 1  | 1                  | 3          |
| 5         | 1  | 1      | -1 | -1                 | 3          |
| 6         | -1 | 1      | -1 | 1                  | 3          |
| 7         | 1  | -1     | -1 | 1                  | 3          |
| 8         | -1 | -1     | -1 | - 1                | 3          |

<sup>a</sup>Identification of the factors is provided at the top of the table <sup>b</sup>Dummy factor used to generate the fractional factorial design.

## 5.3 RESULTS

Results of sequential treatment trials with the two natural water samples are summarized in Figures 5.1 to 5.4. Details of the infectivity reduction for these trials are provided in Tables B.4 and B.5 of Appendix B. Details of the ozone primary treatment conditions are provided in Tables C.4 and C.5 of Appendix C. Details of the secondary treatment conditions with monochloramine are provided in Tables D.4 and D.5 of Appendix D. In figures 5.1 to 5.4, the total C. parvum inactivations (measured after different levels of exposure to the monochloramine, both with and without ozone pretreatment) versus the product of the average monochloramine concentration and the exposure time, Ct, are plotted. The data points located at the x-axis origin, where monochloramine Ct = 0, are a direct measure of the inactivations following exposure to ozone but prior to addition of monochloramine. At 21°C, the experimental ozone Ct products were between 0.6 and 2.0 mg·min/L for the 0.7 log-unit ozone pre-treatment target and between 2.5 and 4.0 mg·min/L for the 1.7 log-unit pre-treatment target. Larger ozone Ct products were required to achieve similar inactivation targets at the lower experimental temperatures due to the temperature dependence of C. parvum inactivation by ozone (Li et al. 2001). At the lower temperature, the experimental ozone Ct products were between 6.0 and 9.5 mg·min/L for the 0.7 log-unit ozone pre-treatment target and between 10.0 and 27.0 mg·min/L for the 1.7 log-unit pre-treatment target. The objective was to maintain similar primary inactivation levels at the two temperatures, rather than similar Ct exposure levels.

For some of the low temperature trials, the target temperature of 1°C, was not achieved due to difficulties with the cooling unit, and the actual experimental temperature was 5°C (Figure 5.2). In the low pH experiments, the pH of the water samples was lowered prior to experiments from 8.1 to 6.0 prior to experiments by acid addition. Despite the overnight stabilization period, with the reactor contents constantly stirred and open to atmosphere, the pH was observed to slowly increase from the initial pH of 6.0 during the 4 hours monochloramine exposure period. These experiments were, therefore, identified as "initial pH of 6.0" and were not conducted at a truly stable pH of 6.0.

In a few cases, the infectivity results were above the upper detection limit of the neonatal CD-1 mouse assay. That is, none of the mice in the group that received the largest inoculum (typically 100 000 oocysts) became infected. These points are indicated by the ">" sign in the figure legends. For the purpose of computing the *k*, the infectivity reductions for these data were set at the detection limit (i.e. by assuming one mouse in the cohort was infected). Using this approach, the computed *k* values were biased toward a conservative interpretation of the effectiveness of the given treatment. Often these data were found to lie close to other data points for which the infectivity result was within the detection limit.

The solid and dashed lines in Figures 5.1 to 5.4 represent the least-squares best-fit of the first-order Chick-Watson rate equation (Equation 3.7) to the experimental data. A synergistic effect was evident if the rate of inactivation by monochloramine was greater with ozone pre-treatment exposure than without. Based on this criterion, there was evidence of a synergistic effect with both natural water samples and for most of the treatment variable combinations investigated.

The calculated Chick-Watson rate constants, (k'), for each of the trials shown in Figures 5.1 to 5.4 are provided in the Tables 5.2 and 5.3. The 90% confidence intervals on the values of k, are also reported in Tables 5.2 and 5.3. If the computed 90% confidence interval on the value of k did not include zero, the computed k was determined to be statistically different from zero. If the computed k value for monochloramine inactivation  $(k_2)$  with ozone primary treatment was greater than the computed k value for monochloramine inactivation without primary treatment  $(k_1)$ , then this was considered as evidence of a synergistic effect (Figure 3.1). The difference between the slopes  $(k_2-k_1)$ was considered to be statistically significant when the level of significance (p-values) of the test statistic (Section 3.6.2 in Chapter 3) was less than 0.1. The last column in each of the tables (5.2 and 5.3) indicates if the synergistic effect measured with ozone primary treatment was statistically significant at the 90% confidence level (p<0.1). Based on



Figure 5.1 Effect of ozone and monochloramine treatment on *C. parvum* oocysts in natural water D at (a) pH 8.1 and (b) initial pH 6 at 21 °C.



Figure 5.2 Effect of ozone and monochloramine treatment on *C. parvum* oocysts in natural water D at (a) pH 8.1 and (b) initial pH 6 at 5 °C.



Figure 5.3 Effect of ozone and monochloramine treatment on *C. parvum* oocysts in natural water E at (a) pH 8.1 and (b) initial pH 6 at 21 °C.



Figure 5.4 Effect of ozone and monochloramine treatment on *C. parvum* oocysts in natural water E at (a) pH 8.1 and (b) initial pH 6 at 1 °C.

| Fig.<br>No. | pH               | Temp.<br>(°C) | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | $k \pm 90 \%$ CI <sup>a</sup> (×10 <sup>4</sup> L/mg/min) | <sup>b</sup> Significant<br>k? | $(k_2-k_1)$<br>$\pm 90 \%$<br>CI <sup>a</sup><br>(× 10 <sup>4</sup><br>L/mg/min) | <sup>°</sup> Significant<br>Synergistic<br>Effect?<br>( <i>p</i> -values) |
|-------------|------------------|---------------|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 5.1<br>(a)  | 8.1              | 21            | 0.42                                                  | 9.8<br>(7.0, 12.6)                                        | Yes                            | 5.7<br>(3.6, 7.7)                                                                | Yes<br>(0.0004)                                                           |
|             | 0.1              | 21            | Ŷ                                                     | (2.7, 5.6)                                                | 1 65                           |                                                                                  |                                                                           |
| 5.1         | <sup>d</sup> 6.0 | 21            | 2.1                                                   | 7.0<br>(4.7, 9.3)                                         | Yes                            | 4.2                                                                              | Yes                                                                       |
| (0)         | <sup>d</sup> 6.0 | 21            | 0                                                     | 2.8<br>(1.5, 4.1)                                         | Yes                            | (2.3, 3.9)                                                                       | (0.0008)                                                                  |
| 5.2         | 8.1              | 5             | 0.84                                                  | 10.0<br>(5.4, 14.6)                                       | Yes                            | 9.1<br>(5 9 12 4)                                                                | Yes                                                                       |
| (u)         | 8.1              | 5             | 0                                                     | 1.2<br>(-1.1, 3.5)                                        | No                             | (3.9, 12.1)                                                                      | (0.0003)                                                                  |
| 5.2         | <sup>d</sup> 6.0 | 5             | 0.91                                                  | 2.0<br>(-6.2, 10.2)                                       | No                             | 0.002                                                                            | No                                                                        |
|             | <sup>d</sup> 6.0 | 5             | 0                                                     | 2.0<br>(0.99, 3.1)                                        | Yes                            | (-3.1, 3.1)                                                                      | (0.99)                                                                    |

Table5.2:CalculatedChick-Watsonrateconstantsforozonefollowedbymonochloraminesequential trials with natural water D

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Initial pH 6.0

| Fig.<br>No. | pН                                   | Temp.<br>(°C) | Ozone<br>Primary<br>Treatment<br>Level<br>(log-units) | $k \pm 90\%$<br>CI <sup>a</sup><br>(×10 <sup>4</sup><br>L/mg/min)                             | <sup>b</sup> Significant<br>k? | $(k_2-k_1)$<br>$\pm 90 \% \text{ CI}^a$<br>$(\times 10^4$<br>L/mg/min) | °Significant<br>Synergistic<br>Effect?<br>(p-values) |
|-------------|--------------------------------------|---------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| 5.3<br>(a)  | 8.1<br>8.1                           | 21<br>21      | 2.3<br>0                                              | 18.6<br>(12.8, 24)<br>1.4<br>(0.06, 1.6)                                                      | Yes<br>Yes                     | 17.2<br>(14.3, 20.1)                                                   | Yes<br>(4.0×10 <sup>-9</sup> )                       |
| 5.3<br>(b)  | <sup>d</sup> 6.0<br><sup>d</sup> 6.0 | 21<br>21      | 1.95<br>0                                             | $   \begin{array}{r}     16.3 \\     (11.8, 21) \\     1.5 \\     (-1.8, 4.8)   \end{array} $ | Yes<br>No                      | 14.7<br>(11.0, 18.4)                                                   | Yes<br>(6.0×10 <sup>-6</sup> )                       |
| 5.4<br>(a)  | 8.1<br>8.1                           | 1             | 0.081<br>0                                            | 3.1<br>(1.5, 4.7)<br>-3.7<br>(-5.5, -2.1)                                                     | Yes<br>No                      | 6.9<br>(5.4, 8.4)                                                      | Yes<br>(3.0×10 <sup>-6</sup> )                       |
| 5.4<br>(b)  | <sup>d</sup> 6.0<br><sup>d</sup> 6.0 | 1             | 1.8<br>0                                              | 8.0<br>(4.0, 12.0)<br>-1.5<br>(-3.7, 0.7)                                                     | Yes<br>No                      | 9.6<br>(6.4, 12.7)                                                     | Yes<br>(0.00012)                                     |

Table 5.3: Calculated Chick-Watson rate constants for ozone followed bymonochloramine sequential trials with natural water E

<sup>a</sup>Confidence Interval

<sup>b</sup>Considered significant if 90% confidence interval on the value of k do not include zero <sup>c</sup>Considered significant if the *p*-value of the test statistic is less than or equal to 0.1 <sup>d</sup>Initial pH 6.0

Table 5.4: Estimated monochloramine Ct products required for a 1 log-unit synergistic effect for ozone followed by monochloramine sequential treatment in the designed experiments

| Natural<br>Water | Water Conditions | Ozone Primary<br>Treatment Level<br>(log-units) | Ct Required for<br>1 log-unit<br>Synergistic Effect<br>(mg×min/L) | Statistically significant? |
|------------------|------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------|
| D                | 21°C, pH 8.1     | 0.42                                            | 1 750                                                             | Yes                        |
| D                | 21°C, pH 6.0ª    | 2.1                                             | 2 300                                                             | Yes                        |
| D                | 5°C, pH 6.0°     | 0.91                                            | 5 000 000                                                         | No                         |
| D                | 5°C, pH 8.1      | 0.84                                            | 1 100                                                             | Yes                        |
| E                | 21°C, pH 8.1     | 2.3                                             | 580                                                               | Yes                        |
| Е                | 21°C, pH 6.0ª    | 1.95                                            | 680                                                               | Yes                        |
| Е                | 1°C, pH 6.0ª     | 1.8                                             | 1 040                                                             | Yes                        |
| E                | 1℃, pH 8.1       | 0.081                                           | 1 450                                                             | Yes                        |

<sup>a</sup>Initial pH 6.0

these tables a statistically significant synergistic effect was observed in almost all the experimental conditions investigated with both waters D and E. The exception was for water D at low ozone primary treatment at initial pH 6 and temperature of 5°C. To help compare the magnitudes of the synergistic effect measured in the different waters and at the various treatment conditions, Ct products required for a 1 log-unit synergistic effect were estimated from Tables 5.2 and 5.3, and then summarized in Table 5.4. The predictive equation 4.1 was used to generate the estimates of synergistic effect. A significant synergistic effect was observed for the majority of the ozone and monochloramine sequential trials (Table 5.4). The information in Table 5.4 however, shows a wide range in the monochloramine Ct products required for a synergistic effect and suggests that there was considerable variability in the synergistic effect.

## **5.4 CONTROL TRIALS**

Inactivation of oocysts from the 42 positive control reactors used in this study ranged from -0.8 to 0.8 log-unit with a mean of 0.12 log-unit. This range in oocyst inactivation in unexposed control samples is typical and reflects the normal variation in the neonatal CD-1 mouse assay. In comparison, the range of inactivation measured in the positive controls in a previous *C. parvum* sequential inactivation study carried out in phosphate buffered de-ionized water (Li et. al 2001b) ranged from -0.8 to 0.9 log-unit with a mean of 0.03 log-unit inactivation. Histograms showing the reduction in infectivity of the oocysts in the control reactors for each natural water, are presented in Appendix E. The mean inactivation in the positive controls indicated that the exposure to the experimental water matrices and the various processing steps had little effect on mean occyst infectivity. The control trials served primarily as a quality assurance for the experiments.

## **5.5 STATISTICAL ANALYSIS**

The results of the factorial designed experiment with ozone followed by monochloramine sequential treatment are summarized in Table 5.5. The results

summarized in Table 5.5 were analyzed using multiple linear regression to determine which experimental factors had a significant impact on the synergistic effect. To facilitate the multiple linear regression analysis, the levels of the experimental factors in Table 5.5 was first scaled so that the levels of each ranged from approximately -1 to +1. The scaling is described in Table 5.6. Using the scaled values of the variables a multi-linear model of the form described in equation 3.9 was used for linear regression. The dependent variable in equation 3.9, Y represented the magnitude of the synergistic effect,  $k_2$ - $k_1$ , and the independent variables  $X_1$ ,  $X_2$ ,  $X_3$ , and  $X_4$  represented ozone primary treatment level, temperature, pH, and water quality, respectively. Regression analysis was done using the regression tool in Microsoft Excel 2000. Model terms were rejected or retained based on the statistical significance of the coefficients  $a_0$ ,  $a_1$  ...etc. at the 90% confidence level as described previously (Draper and Smith, 1966). Based on this approach, the variables  $X_1$ ,  $X_3$ , and  $X_4$  were found to be statistically significant at the 90%

Table 5.5: Summary of synergistic effect determinations for the factorial design experiments with ozone followed by monochloramine sequential treatment

| Result<br>No. | Natural<br>Water | <sup>*</sup> Ozone<br>Pre-treatment<br>(Inactivation<br>log-units) | Temperature<br>(°C) | рН          | Synergistic Effect<br>$(k_2-k_1)$<br>$[\times 10^4 L/mg/min]$ |
|---------------|------------------|--------------------------------------------------------------------|---------------------|-------------|---------------------------------------------------------------|
| 1             | D                | 0.42                                                               | 21                  | 8.1         | 5.7                                                           |
| 2             | D                | 2.1                                                                | 21                  | Initial 6.0 | 4.2                                                           |
| 3             | D                | 0.91                                                               | 5                   | Initial 6.0 | 0.002                                                         |
| 4             | D                | 0.84                                                               | 5                   | 8.1         | 9.1                                                           |
| 5             | E                | 2.3                                                                | 21                  | 8.1         | 17.2                                                          |
| 6             | E                | 1.95                                                               | 21                  | Initial 6.0 | 14.7                                                          |
| 7             | E                | 1.8                                                                | 1                   | Initial 6.0 | 9.6                                                           |
| 8             | E                | 0.081                                                              | 1                   | 8.1         | 6.9                                                           |

<sup>\*</sup>The values shown represent an average of the triplicates

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.6: Results from the factorial design experiment of the sequential trials using ozone and monochloramine sequential treatment represented in terms of scaled variables

| Factors                                      | -1             | 1   |
|----------------------------------------------|----------------|-----|
| Ozone Primary Treatment<br>Level (log units) | 0.7            | 1.7 |
| Temperature (°C)                             | 1              | 21  |
| pH                                           | Initial pH 6.0 | 8.1 |
| Natural Water                                | D              | Е   |

| Result Synergistic |                | Scaled Experimental Variables      |               |                         |                       |  |
|--------------------|----------------|------------------------------------|---------------|-------------------------|-----------------------|--|
| No.                | No. Effect (Y) | Ozone Primary<br>Treatment $(X_1)$ | Temp. $(X_2)$ | pH<br>(X <sub>3</sub> ) | Water Quality $(X_4)$ |  |
| 1                  | 5.7            | -1.56                              | 1             | 1                       | -1                    |  |
| 2                  | 4.2            | 1.8                                | 1             | -1                      | -1                    |  |
| 3                  | 0.002          | -0.58                              | -0.6          | er av                   | -1                    |  |
| 4                  | 9.1            | -0.72                              | -0.6          | 1                       | -1                    |  |
| 5                  | 17.2           | 2.2                                | 1             | 1                       | 1                     |  |
| 6                  | 14.7           | 1.5                                | 1             | -1                      | 1                     |  |
| 7                  | 9.6            | 1.2                                | - 1           | -1                      | 1                     |  |
| 8                  | 6.9            | -2.2                               | -1            | 1                       | 1                     |  |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

confidence level and equation 3.9 reduced to the form:

$$Y = 8.0 + 2.2X_1 + 3.0X_3 + 2.6X_4$$
 Equation 5.1

The variable temperature was not found to be statistically significant and was eliminated from the regression. Water quality, pH and ozone pre-treatment level were all found to be significant equation variables at the 90% confidence level (i.e. p < 0.10) and were retained. After scaling back to the original form the final regression equation describing the synergistic effect observed under the conditions investigated was:

$$(k_2 - k_1) = -17.6 + 2.6 \times (\text{Water Quality A/B}) + 2.9 \times (\text{pH}) + 4.4 \times (O_3 \text{ Pre} - \text{Treatment})$$

#### Equation 5.2

The overall model and the individual parameters in it were significant at the 90% level. Values of the regression equation coefficients and associated confidence intervals and p-values are provided in Table 5.7. The fit of the regression model is shown in Figure 5.5 and the model predictions matched the observations satisfactorily.

Table 5.7: ANOVA analysis results of the sequential trials with natural waters D and E using ozone followed by monochloramine

| SUMMARY                                                                                                         |              |                   |        | algustatatatatatata | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |                |
|-----------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|---------------------|----------------------------------------------|----------------|
| OUIPUI                                                                                                          |              |                   |        |                     |                                              |                |
| Regression Statistics                                                                                           |              | <b>.</b>          |        |                     |                                              |                |
| Multiple R                                                                                                      | 0.92         | -                 |        |                     |                                              |                |
| R Square                                                                                                        | 0.85         |                   |        |                     |                                              |                |
| Adjusted R Square                                                                                               | 0.74         |                   |        |                     |                                              |                |
| Standard Error                                                                                                  | 2.84         |                   |        |                     |                                              |                |
| Observations                                                                                                    | 8            |                   |        |                     |                                              |                |
| ANOVA                                                                                                           |              | •                 |        |                     |                                              |                |
| na na sana na s | df           | SS                | MS     | F                   | Significance<br>F                            |                |
| Regression                                                                                                      | 3            | 186.40            | 62.13  | 7.69                | 0.039                                        | -              |
| Residual                                                                                                        | 4            | 32.30             | 8.07   |                     |                                              |                |
| Total                                                                                                           | 7            | 218.7             |        |                     |                                              |                |
|                                                                                                                 |              |                   |        |                     |                                              |                |
|                                                                                                                 | Coefficients | Standard<br>Error | t Stat | P-value             | Lower<br>90.0%                               | Upper<br>90.0% |
| Intercept                                                                                                       | -17.63       | 9.18              | -1.92  | 0.13                | -37.2                                        | 1.9            |
| Ozone Kill                                                                                                      | 4.46         | 1.57              | 2.84   | 0.05                | 1.1                                          | 7.8            |
| pH                                                                                                              | 2.87         | 1.12              | 2.56   | 0.06                | 0.5                                          | 5.3            |
| Water Type                                                                                                      | 2.64         | 1.07              | 2.47   | 0.07                | 0.4                                          | 4.9            |



Figure 5.5 Fit of the linear regression model for predicting the synergistic effect of ozone followed by monochloramine sequential treatment for the inactivation of *C. parvum* oocysts in natural waters D and E. (Straight line represents perfect fit).

# **5.6 DESIGN CRITERIA**

Based on the model developed for determining the level of synergistic inactivation of *C. parvum* in natural waters, design-criteria were developed (Table 5.8) for a specified level of inactivation at a set of conditions such as level of ozone pretreatment, pH, and water type. Since only two types of waters were used for the study, the design criteria are only applicable for those waters of similar characteristics to the waters D and E. Extrapolation of these results should not be done as the *Ct* requirements may change dramatically under different conditions. The design criteria shown in Table 5.8 are only applicable at a pH near 8.1 and not for any other pH higher or lower than 8.1. The developed model (equation 5.2) indicated that at lower pH, the synergistic effect was lower compared to the higher pH. However, no design criteria were developed at the lower pH since the pH was not stable under those conditions and hence the pH effect might have been underestimated. Since experiments were not done beyond 2 log-units ozone pretreatment, the *Ct* requirements under such conditions were not included in Table 5.8.

Table 5.8 Monochloramine *Ct* requirements for the synergistic inactivation of *C. parvum* due to ozone followed by monochloramine sequential treatment in natural waters D and E at pH 8.1

| Synergistic effect in | Monochloramine Ct requirements |              |                 |                  |  |
|-----------------------|--------------------------------|--------------|-----------------|------------------|--|
| terms of infectivity  |                                | (mg×ı        | min/L)          | ·                |  |
| reduction             | 1 log infectivity              | reduction by | 2 log infectivi | ity reduction by |  |
| (log-units)           | ozone pre-                     | treatment    | ozone pre       | e-treatment      |  |
|                       | Water D                        | Water E      | Water D         | Water E          |  |
| 1.0                   | 940                            | 630          | 780             | 555              |  |
| 2.0                   | 1 885                          | 1 265        | 1 560           | 1 110            |  |
| 3.0                   | 2 830                          | 1 900        | 2 340           | 1 670            |  |

Table 5.9 Comparison of model predictions of *Ct* required for 1 log-unit synergistic effect between laboratory de-ionized water and natural waters for ozone followed by monochloramine sequential treatment at pH 8

|               | Ozone                                | Dzone ${}^{a}Ct_{1-\log} (\text{mg} \times \text{min/L})$ |                     |                     |  |  |
|---------------|--------------------------------------|-----------------------------------------------------------|---------------------|---------------------|--|--|
| Temp.<br>(°C) | Pre-<br>treatment<br>(log-<br>units) | <sup>b</sup> Buffered<br>Water                            | °Natural<br>Water D | °Natural<br>Water E |  |  |
| 22            | 1.6                                  | 590                                                       | 1 000               | 660                 |  |  |
| - 22          | 0.4                                  | 990                                                       | 2 050               | 990                 |  |  |
| 1             | 1.6                                  | 1 810                                                     | 1 000               | 660                 |  |  |
| 1             | 0.4                                  | 3 790                                                     | 2 050               | 990                 |  |  |

<sup>a</sup>Ct required for 1 log-unit synergistic effect

<sup>b</sup>Calculated using model predictions from Li et al. (2001b) and Equation 4.1 <sup>c</sup>Calculated using Equations 4.1 and 5.2

# **5.7 DISCUSSIONS**

To help compare the magnitudes of the synergistic effect measured in the different waters and at the various treatment conditions, the monochloramine Ct products required for 1 log-unit of synergistic effect are summarized in Table 5.9 using the results from this study with natural waters D and E and the results from a previous study (Li et al. 2001b) with buffered de-ionized water. For the natural waters, the predictive equations 4.1 and 5.2 were used to generate the estimates of synergistic effect.

From Table 5.9, it was found that the magnitudes of the synergistic effect predicted for both the natural waters were comparable to those for buffered de-ionized

water. At 22°C, there was no significant difference between the synergistic effects in buffered de-ionized water and the natural waters for both high and low ozone pretreatment. There were some differences in synergistic effect at low temperatures for both low and high ozone pretreatment. However, overall, the data suggest that the synergistic effect of ozone followed by monochloramine sequential treatment that was measured previously in buffered de-ionized water was not inhibited in natural waters.

## 5.7.1 Effect of Water Quality

From Table 5.9, it was found that the monochloramine *Ct* product required to produce the equivalent synergistic effect in natural water D was approximately twice that required for natural water E or for de-ionized water. Of the two natural waters studied, natural water E was considered to be of higher quality because it was lower in turbidity, colour and total organic carbon than natural water D (Table 3.3). These results imply that for relatively good quality natural waters, the synergistic effect of ozone and monochloramine sequential treatment is comparable to that determined in de-ionized water. As the water quality deteriorates, the concentration of impurities and constituents in natural water increase to a level where they may interfere with the mechanism that accounts for the synergistic effect. While insufficient to conclude, the data presented here suggest that the presence of suspended solids, colloidal material or dissolved organic material in natural waters may inhibit the synergistic effect. These constituents are related to the water quality measurements of turbidity, colour and total organic carbon. It is equally possible that other, unidentified, constituents present at higher concentration in natural water D were responsible for the reduced synergistic effect in that water.

Determining the reasons for the influence of water quality characteristics on the synergistic effect calls for an investigation of the mechanism of inactivation at the molecular level. Unfortunately this was beyond the scope of this study. There are also very few studies in the past, which actually investigated the mechanism of inactivation using two or more oxidants sequentially. A general hypothesis for the mechanism of synergy is that the strong oxidants in the primary treatment increase the permeability of

the oocyst wall by physically damaging or altering its surface properties. Without pretreatment, diffusion of both free chlorine and monochloramine (chlorine species) through the oocyst wall is the rate-limiting step in the diffusion-reaction process. Since ozone is a very strong oxidant, and it can oxidize many organic materials including lipid and proteins, it was postulated earlier (Li et al. 2001b) that the ozone pre-treatment increased oocyst wall permeability by weakening the oocyst wall. For natural waters, a similar mechanism will probably be true. The parameters turbidity, colour, and TOC of the natural waters may interfere with the rate-limiting step of the diffusion-reaction process of the chlorine species. These parameters may introduce an additional barrier in the diffusion process, which may reduce the level of oxidant penetration in the oocyst and hence result in a reduced synergistic effect. The sequential addition of ozone and chlorine species in natural waters with higher turbidity, colour, and TOC may also result in reactions with dissolved, colloidal, and particulate matter in the natural waters. These reactions might interfere with some of the reactions responsible for the oocyst inactivation and hence show a lower synergistic effect. However, all these explanations are only speculative and can only be confirmed by additional research.

## 5.7.2 Effect of pH

It may be hypothesized that the synergistic effect of ozone followed by monochloramine in the natural waters was inaccurately measured at low pH due to the failure to achieve lower pHs during the monochloramine contact time. Due to poor pH control during the initial pH 6.0 experiments, and the tendency of the pH to drift towards higher pH during the monochloramine contact period, the magnitude of the pH effect may have been underestimated. Based on the experience in this study, adjustment of pH by strong acid addition was not a satisfactory method of achieving lower pH in natural waters for the purposes of measuring a synergistic effect in the laboratory. Perhaps a better approach would be to obtain waters that were naturally at a pH close to 6.0 or to add a buffer to maintain pH at 6.0. Adding a buffer was not adopted as a method for maintaining a stable pH because it was feared that the water quality might be changed during this process.

Li et al. (2000b) conducted their investigation of sequential inactivation of *C*. *parvum* oocysts with ozone followed by monochloramine in de-ionized water that was buffered at a single pH of 8.0, and, therefore, were not able to report on a pH effect. Rennecker et al. (2001) found that synergistic inactivation of *C. parvum* oocysts with ozone followed by monochloramine was independent of pH, however, they limited their study to the pH's 8 and 10.

Combined chlorine exists in the three equilibrium forms, monochloramine  $(NH_2Cl)$ , dichloramine  $(NHCl_2)$ , and trichloramine  $(NCl_3)$ , however, monochloramine and dichloramine tend to dominate in water treatment conditions where excess ammonia is available. For a fixed  $Cl_2$ :N molar dose ratio, the proportion of monochloramine to dichloramine increases with pH and above pH 8 most of the combined chlorine is in the monochloramine form (Haas, 1999). Dichloramine has been shown to be a more effective anti-bacterial and anti-viral agent than monochloramine (Chang 1971). Monochloramine, however, is chemically more stable than dichloramine and this property may be of greater advantage in the inactivation of resistant microorganisms such as *C. parvum*. The more reactive dichloramine may be less able to diffuse through the *C. parvum* oocyst wall to reach sensitive targets within the oocyst interior.

#### **5.7.3 Effect of Ozone Primary Treatment**

A previous study in buffered de-ionized water (Li et al. 2001b) reported that the level of ozone primary treatment affected the magnitude of the synergistic effect, however, the nature of the relationship was not clear. In the present study with natural waters, ozone primary treatment had a significant impact on the synergistic effect of ozone followed by monochloramine sequential treatment in the natural waters. According to equation 5.2, a higher ozone primary treatment level yielded a greater synergistic effect.

One hypothesis for the mechanism of synergy is based on the premise that the rate of inactivation of *C. parvum* oocysts by weak oxidants such as monochloramine is limited by the rate at which the monochloramine molecule diffuses through the oocyst wall. Ozone reacts with lipids, proteins or other constituents of the oocyst wall, thereby weakening the oocyst wall and increasing it's permeability to monochloramine (Li et al. 2001b). A slightly different hypothesis supposes that ozone reacts rapidly with many of the same constituents within the oocyst wall and cavity that would otherwise consume monochloramine by reaction (Renneker et al. 2001). An increase in the level of synergistic effect with increasing ozone pre-treatment level, as observed in the present study, is consistent with either hypothesis. The results of this study, therefore, do little to confirm the mechanism of the synergistic effect. The observation that the synergistic effect is lower in natural water that is higher in turbidity, colour and total organic carbon, tends to support a hypothesis that the synergistic effect is related to reactions that occur at the surface of the oocyst wall rather within the interior of the oocyst.

## **5.7.4 Effect of Temperature**

In this study with natural waters, the effect of temperature on synergy was found to be inconsequential. This unexpected finding was difficult to explain. However, it is possible that the effect of temperature may have been too small to be measurable relative to the variation inherent in the infectivity assay. In contrast, previous studies reported the synergistic effect of ozone and monochloramine sequential treatment on *C. parvum* oocysts to be temperature dependent. Li et al. (2001b) studied sequential inactivation at temperatures of 1°C, 10°C and 22°C, and reported that both gross inactivation and the synergistic effect increased with temperature. These researchers, however, assumed that  $k_1$  (the monochloramine inactivation rate constant without ozone pre-treatment) was zero in their determination of the synergistic effect. The results of the present study (see the  $k_1$ values presented in Tables 5.2 and 5.3) suggest that the Li et al. (2001b) approach may have underestimated the synergistic effect at low temperatures and overestimated the synergistic effect at higher temperatures. Driedger et al. (2001), on the other hand, reported a stronger synergistic effect at lower temperatures. They found that the inactivation rate with monochloramine after ozone pre-treatment was 5 times faster at 20°C and 22 times faster at 1°C than the corresponding post-lag phase rates of inactivation with monochloramine treatment alone. This finding may be explained by their interpretation of the synergistic effect in terms of a ratio of monochloramine inactivation rates (i.e.  $k_2/k_1$ ) versus an absolute difference in inactivation rates  $(k_2-k_1)$  in this study. The latter interpretation of a synergistic effect was preferred for this study because the ratio interpretation  $(k_2/k_1)$  becomes problematic and difficult to interpret when  $k_1$  is either very close to zero or is negative.

# CHAPTER 6: OZONE INACTIVATION OF C. PARVUM IN NATURAL WATERS

# **6.1 INTRODUCTION**

A secondary objective of this study was to determine to what degree inactivation of oocysts by ozone alone, was affected by the natural water environment. An additional objective was to develop a *C. parvum* inactivation design criteria, using ozone in natural waters and compare the results measured in the natural waters to those obtained in previous studies (Li et al 2001b, Oppenheimer et al. 2000).

### **6.2 EXPERIMENTAL SETTINGS**

The experimental conditions of the ozone inactivation trials of C. parvum in natural waters are shown in Table 6.1. All the conditions were investigated for the natural waters D and E, which varied significantly in colour, TOC, and turbidity. To estimate the temperature effect, experiments were conducted at two different temperatures (3 °C and 21°C). In most conditions specified in Table 6.1, data were collected for both high and low levels of ozone treatment. Inactivation levels of 1.7 log-units and 0.7 log-units were used to characterize the high and low level of ozone treatment targets, respectively. The Ct values were manipulated to achieve these two inactivation levels at each temperature based on the kinetic model predictions of Li et al. (2001b). To determine the effect of pH on the ozone disinfection kinetics, experiments were conducted at both pH 6 and 8 for most of the waters. For the experiments conducted at pH 6, waters A, B, C, D, and E, which had a natural pH of about 8, were adjusted to 6 by mineral acid addition prior to experiments and they were stable through out the ozone exposure period. Most of the trials were replicated twice under each of the conditions specified in Table 6.1. Ideally, randomization of the trials would have been a good approach for conducting these experiments. But this would have required storage of the natural waters for a long time (experimental period = 2 years), which could have changed the water quality

| Table 6.1 Experimental    | conditions ( | of the | ozone | inactiv | vation | trials | with | $C_{\cdot}$ | parvum | done i | n |
|---------------------------|--------------|--------|-------|---------|--------|--------|------|-------------|--------|--------|---|
| the natural waters A to C | £            |        |       |         |        |        |      |             |        |        |   |

| Motural | Experimental trials done? |          |          |          |  |  |  |
|---------|---------------------------|----------|----------|----------|--|--|--|
| waters  |                           | 21°C     | 3°C      |          |  |  |  |
|         | pH 6 pH 8                 |          | pH 6     | pH 8     |  |  |  |
| А       | Done                      | Done     | Not done | Not done |  |  |  |
| В       | Not done                  | Not done | Done     | Done     |  |  |  |
| С       | Done                      | Done     | Not done | Not done |  |  |  |
| D       | Done                      | Done     | Done     | Done     |  |  |  |
| Е       | Done                      | Done     | Done     | Done     |  |  |  |
| F       | Done                      | Not done | Done     | Not done |  |  |  |
| G       | Not done                  | Not done | Done     | Not done |  |  |  |

Done = Experiments were done under the conditions specified

Not done = Experiments were not done under the conditions specified

characteristics significantly. Hence, randomization of the trials was not done and the natural waters were used for experiments within a short period of 4 months after collection. The water quality analysis was done at the middle of the experimental period during these 4 months.

# **6.3 RESULTS AND ANALYSIS**

Details of the ozone primary treatment conditions and the inactivation results are provided in Tables C.1 to C.7 of Appendix C. At 21°C, the experimental ozone *Ct* products were between 0.5 and 1.0 mg·min/L for the 0.7 log-unit ozone pre-treatment target and between 2.0 and 4.5 mg·min/L for the 1.7 log-unit pre-treatment target. At 3°C, the experimental ozone *Ct* products were between 5.0 and 9.0 mg·min/L for the 0.7



Figure 6.1 Ozone inactivation of C. parvum oocysts in natural waters at pH 6 to 8.

log-unit ozone pre-treatment target and between 10.0 and 27.0 mg·min/L for the 1.7 logunit pre-treatment target. The inactivation of *C. parvum* oocysts exposed to ozone at 3°C ( $\pm$  2°C) and 21 °C ( $\pm$  0.4°C) in the natural waters are illustrated in Figure 6.1. The results in Figure 6.1 indicate a high variability in the data set for both high and low temperatures. However, visually, the inactivation data tend to exhibit a linear relationship at the high and low temperatures unlike the typical nonlinear relationship (I.g.H model) in buffered de-ionized water (Gyürék et al. 1999, Li et al. 2001b) characterized by an apparent shoulder, followed by a fast decline, and then a tail.

# 6.3.1 Control Trials

The reduction in infectivity in the control trials ranged from -1.0 to 1.0 log-units but was mostly within -0.6 to 0.2 log-units (Table 6.2). This range was slightly greater than the -0.7 to 0.7 log-units range that is typical for untreated control samples when using the neonatal CD-1 mouse assay in earlier studies with buffered de-ionized water (Li et al. 2001b). Histograms showing the reduction in infectivity of the oocysts in the control reactors for each natural water, are presented in Appendix E. The mean inactivation in the positive controls was 0.15 log-units indicating that exposure to the experimental water matrices and the various processing steps had little effect on mean oocyst infectivity. This also suggests that exposure of the oocysts to natural waters alone had little effect on oocyst infectivity, but may have increased the variability in the infectivity assay compared to the buffered de-ionized water. The control trials served primarily as a quality assurance for the experiments.

| Natural Water | Mean (log-units) | Standard Deviation |
|---------------|------------------|--------------------|
| A             | 0.23             | 0.39               |
| В             | 0.23             | 0.25               |
| С             | 0.11             | 0.29               |
| D             | -0.17            | 0.38               |
| E             | -0.064           | 0.42               |
| F             | -0.45            | 0.27               |
| G             | -0.61            | 0.71               |

Table 6.2: Mean infectivity reduction of all the control trials in natural waters

## 6.3.2 Comparison of the Results with I.g.H Model Predictions

The observed ozone inactivations were compared to I.g.H. model (Gyürék et al. 1999, Li et al. 2001b) predicted inactivations for equivalent ozone treatment conditions in this study. Predictions of *C. parvum* inactivation were generated for each experimental trial by substituting measured ozone exposure parameters (i.e.  $C_0$ ,  $k_d$ ) into the I.g.H. model given by equation 3.8. The I.g.H. model predictions generated using parameters provided by Li et al. (2001b) are valid for the pH range of 6 to 8. Within this range, Li et al. (2001b) found that the kinetic model parameters were largely unaffected by pH. Values of  $k_d$ , the first-order ozone decay coefficient, were determined for each experimental trial by fitting the equation  $C = C_0 \exp(-k_d t)$  to the measured ozone concentration-time profiles.

Comparisons between I.g.H. model predictions and the measured inactivation in the different natural waters after ozone treatment alone are shown in Figures 6.2 and 6.3. The central diagonal line in these figures represents a perfect model fit, while the upper and lower diagonal lines represent approximate upper and lower 90% confidence bands on the model predictions that were estimated by Gyürék et al. (1999) and Li et al. (2001b). These are, respectively,  $\pm 0.7$  log-units at 21°C and  $\pm 0.6$  log-units at 3°C.

Results with natural waters A, B, and C at 21°C indicated a reasonable match between the measured inactivation and I.g.H. model predictions (Figure 6.2 a). With the exception of a cluster of data points at a predicted infectivity reduction of 1.5 log-units, most of the experimental results were within  $\pm$  0.7 log-units of the model predictions. Model predictions for natural water B at the lower temperature also matched the measured inactivation reasonably well (Figure 6.3).

With natural waters D and E at 21°C, there appears to be some degree of lack-offit of the I.g.H. model at both the higher temperature (Figure 6.2b) and at the lower temperature (Figure 6.3). In some cases the model over-predicted inactivation by up to 1.0 log-unit. With natural waters F and G there seems to be a lack-of-fit except for Type F water at 5°C (Figure 6.3). The average model errors for each of the waters are shown in



Figure 6.2 Comparison of measured infectivity reductions by ozone to Incomplete Gamma Hom (I.g.H) kinetic model predictions at 21 °C and pH values of 6 to 8 in (a) waters A, B, C and (b) waters D, E, and F.



Figure 6.3 Comparison of measured infectivity reductions by ozone to Incomplete Gamma Hom (I.g.H) kinetic model predictions at 3°C and pH values of 6.0 to 8.0 in the natural waters B, D, E, F, and G.

Table 6.3. The lack-of-fit for the model predictions was observed in 4 of the 7 natural waters. In general, the cause of these deviations from model predictions is uncertain. Because the deviation was noted for natural waters D, E, F, and G but to a lesser extent with natural waters A, B, and C, it would seem that a water quality effect is unlikely. A more plausible explanation is batch-to-batch variation in oocyst sensitivity to ozone. Experiments conducted in Part I (Types A, B, and C), Part II (Types D and E), and Part III (Types F and G) were conducted in different experimental periods. Hence, different

batches of oocysts with potentially different resistance to ozone were used in the Part I, Part II, and Part III experiments. The oocyst batches can have different resistance to ozone because each batch of oocysts came from different hosts and hence they were exposed to different environments during their life cycles.

| Natural<br>Water | Temperature (°C) | <sup>a</sup> Average Model Error | <sup>b</sup> Significantly different<br>from zero? |  |
|------------------|------------------|----------------------------------|----------------------------------------------------|--|
| A                | 21               | $0.05 \pm 0.37$                  | No                                                 |  |
| В                | 21               | $-0.35 \pm 0.74$                 | No                                                 |  |
| С                | 21               | $-0.22 \pm 0.51$                 | No                                                 |  |
| D                | 21               | $-0.38 \pm 0.64$                 | No                                                 |  |
| E                | 21               | $-0.6 \pm 0.58$                  | Yes                                                |  |
| F                | 21               | $0.79 \pm 0.7$                   | Yes                                                |  |
| В                | 3 ± 2            | 0.16 ± 0.39                      | No                                                 |  |
| D                | 3 ± 2            | 0.64 ± 0.49                      | Yes                                                |  |
| E                | 3 ± 2            | 0.25 ± 0.69                      | No                                                 |  |
| F                | 5                | $-0.02 \pm 0.52$                 | No                                                 |  |
| G                | 5                | $-0.59 \pm 0.48$                 | Yes                                                |  |

Table 6.3 Comparison of the I.g.H. model prediction versus the measured *C. parvum* inactivation by ozone

<sup>a</sup>Average of  $[\hat{Y} - Y] \pm$  Standard Deviation

where  $\hat{Y} = I.g.H$  model prediction and Y = Measured Inactivation

<sup>b</sup>If zero lies between the upper and lower level of the average model error, then the model error is not significant
### 6.3.3 Chick-Watson Model and Design Criteria

The I.g.H. model is a complex model. The application of a simple model is always preferable to a more complex model with a large number of empirical parameters because it minimizes the prediction error of the model (Oppenheimer et al. 2000). Model evaluation demonstrated earlier (Oppenheimer et al. 2000) found that the higher parameter models did not result in lower Ct values to achieve a target level of C. parvum inactivation. The linear Chick-Watson model was found to be adequate for describing the inactivation kinetics in natural waters. In this study the general linear appearance of the inactivation data at temperatures of 3°C and 21°C in Figure 6.1 suggests that a linear model may be able to describe the ozone inactivation kinetics in natural waters.

Recalling from equation 3.7 that the Chick-Watson model can be described as

$$\ln \frac{N_0}{N} = kCt$$
 Equation 6.1

where  $\ln(N_0/N)$  is the ozone inactivation in terms of log units, k is the inactivation rate constant (min<sup>-1</sup>), C is the average ozone concentration (mg/L), and t is the time in minutes. For natural waters, k is expressed as a function of temperature (T), water quality, oocysts batch, and oocysts age:

$$k = K(\theta)^{T} (WaterQuality)^{a} (b)^{B} (c)^{D}$$
 Equation 6.2

where K, a,  $\theta$ , b, and c are constants to be determined by regression analysis. In order to quantify the batch-to-batch variation of the oocysts resistance to ozone, the parameter "B" (for a particular batch and temperature, it is the average of all the trials of the ozone inactivation of the oocysts per unit ozone Ct) was used as a variable in equation 6.2. The ages of the oocysts were represented by "D".

Assuming n=1 and putting equation 6.2 in equation 6.1 the following relationship can be obtained:

$$\ln(N_0 / N) = K(\theta)^T (WaterQuality)^a (b)^B (c)^D Ct$$

Equation 6.3

Let  $Y = \ln(N_0/N)/(Ct)$ 

Hence equation 6.3 can be written as

$$Y = K(\theta)^{T} (WaterQuality)^{a} (b)^{B} (c)^{D}$$
 Equation 6.4

Taking the natural logarithim on both sides of equation 6.4 we get

$$\ln(Y) = \ln(K) + T\ln(\theta) + a\ln(WaterQuality) + B\ln(b) + D\ln(c)$$
 Equation 6.5

Equation 6.5 is a model like equation 3.9 where  $\ln(Y)$  is the dependent variable and  $\ln$ (K), T, ln (Water Quality), B, and D are the independent variables. A summary of the ozone inactivation data including the batch ozone inactivation per unit Ct and the age of the oocysts before experiments, is shown in Table 6.4. For the water quality a sufficient range of values (Table 3.3) was available to investigate eight water quality parameters: pH, conductivity, TDS, hardness, alkalinity, TOC, colour, and turbidity. However, a number of these parameters are highly correlated with each other and it is also unknown which of these parameters significantly influences the ozone inactivation kinetics of C. parvum in natural waters. Ideally, factorial analysis (Box et al. 1978) would be used in both the selection of experimental conditions and analysis of the data. However, due to the limited size of the database, it was not possible to evaluate all eight of these water quality parameters simultaneously in a  $2^8$  full factorial design (256 conditions). Hence, an alternative approach was adopted. A "water quality" index was developed. This index represented each of these eight water quality parameters individually. Each water quality index was used as a measure of water quality in the above regression equation 6.5. Multiple regression analysis of the data set shown in Table 6.3 was then done, by adopting the "backward elimination" (Draper and Smith 1966) approach using the regression tool in Microsoft Excel 2000. Model terms were rejected or retained based on

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| l             |              |            |                                                         |      | [           |                                      |                 |
|---------------|--------------|------------|---------------------------------------------------------|------|-------------|--------------------------------------|-----------------|
|               | Ozone        | [Ln(Ozone  |                                                         |      |             | Batch O <sub>3</sub> inactivation/Ct |                 |
| Water         | Inactivation | Ct         | $Ct \qquad \text{Inactivation}/Ct) \qquad T \qquad (B)$ |      | Oocysts Age |                                      |                 |
| Туре          | (log)        | (mg·min/L) | [ln{log/(mg·min/L)}]                                    | (°C) | pH          | [log/(mg·min/L)]                     | (D) (days)      |
| A             | 2.17         | 3.85       | -0.57                                                   | 22   | 7.8         | 0.509                                | 38              |
| <u>A</u>      | 1.17         | 2.19       | -0.63                                                   | 22   | 7.8         | 0.509                                | 39              |
| <u>A</u>      | 1.01         | 2.63       | -0.96                                                   | 22   | 7.8         | 0.509                                | 40              |
| <u>A</u>      | 2.17         | 3.42       | -0.46                                                   | 22   | 7.8         | 0.509                                | 41              |
| <u>A</u>      | 0.17         | 0.94       | -1.71                                                   | 22   | 7.8         | 0.509                                | 52              |
| <u>A</u>      | 0.82         | 1.20       | -0.38                                                   | 22   | 7.8         | 0.509                                | 53              |
| <u>A</u>      | 1.68         | 3.64       | -0.77                                                   | 22   | 7.8         | 0.509                                | 66              |
| A             | 1.76         | 5.70       | -1.17                                                   | 22   | 7.8         | 0.509                                | 67              |
| <u>A</u>      | 2.01         | 4.16       | -0.73                                                   | 22   | 6           | 0.509                                | 68              |
| A             | 2.36         | 5.35       | -0.82                                                   | 22   | 6           | 0.509                                | 69              |
| A             | 0.82         | 1.35       | -0.50                                                   | 22   | 6           | 0.509                                | 122             |
| <u>A</u>      | 2.36         | 4.85       | -0.72                                                   | 22   | 6           | 0.509                                | 123             |
| <u> </u>      | 1.32         | 1.32       | 0.00                                                    | 22   | 6           | 0.509                                | 124             |
| A             | 2.16         | 5.87       | -1.00                                                   | 22   | 6           | 0.509                                | 125             |
| B             | 0.81         | 3.03       | -1.32                                                   | 21   | 6           | 0.714                                | 4               |
| B             | 2.74         | 3.40       | -0.22                                                   | 21   | 6           | 0.714                                | 5               |
| B             | 1.76         | 3.15       | -0.58                                                   | 21   | 6           | 0.714                                | 15              |
| B             | 2.81         | 2.78       | 0.01                                                    | 21   | 6           | 0.714                                | 27              |
| <u> </u>      | 2.74         | 2.86       | -0.04                                                   | 21   | 6           | 0.714                                | 28              |
| B             | 3.02         | 3.29       | -0.08                                                   | 21   | 6           | 0.714                                | 29              |
| B             | 0.74         | 1.26       | -0.53                                                   | 21   | 6           | 0.714                                | 30              |
| B             | 0.67         | 0.94       | -0.34                                                   | 21   | 6           | 0.714                                | 41              |
| B             | 0.74         | 1.06       | -0.36                                                   | 21   | 6           | 0.714                                | 42              |
| B             | 0.89         | 1.18       | -0.28                                                   | 21   | 6           | 0.714                                | 43              |
| <u>B</u>      | 0.89         | 1.52       | -0.53                                                   | 21   | 6           | 0.714                                | 44              |
| <u>C</u>      | 2.45         | 3.01       | -0.21                                                   | 21   | 6           | 0.682                                | 20              |
| <u> </u>      | 1.13         | 0.88       | 0.25                                                    | 21   | 6           | 0.682                                | 20              |
| <u> </u>      | 2.42         | 3.08       | -0.24                                                   | 21   | 6           | 0.682                                | 22              |
| <u> </u>      | 1.77         | 2.17       | -0.20                                                   | 21   | 7.6         | 0.682                                | 35              |
| $\frac{c}{c}$ | 1.77         | 3.83       | -0.77                                                   | 21   | 6           | 0.682                                | 49              |
| <u> </u>      | 0.13         | 1.14       | -2.17                                                   | 21   | 0           | 0.682                                | 03              |
|               | 0.13         | 0.39       | -1.09                                                   | -21  | 1.0         | 0.682                                |                 |
|               | 1.//         | 3.08       | -0.56                                                   | 21   | 0           | 0.682                                | /6              |
|               | 0.77         | 0.81       | -0.05                                                   | 21   | 0           | 0.682                                |                 |
|               | 1.4          | 0.42       | 0.18                                                    | -21  | 1.0         | 1.347                                | 41<br>A1        |
|               | 0.90         | 0.42       | 0.00                                                    | 21   | /.0         | 1.34/                                | <u>41</u><br>50 |
|               | 1.19         | 1.90       | -0.09                                                   | 21   | 0.1         | 1.347                                | 28<br>          |
|               | 1.03         | 1.37       | 0.29                                                    | - 21 | 0.1         | 1.34/                                | 0.5             |
|               | 2.37         | 2.94       | -0.13                                                   | 21   | 0.1         | 1.347                                | 07              |
|               | 2.3/         | 2.44       | 0.03                                                    | 21   | 0.1         | 1.247                                | 9/              |
|               | 1./          | 0.72       | 0.50                                                    | 21   | 0           | 1.34/                                | 99              |
|               | 0.20         | 0.40       | -0.33                                                   | 21   | <u> </u>    | 1.34/                                | 111             |
|               | 1.4          | 1.00       | 0.41                                                    | 21   | <u> </u>    | 1.34/                                | 115             |
|               | 0.64         | 1.09       | 0.03                                                    | 21   | 0 1         | 0.070                                | 4/              |
|               | V.04         | U.89       | -0.33                                                   | 21   | ð.1         | 0.870                                | 11              |

Table 6.4 Summary of the ozone inactivation data at their respective conditions

(Continued)

|          | Ī            |                                                | ln V                                                    |      | l           |                  | 1          |
|----------|--------------|------------------------------------------------|---------------------------------------------------------|------|-------------|------------------|------------|
|          | Ozone        | [Ln(Ozone Batch O <sub>3</sub> inactivation/Ct |                                                         |      |             |                  |            |
| Water    | Inactivation | Ct                                             | $Ct \qquad \text{Inactivation}/Ct) \qquad T \qquad (B)$ |      | Oocysts Age |                  |            |
| Туре     | log)         | (mg·min/L)                                     | $[ln{log/(mg \cdot min/L)}]$                            | (°C) | pН          | [log/(mg·min/L)] | (D) (days) |
| D        | 1.01         | 0.66                                           | 0.43                                                    | 21   | 8.1         | 0.870            | 88         |
| D        | 2.51         | 3.98                                           | -0.46                                                   | 21   | 6           | 0.870            | 102        |
| D        | 1.21         | 2.69                                           | -0.80                                                   | 21   | 6           | 0.870            | 116        |
| D        | 2.21         | 2.67                                           | -0.19                                                   | 21   | 6           | 0.870            | 117        |
| E        | 1.41         | 3.85                                           | -1.01                                                   | 21   | 8.1         | 0.710            | 10         |
| E        | 0.99         | 2.30                                           | -0.84                                                   | 21   | 6           | 0.710            | 24         |
| E        | 3.09         | 6.00                                           | -0.66                                                   | 21   | 6           | 0.710            | 35         |
| Е        | 1.79         | 3.65                                           | -0.71                                                   | 21   | 8.1         | 0.710            | 36         |
| E        | 1.24         | 2.01                                           | -0.49                                                   | 21   | 6           | 0.710            | 77         |
| Е        | 1.74         | 2.57                                           | -0.39                                                   | 21   | 8.1         | 0.710            | 78         |
| E        | 2.29         | 4.37                                           | -0.65                                                   | 21   | 6           | 0.710            | 79         |
| Е        | 1.84         | 2.66                                           | -0.37                                                   | 21   | 6           | 0.710            | 91         |
| E        | 2.46         | 5.07                                           | -0.72                                                   | 21   | 6           | 0.710            | 92         |
| Е        | 2.61         | 3.65                                           | -0.34                                                   | 21   | 8.1         | 0.710            | 94         |
| Е        | 2.84         | 2.49                                           | 0.13                                                    | 21   | 8.1         | 0.710            | 105        |
| E        | 3.09         | 2.68                                           | 0.14                                                    | 21   | 8.1         | 0.710            | 106        |
| E        | 2.16         | 2.65                                           | -0.21                                                   | 21   | 6           | 0.710            | 120        |
| E        | 2.54         | 2.47                                           | 0.03                                                    | 21   | 8.1         | 0.710            | 121        |
| Е        | 2.39         | 2.37                                           | 0.01                                                    | 21   | 6           | 0.710            | 121        |
| E        | 1.54         | 2.33                                           | -0.41                                                   | 21   | 8.1         | 0.710            | 122        |
| E        | 1.74         | 2.33                                           | -0.29                                                   | 21   | 8.1         | 0.710            | 122        |
| F        | 0.24         | 2.79                                           | -2.45                                                   | 21   | 6.3         | 0.280            | 111        |
| F        | 2.19         | 5.25                                           | -0.88                                                   | 21   | 6.3         | 0.280            | 112        |
| G        | 3.19         | 5.96                                           | -0.63                                                   | 21   | 5.8         | 0.280            | 123        |
| F        | 0.19         | 2.62                                           | -2.62                                                   | 21   | 6.3         | 0.280            | 124        |
| B        | 2.44         | 34.52                                          | -2.65                                                   | 2.5  | 6           | 0.059            | 22         |
| В        | 2.02         | 36.06                                          | -2.88                                                   | 3    | 6           | 0.059            | 23         |
| B        | 0.31         | 5.25                                           | -2.83                                                   | 2.8  | 6           | 0.059            | 24         |
| B        | 2.22         | 23.77                                          | -2.37                                                   | 1.1  | 6           | 0.059            | 37         |
| B        | 0.14         | 2.46                                           | -2.86                                                   | 1.1  | 6           | 0.059            | 38         |
| B        | 0.01         | 1.98                                           | -5.29                                                   | 3.1  | . 6 .       | 0.059            | 50         |
| <u> </u> | 2.42         | 30.01                                          | -2.52                                                   | 2.9  | 6           | 0.059            | 51         |
| <u> </u> | 1.42         | 29.65                                          | -3.04                                                   | 2.9  | 6           | 0.059            | 52         |
| B        | 2.42         | 38.56                                          | -2.77                                                   | 2.9  | 6           | 0.059            | 53         |
| D        | 0.54         | 5.16                                           | -2.26                                                   | 2.6  | 8.1         | 0.108            | 49         |
| D        | 0.49         | 7.90                                           | -2.78                                                   | 5    | 6           | 0.108            | 91         |
| D        | 1.14         | 9.86                                           | -2.16                                                   | 5    | 8.1         | 0.108            | 104        |
| D        | 0.84         | 5.91                                           | -1.95                                                   | 7    | 6           | 0.108            | 118        |
| D        | 1.16         | 9.90                                           | -2.14                                                   | 7    | 8.1         | 0.108            | 119        |
| D        | 0.01         | 8.66                                           | -6.76                                                   | 1    | 6           | 0.058            | 21         |
| E        | 0.31         | 14.88                                          | -3.87                                                   | 1    | 8.1         | 0.058            | 22         |
| E        | 0.09         | 9.88                                           | -4.70                                                   | 1    | 8.1         | 0.058            | 23         |
| E        | 1.29         | 26.98                                          | -3.04                                                   | 1    | 6           | 0.058            | 37         |
| E        | 1.54         | 27.26                                          | -2.87                                                   | 1    | 6           | 0.058            | 52         |
| Е        | 1.69         | 18.14                                          | -2.37                                                   | 1    | 8.1         | 0.058            | 64         |

Table 6.4 (Continued)

(Continued)

|       |              |            | ln Y                           |      |     |                                      |             |
|-------|--------------|------------|--------------------------------|------|-----|--------------------------------------|-------------|
|       | Ozone        |            | [Ln(Ozone                      |      |     | Batch O <sub>3</sub> inactivation/Ct |             |
| Water | Inactivation | Ct         | Inactivation)/Ct)]             | Т    |     | (B)                                  | Oocysts Age |
| Туре  | (log)        | (mg·min/L) | $[ln\{log/(mg \cdot min/L)\}]$ | (°C) | pH  | [log/(mg·min/L)]                     | (D) (days)  |
| Е     | 0.17         | 9.58       | -4.03                          | . 1  | 8.1 | 0.058                                | 65          |
| Е     | 0.54         | 10.28      | -2.95                          | 1    | 6   | 0.058                                | 93          |
| E     | 1.31         | 9.89       | -2.02                          | 1    | 6   | 0.058                                | 107         |
| E     | 2.79         | 24.08      | -2.16                          | 1    | 6   | 0.058                                | 108         |
| E     | 1.39         | 15.12      | -2.39                          | 1    | 8.1 | 0.058                                | 119         |
| F     | 1.87         | 17.10      | -2.21                          | 5    | 6.3 | 0.106                                | 113         |
| F     | 1.51         | 15.44      | -2.32                          | -5   | 6.3 | 0.106                                | 114         |
| F     | 0.87         | 17.10      | -2.98                          | 5    | 6.3 | 0.106                                | 125         |
| G     | 2.19         | 17.55      | -2.08                          | 5    | 5.8 | 0.106                                | 126         |
| G     | 2.21         | 16.27      | -2.00                          | 5    | 5.8 | 0.106                                | 137         |
| G     | 2.24         | 15.32      | -1.92                          | 5    | 5.8 | 0.106                                | 138         |
| G     | 1.21         | 15.68      | -2.56                          | 5    | 5.8 | 0.106                                | 138         |

Table 6.4 (Continued)

the statistical significance of the coefficients at the 90% confidence level. Since the variable "water quality" in equation 6.5 was represented by eight individual water quality parameters separately, eight separate multiple regression analysis were done. This approach did not permit the effect of the simultaneous consideration of all the water quality parameters on the ozone inactivation kinetics of *C. parvum*. Nevertheless, the analysis gave valuable information about the effect of the dominating water quality factors on the inactivation kinetics. For the water quality parameters "TOC" and "Colour" the values were not available for waters (A) and (B and C) respectively (Table 3.3). Hence for the regression analysis, the inactivation data of the corresponding waters were not used. The water quality parameters having values which are "below detection level" (Table 3.3), were set at the detection limit of the data points and were used for the multiple regression analysis.

The multiple regression analysis indicated that none of the individual eight water quality parameters were statistically significant at the 90 % confidence level (p > 0.10). According to the multiple regression analysis, only the variables *T*, *B*, and *D* were found to be statistically significant at the 90% confidence level. The variable "water quality" was found to be insignificant for all the eight water quality parameters in the eightregression analysis. The linear model obtanined after regression analysis is given by: Given the computed values of the ANOVA *F*-statistic and the *p*-values for each parameter, the overall model and the individual parameters were significant at the 90% level. The  $r^2$  and the standard error of the above model, was determined to be 0.76 and 0.68, respectively.

A similar regression analysis was repeated for equation 6.5 but this time without considering the effect of the oocysts batch-to-batch variation (B) and oocysts age (D). Multiple regression analysis of the data set shown in Table 6.4 was once again done, by adopting the "backward elimination" and model terms were rejected or retained based on the statistical significance of the coefficients at the 90% confidence level. Once again all the variables of *water quality* were found to be insignificant and equation 6.5 now reduced to the following equation:

$$\ln(Y) = -3.26 + 0.13T$$
 Equation 6.7

The  $r^2$  and the standard error of this model, was determined to be 0.69 and 0.76, respectively. On comparing equations 6.6 and 6.7, it was found that removing the effect of the variables *B* and *D* from equation 6.6 yielded an equation 6.7 with a marginal deterioration in the  $r^2$  and standard error of the model. This showed that equation 6.6 was slightly better in model prediction than equation 6.7. However, a design criteria based on oocysts resistance to ozone in each batch, and oocysts age would be of limited practical significance as there is no way of determining them, beforehand. Hence, the more rational approach for developing a model for predicting the relationship between inactivation and *Ct* values is to elimnate "batch" or "lot" and "age" as a variable in the model (Clark et al. 2003). Batch-to-batch variability should rather be included in the general variability of the model and accounted for by using a safety factor. Thus equation 6.7 instead of equation 6.6 was used to develop an ozone inactivation of *C. parvum* design-criteria.



Figure 6.4 Fit of the Chick-Watson model for predicting the ozone inactivation of C. *parvum* oocysts in natural waters A to G at pH 6 to 8 and temperatures of (a) 21 °C and (b) 3 °C.

Table 6.5: Comparison of the Chick-Watson model prediction versus the measured *C*. *parvum* inactivation by ozone

| Natural<br>Water | Temperature (°C) <sup>a</sup> Average Model Error |                  | <sup>b</sup> Significantly different<br>from zero? |
|------------------|---------------------------------------------------|------------------|----------------------------------------------------|
| A                | 21                                                | $-0.69 \pm 0.98$ | No                                                 |
| В                | 21                                                | 0.01 ± 0.65      | No                                                 |
| C                | 21                                                | $0.10 \pm 0.62$  | No                                                 |
| D                | 21                                                | 0.56 ± 0.68      | No                                                 |
| E                | 21                                                | $0.25 \pm 0.97$  | No                                                 |
| F                | 21                                                | $-1.52 \pm 0.15$ | Yes                                                |
| В                | 3 ± 2                                             | $-0.02 \pm 0.47$ | No                                                 |
| D                | 3 ± 2                                             | $0.14 \pm 0.41$  | No                                                 |
| Е                | 3 ± 2                                             | $0.36 \pm 0.64$  | No                                                 |
| F                | 5                                                 | 0.03 ± 0.53      | No                                                 |
| G                | 5                                                 | $0.40 \pm 0.48$  | No                                                 |

<sup>a</sup>Average of  $[\hat{Y} - Y] \pm$  Standard Deviation

where  $\hat{Y}$  = Chick-Watson model prediction and Y = Measured Inactivation <sup>b</sup>If zero lies between the upper and lower level of the average model error, then the model error is not significant

Reformulating equation 6.7 after substituting *Y* yields the following equations:

$$\ln(N_0 / N) = 0.038(1.139)^T Ct$$

Equation 6.8

The developed Chick-Watson model in equation 6.8 was used to fit the ozone C. parvum inactivation data obtained in this study. Fitted (predicted) infectivity reductions for the model parameter estimates are plotted with respect to observed infectivity reductions in Figure 6.4. The 90 % upper and lower bound inactivation rates are also plotted using the procedures described elsewhere (Clark et al. 2002). The Chick-Watson model exhibited both underestimation and overestimation of the observed (true) level of C. parvum inactivation both at high and low temperatures. In some cases the model underestimated the inactivation as high as 1.5 log-units and 0.75 log-units at 21°C and 3°C, respectively. The model also overestimated the predictions as high as 1.5 log-units and 0.5 log-units at 21°C and 3°C, respectively. The average model errors for all the natural waters are shown in Table 6.5. The results presented in table 6.5 indicated that, except for Type F water, the model errors were not significantly different from zero. This indicates a reasonable match between the measured inactivation and Chick-Watson model predictions. The failure to predict the oocysts inactivation in Type F water may be due to the batch-to-batch variation of the oocysts or the age of the oocysts, which were not considered in the model. Based on the above Chick-Watson model, the Ct products were calculated for 1, 2, and 3 log-units of C. parvum inactivation in natural waters at temperatures 1°C,

| n O Man Dhahananan an Anna - Shuki du ya ku y | Ct requirements<br>(mg×min/L) |       |       |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-------|--|--|--|--|--|--|
| Target<br>Inactivation<br>(log-units)                                                                           | 1 °C                          | 10 °C | 20 °C |  |  |  |  |  |  |
| 1.0                                                                                                             | 23                            | 7.2   | 1.9   |  |  |  |  |  |  |
| 2.0                                                                                                             | 46                            | 14.3  | 3.9   |  |  |  |  |  |  |
| 3.0                                                                                                             | 69                            | 21.5  | 5.8   |  |  |  |  |  |  |

| Table | 6.6:  | Ct  | requirements | for | ozone   | inactivati | ion of | С.  | parvum    | at  | various    | conditio  | ons  |
|-------|-------|-----|--------------|-----|---------|------------|--------|-----|-----------|-----|------------|-----------|------|
| based | on th | e C | hick-Watson  | mod | el deve | loped for  | natura | 1 w | aters A t | 0 G | i (no safe | etv facto | or). |

10°C, and 20°C respectively (Table 6.6) and this was used to develop a design criteria. The high uncertainty in the inactivation data set should be accounted for by using a safety factor in practical applications. This would be highly prudent from a public health perspective (Clark et al. 2002). However, safety factor is a matter of choice and judgement. An approach commonly used is by incorporating a safety factor (Clark et al. 2002) in the *Ct* requirements for a given level of confidence interval (say 90 %). The 90 % confidence interval band of the *Ct* requirements shown in Figure 6.4 of this study suggests that adopting this approach may be suitable at lower inactivation levels (below 1 log inactivation). But it is unnecessarily conservative at higher inactivation levels. However, from the data set (Figure 6.4) it appears that a safety factor of 1.5 times the *Ct* requirements in Table 6.6 will give enough cushion of safety for *C. parvum* inactivation in the natural waters under the studied conditions.

### **6.4 DISCUSSIONS**

The inactivation of *Cryptosporidium parvum* oocysts using ozone was found to be feasible in the studied natural waters. However, there was high variability in the data set. The cause of the high variability in the data set is not known. However, the precision of the infectivity determination using the animal infectivity assay might have been reduced in natural waters compared to buffered de-ionized waters due to the presence of dissolved organic compounds and other substances.

#### **6.4.1 Comparison with Previous Studies**

Oppenheimer et al. (2000) studied ozone inactivation of *C. parvum* oocysts in natural waters and used mouse infectivity as the viability assay. The *Ct* requirements they estimated were 16 and 31 mg·min/L for 1 and 2 log-units inactivation at 3°C respectively; and 2.3 and 3.5 mg·min/L for 2 and 3 log-units of inactivation at 21°C respectively. These results were approximately 1.5 times lower than the *Ct* requirements found in this study.

In buffered de-ionized water (Li et al. 2001b), the *Ct* requirements were estimated to be 15.3 to 17 and 41.9 to 43.1 mg·min/L for 1 and 2 log-unit inactivation at 1°C respectively; and 4.6 to 4.7 and 8.0 to 8.3 mg·min/L for 2 and 3 log-units inactivation at 21°C respectively. These results were approximately 1.5 times lower than this study at 1°C. On the other hand at 21°C, the *Ct* requirements in the buffered de-ionized water were about 1.5 times higher than this study.

The overall comparison indicates that the Ct requirements in this study were comparable to that of the earlier studies. At 21°C, the ozone Ct requirements in natural waters of this study were close and comparable to that of the earlier studies. However, at lower temperatures, the Ct requirements in this study were much higher than all the previous studies. This suggested that previously published data obtained for laboratory de-ionized water and natural waters underestimate the ozone Ct requirements in natural waters of this study at low temperatures. This also indicated that for the studied natural waters it may be practically difficult to achieve the target level of inactivation of C. *parvum* oocysts at low temperatures due to the high level of ozone Ct requirements. Nevertheless, it indicates that the ozone inactivation observed earlier in buffered deionized water is not inhibited significantly in the studied natural waters.

## **6.4.2 Effect of Water Quality**

Based on the results of this study none of the water quality parameters individually had an effect on the ozone inactivation kinetics of *C. parvum* in the natural waters. This also indicated that none of the water quality parameters have a dominating effect on the inactivation kinetics under the studied conditions. However, each natural water, represents a unique water quality matrix and the simultaneous consideration of all the water quality parameters might have an effect on the inactivation kinetics at some level. While insufficient to conclude, it appears from the results, that for the 7 studied natural waters the ozone inactivation of *C. parvum* is not inhibited.

## **6.4.3 Effect of Temperature**

For every 10°C rise in temperature, the inactivation rate constant (k) was found to increase by a factor of 3.7, in this study. According to Oppenheimer et al. (2000), the inactivation rate constant increased by a factor of 4.5 for each 10°C rise in temperature. Earlier studies in buffered de-ionized water (Li et al. 2001b) indicated that the results conform to classical thermodynamics in which the inactivation rate constant roughly doubles for every 10°C temperature rise. The results of this study in natural waters indicate a certain departure from the findings of both the earlier studies. This also indicated that the influence of water temperature on the ozone inactivation kinetics for *C*. *parvum* is greater than the earlier study in buffered de-ionized water but less than the earlier study in natural water.

### 6.4.4 Oocyst Batch and Oocyst Age

Previous studies (Rennecker et al. 2000a; Rennecker et al. 2001; Corona-Vasquez et al. 2002) have shown that oocysts from different batches, or even from the same batch but of different age, can have different resistance to ozone inactivation. Hence, the kinetics of ozone inactivation can vary both with the oocysts batch and oocysts age. The results of this study indicated a similar dependence of batch-to-batch variation of oocysts resistance to ozone, on the inactivation kinetics. Equation 6.6 indicated a statistically significant effect of the batch-to-batch variation of the oocysts resistance to ozone. This supports the earlier hypothesis (Corona-Vasquez et al. 2002) that oocysts batches could include "weak" oocysts, "strong" oocysts, or a certain mixture of "weak" and "strong" oocysts, and that the inactivation rate constants for these oocysts were unique at a given temperature. Equation 6.6 also indicated a statistically significant effect of the age of the oocysts on the ozone inactivation kinetics. An increase in the age of the oocysts resistance to ozone inactivation level per unit Ct. This indicated that the oocysts resistance to ozone decreased with time.

## **CHAPTER 7: GENERAL DISCUSSION**

## 7.1 SYNERGISM AND ITS' IMPLICATIONS

Synergistic processes in nature have often been the driving force for research to understand many environmental phenomena. The first observation of synergism is often regarded as an interesting phenomenon, which is beyond the understanding by normal scientific explanations. Synergistic effects may have serious implications as it may cause a highly detrimental or highly beneficial effect in the environment.

In this study, the synergistic effect was used as a tool for measuring the performance of microorganism reduction during water treatment by sequential treatment with chemical oxidants. One of the driving forces behind this study was its' huge implications for the water treatment industry. In drinking water utilities sequential treatment of water using chemical oxidants is common and has been used as a treatment strategy for many years. However, the possibility of the existence of synergistic effect on the inactivation of waterborne parasites had not been investigated rigorously. If a significant amount of synergistic effect exists, it may result in a number of benefits some of which may be as follows:

- 1. reduction in the applied dose of the chemical oxidants in water for achieving a certain level of microorganism reduction;
- 2. reduction in the contact time of the chemical oxidants in water for achieving a certain level of microorganism reduction;
- 3. reduction of the formation of disinfection-by-products in water due to the lower chemical oxidant dose;

4. reduction in the operating cost of water treatment.

The implications mentioned above justifies that "synergism" may have a huge impact in the water treatment industry in general. The understanding of synergistic effect will also help us to fundamentally understand the concept of synergism in water treatment and open new areas of research.

### 7.2 PROBLEM REVISITED

The current challenges in water treatment have generated the need to explore more rigorously the synergistic inactivation of *Cryptosporidium* spp. oocysts in natural waters. The behavior of oxidants during *C. parvum* inactivation is more representative of actual waters in treatment plants. Microbial inactivation in natural waters using chemical oxidants presents a lot of complexity. The oxidants may react with dissolved, colloidal, and particulate matter, and these reactions might interfere with some of the reactions responsible for microbial inactivation. Further, water quality parameters like pH, alkalinity, hardness, total dissolved solids, total organic carbon, turbidity etc. may influence the microbial inactivation process to a significant extent. The questions that are critical issues during these processes are as follows:

- 1. Does synergistic effect of C. parvum inactivation in natural waters exist?
- 2. What combinations (ozone followed by chlorine; chlorine dioxide followed by monochloramine etc.) of oxidants exhibit synergistic effect in natural waters?
- 3. How does the level of primary oxidant treatment influence the synergistc effect?
- 4. How does pH, temperature, and water quality influence the synergistic effect?
- 5. If water quality significantly influences the synergistic effect, which water quality parameters are the true indicators of water quality as far as the synergistic effect is concerned?
- 6. How does the synergistic effect in natural waters compare with the synergistic effect achieved in earlier studies in buffered laboratory water?
- 7. If the synergistic effect in natural water exists, how can the results be utilized to develop reliable design criteria that can be used by the water treatment industry to guide facility design?

In this thesis, an attempt was made to answer some of the above questions.

Although a great deal of research has been done to test the sequential treatment of *C. parvum* using multiple disinfectants, the problem that remained was that synergism and the control of waterborne cryptosporidiosis remained a phenomenon that was poorly understood and may not be universally applicable. The present study helped us to understand some of the processes in natural waters but did not provide answers to some of the questions like:

- 1. Is there a minimum *Ct* value for the primary oxidant beyond which no synergistic effect is obtained?
- 2. What type of disinfectant by-products are produced when multiple oxidants are added and how do they affect the inactivation kinetics?
- 3. What are the mechanisms of sequential chemical inactivation at the cell level in natural waters?
- 4. Can the synergy demonstrated in *C. parvum* be extended to other pathogens like *Giardia* spp., *E. coli* etc. under similar conditions?

Nevertheless, from the results of this study, the water treatment industry will have better direction on how to implement new regulations that may include credit for synergy from sequential treatment. A better understanding of all the influencing factors like pH, temperature, and water matrix effects from the current and further studies may lead to the development of a more rigorous design framework for water utilities in the future.

# 7.3 IMPLICATIONS FOR WATER TREATMENT UTILITIES

### 7.3.1 Ozone Followed By Free Chlorine Sequential Treatment

In this study, the magnitude of the synergistic effect determined in the high pH natural water samples was between 3 and 42 times smaller than previously reported for buffered de-ionized water (Li et al. 2001b) at temperatures of 1°C and 21°C, respectively. Based on the computed mean synergistic effect in the high pH natural waters, after ozone

pretreatment, the free chlorine  $C_{avg}t$  product required to produce a 1 log-unit synergistic effect is estimated to be 23 800 mg·min/L. Assuming a free residual chlorine concentration of 2 mg/L in the finished water, which is typical in the industry, the required contact time is more than 8 days. Clearly, this treatment strategy would be impractical for drinking water utilities since such a contact time would be difficult to achieve by most water treatment facilities.

For the low pH natural waters, the synergistic effect was found to be higher, compared to the high pH waters. For natural water F at 21°C, after 0.8 log-unit ozone pretreatment, the  $C_{avg}t$  product required to produce a synergistic effect equivalent to 1 log-unit synergistic effect was estimated to be 1 098 mg·min/L. For a 2 mg/L chlorine residual, a contact time of 9 hours was required. This contact time may be achievable for certain facilities with sufficient finished water reservoir storage. Therefore, for low pH natural waters, a sequential treatment strategy may be a feasible approach to achieving additional protection against *C. parvum*. Hence, it is not recommended that ozone followed by free chlorine be used as a treatment strategy to achieve additional *C. parvum* inactivation credit in natural waters having a higher pH (8.0). But ozone followed by free chlorine may be used as a treatment strategy to achieve additional inactivation credit in natural waters having a low pH (6.0). However the synergistic effect must also be confirmed for the natural waters under consideration using site-specific testing.

In a recent survey, the mean and median pH of source waters in 171 large and medium-size water treatment facilities in the United States, were reported to be 7.48 and 7.55, respectively (AWWA Water Quality Division Disinfection Systems Committee, 2000). This indicates that most of the source waters in the drinking water utilities in North America have a higher pH. Since the findings of this study suggest that the synergistic effect can only be achieved in low pH source waters and it is practically difficult to achieve low pH during free chlorine treatment in high pH natural waters; it can be hypothesized that for many water treatment facilities it may be practically difficult to achieve a significant synergistic effect using this combination of chemical oxidants.

# 7.3.2 Ozone Followed By Monochloramine Sequential Treatment

For ozone followed by monochloramine sequential treatment, the magnitudes of the synergistic affect in the natural waters were such that they may reasonably be achieved in some water treatment situations. The *Ct* required for a 1 log-unit synergistic effect at 22°C and with 0.4 log-unit of ozone primary treatment was about 1 080 mg·min/L. For a monochloramine residual of 2 mg/L, the contact time required would be about 9 hrs. This contact time may be feasible for water utilities to achieve monochloramine contact time with sufficient reservoir capacity. Moreover, some level of gross inactivation and synergistic effect may be expected even in poorer quality waters containing suspended solids, colloidal material and dissolved organic material. The pH effect determined in this study indicates that a sequential treatment strategy with ozone followed by monochloramine will be effective for alkaline waters with above neutral pH. This is a distinct advantage over a sequential treatment strategy based on free chlorine rather than monochloramine.

Thus the use of ozone followed by monochloramine may be considered as a potentially feasible strategy for achieving synergistic inactivation credit for *C. parvum* in natural waters in the industry under certain conditions. A sequential disinfection strategy, however, should not be used to replace other barriers in the water treatment process that provide protection against *C. parvum* oocysts such as filtration or primary disinfection. Rather, sequential treatment may potentially be used by water utilities, which are seeking additional *C. parvum* inactivation credit over and above, what is provided by optimized filtration and primary disinfection. Because the magnitude of the synergistic effect in this study was found to be a function of water quality, it is recommended that any water supplier considering using a sequential disinfection strategy for achieving maximum public health protection verify the level of *C. parvum* inactivation in site-specific laboratory or pilot-scale testing.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

# 7.3.3 Ozone Treatment Only

Previous studies with ozone in buffered de-ionized water found ozone to be a feasible treatment strategy for inactivating most waterbone microorganisms including C. parvum. However, very few studies investigated its' efficacy in natural waters (Oppenheimer et al., 2000). In this thesis, the earlier studies in natural waters were complemented by additional data in seven different types of natural waters. Ozone inactivation kinetics of C. parvum in the studied natural waters was determined. Ozone was found to be a feasible treatment strategy for the inactivation of C. parvum in natural waters. At lower temperatures, the Ct requirements in this study were much higher than the previous studies in buffered de-ionized water and natural waters. This indicated that for the studied natural waters it may be practically difficult to achieve the target level of inactivation of C. parvum oocysts at low temperatures due to the high level of ozone Ct requirements. A design criteria based on the results of this study can be used to develop a design strategy only for those utilities having source waters with similar water quality characteristics as the waters used in this study. However, the use of design criteria for a full-scale water treatment plant based on any disinfection studies alone should be done with caution, as there are a number of factors that may influence the data set. Over the last decade there have been several studies done in this field but it is difficult to make any direct comparisons between the results of these studies as different approaches and protocols were used by different laboratories for their studies. The differences in these studies were mainly due to the different methods (animal infectivity, in-vitro excystation, cell culture etc.) used for measuring inactivation, types of reactors (batch, continuous etc.), and also the method of application and measurement of the chemical oxidants. Hence, it causes a lot of confusion among water treatment professionals to interpret or extrapolate these results to develop design criteria for full-scale treatment plant. In this context the Badenoch report (1995) concluded the following (Oppenheimer et al. 2000):

" results from disinfection studies can be used only to give an indication of the relative efficacy of different disinfectants rather than firm criteria on which design could be based."

Nevertheless, these disinfection studies give a good indication about the efficacy of the process and an understanding of the inactivation kinetics under various situations. In the present study with ozone, more comprehensive data set is required to identify and measure the influence of the water quality parameters on the inactivation kinetics. In addition, in-situ bench-scale tests should be done to validate the model for specific conditions. In order to take into account the variations due to the oocyst batch, age, and the method of testing, the use of a safety factor is also highly prudent from a public health perspective.

## 7.4 FUTURE SCOPE OF SYNERGISM

The present study highlights the importance of synergism in water treatment. It also fills in some of the gaps in the information required for rational engineering of sequential inactivation of *C. parvum* in natural waters. It will be of significant importance for water utilities looking for options for getting credit for microorganism reduction. However, the problem remains that synergism is a phenomenon that is not fully understood and may not be universally applicable. Further studies in this area will not only help to understand synergism but also help to apply engineering concepts with confidence.

## **CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS**

## **8.1 CONCLUSIONS**

The synergistic inactivation of *Cryptosporidium parvum* oocysts in natural water samples using ozone followed by free chlorine and ozone followed by monochloramine was studied. The results of the study also permitted the study of the ozone inactivation kinetics of *C. parvum* in natural waters. The main conclusions of the study are listed below:

1. For the experimental ranges investigated, a synergistic effect was measured for sequential treatment of C. parvum oocysts with ozone followed by free chlorine in the seven natural waters tested. The measured synergistic effect in the five alkaline (pH 8) natural waters was statistically significant but was much smaller than previously reported for C. parvum oocysts exposed to this chemical combination in buffered deionized water. Temperature, ozone primary treatment level, and water type did not have measurable impacts on the synergistic effect. Given the limited magnitude of the synergistic effect and the large *Ct* values, the free chlorine contact time that would be required for a 1 log-unit synergistic effect in the high pH (8.0) natural waters tested is not practical for water treatment. Efforts to increase the synergistic effect in these natural waters by reducing the initial pH to 6 by acid addition were unsuccessful. In the two low-alkalinity (pH approximately 6) natural waters tested, the measured synergistic effect was much greater than in the alkaline waters, but was still less than that measured earlier in buffered de-ionized water. It was concluded that the reduction of the synergistic effect was in part due to the high pH and alkalinity of the natural waters tested, and in part due to other, unidentified natural water quality characteristics. Thus, sequential treatment with ozone followed by free chlorine may only be a feasible strategy for achieving synergistic C. parvum inactivation credit for water treatment facilities with low alkalinity natural waters having a pH near 6. The

size of the synergistic effect may also be a function of the specific characteristics of the water under consideration.

- 2. A statistically significant synergistic effect was measured for ozone followed by monochloramine sequential treatment in the natural waters under the studied conditions. The magnitude of the synergistic effect measured in the natural waters was also comparable to that previously reported for buffered de-ionized water. Statistically significant impacts of ozone primary treatment level, pH, and water quality on the monochloramine synergistic effect were measured. The synergistic effect increased with pH (initial pH 6 to 8.1), with the level of ozone pre-treatment (0.7 log-unit to 1.7 log-units), and with superior water quality in terms of TOC, colour, and turbidity, under the studied conditions. Due to the tendency of the pH of the natural waters to drift from 6 to 8 during experiments, the pH effect may have been underestimated. Temperature did not have a significant impact on the synergistic effect though it did affect the gross inactivation levels. Based on the statistical analysis, C. parvum inactivation design criteria in natural waters using ozone followed by monochloramine, were established. For those water treatment plants able to provide sufficient contact times, ozone followed by monochloramine may be a practical means of achieving additional C. parvum inactivation credit due to the synergistic effect.
- 3. The inactivation of *Cryptosporidium parvum* oocysts using ozone was found to be feasible in the studied natural waters. On comparing the results with the model predictions of the earlier developed Incomplete gamma Hom model in buffered deionized water, it was found that lack-of-fit of the model predictions was observed in 4 of the 7 natural waters. A linear Chick-Watson model was found to be adequate for describing the inactivation kinetics in the studied natural waters. The results with the Chick-Watson model indicated a statistically significant effect of temperature, batch-to-batch variation of the oocysts resistance to ozone, and the age of the oocysts on the inactivation kinetics of *C. parvum* using ozone. The individual water quality

parameters including pH did not affect the inactivation kinetics significantly. At lower temperatures, the Ct requirements in the studied natural waters were much higher than the previous studies in buffered de-ionized water and natural waters. This indicated that for the studied natural waters it may be practically difficult to achieve the target level of inactivation of *C. parvum* oocysts at low temperatures due to the high level of ozone *Ct* requirements. Based on the Chick-Watson model, ozone disinfection design criteria for the inactivation of *C. parvum* in natural water, were established.

#### **8.2 RECOMMENDATIONS**

With regard to the direction of future research on this topic, the following recommendations are made:

- 1. Most of the natural waters used in the study had a natural pH of 8.0 and only a few experimental trials were conducted with low pH (6.0) natural waters. Hence, additional studies in low pH natural waters are recommended. For ozone followed by free chlorine sequential treatment, the data obtained in this study were insufficient for determining the extent of synergy for low pH natural waters under more diverse conditions. Additional studies would help to establish whether the synergistic effect measured with the combination of ozone followed by monochloramine was present at lower pH. Additional studies would also help to determine the magnitude of the effect of other factors like ozone pre-treatment level, water quality, and temperature influencing the synergistic effect in low pH natural waters.
- 2. The importance of pH on the synergistic effect of ozone followed by monochloramine suggests that additional studies using natural waters in which the pH has been increased to levels exceeding pH 8 (i.e. pH 9 or 10) would be of practical interest. If the synergistic effect was more pronounced at these higher and untested pH levels, pH adjustment together with monochloramine treatment may be an attractive option.

- 3. Synergistic effect was found to increase with increasing ozone pre-treatment level for ozone followed by monochloramine sequential treatment. Additional studies should be done to investigate whether the synergistic effect observed increase continuously with increasing ozone pre-treatment level or whether the mechanism that accounts for the synergistic effect become saturated.
- 4. Additional studies should be done to determine the mechanisms of sequential chemical inactivation of the oocysts at the cell level in natural waters.
- 5. The results of the ozone exposure experiments indicated that the effect of ozone on *C. parvum* oocysts was a function of the batch-to-batch variation of the oocysts resistance to ozone. This raises the question of the potential for differential responses to different environmental strains of oocysts to chemical oxidant treatments. The present study, however, was not designed to isolate the effects of differences in oocyst strains, so this effect was uncertain. Hence, further research should be directed at determining the significance of strain-to-strain variations in oocyst response to chemical disinfectants.

#### REFERENCES

- Adham, S.S., Jacangelo, J.G., and Laine, J. 1994. Effect of membrane type on the removal of Cryptosporidium parvum, Giardia muris, and MS2 virus. In Proceedings of the American Water Works Association's Annual Conference. Denver, CO:AWWA.
- American Water Works Association. 1999. Water Quality and Treatment: A Handbook of Community Water Supplies. Fifth Edition. McGraw-Hill, Inc., Toronto.
- AWWA Water Quality Division Disinfection Systems Committee. 2000. Committee Report: Disinfection at Large and Medium-Size Systems. *Journal of the American Water Works Association*, 92(5):32-43.
- Badenoch, J. 1995. Cryptosporidium in Water Supplies: Second Report of the Group of Experts. London: Department of the Environment, Department of Health, Her Majesty's Stationary Office.
- Belosevic, M., N.F. Neumann, L.L. Gyürék and G.R. Finch. 2000. Cryptosporidium parvum Viability Assay. Denver, CO: AWWA Research Foundation and American Water Works Association.
- Belosevic, M., R.A. Guy, R. Taghi-Kilani, N.F. Neumann, L.L. Gyürék, L.R.J. Liyanage,
  P.J. Millard and G.R. Finch. 1997a. Nucleic acid stains as indicators of *Cryptosporidium parvum* oocyst viability. *International Journal for Parasitology*, 27:787-798.
- Belosevic, M., R. Taghi-Kilani, R.A. Guy, N.F. Neumann, L.L. Gyürék and L.R.J. Liyanage. 1997b. Vital Dye Staining of Giardia and Cryptosporidium. Denver, CO:AWWA Research Foundation and American Water Works Association.

- Black, E.K., G.R. Finch, R. Taghi-Kilani and M. Belosevic. 1996. Comparison of Assays for *Cryptosporidium parvum* oocysts Viability After Chemical Disinfection. *FEMS Microbiology Letters*, 135:187-189.
- Box, G.E.P., W.G Hunter and J.S. Hunter. (1978). *Statistics for Experimenters*, New York: John Wiley & Sons.
- Bukhari, Z., M. M. Marshall, D. G Korich, C. R Fricker, H. V., Smith, J. Rosen and J. L. Clancy. 2000. Comparison of *Cryptosporidium parvum* Viability and Infectivity Assays Following Ozone Treatment of Oocysts. *Applied and Environmental Microbiology*, 66(7):2972-2980.
- Brand, R.J., D.E. Pinnock and K.L. Jackson. 1973. Large Sample Confidence Bands for the Logistic Response Curve and its Inverse. *The American Statistician*, 27(4):157-160.
- Bubnis, B., G. Gordon, G. Emmert, and R. Gauw. 1998. Can Ozone and Ozone Oxidative By-Products be Formed During the Electrolysis of Salt Brine? Ozone: Science and Engineering, 20:239-249.
- Campbell, A.T., L.J. Robertson and H.V. Smith. 1992. Viability of Cryptosporidium parvum Oocysts: Correlation of In Vitro Excystation with Inclusion or Exclusion of Fluorogenic Vital Dyes. Applied and Environmental Microbiology, 58(11):3488-3493.

Centers for Disease Control & Prevention, National Center for Infectious Diseases,

Division of Parasitic Diseases.

http://www.dpd.cdc.gov/dpdx/HTML/Cryptosporidiosis.asp?body=Frames/A-F/Cryptosporidiosis/body\_Cryptosporidiosis\_life\_cycle\_lrg.htm Date accessed: August 18<sup>th</sup>, 2003

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Chang, S.L. 1944. Destruction of Microorganisms. Journal of the American Water Works Association, 36(11):1192-1207.
- Chick, H. 1908. An Investigation of the Laws of Disinfection. Journal of Hygiene (Cambridge), 8:92-158.
- Clark, R.M., M. Sivagenesan, E.W. Rice and J. Chen. 2002. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone. Water Research, 36(12):3141-3149.
- Clark, R.M., M. Sivagenesan, E.W. Rice and J. Chen. 2003. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with chlorine dioxide. Water Research, 37:2773-2783.
- Colford, J.M., I.B. Tager, A.M. Hirozawa, G.F. Lemp, T. Aragon, and C. Petersen. 1996.
   Cryptosporidiosis Among Patients Infected with Human Immunodeficiency
   Virus: Factors Related to Symtomatic Infection and Survival. *American Journal* of Epidemiology, 144(9):807-816.
- Corona-Vasquez, B, A. Samuelson, J.L. Rennecker, and B. Mariñas. 2002. Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. *Water Research*, 36:4053-4063.
- Craun, G.F., S.A. Hubbs, F. Frost, R.L. Calderon and S.H. Via. 1998. Waterborne Outbreaks of Cryptosporidiosis. *Journal of the American Water Works Association*, 90(9):81-91.
- Crawford, F.G. and S.H. Vermund. 1988. Human Cryptosporidiosis. CRC Critical Reviews in Microbiology, 16(2):113-159.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Current, W.L. 1990. Techniques and laboratory maintenance of *Cryptosporidium*. In *Cryptosporidiosis of Man and Animals*. Edited by J.P. Dubey, C.A. Speer, and R. Fayer. pp 31-49. CRC Press, Boca Raton, FL.
- Current, W.L. and L.S. Garcia. 1991. Cryptosporidiosis. *Clinical Microbiology Reviews*, 4(3):325-358.
- D'Antonio, R.G., R.E. Winn, J.P. Taylor, T.L. Gustafson, W.L. Current, M.M. Rhodes, G.W.J. Gary, and R.A. Zajac. 1985. A Waterborne Outbreak of Cryptosporidiosis in Normal Hosts. *Annals of Internal Medicine*, 103(6):886-888.
- Dennis, W,H. Jr, V.P. Olivier, and C.W. Kruse. 1979. Mechanism of Disinfection: Incorporation of Cl-36 into f2 Virus. *Water Research*, 13:363-369.
- Di Giovani, G., M. LeChevallier, D. Battigelli, A. Campbell and M. Abbaszagedan. 1997a. Detection of *Cryptosporidium parvum* by enzyme linked immunosorbent assay and the polymerase chain reaction. AWWA Water Quality Technology Conference, San Diego, CA.
- Di Giovani, G., M. LeChevallier and M. Abbaszagedan. 1997b. Detection of infectious *Cryptosporidium parvum* oocysts recovered from environmental water samples using immunomagnetic separation (IMS) and integrated cell culture-PCR (CC-PCR). AWWA Water Quality Technology Conference, San Diego, CA.
- Draper, NR and Smith, H. 1966. Applied Regression Analysis. John Wiley & Sons, New York, NY.
- Driedger, A.M., J.L. Rennecker, and B.J. Marinas. 1999a. Optimization of *C. parvum* Inactivation with Ozone/Free Chlorine and Ozone/Monochloramine. In *Proceedings Water Quality Technology Conference*. Denver, CO:AWWA.

- Driedger, A.M., J.L. Rennecker, and B.J. Marinas. 1999b. Sequential Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research, 34(14): 3591-3597.
- Driedger, A.M., J.L. Rennecker, and B.J. Mariñas. 2001. Inactivation of *Cryptosporidium* parvum oocysts with ozone and monochloramine at low temperature. *Water* Research, 35(1): 41-48.
- Dugan, N.R., K.R. Fox, J.A.Owens, and R.J. Miltner. 2001. Controlling Cryptosporidium Oocysts using Conventional Treatment. Journal of the American Water Works Association, 93(12):64-76.
- DuPont, H.L., C.L. Chappell, C.R. Sterling, P.C. Okhuysen, J.B. Rose and W. Jakubowski. 1995. The Infectivity of *Cryptosporidium parvum* in Healthy Volunteers. *New England Journal of Medicine*, 332(13):855-859.
- Eaton, A.D., L.S. Clesceri, and A.E. Greenberg editor. 1995. Standard Methods for the Examination of Water and Wastewater. 19th edition. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.
- EPA-821-R-01-026. Method 1622: *Cryptosporidium* in Water by Filtration/IMS/FA. <u>http://www.epa.gov/waterscience/methods/cryptsum.html</u>. Date accessed: 20<sup>th</sup> August 2003.
- EPA-821-R-99-006. Method 1623: *Cryptosporidium* and *Giardia* in Water by Filtration/IMS/FA. <u>http://www.epa.gov/waterscience/methods/1623.pdf</u>. Date accessed: 20<sup>th</sup> August, 2003.

- Ernest, J.A., B.L. Blagburn, D.S. Lindsay, and W.L. Current. 1986. Infection Dynamics of Cryptosporidium parvum (Apicomplexa: Cryptosporiidae) in Neonatal Mice (Mus musculus). Journal of Parasitology, 72(5):796-798.
- Fair, G.M., J.C. Morris, S.L. Chang, I. Weil, and R.P. Burden. 1948. The Behavior of Chlorine as a Water Disinfectant. Journal of American Water Works Association, 40:1051.
- Farooq, S., R.S. Englebrecht and E.S.K. Chian. 1977. Influence of Temperature and U.V. Light on Disinfection With Ozone. *Water Research*, 11:737-741.
- Faust, S.D. and O.M. Aly. 1981. Chemistry of Natural Waters. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan, USA.
- Faust, S.D. and O.M. Aly. 1998. Chemistry of Water Treatment. 2<sup>nd</sup> edition, Lewis Publishers, USA.
- Fayer, R. editor. 1997. Cryptosporidium and Cryptosporidiosis. CRC Press, Inc., Boca Raton, FL, 251p.
- Fayer, R., U. Morgan and S.J. Upton. 2000. Epidemiology of Cryptosporidium: transmission, detection and identification. International Journal of Parasitology, 30:1305-1322.
- Finch, G.R., C.W. Daniels, E.K. Black, F.W. Schaefer, III and M. Belosevic. 1993a. Dose-Response of *Cryptosporidium parvum* in Outbred, Neonatal CD-1 Mice. *Applied and Environmental Microbiology*, 59(11):3661-3665.

- Finch, G.R., E.K. Black, L. Gyürék, and M. Belosevic. 1993b. Ozone Inactivation of *Cryptosporidium parvum* in Demand-Free Phosphate Buffer Determined by In Vitro Excystation and Animal Infectivity. *Applied and Environmental Microbiology*, 59(12):4203-4210.
- Finch, G.R., E.K. Black, L. Gyürék, and M. Belosevic. 1994. Ozone Disinfection of Giardia and Cryptosporidium. Denver, CO: AWWA Research Foundation and American Water Works Association.
- Finch, G.R., E.K. Black, and L.L. Gyürék. 1995. Ozone and Chlorine Inactivation of Cryptosporidium. In Proceedings Water Quality Technology Conference, November 6-10, 1994, San Francisco, CA. pp. 1303-1318. Denver, CO: American Water Works Association.
- Finch, G.R., L.L. Gyürék, L.R.J. Liyanage, and M. Belosevic. 1997. Effect of Various Disinfection Methods on the Inactivation of Cryptosporidium. Denver, CO: AWWA Research Foundation and American Water Works Association.
- Finch, G.R., and H. Li. 1999. Inactivation of *Cryptosporidium* at 1°C Using Ozone or Chlorine Dioxide. *Ozone: Science and Engineering*, 21(5):477-486.
- Finch, G.R., L.R.J. Liyanage, J.S. Bradbury, L.L. Gyürék, and M. Belosevic. 2000. Synergistic Effects of Multiple Disinfectants. Denver, CO: AWWA Research Foundation and American Water Works Association.
- Fujioka, R., K. Tenno, and P. Loh. 1985. Mechanism of Chlorine Inactivation of Poliovirus: A concern for Regulators. In Water Chlorination: Environmental Impact and Health Effects (R. Jolley ed.). Lewis Publishers, Chelsea, MI.

- Gellin, B.G. and R. Soave. 1992. Coccidian infectious in AIDS. In *The Medical Clinics* of North America. Edited by D.A. White and J.W.M. Gold, pp 76-205.
- Gerba, C.P., J.B. Rose, and C.N. Haas. 1996. Sensitive Populations: Who Is at the Greatest Risk? International Journal of Food Microbiology, 30(1-2):113-123.
- Gordon, G., Cooper, W.J., Rice, R.G., and Pacey, G.E. (1992). *Disinfectant residual measurement methods*. American Water Works Association, Denver, Colorado.
- Green, D.E., and P.K. Stumpf. 1946. The Mode of Action of Chlorine. Journal of American Water Works Association. 38:1301-1305.
- Gyürék, L.L., G.R. Finch, and M. Belosevic. 1997. Modeling Chlorine Inactivation Requirements of *Cryptosporidium parvum* Oocysts. *Journal of Environmental Engineering*, 123(9):865-875.
- Gyürék, L.L and G.R. Finch. 1998. Modeling Water Treatment Chemical Disinfection Kinetics. Journal of Environmental Engineering, 124(9):783-793.
- Gyürék, L.L., H. Li, M. Belosevic, and G.R. Finch. 1999. Ozone Inactivation Kinetics of *Cryptosporidium parvum* in Phosphate Buffer. *Journal of Environmental Engineering*, 125(10):913-924.
- Haas, C.N. 1999. Disinfection. In Water Quality and Treatment: A Handbook of Community Water Supplies. American Water Works Association. Fifth Edition. McGraw-Hill, Inc., Toronto.pp 14.39.
- Haas, C.N., C.S. Crockett, J.B. Rose, C.P. Gerba and A.M. Fazil. 1996. Assessing the Risk Posed by Oocysts in Drinking Water. *Journal of the American Water Works Association*, 88(9):131-136.

- Haas, C.N., and J. Joffe. 1994. Disinfection under Dynamic Conditions-Modifications of Hom Model for Decay. *Environmental Science and Technology*, 28(7):1367-1369.
- Haas, C.N. and B. Heller. 1990. Kinetics of Inactivation of *Giardia lamblia* by Free Chlorine. *Water Research*, 24(2):233-238.
- Haas, C.N. and S.B. Kara. 1984a. Kinetics of Microbial Inactivation by Chlorine-I. Review of Results in Demand-free Systems. *Water Research*, 18(11):1443-1449.
- Haas, C.N. and S.B. Kara. 1984b. Kinetics of Microbial Inactivation by Chlorine-II. Kinetics in the presence of Chlorine Demand. *Water Research*, 18(11):1451-1454.
- Hamelin, C. and Y.S. Chung. 1974. Optimal Conditions for Mutagenesis by Ozone in Escherichia coli K12. Mutation Research, 24:271-279.
- Harakeh, M.S. and M. Butler. 1985. Factors Influencing the Ozone Inactivation of Enteric Viruses in Effluent. *Ozone: Science and Engineering*, 6:235-243.
- Hart, E.J., K. Sehested, and J. Holcman. 1983. Molar Absorptivities of Ultraviolet and Visible Bands of Ozone in Aqueous Solutions. *Analytical Chemistry*, 55:46-49.
- Hayes, E.B., T.D. Matte, T.R. O'Brien, T.W. McKinley, G.S. Logsdon, J.B. Rose, B.L.P. Ungar, D.M. Word, P.F. Pinsky, M.L. Cummings, M.A. Wilson, E.G. Long, E.S. Hurwitz, and D.D. Juranek. 1989. Large Community Outbreak of Cryptosporidiosis Due to Contamination of a Filtered Public Water Supply. New England Journal of Medicine, 320(21):1372-1376.
- Hiogné, J and H. Bader. 1994. Characterization of Water Quality Criteria for Ozonation Processes. Part II: Lifetime of Added Ozone. Ozone: Science and Engineering, 16(2):121-134.

- Hiogné, J and H. Bader. 1975. Ozonation of Water: Role of Hydroxyl Radicals as Oxidizing Intermediates. *Science*, 190(4216):782-784.
- Hunt, N.K. and B.J. Mariñas. 1999. Inactivation of *Escherichia coli* with Ozone: Chemical and Inactivation Kinetics. *Water Research*, 33(11):2633-2641.
- Ishizaki, K., K. Swadaishi, K. Miura and N. Shinriki. 1987. Effect of Ozone on Plasmid DNA of *Escherichia coli In Situ. Water Research*, 21(7):823-827.
- Jacangelo, J.G., V.P. Olivieri, and K. Kawata. 1991. Investigating the Mechanism of Inactivation of Escherichia coli B by Monochloramine. Journal of the American Water Works Association, 83(5):80-87.
- Kabler, P.W. 1953. Relative Resistance of Coliform Organisms and Enteric Pathogens in the Disinfection of Water with Chlorine. *Journal of the American Water Works Association*, 40:1305.
- Katz, A., N. Narkis, F. Orshansky, E. Friedland, and Y. Kott. 1994. Disinfection of Effluent by Combinations of Equal Doses of Chlorine Dioxide and Chlorine Added Simultaneously Over Varying Contact Times. Water Research, 28(10):2133-2138.
- Kilani, R.T., and L. Sekla. 1987. Purification of *Cryptosporidium* Oocysts and Sporozoites by Cesium Chloride and Percoll Gradients. *American Journal of Tropical Medicine and Hygiene*, 36:505-508.
- Kim, C.K., D.M. Gentile and O.J. Sproul. 1980. Mechanism of Ozone Inactivation of Bacteriophage f2. Applied and Environmental Microbiology, 37(4):715-718.

- Korich, D.G., J.R. Mead, M.S. Madore, N.A. Sinclair, and C.R. Sterling. 1990. Effects of Ozone, Chlorine Dioxide, Chlorine, and Monochloramine on *Cryptosporidium* parvum Oocyst Viability. Applied and Environmental Microbiology, 56(5):1423-1428.
- Kott, Y., L. Vinokur, and H. Ben-Ari. 1980. Combined Effects of Disinfectants on Bacteria and Viruses. In Water Chlorination: Environmental Impact and Health Effects. Edited by R.L. Jolley, W.A. Brungs and R.B. Cumming. Volume 3, Ann Arbor, Mich.: Ann Arbor Science Publishers. pp. 677-686.
- Kouame, Y., and C.N. Haas. 1991. Inactivation of *E. coli* by Combined Action of Free Chlorine and Monochloramine. *Water Research*, 25(9):1027-1032.
- Langlias, B., D.A. Reckhow and D.R. Brink editor. 1991. Ozone in Water Treatment: Application and Engineering. Lewis Publishers, Inc., Chelsea, MI, 569p.
- LeChevallier, M.W., W.D. Norton and M. Abbaszadegan. 1995. Evaluation of the Immunofluorescence Procedure for Detection of *Giardia* Cysts and *Cryptosporidium* Oocysts in Water. *Applied and Environmental Microbiology*, 61(2):690-697.
- LeChevallier, M.W. and W.D. Norton. 1996. Occurrence of *Giardia* and *Cryptosporidium* in raw and finished drinking water. *Journal of American Water Works Association*, 87(9):54-68.
- LeChevallier, M.W., W.D. Norton and R.G. Lee. 1991. Occurrence of *Giardia* and *Cryptosporidium* spp. in Surface Water Supplies. *Applied and Environmental Microbiology*, 57(9):2610-2616.

- Li, H., L.L. Gyürék, G.R. Finch, D. Smith and M. Belosevic. 2001a. Effect of Temperature on Ozone Inactivation of *Cryptosporidium parvum* in Oxidant Demand -Free Phosphate Buffer. *Journal of Environmental Engineering* 127(5):456-467.
- Li, H., G.R. Finch, D. Smith and M. Belosevic. 2001b. Sequential Disinfection Design Criteria for Inactivation of Cryptosporidium Oocysts in Drinking Water. Denver, CO: AWWA Research Foundation and AWWA.
- Logsdon, G.S. 1988. Comparison of some Filtration Processes Appropiate for *Giardia* Cyst Removal. In *Advances in Giardia Research*. Edited by P.M. Wallis and B. R. Hammond. University of Calgary Press, Calgary, AB, pp 95-102.
- MacKenzie, W.R., N.J. Hoxie, M.E. Proctor, M.S. Gradus, K.A. Blair, D.E. Peterson, J.J.
  Kazmierczak, D.G. Addiss, K.R. Fox, J.B. Rose and J.P. Davis. 1994. A Massive
  Outbreak in Milwaukee of *Cryptosporidium* Infection Transmitted Through the
  Public Water Supply. *New England and Journal of Medicine*, 331(3):161-167.
- Malcolm Pirnie Inc. and HDR Engineering Inc. 1991. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources. American Water Works Association. Denver, CO.
- Morooka, S., K. Ikemizu and Y. Kato. 1979. The Decomposition of Ozone in Aqueous Solution. *International Chemical Engineering*, 19(4):650-654.
- National Academy of Sciences. 1980. Drinking Water and Health. Volume 2. National Academy Press, Washington D.C.

- Neumann, N.F., L.L. Gyürék, G.R. Finch and M. Belosevic. 2000. Intact Cryptosporidium parvum oocysts isolated after in vitro excystation are infectious to neonatal mice. FEMS-Microbiology Letters, 183(1):331-336.
- Newman, R.D., Z. Shu-Xian, T. Wuhib, A.A.M. Lima, R.L. Guerrant, and C.L. Sears. 1994. Household Epidemiology of *Cryptosporidium parvum* infection in an urban community in Northeast Brazil. *Annual International Medicine*. pp 120-500.
- Neter, J., W. Wasserman, and M.H. Kutner. 1989. Applied Linear Regression Models. second edition. Boston, MA: Irwin.
- Nieminski, E.C. 1994. Giardia and Cryptosporidium cysts removal through direct filtration and conventional treatment. In Proceedings of the American Water Works Association Annual Conference. American Water Works Association, Denver, CO, pp 463.
- Nieminski, E.C., F.W. Schaefer, III and J.E. Ongerth. 1995. Comparison of two methods for detection of Giardia cysts and Cryptosporidium oocysts in water. *Applied and Environmental Microbiology*, 61(5):1714-1719.
- Nime, F.A., J.D. Burek, D.L. Page, M.A. Holscher and J.H. Yardley. 1976. Acute Enterocolitis in a Human Being Infected with the Protozoan *Cryptosporidium*. *Gastroenterology*, 70:592-598.
- O'Donoghue, P.J. 1995. Cryptosporidium and cryptosporidiosis in man and animals. International Journal of Parasitology, 25:139-195.
- Oke, N.J., D.W. Smith and H. Zhou. 1998. An Empirical Analysis of Ozone Decay Kinetics in Natural Waters. *Ozone: Science and Engineering*, 20:361-379.
- Ongerth, J.E. and J.P. Pecoraro. 1995. Removing Cryptosporidium Using Multimedia Filters. Journal of the American Water Works Association, 87(12):83-89.
- Ongerth, J.E. and P.E. Hutton. 2001. Testing of Diatomaceous Earth Filtration for Removal of Cryptosporidium oocysts. Journal of the American Water Works Association, 93(12):54-63.
- Ongerth, J.E. and H.H. Stibbs. 1987. Identification of *Cryptosporidium* Oocysts in River Water. *Applied and Environmental Microbiology*, 53(4):672-676.
- Oppenheimer, J. A., E.M. Aieta, R. Rhodes Trussell, J.G. Jacangelo, and I. N. Najm. 2000. Evaluation of Cryptosporidium Inactivation in Natural Waters. Denver, CO:AWWA Research Foundation and Kiwa N.V. Research and Consultancy.
- Patania, N.L., J.G. Jacangelo, L. Cummings, A. Wilczak, K. Riley and J. Oppenheimer. 1995. Optimization of Filtration for Cyst Removal. AWWA Research Foundation and American Water Works Association, Denver, CO. 158p.
- Peeters, J.E., E.A. Mazás, W.J. Masschelein, I.V. Martinez de Maturana and E. Debacker. 1989. Effect of Disinfection of Drinking Water with Ozone or Chlorine Dioxide on Survival of *Cryptosporidium parvum* Oocysts. *Applied and Environmental Microbiology*, 55(6):1519-1522.
- Pett, B., F. Smith, D. Stendahl, and R. Welker. 1994. Cryptosporidiosis Outbreak from an
   Operations Point of View: Kitchener-Waterloo, Ontario Spring 1993. In
   Proceedings Water Quality Technology Conference, Denver, CO:AWWA.
- Plummer, J.D., J.K. Edzwald and M.B. Kelley. 1995. Removing Cryptosporidium by Dissolved-air Flotation. Journal of the American Water Works Association, 87(9):85-95.

- Ransome, M.E., T.N. Whitmore and E.G. Carrington. 1993. Effect of Disinfectants on the Viability of *Cryptosporidium parvum* Oocysts. *Water Supply*, 11:75.
- Rennecker, J.L., A.M. Driedger, S.A. Rubin, and B.J. Mariñas. 2000a. Synergy in sequential inactivation of *Cryptosporidium parvum* with ozone/free chlorine and ozone/monochloramine. *Water Research*, 34(17):4121-4130.
- Rennecker, J.L., B. Corona-Vasquez, A.M. Driedger and B. J. Mariñas. 2000b. Synergism in sequential disinfection of *Cryptosporidium parvum*. Water Science and Technology, 41(7):47-52.
- Rennecker, J.L., B.J. Mariñas, J.H. Owens and E.W. Rice. 1999. Inactivation of *Cryptosporidium parvum* Oocysts With Ozone. *Water Research*, 33(11):2481-2488.
- Rennecker, J.L., J-H. Kim, B. Corona-Vasquez, and B. J. Mariñas. 2001. Role of disinfectant concentration and pH in the inactivation kinetics of *Cryptosporidium parvum* oocysts with ozone and monochloramine. *Environmental Science and Technology*, 35(13):2752-2757.
- Roberson, C.E., et al. 1963. Geological Survey Professional Paper 475C, Washington DC, pp. C212.
- Robertson, L.J., A.T. Campbell and H.V. Smith. 1992. Survival of *Cryptosporidium* parvum Oocysts Under Various Environmental Pressures. Applied and Environmental Microbiology, 58(11):3494-3500.

- Rochelle, P.A., D.M. Ferguson, T.J. Handojo, R. De Leon, M.H. Stewart and R.L. Wolfe. 1997. An Assay Combining Cell Culture with Reverse Transcriptase PCR to Detect and Determine the Infectivity of Waterborne *Cryptosporidium parvum*. *Applied and Environmental Microbiology*, 63(5):2029-2037.
- Rose, J.B. 1990. Occurrence and control of *Cryptosporidium* in drinking water. In *Drinking Water Microbiology*. Edited by G.A. McFeters. Springer-Verlag, New York. pp. 294-321.
- Rose, J.B., C.N. Haas and S. Regli. 1991. Risk Assessment and Control of Waterborne Giardiasis. *American Journal of Public Health*, 81(6):709-713.
- Roth, J.A., and D.E. Sullivan. 1983. Kinetics of Ozone Decomposition in Water. *Ozone: Science and Engineering*, 5(1):37-49.
- Roy, D., P.K.Y. Wong, R.S. Engelbrecht, and E.S.K. Chian. 1981. Mechanism of enteroviral inactivation by ozone. *Applied and Environmental Microbiology*, 41:718-723.
- Sallon, S., R. el Showwa, M. el Masri, M. Khalil, N. Blundell and C. A. Hart. 1991. Cryptosporidiosis in children in Gaza. *Annual Tropical Pediatrics*. 11(277).
- Schuler, P.F. and M.M. Ghosh. 1990. Diatomaceous Earth Filtration of Cysts and Other Particulates Using Chemical Additives. *Journal of the American Water Works* Association, 82(12):67-75.
- Schuler, P.F., M.M. Ghosh and P. Gopalan. 1991. Slow Sand and Diatomaceous Earth Filtration of Cysts and Other Particulates. *Water Research*, 25(8):995-1005.

- Scott, D.B.M. and E.C. Lesher. 1963. Effect of Ozone on Survival and Permeability of *Escherichia coli. Journal of Bacteriology*, 85:567-576.
- Shinriki, N., K. Ishizaki, T. Yoshizaki, K. Miura and T. Ueda. 1988. Mechanism of Inactivation of Tobacco Mosaic Virus with Ozone. Water Research, 22(7):933-938.
- Slifko, T.R., D. Friedman, J.B. Rose and W. Jakubowski. 1997. An in vitro method for detecting infectious *Cryptosporidium* oocysts with cell culture. *Applied and Environmental Microbiology*, 63(9): 3669-3674.
- Smith, H.V. and J.B. Rose. 1998. Waterborne cryptosporidiosis: Current status. Parasitology Today. Jan, 14(1):14-22.
- Sobsey, M. D., M.J. Casteel, H. Chung, G. Lovelace, O.D. Simmons, III, and J.S. Meschke. 1998. Innovative Technologies for Waste Water Disinfection and Pathogen Detection. In *Water Environment Federation Wastewater Disinfection Conference*. Baltimore, MD: Water Environment Federation.
- Solo-Gabriele, H. and S. Neumeister. 1996. US Outbreaks of Cryptosporidiosis. Journal of the American Water Works Association, 88(9):76-86.
- Sproul, O.J., R.M. Pfister and C.K. Kim. 1982. The mechanism of Ozone Inactivation of Waterborne Viruses. *Water Science and Technology*, 14:303-314.
- Staehelin, J. and J. Hoigné. 1982. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. *Environmental Science and Technology*, 16(10):676-681.

- Staehelin, J. and J. Hoigné. 1985. Decomposition of Ozone in Water in the presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. *Environmental Science and Technology*, 19(12):1206-1213.
- Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Third Edition, Wiley-Interscience, New York, NY.
- Tomiyasu, H., H. Fukutomi and G. Gordon. 1985. Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution. *Inorganic Chemistry*, 24(19):2962-2966.
- Tzipori, S., and J.K. Griffiths 1998. Natural history and biology of *Cryptosporidium* parvum. Advances in Parasitology, 40:5-36.
- United States Environmental Protection Agency (U.S. EPA). 2001. http://www.epa.gov/OGWDW/It2/It2\_preamble.pdf. Date accessed: November 27, 2001.
- United States Environmental Protection Agency. 1989. Drinking Water; Ntaional Primary Drinking Water Regulations; Filtration, Disinfection, Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria, Final Rule. Federal Register, 54(124):27486-27541.
- University of Wisconsin-Stevens Point, Department of Geography and Geology. http://www.uwsp.edu/geo/courses/geog100/Cause-Synergism.htm. Date accessed: 13th Aug 2003

- Venczel, L.V., M. Arrowood, M. Hurd, and M.D. Sobsey. 1997. Inactivation of *Cryptosporidium parvum* Oocysts and *Clostridium perfringens* Spores by a Mixed-Oxidant Disinfectant by Free Chlorine. *Applied and Environmental Microbiology*, 63(4):1598-1601.
- Venkobacher, C., L. Iyengar, and A.V.S.P Rao. 1975. Mechanism of Disinfection. Water Research. 9:119-124.
- Venkobacher, C., L. Iyengar, and A.V.S.P Rao. 1977. Mechanism of Disinfection: Effect of Chlorine on Cell Membrane Functions. *Water Research*. 11:727-729.
- Vesey, G., D. Deere, M. Dorsch, D. Veal, K. Williams and N. Ashbolt. 1997. Fluorescent In situ labeling of viable Cryptosporidium parvum in water samples. Proceedings of the International Symposium on Waterborne Cryptosporidium, Newport Beach, CA. pp. 21-29.
- Weber, W.J. and W. Stumm. 1963. Mechanism of Hydrogen Ion Buffering in Natural Waters. Journal of the American Water Works Association, 55:1553-1578.
- White, G.C. 1999. Handbook of Chlorination and Alternative Disinfectants. John Wiley & Sons Inc., New York.
- Yuteri, C. and M.D. Gurol. 1988. Ozone Consumption in Natural Waters: Effects of Background Organic Matter, pH and Carbonate Species. Ozone: Science and Engineering, 10:277-290.

Zar, J. H. 1999. Biostatistical Analysis, 4th Ed. Prentice-Hall, Upper Saddle River, NJ.

Zhou, H. and D.W. Smith. 1994. Kinetics of Ozone Disinfection in a Completely Mixed System. *Journal of Environmental Engineering*, 120(4):841-858.

#### APPENDIX A

## WATER QUALITY ANALYSIS OF THE NATURAL WATER SAMPLES USED IN EXPERIMENTS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Water Quality Deservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NT to to an A | XX7-to-D  |          | TTT C          | 1 187   | NT       |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|----------------|---------|----------|----------|
| water Quality Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | water A       | water B   | water    | water D        | water   | water r  | water G  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |          |                | E       |          |          |
| Routine Water Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |          |                |         |          |          |
| Chloride (Cl) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1            | 2         | 92       | 31             | 6       | 2        | <1       |
| Nitrate+Nitrite-N [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1          | 0.1       | 4.3      | 1.7            | 0.2     | <0.1     | <0.1     |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8           | 7.7       | 7.6      | 8.1            | 8.1     | 6.3*     | 5.8*     |
| Conductivity (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 294           | 175       | 604      | 498            | 496     | 267      | 15.8     |
| [uS/cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1/5       | 001      | 150            | .,,,    | 20.7     | 10.0     |
| Biographonote (UCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114           | 07        | 02       | 109            | 220     | 11       | 10       |
| Ima/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-7          | 37        | 72       | 190            | 220     | 11       | 10       |
| $\begin{bmatrix} [IIIg/L] \\ O = \frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ |               | -5        | -15      | -5             |         | -5       | -6       |
| Carbonate (CO <sub>3</sub> ) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <5            | < 3       | <>       | <5             | 5       | <5       |          |
| Hydroxide [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5            | <5        | <5       | <5             | <5      | <5       | <5       |
| Alkalinity, Total [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93            | 79        | 75       | 162            | 181     | 9        | 8        |
| Ion Balance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101           | 106       | 103      | 104            | 98.9    | Low EC   | Low EC   |
| TDS (Calculated) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171           | 89        | 348      | 290            | 279     | 13       | 9        |
| Hardness [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151           | 87        | 169      | 224            | 245     | 9        | 6        |
| ICP metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |           |          |                |         |          |          |
| Calcium (Ca) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.2          | 23.6      | 41.5     | 51.1           | 67.9    | 2.9      | 2.0      |
| Potassium (K) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7           | 1.4       | 3.9      | 3.4            | 1.1     | <0.1     | 0.2      |
| Magnesium (Mg) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.2          | 68        | 15.8     | 23.4           | 18.4    | 0.5      | 0.2      |
| Sodium (Na) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3             | 2         | 15.8     | 23             | 6       | 1        | <1       |
| Sulfate (SO) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60.5          | 51        | 60       | 53.4           | 701     |          | 1.8      |
| Matala Dissolvad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.5          | 5.1       | 00       | 55.4           | /0.1    | 0.7      | 1.0      |
| Silver (Ac) [mg/[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~0.0000       | <0.0002   | ~0.0002  | ~0.0002        | ~0.005  | ~0.0002  | <0.0000  |
| A huminium (Al) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0002        | 0.0002    | ~0.0002  | ~0.0002        | 0.003   | <0.0002  | <0.0002  |
| A mania (A a) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95          | 0.12      | 0.09     | 0.09           | 0.09    |          | 0.02     |
| Arsenic (As) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0004       | 0.0007    | <0.0004  | 0.0120         | na      | <0.0004  | <0.0004  |
| Boron (B) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.074         | 0.088     | 0.641    | 0.684          | <0.05   | 0.008    | <0.002   |
| Barium (Ba) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.365         | 0.167     | 0.417    | 0.634          | 0.109   | 0.0015   | 0.0038   |
| Beryllium (Be) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.0005       | <0.0005   | <0.0005  | <0.0005        | <0.001  | <0.0005  | <0.0005  |
| Bismuth (Bi) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0002        | <0.0001   | <0.00005 | <0.00005       | na      | <0.00005 | 0.00006  |
| Cadmium (Cd) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0001       | <0.0001   | 0.0003   | 0.0003         | <0.001  | <0.0001  | <0.0001  |
| Cobalt (Co) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001       | <0.0001   | 0.0012   | 0.0017         | <0.002  | <0.0001  | 0.0001   |
| Chromium (Cr) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.0004       | < 0.0004  | < 0.0004 | <0.0004        | <0.005  | <0.0004  | <0.0004  |
| Copper (Cu) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0144        | 0.0216    | 0.163    | 0.0235         | < 0.001 | 0.0063   | 0.0250   |
| Iron (Fe) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.01         | < 0.01    | <0.01    | <0.01          | < 0.005 | 0.079    | 0.096    |
| Manganese (Mn) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0045        | 0.0076    | 0.0035   | 0.0030         | na      | 0.001    | 0.018    |
| Molybdenum (Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0068        | 0.0010    | 0.0307   | 0.0299         | na      | 0.0001   | 0.0003   |
| [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0001       | 0.0012    | 0.0284   | 0.0096         | 0.003   | < 0.0001 | 0.0002   |
| Nickel (Ni) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12          | 0.09      | 1.9      | 0.93           | 0.3     | na       | na       |
| Phosphorus (P) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0011        | 0.0016    | 0.0020   | 0.0006         | <0.005  | 0.0006   | 0.0013   |
| I = prod(Pb) [mg/I]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0011        | 0.0010    | 0.0020   | 0.0060         | <0.005  | 0.0006   | 0.0005   |
| Antimony (Sh) $[mg/L]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0040        | 0.0038    | <0.0004  | <0.0000        | ~0.00   | <0.0004  | <0.0003  |
| Salarium (Sa) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0015        | 0.0038    | <0.0004  | <0.0004        | na      | <0.0004  | <0.0004  |
| Tin (Sr) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005        | 0.0004    | ~0.0002  | <u>\0.0002</u> | 11ä     | ~0.0002  | ~0.0002  |
| lin (Sn) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.14          | 0.406     | 1.97     | 1.51           | 0.520   | 0.0069   | 0.0082   |
| Strontium (Sr) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.0003       | <0.0003   | <0.0003  | <0.0003        | <0.001  | <0.0003  | 0.0007   |
| Litanium (1i) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.0000       | < 0.00005 | <0.00005 | <0.00005       | <0.05   | <0.00005 | <0.00005 |
| Thallium (Tl) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0043        | <0.0001   | 0.0029   | 0.0173         | na      | <0.0001  | <0.0001  |
| Uranium (U) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0011        | 0.0005    | 0.0031   | 0.0355         | <0.001  | <0.0001  | <0.0001  |
| Vanadium (V) [mg/L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |           |          |                |         | . 1      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |          |                |         |          |          |

Table A.1

Water quality analysis of the natural water samples used in experiments

(Continued)

Table A.1 (continued)

| Water Quality Parameter | Water A | Water B | Water C | Water D | Water E | Water F | Water G |
|-------------------------|---------|---------|---------|---------|---------|---------|---------|
| Zinc (Zn) [mg/L]        | 0.809   | 0.854   | 0.566   | 0.087   | 0.005   | 0.004   | 0.022   |
| Bromide (mg/L)          | na      | Na      | 0.1     | <0.1    | <0.1    | < 0.1   | <0.1    |
| TOC (mg/L)              | na      | 6.3*    | 1       | 6       | <1      | 4       | 2       |
| Colour (TCU)            | na      | NA      | 8       | 15      | <3      | 30      | 20      |
| Turbidity (NTU)         | na      | 0.26    | 5.1*    | 47*     | 1.6*    | 0.15    | 0.49    |
|                         |         |         |         |         |         |         |         |

na =Not available

All parameters measured by EnviroTest Laboratories Edmonton, Canada.

\*Measured at the University of Alberta following Standard Methods.

#### APPENDIX B

## RESULTS OF NEONATAL CD-1 INFECTIVITY ANALYIS FOR ALL EXPERIMENTAL TRIALS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment           | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|---------------------|-----------------------|-------------------------|---------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 1     | A                | 21                | 8  | Ozone               | 1000                  | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.17                           | 35            |
| 1     | А                | 21                | 8  | Ozone               | 10000                 | 5                       | 2                   | 0.4                    | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 35            |
| 1     | A                | 21                | 8  | Ozone+Free Chlorine | 10000                 | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.82                           | 35            |
| 1     | A                | 21                | 8  | Ozone+Free Chlorine | 100000                | 5                       | 4                   | 0.8                    | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 35            |
| 1     | А                | 21                | 8  | Free Chlorine       | 100                   | 5                       | 4                   | 0.8                    | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.18                          | 35            |
| 1     | A                | 21                | 8  | Free Chlorine       | 1000                  | 5                       | 5                   | 1                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 35            |
| 1     | Α                | 21                | 8  | Control             | 100                   | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >-0.18                         | 35            |
| 1     | A                | 21                | 8  | Control             | 1000                  | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
| 1     | A                | 21                | 8  | Control             | 100                   | 5                       | 3                   | 0.6                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                           | 35            |
| 1     | A                | 21                | 8  | Control             | 1000                  | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
| 2     | Α                | 21                | 8  | Ozone               | 1000                  | 5                       | 2                   | 0.4                    | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                           | 35            |
| 2     | А                | 21                | 8  | Ozone               | 10000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
| 2     | A                | 21                | 8  | Ozone+Free Chlorine | 10000                 | 5                       | 4                   | 0.8                    | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.82                           | 35            |
| 2     | А                | 21                | 8  | Ozone+Free Chlorine | 100000                | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
| 2     | А                | 21                | 8  | Free Chlorine       | 100                   | 5                       | 1                   | 0.2                    | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.36                           | 35            |
| 2     | A                | 21                | 8  | Free Chlorine       | 1000                  | 5                       | 5                   | 1                      | and the second sec |                                | 35            |
| 2     | A                | 21                | 8  | Control             | 100                   | 5                       | 2                   | 0.4                    | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17                           | 35            |
| 2     | A                | 21                | 8  | Control             | 1000                  | 5                       | 5                   | 1                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 35            |
| 2     | A                | 21                | 8  | Control             | 100                   | 5                       | 3                   | 0.6                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                           | 35            |
| 2     | A                | 21                | 8  | Control             | 1000                  | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
|       |                  |                   |    | ,                   |                       |                         |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |               |
| 3     | A                | 21                | 8  | Ozone               | 1000                  | 5                       | 3                   | 0.6                    | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01                           | 35            |
| 3     | A                | 21                | 8  | Ozone               | 10000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 35            |
| 3     | A                | 21                | 8  | Ozone+Free Chlorine | 1000                  | 5                       | 1                   | 0.2                    | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.59                           | 35            |
| 3     | A                | 21                | 8  | Ozone+Free Chlorine | 10000                 | 5                       | 4                   | 0.8                    | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                              | 35            |
| 3     | А                | 21                | 8  | Free Chlorine       | 100                   | 5                       | 3                   | 0.6                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                           | 35            |

## Neonatal CD-1 infectivity analysis for experimental trials with natural water A

Table B.1

166

|          |                                                                                                                |                  |                   |    |                       | N                     |                                   |                     |                        |                                   |                                        |               |
|----------|----------------------------------------------------------------------------------------------------------------|------------------|-------------------|----|-----------------------|-----------------------|-----------------------------------|---------------------|------------------------|-----------------------------------|----------------------------------------|---------------|
|          | Trial                                                                                                          | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort           | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation         | Cyst<br>Batch |
|          | 3                                                                                                              | A                | 21                | 8  | Free Chlorine         | 1000                  | 5                                 | 5                   | 1                      |                                   |                                        | 35            |
|          | 3                                                                                                              | A                | 21                | 8  | Control               | 100                   | 5                                 | 2                   | 0.4                    | 0.17                              | 0.17                                   | 35            |
|          | 3                                                                                                              | A                | 21                | 8  | Control               | 100                   | 5                                 | 4                   | 0.8                    | -0.18                             | 0.32                                   | 35            |
|          | 3                                                                                                              | A                | 21                | 8  | Control               | 1000                  | 5                                 | 4                   | 0.8                    | 0.82                              |                                        | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Ozone                 | 1 000                 | 5                                 | 0                   | 0.00                   |                                   | 2.17                                   | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Ozone                 | 10 000                | 5                                 | 2                   | 0.40                   | 2.17                              |                                        | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5                                 | 0                   | 0.00                   | <u></u>                           | 1.82                                   | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                                 | 4                   | 0.80                   | 1.82                              |                                        | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Chlorine              | 100                   | 5                                 | 2                   | 0.40                   | 0.17                              | 0.17                                   | 35            |
|          | 4                                                                                                              | A                | 21                | 8  | Chlorine              | 1 000                 | 5                                 | 5                   | 1.00                   |                                   |                                        | 35            |
| <u> </u> | E                                                                                                              | Δ                | 24                | 0  | Ozona                 | 400                   | E                                 |                     | 0.40                   | 0.47                              | 0.47                                   | 25            |
| 67       | 5                                                                                                              | A                | 21                | 0  | 020118                | 1 000                 | 5                                 | <u> </u>            | 1.00                   | 0.17                              | 0.17                                   | 25            |
| -        | 5                                                                                                              |                  |                   | 0  | Ozone + Eron Chloring | 1 000                 | 5                                 | 2                   | 0.75                   | 0.97                              | 0.97                                   | 30            |
|          | 5                                                                                                              | A                |                   | 0  | Ozone + Free Chlorine | 1000                  | 4<br>E                            | <u>з</u>            | 0.75                   | 0.07                              | 0.07                                   | 30            |
|          | 5                                                                                                              |                  | 21                | 0  |                       | 10 000                |                                   | 3                   | 1.00                   | 0.01                              | 0.01                                   | 30            |
|          | 5                                                                                                              | <u> </u>         | 21                | 0  | Chlorino              | 100                   | 5                                 | 3<br>               | 4.00                   | 0.01                              | 0.01                                   | 30            |
|          | 5                                                                                                              | <u> </u>         | 21                | 0  | Cantrol               | 1000                  | 5                                 |                     | 1.00                   | 0.40                              | 0.40                                   | 30            |
|          | 5                                                                                                              | A                | 21                | 0  | Control               | 600                   | 5                                 | 4<br>E              | 1.00                   | -0.40                             | -0.40                                  | 30            |
|          | 5                                                                                                              | <u> </u>         | 21                | 0  | Control               | 000                   | 5                                 | 0                   | 1.00                   | 0.06                              | 0.00                                   | 30            |
|          | 5                                                                                                              |                  |                   | 0  | Control               | 00                    | )<br>                             | <u> </u>            | 0.40                   | -0.06                             | -0.06                                  | 35            |
|          | 5                                                                                                              | <u> </u>         | 21                | 0  | Control               | 600                   | 3                                 | 5                   | 1.00                   |                                   |                                        | 35            |
|          | 6                                                                                                              | A                | 21                | 8  | Ozone                 | 100                   | 5                                 | 0                   | 0.00                   |                                   | 0.82                                   | 35            |
|          | 6                                                                                                              | A                | 21                | 8  | Ozone                 | 1 000                 | 5                                 | 4                   | 0.80                   | 0.82                              | ······································ | 35            |
|          | 6                                                                                                              | A                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5                                 | 5                   | 1.00                   |                                   | <0.82                                  | 35            |
|          | 6                                                                                                              | A                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                                 | 5                   | 1.00                   | · ·                               |                                        | 35            |
|          | 6                                                                                                              | A                | 21                | 8  | Chlorine              | 100                   | 4                                 | 1                   | 0.25                   | 0.30                              | 0.30                                   | 35            |
|          | Security and a security of the second se |                  |                   | A  |                       |                       | £,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | L                   | L                      | Lagonana                          | L                                      | 10            |

(Continued)

| Trial | Natural<br>Water | Temperature<br>°C | pН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                              | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 6     | A                | 21                | 8  | Chlorine              | 1 000                 | 5                       | 5                   | 1.00                   | And a second |                                | 35            |
| 6     | Α                | 21                | 8  | Control               | 60                    | 5                       | 2                   | 0.40                   | -0.06                                                                                                          | 0.27                           | 35            |
| 6     | A                | 21                | 8  | Control               | 600                   | 5                       | 4                   | 0.80                   | 0.60                                                                                                           |                                | 35            |
| 6     | A                | 21                | 8  | Control               | 60                    | 5                       | 5                   | 1.00                   |                                                                                                                | <-0.40                         | 35            |
| 6     | A                | 21                | 8  | Control               | 600                   | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                                                                                                | н.<br>-                        |               |
| 7     | A                | 21                | 8  | Ozone                 | 1 000                 | 5                       | 1                   | 0.20                   | 1.36                                                                                                           | 1.68                           | 35            |
| 7     | A                | 21                | 8  | Ozone                 | 10 000                | 5                       | 3                   | 0.60                   | 2.01                                                                                                           |                                | 35            |
| 7     | A                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                       | 2                   | 0.40                   | 2.17                                                                                                           | 2.17                           | 35            |
| 7     | A                | 21                | 8  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
| 7     | A                | 21                | 8  | Chlorine              | 1 000                 | 5                       | 2                   | 0.40                   | 1.17                                                                                                           | 1.17                           | 35            |
| 7     | А                | 21                | 8  | Chlorine              | 10 000                | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
| 7     | Α                | 21                | 8  | Control               | 50                    | 4                       | 1                   | 0.25                   | 0.00                                                                                                           | 0.00                           | 35            |
| 7     | A                | 21                | 8  | Control               | 500                   | 4                       | 4                   | 1.00                   |                                                                                                                |                                | 35            |
| 7     | A                | 21                | 8  | Control               | 50                    | 5                       | 4                   | 0.80                   | -0.48                                                                                                          | -0.48                          | 35            |
| 7     | А                | 21                | 8  | Control               | 500                   | 5                       | 5                   | 1.00                   | and a reason of a reason of the second s |                                | 35            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                                                                                                |                                |               |
| 8     | A                | 21                | 8  | Ozone                 | 1 000                 | 5                       | 1                   | 0.20                   | 1.36                                                                                                           | 1.76                           | 35            |
| 8     | A                | 21                | 8  | Ozone                 | 10 000                | 5                       | 2                   | 0.40                   | 2.17                                                                                                           |                                | 35            |
| 8     | A                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 4                       | 1                   | 0.25                   | 2.30                                                                                                           | 2.30                           | 35            |
| 8     | А                | 21                | 8  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
| 8     | A                | 21                | 8  | Chlorine              | 1 000                 | 5                       | 4                   | 0.80                   | 0.82                                                                                                           | 0.82                           | 35            |
| 8     | A                | 21                | 8  | Chlorine              | 10 000                | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
| 8     | Α                | 21                | 8  | Control               | 50                    | 5                       | 2                   | 0.40                   | -0.14                                                                                                          | -0.14                          | 35            |
| 8     | Α                | 21                | 8  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |
| 8     | A                | 21                | 8  | Control               | 50                    | 5                       | 1                   | 0.20                   | 0.05                                                                                                           | 0.05                           | 35            |
| 8     | A                | 21                | 8  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                                                                                                |                                | 35            |

168

| miss    |    |       |                  |                   |    |          |
|---------|----|-------|------------------|-------------------|----|----------|
| sion of |    | Trial | Natural<br>Water | Temperature<br>°C | рН |          |
| fth     |    |       | A                |                   |    |          |
| e<br>c  |    | 9     | A                | 21                | 6  |          |
| opy     |    | 9     | A                | 21                | 6  |          |
| y rig   |    | 9     | A                | 21                | 6  |          |
| Jht -   |    | 9     | <u>A</u>         | 21                | 6  | <u> </u> |
| 0W      |    | 9     | A                | 21                | 6  |          |
| 'ne     |    | 9     | A                | 21                | 6  |          |
|         |    | 9     | Α                | 21                | 6  |          |
|         |    | 9     | A                | 21                | 6  |          |
| the     |    | 9     | A                | 21                | 6  |          |
| er r    |    | 9     | A                | 21                | 6  |          |
| epr     |    |       |                  |                   |    |          |
| bo      |    | 10    | A                | 21                | 6  |          |
| uct     | 6  | 10    | Α                | 21                | 6  |          |
| ion     | 66 | 10    | A                | 21                | 6  |          |
| pr      |    | 10    | A                | 21                | 6  | (        |
| ohi     |    | 10    | A                | 21                | 6  |          |
| bit     |    | 10    | A                | 21                | 6  | 1        |
| ed      |    | 10    | A                | 21                | 6  |          |
| Wit     |    | 10    | A                | 21                | 6  |          |
| hou     |    | 10    | A                | 21                | 6  |          |
| h h     |    | 10    | A                | 21                | 6  |          |
| err     |    |       |                  |                   |    |          |
| nis     |    | 11    | A                | 21                | 6  |          |
| sio     |    | 11    | A                | 21                | 6  |          |
| .n.     |    | 11    | A                | 21                | 6  | <u>}</u> |
|         |    | 11    | A                | 21                | 6  |          |
|         |    | 11    | A                | 21                | 6  |          |
|         |    |       |                  |                   |    |          |

Table B.1 (Continued)

**Oocysts Per Animals** 

Animals

Proportion

Calculated

Treatment

Cyst

Average

Animal Infected Infected Log Log Batch in Cohort Inactivation | Inactivation 35 Ozone 1 0 0 0 5 0 0.00 2.01 35 Ozone 10 000 5 3 0.60 2.01 35 Ozone + Free Chlorine 10 000 5 0.00 >3.36 0 Ozone + Free Chlorine 100 000 5 0 0.00 35 35 Chlorine 1 0 0 0 5 4 0.80 0.82 0.82 35 5 Chlorine 10 000 5 1.00 Control 50 5 2 0.40 -0.14 0.19 35 Control 500 5 4 0.80 0.52 35 Control 50 5 5 1.00 0.52 35 35 Control 500 5 4 0.80 0.52 1 000 5 0 0.00 2.36 35 Ozone 35 10 000 5 Ozone 1 0.20 2.36 Ozone + Free Chlorine 0.00 35 10 000 5 0 3.36 35 Ozone + Free Chlorine 100 000 5 0.20 3.36 1 Chlorine 1 000 5 0.82 4 0.80 0.82 35 5 35 Chlorine 10 000 5 1.00 50 5 1.00 35 Control 5 1.05 500 5 0.20 35 Control 1 1.05 Control 50 5 2 0.40 -0.14 35 -0.14 500 5 5 1.00 35 Control Ozone 100 5 0 0.00 0.82 35 Ozone 1 000 5 4 0.80 0.82 35 Ozone 10 000 5 5 1.00 35 2.36 Ozone + Free Chlorine 1 0 0 0 5 0 0.00 35 Ozone + Free Chlorine 10 000 5 0.20 1 2.36 35 Ozone + Free Chlorine A 21 6 100 000 5 35 5 1.00 (Continued)

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation     | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|---------------------------------------|--------------------------------|---------------|
| 11    | A                | 21                | 6  | Chlorine              | 100                   | 5                       | 0                   | 0.00                   |                                       | 1.36                           | 35            |
| 11    | A                | 21                | 6  | Chlorine              | 1 000                 | 5                       | 1                   | 0.20                   | 1.36                                  |                                | 35            |
| 11    | A                | 21                | 6  | Control               | 50                    | 5                       | 2                   | 0.40                   | -0.14                                 | 0.19                           | 35            |
| 11    | A                | 21                | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.52                                  |                                | 35            |
| 12    | A                | 21                | 6  | Ozone                 | 100                   | 5                       | 0                   | 0.00                   |                                       | 2.36                           | 35            |
| 12    | A                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 0                   | 0.00                   |                                       |                                | 35            |
| 12    | A                | 21                | 6  | Ozone                 | 10 000                | 5                       | 1                   | 0.20                   | 2.36                                  |                                | 35            |
| 12    | A                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                       | 2.82                           | 35            |
| 12    | A                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 0                   | 0.00                   |                                       |                                | 35            |
| 12    | A                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 4                   | 0.80                   | 2.82                                  |                                | 35            |
| 12    | A                | 21                | 6  | Chlorine              | 100                   | 5                       | 1                   | 0.20                   | 0.36                                  | 0.59                           | 35            |
| 12    | A                | 21                | 6  | Chlorine              | 1 000                 | 5                       | 4                   | 0.80                   | 0.82                                  |                                | 35            |
| 12    | A                | 21                | 6  | Control               | 50                    | 5                       | 0                   | 0.00                   |                                       | 0.71                           | 35            |
| 12    | A                | 21                | 6  | Control               | 500                   | 5                       | 3                   | 0.60                   | 0.71                                  |                                | 35            |
| 13    | A                | 21                | 6  | Ozone                 | 100                   | 5                       | 0                   | 0.00                   | · · · · · · · · · · · · · · · · · · · | 1.32                           | 35            |
| 13    | A                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 4                   | 0.80                   | 0.82                                  |                                | 35            |
| 13    | A                | 21                | 6  | Ozone                 | 10 000                | 5                       | 4                   | 0.80                   | 1.82                                  |                                | 35            |
| 13    | A                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 2                   | 0.40                   | 1.17                                  | 1.17                           | 35            |
| 13    | A                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   |                                       |                                | 35            |
| 13    | A                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                       |                                | 35            |
| 13    | A                | 21                | 6  | Chlorine              | 100                   | 5                       | 0                   | 0.00                   |                                       | 0.82                           | 35            |
| 13    | A                | 21                | 6  | Chlorine              | 1 000                 | 5                       | 4                   | 0.80                   | 0.82                                  |                                | 35            |
| 13    | A                | 21                | 6  | Control               | 50                    | 5                       | 0                   | 0.00                   |                                       | 0.52                           | 35            |
| 13    | A                | 21                | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.52                                  |                                | 35            |
| 14    | A                | 21                | 6  | Ozone                 | 3 000                 | 5                       |                     | 0.20                   | 1.83                                  | 216                            | 35            |
| L     | L                |                   | 1  | L                     |                       | <u> </u>                | l                   |                        |                                       |                                |               |

| Trial | Natural | Temperature | pН | Treatment             | Oocysts Per | Animals | Animals  | Proportion | Calculated   | Average      | Cyst  |
|-------|---------|-------------|----|-----------------------|-------------|---------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |    |                       | Animal      | in      | Infected | Infected   | Log          | Log          | Batch |
|       |         |             |    |                       |             | Cohort  |          |            | Inactivation | Inactivation |       |
| 14    | Α       | 21          | 6  | Ozone                 | 30 000      | 5       | 3        | 0.60       | 2.49         |              | 35    |
| 14    | A       | 21          | 6  | Ozone + Free Chlorine | 10 000      | 5       | 0        | 0.00       |              | 2.82         | 35    |
| 14    | A       | 21          | 6  | Ozone + Free Chlorine | 100 000     | 5       | 4        | 0.80       | 2.82         |              | 35    |
| 14    | A       | 21          | 6  | Chlorine              | 100         | 5       | 2        | 0.40       | 0.17         | 0.49         | 35    |
| 14    | A       | 21          | 6  | Chlorine              | 1 000       | 5       | 4        | 0.80       | 0.82         |              | 35    |

Table B.1 (Continued)

| Trial | Natural | Temperature | рН | Treatment             | Oocysts Per | Animals | Animals  | Proportion | Calculated                                                                                                      | Average      | Cyst  |
|-------|---------|-------------|----|-----------------------|-------------|---------|----------|------------|-----------------------------------------------------------------------------------------------------------------|--------------|-------|
|       | Water   | °C          |    |                       | Animal      | in      | Infected | Infected   | Log                                                                                                             | Log          | Batch |
|       |         |             |    |                       | 1           | Conort  | -        |            | Inactivation                                                                                                    | Inactivation |       |
| 15    | В       | 21          | 6  | Ozone                 | 1 000       | 5       | 4        | 0.80       | 0.81                                                                                                            | 0.81         | 36    |
| 15    | B       | 21          | 6  | Ozone                 | 10 000      | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 15    | В       | 21          | 6  | Ozone                 | 100 000     | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 15    | В       | 21          | 6  | Ozone + Free Chlorine | 1 000       | 5       | 1        | 0.20       | 1.67                                                                                                            | 1.74         | 36    |
| 15    | В       | 21          | 6  | Ozone + Free Chlorine | 10 000      | 5       | 4        | 0.80       | 1.81                                                                                                            |              | 36    |
| 15    | В       | 21          | 6  | Ozone + Free Chlorine | 100 000     | 5       | 5        | 1.00       |                                                                                                                 | nam          | 36    |
| 15    | В       | 21          | 6  | Chlorine              | 100         | 5       | 3        | 0.60       | 0.11                                                                                                            | 0.11         | 36    |
| 15    | В       | 21          | 6  | Chlorine              | 1 000       | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 15    | В       | 21          | 6  | Control               | 50          | 5       | 3        | 0.60       | -0.19                                                                                                           | -0.19        | 36    |
| 15    | В       | 21          | 6  | Control               | 500         | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 16    | В       | 21          | 6  | Ozone                 | 1 000       | 5       | 0        | 0.00       |                                                                                                                 | 2.74         | 36    |
| 16    | В       | 21          | 6  | Ozone                 | 10 000      | 5       | 1        | 0.20       | 2.67                                                                                                            |              | 36    |
| 16    | В       | 21          | 6  | Ozone                 | 100 000     | 5       | 4        | 0.80       | 2.81                                                                                                            |              | 36    |
| 16    | В       | 21          | 6  | Ozone + Free Chlorine | 1 000       | 5       | 5        | 1.00       | an 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 | < 0.81       | 36    |
| 16    | В       | 21          | 6  | Ozone + Free Chlorine | 10 000      | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 16    | В       | 21          | 6  | Ozone + Free Chlorine | 100 000     | 5       | 5        | 1.00       | - · ·                                                                                                           |              | 36    |
| 16    | В       | 21          | 6  | Chlorine              | 100         | 5       | 0        | 0.00       |                                                                                                                 | >1.67        | 36    |
| 16    | В       | 21          | 6  | Chlorine              | 1 000       | 5       | . 1      | 0.20       | 1.67                                                                                                            |              | 36    |
| 16    | В       | 21          | 6  | Control               | 50          | 5       | 2        | 0.40       | 0.07                                                                                                            | 0.44         | 36    |
| 16    | В       | 21          | 6  | Control               | 500         | 5       | 3        | 0.60       | 0.81                                                                                                            |              | 36    |
|       |         |             |    |                       | · ·         |         |          |            |                                                                                                                 |              | ·     |
| 17    | В       | 21          | 6  | Ozone                 | 1 000       | 5       | 0        | 0.00       |                                                                                                                 | 1.76         | 36    |
| 17    | В       | 21          | 6  | Ozone                 | 10 000      | 5       | 5        | 1.00       |                                                                                                                 |              | 36    |
| 17    | B       | 21          | 6  | Ozone                 | 100 000     | 5       | 5        | 1.00       |                                                                                                                 | 1            | 36    |
| 17    | В       | 21          | 6  | Ozone + Free Chlorine | 1 000       | 5       | 0        | 0.00       |                                                                                                                 | 2.74         | 36    |
| 17    | B       | 21          | 6  | Ozone + Free Chlorine | 10 000      | 5       | 1        | 0.20       | 2.67                                                                                                            |              | 36    |
| 17    | B       | 21          | 6  | Ozone + Free Chlorine | 10 000      | 5       | 1        | 0.20       | 2.67                                                                                                            | 2.1          | 4     |

Table B.2

Neonatal CD-1 infectivity analysis for experimental trials with natural water R

| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>2 | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | Ozone + Free Chlorine<br>Chlorine<br>Chlorine<br>Control<br>Control<br>Ozone<br>Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine | 100 000<br>100<br>50<br>500<br>1 000<br>1 000<br>10 000<br>1 000<br>10 000                           | Cohort<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                              | 4<br>5<br>2<br>5<br>5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.80<br>0.80<br>1.00<br>0.40<br>1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inactivation<br>-0.19<br>0.07<br>< 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>2 | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | Ozone + Free Chlorine<br>Chlorine<br>Control<br>Control<br>Ozone<br>Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine             | 100 000<br>100<br>50<br>50<br>1000<br>10 000<br>100 000<br>10 000                                    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>4<br>5<br>2<br>5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.80<br>0.80<br>1.00<br>0.40<br>1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.81<br>-0.19<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>2 | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6      | Chlorine<br>Chlorine<br>Control<br>Control<br>Ozone<br>Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                          | 100<br>1 000<br>50<br>500<br>1 000<br>10 000<br>10 000<br>10 000<br>10 000<br>10 000                 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>5<br>2<br>5<br>5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.80<br>1.00<br>0.40<br>1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.19<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.19<br>0.07<br>< 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21      | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                | Chlorine<br>Control<br>Control<br>Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                               | 1 000<br>50<br>500<br>1 000<br>10 000<br>100 000<br>1 000<br>10 000                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>2<br>5<br>5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>0.40<br>1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21            | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                | Control<br>Control<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                    | 50<br>500<br>1 000<br>10 000<br>100 000<br>1 000<br>10 000                                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.40<br>1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                        | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                          | Control<br>Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                      | 500<br>1 000<br>10 000<br>100 000<br>1 000<br>10 000<br>10 000                                       | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00<br>1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                              | 6<br>6<br>6<br>6<br>6<br>6                                    | Ozone<br>Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                                 | 1 000<br>10 000<br>100 000<br>1 000<br>10 000                                                        | 5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                    | 6<br>6<br>6<br>6<br>6                                         | Ozone<br>Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                                          | 10 000<br>100 000<br>1 000<br>10 000                                                                 | 5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21<br>21<br>21<br>21<br>21<br>21<br>21                                          | 6<br>6<br>6<br>6                                              | Ozone<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                                                   | 100 000<br>1 000<br>10 000                                                                           | 5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21<br>21<br>21<br>21<br>21                                                      | 6<br>6<br>6                                                   | Ozone + Free Chlorine<br>Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                                                            | 1 000<br>10 000                                                                                      | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | With the second se |
| 21<br>21<br>21                                                                  | 6<br>6                                                        | Ozone + Free Chlorine<br>Ozone + Free Chlorine                                                                                                                                     | 10 000                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21<br>21                                                                        | 6                                                             | Ozone + Free Chlorine                                                                                                                                                              | 400 000                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             |                                                                                                                                                                                    |                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                 |                                                               | Chlorine                                                                                                                                                                           | 100                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Chlorine                                                                                                                                                                           | 1 000                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Control                                                                                                                                                                            | 50                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Control                                                                                                                                                                            | 500                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone                                                                                                                                                                              | 1 000                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone                                                                                                                                                                              | 10 000                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone                                                                                                                                                                              | 100 000                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone + Free Chlorine                                                                                                                                                              | 1 000                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone + Free Chlorine                                                                                                                                                              | 10 000                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Ozone + Free Chlorine                                                                                                                                                              | 100 000                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Chlorine                                                                                                                                                                           | 50                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Chlorine                                                                                                                                                                           | 500                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                 | 6                                                             | Control                                                                                                                                                                            | 50                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                              | 6                                                             | Control                                                                                                                                                                            | 500                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                 | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                  | 21         6           21         6           21         6           21         6           21         6           21         6           21         6           21         6      | 216Ozone + Free Chlorine216Ozone + Free Chlorine216Chlorine216Chlorine216Control216Control216Control | 21         6         Ozone + Free Chlorine         10 000           21         6         Ozone + Free Chlorine         100 000           21         6         Chlorine         50           21         6         Chlorine         50           21         6         Chlorine         500           21         6         Control         50           21         6         Control         50           21         6         Control         50 | 21         6         Ozone + Free Chlorine         10 000         5           21         6         Ozone + Free Chlorine         100 000         5           21         6         Chlorine         50         5           21         6         Chlorine         500         5           21         6         Chlorine         500         5           21         6         Control         50         5           21         6         Control         50         5           21         6         Control         50         5           21         6         Control         500         5 | 21         6         Ozone + Free Chlorine         10 000         5         0           21         6         Ozone + Free Chlorine         100 000         5         3           21         6         Chlorine         50         5         0           21         6         Chlorine         500         5         4           21         6         Control         50         5         2           21         6         Control         500         5         2           21         6         Control         500         5         5 | 21         6         Ozone + Free Chlorine         10 000         5         0         0.00           21         6         Ozone + Free Chlorine         100 000         5         3         0.60           21         6         Chlorine         50         5         0         0.00           21         6         Chlorine         500         5         4         0.80           21         6         Control         50         5         2         0.40           21         6         Control         500         5         5         1.00 | 21         6         Ozone + Free Chlorine         10 000         5         0         0.00           21         6         Ozone + Free Chlorine         100 000         5         3         0.60         3.11           21         6         Chlorine         50         5         0         0.00           21         6         Chlorine         50         5         0         0.00           21         6         Chlorine         500         5         4         0.80         0.51           21         6         Control         50         5         2         0.40         0.07           21         6         Control         500         5         5         1.00 | 21         6         Ozone + Free Chlorine         10 000         5         0         0.00         10000         5         3         0.60         3.11         3         3.11         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation        | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|---------------------------------------|---------------|
| 20    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 0                   | 0.00                   | <b></b>                           | 2.74                                  | 36            |
| 20    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 1                   | 0.20                   | 2.67                              |                                       | 36            |
| 20    | В                | 21                | 6  | Ozone                 | 100 000               | 5                       | 4                   | 0.80                   | 2.81                              |                                       | 36            |
| 20    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                   | 2.81                                  | 36            |
| 20    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 0                   | 0.00                   |                                   |                                       | 36            |
| 20    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 4                   | 0.80                   | 2.81                              |                                       | 36            |
| 20    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 4                   | 0.80                   | -0.49                             | -0.49                                 | 36            |
| 20    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                       | 36            |
| 20    | В                | 21                | 6  | Control               | 50                    | 5                       | 2                   | 0.40                   | 0.07                              | 0.44                                  | 36            |
| 20    | В                | 21                | 6  | Control               | 500                   | 5                       | 3                   | 0.60                   | 0.81                              |                                       | 36            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                   |                                       |               |
| 21    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 0                   | 0.00                   |                                   | 3.02                                  | 36            |
| 21    | B                | 21                | 6  | Ozone                 | 10 000                | 5                       | 1                   | 0.20                   | 2.67                              | · · · · · · · · · · · · · · · · · · · | 36            |
| 21    | В                | 21                | 6  | Ozone                 | 100 000               | 5                       | 2                   | 0.40                   | 3.37                              |                                       | 36            |
| 21    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                   | 3.37                                  | 36            |
| 21    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 0                   | 0.00                   |                                   |                                       | 36            |
| 21    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 2                   | 0.40                   | 3.37                              | <u> </u>                              | 36            |
| 21    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.07                              | 0.07                                  | 36            |
| 21    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                       | 36            |
|       |                  |                   | 1  |                       |                       |                         |                     |                        |                                   |                                       |               |
| 22    | В                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.67                              | 0.74                                  | 36            |
| 22    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 4                   | 0.80                   | 0.81                              |                                       | 36            |
| 22    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                       | 36            |
| 22    | 8                | 21                | 6  | Ozone + Free Chlorine | 100                   | 5                       | 0                   | 0.00                   |                                   | 1.11                                  | 36            |
| 22    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 3                   | 0.60                   | 1.11                              |                                       | 36            |
| 22    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   | · · ·                             |                                       | 36            |
| 22    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.07                              | 0.07                                  | 36            |
| 22    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                       | 36            |

174

| 22         B         21         6         Control         50         5         3         0.60         -0.19         -0.19         36           22         B         21         6         Control         500         5         5         1.00         36           23         B         21         6         Ozone         1000         5         1         0.20         0.67         0.67         36           23         B         21         6         Ozone         1000         5         5         1.00         36           23         B         21         6         Ozone + Free Chlorine         10000         5         1         0.20         1.67         2.24         36           23         B         21         6         Ozone + Free Chlorine         10000         5         0         0.00         1.67         2.24         36           23         B         21         6         Ozone + Free Chlorine         100000         5         0         0.00         1.07         36           23         B         21         6         Chlorine         500         5         1         0.20         0.37         0.37                                                                                                                                                 | Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 22         B         21         6         Control         500         5         5         1.00         36           23         B         21         6         Ozone         100         5         1         0.20         0.67         0.67         36           23         B         21         6         Ozone         100         5         5         1.00         36           23         B         21         6         Ozone         1000         5         5         1.00         36           23         B         21         6         Ozone + Free Chlorine         1000         5         0         0.00         36           23         B         21         6         Ozone + Free Chlorine         10000         5         0         0.00         36           23         B         21         6         Ozone + Free Chlorine         100000         5         4         0.80         2.81         36           23         B         21         6         Chlorine         50         5         0         0.00         1.07         36           23         B         21         6         Control         500 </td <td>22</td> <td>В</td> <td>21</td> <td>6</td> <td>Control</td> <td>50</td> <td>5</td> <td>3</td> <td>0.60</td> <td>-0.19</td> <td>-0.19</td> <td>36</td> | 22    | В                | 21                | 6  | Control               | 50                    | 5                       | 3                   | 0.60                   | -0.19                             | -0.19                          | 36            |
| 23         B         21         6         Ozone         100         5         1         0.20         0.67         0.67         36           23         B         21         6         Ozone         1000         5         5         1.00         36           23         B         21         6         Ozone         10000         5         5         1.00         36           23         B         21         6         Ozone + Free Chlorine         10000         5         1         0.20         1.67         2.24         36           23         B         21         6         Ozone + Free Chlorine         10000         5         0         0.00         36           23         B         21         6         Ozone + Free Chlorine         100<000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22    | В                | 21                | 6  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 23         B         21         6         Ozone         100         5         1         0.20         0.67         0.67         36           23         B         21         6         Ozone         1000         5         5         1.00         36           23         B         21         6         Ozone + Free Chlorine         10000         5         1         0.20         1.67         2.24         36           23         B         21         6         Ozone + Free Chlorine         10000         5         0         0.00         36           23         B         21         6         Ozone + Free Chlorine         10000         5         4         0.80         2.81         36           23         B         21         6         Chlorine         500         5         0         0.00         1.07         36           23         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           23         B         21         6         Control         500         5         1         0.20         0.67         0.4                                                                                                                                                                  |       |                  |                   |    |                       |                       |                         |                     |                        |                                   |                                |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23    | В                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.67                              | 0.67                           | 36            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 23         B         21         6         Ozone + Free Chlorine         1 000         5         1         0.20         1.67         2.24         36           23         B         21         6         Ozone + Free Chlorine         10 000         5         0         0.00         36           23         B         21         6         Ozone + Free Chlorine         10 000         5         4         0.80         2.81         36           23         B         21         6         Ozone + Free Chlorine         50         5         0         0.00         1.07         36           23         B         21         6         Chlorine         500         5         1         0.20         0.37         0.37         36           23         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           23         B         21         6         Control         500         5         1         0.20         0.67         0.74         36           23         B         21         6         Ozone         1000         5         4         0.80                                                                                                                                                | 23    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 1                   | 0.20                   | 1.67                              | 2.24                           | 36            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 0                   | 0.00                   |                                   |                                | 36            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 4                   | 0.80                   | 2.81                              | Be 200 Street and Street       | 36            |
| 23         B         21         6         Chlorine         500         5         2         0.40         1.07         36           23         B         21         6         Control         50         5         1         0.20         0.37         0.37         36           23         B         21         6         Control         500         5         4         0.80         0.51         36           23         B         21         6         Control         500         5         4         0.80         0.51         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100000         5         5         1.00         36           24         B         21         6                                                                                                                                                                                | 23    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 0                   | 0.00                   |                                   | 1.07                           | 36            |
| 23         B         21         6         Control         50         5         1         0.20         0.37         0.37         36           23         B         21         6         Control         500         5         4         0.80         0.51         36           24         B         21         6         Ozone         100         5         1         0.20         0.67         0.74         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         <                                                                                                                                                                  | 23    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 2                   | 0.40                   | 1.07                              |                                | 36            |
| 23         B         21         6         Control         500         5         4         0.80         0.51         36           24         B         21         6         Ozone         100         5         1         0.20         0.67         0.74         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chiorine         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chiorine         10000         5         5         1.00         36           24         B         21         6         Chiorine         50         5         3         0.60         0.81         36           24         B         21         6         Chi                                                                                                                                                                      | 23    | В                | 21                | 6  | Control               | 50                    | 5                       | 1                   | 0.20                   | 0.37                              | 0.37                           | 36            |
| 24         B         21         6         Ozone         100         5         1         0.20         0.67         0.74         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         5         1.00         36           24         B         21         6         Ozone         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         50         5         3         0.60         0.81         36           24         B         21         6         Control         50 </td <td>23</td> <td>В</td> <td>21</td> <td>6</td> <td>Control</td> <td>500</td> <td>5</td> <td>4</td> <td>0.80</td> <td>0.51</td> <td></td> <td>36</td>      | 23    | В                | 21                | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.51                              |                                | 36            |
| 24         B         21         6         Ozone         100         5         1         0.20         0.67         0.74         36           24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         50         5         3         0.60         0.81         36           24         B         21         6         Control                                                                                                                                                         |       |                  |                   |    | <u> </u>              |                       |                         |                     |                        |                                   | ······                         | 1             |
| 24         B         21         6         Ozone         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone         1000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         1000         5         4         0.80         0.81         36           24         B         21         6         Ozone + Free Chlorine         1000         5         4         0.80         0.81         0.81         36           24         B         21         6         Ozone + Free Chlorine         10000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         500         5         3         0.60         -0.19         0.31         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36 <td< td=""><td>24</td><td>В</td><td>21</td><td>6</td><td>Ozone</td><td>100</td><td>5</td><td>1</td><td>0.20</td><td>0.67</td><td>0.74</td><td>36</td></td<>  | 24    | В                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.67                              | 0.74                           | 36            |
| 24         B         21         6         Ozone         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         1 000         5         4         0.80         0.81         0.81         36           24         B         21         6         Ozone + Free Chlorine         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         500         5         3         0.60         0.81         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           24         B         21                                                                                                                                           | 24    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 4                   | 0.80                   | 0.81                              |                                | 36            |
| 24         B         21         6         Ozone + Free Chlorine         1 000         5         4         0.80         0.81         0.81         36           24         B         21         6         Ozone + Free Chlorine         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         50         5         3         0.60         -0.19         0.31         36           24         B         21         6         Chlorine         500         5         3         0.60         0.81         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         1.00         36           24         B                                                                                                                                                        | 24    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 24         B         21         6         Ozone + Free Chlorine         10 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         50         5         3         0.60         -0.19         0.31         36           24         B         21         6         Chlorine         500         5         3         0.60         0.81         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         5         1.00         36           25         B                                                                                                                                                             | 24    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 4                   | 0.80                   | 0.81                              | 0.81                           | 36            |
| 24         B         21         6         Ozone + Free Chlorine         100 000         5         5         1.00         36           24         B         21         6         Chlorine         50         5         3         0.60         -0.19         0.31         36           24         B         21         6         Chlorine         500         5         3         0.60         -0.19         0.31         36           24         B         21         6         Chlorine         500         5         3         0.60         0.81         36           24         B         21         6         Control         50         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         5         1.00         36           24         B         21         6         Control         500         5         5         1.00         36           25         B         21         6         Ozone         100         5         3         0.60         1.11         36           25         B         21 <td>24</td> <td>В</td> <td>21</td> <td>6</td> <td>Ozone + Free Chlorine</td> <td>10 000</td> <td>5</td> <td>5</td> <td>1.00</td> <td></td> <td></td> <td>36</td>        | 24    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 24       B       21       6       Chlorine       50       5       3       0.60       -0.19       0.31       36         24       B       21       6       Chlorine       500       5       3       0.60       0.81       36         24       B       21       6       Control       50       5       1       0.20       0.37       0.37       36         24       B       21       6       Control       50       5       1       0.20       0.37       0.37       36         24       B       21       6       Control       500       5       5       1.00       36         24       B       21       6       Control       500       5       5       1.00       36         24       B       21       6       Ozone       100       5       1       0.20       0.67       0.89       36         25       B       21       6       Ozone       1000       5       3       0.60       1.11       36         25       B       21       6       Ozone       10.000       5       5       1.00       36 <td>24</td> <td>В</td> <td>21</td> <td>6</td> <td>Ozone + Free Chlorine</td> <td>100 000</td> <td>5</td> <td>5</td> <td>1.00</td> <td></td> <td></td> <td>36</td>                                                                                                                      | 24    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 24         B         21         6         Chlorine         500         5         3         0.60         0.81         36           24         B         21         6         Control         50         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         5         1.00         36           24         B         21         6         Control         500         5         5         1.00         36           25         B         21         6         Ozone         100         5         1         0.20         0.67         0.89         36           25         B         21         6         Ozone         1000         5         3         0.60         1.11         36           25         B         21         6         Ozone         10.000         5         5         1.00         36                                                                                                                                                                                                                                | 24    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 3                   | 0.60                   | -0.19                             | 0.31                           | 36            |
| 24         B         21         6         Control         50         5         1         0.20         0.37         0.37         36           24         B         21         6         Control         500         5         5         1.00         36           24         B         21         6         Control         500         5         5         1.00         36           25         B         21         6         Ozone         100         5         1         0.20         0.67         0.89         36           25         B         21         6         Ozone         1000         5         3         0.60         1.11         36           25         B         21         6         Ozone         10,000         5         5         1,00         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 3                   | 0.60                   | 0.81                              |                                | 36            |
| 24       B       21       6       Control       500       5       5       1.00       36         25       B       21       6       Ozone       100       5       1       0.20       0.67       0.89       36         25       B       21       6       Ozone       1000       5       3       0.60       1.11       36         25       B       21       6       Ozone       10,000       5       5       1,00       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24    | В                | 21                | 6  | Control               | 50                    | 5                       | 1                   | 0.20                   | 0.37                              | 0.37                           | 36            |
| 25         B         21         6         Ozone         100         5         1         0.20         0.67         0.89         36           25         B         21         6         Ozone         1000         5         3         0.60         1.11         36           25         B         21         6         Ozone         10,000         5         5         1,00         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24    | В                | 21                | 6  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                   |                                | 36            |
| 25         B         21         6         Ozone         100         5         1         0.20         0.67         0.89         36           25         B         21         6         Ozone         1000         5         3         0.60         1.11         36           25         B         21         6         Ozone         10000         5         5         1.00         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                   |    |                       | 1                     |                         |                     |                        |                                   | ···                            |               |
| 25         B         21         6         Ozone         1000         5         3         0.60         1.11         36           25         B         21         6         Ozone         10000         5         5         100         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25    | В                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.67                              | 0.89                           | 36            |
| 25 B 21 6 07000 10,000 5 5 100 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 3                   | 0.60                   | 1.11                              |                                | 36            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                | 36            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation         | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|----------------------------------------|---------------|
| 25    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 4                   | 0.80                   | 0.81                              | 1.31                                   | 36            |
| 25    | B                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 4                   | 0.80                   | 1.81                              | ]                                      | 36            |
| 25    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                   | ************************************** | -36           |
| 25    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 1                   | 0.20                   | 0.37                              | 0.37                                   | 36            |
| 25    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                        | 36            |
| 25    | В                | 21                | 6  | Control               | 50                    | 5                       | 3                   | 0.60                   | -0.19                             | -0.19                                  | 36            |
| 25    | В                | 21                | 6  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                   |                                        | 36            |
| 26    | В                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.67                              | 0.89                                   | 36            |
| 26    | В                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 3                   | 0.60                   | 1.11                              |                                        | 36            |
| 26    | В                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                        | 36            |
| 26    | В                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 1                   | 0.20                   | 1.67                              | 1.89                                   | 36            |
| 26    | В                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 3                   | 0.60                   | 2.11                              |                                        | 36            |
| 26    | В                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                   |                                        | 36            |
| 26    | В                | 21                | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.07                              | 0.07                                   | 36            |
| 26    | В                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                        | 36            |
| 26    | В                | 21                | 6  | Control               | 50                    | 5                       | 1                   | 0.20                   | 0.37                              | 0.44                                   | 36            |
| 26    | В                | 21                | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.51                              |                                        | 36            |
| 27    | В                | 1                 | 6  | Ozone                 | 200                   | 5                       | 0                   | 0.00                   |                                   | 2.44                                   | 37            |
| 27    | В                | 1                 | 6  | Ozone                 | 2 000                 | 5                       | 0                   | 0.00                   |                                   |                                        | 37            |
| 27    | В                | 1                 | 6  | Ozone                 | 20 000                | 5                       | 3                   | 0.60                   | 2.44                              |                                        | 37            |
| 27    | В                | 1                 | 6  | Ozone + Free Chlorine | 200                   | 5                       | 0                   | 0.00                   |                                   | >2.81                                  | 37            |
| 27    | В                | 1                 | 6  | Ozone + Free Chlorine | 2 000                 | 5                       | 0                   | 0.00                   |                                   |                                        | 37            |
| 27    | В                | 1                 | 6  | Ozone + Free Chlorine | 20 000                | 5                       | 0                   | 0.00                   |                                   |                                        | 37            |
| 27    | В                | 1                 | 6  | Chlorine              | 50                    | 5                       | 0                   | 0.00                   | 1                                 | 0.63                                   | 37            |
| 27    | В                | 1                 | 6  | Chlorine              | 500                   | 5                       | 4                   | 0.80                   | 0.63                              |                                        | 37            |
| 27    | В                | 1                 | 6  | Control               | 50                    | 5                       | 2                   | 0.40                   | 0.01                              | 0.01                                   | 37            |

176

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment                                | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 27    | В                | 1                 | 6  | Control                                  | 500                   | 5                       | 5                   | 1.00                   |                                   |                                | 37            |
|       |                  |                   |    |                                          |                       |                         |                     |                        |                                   |                                |               |
| 28    | В                | 1                 | 6  | Ozone                                    | 200                   | 5                       | 0                   | 0.00                   |                                   | 2.02                           | 37            |
| 28    | В                | 1                 | 6  | Ozone                                    | 2 000                 | 5                       | 1                   | 0.20                   | 1.81                              |                                | 37            |
| 28    | В                | 1                 | 6  | Ozone                                    | 20 000                | 5                       | 4                   | 0.80                   | 2.23                              |                                | 37            |
| 28    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 200                   | 5                       | 0                   | 0.00                   |                                   | 2.44                           | 37            |
| 28    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 2 000                 | 5                       | 0                   | 0.00                   |                                   |                                | 37            |
| 28    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 20 000                | 5                       | 3                   | 0.60                   | 2.44                              |                                | 37            |
| 28    | В                | 1                 | 6  | Chlorine                                 | 50                    | 5                       | 3                   | 0.60                   | -0.16                             | 0.23                           | 37            |
| 28    | В                | 1                 | 6  | Chlorine                                 | 500                   | 5                       | 4                   | 0.80                   | 0.63                              |                                | 37            |
| 28    | В                | 1                 | 6  | Control                                  | 50                    | 5                       | 1                   | 0.20                   | 0.21                              | 0.21                           | 37            |
| 28    | В                | 1                 | 6  | Control                                  | 500                   | 5                       | 5                   | 1.00                   |                                   |                                | 37            |
|       |                  | 1                 |    | an a |                       |                         |                     | 1                      | ,                                 |                                |               |
| 29    | В                | 1                 | 6  | Ozone                                    | 100                   | 5                       | 2                   | 0.40                   | 0.31                              | 0.31                           | 37            |
| 29    | В                | 1                 | 6  | Ozone                                    | 1 000                 | 5                       | 5                   | 1.00                   | Antennam,                         |                                | 37            |
| 29    | В                | 1                 | 6  | Ozone                                    | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                | 37            |
| 29    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 100                   | 5                       | 2                   | 0.40                   | 0.31                              | 0.31                           | 37            |
| 29    | В                | 1 1               | 6  | Ozone + Free Chlorine                    | 1 000                 | 5                       | 5                   | 1.00                   | · · ·                             |                                | 37            |
| 29    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 10 000                | 5                       | 5                   | 1.00                   |                                   | - ·                            | 37            |
| 29    | В                | 1                 | 6  | Chlorine                                 | 50                    | 5                       | 2                   | 0.40                   | 0.01                              | 0.01                           | 37            |
| 29    | В                | 1                 | 6  | Chlorine                                 | 500                   | 5                       | 5                   | 1.00                   | ······                            |                                | 37            |
| 29    | В                | 1                 | 6  | Control                                  | 50                    | 5                       | 4                   | 0.80                   | -0.37                             | 0.13                           | 37            |
| 29    | В                | 1                 | 6  | Control                                  | 500                   | 5                       | 4                   | 0.80                   | 0.63                              |                                | 37            |
|       |                  |                   |    |                                          |                       |                         |                     |                        |                                   |                                |               |
| 30    | В                | 1                 | 6  | Ozone                                    | 500                   | 5                       | 5                   | 1.00                   |                                   | <0.63                          | 37            |
| 30    | В                | 1                 | 6  | Ozone                                    | 5 000                 | 5                       | 5                   | 1.00                   |                                   |                                | 37            |
| 30    | В                | 1                 | 6  | Ozone                                    | 50 000                | 5                       | 5                   | 1.00                   |                                   |                                | 37            |
| 30    | В                | 1                 | 6  | Ozone + Free Chlorine                    | 500                   | 5                       | 5                   | 1.00                   |                                   | < 0.63                         | 37            |

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyst<br>Batch |
|-------|------------------|-------------------|-----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 30    | В                | 1                 | 6   | Ozone + Free Chlorine | 5 000                 | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 30    | В                | 1                 | 6   | Ozone + Free Chlorine | 50 000                | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 30    | В                | 1                 | 6   | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.01                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 30    | В                | 1                 | - 6 | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 30    | В                | 1                 | 6   | Control               | 50                    | 5                       | 1.                  | 0.20                   | 0.21                              | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 30    | В                | 1                 | 6   | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.63                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
|       |                  |                   |     |                       |                       |                         |                     |                        | -<br>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 31    | В                | 1                 | 6   | Ozone                 | 1 000                 | 5                       | 0                   | 0.00                   |                                   | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 31    | B                | 1                 | 6   | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 31    | В                | 1                 | 6   | Ozone                 | 100 000               | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 31    | В                | 1                 | 6   | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                   | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 31    | В                | 1                 | 6   | Ozone + Free Chlorine | 10 000                | 5                       | 1                   | 0.20                   | 2.51                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 31    | В                | 1                 | 6   | Ozone + Free Chlorine | 100 000               | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 31    | В                | 1                 | 6   | Chlorine              | 50                    | 5                       | 1                   | 0.20                   | 0.21                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 31    | В                | 1                 | 6   | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 31    | В                | 1                 | 6   | Control               | 50                    | 5                       | 2                   | 0.40                   | 0.01                              | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 31    | В                | 1                 | 6   | Control               | 500                   | 5                       | 3                   | 0.60                   | 0.84                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
|       |                  |                   |     |                       |                       |                         |                     |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 32    | В                | 1                 | 6   | Ozone                 | 100                   | 5                       | 3                   | 0.60                   | 0.14                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 32    | В                | 1                 | 6   | Ozone                 | 1 000                 | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 32    | B                | 1                 | 6   | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                   | an and a second s | 37            |
| 32    | В                | 1                 | 6   | Ozone + Free Chlorine | 100                   | 5                       | - 3                 | 0.60                   | 0.14                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 32    | В                | 1                 | 6   | Ozone + Free Chlorine | 1 000                 | 5                       | 5                   | 1.00                   |                                   | a an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37            |
| 32    | В                | 1                 | 6   | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 32    | В                | 1                 | 6   | Chlorine              | 50                    | 5                       | 1                   | 0.20                   | 0.21                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 32    | В                | 1                 | 6   | Chlorine              | 500                   | 5                       | 5                   | 1.00                   | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |
| 32    | B                | 1                 | 6   | Control               | 50                    | 5                       | 2                   | 0.40                   | 0.01                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37            |
| 32    | В                | 1                 | 6   | Control               | 500                   | 5                       | 5                   | 1.00                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37            |

| Trial | Natural<br>Water | Temperature<br>°C | pH | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation         | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-------------------------------------------|--------------------------------|---------------|
| 33    | B                | 1                 | 6  | Ωτορο                 | 50                    | 5                       | 2                   | 0.40                   | 0.01                                      | 0.01                           | 37            |
| 33    | B                | 1                 | 6  | Ozone                 | 500                   | 5                       | 5                   | 1.00                   | 0.01                                      | 0.01                           | 37            |
| 33    | B                | 1                 | 6  | Ozone                 | 5,000                 | 5                       | 5                   | 1.00                   |                                           |                                | 37            |
| 33    | B                | 1                 | 6  | Ozone + Free Chlorine | 50                    | 5                       | 0                   | 0.00                   | ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.92                           | 37            |
| 33    | B                | 1                 | 6  | Ozone + Free Chlorine | 500                   | 5                       | 5                   | 1.00                   |                                           | 0.01                           | 37            |
| 33    | B                | 1                 | 6  | Ozone + Free Chlorine | 5 000                 | 5                       | 5                   | 1.00                   | :<br>                                     |                                | 37            |
| 33    | В                | 1                 | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.01                                      | 0.01                           | 37            |
| 33    | В                | 1                 | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   |                                           |                                | 37            |
| 33    | В                | 1                 | 6  | Control               | 50                    | 5                       | 0                   | 0.00                   |                                           | 0.63                           | 37            |
| 33    | В                | 1                 | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.63                                      |                                | 37            |
|       |                  |                   |    |                       |                       |                         | · · ·               |                        |                                           |                                |               |
| 34    | В                | 1                 | 6  | Ozone                 | 500                   | 5                       | 0                   | 0.00                   | · · · · ·                                 | 2.42                           | 37            |
| 34    | В                | 1                 | 6  | Ozone                 | 5 000                 | 5                       | 2                   | 0.40                   | 2.01                                      |                                | 37            |
| 34    | В                | 1                 | 6  | Ozone                 | 50 000                | 5                       | 3                   | 0.60                   | 2.84                                      | 1                              | 37            |
| 34    | В                | 1                 | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                           | 2.31                           | 37            |
| 34    | В                | 1                 | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 2                   | 0.40                   | 2.31                                      |                                | 37            |
| 34    | В                | 1                 | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 1(CEN               | SORED)                 |                                           |                                | 37            |
| 34    | В                | 1                 | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.01                                      | 0.32                           | 37            |
| 34    | В                | 1                 | 6  | Chlorine              | 500                   | 5                       | 4                   | 0.80                   | 0.63                                      |                                | 37            |
| 34    | B                | 1                 | 6  | Control               | 50                    | 5                       | 0                   | 0.00                   |                                           | 0.63                           | 37            |
| 34    | В                | 1                 | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.63                                      |                                | 37            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                           |                                |               |
| 35    | В                | 1                 | 6  | Ozone                 | 500                   | 5                       | 1                   | 0.20                   | 1.21                                      | 1.42                           | 37            |
| 35    | В                | 1                 | 6  | Ozone                 | 5 000                 | 5                       | 4                   | 0.80                   | 1.63                                      |                                | 37            |
| 35    | В                | 1                 | 6  | Ozone                 | 50 000                | 5                       | 5                   | 1.00                   |                                           |                                | 37            |
| 35    | В                | 1                 | 6  | Ozone + Free Chlorine | 500                   | 5                       | 0                   | 0.00                   |                                           | 2.21                           | 37            |
| 35    | B                | 1                 | 6  | Ozone + Free Chlorine | 5 000                 | 5                       | 1                   | 0.20                   | 2.21                                      |                                | 37            |

|       |         |             |    |                       |             |         |          |            |              |              | and the second sec |
|-------|---------|-------------|----|-----------------------|-------------|---------|----------|------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial | Natural | Temperature | pН | Treatment             | Oocysts Per | Animals | Animals  | Proportion | Calculated   | Average      | Cyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Water   | °C          |    |                       | Animal      | in      | Infected | Infected   | Log          | Log          | Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |         |             |    |                       |             | Cohort  |          |            | Inactivation | Inactivation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35    | В       | 1           | 6  | Ozone + Free Chlorine | 50 000      | 5       | 5        | 1.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | В       | 1           | 6  | Chlorine              | 50          | 5       | 3        | 0.60       | -0.16        | -0.16        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | В       | 1           | 6  | Chlorine              | 500         | 5       | 5        | 1.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | В       | 1           | 6  | Control               | 50          | 5       | 1        | 0.20       | 0.21         | 0.21         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | В       | 1           | 6  | Control               | 500         | 5       | 5        | 1.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |         |             |    |                       | 1           |         |          |            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36    | В       | 1           | 6  | Ozone                 | 500         | 5       | 0        | 0.00       |              | 2.42         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Ozone                 | 5 000       | 5       | 0        | 0.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Ozone                 | 50 000      | 5       | 5        | 1.00       |              | ······       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Ozone + Free Chlorine | 1 000       | 5       | 0        | 0.00       |              | 3.01         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Ozone + Free Chlorine | 10 000      | 5       | 1        | 0.20       | 2.51         |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Ozone + Free Chlorine | 100 000     | 5       | 1        | 0.20       | 3.51         |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Chlorine              | 50          | 5       | 3        | 0.60       | -0.16        | -0.16        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | B       | 1           | 6  | Chlorine              | 500         | 5       | 5        | 1.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Control               | 50          | 5       | 1        | 0.20       | 0.21         | 0.21         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36    | В       | 1           | 6  | Control               | 500         | 5       | 5        | 1.00       |              |              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Trial     | Natural | Tomporatura |      | Treatment                                      | Toocyste Per | Animals | Animale  | Proportion | Calculated                                                                             | Average      | Cyst     |
|-----------|---------|-------------|------|------------------------------------------------|--------------|---------|----------|------------|----------------------------------------------------------------------------------------|--------------|----------|
| 11104     | Water   | °C          | 1.14 | ricatment                                      | Animal       | in      | Infected | Infected   | Log                                                                                    | Log          | Batch    |
|           |         | -           |      |                                                |              | Cohort  |          |            | Inactivation                                                                           | Inactivation |          |
| 37        | С       | 21          | 6    | Ozone                                          | 500          | 5       | 0        | 0.00       | ***************************************                                                | >3.34        | 38       |
| 37        | С       | 21          | 6    | Ozone                                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 37        | С       | 21          | 6    | Ozone                                          | 50 000       | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 37        | C       | 21          | 6    | Ozone + Free Chlorine                          | 500          | 5       | 0        | 0.00       |                                                                                        | >3.64        | 38       |
| 37        | С       | 21          | 6    | Ozone + Free Chlorine                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 37        | С       | 21          | 6    | Ozone + Free Chlorine                          | 50 000       | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 37        | С       | 21          | 6    | Chlorine                                       | 50           | 5       | 0        | 0.00       |                                                                                        | 0.47         | 38       |
| 37        | С       | 21          | 6    | Chlorine                                       | 500          | 5       | 4        | 0.80       | 0.47                                                                                   |              | 38       |
| 37        | С       | 21          | 6    | Control                                        | 50           | 5       | 1        | 0.20       | 0.47                                                                                   | 0.47         | 38       |
| 37        | С       | 21          | 6    | Control                                        | 500          | 5       | 5        | 1.00       |                                                                                        |              | 38       |
| 38        | С       | 21          | 6    | Ozone                                          | 500          | 5       | 0        | 0.00       |                                                                                        | >3.34        | 38       |
| 38        | С       | 21          | 6    | Ozone                                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 38        | С       | 21          | 6    | Ozone                                          | 50 000       | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 38        | С       | 21          | 6    | Ozone + Free Chlorine                          | 500          | 5       | 0        | 0.00       |                                                                                        | >3.34        | 38       |
| 38        | С       | 21          | 6    | Ozone + Free Chlorine                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 38        | C       | 21          | 6    | Ozone + Free Chlorine                          | 50 000       | 5       | 0        | 0.00       | ануунун на алан улс сулс соор на алан улс алан так |              | 38       |
| 38        | С       | 21          | 6    | Chlorine                                       | 100          | 5       | 1        | 0.20       | 0.77                                                                                   | 0.77         | 38       |
| 38        | С       | 21          | 6    | Chlorine                                       | 1 000        | 5       | 5        | 1.00       | ······································                                                 |              | 38       |
| 38        | С       | 21          | 6    | Control                                        | 50           | 5       | 2        | 0.40       | 0.12                                                                                   | 0.12         | 38       |
| 38        | С       | 21          | 6    | Control                                        | 500          | 5       | 5        | 1.00       |                                                                                        |              | 38       |
|           |         | ·           | 1    | a na ha an |              |         |          |            |                                                                                        |              |          |
| 39        | С       | 21          | 6    | Ozone                                          | 500          | 5       | 0        | 0.00       |                                                                                        | >3.34        | 38       |
| 39        | С       | 21          | 6    | Ozone                                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| 39        | С       | 21          | 6    | Ozone                                          | 50 000       | 5       | 0        | 0.00       | · ·                                                                                    | <u></u>      | 38       |
| 39        | С       | 21          | 6    | Ozone + Free Chlorine                          | 500          | 5       | 0        | 0.00       |                                                                                        | >3.34        | 38       |
| 39        | С       | 21          | 6    | Ozone + Free Chlorine                          | 5 000        | 5       | 0        | 0.00       |                                                                                        |              | 38       |
| B-manager |         |             |      |                                                |              | L       | 1        | 1          |                                                                                        |              | (Continu |

 Table B.3

 Neonatal CD-1 infectivity analysis for experimental trials with natural water C

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected                   | Proportion<br>Infected | Calculated<br>Log | Average<br>Log | Cyst<br>Batch |
|-------|------------------|-------------------|-----|-----------------------|-----------------------|-------------------------|---------------------------------------|------------------------|-------------------|----------------|---------------|
| 39    | С                | 21                | 6   | Ozone + Free Chlorine | 50 000                | 5                       | 0                                     | 0.00                   |                   |                | 38            |
| 39    | С                | 21                | - 6 | Chlorine              | 50                    | 5                       | 1                                     | 0.20                   | 0.47              | 0.47           | 38            |
| 39    | С                | 21                | 6   | Chlorine              | 500                   | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 39    | С                | 21                | 6   | Control               | 50                    | 5                       | 2                                     | 0.40                   | 0.12              | 0.12           | 38            |
| 39    | С                | 21                | 6   | Control               | 500                   | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 40    |                  | 24                | 6   | 07000                 | 1.000                 | E                       |                                       | 0.00                   |                   | 2.45           | 20            |
| 40    |                  | 21                | 6   | Ozono                 | 10.000                | 5                       |                                       | 0.00                   | 0 4 0             | 2.43           | 20            |
| 40    |                  | 21                | 0   |                       | 100.000               | 5                       | 3                                     | 0.00                   | 2.13              |                | 30            |
| 40    |                  | 21                | 6   | Ozone + Eree Chlorine | 100 000               | 5                       | · · · · · · · · · · · · · · · · · · · | 0.00                   | 2.11              | 2 77           | 30            |
| 40    | C                | 21                | 6   | Ozone + Free Chlorine | 10,000                | 5                       | 0                                     | 0.00                   |                   | 5.77           | 38            |
| 40    | C C              | 21                | 6   | Ozone + Free Chlorine | 100 000               | 5                       | 1                                     | 0.00                   | 3 77              |                | 38            |
| 40    | C C              | 21                | 6   | Ozone                 | 1 000                 | 5                       | 3                                     | 0.60                   | 1 13              | 1.13           | 38            |
| 40    | c                | 21                | 6   | Ozone                 | 10 000                | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 40    | C                | 21                | 6   | Ozone                 | 100 000               | 5                       | 5                                     | 1.00                   |                   | [              | 38            |
| 40    | С                | 21                | 6   | Ozone + Free Chlorine | 1 000                 | 5                       | 0                                     | 0.00                   |                   | 2.13           | 38            |
| 40    | С                | 21                | 6   | Ozone + Free Chlorine | 10 000                | 5                       | 3                                     | 0.60                   | 2.13              |                | 38            |
| 40    | С                | 21                | 6   | Ozone + Free Chlorine | 100 000               | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 40    | С                | 21                | 6   | Control               | 50                    | 5                       | 3                                     | 0.60                   | -0.17             | -0.17          | 38            |
| 40    | С                | 21                | 6   | Control               | 500                   | 5                       | 5                                     | 1.00                   |                   |                | 38            |
|       | ļ                |                   |     |                       | 4 000                 |                         | · · · ·                               | 0.00                   |                   | 0.40           |               |
| 41    |                  | 21                | 6   | Ozone                 | 1 000                 | 5                       | 0                                     | 0.00                   | <u> </u>          | 2.42           | 38            |
| 41    | <u> </u>         | 21                | 6   | Ozone                 | 10 000                | 5                       | 2                                     | 0.40                   | 2.42              |                | 38            |
| 41    | <u> </u>         | 21                | 6   | Ozone                 | 100 000               | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 41    |                  | 21                | 6   | Ozone + Free Chlorine | 1 000                 | 5                       | 2                                     | 0.40                   | 1.42              | 1.42           | 38            |
| 41    |                  | 21                | 6   | Uzone + Free Chlorine | 10.000                | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 41    |                  | 21                | 6   | Uzone + Free Chlorine | 100 000               | 5                       | 5                                     | 1.00                   |                   |                | 38            |
| 41    | C C              | 21                | 6   | Ozone                 | 1 000                 | 5                       | 5                                     | 1.00                   |                   | <1.01          | 38            |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

|             | Trial | Natural<br>Water | Temperature<br>°C | pН | Treatment             | Oocysts Per<br>Animal | Animals | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log                                             | Average<br>Log |
|-------------|-------|------------------|-------------------|----|-----------------------|-----------------------|---------|---------------------|------------------------|---------------------------------------------------------------|----------------|
|             |       |                  |                   |    |                       |                       | Cohort  |                     |                        | Inactivation                                                  | Inactivation   |
|             | 41    | C                | 21                | 6  | Ozone                 | 10 000                | 5       | 5                   | 1.00                   |                                                               |                |
|             | 41    | С                | 21                | 6  | Ozone                 | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 41    | С                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5       | 2                   | 0.40                   | 1.42                                                          | 1.42           |
|             | 41    | С                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5       | 5                   | 1.00                   |                                                               |                |
|             | 41    | С                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 41    | С                | 21                | 6  | Control               | 50                    | 5       | 4                   | 0.80                   | -0.53                                                         | -0.53          |
|             | 41    | С                | 21                | 6  | Control               | 500                   | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Ozone                 | 1 000                 | 5       | 2                   | 0.40                   | 1.42                                                          | 1.77           |
|             | 42    | C                | 21                | 8  | Ozone                 | 10 000                | 5       | 3                   | 0.60                   | 2.13                                                          |                |
|             | 42    | С                | 21                | 8  | Ozone                 | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5       | 0                   | 0.00                   | hadiga mandingka mangingka kang kang kang kang kang kang kang | 2.13           |
| <u>دسبر</u> | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5       | 3                   | 0.60                   | 2.13                                                          |                |
| ŝ           | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5       | 0                   | 0.00                   |                                                               | 2.79           |
|             | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5       | 0                   | 0.00                   |                                                               | · ·            |
|             | 42    | С                | 21                | 8  | Ozone + Free Chlorine | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Chlorine              | 50                    | 5       | 1                   | 0.20                   | 0.47                                                          | 0.47           |
|             | 42    | C                | 21                | 8  | Chlorine              | 500                   | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Chlorine              | 50                    | 5       | 2                   | 0.40                   | 0.12                                                          | 0.12           |
|             | 42    | С                | 21                | 8  | Chlorine              | 500                   | 5       | 5                   | 1.00                   |                                                               |                |
|             | 42    | С                | 21                | 8  | Control               | 50                    | 5       | 2                   | 0.40                   | 0.12                                                          | 0.12           |
|             | 42    | С                | 21                | 8  | Control               | 500                   | 5       | 5                   | 1.00                   |                                                               |                |
|             | 43    | C                | 21                | 8  | Ozone                 | 1 000                 | 5       | 5                   | 1.00                   |                                                               | <1.01          |
|             | 43    | С                | 21                | 8  | Ozone                 | 10 000                | 5       | 5                   | 1.00                   |                                                               |                |
|             | 43    | С                | 21                | 8  | Ozone                 | 100 000               | 5       | 5                   | 1.00                   |                                                               |                |
|             | 43    | С                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5       | 5                   | 1.00                   |                                                               | <1.01          |

(Continued)

Cyst Batch

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment             | Oocysts Per<br>Animal | Animals<br>in | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log | Average<br>Log | Cyst<br>Batch |
|-------|------------------|-------------------|-----|-----------------------|-----------------------|---------------|---------------------|------------------------|-------------------|----------------|---------------|
| 43    | С                | 21                | 8   | Ozone + Free Chlorine | 10 000                | 5             | 5                   | 1.00                   | macuvation        | macuvation     | 38            |
| 43    | С                | 21                | 8   | Ozone + Free Chlorine | 100 000               | 5             | 5                   | 1.00                   |                   |                | 38            |
| 43    | С                | 21                | 8   | Ozone + Free Chlorine | 1 000                 | 5             | 5                   | 1.00                   |                   | <1.01          | 38            |
| 43    | C                | 21                | 8   | Ozone + Free Chlorine | 10 000                | 5             | 5                   | 1.00                   |                   |                | 38            |
| 43    | С                | 21                | 8   | Ozone + Free Chlorine | 100 000               | 5             | 5                   | 1.00                   |                   |                | 38            |
| 43    | С                | 21                | 8   | Chlorine              | 50                    | 5             | 1                   | 0.20                   | 0.47              | 0.47           | - 38          |
| 43    | С                | 21                | 8   | Chlorine              | 500                   | 4             | 4                   | 1.00                   |                   |                | 38            |
| 43    | C                | 21                | 8   | Chlorine              | 50                    | 5             | 1                   | 0.20                   | 0.47              | 0.47           | 38            |
| 43    | С                | 21                | 8   | Chlorine              | 500                   | 5             | 4                   | 0.80                   | 0.47              |                | 38            |
| 43    | С                | 21                | 8   | Control               | 50                    | 5             | 2                   | 0.40                   | 0.12              | 0.12           | 38            |
| 43    | С                | 21                | 8   | Control               | 500                   | None          | None                |                        |                   |                | 38            |
|       |                  |                   |     |                       |                       |               |                     |                        |                   |                |               |
| 44    | С                | 21                | 8   | Ozone                 | 1 000                 | 5             | 5                   | 1.00                   |                   | <0.74          | 38            |
| 44    | С                | 21                | 8   | Ozone                 | 10 000                | 5             | 5                   | 1.00                   |                   |                | 38            |
| 44    | C                | 21                | 8   | Ozone                 | 100 000               | 5             | not done            |                        |                   |                | 38            |
| 44    | С                | 21                | 8   | Ozone + Free Chlorine | 1 000                 | 2             | 2                   | 1.00                   |                   | <1.24          | 38            |
| 44    | С                | 21                | 8   | Ozone + Free Chlorine | 10 000                | 5             | 5                   | 1.00                   |                   |                | 38            |
| 44    | С                | 21                | . 8 | Ozone + Free Chlorine | 100 000               | 5             | 5                   | 1.00                   |                   |                | 38            |
| 44    | С                | 1                 | 6   | Ozone + Free Chlorine | 1 000                 | 5             | 0                   | 0.00                   |                   |                | 38            |
| 44    | С                | 1                 | 8   | Ozone + Free Chlorine | 10 000                | 5             | 0                   | 0.00                   |                   |                | 38            |
| 44    | С                | 1                 | 8   | Ozone + Free Chlorine | 100 000               | 5             | 0                   | 0.00                   |                   |                | 38            |
| 44    | C                | 1                 | 8   | Chlorine              | 50                    | 5             | 0                   | 0.00                   |                   |                | 38            |
| 44    | С                | 1                 | 8   | Chlorine              | 500                   | 5             | 0                   | 0.00                   |                   |                | 38            |
| 44    | С                | 21                | 8   | Chlorine              | 50                    | 5             | 1                   | 0.20                   | 0.47              | 0.47           | 38            |
| 44    | С                | 21                | 8   | Chlorine              | 500                   | 5             | 5                   | 1.00                   |                   |                | 38            |
| 44    | С                | 21                | 8   | Control               | 50                    | 5             | 3                   | 0.60                   | -0.17             | -0.17          | 38            |
| 44    | С                | 21                | 8   | Control               | 500                   | 5             | 5                   | 1.00                   |                   |                | 38            |

184

| Trial | Natural | Temperature | pН | Treatment                             | Oocysts Per | Animals | Animals  | Proportion | Calculated   | Average      | Cyst  |
|-------|---------|-------------|----|---------------------------------------|-------------|---------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |    |                                       | Animal      | in      | Infected | Infected   | Log          | Log          | Batch |
|       |         |             |    |                                       |             | Cohort  |          | 2.22       | Inactivation | Inactivation |       |
| 45    | С       | 21          | 6  | Ozone                                 | 1 000       | 5       | 1        | 0.20       | 1.77         | 1.77         | 38    |
| 45    | C       | 21          | 6  | Ozone                                 | 10 000      | 5       | 4        | 0.80       | 1.77         |              | 38    |
| 45    | C       | 21          | 6  | Ozone                                 | 100 000     | 5       | 5        | 1.00       |              |              | 38    |
| 45    | C       | 21          | 6  | Ozone + Free Chlorine                 | 1 000       | 5       | 1        | 0.20       | 1.77         | 1.95         | 38    |
| 45    | С       | 21          | 6  | Ozone + Free Chlorine                 | 10 000      | 5       | 3        | 0.60       | 2.13         |              | 38    |
| 45    | С       | 21          | 6  | Ozone + Free Chlorine                 | 100 000     | 5       | 5        | 1.00       |              |              | 38    |
| 45    | С       | 21          | 6  | Ozone + Free Chlorine                 | 1 000       | 5       | 0        | 0.00       |              | >3.77        | 38    |
| 45    | С       | 21          | 6  | Ozone + Free Chlorine                 | 10 000      | 5       | 0        | 0.00       |              |              | 38    |
| 45    | С       | 21          | 6  | Ozone + Free Chlorine                 | 100 000     | 5       | 0        | 0.00       |              |              | 38    |
| 45    | С       | 21          | 6  | Chlorine                              | 50          | 5       | 4        | 0.80       | -0.53        | -0.53        | 38    |
| 45    | С       | 21          | 6  | Chlorine                              | 500         | 5       | 5        | 1.00       |              |              | 38    |
| 45    | С       | 21          | 6  | Chlorine                              | 50          | 5       | 2        | 0.40       | 0.12         | 0.47         | 38    |
| 45    | С       | 21          | 6  | Chlorine                              | 500         | 5       | 3        | 0.60       | 0.83         |              | 38    |
| 45    | С       | 21          | 6  | Control                               | 50          | 5       | 1        | 0.20       | 0.47         | 0.47         | 38    |
| 45    | С       | 21          | 6  | Control                               | 500         | 5       | 5        | 1.00       |              |              | 38    |
|       |         |             |    | , , , , , , , , , , , , , , , , , , , |             |         |          |            |              |              |       |
| 46    | С       | 21          | 8  | Ozone                                 | 100         | 5       | 0        | 0.00       | - ·          | 1.42         | 38    |
| 46    | С       | 21          | 8  | Ozone                                 | 1 000       | 5       | 2        | 0.40       | 1.42         |              | 38    |
| 46    | С       | 21          | 8  | Ozone                                 | 10 000      | 5       | 5        | 1.00       |              |              | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 500         | 5       | 1        | 0.20       | 1.47         | 1.47         | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 5 000       | 5       | 4        | 0.80       | 1.47         | · · ·        | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 50 000      | 5       | 5        | 1.00       |              |              | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 1 000       | 5       | 0        | 0.00       |              | 2.42         | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 10 000      | 5       | 2        | 0.40       | 2.42         |              | 38    |
| 46    | С       | 21          | 8  | Ozone + Free Chlorine                 | 100 000     | 5       | 5        | 1.00       |              |              | 38    |
| 46    | С       | 21          | 8  | Chlorine                              | 50          | 5       | 2        | 0.40       | 0.12         | 0.30         | 38    |
| 46    | С       | 21          | 8  | Chlorine                              | 500         | 5       | 4        | 0.80       | 0.47         |              | 38    |
| 46    | С       | 21          | 8  | Chlorine                              | 50          | 5       | 1        | 0.20       | 0.47         | 0.47         | 38    |

# Table B.3 (Continued)

(Continued)

|                                        |          |    |   |                                                                                                                            | •      |   |     |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|----------------------------------------|----------|----|---|----------------------------------------------------------------------------------------------------------------------------|--------|---|-----|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 46                                     | С        | 21 | 8 | Chlorine                                                                                                                   | 500    | 5 | 5   | 1.00    |                 | nga ayaa ahada gagaa ayaa ahaa ahaa ahaa ahaa ahaa ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38    |
| 46                                     | С        | 21 | 8 | Control                                                                                                                    | 50     | 5 | 1   | 0.20    | 0.47            | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 46                                     | С        | 21 | 8 | Control                                                                                                                    | 500    | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| ······································ |          |    |   | <sup>1111</sup> -ierie-iVelisiemen anderseen op en anderse geben ander op gebruikter anderse op een anderse op een anderse |        |   | · · |         |                 | Martin and a sector of the sec | ····· |
| 47                                     | С        | 21 | 6 | Ozone                                                                                                                      | 100    | 5 | 3   | 0.60    | 0.13            | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 47                                     | С        | 21 | 6 | Ozone                                                                                                                      | 1 000  | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Ozone                                                                                                                      | 10 000 | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 100    | 5 | 1   | 0.20    | 0.77            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 1 000  | 5 | 4   | 0.80    | 0.77            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 10 000 | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 100    | 5 | 3   | 0.60    | Sample<br>mixup | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 1 000  | 5 | 5   | 1.00    | Sample<br>mixup |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Ozone + Free Chlorine                                                                                                      | 10 000 | 5 | 4   | 0.80    | 1.77            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Control                                                                                                                    | 50     | 5 | 0   | 0.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 47                                     | С        | 21 | 6 | Control                                                                                                                    | 500    | 5 | 0   | 0.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | C        | 21 | 8 | Ωτοηο                                                                                                                      | 100    | 5 | 3   | 0.60    | 0.13            | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 48                                     | C C      | 21 | 8 |                                                                                                                            | 1 000  | 5 | 5   | 1 00    | 0.10            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 48                                     | <u> </u> | 21 | 8 | Ozone                                                                                                                      | 10,000 | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | C C      | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 10000  | 5 | 1   | 0.20    | 0.77            | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38    |
| 48                                     | C C      | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 1 000  | 5 | 4   | 0.80    | 0.77            | J. L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38    |
| 48                                     | c        | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 10 000 | 5 | 4   | 0.80    | 1.77            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | С        | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 100    | 5 | 1   | 0.20    | 0.77            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 48                                     | c        | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 1 000  | 5 | 4   | 0.80    | 0.77            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | C        | 21 | 8 | Ozone + Free Chlorine                                                                                                      | 10 000 | 5 | 5   | 1.00    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | C        | 21 | 8 | Chlorine                                                                                                                   | 50     | 5 | 2   | 0.40    | 0.12            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
| 48                                     | С        | 21 | 8 | Chlorine                                                                                                                   | 500    | 5 | 4   | 0.80    | 0.47            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38    |
| 48                                     | С        | 21 | 8 | Chlorine                                                                                                                   | 50     | 5 | 2   | 0.40    | 0.12            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    |
|                                        |          | 1  | 1 | L                                                                                                                          | L      | L | J   | <u></u> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

981

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                               | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 48    | Ç                | 21                | 8  | Control               | 50                    | 5                       | 2                   | 0.40                   | 0.12                                                                                                            | 0.12                           | 38            |
| 48    | С                | 21                | 8  | Control               | 500                   | 5                       | 5                   | 1.00                   |                                                                                                                 |                                | 38            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                                                                                                 |                                |               |
| 49    | C                | 21                | 6  | Ozone                 | 100                   | 5                       | 0                   | 0.00                   |                                                                                                                 | 1.77                           | 38            |
| 49    | С                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 1                   | 0.20                   | 1.77                                                                                                            |                                | 38            |
| 49    | С                | 21                | 6  | Ozone                 | 10 000                | 5                       | 4                   | 0.80                   | 1.77                                                                                                            |                                | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 500                   | 5                       | 1                   | 0.20                   | 1.47                                                                                                            | 1.97                           | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 5 000                 | 5                       | 1                   | 0.20                   | 2.47                                                                                                            |                                | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 50 000                | 5                       | 5                   | 1.00                   |                                                                                                                 |                                | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 0                   | 0.00                   |                                                                                                                 | 3.13                           | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 0                   | 0.00                   |                                                                                                                 |                                | 38            |
| 49    | С                | 21                | 6  | Ozone + Free Chlorine | 100 000               | 5                       | 3                   | 0.60                   | 3.13                                                                                                            | 1                              | 38            |
| 49    | С                | 21                | 6  | Chlorine              | 50                    | 5                       | 5                   | 1.00                   | 201920-00-00-00-00-00-00-00-00-00-00-00-00-0                                                                    | <-0.53                         | 38            |
| 49    | С                | 21                | 6  | Chlorine              | 500                   | 5                       | 5                   | 1.00                   | anna (com ( ) ) an ( |                                | 38            |
| 49    | C                | 21                | 6  | Chlorine              | 50                    | 5                       | 0                   | 0.00                   |                                                                                                                 | 0.83                           | 38            |
| 49    | C                | 21                | 6  | Chlorine              | 500                   | 5                       | 3                   | 0.60                   | 0.83                                                                                                            |                                | 38            |
| 49    | С                | 21                | 6  | Control               | 50                    | 5                       | 1                   | 0.20                   | 0.47                                                                                                            | 0.47                           | 38            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                                                                                                 |                                |               |
| 50    | С                | 21                | 6  | Ozone                 | 100                   | 5                       | 1                   | 0.20                   | 0.77                                                                                                            | 0.77                           | 38            |
| 50    | С                | 21                | 6  | Ozone                 | 1 000                 | 5                       | 4                   | 0.80                   | 0.77                                                                                                            |                                | 38            |
| 50    | С                | 21                | 6  | Ozone                 | 10 000                | 5                       | 5                   | 1.00                   |                                                                                                                 |                                | 38            |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 100                   | 5                       | 1                   | 0.20                   | 0.77                                                                                                            | 0.77                           | 38            |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 1 000                 | 5                       | 5                   | 1.00                   |                                                                                                                 |                                | . 38          |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   |                                                                                                                 |                                | 38            |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 500                   | 5                       | 0                   | 0.00                   |                                                                                                                 | 2.47                           | 38            |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 5 000                 | 5                       | 1                   | 0.20                   | 2.47                                                                                                            |                                | 38            |
| 50    | С                | 21                | 6  | Ozone + Free Chlorine | 50 000                | 5                       | 4                   | 0.80                   | 2.47                                                                                                            |                                | 38            |
| 50    | C                | 21                | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.40                   | 0.12                                                                                                            | 0.62                           | 38            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 50    | С                | 21                | 6  | Chlorine              | 500                   | 5                       | 2                   | 0.40                   | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 38            |
| 50    | C                | 21                | 6  | Chlorine              | 50                    | 5                       | 0                   | 0.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.47                           | 38            |
| 50    | С                | 21                | 6  | Chlorine              | 500                   | 5                       | 1                   | 0.20                   | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 38            |
| 50    | С                | 21                | 6  | Control               | 50                    | 5                       | 3                   | 0.60                   | -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15                           | 38            |
| 50    | С                | 21                | 6  | Control               | 500                   | 5                       | 4                   | 0.80                   | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 38            |
| 51    | С                | 21                | 8  | Ozone                 | 100                   | 5                       | 0                   | 0.00                   | quille 1994 for the staff of the fact of the staff of the | 1.40                           | 39            |
| 51    | С                | 21                | 8  | Ozone                 | 1 000                 | 5                       | 1                   | 0.20                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                            | 39            |
| 51    | С                | 21                | 8  | Ozone                 | 10 000                | 5                       | 4                   | 0.80                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 51    | С                | 21                | 8  | Ozone + Free Chlorine | 100                   | 5                       | 0                   | 0.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.57                           | 39            |
| 51    | С                | 21                | 8  | Ozone + Free Chlorine | 1.000                 | 5                       | 0                   | 0.00                   | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | 39            |
| 51    | С                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                       | 1                   | 0.20                   | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 52    | С                | 21                | 8  | Ozone                 | 1 000                 | 5                       | 3                   | 0.60                   | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96                           | 39            |
| 52    | С                | 21                | 8  | Ozone                 | 10 000                | 5                       | 4                   | 0.80                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 52    | С                | 21                | 8  | Ozone                 | 100 000               | 5                       | 5                   | 1.00                   | Ballanan Balantin Bilanda ay ang Tagabawang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 100                   | 5                       | 1                   | 0.20                   | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.07                           | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5                       | 1                   | 0.20                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                       | 5                   | 1.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 100                   | 5                       | 0                   | 0.00                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40                           | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 1 000                 | 5                       | 1                   | 0.20                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 52    | С                | 21                | 8  | Ozone + Free Chlorine | 10 000                | 5                       | 4                   | 0.80                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |
| 52    | С                | 21                | 8  | Control               | 50                    | 5                       | 2                   | 0.40                   | -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                           | 39            |
| 52    | С                | 21                | 8  | Control               | 500                   | 5                       | 3                   | 0.60                   | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 39            |

| Trial | Natural | Temperature | рН | Treatment             | Oocysts Per | Animals | Animals  | Proportion | Calculated   | Average      | Cyst  |
|-------|---------|-------------|----|-----------------------|-------------|---------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |    |                       | Animal      | in      | Infected | Infected   | Log          | Log          | Batch |
|       |         | <u> </u>    |    |                       | 1.000       | Cohort  |          |            | Inactivation | Inactivation |       |
| 52    | С       | 21          | 8  | Ozone                 | 1 000       | 5       | 3        | 0.60       | 0.70         | 0.96         | 39    |
| 52    | С       | 21          | 8  | Ozone                 | 10 000      | 5       | 4        | 0.80       | 1.23         |              | 39    |
| 52    | C       | 21          | 8  | Ozone                 | 100 000     | 5       | 5        | 1.00       |              |              | 39    |
| 52    | C       | 21          | 8  | Ozone + Free Chlorine | 100         | 5       | 1        | 0.20       | 0.57         | 1.07         | 39    |
| 52    | С       | 21          | 8  | Ozone + Free Chlorine | 1 000       | 5       | 1        | 0.20       | 1.57         |              | 39    |
| 52    | С       | 21          | 8  | Ozone + Free Chlorine | 10 000      | 5       | 5        | 1.00       |              |              | 39    |
| 52    | С       | 21          | 8  | Ozone + Free Chlorine | 100         | 5       | 0        | 0.00       |              | 1.40         | 39    |
| 52    | С       | 21          | 8  | Ozone + Free Chlorine | 1 000       | 5       | 1        | 0.20       | 1.57         |              | 39    |
| 52    | С       | 21          | 8  | Ozone + Free Chlorine | 10 000      | 5       | 4        | 0.80       | 1.23         |              | 39    |
| 52    | С       | 21          | 8  | Control               | 50          | 5       | 2        | 0.40       | -0.21        | 0.10         | 39    |
| 52    | С       | 21          | 8  | Control               | 500         | 5       | 3        | 0.60       | 0.40         |              | 39    |
| 53    | D       | 21          | 8  | Ozone                 | 100         | 5       | 3        | 0.60       | -0.30        | -0.30        | 39    |
| 53    | D       | 21          | 8  | Ozone                 | 1 000       | 5       | 5        | 1.00       |              |              | 39    |
| 53    | D       | 21          | 8  | Ozone                 | 10 000      | 5       | 5        | 1.00       |              |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 100         | 5       | 0        | 0.00       |              | 0.23         | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 1 000       | 5       | 4        | 0.80       | 0.23         |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 10 000      | 5       | 5        | 1.00       |              |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 100         | 5       | 0        | 0.00       |              | 1.09         | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 1 000       | 5       | 2        | 0.40       | 1.09         |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 10 000      | 5       | 5        | 1.00       |              |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 1 000       | 5       | 0        | 0.00       |              | 1.36         | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 10 000      | 4       | 3        | 0.75       | 1.36         |              | 39    |
| 53    | D       | 21          | 8  | Ozone + Free Chlorine | 100 000     | 3       | 3        | 1.00       |              |              | 39    |
| 53    | D       | 21          | 8  | Control               | 50          | 5       | 1        | 0.20       | 0.27         | 0.27         | 39    |
| 53    | D       | 21          | 8  | Control               | 500         | 5       | 5        | 1.00       |              |              | 39    |

### Table B.4 Neonatal CD-1 infectivity analysis for experimental trials with natural water D

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Continued)

:

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment                                                                              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|----------------------------------------------------------------------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 55    | D                | 21                | 8  | Ozone                                                                                  | 100                   | 5                       | 0                   | 0                      |                                   | 1.83                           | 39            |
| 55    | D                | 21                | 8  | Ozone                                                                                  | 1000                  | 5                       | 1                   | 0.2                    | 1.57                              |                                | 39            |
| 55    | D                | 21                | 8  | Ozone                                                                                  | 10000                 | 5                       | 2                   | 0.4                    | 2.09                              |                                | 39            |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 500                   | 5                       | 0                   | 0                      |                                   | 1.40                           | 39            |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 5000                  | 5                       | 3                   | 0.6                    | 1.40                              |                                | 39            |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 50000                 | 5                       | 5                   | 1                      | ·                                 |                                | 39            |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 2000                  | 5                       | 1                   | 0.2                    | 1.87                              | 1.94                           | -39           |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 20000                 | 5                       | 3                   | 0.6                    | 2.00                              |                                | 39            |
| 55    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 200000                | 5                       | 5                   | 1                      | :                                 |                                | 39            |
| 55    | D                | 21                | 8  | Chlorine                                                                               | 50                    | 5                       | 1                   | 0.2                    | 0.27                              | 0.34                           | 39            |
| 55    | D                | 21                | 8  | Chlorine                                                                               | 500                   | 5                       | 3                   | 0.6                    | 0.40                              |                                | 39            |
| 55    | D                | 21                | 8  | Chlorine                                                                               | 50                    | 5                       | 1                   | 0.2                    | 0.27                              | 0.27                           | 39            |
| 55    | D                | 21                | 8  | Chlorine                                                                               | 500                   | 5                       | 5                   | 1                      |                                   |                                | 39            |
| 55    | D                | 21                | 8  | Control                                                                                | 50                    | 5                       | 0                   | 0                      |                                   |                                | 39            |
|       |                  |                   |    | antikini uruf yezani ana ana a ana a fan a fan a a antini a antini ana antini antini a |                       |                         |                     | 1.0.m                  |                                   |                                |               |
| 56    | D                | 21                | 8  | Ozone                                                                                  | 100                   | 5                       | 0                   | 0                      |                                   | 2.57                           | 39            |
| 56    | D                | 21                | 8  | Ozone                                                                                  | 1000                  | 5                       | 0                   | 0                      |                                   |                                | 39            |
| 56    | D D              | 21                | 8  | Ozone                                                                                  | 10000                 | 5                       | 1                   | 0.2                    | 2.57                              |                                | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 500                   | 5                       | 0                   | 0                      |                                   | 2.40                           | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 5000                  | 5                       | 1                   | 0.2                    | 2.27                              |                                | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 50000                 | 5                       | 3                   | 0.6                    | 2.40                              |                                | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 2000                  | 5                       | 0                   | 0                      |                                   | 2.58                           | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 20000                 | 5                       | 0                   | 0                      |                                   |                                | 39            |
| 56    | D                | 21                | 8  | Ozone + Free Chlorine                                                                  | 200000                | 5                       | 5                   | 1                      | · · ·                             |                                | 39            |
| 56    | D                | 21                | 8  | Chlorine                                                                               | 50                    | 5                       | 3                   | 0.6                    | -0.60                             | -0.60                          | 39            |
| 56    | D                | 21                | 8  | Chlorine                                                                               | 500                   | 5                       | 5                   | 1                      |                                   |                                | 39            |
| 56    | D                | 21                | 8  | Chlorine                                                                               | 50                    | 5                       | 1                   | 0.2                    | 0.27                              | 0.10                           | 39            |
| 56    | D                | 21                | 8  | Chlorine                                                                               | 500                   | 5                       | 4                   | 0.8                    | -0.08                             |                                | 39            |

| 56 | D | 21 | 8 | Control               | 50     | 5  | 2 | 0.4     | -0.21 | -0.21                                                         | 39 |
|----|---|----|---|-----------------------|--------|----|---|---------|-------|---------------------------------------------------------------|----|
|    |   |    |   |                       |        |    |   |         |       |                                                               |    |
| 57 | D | 21 | 8 | Ozone                 | 100    | 4  | 0 | 0       |       | 2.57                                                          | 39 |
| 57 | D | 21 | 8 | Ozone                 | 1000   | 5  | 0 | 0       |       |                                                               | 39 |
| 57 | D | 21 | 8 | Ozone                 | 10000  | 5  | 1 | 0.2     | 2.57  |                                                               | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 500    | 5  | 0 | 0       |       | 2.34                                                          | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 5000   | 5  | 1 | 0.2     | 2.27  |                                                               | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 50000  | 5  | 3 | 0.6     | 2.40  | · ·                                                           | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 2000   | .5 | 0 | 0       |       | 2.94                                                          | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 20000  | 5  | 1 | 0.2     | 2.87  |                                                               | 39 |
| 57 | D | 21 | 8 | Ozone + Free Chlorine | 200000 | 5  | 3 | 0.6     | 3.00  |                                                               | 39 |
| 57 | D | 21 | 8 | Chlorine              | 50     | 5  | 2 | 0.4     | -0.21 | -0.21                                                         | 39 |
| 57 | D | 21 | 8 | Chlorine              | 500    | 5  | 5 | 1       |       | annanan an tarain an tarain ann an tarain ann an ta           | 39 |
| 57 | D | 21 | 8 | Chlorine              | 50     | 5  | 2 | 0.4     | -0.21 | 0.10                                                          | 39 |
| 57 | D | 21 | 8 | Chlorine              | 500    | 5  | 3 | 0.6     | 0.40  | al an ann an guirteachann an | 39 |
| 57 | D | 21 | 8 | Control               | 50     | 5  | 3 | 0.6     | -0.60 | -0.60                                                         | 39 |
| 57 | D | 21 | 8 | Control               | 500    | 5  | 5 | 1       |       |                                                               | 39 |
|    |   |    |   |                       |        |    |   | · · · · |       |                                                               |    |
| 58 | D | 21 | 6 | Ozone                 | 100    | 5  | 0 | 0       |       | >2.57                                                         | 39 |
| 58 | D | 21 | 6 | Ozone                 | 1000   | 5  | 0 | 0       |       |                                                               | 39 |
| 58 | D | 21 | 6 | Ozone                 | 10000  | 5  | 0 | 0       |       |                                                               | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 500    | 5  | 0 | 0       |       | >3.27                                                         | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 5000   | 5  | 0 | 0       |       |                                                               | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 50000  | 5  | 0 | 0       |       | · ·                                                           | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 2000   | 5  | 0 | 0       |       | 3.87                                                          | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 20000  | 5  | 0 | 0       |       |                                                               | 39 |
| 58 | D | 21 | 6 | Ozone + Free Chlorine | 200000 | 5  | 1 | 0.2     | 3.87  |                                                               | 39 |
| 58 | D | 21 | 6 | Chlorine              | 50     | 5  | 0 | 0       | · · · | -0.08                                                         | 39 |
| 58 | D | 21 | 6 | Chlorine              | 500    | 5  | 4 | 0.8     | -0.08 |                                                               | 39 |
| 58 | D | 21 | 6 | Chlorine              | 50     | 5  | 1 | 0.2     | 0.27  | 0.34                                                          | 39 |

(Continued)
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ``     | ,                                     |   |     |                                        |                                          |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|---|-----|----------------------------------------|------------------------------------------|----|
| 58 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500    | 5                                     | 3 | 0.6 | 0.40                                   |                                          | 39 |
| 58 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50     | 5                                     | 1 | 0.2 | 0.27                                   | 0.27                                     | 39 |
| 58 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500    | 5                                     | 5 | 1   |                                        |                                          | 39 |
|    | and the second s | a Kaj dali di sakan ngangangan ngang mgangan nga sakan s |   | anta a gana ana mandrana a a ana agama kana mandra mandra mandra ana ana ana ana ana ana ana ana ana a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 1                                     |   |     |                                        |                                          |    |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    | 5                                     | 0 | 0   |                                        | 1.70                                     | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000   | 5                                     | 1 | 0.2 | 1.57                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000  | 5                                     | 3 | 0.6 | 1.70                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500    | 5                                     | 0 | 0   |                                        | 2.10                                     | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000   | 5                                     | 2 | 0.4 | 1.79                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50000  | 5                                     | 3 | 0.6 | 2.40                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000   | 5                                     | 0 | 0   |                                        | 2.70                                     | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000  | 5                                     | 0 | 0   |                                        |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000 | 5                                     | 3 | 0.6 | 2.70                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50     | 5                                     | 1 | 0.2 | 0.27                                   | 0.10                                     | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500    | 5                                     | 4 | 0.8 | -0.08                                  |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50     | 5                                     | 0 | 0   |                                        | 0.79                                     | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500    | 5                                     | 2 | 0.4 | 0.79                                   |                                          | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50     | 5                                     | 0 | 0   |                                        | -0.02                                    | 39 |
| 59 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500    | 5                                     | 5 | 1   |                                        |                                          | 39 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ·                                     |   |     |                                        |                                          |    |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    | 5                                     | 2 | 0.4 | 0.09                                   | 0.09                                     | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000   | 5                                     | 5 | 1   |                                        |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000  | 5                                     | 5 | 1   |                                        |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    | 5                                     | 0 | 0   |                                        | 0.28                                     | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000   | 5                                     | 5 | 1   |                                        |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000  | 5                                     | 5 | 1   |                                        |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500    | 5                                     | 3 | 0.6 | 0.40                                   | 0.40                                     | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000   | 5                                     | 5 | 1   | ************************************** |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50000  | 5                                     | 5 | 1   | 1                                      |                                          | 39 |
| 60 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                             | 8 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    | 5                                     | 0 | 0   | 1                                      | 0.28                                     | 39 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |   | and and a second s |        | · · · · · · · · · · · · · · · · · · · |   |     | Augusto constantina and a constantina  | Lanaanaanaanaanaanaanaanaanaanaanaanaana |    |

192

| 60<br>60<br>60 | D<br>D<br>D | 21<br>21 | 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |    |     | LUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Daton |
|----------------|-------------|----------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|
| 60<br>60<br>60 | D<br>D<br>D | 21<br>21 | 8 | A CONTRACTOR OF A CONTRACTOR O |        | Cohort |    |     | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inactivation                                                                                                    |       |
| 60<br>60       | D<br>D      | 21       |   | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000   | 5      | 5  | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 39    |
| 60             | D           |          | 8 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10000  | 5      | 5  | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 39    |
|                | n           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100    | 5      | 1  | 0.2 | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.83                                                                                                            | 39    |
| 60             | U           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000   | 5      | 3  | 0.6 | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 60             | D           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10000  | 5      | 4  | 0.8 | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 60             | D           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500    | 5      | 2  | 0.4 | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.23                                                                                                            | 39    |
| 60             | D           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000   | 5      | 5  | 1   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | 39    |
| 60             | D           | 21       | 8 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000  | 5      | 4  | 0.8 | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 60             | D           | 21       | 8 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50     | 5      | 3  | 0.6 | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.73                                                                                                           | 39    |
|                |             |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |       |
| 61             | D           | 21       | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500    | 5      | 0  | 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40                                                                                                            | 39    |
| 61             | D           | 21       | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000   | 5      | 3  | 0.6 | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000  | 5      | 5  | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500    | 5      | 0  | 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.79                                                                                                            | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000   | 5      | -0 | 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000  | 5      | 2  | 0.4 | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2000   | 5      | 1  | 0.2 | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.53                                                                                                            | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20000  | 5      | 0  | 0   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Ozone + Free Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200000 | 5      | 2  | 0.4 | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , and a state of the second | 39    |
| 61             | D           | 21       | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50     | 5      | 1  | 0.2 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.27                                                                                                            | 39    |
| 61             | D           | 21       | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500    | 5      | 5  | 1   | and a successful and a |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50     | 5      | 1  | 0.2 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                                                                            | 39    |
| 61             | D           | 21       | 6 | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500    | 5      | 2  | 0.4 | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 39    |
| 61             | D           | 21       | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50     | 5      | 3  | 0.6 | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.73                                                                                                           | 39    |
| 61             | D           | 21       | 6 | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500    | 5      | 5  | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 39    |
|                |             |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |       |
| 62             | D           | 21       | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100    | 5      | 0  | 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.14                                                                                                            | 40    |
| 62             | D           | 21       | 6 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000   | 5      | 2  | 0.4 | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 40    |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 62    | D                | 21                | 6  | Ozone                 | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 100                   | 5                       | 0                   | 0                      |                                   | 1.14                           | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 1000                  | 5                       | 2                   | 0.4                    | 1.14                              | ·                              | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 500                   | 5                       | 1                   | 0.2                    | 1.21                              | 1.37                           | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 5000                  | 5                       | 3                   | 0.6                    | 1.54                              | j                              | 40            |
| 62    | D                | 21                | 6  | Ozone + Free Chlorine | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 62    | D                | 21                | 6  | Chlorine              | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.37                           | 40            |
| 62    | D                | 21                | 6  | Chlorine              | 500                   | 5                       | 3                   | 0.6                    | 0.54                              |                                | 40            |
| 62    | D                | 21                | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | 0.19                           | 40            |
| 62    | D                | 21                | 6  | Chlorine              | 500                   | 5                       | 3                   | 0.6                    | 0.54                              |                                | 40            |
| 62    | D                | 21                | 6  | Control               | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 40            |
| 62    | D                | 21                | 6  | Control               | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
|       |                  |                   |    |                       |                       |                         |                     |                        |                                   |                                |               |
| 63    | D                | 2                 | 8  | Ozone                 | 500                   | 5                       | 3                   | 0.6                    | 0.54                              | 0.54                           | 40            |
| 63    | D                | 2                 | 8  | Ozone                 | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Ozone                 | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 500                   | 5                       | 5                   | 1                      |                                   | <0.17                          | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              | 0.84                           | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Ozone + Free Chlorine | 100000                | 5                       | 5                   | 1                      |                                   | · ·                            | 40            |
| 63    | D                | 2                 | 8  | Chlorine              | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | -0.16                          | 40            |
| 63    | D                | 2                 | 8  | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 63    | D                | 2                 | 8  | Chlorine              | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | 0.19                           | 40            |
| 63    | D                | 2                 | 8  | Chlorine              | 500                   | 5                       | 3                   | 0.6                    | 0.54                              | 1                              | 40            |
| 63    | D                | 2                 | 8  | Control               | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | -0.16                          | 40            |

| Trial | Natural<br>Water | Temperature<br>°C | рН       | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----------|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 63    | D                | 2                 | 8        | Control               | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 64    | n                | 4.8               | 8        | Ωτορο                 | 100                   | 5                       | A                   | 0.8                    | -0.52                             | -0.52                          | 40            |
| 64    | 0                | 4.0               | 8        | 02016                 | 100                   | 5                       | 5                   | 1                      | -0.02                             | -0.02                          | 40            |
| 64    | <u></u>          | 4.0               | 8        |                       | 1000                  | 5                       | 5                   | 4                      | ·                                 |                                | 40            |
| 64    | <u>_</u>         | 4.0               | <u>0</u> | Ozono + Eroo Chlorino | 10000                 | 5                       | 2                   | 0.6                    | 0.16                              | 0.16                           | 40            |
| 64    | D<br>D           | 4.0               | 0        | Ozone + Free Chlorine | 100                   | 5                       | 5<br>E              | 0.0                    | -0.10                             | -0.10                          | 40            |
| 64    | D                | 4.0               | 0        | Ozone + Free Chlorine | 1000                  | <u>р</u>                |                     | 4                      |                                   |                                | 40            |
| 64    | D                | 4.0               |          | Ozone + Free Chlorine | 10000                 | о<br>с                  | <u> </u>            |                        | 0.44                              | 0.44                           | 40            |
| 04    | D<br>n           | 4.0               | 0        |                       | 200                   | 3<br>7                  | <u> </u>            | 0.0                    | 0.14                              | 0.14                           | 40            |
| 04    | D -              | 4.8               |          | Ozone + Free Chionne  | 2000                  | 5<br>-                  | 5                   | 1                      |                                   |                                | 40            |
| 64    | <u>D</u>         | 4.8               | 8        | Ozone + Free Chlorine | 20000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 64    | <u> </u>         | 4.8               | 8        | Chlorine              | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 40            |
| 64    | D .              | 4.8               | 8        | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 64    | D                | 4.8               | 8        | Chlorine              | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 40            |
| 64    | D                | 4.8               | 8        | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 64    | D                | 4.8               | 8        | Control               | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 40            |
| 64    | D                | 4.8               | 8        | Control               | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 65    | D                | 4.9               | 8        | Ozone                 | 100                   | 5                       | 4                   | 0.8                    | -0.52                             | -0.52                          | 40            |
| 65    | D                | 4.9               | 8        | Ozone                 | 1000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 65    | D                | 4.9               | 8        | Ozone                 | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 100                   | 5                       | 5                   | 1                      |                                   | 0.48                           | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 1000                  | 5                       | 4                   | 0.8                    | 0.48                              |                                | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 200                   | 5                       | 4                   | 0.8                    | -0.22                             | -0.22                          | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 2000                  | 5                       | 5                   | 1                      | ~ • ea, ea                        | ·····                          | 40            |
| 65    | D                | 4.9               | 8        | Ozone + Free Chlorine | 20000                 | 5                       | 5                   | 1                      |                                   | ·                              | <u>40</u>     |
| 65    | D                | 4.9               | 8        | Chlorine              | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 40            |
|       |                  | L                 |          |                       | L                     | L                       | <u> </u>            | L                      | L                                 | L                              | ···           |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 65    | D                | 4.9               | 8  | Chlorine               | 500                   | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 40            |
| 65    | D                | 4.9               | 8  | Chlorine               | 50                    | 5                       | 3                   | 0.6                    | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04                           | 40            |
| 65    | D                | 4.9               | 8  | Chlorine               | 500                   | 5                       | 3                   | 0.6                    | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 65    | D                | 4.9               | 8  | Control                | 50                    | 5                       | 1                   | 0.2                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21                           | 40            |
| 65    | D                | 4.9               | 8  | Control                | 500                   | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 40            |
|       |                  |                   |    |                        |                       |                         |                     |                        | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |               |
| 66    | D                | 21                | 8  | Ozone                  | 100                   | 5                       | 2                   | 0.4                    | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.64                           | 40            |
| 66    | D                | 21                | 8  | Ozone                  | 1000                  | 5                       | 2                   | 0.4                    | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 66    | D                | 21                | 8  | Ozone                  | 10000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 100                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.14                           | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 10000                 | 5                       | 2                   | 0.4                    | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 100                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >2.51                          | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 40            |
| 66    | D                | 21                | 8  | Ozone + Monochloramine | 10000                 | 5                       | 1                   | 0.2                    | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 66    | D                | 21                | 8  | Monochloramine         | 50                    | 5                       | 1                   | 0.2                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                           | 40            |
| 66    | D                | 21                | 8  | Monochloramine         | 500                   | 5                       | 4                   | 0.8                    | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 66    | D                | 21                | 8  | Monochloramine         | 50                    | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >1.21                          | 40            |
| 66    | D                | 21                | 8  | Monochloramine         | 500                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 40            |
| 66    | D                | 21                | 8  | Control                | 50                    | 5                       | 3                   | 0.6                    | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.46                          | 40            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |
| 67    | D                | 21                | 8  | Ozone                  | 100                   | 5                       | 1                   | 0.2                    | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.01                           | 40            |
| 67    | D                | 21                | 8  | Ozone                  | 1000                  | 5                       | 1                   | 0.2                    | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 40            |
| 67    | D                | 21                | 8  | Ozone                  | 10000                 | 5                       | 5                   | 1                      | and an and a subsection of the second s |                                | 40            |
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 200                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.80                           | 40            |
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 2000                  | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 40            |
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 20000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ.                             | 40            |
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 1000                  | 5                       | 1                   | 0.2                    | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.68                           | 40            |

| Trial | Natural<br>Water | Temperature<br>°C | pН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 10000                 | 5                       | 3                   | 0.6                    | 1.84                              | <u></u>                        | 40            |
| 67    | D                | 21                | 8  | Ozone + Monochloramine | 100000                | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 67    | D                | 21                | 8  | Monochloramine         | 100                   | 5                       | 1                   | 0.2                    | 0.51                              | 0.68                           | 40            |
| 67    | D                | 21                | 8  | Monochloramine         | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              |                                | 40            |
| 67    | D                | 21                | 8  | Monochloramine         | 100                   | 5                       | 1                   | 0.2                    | 0.51                              | 0.68                           | 40            |
| 67    | D                | 21                | 8  | Monochloramine         | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              |                                | 40            |
| 67    | D                | 21                | 8  | Control                | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | -0.16                          | 40            |
| 67    | D                | 21                | 8  | Control                | 500                   | 5                       | 5                   | 1                      |                                   |                                | 40            |
|       |                  |                   |    |                        |                       |                         | <i>,</i>            |                        |                                   |                                |               |
| 68    | D                | 21                | 8  | Ozone                  | 100                   | 5                       | 4                   | 0.8                    | -0.52                             | -0.52                          | 40            |
| 68    | D                | 21                | 8  | Ozone                  | 1000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 68    | D                | 21                | 8  | Ozone                  | 10000                 | 5                       | 5                   | 1                      |                                   | 1                              | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 200                   | 5                       | 0                   | 0                      |                                   | 1.61                           | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 2000                  | 5                       | 2                   | 0.4                    | 1.44                              | · ·                            | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 20000                 | 5                       | 4                   | 0.8                    | 1.78                              |                                | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      |                                   | 2.49                           | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 10000                 | -5                      | 1                   | 0.2                    | 2.51                              |                                | 40            |
| 68    | D                | 21                | 8  | Ozone + Monochloramine | 100000                | 5                       | 4                   | 0.8                    | 2.48                              |                                | 40            |
| 68    | D                | 21                | 8  | Monochloramine         | 100                   | 5                       | 1                   | 0.2                    | 0.51                              | 0.51                           | 40            |
| 68    | D                | 21                | 8  | Monochloramine         | 1000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 68    | D                | 21                | 8  | Monochloramine         | 100                   | 5                       | 1                   | 0.2                    | 0.51                              | 0.68                           | 40            |
| 68    | D                | 21                | 8  | Monochloramine         | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              |                                | 40            |
| 68    | D                | 21                | 8  | Control                | 50                    | -5                      | 1                   | 0.2                    | 0.21                              | 0.19                           | 40            |
| 68    | D                | 21                | 8  | Control                | 500                   | 5                       | 4                   | 0.8                    | 0.17                              | ·                              | 40            |
|       |                  |                   |    |                        |                       |                         |                     |                        | anget - get 1.15.15.15.19         |                                |               |
| 69    | D                | 6                 | 6  | Ozone                  | 100                   | 5                       | 3                   | 0.6                    | -0.16                             | -0.16                          | 40            |
| 69    | D                | 6                 | 6  | Ozone                  | 1000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 69    | D                | 6                 | 6  | Ozone                  | 10000                 | 5                       | 5                   | 1                      | 23                                |                                | 40            |

| Trial | Natural<br>Water | Temperature<br>°C | pН | Treatment             | Oocysts Per | Animals | Animals<br>Infected | Proportion                            | Calculated                                                                                                      | Average                                  | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-------------|---------|---------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|
|       | · · · · · · · ·  | Ŭ                 |    |                       | , unitial   | Cohort  | in incolou          | moolod                                | Inactivation                                                                                                    | Inactivation                             | Daton         |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 200         | 5       | 0                   | 0                                     |                                                                                                                 | 0.78                                     | 40            |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 2000        | 5       | 4                   | 0.8                                   | 0.78                                                                                                            |                                          | 40            |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 20000       | 5       | 5                   | 1                                     | a for far the far for the second s | ·····                                    | 40            |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 1000        | 5       | 2                   | 0.4                                   | 1.14                                                                                                            | 1.14                                     | 40            |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 10000       | 5       | 5                   | 1                                     |                                                                                                                 | anananan an a | 40            |
| 69    | D                | 6                 | 6  | Ozone + Free Chlorine | 100000      | 5       | 5                   | 1                                     |                                                                                                                 |                                          | 40            |
| 69    | D                | 6                 | 6  | Chlorine              | 50          | 5       | 1                   | 0.2                                   | 0.21                                                                                                            | 0.21                                     | 40            |
| 69    | D                | 6                 | 6  | Chlorine              | 500         | 5       | 5                   | 1                                     |                                                                                                                 |                                          | 40            |
| 69    | D                | 6                 | 6  | Chlorine              | 50          | 5       | 2                   | 0.4                                   | -0.16                                                                                                           | 0.01                                     | 40            |
| 69    | D                | 6                 | 6  | Chlorine              | 500         | 5       | 4                   | 0.8                                   | 0.17                                                                                                            |                                          | 40            |
| 69    | D                | 6                 | 6  | Control               | 50          | 5       | 4                   | 0.8                                   | -0.83                                                                                                           | -0.83                                    | 40            |
| 69    | D                | 6                 | 6  | Control               | 500         | 4       | 4                   | 1                                     |                                                                                                                 |                                          | 40            |
|       |                  |                   |    |                       |             |         |                     | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                                          |               |
| 70    | D                | 6                 | 6  | Ozone                 | 100         | 5       | 1                   | 0.2                                   | 0.51                                                                                                            | 0.49                                     | 40            |
| 70    | D                | 6                 | 6  | Ozone                 | 1000        | 5       | 4                   | 0.8                                   | 0.48                                                                                                            |                                          | 40            |
| 70    | D                | 6                 | 6  | Ozone                 | 10000       | 5       | 5                   | 1                                     |                                                                                                                 |                                          | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 200         | 5       | 1                   | 0.2                                   | 0.81                                                                                                            | 0.79                                     | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 2000        | 5       | 4                   | 0.8                                   | 0.78                                                                                                            |                                          | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 20000       | 5       | 5                   | 1                                     | ·                                                                                                               |                                          | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 1000        | 5       | 2                   | 0.4                                   | 1.14                                                                                                            | 1.31                                     | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 10000       | 5       | 4                   | 0.8                                   | 1.48                                                                                                            |                                          | 40            |
| 70    | D                | 6                 | 6  | Ozone + Free Chlorine | 100000      | 5       | 5                   | 1                                     |                                                                                                                 |                                          | 40            |
| 70    | D                | 6                 | 6  | Chlorine              | 50          | 5       | 1                   | 0.2                                   | 0.21                                                                                                            | 0.21                                     | 40            |
| 70    | D                | 6                 | 6  | Chlorine              | 50          | 5       | 2                   | 0.4                                   | -0.16                                                                                                           | 0.01                                     | 40            |
| 70    | D                | 6                 | 6  | Chlorine              | 500         | 5       | 4                   | 0.8                                   | 0.17                                                                                                            |                                          | 40            |
|       |                  |                   |    |                       |             |         | <u> </u>            |                                       |                                                                                                                 |                                          |               |
| /1    |                  | 21                | 6  | Ozone                 | 100         | 5       | 0                   | 0                                     |                                                                                                                 | 2.51                                     | 40            |
| 71    | D                | 21                | 6  | Ozone                 | 1000        | 5       | 0                   | 0                                     | ·                                                                                                               |                                          | 40            |

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment                                                                                                      | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cyst<br>Batch |
|-------|------------------|-------------------|-----|----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 71    | D                | 21                | 6   | Ozone                                                                                                          | 10000                 | 5                       | 1                   | 0.2                    | 2.51                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | - 6 | Ozone + Monochloramine                                                                                         | 500                   | 5                       | 0                   | 0                      |                                   | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 71    | D                | 21                | 6   | Ozone + Monochloramine                                                                                         | 5000                  | 5                       | 0                   | 0                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Ozone + Monochloramine                                                                                         | 50000                 | 5                       | 3                   | 0.6                    | 2.54                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Ozone + Monochloramine                                                                                         | 1000                  | 5                       | 0                   | 0                      |                                   | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 71    | D                | 21                | 6   | Ozone + Monochloramine                                                                                         | 10000                 | 5                       | 0                   | 0                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Ozone + Monochloramine                                                                                         | 100000                | 5                       | 2                   | 0.4                    | 3.14                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Monochloramine                                                                                                 | 50                    | 5                       | 0                   | 0                      |                                   | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 71    | D                | 21                | 6   | Monochloramine                                                                                                 | 500                   | 5                       | 4                   | 0.8                    | 0.17                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Monochloramine                                                                                                 | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 71    | D                | 21                | 6   | Monochloramine                                                                                                 | 500                   | 5                       | 3                   | 0.6                    | 0.54                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 71    | D                | 21                | 6   | Control                                                                                                        | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40            |
|       | D                |                   |     | ge ser annahm ann an ann ann ann ann an ann an ann |                       |                         |                     |                        |                                   | and the second sec |               |
| 72    | D                | 5                 | 6   | Ozone                                                                                                          | 100                   | 5                       | 5                   | 1                      |                                   | <52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40            |
| 72    | D                | 5                 | 6   | Ozone                                                                                                          | 1000                  | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Ozone                                                                                                          | 10000                 | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 200                   | 5                       | 5                   | 1                      |                                   | <-0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 2000                  | 5                       | .5                  | 1                      | · · ·                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 20000                 | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 500                   | 5                       | 3                   | 0.6                    | 0.54                              | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 5000                  | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Ozone + Monochloramine                                                                                         | 50000                 | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Monochloramine                                                                                                 | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 72    | D                | 5                 | 6   | Monochloramine                                                                                                 | 500                   | 5                       | 5                   | 1                      |                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40            |
| 72    | D                | 5                 | 6   | Monochloramine                                                                                                 | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |
| 72    | D                | 5                 | 6   | Monochloramine                                                                                                 | 500                   | 5                       | 5                   | 1                      | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40            |
| 72    | D                | 5                 | 6   | Control                                                                                                        | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment                                                                    | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------------------------------------------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 73    | D                | 5                 | 8  | Ozone                                                                        | 100                   | 5                       | 0                   | 0                      |                                   | 1.14                           | 40            |
| 73    | D                | 5                 | 8  | Ozone                                                                        | 1000                  | 5                       | 2                   | 0.4                    | 1.14                              |                                | 40            |
| 73    | D                | 5                 | 8  | Ozone                                                                        | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 500                   | 5                       | 2                   | 0.4                    | 0.84                              | 1.19                           | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 5000                  | 5                       | 3                   | 0.6                    | 1.54                              |                                | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 1000                  | 5                       | 0                   | 0                      |                                   | 2.31                           | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 10000                 | 5                       | 2                   | 0.4                    | 2.14                              |                                | 40            |
| 73    | D                | 5                 | 8  | Ozone + Monochloramine                                                       | 100000                | 5                       | 4                   | 0.8                    | 2.48                              |                                | 40            |
| 73    | D                | 5                 | 8  | Monochloramine                                                               | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | 0.01                           | 40            |
| 73    | D                | 5                 | 8  | Monochloramine                                                               | 500                   | 5                       | 4                   | 0.8                    | 0.17                              |                                | 40            |
| 73    | D                | 5                 | 8  | Monochloramine                                                               | 50                    | 5                       | 2                   | 0.4                    | -0.16                             | 0.01                           | 40            |
| 73    | D                | 5                 | 8  | Monochloramine                                                               | 500                   | 5                       | 4                   | 0.8                    | 0.17                              |                                | 40            |
| 73    | D                | 5                 | 8  | Control                                                                      | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.28                           | 40            |
|       |                  |                   |    | a-box/www.anananana.agaqagafaar daar da da da da ananananananananananananana |                       |                         |                     |                        |                                   |                                |               |
| 74    | D                | 21                | 6  | Ozone                                                                        | 500                   | 5                       | 1                   | 0.2                    | 1.21                              | 1.21                           | 40            |
| 74    | D                | 21                | 6  | Ozone                                                                        | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 74    | D                | 21                | 6  | Ozone                                                                        | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 500                   | 5                       | 0                   | 0                      | l                                 | >3.21                          | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 5000                  | 5                       | 0                   | 0                      |                                   | · ·                            | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 50000                 | 5                       | 0                   | 0                      |                                   |                                | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 1000                  | 5                       | 0                   | 0                      |                                   | >3.51                          | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 10000                 | 5                       | 0                   | 0                      |                                   | ·                              | 40            |
| 74    | D                | 21                | 6  | Ozone + Monochloramine                                                       | 100000                | 5                       | 0                   | 0                      |                                   |                                | 40            |
| 74    | D                | 21                | 6  | Monochloramine                                                               | 50                    | 5                       | 1                   | 0.2                    | 0.21                              | 0.21                           | 40            |
| 74    | D                | 21                | 6  | Monochloramine                                                               | 500                   | 5                       | 5                   | 1                      |                                   | 1                              | 40            |
| 74    | D                | 21                | 6  | Monochloramine                                                               | 50                    | 5                       | 0                   | 0                      |                                   | 0.19                           | 40            |
| 74    | D                | 21                | 6  | Monochloramine                                                               | 500                   | 5                       | 5                   | 1                      |                                   | <b>_</b>                       | 40            |

200

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average<br>Log<br>Inactivation                                                                                   | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| 74    | D                | 21                | 6  | Control                | 50                    | 5                       | 1                   | 0.2                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.21                                                                                                             | 40            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |               |
| /5    |                  | 21                | 6  | Ozone                  | 500                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.21                                                                                                             | 40            |
| /5    |                  | 21                | 6  | Ozone                  | 5000                  | 5                       | 1                   | 0.2                    | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |
| /5    | D                | 21                | 6  | Ozone                  | 50000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 500                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >3.21                                                                                                            | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 5000                  | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 50000                 | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >3.51                                                                                                            | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Ozone + Monochloramine | 100000                | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ······································                                                                           | 40            |
| 75    | D                | 21                | 6  | Monochloramine         | 50                    | 5                       | 0                   | 0                      | and the second se | 0.19                                                                                                             | 40            |
| 75    | D                | 21                | 6  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Monochloramine         | 50                    | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21                                                                                                             | 40            |
| 75    | D                | 21                | 6  | Monochloramine         | 500                   | 5                       | 1                   | 0.2                    | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |
| 75    | D                | 21                | 6  | Control                | 50                    | 5                       | 1                   | 0.2                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.21                                                                                                             | 40            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |               |
| 76    | D                | 7                 | 6  | Ozone                  | 100                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84                                                                                                             | 40            |
| 76    | D                | 7                 | 6  | Ozone                  | 1000                  | 5                       | 3                   | 0.6                    | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |
| 76    | D                | 7                 | 6  | Ozone                  | 10000                 | 5                       | 5                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 500                   | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.54                                                                                                             | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 5000                  | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 50000                 | 5                       | 3                   | 0.6                    | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.84                                                                                                             | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 40            |
| 76    | D                | 7                 | 6  | Ozone + Monochloramine | 100000                | 5                       | 3                   | 0.6                    | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |
| 76    | D                | 7                 | 6  | Monochloramine         | 50                    | 5                       | 1                   | 0.2                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37                                                                                                             | 40            |
| 76    | D                | 7                 | 6  | Monochloramine         | 500                   | 5                       | 3                   | 0.6                    | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 40            |

(Continued)

÷

| Trial | Motural | Tomporatura | -11 | ""mar a har a web      |        |        | A                   | m          | Asla Jata I                                                                                                    |                |       |
|-------|---------|-------------|-----|------------------------|--------|--------|---------------------|------------|----------------------------------------------------------------------------------------------------------------|----------------|-------|
| Their | Water   | °C          | рп  | Treatment              | Animal | in     | Animais<br>Infected | Proportion | Log                                                                                                            | Average<br>Log | Batch |
|       |         |             |     |                        |        | Cohort |                     |            | Inactivation                                                                                                   | Inactivation   | _     |
| 76    | D       | 7           | 6   | Monochloramine         | 50     | 5      | 0                   | 0          |                                                                                                                | 0.54           | 40    |
| 76    | D       | 7           | 6   | Monochloramine         | 500    | 5      | 3                   | 0.6        | 0.54                                                                                                           |                | 40    |
| 76    | D       | 7           | 6   | Control                | 50     | 5      | 5                   | 1          |                                                                                                                | Suspected      | 40    |
| 76    | D       | 7           | 6   | Control                | 500    | 5      | 1                   | 0.2        | 1.21                                                                                                           | mixup          | 40    |
|       |         |             |     |                        |        |        |                     |            |                                                                                                                |                |       |
| 77    | D       | 7           | 8   | Ozone                  | 100    | 5      | 1                   | 0.2        | 0.51                                                                                                           | 1.16           | 40    |
| 77    | D       | 7           | 8   | Ozone                  | 1000   | 5      | 2                   | 0.4        | 1.14                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Ozone                  | 10000  | 5      | 3                   | 0.6        | 1.84                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 500    | 5      | 0                   | 0          |                                                                                                                | 2.84           | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 5000   | 5      | 0                   | 0          |                                                                                                                |                | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 50000  | 5      | 2                   | 0.4        | 2.84                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 1000   | 5      | 0                   | 0          |                                                                                                                | 3.51           | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 10000  | 5      | 0                   | 0          |                                                                                                                |                | 40    |
| 77    | D       | 7           | 8   | Ozone + Monochloramine | 100000 | 5      | 1                   | 0.2        | 3.51                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Monochloramine         | 50     | 5      | 1                   | 0.2        | 0.21                                                                                                           | 0.37           | 40    |
| 77    | D       | 7           | 8   | Monochloramine         | 500    | 5      | 3                   | 0.6        | 0.54                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Monochloramine         | 50     | 5      | 0                   | 0          |                                                                                                                | 0.84           | 40    |
| 77    | D       | 7           | 8   | Monochloramine         | 500    | 5      | 2                   | 0.4        | 0.84                                                                                                           |                | 40    |
| 77    | D       | 7           | 8   | Control                | 50     | 5      | 1                   | 0.2        | 0.21                                                                                                           | 0.53           | 40    |
| 77    | D       | 7           | 8   | Control                | 500    | 5      | 2                   | 0.4        | 0.84                                                                                                           |                | 40    |
|       |         |             |     |                        |        |        |                     |            |                                                                                                                |                |       |
| 78    | D       | 1           | 8   | Ozone                  | 100    | 5      | 3                   | 0.6        | -0.16                                                                                                          | -0.16          | 41    |
| 78    | D       | 1           | 8   | Ozone                  | 1000   | 5      | 5                   | 1          |                                                                                                                |                | 41    |
| 78    | D       | 1           | 8   | Ozone                  | 10000  | 5      | 5                   | 1          |                                                                                                                |                | 41    |
| 78    | D       | 1           | 8   | Ozone + Monochloramine | 500    | 5      | 1                   | 0.2        | 1.09                                                                                                           | 1.09           | 41    |
| 78    | D       | 1           | 8   | Ozone + Monochloramine | 5000   | 5      | 5                   | 1          | para muning and a second and a s |                | 41    |
| 78    | D       | 1           | 8   | Ozone + Monochloramine | 50000  | 5      | 5                   | 1          | an daad oo fi iyof taab kaanaa ko ko taacaa a daa waxaa ahaa                                                   |                | 41    |
| 78    | D       | 1           | 8   | Ozone + Monochloramine | 1000   | 5      | 4                   | 0.8        | 0.54                                                                                                           | 0.54           | 41    |

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment              | Oocysts Per<br>Animal | Animals<br>in | Animals<br>Infected | Proportion<br>Infected                              | Calculated<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average<br>Log | Cyst<br>Batch                          |
|-------|------------------|-------------------|-----|------------------------|-----------------------|---------------|---------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|
|       |                  |                   |     |                        |                       | Cohort        |                     |                                                     | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inactivation   |                                        |
| 78    | D                | 1                 | - 8 | Ozone + Monochloramine | 10000                 | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 78    | D                | 1                 | 8   | Ozone + Monochloramine | 100000                | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 78    | D                | 1                 | 8   | Monochloramine         | 50                    | 5             | 1                   | 0.2                                                 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09           | 41                                     |
| 78    | D                | 1                 | 8   | Monochloramine         | 500                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 78    | D                | 1                 | 8   | Monochloramine         | 50                    | 5             | 5                   | 1                                                   | andor and a Plant and a | <-0.76         | 41                                     |
| 78    | D                | 1                 | 8   | Monochloramine         | 500                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 78    | D                | 1                 | 8   | Control                | 50                    | 5             | 3                   | 0.6                                                 | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.46          | 41                                     |
| 78    | D                | 1                 | 8   | Control                | 500                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
|       |                  |                   |     |                        |                       |               |                     | arransianna (; ; ; ;; ; ;; ; ;; ; ;; ;; ;; ;; ;; ;; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1999-1999-1999-1999-1999-1999-1999-199 |
| 79    | D                | 1                 | 6   | Ozone                  | 100                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <-0.46         | 41                                     |
| 79    | D                | 1                 | 6   | Ozone                  | 1000                  | 4             | 4                   | 1                                                   | 2020 (Contrast No. of Contrast No. 1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 41                                     |
| 79    | D                | 1                 | 6   | Ozone                  | 10000                 | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 300                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.02           | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 3000                  | 5             | 4                   | 0.8                                                 | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 30000                 | 5             | 5                   | 1                                                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 500                   | 5             | 4                   | 0.8                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.24           | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 5000                  | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79    | D                | 1                 | 6   | Ozone + Monochloramine | 50000                 | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone                  | 100                   | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <-0.46         | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone                  | 1000                  | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone                  | 10000                 | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 500                   | 5             | 4                   | 0.8                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.24           | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 5000                  | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 50000                 | 5             | 5                   | · 1                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 1000                  | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.54          | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 10000                 | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |
| 79a   | D                | 1                 | 6   | Ozone + Monochloramine | 100000                | 5             | 5                   | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 41                                     |

203

. .

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment             | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|-----------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 80    | E                | 21                | 8  | Ozone                 | 200                   | 5                       | 1                   | 0.2                    | 0.69                              | 1.41                           | 41            |
| 80    | E                | 21                | 8  | Ozone                 | 2000                  | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 80    | E                | 21                | 8  | Ozone                 | 20000                 | 5                       | 3                   | 0.6                    | 2.14                              |                                | 41            |
| 80    | E                | 21                | 8  | Ozone + Free Chlorine | 500                   | 5                       | 1 .                 | 0.2                    | 1.09                              | 1.80                           | 41            |
| 80    | E                | 21                | 8  | Ozone + Free Chlorine | 5000                  | 5                       | 1                   | 0.2                    | 2.09                              |                                | 41            |
| 80    | E                | 21                | 8  | Ozone + Free Chlorine | 50000                 | 5                       | 4                   | 0.8                    | 2.24                              |                                | 41            |
| 80    | E                | 21                | 8  | Ozone + Free Chlorine | 1000                  | 5                       | 0                   | 0                      |                                   | 1.84                           | 41            |
| 80    | Е                | 21                | 8  | Ozone + Free Chlorine | 10000                 | 5                       | 3                   | 0.6                    | 1.84                              |                                | 41            |
| 80    | Е                | 21                | 8  | Ozone + Free Chlorine | 100000                | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 80    | Е                | 21                | 8  | Chlorine              | 50                    | 5                       | 4                   | 0.8                    | -0.76                             | -0.76                          | 41            |
| 80    | E                | 21                | 8  | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 80    | E                | 21                | 8  | Chlorine              | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 41            |
| 80    | E                | 21                | 8  | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 80    | E                | 21                | 8  | Control               | 50                    | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 80    | E                | 21                | 8  | Control               | 500                   | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone                 | 50                    | 5                       | 2                   | 0.4                    | -0.21                             | 0.01                           | 41            |
| 81    | D                | 1                 | 6  | Ozone                 | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone                 | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 50                    | 5                       | 0                   | 0                      |                                   | 0.17                           | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 100                   | 5                       | 2                   | 0.4                    | 0.09                              | 0.59                           | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 1000                  | 5                       | 2                   | 0.4                    | 1.09                              |                                | 41            |
| 81    | D                | 1                 | 6  | Ozone + Chlorine      | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 81    | D                | 1                 | 6  | Chlorine              | 50                    | 5                       | 2                   | 0.4                    | -0.21                             | -0.21                          | 41            |
| 81    | D                | 1                 | 6  | Chlorine              | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |

 Table B.5

 Neonatal CD-1 infectivity analysis for experimental trials with natural water E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation      | Average<br>Log<br>Inactivation        | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|----------------------------------------|---------------------------------------|---------------|
| 81    | D                | 1                 | 6  | Chlorine               | 50                    | 5                       | 4                   | 0.8                    | -0.76                                  | -0.76                                 | 41            |
| 81    | D                | 1                 | 6  | Chlorine               | 500                   | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 81    | D                | 1                 | 6  | Control                | 50                    | 5                       | 4                   | 0.8                    | -0.76                                  | -0.76                                 | 41            |
| 81    | D                | 1                 | 6  | Control                | 500                   | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone                  | 100                   | 5                       | 2                   | 0.4                    | 0.09                                   | 0.31                                  | 41            |
| 82    | E                | 1                 | 8  | Ozone                  | 1000                  | 5                       | 4                   | 0.8                    | 0.54                                   |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone                  | 10000                 | 5                       | 5                   | 1                      | ······································ |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 500                   | 5                       | 4                   | 0.8                    | 0.24                                   | 0.24                                  | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 5000                  | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 50000                 | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 500                   | 5                       | 2                   | 0.4                    | 0.79                                   | 1.01                                  | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 5000                  | 5                       | 4                   | 0.8                    | 1.24                                   |                                       | 41            |
| 82    | E                | 1                 | 8  | Ozone + Chlorine       | 50000                 | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 82    | E                | 1                 | 8  | Chlorine               | 50                    | 5                       | 1                   | 0.2                    | 0.09                                   | 0.09                                  | 41            |
| 82    | E                | 1                 | 8  | Chlorine               | 500                   | 5                       | 5                   | 1                      |                                        | · · · · · · · · · · · · · · · · · · · | 41            |
| 82    | E                | 1                 | 8  | Chlorine               | 50                    | 5                       | 3                   | 0.6                    | -0.46                                  | -0.46                                 | 41            |
| 82    | E                | 1                 | 8  | Chlorine               | 500                   | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 82    | E                | 1                 | 8  | Control                | 50                    | 5                       | 4                   | 0.8                    | -0.76                                  | -0.76                                 | 41            |
| 82    | E                | 1                 | 8  | Control                | 500                   | 5                       | 5                   | 1                      |                                        |                                       | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                        |                                       |               |
| 00    |                  |                   | 8  | Ozone                  | 50                    | 3                       | 1                   | 0.2                    | 0.09                                   | 0.09                                  | 41            |
| 83    | E                |                   | 8  | Uzone                  | 500                   | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 83    |                  | 1                 | 8  | Uzone                  | 5000                  | 5                       | 5                   |                        |                                        | <u> </u>                              | 41            |
| 83    | F                | 1                 | 8  | Ozone + Monochioramine | 100                   | 5                       | 2                   | 0.4                    | 0.09                                   | 0.09                                  | 41            |
| 83    | E                | 1                 | 8  | Uzone + Monochloramine | 1000                  | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 83    | L                | 1                 | 8  | Uzone + Monochloramine | 10000                 | 5                       | 5                   | 1                      |                                        |                                       | 41            |
| 83    | <u>L</u> E       | 1                 | 8  | Uzone + Monochloramine | 500                   | 5                       | 3                   | 0.6                    | 0.54                                   | 0.54                                  | 41            |

| <u> </u> |         | · · · · ·   |    |                                                                                                                 |             | <b></b>      |                                                                                                                |            |                                                                                                                       |            |                          |
|----------|---------|-------------|----|-----------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|------------|--------------------------|
| Inal     | Natural | Temperature | рН | Treatment                                                                                                       | Oocysts Per | Animals      | Animals                                                                                                        | Proportion | Calculated                                                                                                            | Average    | Cyst                     |
|          | vvater  | J.          |    |                                                                                                                 | Animai      | In<br>Cohort | Infected                                                                                                       | Intected   | Log                                                                                                                   | Log        | Batch                    |
| 83       | E       | 1           | 8  | Ozone + Monochloramine                                                                                          | 5000        | 5            | 5                                                                                                              | 1          | inactivation                                                                                                          | macuvation | 41                       |
| 83       | F       | 1           | 8  | Ozone + Monochloramine                                                                                          | 50000       | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
| 83       | E       | 1           | 8  | Monochloramine                                                                                                  | 50          | 5            | 5                                                                                                              | 1          |                                                                                                                       | <-0.76     | 41                       |
| 83       | E       | 1           | 8  | Monochloramine                                                                                                  | 500         | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
| 83       | E       | 1           | 8  | Monochloramine                                                                                                  | 50          | 5            | 4                                                                                                              | 0.8        | -0.76                                                                                                                 | -0.76      | 41                       |
| 83       | E       | 1           | 8  | Monochloramine                                                                                                  | 500         | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
| 83       | E       | 1           | 8  | Control                                                                                                         | 50          | 5            | 3                                                                                                              | 0.6        | -0.46                                                                                                                 | -0.46      | 41                       |
| 83       | E       | 1           | 8  | Control                                                                                                         | 500         | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
|          |         |             |    |                                                                                                                 |             | _            |                                                                                                                | ·          |                                                                                                                       |            |                          |
| 84       | E       | 21          | 6  | Ozone                                                                                                           | 80          | 5            | 0                                                                                                              | 0          |                                                                                                                       | 0.99       | 41                       |
| 84       | E       | 21          | 6  | Ozone                                                                                                           | 800         | 5            | 2                                                                                                              | 0.4        | 0.99                                                                                                                  |            | 41                       |
| 84       | E       | 21          | 6  | Ozone                                                                                                           | 8000        | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 100         | 5            | 0                                                                                                              | 0          |                                                                                                                       | >2.39      | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 1000        | 5            | 0                                                                                                              | 0          | 9200000978977777777777777777777777777777                                                                              |            | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 10000       | 5            | 0                                                                                                              | 0          |                                                                                                                       |            | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 500         | 5            | 0                                                                                                              | 0          | m,                                                                                                                    | >3         | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 5000        | 5            | 0                                                                                                              | 0          |                                                                                                                       |            | 41                       |
| 84       | E       | 21          | 6  | Ozone + Monochloramine                                                                                          | 50000       | 4            | 0                                                                                                              | 0          |                                                                                                                       |            | 41                       |
| 84       | E       | 21          | 6  | Monochloramine                                                                                                  | 50          | 5            | 4                                                                                                              | 0.8        | -0.76                                                                                                                 | -0.76      | 41                       |
| 84       | E       | 21          | 6  | Monochloramine                                                                                                  | 500         | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
| 84       | E       | 21          | 6  | Monochloramine                                                                                                  | 50          | -5           | 1                                                                                                              | 0.2        | 0.09                                                                                                                  | 0.09       | 41                       |
| 84       | E       | 21          | 6  | Monochloramine                                                                                                  | 500         | 5            | 5                                                                                                              | 1          | - 28-18-9 April 19-19-19                                                                                              |            | 41                       |
| 84       | E       | 21          | 6  | Control                                                                                                         | 50          | 5            | 4                                                                                                              | 0.8        | -0.76                                                                                                                 | -0.76      | 41                       |
| 84       | E       | 21          | 6  | Control                                                                                                         | 500         | 5            | 5                                                                                                              | 1          |                                                                                                                       |            | 41                       |
|          |         |             |    | Der Fahren der Anderson der Ander |             |              |                                                                                                                |            | **************************************                                                                                |            | 1000 A.A.A.A.M.I.A., (1) |
| 85       | E       | 21          | 6  | Ozone                                                                                                           | 500         | 5            | 0                                                                                                              | 0          |                                                                                                                       | 3.09       | 41                       |
| 85       | E       | 21          | 6  | Ozone                                                                                                           | 5000        | 5            | 0                                                                                                              | 0          |                                                                                                                       |            | 41                       |
| 85       | E       | 21          | 6  | Ozone                                                                                                           | 50000       | 5            | 1                                                                                                              | 0.2        | 3.09                                                                                                                  |            | 41                       |
|          |         |             |    |                                                                                                                 |             |              | Encontrol a de la contra de la c |            | <u>ي بي المراجعة المراجعة المراجعة المحمد المحمد المراجعة المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد</u> |            | Canting                  |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment                                    | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected                       | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                   | Average<br>Log<br>Inactivation         | Cyst<br>Batch |
|-------|------------------|-------------------|----|----------------------------------------------|-----------------------|-------------------------|-------------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------|---------------|
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 1000                  | 5                       | 0                                         | 0                      |                                                     | 2.89                                   | 41            |
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 10000                 | 5                       | 1                                         | 0.2                    | 2.39                                                |                                        | 41            |
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 100000                | 5                       | 1                                         | 0.2                    | 3.39                                                |                                        | 41            |
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 1000                  | 5                       | 0                                         | 0                      |                                                     | >3.39                                  | 41            |
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 10000                 | 5                       | 0                                         | 0                      |                                                     |                                        | 41            |
| 85    | E                | 21                | 6  | Ozone + Chlorine                             | 100000                | 5                       | 0                                         | 0                      |                                                     |                                        | 41            |
| 85    | E                | 21                | 6  | Chlorine                                     | 50                    | 5                       | 2                                         | 0.4                    | -0.21                                               | -0.21                                  | 41            |
| 85    | E                | 21                | 6  | Chlorine                                     | 500                   | 5                       | 5                                         | 1                      |                                                     |                                        | 41            |
| 85    | E                | 21                | 6  | Chlorine                                     | 50                    | 5                       | 0                                         | 0                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,              | 1.09                                   | 41            |
| 85    | E                | 21                | 6  | Chlorine                                     | 500                   | 5                       | 1                                         | 0.2                    | 1.09                                                |                                        | 41            |
| 85    | Е                | 21                | 6  | Control                                      | 50                    | 5                       | - 3                                       | 0.6                    | -0.46                                               | -0.46                                  | 41            |
| 85    | E                | 21                | 6  | Control                                      | 500                   | 5                       | 5                                         | 1                      |                                                     |                                        | 41            |
|       |                  |                   |    | <b>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</b> |                       |                         | 9 - Yana ana akalan '' +a' ana ana akalan |                        | · ·                                                 |                                        |               |
| 86    | E                | 21                | 8  | Ozone                                        | 300                   | 5                       | 0                                         | 0                      |                                                     | 1.79                                   | .41           |
| 86    | E                | 21                | 8  | Ozone                                        | 3000                  | 5                       | 2                                         | 0.4                    | 1.56                                                |                                        | 41            |
| 86    | E                | 21                | 8  | Ozone                                        | 30000                 | 5                       | 4                                         | 0.8                    | 2.02                                                |                                        | 41            |
| 86    | E                | 21                | 8  | Ozone + Monochloramine                       | 1000                  | 5                       | 0                                         | 0                      |                                                     | >3.39                                  | 41            |
| 86    | Е                | 21                | 8  | Ozone + Monochloramine                       | 10000                 | 5                       | 0                                         | 0                      | · · · · · · · · · · · · · · · · · · ·               |                                        | 41            |
| 86    | E                | 21                | 8  | Ozone + Monochloramine                       | 100000                | 5                       | 0                                         | 0                      |                                                     |                                        | 41            |
| 86    | E                | 21                | 8  | Ozone + Monochloramine                       | 1000                  | 5                       | 0                                         | 0                      |                                                     | >3.39                                  | 41            |
| 86    | E                | 21                | 8  | Ozone + Monochloramine                       | 10000                 | 5                       | 0                                         | 0                      |                                                     |                                        | 41            |
| 86    | E                | 21                | 8  | Ozone + Monochloramine                       | 100000                | 5                       | 0                                         | 0                      |                                                     |                                        | 41            |
| 86    | E                | 21                | 8  | Monochloramine                               | 50                    | 5                       | 0                                         | 0                      | an a far far an | 0.17                                   | 41            |
| 86    | E                | 21                | 8  | Monochloramine                               | 500                   | 5                       | 5                                         | 1                      |                                                     | ······································ | 41            |
| 86    | Е                | 21                | 8  | Monochloramine                               | 50                    | 5                       | 0                                         | 0                      |                                                     | 0.79                                   | 41            |
| 86    | E                | 21                | 8  | Monochloramine                               | 500                   | 5                       | 2                                         | 0.4                    | 0.79                                                | ······································ | 41            |
| 86    | E                | 21                | 8  | Control                                      | 50                    | 5                       | 0                                         | 0                      |                                                     | 0.17                                   | 41            |
| 86    | E                | 21                | 8  | Control                                      | 500                   | 5                       | 5                                         | 1                      |                                                     | · · · · · · · · · · · · · · · · · · ·  | 41            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation       | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------------|--------------------------------|---------------|
| 87    | F                | 1                 | 6  |                        | 500                   | 5                       | 2                   | 0.4                    | 0.79                                    | 1 29                           | A1            |
| 87    | F                | 1                 | 6  | Ozone                  | 5000                  | 5                       | 2                   | 0.4                    | 1 79                                    | 1.2.5                          | 41            |
| 87    | E                | 1                 | 6  | Ozone                  | 50000                 | 5                       | 5                   | 1                      | 1.10                                    |                                | 41            |
| 87    | E                | 1                 | 6  | Ozone + Monochloramine | 1000                  | 5                       | 1                   | 0.2                    | 1.39                                    | 1.39                           | 41            |
| 87    | Ē                | 1                 | 6  | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      |                                         |                                | 41            |
| 87    | E                | 1                 | 6  | Ozone + Monochloramine | 100000                | 5                       | 5                   | 1                      |                                         |                                | 41            |
| 87    | E                | 1                 | 6  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      |                                         | 2.89                           | 41            |
| 87    | E                | 1                 | 6  | Ozone + Monochloramine | 10000                 | 5                       | 1                   | 0.2                    | 2.39                                    | l                              | 41            |
| 87    | E.               | 1                 | 6  | Ozone + Monochloramine | 100000                | 5                       | 1                   | 0.2                    | 3.39                                    |                                | 41            |
| 87    | E                | 1                 | 6  | Control                | 50                    | 5                       | 2                   | 0.4                    | -0.21                                   | -0.21                          | 41            |
| 87    | E                | 1                 | 6  | Control                | 500                   | na                      | 5                   |                        |                                         |                                | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        | narge, 12. all and 2. 2. 2. 2000 (1000) |                                |               |
| 88    | E                | 1                 | 6  | Ozone                  | 50                    | 5                       | 3                   | 0.6                    | -0.46                                   | -0.11                          | 41            |
| 88    | E                | 1                 | 6  | Ozone                  | 500                   | 5                       | 4                   | 0.8                    | 0.24                                    |                                | 41            |
| 88    | Е                | 1                 | 6  | Ozone                  | 5000                  | 5                       | 5                   | 1                      |                                         |                                | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 100                   | 5                       | 2                   | 0.4                    | 0.09                                    | 0.09                           | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 1000                  | 5                       | 5                   | 1                      |                                         |                                | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 10000                 | 5                       | 5                   | 1                      |                                         |                                | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 100                   | 5                       | 1                   | 0.2                    | 0.39                                    | 0.46                           | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 1000                  | 5                       | 4                   | 0.8                    | 0.54                                    |                                | 41            |
| 88    | E                | 1                 | 6  | Ozone + Chlorine       | 10000                 | 5                       | 5                   | 1                      |                                         |                                | 41            |
| 88    | E                | 1                 | 6  | Chlorine               | 50                    | 5                       | 2                   | 0.4                    | -0.21                                   | 0.01                           | 41            |
| 88    | E                | 1                 | 6  | Chlorine               | 500                   | 5                       | 4                   | 0.8                    | 0.24                                    |                                | 41            |
| 88    | E                | 1                 | 6  | Chlorine               | 50                    | 5                       | 3                   | 0.6                    | -0.46                                   | -0.11                          | 41            |
| 88    | E                | 1                 | 6  | Chlorine               | 500                   | 5                       | 4                   | 0.8                    | 0.24                                    |                                | 41            |
| 88    | E                | 1                 | 6  | Control                | 50                    | 5                       | na                  |                        |                                         | 0.54                           | 41            |
| 88    | E                | 1                 | 6  | Control                | 500                   | 5                       | 3                   | 0.6                    | 0.54                                    |                                | 41            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
|       |                  |                   |    |                        |                       |                         |                     |                        |                                   |                                |               |
| 89    | E                | 1                 | 8  | Ozone                  | 50                    | 5                       | 2                   | 0.4                    | -0.21                             | -0.21                          | 41            |
| 89    | Е                | 1                 | 8  | Ozone                  | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 89    | E                | 1                 | 8  | Ozone                  | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 100                   | 5                       | 0                   | 0                      |                                   | 0.84                           | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              |                                | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 100                   | 5                       | 2                   | 0.4                    | 0.09                              | 0.31                           | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 1000                  | 5                       | 4                   | 0.8                    | 0.54                              |                                | 41            |
| 89    | E                | 1                 | 8  | Ozone + Monochloramine | 10000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 89    | E                | 1                 | 8  | Monochloramine         | 50                    | 5                       | 4                   | 0.8                    | -0.76                             | -0.26                          | 41            |
| 89    | E                | 1                 | 8  | Monochloramine         | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                | 41            |
| 89    | E                | 1                 | 8  | Monochloramine         | 50                    | 5                       | 4                   | 0.8                    | -0.76                             | -0.76                          | 41            |
| 89    | E                | 1                 | 8  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 89    | E                | 1                 | 8  | Control                | 50                    | 5                       | 1                   | 0.2                    | 0.09                              | 0.16                           | 41            |
| 89    | E                | 1                 | 8  | Control                | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                   |                                |               |
| 90    | E                | 1                 | 6  | Ozone                  | 500                   | 5                       | 0                   | 0                      |                                   | 1.54                           | 41            |
| 90    | E                | 1                 | 6  | Ozone                  | 5000                  | 5                       | 3                   | 0.6                    | 1.54                              |                                | 41            |
| 90    | E                | 1                 | 6  | Ozone                  | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      |                                   | 2.54                           | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 100000                | 5                       | 4                   | 0.8                    | 2.54                              |                                | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 2000                  | 5                       | 0                   | 0                      |                                   | >3.69                          | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 20000                 | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 90    | E                | 1                 | 6  | Ozone + Monochloramine | 200000                | 5                       | 0                   | 0                      | ,                                 |                                | 41            |
| 90    | E                | 1                 | 6  | Monochloramine         | 50                    | 5                       | 1                   | 0.2                    | 0.09                              | 0.09                           | 41            |
| 90    | E                | 1                 | 6  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |

| Trial | Natural<br>Water | Temperature<br>°C | pН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 90    | E                | 1                 | 6  | Monochloramine         | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | .41           |
| 90    | E                | 1                 | 6  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 90    | E                | 1                 | 6  | Control                | 50                    | 5                       | 0                   | 0                      |                                   | 0.79                           | 41            |
| 90    | E                | 1                 | 6  | Control                | 500                   | 5                       | 2                   | 0.4                    | 0.79                              |                                | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                   |                                |               |
| 91    | E                | 1                 | 8  | Ozone                  | 200                   | 5                       | 0                   | 0                      |                                   | 1.69                           | 41            |
| 91    | Ē                | 1                 | 8  | Ozone                  | 2000                  | 5                       | 1                   | 0.2                    | 1.69                              |                                | 41            |
| 91    | E                | 1                 | 8  | Ozone                  | 20000                 | 5                       | 5                   | 1                      | · · · ·                           |                                | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 500                   | 5                       | 2                   | 0.4                    | 0.79                              | 1.16                           | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 5000                  | 5                       | 3                   | 0.6                    | 1.54                              |                                | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 50000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 500                   | 5                       | 0                   | 0                      |                                   | 1.89                           | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 5000                  | 5                       | 3                   | 0.6                    | 1.54                              |                                | 41            |
| 91    | E                | 1                 | 8  | Ozone + Chlorine       | 50000                 | 5                       | 4                   | 0.8                    | 2.24                              |                                | 41            |
| 91    | E                | 1                 | 8  | Chlorine               | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 41            |
| 91    | E                | 1                 | 8  | Chlorine               | 50                    | 5                       | 0                   | 0                      |                                   | 0.24                           | 41            |
| 91    | E                | 1                 | 8  | Chlorine               | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        | and the second second             |                                |               |
| 92    | E                | 1                 | 8  | Ozone                  | 50                    | 5                       | 0                   | 0                      |                                   | 0.17                           | 41            |
| 92    | E                | 1                 | 8  | Ozone                  | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Ozone                  | 5000                  | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 100                   | 5                       | 1                   | 0.2                    | 0.39                              | 0.61                           | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 1000                  | 5                       | 3                   | 0.6                    | 0.84                              |                                | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 10000                 | 5                       | 5                   | 1 .                    |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 200                   | 5                       | 1                   | 0.2                    | 0.69                              | 0.76                           | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 2000                  | 5                       | 4                   | 0.8                    | 0.84                              |                                | 41            |
| 92    | E                | 1                 | 8  | Ozone + Monochloramine | 20000                 | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Monochloramine         | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.46                          | 41            |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|--------------------------------|---------------|
| 92    | E                | 1                 | 8  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Monochloramine         | 50                    | 5                       | 2                   | 0.4                    | -0.21                             | -0.21                          | 41            |
| 92    | E                | 1                 | 8  | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                | 41            |
| 92    | E                | 1                 | 8  | Control                | 50                    | 5                       | 2                   | 0.4                    | -0.21                             | 0.16                           | 41            |
| 92    | E                | 1                 | 8  | Control                | 500                   | 5                       | 3                   | 0.6                    | 0.54                              |                                | 41            |
| 93    | E                | 21                | 6  | Ozone                  | 100                   | 5                       | 1                   | 0.2                    | 0.39                              | 1.24                           | 41            |
| 93    | E                | 21                | 6  | Ozone                  | 1000                  | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 93    | E                | 21                | 6  | Ozone                  | 10000                 | 5                       | 2                   | 0.4                    | 2.09                              |                                | 41            |
| 93    | E                | 21                | 6  | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      |                                   | 4.39                           | 41            |
| 93    | E                | 21                | 6  | Ozone + Monochloramine | 100000                | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 93    | E                | 21                | 6  | Ozone + Monochloramine | 1000000               | 5                       | 1                   | 0.2                    | 4.39                              |                                | 41            |
|       |                  |                   |    |                        |                       |                         |                     |                        |                                   |                                |               |
| 94    | E                | 21                | 8  | Ozone                  | 80                    | 5                       | 0                   | 0                      |                                   | 1.74                           | 41            |
| 94    | E                | 21                | 8  | Ozone                  | 800                   | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 94    | E                | 21                | 8  | Ozone                  | 8000                  | 5                       | 3                   | 0.6                    | 1.74                              |                                | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 100                   | 5                       | 0                   | 0                      |                                   | 2.39                           | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 1000                  | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 10000                 | 5                       | 1                   | 0.2                    | 2.39                              |                                | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 150                   | 5                       | 0                   | 0                      |                                   | 2.56                           | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 1500                  | 5                       | 0                   | 0                      |                                   |                                | 41            |
| 94    | E                | 21                | 8  | Ozone + Chlorine       | 15000                 | 5                       | 1                   | 0.2                    | 2.56                              |                                | 41            |
| 94    | E                | 21                | 8  | Chlorine               | 50                    | 5                       | 0                   | 0                      |                                   | 0.54                           | 41            |
| 94    | E                | 21                | 8  | Chlorine               | 500                   | 5                       | 3                   | 0.6                    | 0.54                              |                                | 41            |
| 94    | E                | 21                | 8  | Chlorine               | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.11                          | 41            |
| 94    | E                | 21                | 8  | Chlorine               | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                | 41            |
| 94    | E                | 21                | 8  | Control                | 100                   | 5                       | 3                   | 0.6                    | -0.16                             | -0.16                          | 41            |

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log | Average<br>Log | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|---------------|---------------------|------------------------|-------------------|----------------|---------------|
|       |                  |                   | ~  | 0                      | 4000                  | Cohort        |                     | 0.0                    | Inactivation      | Inactivation   |               |
| 95    | <b>E</b>         | 21                | 0  | Ozone                  | 1000                  | 0             |                     | 0.2                    | 1.39              | 2.29           | 41            |
| 95    | E                | 21                | 6  | Uzone                  | 10000                 | 5             | 2                   | 0.4                    | 2.09              |                | 41            |
| 95    | E                | 21                | 6  | Ozone                  | 100000                | 5             | 1                   | 0.2                    | 3.39              |                | 41            |
| 95    | E                | 21                | 6  | Ozone + Chlorine       | 2000                  | 5             | 0                   | 0                      |                   | 3.19           | 41            |
| 95    | E                | 21                | 6  | Ozone + Chlorine       | 20000                 | 5             | 1                   | 0.2                    | 2.69              | :              | 41            |
| 95    | E                | 21                | 6  | Ozone + Chlorine       | 200000                | 5             | 1                   | 0.2                    | 3.69              |                | 41            |
| 95    | E                | 21                | 6  | Ozone + Chlorine       | 5000                  | 5             | 0                   | 0                      |                   | >4.09          | 41            |
| 95    | les les          | 21                | 6  | Ozone + Chlorine       | 50000                 | 5             | 0                   | 0                      |                   |                | 41            |
| 95    | E                | 21                | 6  | Ozone + Chlorine       | 500000                | 5             | 0                   | 0                      |                   |                | 41            |
| 95    | E                | 21                | 6  | Chlorine               | 150                   | 5             | 3                   | 0.6                    | 0.01              | 0.01           | 41            |
| 95    | Е                | 21                | 6  | Chlorine               | 50                    | 5             | 0                   | 0                      |                   | 1.09           | 41            |
| 95    | E                | 21                | 6  | Chlorine               | 500                   | 5             | 1                   | 0.2                    | 1.09              |                | 41            |
| 95    | E                | 21                | 6  | Control                | 100                   | 5             | 4                   | 0.8                    | -0.46             | -0.46          | 41            |
|       | ·····            | 1                 |    | ,                      |                       | · ·           |                     |                        |                   |                |               |
| 96    | E                | 21                | 6  | Ozone                  | 100                   | 5             | 0                   | 0                      |                   | 1.84           | 41            |
| 96    | E                | 21                | 6  | Ozone                  | 1000                  | 4             | 1                   | 0.25                   | 1.30              |                | 41            |
| 96    | E                | 21                | 6  | Ozone                  | 10000                 | 5             | 1                   | 0.2                    | 2.39              |                | 41            |
| 96    | E                | 21                | 6  | Ozone + Monochloramine | 10 000                | 5             | 0                   | 0                      |                   | 4.09           | 41            |
| 96    | E                | 21                | 6  | Ozone + Monochloramine | 100 000               | 5             | 0                   | 0                      | · ·               |                | 41            |
| 96    | E                | 21                | 6  | Ozone + Monochloramine | 1000000               | 5             | 2                   | 0.4                    | 4.09              |                | 41            |
| 96    | E                | 21                | 6  | Monochloramine         | 150                   | 5             | 2                   | 0.4                    | 0.26              | 0.26           | 41            |
| 96    | E                | 21                | 6  | Control                | 100                   | 5             | 3                   | 0.6                    | -0.16             | -0.16          | 41            |
| 97    | E                | 21                | 6  | Ozone                  | 1000                  | 5             | 0                   | 0                      |                   | 2.46           | 41            |
| 97    | E                | 21                | 6  | Ozone                  | 10000                 | 5             | 2                   | 0.4                    | 2.09              |                | 41            |
| 97    | E                | 21                | 6  | Ozone                  | 100000                | 5             | 3                   | 0.6                    | 2.84              |                | 41            |
| 97    | E                | 21                | 6  | Ozone + Chlorine       | 2000                  | 5             | 0                   | 0                      |                   | >3.69          | 41            |
| 97    | E                | 21                | 6  | Ozone + Chlorine       | 20000                 | 5             | 0                   | 0                      |                   |                | 41            |

| <br>   |                  |                   |    |                        | <u> </u>              |               |                     |                        |                                          |                |               |
|--------|------------------|-------------------|----|------------------------|-----------------------|---------------|---------------------|------------------------|------------------------------------------|----------------|---------------|
| Trial  | Natural<br>Water | Temperature<br>°C | pН | Treatment              | Oocysts Per<br>Animal | Animals<br>in | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log                        | Average<br>Log | Cyst<br>Batch |
| 97     | Ē                | 21                | 6  | Ozone + Chlorine       | 200000                | 5             | 0                   | 0                      | mactivation                              | macuvation     | 41            |
| 07     | E E              | 21                | 6  | Ozone + Chlorine       | 5000                  | 5             | 0                   | 0                      |                                          | 4 09           | 41            |
| 07     | E                | 21                | 8  |                        | 50000                 | 5             | <u> </u>            | 0                      |                                          |                | 41            |
| 07     | E                | 21                | 6  | Ozone + Chlorine       | 50000                 | 5             | 1                   | 0.2                    | A NO                                     |                | 41            |
| 97     |                  | 21                | 6  | Chlorino               | 150                   | 5             | 2                   | 0.2                    | 4.03                                     | 0.01           | <u></u>       |
| 97     |                  | 21                | 6  | Control                | 100                   | 5             |                     | 0.0                    | -0.46                                    | -0.46          |               |
| 97     | E-               | 21                | 0  | Control                | 100                   |               | *                   | 0.0                    | -0.40                                    | -0.40          |               |
| 98     | E                | 21                | 6  | Ozone                  | 50                    | 5             | 0                   | 0                      |                                          | 0.54           | 41            |
| 98     | E                | 21                | 6  | Ozone                  | 500                   | 5             | 3                   | 0.6                    | 0.54                                     |                | 41            |
| 98     | E                | 21                | 6  | Ozone                  | 5 000                 | 5             | 5                   | 1                      | ,                                        |                | 41            |
| 98     | E                | 21                | 6  | Ozone + Chlorine       | 100                   | 5             | 0                   | 0                      |                                          | 1.19           | 41            |
| 98     | E                | 21                | 6  | Ozone + Chlorine       | 1000                  | 5             | 3                   | 0.6                    | 0.84                                     |                | 41            |
| 98     | E                | 21                | 6  | Ozone + Chlorine       | 10000                 | 5             | 4                   | 0.8                    | 1.54                                     |                | 41            |
| <br>98 | E                | 21                | 6  | Ozone + Chlorine       | 200                   | 5             | 2                   | 0.4                    | 0.39                                     | 1.26           | 41            |
| 98     | E                | 21                | 6  | Ozone + Chlorine       | 2000                  | 5             | 0                   | 0                      |                                          |                | 41            |
| 98     | E                | 21                | 6  | Ozone + Chlorine       | 20000                 | 5             | 3                   | 0.6                    | 2.14                                     | · · · ·        | 41            |
| 98     | E                | 21                | 6  | Control                | 100                   | 5             | 4                   | 0.8                    | -0.46                                    | -0.46          | 41            |
|        |                  |                   |    |                        | ·                     |               |                     |                        |                                          |                |               |
| 99     | E                | 21                | 8  | Ozone                  | 1000                  | 5             | 0                   | 0                      | annan an a | 2.61           | 41            |
| 99     | E                | 21                | 8  | Ozone                  | 10000                 | 5             | 1                   | 0.2                    | 2.39                                     |                | 41            |
| 99     | E                | 21                | 8  | Ozone                  | 100000                | 5             | 3                   | 0.6                    | 2.84                                     |                | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 2500                  | 5             | 0                   | 0                      |                                          | >3.79          | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 25000                 | 5             | 0                   | 0                      |                                          |                | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 250000                | 5             | 0                   | 0                      |                                          |                | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 5000                  | 4             | 0                   | 0                      |                                          | 3.79           | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 50000                 | 4             | 0                   | 0                      |                                          |                | 41            |
| 99     | E                | 21                | 8  | Ozone + Monochloramine | 500000                | 5             | 2                   | 0.4                    | 3.79                                     |                | 41            |
| 99     | E                | 21                | 8  | Monochloramine         | 50                    | 5             | 0                   | 0                      | h                                        | 0.24           | 41            |
|        |                  |                   | L  |                        |                       |               | 4                   | Å                      | 1                                        |                | (C)           |

| Trial | Natural<br>Water | Temperature<br>°C | рН  | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation      | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|-----|------------------------|-----------------------|-------------------------|---------------------|------------------------|----------------------------------------|--------------------------------|---------------|
| 99    | E                | 21                | 8   | Monochloramine         | 500                   | 5                       | 4                   | 0.8                    | 0.24                                   |                                | 41            |
| 99    | E                | 21                | 8   | Monochloramine         | 50                    | 5                       | 2                   | 0.4                    | -0.21                                  | -0.21                          | 41            |
| 99    | E                | 21                | 8   | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                        |                                | 41            |
| 99    | E                | 21                | 8   | Control                | 50                    | 5                       | 1                   | 0.2                    | 0.09                                   | 0.31                           | 41            |
| 99    | E                | 21                | . 8 | Control                | 500                   | 5                       | 3                   | 0.6                    | 0.54                                   | ·                              | 41            |
|       |                  |                   |     | , .                    |                       |                         |                     |                        | -                                      |                                |               |
| 100   | E                | 21                | 8   | Ozone                  | 1000                  | 5                       | 0                   | 0                      | ······································ | 2.84                           | 41            |
| 100   | E                | 21                | 8   | Ozone                  | 10000                 | 5                       | 0                   | 0                      |                                        |                                | 41            |
| 100   | E                | 21                | 8   | Ozone                  | 100000                | 5                       | 3                   | 0.6                    | 2.84                                   |                                | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 500                   | 5                       | 0                   | 0                      |                                        | 2.27                           | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 5000                  | 4                       | 1                   | 0.25                   | 2.00                                   |                                | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 50000                 | 5                       | 3                   | 0.6                    | 2.54                                   |                                | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 2000                  | 5                       | 0                   | 0                      |                                        | 3.39                           | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 20000                 | 5                       | 0                   | 0                      |                                        |                                | 41            |
| 100   | E                | 21                | 8   | Ozone + Chlorine       | 200000                | 5                       | 2                   | 0.4                    | 3.39                                   |                                | 41            |
| 100   | E                | 21                | 8   | Chlorine               | 50                    | 5                       | 2                   | 0.4                    | -0.21                                  | 0.29                           | 41            |
| 100   | E                | 21                | 8   | Chlorine               | 500                   | 5                       | 2                   | 0.4                    | 0.79                                   |                                | 41            |
| 100   | E                | 21                | 8   | Chlorine               | 50                    | 5                       | 0                   | 0                      |                                        | 0.17                           | 41            |
| 100   | E                | 21                | 8   | Chlorine               | 500                   | 5                       | 5                   | 1                      |                                        |                                | 41            |
| 100   | E                | 21                | 8   | Control                | 100                   | 5                       | 2                   | 0.4                    | 0.09                                   | 0.09                           | 41            |
|       |                  |                   |     |                        |                       |                         |                     |                        |                                        |                                |               |
| 101   | E                | 21                | 8   | Ozone                  | 1000                  | 5                       | 0                   | 0                      |                                        | 3.09                           | 41            |
| 101   | E                | 21                | 8   | Ozone                  | 10000                 | 5                       | 0                   | 0                      |                                        |                                | 41            |
| 101   | E                | 21                | 8   | Ozone                  | 100000                | 5                       | 2                   | 0.4                    | 3.09                                   |                                | 41            |
| 101   | E                | 21                | 8   | Ozone + Monochloramine | 1000                  | 5                       | 0                   | 0                      |                                        | >3.39                          | 41            |
| 101   | E                | 21                | 8   | Ozone + Monochloramine | 10000                 | 5                       | 0                   | 0                      | · · · · · · · · · · · · · · · · · · ·  |                                | 41            |
| 101   | Е                | 21                | 8   | Ozone + Monochloramine | 100000                | 5                       | 0                   | 0                      | · · · · · · · · · · · · · · · · · · ·  | ·                              | 41            |
| 101   | E                | 21                | 8   | Ozone + Monochloramine | 5000                  | 5                       | 0                   | 0                      |                                        | >4.09                          | 41            |

214

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m-mmti  |             |     |                        | <u> </u>    |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-----|------------------------|-------------|------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Natural | Temperature | рН  | Treatment              | Oocysts Per | Animals    | Animals  | Proportion | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cyst  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water   | °C          |     |                        | Animal      | in         | Infected | Infected   | Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batch |
| 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |             | 0   | Omene i Menechieren    | F0000       | Cohort     |          | ~          | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Ozone + Monochioramine | 50000       | 5          | 0        | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Ozone + Monochloramine | 500000      | 5          | 0        | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Monochloramine         | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Monochloramine         | 500         | 5          | 3        | 0.6        | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Monochloramine         | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Monochloramine         | 500         | 5          | 4        | 0.8        | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 21          | 8   | Control                | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Е       | 21          | 8   | Control                | 500         | 5          | 5        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |     |                        |             |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone                  | 100         | 5          | 0        | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone                  | 1000        | 5          | 2        | 0.4        | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone                  | 10000       | 5          | 4        | 0.8        | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second se                                                                                                                                                                                                                                                                                             | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone + Chlorine       | 300         | 5          | 0        | 0          | and a state of the | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone + Chlorine       | 3000        | 5          | 4        | 0.8        | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone + Chlorine       | 30000       | 5          | 5        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone + Chlorine       | 500         | 5          | 1        | 0.2        | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | - 6 | Ozone + Chlorine       | 5000        | 5          | 3        | 0.6        | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone + Chlorine       | 50000       | 5          | 5        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 500         | 5          | 5        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 500         | 5          | 4        | 0.8        | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 500         | 5          | 5        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 50          | 5          | 1        | 0.2        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Chlorine               | 500         | 5          | 4        | 0.8        | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Control                | 100         | 5          | 4        | 0.8        | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41    |
| 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E       | 1           | 6   | Ozone                  | 500         | 5          | 0        | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41    |
| Longer and the second s |         |             | L   |                        |             | . <b>.</b> |          | I          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Land and the second s |       |

| Trial | Natural<br>Water | Temperature<br>°C | рН       | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected | Proportion<br>Infected | Calculated<br>Log<br>Inactivation | Average<br>Log<br>Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cyst<br>Batch |
|-------|------------------|-------------------|----------|------------------------|-----------------------|-------------------------|---------------------|------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 103   | E                | 1                 | 6        | Ozone                  | 5000                  | 5                       | 0                   | 0                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Ozone                  | 50000                 | 5                       | 2                   | 0.4                    | 2.79                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 2500                  | 5                       | 0                   | 0                      |                                   | 3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 25000                 | 5                       | 0                   | . 0                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 250000                | 5                       | 3                   | 0.6                    | 3.24                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 5000                  | 5                       | 0                   | 0                      |                                   | 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 50000                 | 5                       | 0                   | 0                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Ozone + Monochloramine | 500000                | 5                       | 3                   | 0.6                    | 3.54                              | Participanting and a second seco | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 50                    | 5                       | 0                   | 0                      |                                   | >1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 500                   | 5                       | 0                   | 0                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 50                    | 5                       | 3                   | 0.6                    | -0.46                             | -0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 50                    | 5                       | 1                   | 0.2                    | 0.09                              | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 500                   | 5                       | 4                   | 0.8                    | 0.24                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 50                    | 5                       | 1                   | 0.2                    | 0.09                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 103   | E                | 1                 | 6        | Monochloramine         | 500                   | 5                       | 5                   | 1                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 103   | E                | 1                 | 6        | Control                | 100                   | 5                       | 3                   | 0.6                    | -0.16                             | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41            |
| 104   | E                | 1                 | 8        | Ozone                  | 200                   | 5                       | 0                   | 0                      |                                   | 1 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A.1           |
| 104   | E                | 1                 | 8        |                        | 200                   | 5                       | 2                   | 0.4                    | 1 30                              | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 104   |                  | 1                 | 8        | Ozone                  | 2000                  | 5                       | <u> </u>            |                        | 1.00                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 104   | L<br>C           |                   | 0<br>0   |                        | 500                   | 5                       |                     | <u> </u>               | 1.00                              | 1 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11            |
| 104   | 5                |                   | 9        | Ozone + Chlorine       | 5000                  | 5                       |                     | 0.2                    | 2.00                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 104   |                  | 1 1               | <u> </u> |                        | 5000                  | 5                       |                     | 0.2                    | 2.03                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1            |
| 104   |                  | 1                 | 8        |                        | 1000                  | 5                       | +                   | 0.0                    | <u> </u>                          | 2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41            |
| 104   |                  |                   | 0        |                        | 1000                  | 5                       |                     |                        |                                   | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 104   |                  | 1                 | 0        |                        | 10000                 | 5                       |                     |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41            |
| 104   |                  |                   | 0        |                        |                       | <u> </u>                | 5                   |                        |                                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41            |

216

|     |   |    |   |                        | <b>`</b> |   |    |     |       |       |           |
|-----|---|----|---|------------------------|----------|---|----|-----|-------|-------|-----------|
| 104 | E | 1  | 8 | Chlorine               | 50       | 5 | 2  | 0.4 | -0.21 | 0.01  | 41        |
| 104 | E | 1  | 8 | Chlorine               | 500      | 5 | 4  | 0.8 | 0.24  |       | 41        |
| 104 | Е | 1  | 8 | Chlorine               | 50       | 5 | 0  | -0  |       | 0.79  | 41        |
| 104 | E | 1  | 8 | Chlorine               | 500      | 5 | 2  | 0.4 | 0.79  |       | 41        |
| 104 | E | 1  | 8 | Control                | 50       | 5 | 0  | 0   |       | 0.54  | 41        |
| 104 | Е | 1  | 8 | Control                | 500      | 5 | 3  | 0.6 | 0.54  |       | 41        |
|     |   |    |   |                        |          |   | 1) | · · |       |       |           |
| 105 | E | 21 | 6 | Ozone                  | 500      | 5 | 0  | 0   |       | 2.16  | 41        |
| 105 | E | 21 | 6 | Ozone                  | 5000     | 5 | 1  | 0.2 | 2.09  |       | 41        |
| 105 | E | 21 | 6 | Ozone                  | 50000    | 5 | 4  | 0.8 | 2.24  |       | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 1000     | 5 | 0  | 0   |       | 3.39  | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 10000    | 5 | 0  | 0   |       |       | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 100000   | 5 | 4  | 0.2 | 3.39  |       | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 5000     | 5 | 0  | 0   |       | >4.09 | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 50000    | 5 | 0  | 0   |       |       | 41        |
| 105 | E | 21 | 6 | Ozone + Monochloramine | 500000   | 5 | 0  | 0   |       |       | 41        |
| 105 | E | 21 | 6 | Monochloramine         | 50       | 5 | 1  | 0.2 | 0.09  | 0.16  | 41        |
| 105 | E | 21 | 6 | Monochloramine         | 500      | 5 | 4  | 0.8 | 0.24  |       | 41        |
| 105 | E | 21 | 6 | Monochloramine         | 50       | 5 | 1  | 0.2 | 0.09  | 0.44  | 41        |
| 105 | E | 21 | 6 | Monochloramine         | 500      | 5 | 2  | 0.4 | 0.79  |       | 41        |
| 105 | E | 21 | 6 | Control                | 50       | 5 | 0  | 0   |       | 0.165 | 41        |
| 105 | E | 21 | 6 | Control                | 500      | 5 | 5  | 1   |       |       | 41        |
|     |   |    |   |                        |          |   | •  |     |       |       |           |
| 106 | E | 21 | 8 | Ozone                  | 1000     | 5 | 0  | 0   |       | 2.54  | 41        |
| 106 | E | 21 | 8 | Ozone                  | 10000    | 5 | 0  | 0   |       |       | 41        |
| 106 | E | 21 | 8 | Ozone                  | 100000   | 5 | 4  | 0.8 | 2.54  |       | 41        |
| 106 | E | 21 | 8 | Ozone + Monochloramine | 5000     | 5 | 0  | 0   |       | 3.54  | 41        |
| 106 | E | 21 | 8 | Ozone + Monochloramine | 50000    | 5 | 0  | 0   |       |       | 41        |
| 106 | E | 21 | 8 | Ozone + Monochloramine | 500000   | 5 | 3  | 0.6 | 3.54  |       | 41        |
| 106 | E | 21 | 6 | Ozone                  | 1000     | 5 | 0  | 0   |       | 2.39  | 41        |
|     |   |    |   |                        |          |   |    |     |       |       | (Continue |

| Trial | Natural<br>Water | Temperature<br>°C | рН | Treatment              | Oocysts Per<br>Animal | Animals<br>in<br>Cohort | Animals<br>Infected                    | Proportion<br>Infected | Calculated<br>Log<br>Inactivation                                                                               | Average<br>Log<br>Inactivation | Cyst<br>Batch |
|-------|------------------|-------------------|----|------------------------|-----------------------|-------------------------|----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|
| 106   | E                | 21                | 6  | Ozone                  | 10000                 | 5                       | 1                                      | 0.2                    | 2.39                                                                                                            |                                | 41            |
| 106   | E                | 21                | 6  | Ozone                  | 100000                | 5                       | 5                                      | 1                      |                                                                                                                 |                                | 41            |
| 106   | E                | 21                | 6  | Ozone + Monochloramine | 13000                 | 5                       | 0                                      | 0                      |                                                                                                                 | 3.65                           | 41            |
| 106   | E                | 21                | 6  | Ozone + Monochloramine | 130000                | 5                       | 0                                      | 0                      |                                                                                                                 |                                | 41            |
| 106   | E                | 21                | 6  | Ozone + Monochloramine | 1300000               | 5                       | 4                                      | 0.8                    | 3.65                                                                                                            |                                | 41            |
| 106   | E                | 21                | 8  | Control                | 50                    | -5                      | 1                                      | 0.2                    | 0.09                                                                                                            | 0.31                           | 41            |
| 106   | E                | 21                | 8  | Control                | 500                   | 5                       | 3                                      | 0.6                    | 0.54                                                                                                            |                                | 41            |
|       |                  |                   |    |                        |                       |                         | ······································ |                        |                                                                                                                 |                                |               |
| 107   | E                | 21                | 8  | Ozone                  | 1000                  | 5                       | 0                                      | 0                      |                                                                                                                 | 1.54                           | 41            |
| 107   | E                | 21                | 8  | Ozone                  | 10000                 | 5                       | 4                                      | 0.8                    | 1.54                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Ozone                  | 100000                | 5                       | 5                                      | 1                      | and and a state of the second                                                                                   |                                | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 11000                 | 5                       | 0                                      | 0                      |                                                                                                                 | 3.13                           | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 110000                | 5                       | 2                                      | 0.4                    | 3.13                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 1100000               | 5                       | 5                                      | 1                      | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                | 41            |
| 107   | E                | 21                | 8  | Ozone                  | 1000                  | 5                       | 3                                      | 0.6                    | 0.84                                                                                                            | 1.74                           | 41            |
| 107   | E                | 21                | 8  | Ozone                  | 10000                 | 5                       | 3                                      | 0.6                    | 1.84                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Ozone                  | 100000                | 5                       | 4                                      | 0.8                    | 2.54                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 11000                 | 5                       | 0                                      | 0                      | · · ·                                                                                                           | 3.78                           | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 110000                | 5                       | 1                                      | 0.2                    | 3.43                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Ozone + Monochloramine | 1100000               | 5                       | 2                                      | 0.4                    | 4.13                                                                                                            |                                | 41            |
| 107   | E                | 21                | 8  | Control                | 50                    | 5                       | 1                                      | 0.2                    | 0.09                                                                                                            | 0.09                           | 41            |
| 107   | E                | 21                | 8  | Control                | 500                   | 5                       | 5                                      | 1                      |                                                                                                                 |                                | 41            |

| Trial | Natural | Temperature | pН  | Treatment             | Oocysts Per | Animals in |          | Proportion | Calculated   | Average      | Cyst  |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |     |                       | Animal      | Cohort     | Animals  | Infected   | Log          | Log          | Batch |
|       |         |             |     |                       |             |            | Infected |            | Inactivation | Inactivation |       |
| 108   | F       | 21          | 6.3 | Ozone                 | 500         | 5          | 3        | 0.60       | 0.24         | 0.24         | 60    |
| 108   | F       | 21          | 6.3 | Ozone                 | 5 000       | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Ozone                 | 50 000      | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 500         | 5          | 1        | 0.20       | 0.89         | 0.89         | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 5 000       | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 50 000      | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 1        | 0.20       | 1.19         | 1.69         | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 1        | 0.20       | 2.19         |              | 60    |
| 108   | F       | 21          | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Chlorine              | 100         | 5          | 4        | 0.80       | -0.81        | -0.81        | 60    |
| 108   | F       | 21          | 6.3 | Chlorine              | 1 000       | 5          | 5        | 1.00       |              |              | 60    |
| 108   | F       | 21          | 6.3 | Control               | 250         | 5          | 5        | 1.00       |              | <-0.41       | 60    |
|       | _       |             |     |                       |             |            |          |            |              |              | 60    |
| 109   | F       | 21          | 6.3 | Ozone                 | 1 000       | 5          | 0        | 0.00       |              | 2.19         | 60    |
| 109   | F       | 21          | 6.3 | Ozone                 | 10 000      | 5          | 1        | 0.20       | 2.19         |              | 60    |
| 109   | F       | 21          | 6.3 | Ozone                 | 100 000     | 5          | 5        | 1.00       |              |              | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 0        | 0.00       |              | >3.19        | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              |              | 60    |
| 109   | F       | 21          | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 0        | 0.00       |              |              | 60    |
| 109   | F       | 21          | 6.3 | Chlorine              | 300         | 5          | 5        | 1.00       |              | <-0.33       | 60    |

# Table B.6 Neonatal CD-1 infectivity analysis for experimental trials with natural water F

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Trial | Natural | Temperature | pН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated   | Average Log  | Cyst  |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |     |                       | Animal      | Cohort     | Infected | Infected   | Log          | Inactivation | Batch |
|       |         |             |     |                       |             |            |          |            | Inactivation |              |       |
| 109   | F       | 21          | 6.3 | Chlorine              | 3 000       | 5          | 5        | 1.00       |              |              | 60    |
| 109   | F       | 21          | 6.3 | Control               | 200         | 5          | 3        | 0.60       | -0.16        | -0.16        | 60    |
|       |         |             |     |                       |             |            |          |            |              |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone                 | 1 000       | 5          | 0        | 0.00       |              | 1.87         | 60    |
| 110   | F       | 5           | 6.3 | Ozone                 | 10 000      | 5          | 3        | 0.60       | 1.54         |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone                 | 100 000     | 5          | 4        | 0.80       | 2.19         |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 0        | 0.00       |              | 2.19         | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 4        | 0.80       | 2.19         |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 5 000       | 5          | 1        | 0.20       | 1.89         | 2.34         | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 50 000      | 5          | 3        | 0.60       | 2.24         |              | 60    |
| 110   | F       | 5           | 6.3 | Ozone + Free Chlorine | 500 000     | 5          | 4        | 0.80       | 2.89         |              | 60    |
| 110   | F       | 5           | 6.3 | Chlorine              | 50          | 5          | 1        | 0.20       | -0.11        | -0.11        | 60    |
| 110   | F       | 5           | 6.3 | Chlorine              | 500         | 5          | 4        | 0.80       | -0.11        |              | 60    |
| 110   | F       | 5           | 6.3 | Control               | 150         | 5          | 5        | 1.00       |              | <-0.63       | 60    |
|       |         |             |     |                       |             |            |          |            |              |              | 60    |
| 111   | F       | 5           | 6.3 | Ozone                 | 1 000       | 5          | 1        | 0.20       | 1.19         | 1.51         | 60    |
| 111   | F       | 5           | 6.3 | Ozone                 | 10 000      | 5          | 2        | 0.40       | 1.84         |              | 60    |
| 111   | F       | 5           | 6.3 | Ozone                 | 100 000     | 5          | 5        | 1.00       |              |              | 60    |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 500         | 5          | 0        | 0.00       |              | 1.89         | 60    |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 5 000       | 5          | 1        | 0.20       | 1.89         | 5 C          | 60    |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 50 000      | 5          | 5        | 1.00       |              |              | 60    |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 1        | 0.20       | 1.19         | 1.69         | 60    |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              |              | 60    |

220

| Trial | Natural | Temperature | pН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated   | Average Log  | Cyst  |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |     |                       | Animal      | Cohort     | Infected | Infected   | Log          | Inactivation | Batch |
|       |         |             |     |                       |             |            |          |            | Inactivation |              |       |
| 111   | F       | 5           | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 4        | 0.80       | 2.19         |              | 60    |
| 111   | F       | 5           | 6.3 | Chlorine              | 50          | 5          | 0        | 0.00       |              | -0.11        | 60    |
| 111   | F       | 5           | 6.3 | Chlorine              | 500         | 5          | 5        | 1.00       |              |              | 60    |
| 111   | F       | 5           | 6.3 | Control               | 150         | 5          | 3        | 0.60       | -0.28        | -0.28        | 60    |
|       |         |             |     | ·                     |             |            |          |            |              |              | 60    |
| 112   | G       | 21          | 5.8 | Ozone                 | 1 000       | 5          | 0        | 0.00       |              | 3.19         | 60    |
| 112   | G       | 21          | 5.8 | Ozone                 | 10 000      | 5          | 0        | 0.00       |              |              | 60    |
| 112   | G       | 21          | 5.8 | Ozone                 | 100 000     | 5          | 1        | 0.20       | 3.19         |              | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 1 000       | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 100 000     | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 500         | 5          | 0        | 0.00       |              | 2.24         | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 5 000       | 5          | 0        | 0.00       |              |              | 60    |
| 112   | G       | 21          | 5.8 | Ozone + Free Chlorine | 50 000      | 5          | 3        | 0.60       | 2.24         |              | 60    |
| 112   | G       | 21          | 5.8 | Chlorine              | 50          | 5          | 2        | 0.40       | -0.47        | -0.47        | 60    |
| 112   | G       | 21          | 5.8 | Chlorine              | 500         | 5          | 5        | 1.00       |              |              | 60    |
| 112   | G       | 21          | 5.8 | Control               | 50          | 5          | 2        | 0.40       | -0.47        | -0.47        | 60    |
| 112   | G       | 21          | 5.8 | Control               | 500         | 5          | 5        | 1.00       |              |              | 60    |
|       |         |             |     |                       |             |            |          |            |              | 0.19         | 60    |
| 113   | F       | 21          | 6.3 | Ozone                 | 1 000       | 5          | 4        | 0.80       | 0.19         |              | 60    |
| 113   | F       | 21          | 6.3 | Ozone                 | 10 000      | 5          | 5        | 1.00       |              |              | 60    |
| 113   | F       | 21          | 6.3 | Ozone                 | 100 000     | 5          | 5        | 1.00       |              | 1.19         | 60    |
| 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 1        | 0.20       | 1.19         |              | 60    |

221

| ł        | Trial | Natural | Temperature | pН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated   | Average Log  | Cyst  |
|----------|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
|          |       | Water   | °C          |     |                       | Animal      | Cohort     | Infected | Infected   | Log          | Inactivation | Batch |
| Ļ        |       |         |             |     |                       | <u>N.</u>   |            |          |            | Inactivation |              |       |
|          | 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 4        | 0.80       | 1.19         |              | 60    |
|          | 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 5        | 1.00       |              | 2.14         | 60    |
|          | 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 2 000       | 5          | 0        | 0.00       |              |              | 60    |
|          | 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 20 000      | 5          | 2        | 0.40       | 2.14         |              | 60    |
|          | 113   | F       | 21          | 6.3 | Ozone + Free Chlorine | 200 000     | 5          | 5        | 1.00       |              | -0.11        | 60    |
|          | 113   | F       | 21          | 6.3 | Chlorine              | 50          | 5          | 1        | 0.20       | -0.11        |              | 60    |
| L        | 113   | F       | 21          | 6.3 | Chlorine              | 500         | 5          | 5        | 1.00       |              | <-0.81       | 60    |
|          | 113   | F       | 21          | 6.3 | Control               | 100         | 5          | 5        | 1.00       |              |              | 60    |
|          |       |         |             |     |                       | -           |            |          |            |              | 0.87         | 60    |
|          | 114   | F       | 5           | 6.3 | Ozone                 | 1 000       | 5          | 3        | 0.60       | 0.54         |              | 60    |
|          | 114   | F       | 5           | 6.3 | Ozone                 | 10 000      | 5          | 4        | 0.80       | 1.19         |              | 60    |
|          | 114   | F       | 5           | 6.3 | Ozone                 | 100 000     | 5          | 5        | 1.00       |              | 1.69         | 60    |
|          | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 1        | 0.20       | 1.19         |              | 60    |
| Γ        | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 1        | 0.20       | 2.19         |              | 60    |
|          | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 5        | 1.00       |              | 1.86         | 60    |
| <u> </u> | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 1 000       | 5          | 1        | 0.20       | 1.19         |              | 60    |
| Γ        | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 10 000      | 5          | 2        | 0.40       | 1.84         | -            | 60    |
| ſ        | 114   | F       | 5           | 6.3 | Ozone + Free Chlorine | 100 000     | 5          | 3        | 0.60       | 2.54         | -0.47        | 60    |
| Γ        | 114   | F       | 5           | 6.3 | Chlorine              | 50          | 5          | 2        | 0.40       | -0.47        |              | 60    |
| Γ        | 114   | F       | 5           | 6.3 | Chlorine              | 500         | 5          | 5        | 1.00       |              | -0.81        | 60    |
| Γ        | 114   | F       | 5           | 6.3 | Control               | 100         | 5          | 4        | 0.80       | -0.81        |              | 60    |
| Γ        |       |         |             |     |                       |             |            |          |            |              | 2.19         | 60    |
|          | 115   | G       | 5           | 5.8 | Ozone                 | 1 000       | 5          | 0        | 0.00       |              |              | 60    |

|       |         |             |     | ······                | A           |            |          |            |              |              |       |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
| Trial | Natural | Temperature | рН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated   | Average Log  | Cyst  |
|       | Water   | <b>°C</b>   |     |                       | Animal      | Cohort     | Infected | Infected   | Log          | Inactivation | Batch |
|       |         |             |     |                       |             |            |          |            | Inactivation |              |       |
| 115   | G       | 5           | 5.8 | Ozone                 | 10 000      | 5          | 0        | 0.00       |              |              | 60    |
| 115   | G       | 5           | 5.8 | Ozone                 | 100 000     | 5          | 4        | 0.80       | 2.19         | Spoiled      | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 1 000       | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              | Spoiled      | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 100 000     | 5          | 0        | 0.00       |              | 3.53         | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 5 000       | 5          | 0        | 0.00       |              |              | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 50 000      | 5          | 0        | 0.00       |              |              | 60    |
| 115   | G       | 5           | 5.8 | Ozone + Free Chlorine | 500 000     | 5          | 2        | 0.40       | 3.53         | -0.11        | 60    |
| 115   | G       | 5           | 5.8 | Chlorine              | 50          | 5          | 1        | 0.20       | -0.11        |              | 60    |
| 115   | G       | 5           | 5.8 | Chlorine              | 500         | 5          | 4        | 0.80       | -0.11        | -1.11        | 60    |
| 115   | G       | 5           | 5.8 | Control               | 50          | 5          | 4        | 0.80       | -1.11        |              | 60    |
| 115   | G       | 5           | 5.8 | Control               | 500         | 5          | 5        | 1.00       |              |              | 60    |
|       |         |             |     |                       |             | · ·        |          |            |              | -0.11        | 60    |
| 116   | F       | 5           | 6.3 | Chlorine              | 50          | 5          | 1        | 0.20       | -0.11        | <0.07        | 60    |
| 116   | F       | 5           | 6.3 | Chlorine              | 75          | 5          | 0        | 0.00       |              | -0.11        | 60    |
| 116   | G       | 5           | 5.8 | Chlorine              | 50          | 5          | - 1      | 0.20       | -0.11        | <-0.03       | 60    |
| 116   | G       | 5           | 5.8 | Chlorine              | 60          | 5          | 0        | 0.00       |              | -0.29        | 60    |
| 116   | G       | 5           | 5.8 | Chlorine              | 75          | 5          | 2        | 0.40       | -0.29        | -0.11        | 60    |
| 116   | F       | 21          | 6.3 | Chlorine              | 50          | 5          | 1        | 0.20       | -0.11        | -0.03        | 60    |
| 116   | F       | 21          | 6.3 | Chlorine              | 60          | 5          | 1        | 0.20       | -0.03        | 0.07         | 60    |
| 116   | F       | 21          | 6.3 | Chlorine              | 75          | 5          | 1        | 0.20       | 0.07         | -0.11        | 60    |

|                         | Table B.7                    |                               |
|-------------------------|------------------------------|-------------------------------|
| Neonatal CD-1 infectivi | ity analysis for experimenta | l trials with natural water G |

(Continued)

223

| Trial | Natural | Temperature | рН  | Treatment                              | Oocysts Per | Animals in | Animals  | Proportion | Calculated          | Average Log  | Cyst  |
|-------|---------|-------------|-----|----------------------------------------|-------------|------------|----------|------------|---------------------|--------------|-------|
|       | Water   | °C          |     |                                        | Animal      | Cohort     | Infected | Intected   | Log<br>Inactivation | Inactivation | Batch |
| 116   | G       | 21          | 5.8 | Chlorine                               | 50          | 5          | 1        | 0.20       | -0.11               | -0.39        | 60    |
| 116   | G       | 21          | 5.8 | Chlorine                               | 60          | 5          | 2        | 0.40       | -0.39               | 0.07         | 60    |
| 116   | G       | 21          | 5.8 | Chlorine                               | 75          | 5          | 1        | 0.20       | 0.07                | 0.09         | 60    |
| 116   | G       | 21          | 5.8 | Chlorine                               | 80          | 5          | 1        | 0.20       | 0.09                | 2.21         | 60    |
|       |         |             |     | 9 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - |             |            |          |            |                     |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone                                  | 500         | 5          | 0        | 0.00       |                     |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone                                  | 5 000       | 5          | 1        | 0.20       | 1.89                | 2.03         | 60    |
| 117   | G       | 5           | 5.8 | Ozone                                  | 50 000      | 5          | 2        | 0.40       | 2.53                |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 500         | 5          | 0        | 0.00       |                     |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 5 000       | 5          | 2        | 0.40       | 1.53                | 2.53         | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 50 000      | 5          | 2        | 0.40       | 2.53                |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 500         | 5          | 0        | 0.00       |                     |              | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 5 000       | 5          | 0        | 0.00       |                     | -0.11        | 60    |
| 117   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 50 000      | 5          | 2        | 0.40       | 2.53                |              | 60    |
| 117   | G       | 5           | 5.8 | Chlorine                               | 50          | 5          | 1        | 0.20       | -0.11               | -0.11        | 60    |
| 117   | G       | 5           | 5.8 | Chlorine                               | 500         | 5          | 5        | 1.00       |                     | 2.24         | 60    |
| 117   | G       | 5           | 5.8 | Control                                | 50          | 5          | 1        | 0.20       | -0.11               |              | 60    |
|       |         |             |     |                                        |             |            |          |            |                     |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone                                  | 500         | 5          | 0        | 0.00       |                     | 2.21         | 60    |
| 118   | G       | 5           | 5.8 | Ozone                                  | 5 000       | 5          | 0        | 0.00       |                     |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone                                  | 50 000      | 5          | 3        | 0.60       | 2.24                |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 500         | 5          | 0        | 0.00       |                     | 1.21         | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 5 000       | 5          | 1        | 0.20       | 1.89                |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine                  | 50 000      | 5          | 2        | 0.40       | 2.53                |              | 60    |

| Trial | Natural | Temperature | pН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated          | Average Log  | Cyst  |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|---------------------|--------------|-------|
|       | Water   | °C          |     |                       | Animal      | Cohort     | Infected | Infected   | Log<br>Inactivation | Inactivation | Batch |
| 118   | G       | 5           | 5.8 | Ozone                 | 500         | 5          | 1        | 0.20       | 0.89                | 2.49         | 60    |
| 118   | G       | 5           | 5.8 | Ozone                 | 5 000       | 5          | 2        | 0.40       | 1.53                |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone                 | 50 000      | 5          | 5        | 1.00       |                     |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine | 2 000       | 5          | 0        | 0.00       |                     | 0.89         | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine | 20 000      | 5          | 1        | 0.20       | 2.49                |              | 60    |
| 118   | G       | 5           | 5.8 | Ozone + Free Chlorine | 200 000     | 5          | 4        | 0.80       | 2.49                |              | 60    |
|       |         |             |     |                       |             |            |          |            |                     | 0.72         | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 500         | 5          | 0        | 0.00       |                     |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 5 000       | 5          | 5        | 1.00       |                     |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 50 000      | 5          | 5        | 1.00       |                     | -0.11        | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 1 500       | 5          | 3        | 0.60       | 0.72                |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 15 000      | 5          | 5        | 1.00       |                     |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 150 000     | 5          | 5        | 1.00       |                     | 1.01         | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 500         | 5          | 4        | 0.80       | -0.11               |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 5 000       | 5          | 5        | 1.00       |                     |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone                 | 50 000      | 5          | 5        | 1.00       |                     | 2.89         | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 1 500       | 5          | 2        | 0.40       | 1.01                |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 15 000      | 5          | 5        | 1.00       |                     |              | 60    |
| 119   | G       | 21          | 5.8 | Ozone + Free Chlorine | 150 000     | 5          | 5        | 1.00       |                     |              | 60    |
|       |         |             |     |                       |             | 1997 - A.  |          |            |                     |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 500         | 5          | 4        | 0.80       | -0.11               |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 5 000       | 5          | 0        | 0.00       |                     | 2.89         | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 50 000      | 5          | 1        | 0.20       | 2.89                |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 1 000       | 5          | 4        | 0.80       | 0.19                |              | 60    |

225

| Trial | Natural | Temperature | ρН  | Treatment             | Oocysts Per | Animals in | Animals  | Proportion | Calculated   | Average Log  | Cyst  |
|-------|---------|-------------|-----|-----------------------|-------------|------------|----------|------------|--------------|--------------|-------|
|       | Water   | °C          |     |                       | Animal      | Cohort     | Infected | Infected   | Log          | Inactivation | Batch |
|       |         |             |     |                       |             |            |          |            | Inactivation |              |       |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 10 000      | 5          | 0        | 0.00       |              |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 100 000     | 5          | 1        | 0.20       | 3.19         |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 500         | 5          | 4        | 0.80       | -0.11        |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 5 000       | 5          | 0        | 0.00       |              | 0.24         | 60    |
| 120   | G       | 21          | 5.8 | Ozone                 | 50 000      | 5          | 1        | 0.20       | 2.89         |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 2 000       | 5          | 4        | 0.80       | 0.49         |              | 60    |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 20 000      | 5          | 1        | 0.20       | 2.49         | 0.89         | 60    |
| 120   | G       | 21          | 5.8 | Ozone + Free Chlorine | 200 000     | 5          | 1        | 0.20       | 3.49         |              | 60    |

#### APPENDIX C

### OZONE PRIMARY TREATMENT INFORMATION FOR EACH SEQUENTIAL TREATMENT TRIAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
| Trial   | Oxidant   | Applied<br>Dose | Initial<br>Residual<br>C <sub>0</sub> | Decay<br>Constant<br><i>k</i> d | Contact<br>Time<br>t | Average Ct | Measured<br>Primary<br>Inactivation |
|---------|-----------|-----------------|---------------------------------------|---------------------------------|----------------------|------------|-------------------------------------|
| <i></i> |           | mg/L            | mg/L                                  | /min                            | min                  | mgxmin/L   | log-units                           |
|         | · · · · · |                 |                                       |                                 |                      |            |                                     |
| 1       | Ozone     | 2.06            | 1.76                                  | 0.34                            | 4.00                 | 3.85       | 2.17                                |
| 2       | Ozone     | 2.1             | 1.48                                  | 0.62                            | 4.00                 | 2.19       | 1.17                                |
| 3       | Ozone     | 1.96            | 1.50                                  | 0.49                            | 4.00                 | 2.63       | 1.01                                |
| 4       | Ozone     | 1.94            | 1.64                                  | 0.37                            | 4.00                 | 3.42       | 2.17                                |
| 5       | Ozone     | 1.2             | 0.77                                  | 0.57                            | 2.08                 | 0.94       | 0.17                                |
| 6       | Ozone     | 1.22            | 0.87                                  | 0.34                            | 1.87                 | 1.20       | 0.82                                |
| 7       | Ozone     | 2.45            | 2.16                                  | 0.56                            | 5.12                 | 3.64       | 1.68                                |
| 8       | Ozone     | 2.46            | 2.22                                  | 0.31                            | 5.12                 | 5.70       | 1.76                                |
| 9       | Ozone     | 1.48            | 1.27                                  | 0.18                            | 5.02                 | 4.20       | 2.01                                |
| 10      | Ozone     | 1.5             | 1.42                                  | 0.12                            | 5.02                 | 5.35       | 2.36                                |
| 11      | Ozone     | 0.96            | 0.83                                  | 0.19                            | 1.95                 | 1.35       | 0.82                                |
| 12      | Ozone     | 1.47            | 1.23                                  | 0.10                            | 5.08                 | 4.85       | 2.36                                |
| 13      | Ozone     | 0.98            | 0.75                                  | 0.12                            | 1.98                 | 1.32       | 1.32                                |
| 14      | Ozone     | 1.48            | 1.42                                  | 0.08                            | 5.02                 | 5.87       | 2.16                                |

Ozone primary treatment information for sequential experimental trials with natural

water A

Ozone primary treatment information for sequential experimental trials with natural

| Trial | Oxidant | Applied | Initial  | Decay     | Contact  | Average Ct | Measured     |
|-------|---------|---------|----------|-----------|----------|------------|--------------|
|       |         | Dose    | Residual | Constant  | Time     |            | Primary      |
|       |         |         | <u> </u> | <u>kd</u> | <u>t</u> |            | Inactivation |
|       |         | mg/L    | mg/L     | /min      | min      | mgxmin/L   | log-units    |
|       |         |         |          |           |          |            |              |
| 15    | Ozone   | 2.53    | 1.45     | 0.37      | 4.00     | 3.03       | 0.81         |
| 16    | Ozone   | 2.56    | 1.53     | 0.33      | 4.00     | 3.40       | 2.74         |
| 17    | Ozone   | 2.38    | 1.90     | 0.53      | 4.00     | 3.15       | 1.76         |
| 18    | Ozone   | 1.68    | 1.12     | 0.59      | 2.00     | 1.31       | na           |
| 19    | Ozone   | 2.31    | 1.31     | 0.36      | 4.00     | 2.78       | 2.81         |
| 20    | Ozone   | 2.49    | 1.41     | 0.39      | 4.00     | 2.86       | 2.74         |
| 21    | Ozone   | 2.45    | 1.55     | 0.36      | 4.00     | 3.29       | 3.02         |
| 22    | Ozone   | 1.7     | 1.15     | 0.68      | 2.00     | 1.26       | 0.74         |
| 23    | Ozone   | 1.69    | 0.83     | 0.63      | 2.00     | 0.94       | 0.67         |
| 24    | Ozone   | 1.68    | 1.18     | 0.94      | 2.00     | 1.06       | 0.74         |
| 25    | Ozone   | 1.7     | 0.92     | 0.48      | 2.00     | 1.18       | 0.89         |
| 26    | Ozone   | 1.69    | 1.13     | 0.43      | 2.00     | 1.52       | 0.89         |
| 27    | Ozone   | 3.47    | 3.46     | 0.08      | 20.00    | 34.52      | 2.44         |
| 28    | Ozone   | 3.53    | 3.35     | 0.07      | 20.00    | 36.06      | 2.02         |
| 29    | Ozone   | 1.53    | 1.36     | 0.16      | 6.00     | 5.25       | 0.31         |
| 30    | Ozone   | 1.51    | 0.96     | 0.19      | 6.05     | 3.45       | na           |
| 31    | Ozone   | 3.51    | 2.94     | 0.11      | 20.00    | 23.77      | 2.22         |
| 32    | Ozone   | 1.47    | 0.82     | 0.27      | 6.12     | 2.46       | 0.14         |
| 33    | Ozone   | 1.47    | 0.61     | 0.23      | 6.00     | 1.98       | 0.01         |
| 34    | Ozone   | 3.43    | 2.18     | 0.04      | 20.00    | 30.01      | 2.42         |
| 35    | Ozone   | 3.4     | 2.34     | 0.05      | 20.08    | 29.65      | 1.42         |
| 36    | Ozone   | 3.66    | 3.05     | 0.05      | 20.00    | 38.56      | 2.42         |

water B

Ozone primary treatment information for sequential experimental trials with natural

#### water C

| Trial | Oxidant | Applied | Initial  | Decay          | Contact | Average Ct | Measured     |
|-------|---------|---------|----------|----------------|---------|------------|--------------|
|       |         | Dose    | Residual | Constant       | Time    |            | Primary      |
|       |         |         | C0       | k <sub>d</sub> | t       |            | Inactivation |
|       |         | mg/L    | mg/L     | /min           | min     | mgxmin/L   | log-units    |
|       |         |         |          |                |         |            |              |
| 37    | Ozone   | 3.47    | 3.01     | 0.06           | 20.00   | 35.06      | >3.34        |
| 38    | Ozone   | 3.48    | 3.28     | 0.08           | 8.28    | 19.86      | >3.34        |
| 39    | Ozone   | 3.51    | 3.36     | 0.05           | 20.00   | 42.48      | >3.34        |
| 40    | Ozone   | 1.69    | 1.25     | 0.28           | 4.00    | 3.01       | 2.45         |
| 40    | Ozone   | 1.08    | 0.52     | 0.17           | 2.00    | 0.88       | 1.13         |
| 41    | Ozone   | 1.66    | 1.06     | 0.17           | 4.00    | 3.08       | 2.42         |
| 41    | Ozone   | 1.09    | 0.48     | 0.26           | 2.08    | 0.77       | na           |
| 42    | Ozone   | 1.69    | 1.17     | 0.45           | 4.00    | 2.17       | 1.77         |
| 43    | Ozone   | 1.24    | 0.69     | 0.70           | 2.10    | 0.76       | na           |
| 44    | Ozone   | 1.62    | 0.87     | 0.70           | 4.00    | 1.17       | na           |
| 45    | Ozone   | 1.68    | 1.25     | 0.14           | 4.00    | 3.83       | 1.77         |
| 46    | Ozone   | 1.68    | 1.14     | 0.36           | 4.00    | 2.42       | 1.42         |
| 47    | Ozone   | 1.12    | 0.61     | 0.11           | 2.10    | 1.14       | 0.13         |
| 48    | Ozone   | 1.07    | 0.28     | 0.51           | 2.38    | 0.39       | 0.13         |
| 49    | Ozone   | 1.73    | 1.12     | 0.20           | 4.00    | 3.08       | 1.77         |
| 50    | Ozone   | 1.13    | 0.50     | 0.22           | 2.00    | 0.81       | 0.77         |
| 51    | Ozone   | 1.65    | 1.13     | 0.94           | 4.00    | 1.17       | 1.4          |
| 51    | Ozone   | 1.13    | 0.47     | 0.96           | 2.00    | 0.42       | 0.96         |
| 52    | Ozone   | 1.06    | 0.57     | 1.31           | 2.00    | 0.40       | -0.3         |
| 52    | Ozone   | 1.65    | 0.86     | 1.40           | 4.00    | 0.61       | na           |

Ozone primary treatment information for sequential experimental trials with natural

|       |         |         |          |           |          | a contra de la contr |              |
|-------|---------|---------|----------|-----------|----------|-----------------------------------------------------------------------------------------------------------------|--------------|
| Trial | Oxidant | Applied | Initial  | Decay     | Contact  | Average Ct                                                                                                      | Measured     |
|       |         | Dose    | Residual | Constant  | Time     |                                                                                                                 | Primary      |
|       |         | ļ       |          | <u>kd</u> | <u>t</u> |                                                                                                                 | Inactivation |
|       |         | mg/L    | mg/L     | /min      | min      | mgxmin/L                                                                                                        | log-units    |
|       |         |         |          |           |          |                                                                                                                 |              |
| 53    | Ozone   | 2.65    | 0.09     | 0.59      | 4.00     | 0.14                                                                                                            | -0.04        |
| 53    | Ozone   | 5.68    | 2.20     | 1.11      | 4.00     | 1.96                                                                                                            | 1.79         |
| 54    | Ozone   | 1.65    | 0.86     | 1.40      | 4.00     | 0.61                                                                                                            | na           |
| 55    | Ozone   | 4.6     | 1.84     | 1.34      | 4.00     | 1.37                                                                                                            | 1.83         |
| 56    | Ozone   | 5.77    | 2.60     | 0.76      | 2.58     | 2.94                                                                                                            | 2.57         |
| 57    | Ozone   | 4.88    | 2.84     | 0.91      | 1.68     | 2.44                                                                                                            | 2.57         |
| 58    | Ozone   | 4.86    | 2.67     | 0.25      | 2.80     | 5.38                                                                                                            | <2.57        |
| 59    | Ozone   | 3.18    | 1.08     | 1.41      | 2.00     | 0.72                                                                                                            | 1.7          |
| 60    | Ozone   | 2.92    | -        | -         | 1.80     | 0.00                                                                                                            | 0.09         |
| 60    | Ozone   | 2.92    | 1.07     | 2.16      | 1.50     | 0.48                                                                                                            | 0.28         |
| 61    | Ozone   | 3.45    | 1.78     | 1.78      | 1.50     | 0.93                                                                                                            | 1.4          |
| 62    | Ozone   | 3.04    | 1.40     | 1.00      | 1.50     | 1.09                                                                                                            | 1.14         |
| 63    | Ozone   | 5.47    | 4.61     | 0.41      | 1.50     | 5.16                                                                                                            | 0.54         |
| 64    | Ozone   | 5.18    | 3.65     | 0.52      | 1.50     | 3.80                                                                                                            | -0.52        |
| 65    | Ozone   | 5.25    | 3.84     | 0.58      | 1.63     | 4.05                                                                                                            | -0.52        |
| 66    | Ozone   | 2.94    | 1.50     | 1.52      | 1.50     | 0.89                                                                                                            | 0.64         |
| 67    | Ozone   | 2.86    | 1.51     | 2.22      | 1.50     | 0.66                                                                                                            | 1.01         |
| 68    | Ozone   | 3.08    | 1.54     | 1.77      | 1.50     | 0.81                                                                                                            | -0.52        |
| 69    | Ozone   | 5.4     | 4.49     | 0.13      | 2.40     | 9.26                                                                                                            | -0.16        |
| 70    | Ozone   | 5.12    | 4.18     | 0.16      | 2.25     | 7.90                                                                                                            | 0.49         |
| 71    | Ozone   | 3.7     | 2.32     | 0.36      | 2.67     | 3.98                                                                                                            | 2.51         |
| 72    | Ozone   | 2.94    | 2.06     | 0.44      | 1.50     | 2.26                                                                                                            | <-0.52       |
| 73    | Ozone   | 5.46    | 4.30     | 0.31      | 4.00     | 9.86                                                                                                            | 1.14         |
| 74    | Ozone   | 3.19    | 1.80     | 0.47      | 2.57     | 2.69                                                                                                            | 1.21         |
| 75    | Ozone   | 3.06    | 1.74     | 0.43      | 2.50     | 2.67                                                                                                            | 2.21         |
| 76    | Ozone   | 5.32    | 4.43     | 0.16      | 1.50     | 5.91                                                                                                            | 0.84         |
| 77    | Ozone   | 5.41    | 3.98     | 0.26      | 4.00     | 9.90                                                                                                            | 1.16         |
| 78    | Ozone   | 5.34    | 3.60     | 0.17      | 4.00     | 10.45                                                                                                           | -0.16        |
| 79    | Ozone   | 4.95    | 4.20     | 0.12      | 1.80     | 6.80                                                                                                            | <-0.46       |
| 79    | Ozone   | 5.32    | 4.78     | 0.16      | 1.50     | 6.37                                                                                                            | <-0.46       |

#### water D

Ozone primary treatment information for sequential experimental trials with natural

|       |         |         |          | 1        |          |            |              |
|-------|---------|---------|----------|----------|----------|------------|--------------|
| Trial | Oxidant | Applied | Initial  | Decay    | Contact  | Average Ct | Measured     |
|       |         | Dose    | Residual | Constant | Time     |            | Primary      |
|       |         |         | <u> </u> | kd       | <u>t</u> |            | Inactivation |
|       |         | mg/L    | mg/L     | /min     | min      | mgxmin/L   | log-units    |
|       | -       |         |          |          |          |            |              |
| 80    | Ozone   | 2.98    | 2.38     | 0.09     | 1.75     | 3.85       | 1.41         |
| 81    | Ozone   | 3.6     | 3.11     | 0.17     | 3.77     | 8.66       | 0.01         |
| 82    | Ozone   | 3.12    | 3.61     | 0.08     | 5.00     | 14.88      | 0.31         |
| 83    | Ozone   | 3.27    | 3.60     | 0.06     | 3.00     | 9.88       | 0.09         |
| 84    | Ozone   | 1.56    | 1.63     | 0.08     | 1.50     | 2.30       | 0.99         |
| 85    | Ozone   | 3.21    | 3.55     | 0.04     | 1.75     | 6.00       | 3.09         |
| 86    | Ozone   | 1.53    | 1.50     | 0.09     | 2.75     | 3.65       | 1.79         |
| 87    | Ozone   | 5.33    | 5.67     | 0.02     | 5.00     | 26.98      | 1.29         |
| 88    | Ozone   | 3.12    | 3.27     | 0.03     | 3.00     | 9.38       | -0.11        |
| 89    | Ozone   | 2.97    | 3.26     | 0.09     | 3.00     | 8.57       | -0.21        |
| 90    | Ozone   | 5.33    | 5.73     | 0.02     | 5.00     | 27.26      | 1.54         |
| 91    | Ozone   | 3.68    | 4.13     | 0.07     | 5.25     | 18.14      | 1.69         |
| 92    | Ozone   | 3.14    | 3.44     | 0.05     | 3.00     | 9.58       | 0.17         |
| 93    | Ozone   | 1.45    | 1.50     | 0.15     | 1.50     | 2.01       | 1.24         |
| 94    | Ozone   | 1.79    | 2.01     | 0.22     | 1.50     | 2.57       | 1.74         |
| 95    | Ozone   | 3.18    | 3.09     | 0.08     | 1.50     | 4.37       | 2.29         |
| 96    | Ozone   | 3.09    | 2.71     | 0.04     | 1.00     | 2.66       | 1.84         |
| 97    | Ozone   | 3.13    | 3.35     | 0.03     | 1.55     | 5.07       | 2.46         |
| 98    | Ozone   | 3.15    | 3.69     | 0.05     | 3.00     | 10.28      | 0.54         |
| 99    | Ozone   | 1.52    | 1.73     | 0.14     | 2.50     | 3.65       | 2.61         |
| 100   | Ozone   | 1.61    | 1.59     | 0.13     | 1.75     | 2.49       | 2.84         |
| 101   | Ozone   | 1.64    | 1.38     | 0.03     | 2.00     | 2.68       | 3.09         |
| 102   | Ozone   | 3.11    | 3.50     | 0.04     | 3.00     | 9.89       | 1.31         |
| 103   | Ozone   | 4.56    | 5.06     | 0.02     | 5.00     | 24.08      | 2.79         |
| 104   | Ozone   | 3.27    | 3.50     | 0.06     | 5.00     | 15.12      | 1.39         |
| 105   | Ozone   | 1.61    | 1.82     | 0.08     | 1.55     | 2.65       | 2.16         |
| 106   | Ozone   | 1.61    | 1.84     | 0.15     | 1.50     | 2.47       | 2.54         |
| 107   | Ozone   | 1.61    | 1.76     | 0.17     | 1.50     | 2.33       | 1.54         |

water E

water F

| Trial | Oxidant | Applied | Initial  | Decay          | Contact | Average | Measured     |
|-------|---------|---------|----------|----------------|---------|---------|--------------|
|       |         | Dose    | Residual | Constant       | Time    | Ct      | Primary      |
|       |         |         | $C_0$    | k <sub>d</sub> | t       |         | Inactivation |
|       |         | mg/L    | mg/L     | /min           | min     | mgxmin/ | log-units    |
|       |         |         |          |                |         | L       |              |
| 108   | Ozone   | 3.89    | 3.20     | 0.99           | 2.00    | 2.79    | 0.24         |
|       |         |         |          |                |         |         |              |
| 109   | Ozone   | 3.92    | 3.85     | 0.41           | 2.00    | 5.25    | 2.19         |
|       |         |         |          |                |         |         |              |
| 110   | Ozone   | 5.37    | 3.79     | 0.10           | 6.00    | 17.10   | 1.87         |
|       |         |         |          |                |         |         |              |
| 111   | Ozone   | 5.32    | 3.33     | 0.09           | 6.00    | 15.44   | 1.51         |
|       |         |         |          |                |         |         |              |
| 113   | Ozone   | 3.85    | 3.30     | 1.13           | 2.00    | 2.62    | 0.19         |
|       |         |         |          |                |         |         |              |
| 114   | Ozone   | 5.41    | 3.79     | 0.10           | 6.00    | 17.10   | 0.87         |

Ozone primary treatment information for sequential experimental trials with natural

Ozone primary treatment information for sequential experimental trials with natural

| Trial | Oxidant | Applied | Initial  | Decay          | Contact | Average | Measured    |
|-------|---------|---------|----------|----------------|---------|---------|-------------|
|       |         | Dose    | Residual | Constant       | Time    | Ct      | Primary     |
|       |         |         | $C_0$    | k <sub>d</sub> | t       |         | Inactivatio |
|       |         |         |          |                |         |         | n           |
|       |         | mg/L    | mg/L     | /min           | min     | mgxmin/ | log-units   |
|       |         |         |          |                |         | L       |             |
|       |         |         |          |                |         |         |             |
| 112   | Ozone   | 1.92    | 3.32     | 0.11           | 2.00    | 5.96    | 3.19        |
|       |         |         |          |                |         |         |             |
| 115   | Ozone   | 3.69    | 3.78     | 0.03           | 5.00    | 17.55   | 2.19        |
|       |         |         |          | ·              |         |         |             |
| 117   | Ozone   | 3.39    | 3.59     | 0.04           | 5.00    | 16.27   | 2.21        |
|       |         |         |          |                |         |         |             |
| 118   | Ozone   | 3.24    | 3.30     | 0.03           | 5.00    | 15.32   | 2.24        |
|       | Ozone   | 3.2     | 3.46     | 0.04           | 5.00    | 15.68   | 1.21        |
| 119   | Ozone   | 1.01    | 0.73     | 0.39           | 2.00    | 1.01    | 0.89        |
|       | Ozone   | 1.02    | 0.63     | 0.38           | 2.00    | 0.88    | -0.11       |
| 120   | Ozone   | 1.02    | 0.71     | 0.32           | 2.00    | 1.05    | NA          |
|       | Ozone   | 1.01    | 0.67     | 0.38           | 2.00    | 0.94    | NA          |
|       |         |         |          |                |         |         |             |

water G

### APPENDIX D

### SECONDARY TREATMENT INFORMATION FOR EACH SEQUENTIAL TREATMENT TRIAL

|       |                 |         | Sequ     | uential Trea | atment   |              |         | Secor    | ndary Treat | ment Alone | n finn an a |
|-------|-----------------|---------|----------|--------------|----------|--------------|---------|----------|-------------|------------|----------------------------------------------|
| Trial | Туре            | Applied | Initial  | Contact      | Average  | Measured     | Applied | Initial  | Contact     | Average    | Measured                                     |
|       |                 | Dose    | Residual | Time         | Ct       | Inactivation | Dose    | Residual | Time        | Ct         | Inactivation                                 |
|       |                 | mg/L    | mg/L     | min          | mgxmin/L | log-units    | mg/L    | mg/L     | min         | mgxmin/L   | log-units                                    |
|       |                 |         |          |              |          |              |         |          |             |            |                                              |
| 1     | Cl <sub>2</sub> | 4.1     | 3.4      | 960          | 1998     | 2.82         | 4.1     | 2.9      | 960         | 1737       | -0.18                                        |
| 2     | Cl <sub>2</sub> | 3.6     | 1.9      | 960          | 605      | 1.82         | 4.1     | 2.7      | 960         | 1648       | 0.36                                         |
| 3     | Cl <sub>2</sub> | 1.5     | 0.4      | 1000         | 218      | 1.59         | 1.5     | 0.4      | 960         | 219        | 0.01                                         |
| 4     | Cl <sub>2</sub> | 1.5     | 0.6      | 960          | 305      | 1.82         | 1.6     | 2.7      | 960         | 1358       | 0.17                                         |
| 5     | Cl <sub>2</sub> | 5.2     | 3.6      | 940          | 2303     | 0.87         | 5.1     | 3.8      | 940         | 2744       | 0.01                                         |
| 6     | Cl <sub>2</sub> | 3.2     | 2.7      | 970          | 1760     | <0.82        | 3.0     | 3.0      | 960         | 2415       | 0.30                                         |
| 7     | Cl <sub>2</sub> | 4.1     | 3.2      | 960          | 1505     | 2.17         | 4.1     | 2.7      | 960         | 2176       | 1.17                                         |
| 8     | Cl <sub>2</sub> | 4.1     | 3.2      | 240          | 728      | 2.3          | 4.1     | 2.9      | 240         | 498        | 0.82                                         |
| 9     | Cl <sub>2</sub> | 4.1     | 2.3      | 995          | 1189     | >3.36        | 4.1     | 2.3      | 995         | 1348       | 0.82                                         |
| 10    | Cl <sub>2</sub> | 4.1     | 2.4      | 995          | 1382     | 3.36         | 4.1     | 2.2      | 995         | 1239       | 0.82                                         |
| 11    | Cl <sub>2</sub> | 4.2     | 3.0      | 1095         | 1963     | 2.36         | 4.2     | 2.7      | 1095        | 1341       | 1.36                                         |
| 12    | Cl <sub>2</sub> | 3.6     | 2.4      | 230          | 411      | 2.82         | 3.6     | 2.2      | 230         | 351        | 0.59                                         |
| 13    | Cl <sub>2</sub> | 3.6     | 2.3      | 235          | 417      | 1.17         | 3.6     | 2.2      | 230         | 418        | 0.82                                         |
| 14    | Cl <sub>2</sub> | 3.6     | 2.4      | 240          | 435      | 2.82         | 3.7     | 2.4      | 240         | 457        | 0.49                                         |

Table D.1

Secondary treatment information for sequential trials with natural water A

| Reproduced with pe   |  |    |
|----------------------|--|----|
| ermission of the cop |  |    |
| yright owner. F      |  |    |
| urther reproduc      |  | 2  |
| tion prohibited with |  | 37 |
| hout permission.     |  |    |

| Tab | le D | .2 |
|-----|------|----|
|-----|------|----|

# Secondary treatment information for sequential trials with natural water B

|       |                 |         | ~        | 1 - 1        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |          |             |            |              |
|-------|-----------------|---------|----------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------|------------|--------------|
|       |                 |         | Seq      | uential Trea | atment   | a successive and a successive sector of the successive sector and the |         | Secor    | ndary Treat | ment Alone |              |
| Trial | Туре            | Applied | Initial  | Contact      | Average  | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applied | Initial  | Contact     | Average    | Measured     |
|       | [               | Dose    | Residual | Time         | Ct       | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose    | Residual | Time        | Ct         | Inactivation |
|       |                 | mg/L    | mg/L     | min          | mgxmin/L | log-units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L    | mg/L     | min         | mgxmin/L   | log-units    |
| 15    | Cl <sub>2</sub> | 9.8     | 8.1      | 960          | 4282     | Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8     | 8.3      | 960         | 5329       | 0.11         |
| 16    | Cl <sub>2</sub> | 6.5     | 3.3      | 297          | 560      | >0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5     | 3.1      | 293         | 630        | na           |
| 17    | Cl <sub>2</sub> | 9.0     | 5.5      | 960          | 2588     | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0     | 5.4      | 965         | 3181       | -0.19        |
| 18    | Cl <sub>2</sub> | 9.3     | 6.1      | 1010         | 2548     | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3     | 5.8      | 1010        | 2905       | -0.19        |
| 19    | Cl <sub>2</sub> | 8.1     | 6.1      | 950          | 2660     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.1     | 6.6      | 946         | 3587       | 0.51         |
| 20    | Cl <sub>2</sub> | 7.4     | 6.3      | 180          | 604      | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4     | 6.1      | 180         | 632        | -0.49        |
| 21    | Cl <sub>2</sub> | 9.9     | 8.5      | 183          | 892      | 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.9     | 8.9      | 185         | 1013       | 0.07         |
| 22    | Cl <sub>2</sub> | 8.9     | 8.0      | 180          | 834      | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9     | 7.8      | 180         | 826        | 0.07         |
| 23    | Cl <sub>2</sub> | 8.9     | 7.4      | 1005         | 4717     | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9     | 7.3      | 1010        | 5051       | 1.07         |
| 24    | Cl <sub>2</sub> | 8.9     | 8.1      | 1006         | 1244     | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9     | 7.3      | 1011        | 1177       | 0.31         |
| 25    | Cl <sub>2</sub> | 7.1     | 6.6      | 988          | 3802     | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1     | 6.5      | 988         | 4061       | 0.37         |
| 26    | Cl <sub>2</sub> | 8.9     | 7.5      | 182          | 1107     | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9     | 6.6      | 182         | 992        | 0.07         |
| 27    | Cl <sub>2</sub> | 7.7     | 7.1      | 180          | 1035     | >2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0     | 6.8      | 180         | 1000       | 0.63         |
| 28    | Cl <sub>2</sub> | 7.9     | 7.2      | 180          | 1141     | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.9     | 7.0      | 180         | 1117       | 0.23         |
| 29    | Cl <sub>2</sub> | 8.2     | 8.0      | 187          | 1335     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0     | 6.9      | 187         | 1173       | 0.01         |
| 30    | Cl <sub>2</sub> | 8.0     | 10.7     | 119          | 983      | <0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1     | 8.2      | 134         | 959        | 0.01         |
| 31    | Cl <sub>2</sub> | 5.8     | 5.6      | 923          | 3997     | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0     | 5.3      | 923         | 4090       | 0.21         |
| 32    | Cl <sub>2</sub> | 6.0     | 6.3      | 981          | 4499     | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0     | 5.3      | 981         | 3923       | 0.21         |
| 33    | Cl <sub>2</sub> | 6.5     | 6.3      | 962          | 4826     | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5     | 6.1      | 962         | 4458       | 0.01         |
| 34    | Cl <sub>2</sub> | 5.9     | 4.2      | 972          | 2947     | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9     | 4.2      | 971         | 2959       | 0.32         |
| 35    | Cl <sub>2</sub> | 7.9     | 7.2      | 185          | 1191     | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.9     | 7.4      | 185         | 1289       | -0.16        |
| 36    | Cl <sub>2</sub> | 7.9     | 7.2      | 888          | 4936     | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.9     | 7.2      | 888         | 4950       | -0.16        |

|       |                 |         | Sequ     | uential Trea | atment   |              | anto and an | Secor    | dary Treat                                     | ment Alone |                                                                                                                 |
|-------|-----------------|---------|----------|--------------|----------|--------------|-------------------------------------------------|----------|------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| Trial | Туре            | Applied | Initial  | Contact      | Average  | Measured     | Applied                                         | Initial  | Contact                                        | Average    | Measured                                                                                                        |
| 1     |                 | Dose    | Residual | Time         | Ct       | Inactivation | Dose                                            | Residual | Time                                           | Ct         | Inactivation                                                                                                    |
|       |                 | mg/L    | mg/L     | min          | mgxmin/L | log-units    | mg/L                                            | mg/L     | min                                            | mgxmin/L   | log-units                                                                                                       |
|       |                 |         |          |              |          |              |                                                 |          | E-TTTC-TT-TI-BILITY-I-T-T-T-T-S-S-1855-144     |            |                                                                                                                 |
| 37    | Cl <sub>2</sub> | 6.0     | 5.9      | 180          | 940      | >3.64        | 6.0                                             | 5.9      | 180                                            | 957        | 0.47                                                                                                            |
| 38    | Cl <sub>2</sub> | 6.0     | 4.7      | 971          | 3615     | >3.64        | 6.0                                             | 4.8      | 971                                            | 3830       | 0.77                                                                                                            |
| 39    | Cl <sub>2</sub> | 6.1     | 5.9      | 956          | 4270     | >3.64        | 6.1                                             | 5.9      | 956                                            | 4270       | 0.47                                                                                                            |
| 40    | Cl <sub>2</sub> | 5.7     | 5.8      | 976          | 3922     | 3.77         |                                                 |          | , <u>, , , , , , , , , , , , , , , , , , </u>  |            |                                                                                                                 |
| 40    | Cl <sub>2</sub> | 5.7     | 5.9      | 976          | 3977     | 2.13         |                                                 |          |                                                |            | 2007-2207000-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2007200-2  |
| 41    | Cl <sub>2</sub> | 5.7     | 5.9      | 180          | 920      | 1.42         |                                                 |          |                                                |            | and a construction of the second s |
| 41    | Cl <sub>2</sub> | 5.7     | 5.9      | 180          | 1000     | 1.42         |                                                 | ·        | I TANKA MANA ANA ANA ANA ANA ANA ANA ANA ANA A |            |                                                                                                                 |
| 42    | Cl <sub>2</sub> | 6.0     | 6.0      | 180          | 951      | 2.13         | 6.0                                             | 5.8      | 180                                            | 932        | 0.47                                                                                                            |
|       | Cl <sub>2</sub> | 6.0     | 6.0      | 995          | 3763     | 2.79         | 6.0                                             | 5.8      | 995                                            | 4150       | 0.12                                                                                                            |
| 43    | Cl <sub>2</sub> | 6.0     | 6.4      | 179          | 1013     | >1.01        | 6.0                                             | 5.9      | 179                                            | 934        | 0.47                                                                                                            |
|       | Cl <sub>2</sub> | 6.0     | 6.4      | 1000         | 4398     | >1.01        | 6.0                                             | 5.8      | 1000                                           | 4193       | 0.47                                                                                                            |
| 44    | Cl <sub>2</sub> | 5.9     | 5.8      | 947          | 3981     |              | 5.9                                             | 5.4      | 947                                            | 3916       | na                                                                                                              |
| 45    | Cl <sub>2</sub> | 4.9     | 4.7      | 184          | 742      | 1.95         | 4.9                                             | 4.4      | 184                                            | 707        | -0.53                                                                                                           |
|       | Cl <sub>2</sub> | 4.9     | 4.7      | 963          | 3040     | >3.77        | 4.9                                             | 4.4      | 963                                            | 3204       | 0.47                                                                                                            |
| 46    | Cl <sub>2</sub> | 6.3     | 6.3      | 173          | 1060     | 1.47         | 6.0                                             | 5.7      | 173                                            | 873        | 0.30                                                                                                            |
|       | Cl <sub>2</sub> | 6.3     | 6.3      | 976          | 4268     | 2.42         | 6.0                                             | 6.0      | 976                                            | 4257       | 0.47                                                                                                            |
| 47    | Cl <sub>2</sub> | 6.3     | 5.1      | 171          | 721      | 0.77         |                                                 |          |                                                |            |                                                                                                                 |
|       | Cl <sub>2</sub> | 6.3     | 5.1      | 973          | 3274     | 1.77         |                                                 |          |                                                |            |                                                                                                                 |
| 48    | Cl <sub>2</sub> | 6.0     | 5.9      | 191          | 966      | 1.11         | 5.6                                             | 5.5      | 195                                            | 923        | 0.3                                                                                                             |
|       | Cl <sub>2</sub> | 6.0     | 5.9      | 970          | 3947     | 0.77         | 5.6                                             | 5.4      | 970                                            | 3670       | 0.12                                                                                                            |

# Secondary treatment information for sequential trials with natural water C

Table D.3

(Continued)

|       |                 |         | Seq      | uential Trea | atment   |              |                                            | Secor    | ndary Treat | ment Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and an entropy of the second |
|-------|-----------------|---------|----------|--------------|----------|--------------|--------------------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Trial | Туре            | Applied | Initial  | Contact      | Average  | Measured     | Applied                                    | Initial  | Contact     | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measured                                                                                                         |
|       |                 | Dose    | Residual | Time         | Ct       | Inactivation | Dose                                       | Residual | Time        | Ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inactivation                                                                                                     |
|       |                 | mg/L    | mg/L     | min          | mgxmin/L | log-units    | mg/L                                       | mg/L     | min         | mgxmin/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log-units                                                                                                        |
|       |                 |         |          |              |          | 1            |                                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| 49    | Cl <sub>2</sub> | 5.8     | 5.5      | 182          | 829      | 1.97         | 5.6                                        | 5.3      | 184         | 956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <-0.53                                                                                                           |
|       | Cl <sub>2</sub> | 5.8     | 5.5      | 987          | 2926     | 3.13         | 5.6                                        | 5.4      | 981         | 3486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.83                                                                                                             |
| 50    | Cl <sub>2</sub> | 6.0     | 5.9      | 186          | 939      | 0.77         | 5.7                                        | 5.3      | 188         | 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62                                                                                                             |
|       | Cl <sub>2</sub> | 6.0     | 5.9      | 972          | 3649     | 2.47         | 5.7                                        | 5.2      | 972         | 3540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.47                                                                                                             |
| 51    | Cl <sub>2</sub> | 6.9     | 7.1      | 225          | 1017     | 2.57         | and an |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| 51    | Cl <sub>2</sub> | 7.0     | 7.2      | 225          | 1451     | 1.07         | *****                                      |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|       | Cl <sub>2</sub> | 7.0     | 5.9      | 934          | 4575     | 1.4          |                                            |          | ·           | a no opposition and a second |                                                                                                                  |
| 52    | Cl <sub>2</sub> | 6.9     | 8.7      | 190          | 1478     | 0.23         |                                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|       | Cl <sub>2</sub> | 6.9     | 8.7      | 984          | 6187     | 1.09         |                                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | artistigen sin the provided that is the Paper State State State and a state of the state of the state of the st  |
| 52    | Cl <sub>2</sub> | 6.7     | 6.2      | 984          | 4243     | 1.36         |                                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |

# Table D.3 (Continued)

|       |                 |                                                                                                                 | Seq                 | uential Trea        | tment         |                          |                                                                                                                | Seco                | ndary Treatr                             | nent Alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------|--------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Trial | Туре            | Applied<br>Dose                                                                                                 | Initial<br>Residual | Contact<br>Time     | Average<br>Ct | Measured<br>Inactivation | Applied<br>Dose                                                                                                | Initial<br>Residual | Contact<br>Time                          | Treatment Alone   Itact Average   ne Ct   in mgxmin/L   in mgxmin/L   in mgxmin/L   in ngxmin/L   in <td< td=""><td>Measured<br/>Inactivation</td></td<> | Measured<br>Inactivation                                          |
|       |                 | ma/L                                                                                                            | ma/L                | min                 | maxmin/L      | log-units                | ma/L                                                                                                           | ma/L                | min                                      | maxmin/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | log-units                                                         |
|       |                 |                                                                                                                 |                     |                     | 1             |                          |                                                                                                                |                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| 53    | Cl <sub>2</sub> | 8.68                                                                                                            | 7.36                | 192                 | 986           | 0.4                      |                                                                                                                |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G                                                                 |
|       |                 |                                                                                                                 |                     | 967                 | 2931          | 0.4                      |                                                                                                                |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **************************************                            |
| 53    | Cl <sub>2</sub> | 7.72                                                                                                            | 6.21                | 967                 | 2408          | 3.4                      | antinii aan artartaaan oon <del>aan</del> oo                                                                   |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| 54    | Cl <sub>2</sub> | 6.66                                                                                                            | 6.23                | 984                 | 4243          | 1.83                     |                                                                                                                |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| 55    | Cl <sub>2</sub> | 7.56                                                                                                            | 6.86                | 201                 | 939           | 1.4                      | 8.4                                                                                                            | 7.2                 | 203                                      | 1013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34                                                              |
|       |                 |                                                                                                                 |                     | 1009                | 2841          | 1.94                     |                                                                                                                |                     | 1008                                     | 3090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                              |
| 56    | Cl <sub>2</sub> | 8.05                                                                                                            | 7.09                | 173                 | 840           | 2.4                      | 8.4                                                                                                            | 7.4                 | 235                                      | 1073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.6                                                              |
|       |                 |                                                                                                                 |                     | 1013                | 2945          | 2.58                     |                                                                                                                |                     | 1010                                     | 3287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                               |
| 57    | Cl <sub>2</sub> | 6.25                                                                                                            | 4.74                | 188                 | 578           | 2.34                     | 6.9                                                                                                            | 4.7                 | 191                                      | 594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.21                                                             |
|       |                 |                                                                                                                 |                     | 982                 | 996           | 2.94                     |                                                                                                                |                     | 982                                      | 1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                               |
| 58    | Cl <sub>2</sub> | 7.02                                                                                                            | 5.35                | 187                 | 615           | >3.27                    | 7.7                                                                                                            | 5.7                 | 190                                      | 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.08                                                             |
|       |                 |                                                                                                                 |                     | 987                 | 1467          | 3.87                     |                                                                                                                |                     | 987                                      | 1403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34                                                              |
| 59    | Cl <sub>2</sub> | 7.66                                                                                                            | 7.26                | 197                 | 965           | 2.1                      | 7.8                                                                                                            | 6.7                 | 194                                      | 869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                               |
|       |                 |                                                                                                                 |                     | 992                 | 2904          | 2.7                      |                                                                                                                |                     | 992                                      | 2942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.79                                                              |
| 60    | Cl <sub>2</sub> | 6.99                                                                                                            | 8.56                | 191                 | 1162          | 0.28                     | 1999, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19 |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>                                                           |
|       |                 |                                                                                                                 |                     | 954                 | 3879          | 0.4                      |                                                                                                                |                     | an a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| 60    | Cl <sub>2</sub> | 7.02                                                                                                            | 8.35                | 189                 | 1126          | 0.83                     |                                                                                                                |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.279 Cl 177.279.479.192.279274474777474848454945794499999922222 |
|       |                 |                                                                                                                 |                     | 954                 | 3651          | 1.23                     | 24422.2019.7000.9719.000000000 <u>1</u> .0110200                                                               |                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***************************************                           |
| 61    | Cl <sub>2</sub> | 6.85                                                                                                            | 7.74                | 188                 | 1023          | 2.79                     | 7.0                                                                                                            | 7.8                 | 183                                      | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                              |
| [     |                 |                                                                                                                 |                     | 1031                | 1889          | 2.53                     |                                                                                                                |                     | 1033                                     | 3388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.53                                                              |
| S     | A.,             | Anna ann an Ann |                     | Launummenter (1997) | A.,           |                          | an a                                                                       | L                   |                                          | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Continu                                                          |

# Secondary treatment information for sequential trials with natural water D

Table D.4

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Continued)

|                                                                                                                |                    |                 | Seq                 | uential Trea    | tment         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seco                                                                                                           | ndary Treatn                           | nent Alone    |                          |
|----------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------------|-----------------|---------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|--------------------------|
| Trial                                                                                                          | Туре               | Applied<br>Dose | Initial<br>Residual | Contact<br>Time | Average<br>Ct | Measured<br>Inactivation | Applied<br>Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial<br>Residual                                                                                            | Contact<br>Time                        | Average<br>Ct | Measured<br>Inactivation |
|                                                                                                                |                    | mg/L            | mg/L                | min             | mgxmin/L      | log-units                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                           | min                                    | mgxmin/L      | log-units                |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                         |                    |                 | T                   |                 |               |                          | and domentary the provident of the providence of |                                                                                                                | ~~************************************ |               |                          |
| 62                                                                                                             | Cl <sub>2</sub>    | 6.94            | 5.94                | 198             | 728           | 1.14                     | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                                                                                                            | 200                                    | 728           | 0.37                     |
|                                                                                                                |                    |                 |                     | 960             | 2419          | 1.37                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 960                                    | 2307          | 0.19                     |
| 63                                                                                                             | Cl <sub>2</sub>    | 7.95            | 7.84                | 188             | 1229          | <0.17                    | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                                                                            | 190                                    | 1298          | -0.16                    |
|                                                                                                                |                    |                 |                     | 988             | 5814          | 0.84                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 988                                    | 6038          | 0.19                     |
| 64                                                                                                             | Cl <sub>2</sub>    | 5.91            | 6.94                | 183             | 1111          | -0.16                    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                            | 185                                    | 1204          | -0.46                    |
|                                                                                                                |                    |                 |                     | 955             | 5038          | 0.14                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 955                                    | 5452          | -0.46                    |
| 65                                                                                                             | Cl <sub>2</sub>    | 5.97            | 7.23                | 187             | 1168          | 0.48                     | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                            | 189                                    | 1203          | -0.46                    |
|                                                                                                                |                    |                 |                     | 989             | 5153          | -0.22                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 989                                    | 5125          | 0.04                     |
| 66                                                                                                             | NH <sub>2</sub> CI | 5.85            | 8.12                | 196             | 1531          | 2.14                     | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                            | 198                                    | 1538          | 0.19                     |
|                                                                                                                |                    |                 |                     | 978             | 7565          | >2.51                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 978                                    | 7444          | na                       |
| 67                                                                                                             | NH <sub>2</sub> CI | 5.82            | 6.51                | 196             | 1239          | 1.8                      | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4                                                                                                            | 198                                    | 1251          | 0.68                     |
|                                                                                                                |                    |                 |                     | 272             | 1747          | 1.68                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 272                                    | 1733          | 0.68                     |
| 68                                                                                                             | NH <sub>2</sub> CI | 5.97            | 8.44                | 134             | 1080          | 1.61                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3                                                                                                            | 136                                    | 1114          | 0.51                     |
|                                                                                                                |                    |                 |                     | 254             | 2064          | 2.49                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 252                                    | 2027          | 0.68                     |
| 69                                                                                                             | Cl <sub>2</sub>    | 5.36            | 6.7                 | 199             | 1131          | 0.78                     | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                                                                                                            | 201                                    | 1270          | 0.21                     |
|                                                                                                                | 1                  |                 |                     | 962             | 4683          | 1.14                     | and an entre strategy and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and a second | 962                                    | 5292          | 0.01                     |
| 70                                                                                                             | Cl <sub>2</sub>    | 5.47            | 6.91                | 186             | 1083          | 0.79                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                                                                                                            | 187                                    | 1152          | 0.21                     |
|                                                                                                                |                    |                 |                     | 975             | 5093          | 1.31                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 974                                    | 5155          | 0.01                     |
| 71                                                                                                             | NH <sub>2</sub> Cl | 5.35            | 7.83                | 135             | 1015          | 2.54                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2                                                                                                            | 136                                    | 1087          | 0.17                     |
|                                                                                                                |                    |                 |                     | 240             | 1792          | 3.14                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 240                                    | 1899          | 0.37                     |
| and a second |                    |                 |                     |                 |               |                          | Lannan was not state and s | L                                                                                                              |                                        |               |                          |

# Table D.4 (Continued)

(Continued)

|       |                    | ,       | Seq      | uential Trea | tment    |              | ,                                                          | Seco     | ndary Treatn | nent Alone |                                                  |
|-------|--------------------|---------|----------|--------------|----------|--------------|------------------------------------------------------------|----------|--------------|------------|--------------------------------------------------|
| Trial | Туре               | Applied | Initial  | Contact      | Average  | Measured     | Applied                                                    | Initial  | Contact      | Average    | Measured                                         |
|       |                    | Dose    | Residual | Time         | Ct       | Inactivation | Dose                                                       | Residual | Time         | Ct         | Inactivation                                     |
|       |                    | mg/L    | mg/L     | min          | Mgxmin/L | log-units    | mg/L                                                       | mg/L     | min          | mgxmin/L   | log-units                                        |
|       |                    |         |          |              |          |              |                                                            |          |              |            |                                                  |
| 72    | NH <sub>2</sub> CI | 5.79    | 8.31     | 120          | 979      | <0-0.22      | 6.2                                                        | 8.2      | 122          | 989        | 0.21                                             |
|       |                    |         |          | 246          | 1995     | 0.67         |                                                            |          | 246          | 1983       | 0.21                                             |
| 73    | NH <sub>2</sub> CI | 3.95    | 5.9      | 130          | 743      | 1.19         | 4.4                                                        | 6.4      | 132          | 828        | 0.01                                             |
|       |                    |         |          | 393          | 2226     | 2.31         |                                                            |          | 393          | 2419       | 0.01                                             |
| 74    | NH <sub>2</sub> Cl | 5.86    | 7.44     | 128          | 922      | >3.21        | 6.0                                                        | 7.5      | 130          | 914        | 0.21                                             |
|       |                    |         |          | 248          | 1754     | >3.51        |                                                            |          | 248          | 1735       | 0.19                                             |
| 75    | NH₂CI              | 5.92    | 9.23     | 126          | 1120     | >3.21        | 6.0                                                        | 8.9      | 129          | 1121       | 0.19                                             |
|       |                    |         |          | 267          | 2366     | >3.51        |                                                            |          | 267          | 2334       | 1.21                                             |
| 76    | NH <sub>2</sub> CI | 5.77    | 8.81     | 122          | 1030     | 2.54         | 6.4                                                        | 9.2      | 124          | 1142       | 0.37                                             |
|       |                    |         |          | 244          | 2096     | 2.84         |                                                            |          | 244          | 2247       | 0.54                                             |
| 77    | NH₂CI              | 5.38    | 7.71     | 131          | 978      | 2.84         | 6.0                                                        | 8.1      | 133          | 1053       | 0.37                                             |
|       |                    |         |          | 242          | 1797     | 3.51         |                                                            |          | 242          | 1941       | 0.84                                             |
| 78    | NH <sub>2</sub> CI | 5.97    | 8.69     | 128          | 1105     | 1.09         | 6.6                                                        | 9.4      | 130          | 1201       | 0.09                                             |
|       |                    |         |          | 244          | 2120     | na           |                                                            |          | 244          | 2256       |                                                  |
| 79    | NH₂CI              | 5.56    | 9.17     | 123          | 1121     | 1.02         | ,                                                          |          | #12839       |            |                                                  |
| a     |                    |         |          | 240          | 2175     | 0.24         | ************                                               |          |              |            |                                                  |
| 79a   | NH <sub>2</sub> Cl | 5.7     | 9.15     | 123          | 1112     | 0.24         | gonggonden Hillig (granning geninkling) (genigeden hidden) |          | ,            | ·          |                                                  |
|       |                    |         |          | 240          | 2144     | <0.54        |                                                            |          |              |            | an an far an |

# Table D.4 (Continued)

|                                          | nent Alone                                                                                                                                                                               | ndary Treatm | Seco                                                                                                            |               |              | ment     | uential Treat | Seq      |         | _                  |       |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------|----------|---------------|----------|---------|--------------------|-------|
| Measured                                 | Nent Alone     Average<br>Ct     mgxmin/L     1295     6122     1039     4566     1082     5517     872     1726     1057     2072     1183     5166     1311     2348     1107     5731 | Contact      | Initial                                                                                                         | Applied       | Measured     | Average  | Contact       | Initial  | Applied | Туре               | Irial |
| Inactivation                             | Ct                                                                                                                                                                                       | Time         | Residual                                                                                                        | Dose          | Inactivation | Ct       | Time          | Residual | Dose    |                    |       |
| log-units                                | mgxmin/L                                                                                                                                                                                 | min          | mg/L                                                                                                            | mg/L          | log-units    | mgxmin/L | min           | mg/L     | mg/L    |                    |       |
| -0.76                                    | 1295                                                                                                                                                                                     | 188          | 74                                                                                                              | 59            | 18           | 1303     | 186           | 7.68     | 5 74    | Cla                | 80    |
| -0.46                                    | 6122                                                                                                                                                                                     | 960          |                                                                                                                 | 0.0           | 1.84         | 6122     | 960           | 1.00     |         |                    |       |
| -0.21                                    | 1039                                                                                                                                                                                     | 190          | 6.3                                                                                                             | 7.8           | 0.17         | 930      | 188           | 5.83     | 7.03    | Cl <sub>2</sub>    | 81    |
| -0.76                                    | 4566                                                                                                                                                                                     | 947          |                                                                                                                 |               | 0.59         | 3865     | 947           |          |         |                    |       |
| 0.09                                     | 1082                                                                                                                                                                                     | 187          | 6.0                                                                                                             | 6.2           | 0.24         | 1248     | 186           | 6.9      | 5.96    | Cl <sub>2</sub>    | 82    |
| -0.46                                    | 5517                                                                                                                                                                                     | 973          |                                                                                                                 |               | 1.01         | 6397     | 973           |          |         |                    |       |
|                                          | 872                                                                                                                                                                                      | 122          | 7.2                                                                                                             | 6.2           | 0.09         | 817      | 120           | 6.81     | 5.96    | NH <sub>2</sub> Cl | 83    |
| -0.76                                    | 1726                                                                                                                                                                                     | 240          |                                                                                                                 |               | 0.54         | 1579     | 240           |          |         |                    |       |
| -0.76                                    | 1057                                                                                                                                                                                     | 125          | 8.6                                                                                                             | 5.9           | >2.39        | 1070     | 123           | 8.75     | 6.11    | NH <sub>2</sub> CI | 84    |
| 0.09                                     | 2072                                                                                                                                                                                     | 245          |                                                                                                                 |               | >3.00        | 2109     | 244           |          |         |                    |       |
| -0.21                                    | 1183                                                                                                                                                                                     | 195          | 6.5                                                                                                             | 6.2           | 2.89         | 1097     | 194           | 6.05     | 5.92    | Cl <sub>2</sub>    | 85    |
| 1.09                                     | 5166                                                                                                                                                                                     | 960          | multification of the second |               | >3.89        | 4815     | 960           |          |         |                    | · .   |
| 0.17                                     | 1311                                                                                                                                                                                     | 135          | 9.8                                                                                                             | 5.7           | >3.90        | 1301     | 130           | 10.07    | 5.94    | NH <sub>2</sub> CI | 86    |
| 0.79                                     | 2348                                                                                                                                                                                     | 243          | n an                                                                        |               | >3.91        | 2418     | 243           |          |         |                    |       |
| 31,000,000,000,000,000,000,000,000,000,0 |                                                                                                                                                                                          |              | 2014-0.11111223024-0.040-0.001100207-0.011(fre                                                                  |               | 1.39         | 925      | 124           | 7.51     | 5.89    | NH <sub>2</sub> CI | 87    |
|                                          |                                                                                                                                                                                          |              |                                                                                                                 |               | 2.89         | 1781     | 240           |          |         |                    |       |
| 0.01                                     | 1107                                                                                                                                                                                     | 189          | 6.1                                                                                                             | 6.2           | 0.09         | 1151     | 187           | 6.27     | 5.98    | Cl <sub>2</sub>    | 88    |
| -0.11                                    | 5731                                                                                                                                                                                     | 990          |                                                                                                                 | 0)1[Lomofile: | 0.46         | 5910     | 990           |          |         |                    |       |

Secondary treatment information for sequential trials with natural water E

Table D.5

243

|            |                    |                 | Seq                 | uential Trea    | tment         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ondary Treatr                            | nent Alone    | 279 y W                                 |
|------------|--------------------|-----------------|---------------------|-----------------|---------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-----------------------------------------|
| Trial      | Гуре               | Applied<br>Dose | Initial<br>Residual | Contact<br>Time | Average<br>Ct | Measured<br>Inactivation | Applied<br>Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial<br>Residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Time                          | Average<br>Ct | Measured<br>Inactivation                |
|            |                    | mg/L            | mg/L                | min             | mgxmin/L      | log-units                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | min                                      | mgxmin/L      | log-units                               |
| 15,0%29000 | 1                  |                 |                     |                 |               |                          | 1944 (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (1944) (194 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |               | <u></u>                                 |
| 89         | NH <sub>2</sub> CI | 5.89            | 7.82                | 135             | 1063          | 0.84                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136                                      | 1092          | -0.26                                   |
|            |                    |                 |                     | 241             | 1862          | 0.31                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 241                                      | 1938          | -0.76                                   |
| 90         | NH <sub>2</sub> CI | 6.07            | 7.76                | 129             | 1008          | 2.54                     | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130                                      | 1102          | 0.09                                    |
|            |                    |                 |                     | 244             | 1893          | >3.69                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a second s | 244                                      | 2092          | -0.46                                   |
| 91         | Cl <sub>2</sub>    | 5.95            | 6.54                | 186             | 1216          | 1.16                     | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188                                      | 1214          | -0.46                                   |
|            |                    | ·               |                     | 964             | 6305          | 1.89                     | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 964                                      | 5992          | 0.24                                    |
| 92         | NH <sub>2</sub> Cl | 5.55            | 6.6                 | 127             | 838           | 0.61                     | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129                                      | 857           | -0.46                                   |
|            |                    |                 |                     | 263             | 1738          | 0.76                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 263                                      | 1704          | na                                      |
| 93         | NH <sub>2</sub> CI | 5.98            | 9.02                | 219             | 1975          | 4.39                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***************************************  |               |                                         |
| 94         | Cl <sub>2</sub>    | 5.92            | 8.02                | 176             | 1351          | 2.39                     | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178                                      | 1280          | 0.54                                    |
|            |                    |                 |                     | 960             | 6690          | 2.56                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960                                      | 6507          | -0.11                                   |
| 95         | Cl <sub>2</sub>    | 5.69            | 6.48                | 180             | 1156          | 3.19                     | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180                                      | 1287          | 0.01                                    |
|            | 1                  |                 | 1                   | 960             | 5932          | >4.09                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960                                      | 6565          | 1.09                                    |
| 96         | NH <sub>2</sub> CI | 4.23            | 5.84                | 187             | 1145          | 4.09                     | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 187                                      | 1345          | 0.26                                    |
| 97         | Cl <sub>2</sub>    | 4.39            | 4.55                | 180             | 750           | >3.69                    | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 950                                      | 3441          | 0.01                                    |
|            |                    |                 |                     | 950             | 3441          | 4.09                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ·                                    |               |                                         |
| 98         | Cl <sub>2</sub>    | 4.84            | 4.92                | 240             | 1153          | 1.19                     | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |               |                                         |
|            |                    |                 |                     | 998             | 4673          | 1.26                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114-0-0-140-0-140-0-0-0-0-0-0-0-0-0-0-0- | 1             | 2.4************************************ |
| 99         | NH <sub>2</sub> CI | 3.89            | 5.42                | 92              | 503           | >3.79                    | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                       | 514           | 0.24                                    |
|            | 1                  |                 | 1                   | 180             | 986           | 3.79                     | 94994949999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                      | 979           | -0.21                                   |

# Table D.5 (Continued)

244

(Continued)

|       |                    |                 | Seq                 | uential Trea    | tment         | 9.009.00000.0000.00000.0000.0000.0000. |                 | Seco                | ondary Treatn   | nent Alone    |                          |
|-------|--------------------|-----------------|---------------------|-----------------|---------------|----------------------------------------|-----------------|---------------------|-----------------|---------------|--------------------------|
| Trial | Туре               | Applied<br>Dose | Initial<br>Residual | Contact<br>Time | Average<br>Ct | Measured<br>Inactivation               | Applied<br>Dose | Initial<br>Residual | Contact<br>Time | Average<br>Ct | Measured<br>Inactivation |
|       |                    | mg/L            | mg/L                | min             | mgxmin/L      | log-units                              | mg/L            | mg/L                | min             | mgxmin/L      | log-units                |
|       |                    |                 |                     |                 |               |                                        |                 |                     |                 |               |                          |
| 100   |                    | 7.1             | 5.98                | 137             | 781           | 2.27                                   | 6.8             | 5.7                 | 139             | 753           | 0.29                     |
|       |                    |                 |                     | 979             | 4844          | 3.39                                   |                 |                     | 979             | 5015          | 0.17                     |
| 101   | NH <sub>2</sub> CI | 3.92            | 6.03                | 27              | 161           | >3.39                                  | 3.8             | 5.9                 | 28              | 164           | 0.31                     |
|       |                    |                 |                     | 152             | 901           | >4.09                                  |                 |                     | 152             | 885           | 0.16                     |
| 102   | Cl <sub>2</sub>    | 4.52            | 3.48                | 181             | 602           | 1.02                                   | 4.7             | 3.6                 | 147             | 526           | 0.09                     |
|       |                    |                 |                     | 1062            | 3320          | 1.31                                   |                 |                     | 183             | 632           | 0.16                     |
|       |                    |                 |                     |                 |               |                                        |                 |                     | 1064            | 3431          | 0.09                     |
|       |                    |                 |                     |                 |               |                                        |                 |                     | 1116            | 3581          | 0.16                     |
| 103   | NH <sub>2</sub> CI | 5.13            | 6.94                | 113             | 793           | 3.24                                   | 5.7             | 6.6                 | 105             | 697           |                          |
|       |                    |                 |                     | 240             | 1666          | 3.54                                   |                 |                     | 105             | 697           | -0.11                    |
|       |                    |                 |                     |                 |               |                                        |                 |                     | 221             | 1459          | 0.16                     |
|       |                    |                 |                     |                 |               |                                        |                 |                     | 240             | 1584          | 0.09                     |
| 104   |                    | 5.86            | 6.19                | 116             | 702           | 1.8                                    | 6.2             | 6.3                 | 117             | 714           | 0.01                     |
|       |                    |                 |                     | 961             | 5663          | 2.47                                   |                 |                     | 961             | 5011          | 0.79                     |
| 105   | NH <sub>2</sub> CI | 6.02            | 5.83                | 91              | 526           | 3.39                                   | 5.8             | 5.6                 | 92              | 513           | 0.16                     |
|       |                    |                 |                     | 150             | 868           | >4.09                                  |                 |                     | 150             | 842           | 0.44                     |
| 106   | NH <sub>2</sub> CI | 3.99            | 5.83                | 90              | 504           | 3.54                                   |                 |                     |                 |               |                          |
|       |                    |                 |                     | 150             | 865           | 3.65                                   |                 |                     |                 |               |                          |
| 107   | NH <sub>2</sub> CI | 3.96            | 5.39                | 90              | 464           | 3.13                                   |                 |                     |                 |               |                          |
|       |                    |                 |                     | 125             | 689           | 3.78                                   |                 |                     |                 |               |                          |

Table D.5 (Continued)

|       |                 |                 | Sequ                | Jential Trea                            | atment        | **************************************                            | ######################################   | Secor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndary Treat     | ment Alone    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|-------|-----------------|-----------------|---------------------|-----------------------------------------|---------------|-------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------------------------------|
| Trial | Туре            | Applied<br>Dose | Initial<br>Residual | Contact<br>Time                         | Average<br>Ct | Measured<br>Inactivation                                          | Applied<br>Dose                          | Initial<br>Residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Time | Average<br>Ct | Measured<br>Inactivation               |
|       |                 | mg/L            | mg/L                | min                                     | mgxmin/L      | log-units                                                         | mg/L                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | min             | mgxmin/L      | log-units                              |
| 108   | Cl <sub>2</sub> | 5.2             | 5.07                | 0.0136                                  | 120.00        | 299.90                                                            | 0.84                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                                        |
| 108   | Cl <sub>2</sub> | 5.2             | 5.04                | 0.0085                                  | 220.00        | 501.55                                                            | 1.69                                     | 5.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.66            | 0.0074        | 240.00                                 |
| 109   | Cl <sub>2</sub> | 8.37            | 7.69                | 0.0019                                  | 360.00        | 2005.09                                                           | spoiled                                  | 9.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.42            | 0.0020        | 360.00                                 |
| 109   | Cl <sub>2</sub> | 8.37            | 7.69                | 0.0019                                  | 388.00        | 2110.90                                                           | >3.19                                    | Contrast of the second s |                 |               |                                        |
| 110   | Cl <sub>2</sub> | 14.8            | 13.93               | 0.0019                                  | 60.00         | 789.92                                                            | 2.19                                     | 16.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.88           | 0.0022        | 60.00                                  |
| 110   | Cl <sub>2</sub> | 14.8            | 13.89               | 0.0011                                  | 120.00        | 1561.48                                                           | 2.34                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                                        |
| 111   | Cl <sub>2</sub> | 14.44           | 13.80               | 0.0023                                  | 54.00         | 700.78                                                            | 1.89                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                                        |
| 111   | Cl <sub>2</sub> | 14.44           | 13.80               | 0.0013                                  | 120.00        | 1533.29                                                           | 1.69                                     | 16.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.14           | 0.0013        | 120.00                                 |
| 113   | Cl <sub>2</sub> | 13.28           | 12.48               | 0.0036                                  | 60.00         | 673.45                                                            | 1.19                                     | Conduction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |               |                                        |
| 113   | Cl <sub>2</sub> | 13.28           | 12.56               | 0.0080                                  | 125.00        | 992.43                                                            | 2.14                                     | 13.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.56           | 0.0022        | 125.00                                 |
| 114   | Cl <sub>2</sub> | 13.93           | 13.90               | 0.0023                                  | 60.00         | 779.01                                                            | 1.69                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                                        |
| 114   | Cl <sub>2</sub> | 13.93           | 13.88               | 0.0017                                  | 120.00        | 1506.70                                                           | 1.86                                     | 15.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.11           | 0.0013        | 120.00                                 |
| 116   | Cl <sub>2</sub> |                 |                     |                                         |               |                                                                   |                                          | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.30           | 0.0022        | 60.00                                  |
| 116   | Cl <sub>2</sub> |                 |                     |                                         |               | :                                                                 |                                          | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.29           | 0.0015        | 120.00                                 |
| 116   | Cl <sub>2</sub> |                 |                     | ,                                       |               | an a                          |                                          | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.89           | 0.0035        | 60.00                                  |
| 116   | Cl <sub>2</sub> |                 |                     | *************************************** |               |                                                                   |                                          | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.88           | 0.0030        | 90.00                                  |
| 116   | Cl <sub>2</sub> |                 |                     |                                         |               | Milanini di Anno Ministra Managli ana gruppo (1999) (1997) (1997) | 200-00-00-00-00-00-00-00-00-00-00-00-00- | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.86           | 0.0019        | 120.00                                 |

Secondary treatment information for sequential trials with natural water F

Table D.6

|       |                 |         | Seq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uential Trea | atment                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an a | Secor                                                                                                          | ndary Treat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ment Alone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial | Туре            | Applied | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact      | Average                                   | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applied                                  | Initial                                                                                                        | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average    | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                 | Dose    | Residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time         | Ct                                        | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose                                     | Residual                                                                                                       | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ċt         | Inactivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                 | mg/L    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | min          | mgxmin/L                                  | log-units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                     | mg/L                                                                                                           | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mgxmin/L   | log-units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 112   | Cl <sub>2</sub> | 14.23   | 15.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0014       | 30.00                                     | 460.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | spoiled                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 112   | Cl <sub>2</sub> | 14.23   | 15.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0011       | 47.00                                     | 732.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.24                                     | 13.84                                                                                                          | 14.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0011     | 48.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 115   | Cl <sub>2</sub> | 13.75   | 13.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0009       | 60.00                                     | 776.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | spoiled                                  | and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 115   | Cl <sub>2</sub> | 13.75   | 13.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0005       | 120.00                                    | 1549.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.53                                     | 14.32                                                                                                          | 13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0004     | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 16.67                                                                                                          | 13.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0005     | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · .                                      | 16.67                                                                                                          | 13.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0003     | 90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 16.67                                                                                                          | 13.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0002     | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | a yakatoka hisina iki tang mgapang kanang |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 15.4                                                                                                           | 12.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0011     | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                           | and a construction of the |                                          | 15.4                                                                                                           | 12.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0001     | 90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116   | Cl <sub>2</sub> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 27 Martin Contraction (1999)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 15.4                                                                                                           | 12.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0008     | 105.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 116   | Cl <sub>2</sub> |         | and the second se |              | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 15.4                                                                                                           | 12.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0010     | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 117   | Cl <sub>2</sub> | 14.39   | 12.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006       | 60.00                                     | 734.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.03                                     |                                                                                                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 117   | Cl <sub>2</sub> | 14.39   | 12.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0005       | 70.00                                     | 857.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53                                     | 14.79                                                                                                          | 12.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0006     | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 118   | Cl <sub>2</sub> | 13.72   | 13.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006       | 120.00                                    | 1560.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21                                     |                                                                                                                | angenerating and a special day of the special day o |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 118   | Cl <sub>2</sub> | 13.72   | 12.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0006       | 120.00                                    | 1491.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.49                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119   | Cl <sub>2</sub> | 14.64   | 12.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0012       | 60.00                                     | 752.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.72                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119   | Cl <sub>2</sub> | 14.64   | 12.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0011       | 60.00                                     | 717.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | and the second state and the second state of the |
| 120   | Cl <sub>2</sub> | 14.64   | 14.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0013       | 90.00                                     | 1238.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Constant of Balling and Salar a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120   | Cl <sub>2</sub> | 14.64   | 13.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0012       | 90.00                                     | 1149.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Canada a Canada a Canada a Canada a Canada Canada a Canad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Secondary treatment information for sequential trials with natural water G

Table D.7

#### **APPENDIX-E**

### HISTOGRAMS OF MEASURED INFECTIVITY REDUCTION OF *C. PARVUM* OOCYSTS IN THE CONTROL TRIALS FOR THE NATURAL WATERS



Figure E.1 Histograms of the measured infectivity reduction of *C. parvum* oocysts in the control trials in natural waters A, B, and C.



Figure E.2 Histograms of measure infectivity reduction of *C. parvum* oocysts in the control trials for natural waters D and E.

250



Figure E.3 Histograms of measure infectivity reduction of *C. parvum* oocysts in the control trials for natural waters F and G.

#### **VITA AUCTORIS**

Name: Kaushik Biswas

Place of Birth: Calcutta, India

Education:

Doctor of Philosophy Environmental Engineering University of Alberta Edmonton, Alberta, Canada 01/2000-08/2003

Master of Applied Science Environmental Engineering University of Windsor Windsor, Ontario, Canada 01/1998-10/1999

Bachelor of Technology (Honours) Chemical Engineering Indian Institute of Technology Kharagpur, India 1993-1997

#### Work Experience: Research Assistant (01/2000-08/2003)

University of Alberta, Edmonton, AB, Canada

Teaching and Research Assistant (01/1998-10/1999) University of Windsor, Windsor, ON, Canada

Graduate Engineer

National Council for Cements (05/1997-12/1997) Ballabgarh, Haryana, India

*Engineer's Trainee* (05/1996-07/1996) Indian Oil Corporation, Barauni, India

252