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ABSTRACT

The stochastic nature of the parameters involved in the design and optimization of a 

three-dimensional (3-D) open pit mine was not taken into consideration in most of the 

earlier work and the resulting optimized pit may be sub-optimal. The only recent 

significant contribution is the use of a back-propagation neural network algorithm to 

optimize a two-dimensional pit. This thesis is therefore aimed at using machine learning 

algorithms to design and optimize a 3-D open pit mine.

After a detailed initial literature review of the design and optimization of open pit mines, 

geostatistics, intelligent algorithms and software are used to develop 3- D block (gold and 

coal) models. The resulting intelligent neurogenetic block predictors are employed in 

predicting the values of the gold and coal ore values. A slope model is also developed 

and used together with the block model in the optimization of the pit. A combination of 

simulated annealing and neurogenetic optimizer (SA-NGO) is then used to optimize the 

open pit gold mine. The intelligent neurogenetic pit optimizer and Lerchs-Grossmann’s 

3-D graph theory algorithm are used to run 30 experiments. The results are compared.

The block (gold and coal) model results from several algorithms including adaptive logic 

network were inaccurate. The results of the stochastic approach -  generalized regression 

neural networks for both the gold and coal block ore were accurate. It is therefore evident 

that a blind search or black-box approach to intelligent computational modelling may 

lead to faulty results. The underlying phenomenon has to be taken into consideration in
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the modelling process. The optimum pit values of the L-G and SA-NGO algorithms were 

$29.8 million and $27.5211 million, respectively. The major contributions of this work 

are the development of a formal procedure for geostatistical ore-body modeling, an 

intelligent 3-D block predictor and an intelligent 3-D open pit optimizer. The resulting 

block predictor and open pit optimizer can be downloaded into the onboard computer of 

the excavation equipment and used for just-in-time operational decisions.
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LIST OF NOMENCLATURE

£ = angle between the wedge - forming planes 

^ = friction angle

if/, = plunge of the line of intersection

x, = the presented input pattern; xo is - 1

p = density of the material

§ = inclination of the upper ground surface

y = unit weight of rock or soil material

Pi = overall slope angle of the lower section

P2 = overall slope angle of the upper section

r|av = cumulative efficiency factors

ipb -  dip of the base of the columns

<t»b= friction angle of the base of the columns

Tf = angle of slope face and d denotes unit depth

*Pf = dip of the slope face

Pl = overall slope angle of the pit according to Lerchs-Grossmann

(pp = angle of intersection or the angle between the failure and horizontal planes of the

open pit slope

Tp = dip of the geologic layers (planes)

<|>p = friction angle along planes 

<|>p = plane friction angle 

%  = slope angle of failure plane
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a ri = geotechnically-determined slope angle of the lower section 

a r2 = geotechnically-determined slope angle of the upper section 

an = batter angle or the angle the slope face makes with horizontal 

yw = unit weight of water 

Ax = column width 

Axa = actual column width

Axl = theoretical limiting column width or the column width at which toppling failure 

y r = unit weight of rock 

A = area of the failure plane

Af = failure due to discontinuity; Bf = failure due to excessive water pressure

\f/a and iffb = dips of planes a and b respectively

<j>a and <f>b = angles of friction on planes a and b respectively

bj = bench width of the lower set of benches

b2 = bench width of the upper set of benches

Bh = bench height (assumed as being the same for all the benches)

bj = distance between the safety berm and toe of the safety bench

brw = width of safety berm; cr = clearance; TW = truck width

BSi in column (j-1, k-1) = back of side of i

c = cohesion

ca and Cb = cohesive strengths of planes a and b respectively 

CCt = capital cost deductions.

DC = Direct costs or costs of mining that can be traced directly back to the block; e 

drilling, blasting, loading and transportation costs.
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DOR = radius of clean-up

gj, Yj, Cj, = grade, tonnage and unit mining costs of the jth ore block 

H = height of slope 

h = total height of the wedge

H i, H2, H 3, , Hn = all the nodes of the first hidden layer

ha = height of haulage truck axle

I = Income or value of the recoverable and salable part of the block; 

i = the required, risk-adjusted rate of return.

IC = Indirect costs or overall costs which cannot be allocated to individual blocks. Such 

costs are time-dependent; e.g. depreciation for machinery, etc.

M = number of inputs

Mjjk ^he  block column for a given block by^

Mn = moment arm of force Pn

N| = total number of blocks over entire property less non-mineable areas.

Oi, O2 , 0 3 , ...... , On = the nodes of the output layer occurs

OCt = other allowable-tax-deductible operating costs

Ojp = activation value (network output) at output node o for pattern p on node I 

PBSij-l,k-l = the Ph value on a block in a column (j-l,k-l) to be selected as the 

optimum neighbour block, in the event the block b§BS(Si), j - 1 , k- 1  1111118 out t0  he 

incompatible to both by^ and block bBSij.k-

Pyk = the optimum value of the pit with the block by^ as the last block to be analyzed 

P„-i = the toppling force of the (n-l)th block
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PSBS(Si)j-l Jc-1 = pit value on the block which was the optimum neighbour block

the column (j-l,k-l), determined during the computation of Psij-l,k

Psij-l,k  = ^  P*1 value of one of the nearest neighbour blocks in the column (j-l> k)

Q = maximum tonnage of recovered metal from a technically optimum pit 

r = angle of repose of the berm or bench material 

RCR = dumping radius

R, = total mining royalties at time t and Tt = total mining taxes at time t.

SBSi in column (j,k-l) = side of back of side of i 

Si in column (j*l ,k) = side of i

B = angle between the line of intersection and the horizontal in wedge failure 

SSBSi in column G>k-1) = side of side of back of side of I 

t = number of roads within the n benches (t < n)

T = tons of ore in the pit 

tanh(x) = tangent function

TCt = total cost at time t and NCCt = non-cash costs at time t.

Txt = income tax rate for the period t.

U = uplift from the water

V = disturbing force from water

V = given tons of ore mined from a technically optimum pit 

W = weight of block

Wj = weight of the ith neuron 

wo = the threshold value
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Who = weight associated with the connection between node h of the hidden layer and 

node of the output layer

Wjh = weight associated with the connection between node j of the input layer and node

h of hidden layer.

W„ = weight of the nth block

Wt = total number of mineable waste blocks over entire property, 

x,, X j,   Xjj = all the nodes within the input layer

xj = value of the input node

y = an output unit

y„ = height of the blocks/columns

Yt = total number of mineable ore blocks over entire property.

Z = distance below horizontal surface 

Zw = depth of water in the tension crack
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CHAPTER 1 

INTRODUCTION

1.1 Background

The successful development, exploitation and closure of an open pit mine are very 

complex undertakings, extending over several years and with huge sums of capital 

investments and considerable risk and uncertainty. In view of the large initial capital 

outlays involved, mining engineers must carry out extensive mine design and 

optimization prior to mining, in order to establish the viability of the operation. Open pit 

optimization methods have drawn considerable attention in the past 30 years. It is going 

to be even more important as prices fall and environmental costs rise.

Modem society needs a supply of minerals for its growth and sustenance. Most of these 

minerals are obtained by means of surface and underground mining technology. 

Currently, surface mining accounts for a significant proportion of produced minerals. 

Surface mining operations generally have many advantages in terms of the sizes of 

production equipment; pre-production development period, ore recovery and labour 

requirements compared with underground. Surface mines are classified into open pit, 

strip, alluvial and in-situ mining methods [Hartman, 1987; Nilson, 1982]. Open pit 

mining layouts consist of concentric shells with near-ellipsoidal cross-sections. These 

shells decrease in size with increasing depth from the surface. Wall slopes, whose angles 

depend on the rock mechanics and geological characteristics of the ore body and host 

rocks, bound an open pit layout. The challenge to mine planning engineers is to plan,

1
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design and optimize the pit layouts to minimize waste removal, ensure safety and 

maximize the net value of the minerals in the pit.

The configuration of optimized pit layouts is one of the most important tasks in the 

overall open pit mine design process, which has to be determined right at the very 

beginning of mine planning. These layouts must continuously be readjusted throughout 

the life of the mine due to changing database of geology, ore grades and price [Wilke, 

1990]. The optimized pit limits define the size and shape of mineable reserves and the 

associated waste materials to be excavated based on the technical, economic and safety 

constraints. They also provide information for evaluating the economic potential of a 

mineral deposit, and for project acquisition, financing, taxation, regulation and the 

formulation of long-, intermediate-, and short-range mine plans. Open pit limits are also 

used to determine the boundaries outside which surface structures, such as, processing 

plants and mine offices should be located in order to avoid interruption in the long-term 

mine plans.

Lerchs and Grossmann (1965) published one of the most important mathematical 

algorithms for optimizing open pit limits based on dynamic programming (2D) and graph 

theory (3D). Many algorithms have been developed to solve the problems associated 

with the Lerchs-Grossmann’s algorithm. However, these problems which include random 

fields characteristics, comprehension difficulty, programming, variable slopes and 

roadways incorporation, and long CPU times [Achireko and Frimpong, 1996; Dowd and

2
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Onur, 1993] in a 3-D geological setting still persist and require continuous research for 

better solutions.

1.2 Statement of Problem

In general practice, mineralized shallow or outcropping deposits that are economic are 

exploited using surface mining technology. The development of an operating strategy to 

exploit such deposits involves designing, optimizing and scheduling the ultimate pit. 

Open pit mining can be accomplished by an infinite number of paths/steps, each 

generating a unique net present value. Some mine operators thus optimize pits under 

some defined assumptions. Whenever any of these assumptions change, the pit 

optimization process is repeated. The mining sequence normally selected is the one that 

maximizes the net present value of the entire operation subject to operational constraints. 

The ultimate pit is the size and shape of the resulting pit at the end of the mine life. It is 

essentially the optimal ultimate design or pit configuration that represents end-of-life 

mining limits under assumptions of instantaneous mining conditions. Indeed an 

optimized open pit is the final dimensions of that open hole (reclaimed or left open) in the 

ground at the end of the mining period, which yields the maximum recovered metal or 

profit or net present value for the mine operator.

The dominant methodology for 3-D open pit mine optimization is the graph theory 

algorithm employed by Lerchs and Grossmann (L-G) in 1965. This algorithm utilizes a 3- 

D block model under known mineral values, constant costs and constant pit slopes 

constraints. Though the Lerchs-Grossmann's algorithm has become the standard

3
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optimization methodology in open pit design, it does not take into consideration the 

random field properties (encountered in mine design/optimization). It is difficult to 

incorporate constraints like variable slopes and haulage roads into the pit optimization. 

The difficulty encountered in programming the algorithm together with the long CPU 

times has contributed to a reduction in its effectiveness [Dowd and Onur, 1993]. Over the 

years, many algorithms namely moving cone (heuristic), linear and dynamic 

programming, graph theory, stimulation, parameterization together with their 

modifications have been developed to either resolve the open pit optimization problem or 

provide modifications/improvements to the other algorithms especially that of Lerchs and 

Grossmann [Braticevic, 1984; Dowd and Onur, 1993; Gauthier and Gray, 1971; Kim, 

1978; Koenigsberg, 1982; Lemieux, 1979; Robinson and Prenn, 1973; Shenggui and 

Starfield, 1985]. Frimpong and Achireko (1996) departed from the heuristic and classical 

methods when they developed a back-propagation neural network algorithm to optimize a

2-D open pit. Aside from the fact that the open pit optimization problem is a 3-D 

problem, the use of a back-propagation could result in a local optimum instead of the 

global optimum. Their approach took into consideration the stochastic nature of the open 

pit optimization process. The discovery of an efficient algorithm, which truly optimizes a

3-D open pit design, still remains a fundamental challenge. A 3-D pit is defined in the x-, 

y- and z- coordinate system, whereas a 2-D pit is defined only in two of the coordinate 

systems (x-y or x-z or y-z).

It must be emphasized that the generation of an optimized pit layout of a typical open pit 

mine in 3-D space involves parameters (such as ore reserves and grades, costs,

4
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commodity prices and pit wall slopes) which are controlled by stochastic processes. The 

2-D neural network algorithm, unlike most of the other algorithms, did not neglect the 

stochastic nature of the state variables. Most of the pit optimization algorithms that have 

been developed to date have yielded sub-optimal pits in some cases, resulting in 

considerable error and uncertainty in defining pit layouts, equipment requirements and 

mine plans (long-, medium-, and short-term). This might lead to poor investment and 

inaccurate mine design, development and production decisions.

Over the years, deterministic rock mechanics techniques have become the dominant 

methodologies employed in characterizing the ore body and the host rock and in 

designing the ensuing pit wall slopes. Due to the variation in geology and other factors, 

the design of pit walls could be different from region to region and even in the same 

region, may be different from location to location. Therefore the use of constant slopes in 

a mine design may result in the assumption of considerable risk. As a common practice, 

researchers have employed various probabilistic approaches in slope stability analysis 

and design [Piteau and Martin, 1977; Kim et al., 1978, Major et al., 1978; Wyllie et al., 

1979; Baecher et al., 1980; Priests and Brown, 1983; Roberds, 1990 and 1991; Genske 

and Walz, 1991; Wylli, 1992; Sandroni, 1993; Duzgun et al., 1995; and Duzgun et al., 

1998]. These developments indicate that variable pit slopes may have to be used over the 

entire mine, which make the results of algorithms under constant pit slopes unreliable.

The Lerchs-Grossmann’s 3D optimization algorithm presents a tight choice between a 

true optimizing algorithm characterized by large computing requirements and a non-
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optimizing algorithm with lower computing demands and thus fails to yield a truly 

optimized pit [Kennedy, 1990]. The solution of the Lerchs-Grossmann’s 3D 

optimization algorithm involves the inversion of matrices with large dimensions and long 

iterative processes, which result in long computing times. Any future changes in the 

variables require complete re-run of the optimization algorithm and the preparation of 

new production plans [Frimpong and Achireko, 1996].

It is not necessary for engineers designing a pit to have a detailed knowledge of the 

mathematics involved in the Lerchs-Grossmann’s algorithm that is embodied in a verified 

software. However its complexity is often advanced as a reason for not using the 

algorithm [Dowd and Onur, 1993]. The comprehension of the underlying theory for the 

implementation of the algorithm will help engineers and researchers to factor in and 

quantify the effects of various combinations of identifiable variables. These variables are 

regularly encountered by mine engineers, mineral venture planners, evaluators and 

investors in the evaluation and assessment of economic potential of a mineral deposit.

1.3 Objectives of the Study

The study is aimed at designing a 3-D open pit mine using machine learning and then 

employing simulated annealing and machine learning (neurogenetic) algorithms to 

optimize the pit. The design phase of an open pit mine is equally important and is 

therefore accorded considerable attention in this work. As part of the design process, a 

machine learning algorithm will be applied to model block grade values. The entire 

design and optimization process can be broken down into the development of (a) a three-
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dimensional block model of a mineralized deposit (gold) using geostatistics, machine 

learning and decision theory, (b) a slope stability model by machine learning or statistics, 

(c) an economic model of the mine, and (d) a mathematical open pit optimization model 

by using simulated annealing and machine learning. The results of this new optimization 

algorithm will be compared to Lerchs and Grossmann’s 3-D optimization algorithm.

1.4 Scope and Limitations of the Study

This study deals with the development of design and optimization algorithms for an open 

pit mine using machine learning. In the open pit design phase, a 3-dimensional block 

model was developed using geostatistics. Machine learning algorithms, namely adaptive 

logic networks and a neurogenetic optimizer, are then employed to develop a block 

predictor. The block models are for both gold and coal deposits. Gold and coal deposits 

are used as examples because of their different depositional environments and processes. 

The machine learning algorithms are also employed in developing an optimized slope 

design. The open pit optimization process is concerned with the definition of a layout 

which maximizes the net value, at any given time, of an open pit section under technical, 

operational, economic and safety constraints. Due to the stochastic nature of the block 

values, the optimization algorithm must take this into account during the optimization 

process. The approach to be used is a combination of simulated annealing and 

neurogenetic algorithms.

Mathematical and computer models are developed for the open pit design and 

optimization process. Where there is an appropriate software, it is used in place of a new

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



code. In the event that appropriate software cannot be located, a code is developed in 

C/C++, Matlab, GSLIB, Whittle 3D, AutoLISP and visual basic to solve the models. 

Experiments are run using computer models of the algorithms and validated using data 

from the Star Gold open pit mine and a coal mine. An intelligent block model and 

optimized pit model will be developed as the final products of the study. The Lerchs- 

Grossmann’s 3-D algorithm will also be used to optimize the same open pit mine. The 

results will be analyzed and numerically compared to the intelligent algorithm. Even 

though some of the concepts may be applicable to other surface mines, this study is 

limited to open pit mining and is tested using data from the Sabi Gold Project only.

1.5 Research Methodology

The initial part of this thesis reviews the work that has been done on the design and 

optimization of open pit mines. This is then followed by the acquisition of input 

information/data and domain knowledge and the use of mathematical models to handle 

the data. Most of the domain knowledge and data so collected fall into four broad 

categories, namely geological/grade, geomechanical, economic (price and cost) and other 

data/information. The starting point of the design process is the use of statistical, 

geostatistical techniques and decision theory to model and optimize the 3-D block 

dimensions, assign grades and tonnages to the blocks and calculate the precision and 

accuracy of the modelling process. Mathematical equations are used as representative 

models of the geological processes underlying the ore mineralization process. The 

simulated solution of the geostatistical model results in an optimized 3-D block model
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representing the values of ore, waste and air (economically equivalent values of ore and 

waste).

The geomechanical characteristics and data are employed in the development of an 

appropriate failure model. Using statistical methods, simulation and appropriate factor of 

safety criteria, the slopes of the various sections of the pit wall are defined. Prices and 

costs are also estimated. Mathematical models representing the stresses, strengths and 

other characteristics of the rock mass are employed in determining the allowable slope 

angles and factor of safety of the various sections of the pit. Due to the stochastic nature 

of the processes underlying rock characteristics, machine learning, probabilistic risk or 

reliability analysis will be used to quantify the variability. The reliability index can be 

used to capture both the mean safety margin and its variability.

In the final phase of the thesis, simulated annealing and neurogenetic algorithms are 

employed in solving the open pit optimization problem. The simulated annealing and 

genetic algorithms employ random search methods in optimization and can therefore 

cater for the random properties of the parameters. The results of the various mathematical 

(design) models are fed into the “summer” (Optimizer). The optimizer is essentially an 

intelligent mathematical algorithm employed in learning and predicting the combination 

of blocks which will yield an optimized ultimate pit configuration under the slope 

constraints. The actual optimization process involves the use of machine learning 

algorithms to determine a set of ore and waste blocks that maximize the net value of the 

entire set of blocks (operation) when mined together over the life of the mine. These set

9
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of optimized blocks are subject to pit slopes, operational costs, price of the final product 

and mine feasibility constraints. The output of the Optimizer will then be subjected to 

sensitivity analysis until an optimized pit is obtained. The machine learning algorithm to 

be developed will be compared to the Lerchs-Grossmann’s algorithm.

In this work, the author will develop machine learning algorithms to address the 

stochastic properties of the optimization parameters. Geostatistical techniques and 

decision theory will be used to develop a block model, assign grades and economic 

values to the resulting blocks of a typical mineralized gold deposit. Price, cost and slope 

models will also be built. All these models will be fed into an optimizer called the 

“summer”, which is a machine learning optimization algorithm. The results will then be 

subjected to sensitivity analysis to yield an optimized 3-D pit.

According to Simon [1981], learning is an adaptation process aimed at improving a 

system’s efficiency and effectiveness on some class of problems. An improvement in 

efficiency means that the open pit optimization problem is solved with fewer 

computational resources such as processing time and memory space. Supposing there is 

an acceptable solution space for the open pit optimization problem, improvement in the 

solution quality entails narrowing the solution space that the system or algorithm 

produces so that they satisfy some set of solution-quality criteria. Narrowing the solution 

space could also lead to a reduction in the error variance and the accompanying operating 

risk. A third dimension of improvement is the incremental extension of the population of
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problems that the system can solve. Thus for an intelligent system, the three dimensions 

of improvement of an algorithm is :

1. an improvement in the efficiency of the process of problem solving,

2. an improvement in the quality of the solution so produced,

3. an increase in the population of problems that the algorithm may solve.

Note must be taken of the fact that a learning algorithm for one type of performance 

improvement may not necessarily be extended to other classes of problems.

1.6 Contributions and Significance of the Study

The open pit mine optimization problem has plagued the mineral industry for decades. A 

truly optimized open pit affords the mine operator the ability to determine equipment 

sizes, number and type of equipment, mine personnel levels and a host of other issues 

involved in the smooth running of an open pit mine. This study will replace the existing 

2-D intelligent back-propagation algorithm by Frimpong and Achireko (1997) with a 3-D 

adaptive logic network and/or simulated annealing cum neuro-genetic algorithm. The 

study charts a new course for developing the theory of open pit design and optimization 

that incorporates the random field stochastic processes. The back-propagation (BP) 

algorithm may converge to a local optimum instead of a global optimum. BP may also 

generalize the learning process over the input space and may therefore output wrong 

results in some areas.

The adaptive logic network (ALN) algorithm employs a decision tree to partition the 

input space so that a small amount of linear pieces will have to be evaluated to obtain an
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output. Thus ALNs allow the input space to be partitioned, a feature which may be 

useful in a pit with different mineralogical and/or geomechanical settings. ALNs use hard 

limiters instead of sigmoids together with logic AND or OR above the first hidden layer 

leading to fast training and evaluation. Though it is difficult to check what the BP 

algorithm is doing (black box phenomena), an ALN system could be checked for safety. 

The design procedures and the algorithms employed in this work will take into 

consideration the stochastic nature of mineral grades, price, costs and pit wall slopes. The 

architecture of the neurogenetic algorithms will enable the development of intelligent 

block models, which can be used to predict block values at any point in the pit. Simulated 

annealing and neurogenetic algorithms will be very useful in the open pit optimization 

process. These algorithms do take the stochastic nature of the parameters into 

consideration. The resulting optimized pit will therefore be the best pit under the 

underlying constraints. This will reduce the risks associated with the mine investment 

and provide engineers reliable information for mine planning and equipment scheduling. 

All these will lead to reduced cost per unit product and higher financial gains for the 

shareholders.

As in the case of the Lerchs-Grossmann’s algorithm, the stochastic nature of the ore 

grades and the resulting reserve calculations are accounted for in the geostatistical 

modelling process. A measure of model correctness will be employed to ensure the ore 

reserve model is appropriate within the given modelling constraints. The level of 

statistical, geostatistical and systematic uncertainty (e.g. head grade, tonnage, etc) as well 

as the risk (probability of loss or gain) associated with the numbers are modelled in order
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to calculate some degree of confidence, the global reserves and mine plans. The resulting 

block values will lead to the minimum dilution and the lowest level of throughput 

variability of the run-of-mine ore at the processing plant intake. The machine learning 

algorithm will also take into consideration the stochastic nature of such parameters as 

price, cost, slopes and grade of the ore block. The algorithm will solve the back and 

forward passes required in the Lerchs-Grossmann’s algorithm.

In this era of dwindling profits, environmental awareness, tight financial resources, the 

industry is looking for answers to the optimized pit problem. This work employs a 

machine learning algorithm to resolve the open pit optimization problem. It takes into 

consideration the stochastic nature of the input parameters, which has not been fully 

addressed to date.

1.7 Report Structure

Chapter 1 of this thesis discusses the background, problem statement, objective of the 

study as well as its scope and limitations. Other sections of this chapter, are contributions 

and industrial significance of the study, the research methodology employed and the 

report structure. The first part of Chapter 2 provides an overview of open pit mine design 

techniques which comprises the various failure modes, geometrical and computer-aided 

designs employed in an open pit mine design. The second section of this chapter deals 

with the mine optimization methods that have been employed in the mineral industry 

over the past forty years.
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At the beginning of Chapter 3, the open pit design-modeling paradigm employed in this 

thesis is fully outlined. In this section, which is essentially on the theoretical foundations 

of the design/modeling process, issues such as hypothesis testing, model correctness, 

accuracy and optimality criteria will be discussed. Other issues in this chapter include the 

open pit mine design block model, the economic value of a block, and the constraints and 

stochastic processes involved in the optimization parameters. The input parameters of the 

open pit optimization process are mathematically modelled and evaluated to yield values 

to be used in the optimizer. These parameters are rock slope, ore reserves/block 

modelling, cost figures and prices. Chapter 4 is mainly concerned with the machine 

learning algorithms employed in the optimizer. Mathematical representations of the 

dominant algorithms will be given in the final work.

Chapter 5 deals with computer modelling/programming of the adaptive logic network and 

simulated annealing and machine learning (neurogenetic) algorithms. The machine 

learning algorithms under consideration are continuous adaptive time neural networks, 

generalized regression neural networks and muiti-layer feedforward (back-propagation) 

neural networks. These neural networks will be modelled using genetic algorithms. This 

process involves the development of modelling concepts and philosophies, data 

structures, code and a process of verification. Most of the programming will be done in 

visual C/C++ in the case of adaptive logic network (ALNBench) and C in the case of 

simulated annealing. Other appropriate software like the neuro-genetic optimizer 

(BioComp) and Geostatistical Software Library (GSLIB) are also used. In Chapter 6, 

various experiments are employed in determining the validity of the algorithm and the
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results are compared with the L-G algorithm. The experimentation, testing, and validation 

of the models will be done using a Star Gold Mine case study. The results so obtained 

will be compared to the Lerchs-Grossmann’s to investigate whether there are any 

differences and the reasons for these differences. Intelligent neurogenetic block models 

for open pit gold and coal mines will also be developed and used to predict block values. 

In Chapter 7 the results of the experiments are analysed and discussed. Depending on the 

degree of confidence that can be assigned to the results obtained, one of the machine 

learning methods may become the method of choice in open pit optimization. The thesis 

will then be concluded in chapter 8 with a discussion of the major findings of this work 

as well as some recommendations for further work.
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CHAPTER 2 

DETAILED LITERATURE SURVEY

An extensive literature survey is the focus of this chapter. This literature survey is being 

employed in evaluating past and current developments in the design and optimization of 

open pit mines. Open pit mine design can be divided into geomechanical mine design, 

geometrical mine design and computerized mine design. Orebody modelling and 

evaluation (block modelling) is considered as an input into mine design.

2.1 Geomechanical Mine Design

The stability of an open pit mine slope is of major significance to the safety of personnel 

and equipment working in the confines of the pit. The dichotomy however is that cutting 

the flatter will increase safety and the amount of waste excavated to mine a given amount 

of ore. In practice the ultimate slope of the pit is cut to the steepest possible angle so as 

to minimize the amount of waste material excavated.

Depending on the geotechnical characteristics of the pit walls and the perceived 

instability, the analysis of the slope of a potential open pit mine is two-fold namely 

stability evaluation on the bench scale and the full-height scale. It is impossible to predict 

the exact failure geometry and modes due to the uncertainties and natural variability in 

rock masses with many orientations of discontinuities. However, simplified instability 

model (dictated by the type and structural control), have been employed over the years to 

predict the slope geometry of open pit mines. Some of the common forms of instability 

models, which are amenable to engineering analysis are wedge failure, planar failure,
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toppling failure, circular failure and special failures [Barron, 1997]. The most important 

thing is the degree of certainty of the known geological information.

The stability analysis of these modes of failure are either discrete or probabilistic. The 

discrete method of analysis is dependent on an acceptable factor of safety. The factor of 

safety is defined as the ratio of the resisting forces to the shearing/disturbing forces. A 

factor of safety between 1.25 and 2.00 is acceptable for geotechnical designs in open pit 

mines [Barron, 1997]. Unfortunately the computation of a reliable factor of safety 

requires the specified rock properties and accurately computed resisting and 

shearing/disturbing forces. These conditions are not easily achievable. Each of the 

variables employed in a typical geotechnical design has its degree of uncertainty 

associated with it. A design method that has been used in recent times to address this 

problem is the probabilistic approach. This approach employs the coefficient of reliability 

or the probability of failure as the decision criteria. A characteristic probability 

distribution function is assigned to each variable. The factor of safety is calculated from a 

random value which is selected from each of the probability distribution functions 

[Turner and Schuster, 1996]. The random numbers assigned to each of the variables are 

generated from a Monte Carlo simulation. The process is repeated a large number of 

times (100 or more) to develop a cumulative density function of the factor of safety. The 

coefficient of reliability (%) or the probability of failure (100 - coefficient of reliability) 

can be calculated together with the economic consequences of failure. This approach can 

lead to a better decision on slope geometry than the single factor of safety (discrete) 

approach.
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Matthews and McTaggert (1969), in their analysis of the 1965 Hope landslide of British 

Columbia, introduced stability analysis of the planar failure mode. Hodge and 

Freeze(1977) documented the influence of ground water on planar failure. Sarma (1979) 

employed limit equilibrium analysis which involved the method of slices to analyse 

planar failure. Hoek and Bray (1981) developed graphical methods applicable to planar 

failure. Plane shear failure is the most common and costly failure mode since it could 

cover a larger area and involve high volume of mass. It occurs along discontinuities or 

cracks which run parallel or sub-parallel to the slope face.

The assumptions underlying the plane shear failure with a tension crack are that the 

tension crack and shear plane strike parallel to the slope face. Water enters the sliding 

surface at the base of the tension crack, seeps along the failure plane, leaving the plane at 

atmospheric pressure. It is also assumed that release surfaces are present and there are no 

rotational forces. The weight, uplift and disturbing forces from the water all act through 

the center of the block and there is no lateral resistance to sliding at the ends of this 

system. The shear strength of the sliding surface is governed by Coulomb - Navier failure 

criterion. A unit thickness is used as the basis for the calculation of the factor of safety of 

the plane failure mode. The weight of the block can be calculated for the tension crack 

beyond the crest as well as in the slope face.

Piteau (1972) indicated that rock mass lithology and structure are the main elements 

controlling wedge failure. Wedge failures are the result of rock masses sliding along two 

intersecting planes or discontinuities which are at oblique angles to a slope surface. The
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litho-structural properties of the rock mass dictate the formation and occurrence of wedge 

failures. The structural conditions governing the occurrence of wedge failures are that;

(i) the dip direction of the slope face is approximately equivalent to the trend of the

line of intersection of the two planes,

(ii) the line of intersection daylights in the slope face (that is the dip of the slope face

is greater than the plunge of the line of intersection) and

(iii) the average angle of friction of the two planes is less than the plunge of the line of

intersection.

Stereographic analysis or Marklands test is employed to determine whether sliding will 

occur on both planes or on a single plane [Hoek and Bray, 1981]. Another test is the 

Hocking’s test for the direction of the sliding of a wedge. A wedge can be formed such 

that it slides on one plane when it moves, loosing contact with the other plane. 

According to this test, if the dip of either plane falls between the dip direction of the slope 

face and the trend of the line of intersection, sliding will occur on the plane rather than 

along the line of intersection. Kinematic analysis is normally followed by a more rigorous 

stability (rigid-body) analysis which assumes that failure occurs by linear sliding along 

either one of the planes or on the line of intersection of the two discontinuities. In the 

wedge failure mode the factor of safety can be calculated for the following situations: (i) 

a tension crack is absent but the slope face is saturated with water, (ii) the slope is fully- 

drained, (iii) the only active forces are due to friction, and (iv) the friction angle is the 

same for both planes.
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Goodman and Bray (1976), Hittinger (1978), Choquet and Tanon (1985) and Willie 

(1992) have analyzed toppling failures using the limit equilibrium methodology. Rock 

masses susceptible to toppling failures are normally divided into a series of slabs or 

columns emanating from a set of fractures striking near-parallel and dipping steeply to 

the slope face. Rotation of the rock slabs or columns about a fixed point near to or at the 

slope base vis-a-vis slippage between the layers result in toppling action. Bedded or 

foliated metamorphic, sedimentary and columnar basalts are very prone to this type of 

failure. Hoek and Bray (1981) described several types of toppling failure, namely 

flexural, block or a combination of the two. A fundamental condition for the occurrence 

of toppling failure is that the centre of gravity must fall outside the base of the slab or 

column. Failure is only possible when shear failure occurs at the base of the slabs.

According to the methodology of Goodman and Bray (1976), the conditions necessary 

for toppling failure are that: (i) the dip of the layers must be between 160 and 200 degrees 

to the dip of the slope face (the strike of the rock layers and the slope face must be 

parallel or near parallel with a 20 degree difference and the layers must dip into the 

slope), and (ii) the plunge of the normal to the top of the slope face must be less than the 

slope face inclination less the friction angle. Choquet and Tanon (1985) proposed various 

modifications based on extensive nomogram analysis. They defined the factor of safety 

for toppling failure. Cundall (1987), Lorig(1991), Byme, and Hammet have employed 

computer-aided numerical techniques to model toppling processes but they are yet to be 

well developed for general engineering use. Using limit equilibrium analysis, the force
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required to prevent toppling of the nth block can be calculated for a set of blocks in a 

formation.

Circular failure or circular arc (or rotational shear ) failure occurs in very weak rocks, 

soils, weathered material and in heavily-jointed rock masses (e.g. a waste dump). The 

failure surface is a circular or curvi-linear surface of minimum shear resistance with 

respect to the disturbing forces. The failure surface may or may not pass through the toe 

of the slope. The rock masses subjected to circular failure are so highly fragmented that 

the failure surface would not have to go through the hard part of the rock mass. Circular 

arc failure in rock is essentially similar to classical rotational failure in soils, the only 

exception being that the failure surface or circle in rock tends to be shallower and has a 

larger radius.

Kinematic analysis, as performed in circular failure, is aimed at eliminating other modes 

of failure. Thus, if no persistent structures are present, circular failure can be employed 

in slope design, lability analysis in circular failures is dictated by the shear-strength 

criterion employed in the characterization of the rock mass. Techniques developed for 

soils are employed if the rock mass satisfies the Mohr-Couloumb criterion. Such an 

analysis involves stability charts [Duncan 1996 and Hoek and Bray 1981] and analytical 

techniques of Janbu (1954), Bishop (1955), Morgenstem and Price (1965) and Sarma 

(1979). If the rock mass is very dilatant as a result of strong intact strength of the 

individual blocks, a non-linear shear strength criterion is employed in the analysis. 

Though the failure modes described above are the most common, other modes of failure
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like the column buckling failure and bilinear wedge failure have been known to occur. 

Generally, column buckling failure occurs in slope faces that are masked by parallel, 

steeply dipping discontinuities. Column buckling failure is very similar to planar failure 

except that the discontinuity forming the failure surface, does not necessarily daylight. 

Goodman (1980) and Cavers (1981) analyzed this mode of failure using the classical 

method of column stability where Euler’s critical stress for buckling is equivalent to the 

stress parallel to the axis of a column. In the bilinear wedge failure, the upper block is 

separated from the lower block by a steeply dipping discontinuity, which enable the block 

to move relative to each other. Such failure surfaces are major discontinuities for instance 

a fault. Generally, the dip of the lower block is lower than the friction angle of the surface 

whereas the dip of the upper block is higher than the friction angle. The kinematic 

analyses of this mode of failure are similar to planar failure.

In slope stability design and analysis, a factor of safety can be regarded as an accurate 

representation of our belief in the design if the material characteristics, stress and strength 

of the rock mass can be computed at an acceptable degree of accuracy. Unfortunately, the 

variables involved in a design have their own degree of uncertainty. Thus, the factor of 

safety can deviate from our expectations, jeopardizing mine equipment and personnel. 

The reliability coefficient / failure probability can be used as an index for the factor of 

safety.
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2.2 Geometrical Mine Design

The geometry of every open pit layout may be different from the others because mineral 

deposits have different sizes, shapes, orientations, depths of occurrence, mineralogical 

composition and geotechnical characteristics. Obviously, material characteristics and 

equipment technology will influence the pit geometry. The sequencing of the geometry is 

very important if the desired economic results are to be achieved. A flatter slope leads 

requires the excavation of additional waste material which will lead to higher mining 

cost. Slopes in open pit mines are designed to perform specific functions.

The three major components of an open pit slope design are: bench configuration, inter - 

ramp angle and overall slope angle. According to Call and Savely (1990) and Keaton and 

Beckwith (1996), designing open pit slopes involves the following; (i) specification of 

the functional requirements, which normally is provision of safe access with acceptable 

maintenance and economy, (ii) determination of design sectors and preparation of 

appropriate layouts to satisfy the functional requirements, (iii) enumeration and 

preliminary design of all the solutions which could possibly satisfy the functional 

requirements, (iv) stability analysis of the chosen design(s) to estimate probability of 

failure and expected volume of failed material for bench, inter - ramp and overall slopes, 

(v) development of maximum inter - ramp slopes based on catch bench criteria, (vi) using 

a cost-benefit, functionality and safety criteria to determine optimum pit slopes and (vii) 

detailed designing of the optimum pit slopes.
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A number of slopes are required as part of the design of the optimized open pit. The 

optimized pit slope is a layout that ensures the maximum economic recovery from an 

open pit. As a general practice, the final slopes of an open pit mine is excavated to the 

steepest possible angle in order to reduce the amount of waste material (soil and rock) 

excavation to the minimum, during the recovery of the ore body. The design engineer 

must however bear in mind that the cost of a single major slope failure in terms of loss of 

production, equipment and human life, could totally offset any financial gains. The 

design engineer must therefore deal (quantitatively and/or qualitatively) with the 

consequences of failure in the pit design process. The best economic design may be to 

allow the slope to fail and clear up the debris if the production and equipment are not at 

risk. This does not occur in reality due to the cost and consequences of failure. A failed 

slope may disrupt production and trigger safety investigations. Slopes are therefore not 

allowed to fail during the operating life of the mine. The geometry of the pit depends on 

the bench configuration (bench height, bench width, type of benches), loading system, 

production strategy, deposit characteristics, equipment used and regulatory requirements.

2.2.1 Bench Design

The bench height is considered as the vertical distance between each of the horizontal 

levels of the open pit. Generally, all the benches of an open pit mine have the same 

height, unless geological and different equipment conditions dictate otherwise. The bench 

height is affected by ore grade or dilution, the required degree of selectivity of ore from
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waste, production rate, physical characteristics of the deposit, equipment type and size, 

climatic conditions and safety of personnel and equipment.

Though the inclination is to design the bench height as high as possible, the size and type 

of the loading equipment for the production desired may limit the bench height. For a 

truck - shovel system, for instance, the teeth of the shovel dipper should be able to scale 

the crest of the working bench, in order to prevent hang-ups in the upper section of the pit 

wall and to achieve a smooth wall surface. Assuming that the mining equipment is the 

defining factor, the height of the bench is equivalent to the boom point of the shovel and 

is given by the equation;

Bench Height, Bh = Boom Point of Shovel 2.1

2.2.2 Bench Width Design.

In a typical open pit mine, there are several types of benches - working bench, safety 

bench and catch bench. Depending on the functions of the bench, there are varying bench 

widths. A typical working bench consists of a safety berm, minimum working room for 

the shovels and trucks and any other safety or regulatory requirements. A safety berm is 

required to augment the safety of the operations. According to Hustrulid (1990), the 

width of the working bench is given by;

TW
K  = brw+cr + n~Y~+ RCR + DOR 2.2
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2.2.3 Width of Safety Berm

The height of a safety berm should be at least equivalent to the height of the haulage or 

largest truck. The width of the safety berm b^, is given by

In the case of single back-up loading, the working bench width is defined as;

A safety or catch bench serves as a ditch for catching falling rocks, small volumes of 

failed slope material, especially those resulting from wedge failures. According to a 

report published by CANMET(1977), the volume of failed material for an open pit bench 

can be considered as half the cell volume. Assuming wedge failure and no bulking, the 

width of the catch bench is therefore given by;

bw = +16+ ̂ j -  +DOR+ RCR 2.4

For a double back-up loading system, the working bench width is given by;

bw — + 2*1.6 + 2* + 2* DOR 2.5

tan r tan or „
2.6
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The volume of failed material is given by,

Bu I 1 1
v m = — \ — ------------- 1— > 2 J4 Uaa<pp tan or„

The mass of material involved is given by;

Wm=p*Vm 2.8

Uppper benches

Lower benches x \

L P i  Ctrl

Figure 2.1 Pit Slope Design Without A Ramp

2.2.4 Imposition of Slope Walls

The major component of the slope design is the maximum angles of the slopes. These 

angles which depend on the geotechnical characteristics of the various areas of the mine, 

could be different for the different geological areas. It is assumed that limit equilibrium 

analysis will be sufficient to predict the stability of the slopes if the number of faults in 

each geological area is less than or equal to 3. Assuming the entire pit could be divided 

into two geotechnically different vertical sections as depicted in Figures 2.1 and 2.2. The
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angle of the ultimate pit slope for the lower section (1) can be calculated from the 

equation,

tan/?, = -------— -----— 2.9
2 Bh cotorrI +bx

Similarly, the angle of the ultimate pit slope for the upper section (2) can be calculated 

from the equation,

9  R
tan/?, = --------------------------------------------------   2.10

2Bh cot a r2 + b2

Thus the ultimate pit slope angle for the nth section of multi-slope (variable) pit can be 

calculated from the equation,

tan/?,, = ------- ^ -------  2.11
2Bhco ta m +bn

Lerchs-Grossmann’s ultimate pit angle for the two-slope pit can be calculated from,

tan pL=~,— ?---------- 2(2*2^)---------------- 2 12
{2Z?A(cotarl + cot ar2)+CD + bx +b2\

and for an n slope open pit mine,

tan/?t =  ----------- n(2 * B")-----------  2.13

2Bh'Ydcotark + +CD
k -1 £=1

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When the sectional slope angles are used for each of the geotechnically-defined sections 

of the ultimate pit wall, mass balance is achieved and the ultimate pit limit is given by 

line ACDB (see Figure 2.1). The pit wall employed by Lerchs and Grossmann in their 

model is defined by line AB (see Figure 2.1.

Berm

Ditch

Figure 2.2: Pit Slope Design With A Ramp/Road

Thus the total depth (Ht) of an open pit with n benches of the same bench height is given 

by;

Ht =n*Bh 2.14

From Figure 2.2, considering NP as the ramp or road, the slope angles for sections 1 and 

2 can be calculated from;

J R
tan/7,, = ------ =5*------------------------------------------ 2.15

2Bhcotari + 6,
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The ultimate pit outline then becomes MNPQ, where NP is the ramp (see Figure 2.2). 

Lerchs-Grossmann’s ultimate pit angle is given by,

tan P L =~,----     2.17
{25,, (cot a rl + cot a r2 ) + bl +b2 + iVPj

and for an n slope open pit mine,

t a n ^ = 7— ;— ^ 7 --------------- t  2 1 8

\2Bt £ i c o la H, + Y , b* + '(NP)\
w  k=1

The ultimate pit outline then becomes MNPQ, where NP is the ramp (see Figure 2.1). In 

the L-G approach, the ultimate pit outline is line MQ. Once again the L-G pit outline 

involves extra material as compared to the sectional approach. However, in both 

approaches, the upper walls of the pit have been substantially pushed back due to the 

introduction of the road, NP. This will lead to higher overburden volumes and lower 

returns to the mine operator as stripping ratios will increase.

Haul roads could be designed in areas where slope angles are gentler and or stability 

problems are minimized. The size of the pit may warrant a zigzag layout as the spiral
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layout in larger pits may affect haulage distance to a great extent. The tightness of the pit 

wall may also only allow for a zigzag road layout. High slope angles of the pit walls, on 

the other hand may not allow for a zigzag layout as the amount of requisite excavation 

may unreasonably increase the stripping ratio. Hazards due to slope instability could 

prevent the placement of haul road on that side of the open pit. This is especially true in 

the part of a pit where high water pressures exist or the rock mass is characterized as 

poor. In the latter case a spiral layout is recommended. The length of the haul roads 

should be minimized as much as possible in order to reduce construction costs and travel 

time. A haul road must provide the safest, quickest and cheapest access to the mining 

operations in the pit. However regulatory and production constraints may prevent the 

placement of haul roads in certain portions of the open pit operation due to road slope 

limitations and or surface disturbance or regarding requirements.

2.2.5 Imposition of Haul Road

When the haul road is located outside the orebody, the volume of waste and ore to be 

excavated are increased which may affect the economics of the mining operation. On the 

other hand, the location of a haul road within the ore body may reduce the waste material 

as well as the mineable ore, which may not be advisable in high-grade deposits. Atkinson 

(1983) has indicated that the placement of haul roads are site-specific and are dependent 

on the economic and geotechnical conditions within the open pit mine in question. In this 

work such an analysis will be done in the final design to optimize the haul road design at 

minimum costs.
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23 Computer-Aided Mine Design
The Babylonians built the first mechanical computer but it was not until the advent of the 

transistor in 1948 that the technology advanced. In the 1950's and 1960's, auto, aircraft 

and some few large companies begun building their own computer-aided drafting (CAD) 

systems. Ivan Sutherland's (1963) Sketchpad doctoral thesis resolved all the graphical 

human interface issues. In the 1970's as computers became smaller, more powerful and 

cheaper, turnkey CAD systems combined software and computers to resolve 2-D drafting 

problems. The debut of the computer 32-bit midi architecture in the 1980's greatly 

enhanced CAD software development. Mike Riddle wrote MicroCAD in 1980 and John 

Walker was hired to form Autodesk which marketed the product as AutoCAD in 1984. A 

lower priced personal computer was also introduced to the market in the 1980's. In 1986 

Keith Bentley formed Bentley Systems Inc (later known as Intergraph). In the 1990's less 

expensive and more powerful desktop computer units abound and a new drafting 

paradigm, Pro/Engineer was bom. Computer-aided drafting matured into computer-aided 

design. New constructs like solids modelling, complex 3-D geometry, parameterization, 

animation, virtual reality and constraint-based modelling (Dimensional Constraint 

Modelling) were added to computer-aided design (CAD) systems. In the new 

millennium, intelligent systems may employ GIS data and/or limited information to 

generate accurate solids and 3-D geometry in a virtual architecture.

Computer-aided open pit mine planning dates back to 1960 when a group of mining

engineers at U.S Steel Corporations Minnesota operations employed an IBM 650 to

(Axelson, 1964). They simulated mining, beneficiation and ore shipment using a series of

mathematical models programmed into the computer. The results were then employed in

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



defining the economic mining limits (ultimate pit limit). Computer-aided design evolved 

with the growth and the ease of computer usage. In the 1960’s most of the software that 

were developed were programmed into mainframe computers. There were mostly 

command-line driven and modular with proprietary databases. The 1970’s witnessed a 

migration to mini computers and software were written in Fortran. Layered menus with 

access to independent modules were first introduced. In the 1980’s demand for mineral 

products increased (gold reached a peak price of $800+ per oz.) and small mining 

software companies were bom. Some of the software were ported to personal computers. 

Graphics and some commercial databases were introduced. Some optimization programs 

were introduced. In the 1990’s graphics have been vastly improved due to the availability 

of higher computing power at lower prices. Most of the software are now written in 

C/C++ with open database connectivity (ODBC) in a Windows NT or 95 environment. 

The menus have been replaced by pull-down style graphical user interfaces (GUI’s). 

Simulation programs were introduced in the early part of the 1990’s.

The most common computer-based mine design systems available today are vulcan, 

gemcom, datamine, medsystem, mincom, lynx/microlynx, and surpac. Generally the 

important modules in these software are drill-hole and/or exploration databases, statistics 

and geostatistics, geological modelling, open pit and/or underground mine design and 

surveying. The CAD aspects of these software enable mining engineers to develop 

geological and block models of orebodies, design various layouts of mining excavations 

and output the results in diverse graphical formats. The best software for open pit 

optimization are Whittle’s 4D/4X and Earthworks MAXiPiT. They both employ the
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Lerchs-Grossmann’s algorithm and appear to give identical results when employed in 

open pit optimization.

2J.1 Geostatistical Modelling in Computer-Aided Mine Design

Geostatistics is the study of phenomena that fluctuate in space and/or time (Deutsch and

Joumel, 1998). In mining engineering, it is the application of the theory of regionalized 

variables developed by Danie Krige (1951) and mathematically formalized by Georges 

Matheron (1970) to ore reserve modeling and estimation.

According to Joumel and Huijbregts (1978), the variogram model, albeit any artificial 

errors introduced, is a summary of the structural information, which is then employed in 

reserve estimation. The variogram model is then employed in estimation. A variogram 

model for some distance and/or direction is required for further analysis of the 

phenomena under investigation (Isaaks and Srivastava,1989). The variogram quantifies 

the spatial variability of the contained gold by computing the variance of the grade values 

measured some distance h, apart. The variogram/variance increases with the separation 

distance. According to Deutsch (1998), the variogram model so built must be positive 

definite. In the case of co-regionalization, the model must be positive semi-definite. 

Generally, models are built as a linear combination of two or more types of basis models. 

The basic models of regionalization are pure nugget effect, spherical, exponential, 

gaussian and power models. Besides the power model, all the other variogram models 

are termed bounded, that is they reach a constant sill at some distance, termed the range.
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Kriging techniques are estimation methods that minimize the error variance of estimation 

(as calculated with the variogram model). Kriging is an estimation technique used for 

spatially distributed data. According to Cressie (1990), kriging techniques were employed 

as far back 40 years ago and was applied to mining and other fields [Krige, 1951; Joumel 

and Huijbregts, 1978]. According to Goovaerts (1998) and Joumel (1988), kriging is a 

generalized linear regression used to estimate a continuous attribute (kriging) or two 

continuous attributes(cokriging). Kriging is considered to be the best linear unbiased 

estimator (BLUE) of the unknown parameter being quantified (Joumel and Huijbregts, 

1978). The kriging estimation variance can be affected by errors in the calculation of the 

variogram.

Theoretically, a sample point or grade is considered as a single realization of the 

regionalized random function. The class of random functions forming the basis of the 

phenomena under investigation has a characteristic distribution function and a variogram 

(covariance) model. The geostatistical model developed to date is one realization (albeit 

a smoothed version) of this random function in bounded space. Simulation can be used 

to draw realizations of the random function from the pool, which honor the model 

parameters including the variogram developed to date. The reproduction of the presence 

or absence of spatial dependence of the one or several variables is paramount to the 

success of the modeling and evaluation process.

2.4 Open Pit Optimization Algorithms

The determination of the optimum contours of an open pit mine is a fundamental

requirement for an effective open pit mine planning and design. The optimum pit limits
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so determined, provide a basis for economic evaluation, short and long term mine 

planning decisions. The ultimate pit limit defines the size and shape of an open pit at the 

end of its life based on the operating, technical, economic and ground stability 

constraints. They also determine the extent of mineable reserves and waste materials to 

be moved in the mining process. Pit limits on the surface mark the boundaries for 

locating surface structures, such as processing plants and mine offices. The pit limits 

would normally delineate the limiting boundary beyond which the open pit mining of a 

given deposit will be uneconomic. As such the pit limits are commonly referred to as the 

Economic Pit Limits (EPL), Ultimate Pit Limits (UPL) or Ultimate Pit Design (UPD).

Over the years various researchers/workers/mining companies [Lerchs and Grossmann, 

1965; Meyer, 1969; Johnson, 1968; Lemieux, 1968; Marino and Slama, 1972; Phillips, 

1972; Koborov 1974; Koenigsberg, 1982; Wilke and Wright 1984; Denby and 

Schofield, 1994; Achireko and Frimpong, 1996] have introduced a host of open pit 

optimization methods. In the past forty years, optimization techniques that have been 

used in open pit mining can be classified into industrial engineering or mathematical 

programming methods (graph theory, dynamic, integer, linear, geometric and network 

programming, and parameterization), heuristics (moving cone) and artificial intelligence 

(genetic and back-propagation neural network optimization algorithms).

A number of the mathematical techniques that have so far been employed to solve this 

problem have themselves posed considerable computational difficulties. These methods 

have also not adequately addressed the following problems: (i) stochastic nature of ore
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reserves/grades and mineral prices, (ii) the amount of ore and waste to be mined each 

year, (iii) the specific blocks to be mined each year, (iv) the mine life which defines the 

expected time horizon of the operation and (v) the ultimate pit limits which delineate the 

total reserve to be mined and the final pit shape at the end of the operation. The more 

elaborate methods use manual, stimulation, linear programming, dynamic programming, 

graph theory, heuristic and parameterization approaches to the open pit limit design. 

These methods are limited in their respective approaches to defining the optimum pit 

limit. Among them, the four rigorous optimizing techniques, that have mathematical 

proofs, are graph theory [Lerchs and Grossmann, 1965], dynamic programming [Lerchs 

and Grossmann, 1965], linear programming [Meyer, 1969] and network flow [Johnson, 

1968]. Heuristic algorithms [Lemieux, 1968; Marino and Slama, 1972; Phillips, 1972; 

Korobov, 1974] lack rigorous mathematical proof. In the following sections, various 

algorithms for open pit design and optimization and their limitations have been described.

2.4.1 The Manual Approach to Open Pit Design and Optimization

Manual approach to open pit design and optimization is basically a trial and error method 

in which the analyst uses subjective and objective analyses to define the pit limits. This 

approach requires (i) vertical sections showing clearly the ore boundaries, the grade 

distribution within the ore, the overburden and the waste rock portions; (ii) plans for each 

proposed mine level showing corresponding ore and waste details as in (i); (iii) allowable 

maximum slope angles for the various rock types; (iv) minimum width at the proposed pit 

bottom; and (v) relevant stripping ratio curves showing the variation of the stripping ratio 

with the ore grades and possible selling prices. The overall, incremental, periodic and
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break-even stripping ratios are taken into consideration in the design of the pit. These 

ratios depict the relative proportion of waste material to ore to be mined and provide the 

necessary profit information. Stripping curves, the behaviour of stripping ratio with grade 

variation, are normally constructed to cover possible grade ranges at the pit limits as a 

pre-requisite for a manual pit design exercise [Pana and Davey, 1973].

With the aid of the stripping ratio curves and the cross-sections showing the ore 

boundaries and grades, the pit limits will be located on each section as follows: (i) Note 

the grades around the two ends of the ore on a given level and work out a weighted 

average grade to include the ore up to the top of the grid blocks; (ii) Construct the 

stripping ratio curve and note the allowable break-even stripping ratio; (iii) Construct trial 

slope lines such that the ratio of the intercept along waste to that along ore correspond to 

the break-even stripping ratio; (iv) The procedures in (iii) are repeated for other sections 

of the deposit; (v) When the pit limit has been located on each vertical section, the 

intersections are then transferred to the level plans. The total ore reserve and waste 

volumes and tonnages are determined using the planimetry method.

This trial-and-error method helps in the development of the basic skills required for the 

geometrical manipulations. These skills are required in such areas as haul road design and 

phase plan development, which is needed with fully computerized pit design approaches. 

This approach has a number of limitations. The manual approach is very time consuming. 

The assumption that the total recovery during mineral processing is constant in the 

derivation of the stripping curves would not necessarily hold true for different ore grades. 

In fact the effective recovery will invariably depend on the grade of the mill feed. This
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method can only be used for small and/or geologically simple mineral deposit. The 

method can be tedious and computationally intractable in a massive orebody.

2.4.2 The Moving Cone Algorithm

The moving cone algorithm is one of the algorithms for optimizing open pit limits [Pana, 

1965; Williams, 1970; Lemieux, 1968]. The 2-D moving cone algorithm uses the 

following optimization criteria, deduced from the definition of the open pit design 

problem, namely: (i) maximization of total pit economic value, (ii) maximization of value 

per tonne of saleable product, (iii) maximization of the mine's life, provided the value per 

tonne does not fall below a certain figure, and (iv) maximization of the metal content 

within the pit [Wright, 1990]. The maximization of the total economic value is by far the 

most common optimization criterion in open pit mine design. As in other algorithms, this 

algorithm ensures that before mining any block, all the blocks above must be removed. 

The minimum removal cone on a block is the cone bounded by the maximum allowable 

slope angles in all directions, from the block up to the ground surface. The cone on any 

block is dependent upon the different slope angles for the different materials overlaying 

the block in the different directions up to the ground surface.

The basic element for the optimization process is the minimum removal cone. A 

summary of the algorithm can be stated as follows: (i) Start from the surface and search 

for ore blocks with positive economic block value; (ii) Construct the minimum removal 

cones on such ore blocks; (iii) If the sum of the economic block values (EBV) of all 

blocks contained in a given cone, including the ore block in question, is positive, consider
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the cone removed; (iv) Continue the search until all the positive ore blocks in the block 

model have been examined; (v) The ultimate pit is formed by the shape left after the 

removal of all positive valued cones. Suppose a section of an open pit mine is 

represented by the set of blocks in Figure 2.3.

Figure 2.3 Block Diagram for the Floating Method

The following steps are employed in optimizing the pit with the floating cone algorithm. 

Step 1. A stepped cone is floated from left to right along the top row. Any positive block 

(block 6,i = +1) is removed.

Step2. The apex of the cone is now moved to row 2 and then 3. The cone is floated from 

left to right in each case. The values of the blocks removed are summed to determine the 

profitability of the section. The pit value is given as 5 (-1-1-2-1-1++-2-2+6+8).

The floating cone method can be an expensive process, especially for a large open pit 

mine. Furthermore, the technique can miss the optimum pit limit under certain unusual 

conditions, because it cannot recognize a joint contribution by two ore blocks that are
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laterally some distance apart. Lemieux (1968) stated that his heuristic algorithm 

overcame this shortcoming of the moving cone technique. However, the geometrical 

requirements of slope stability in combination with certain ore blocks, can lead to 

situations where the technique will fail to yield the pit with the maximum value [Wright, 

1990]. It does not solve the problem of overlapping blocks. This problem arises from the 

fact that if the blocks are considered separately with their individual cones, the sign of the 

cones may be negative. However, if such blocks are considered together with their cones 

combined, a positive-valued pit can be obtained.

In the 3-D positive moving cone technique, the search commences at the north-west 

comer (top left) of the grid block model and proceeds from west to east (left to right) 

along each level. All blocks with positive value on the first level are examined, before 

proceeding to the second level and then to the third level until the ultimate pit depth. 

Finally the 3-D block representation of the optimum pit is a combination of the optimum 

2-D cross-sections and longitudinal sections. Smoothing is employed to fit the sections 

into 3-D pits after the optimum pit limits on 2-D sections have already been designed.

2.4.3 Lerchs-Grossmann's Optimum Open Pit Mine Design

Lerchs and Grossmann (1965) have used the graph theory and dynamic programming to 

formulate an open pit model to define the optimum pit limits. The objective of Lerchs- 

Grossmann's open pit model is to design the final pit limit of an open pit mine which 

maximizes the difference between the total mine value of ore extracted and the total 

extraction cost. The model is based on the following assumptions: (i) the type of
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minerals, its mine value and extraction cost are given for each point and (ii) the 

restrictions on the geometry are specified (surface boundaries and maximum allowable 

wall slopes).

Dynamic programming algorithm is used for the 2-D pit (or a single vertical section of a 

mine), and a graph theory algorithm for the general 3-D pit. Density functions of mine 

value of ore per unit volume, extraction cost per unit volume, and profit per unit volume 

are defined at each point of a 3-D space. In developing the 2-D pit model, the whole pit 

is divided into parallel and vertical sections and each section is considered as a 2-D pit. 

The technique used to determine the contour of a section consists of moving three straight 

lines which represent the bottom of the pit and two walls at the slope angles, and 

evaluating the ore and the extraction cost of materials limited by the three lines. The 

configuration of lines yielding the best results is then selected. Here, the angle is taken to 

be constant over the entire pit.

In the 3-D model using a graph algorithm, the entire pit is divided into a set of volumes 

defined by a 3-D grid. The Lerchs-Grossmann algorithm converts the 3-D grid of blocks 

in the orebody model into a directed graph. Each block in the grid is represented by a 

vertex which is assigned a mass equal to the net revenue value of the corresponding 

block. The vertices are connected by arcs (arrows) in such a way that the connections 

leading from a particular vertex to the surface define the set of vertices (blocks) which 

must be removed if that vertex (block) is to be mined. Lerchs-Grossmann's open pit 

optimization algorithm assumes a constant slope angle over the entire pit. In mining
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practice the pit slopes are determined by the rock mechanics characteristics and the 

hydrogeological conditions of the mine. These conditions may result in variable pit 

slopes all over the entire mine. In the 2-D model, the whole pit is divided into parallel 

vertical sections and each section is considered as a 2-D pit. When the optimum contour 

of all the vertical sections are assembled, it invariably turns out that they do not fit 

together. The resulting contour may be far from optimum. This undermines the reliability 

and credibility of the model. The problem with the 3-D model is that it presents a tight 

choice between a true optimizing algorithm characterized by large computing 

requirements and a non-optimizing algorithm with lower demands on computing facilities 

[Carlson, et al., 1966].

2.4.4 The Dynamic Programming Algorithm by Koenigsberg

Koenigsberg (1982) and Wilke and Wright (1984) have succeeded in applying dynamic 

programming directly to solve the 3-D pit design problem. In contrast to the 2-D case in 

which a given block can have nearest neighbours from only one column in the backward 

direction, in the 3-D case a block can have neighbours from four columns. The required 

slope angle, 1:1 in this case, must be satisfied with respect to each of the neighbouring 

columns. Figure 2.4 shows the 12 nearest neighbours to block by* in the backward 

direction. With the neighbours in the backward direction identified, the pit value, Py^,

on the block (ij,k) is the sum of block column value for a given block byk and the 

maximum pit value on a block among the neighbouring blocks. This is the optimum
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Figure 2.4 The 12 Nearest Neighbours to Block bjjk in the Backward Direction.

value on the block by^. The block column My^ for a given block by^ is computed in the

same manner as for My in the 2-D case. The other terms in the recursion formula are

interpreted in a similar manner. The negative terms are corrections. These ensure that the 

neighbours eventually selected as the optimum neighbours are indeed compatible to each 

other, and to the block in question, with respect to the slope angle restrictions.

The problem with this algorithm is that it degenerates due to the use of a 2-D increment, 

Myk, for the progressive widening of the ultimate pit. This may lead to situations in

which blocks selected from the four neighbouring columns end up being incompatible to

each other in terms of slope requirements. Further, Shenggui and Starfield (1985) have

shown that Koenigsberg algorithm is actually over constrained, and, in some cases, will

actually miss the optimum ultimate pit. The problem of degeneration encountered with
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the 3-D algorithm by Koenigsberg was solved by Wilke and Wright (1984) with the use 

of 3-D increments in the form of minimum removal cones over each block.

2.4.5 3D Dynamic Programming (Wilke and Wright)

The problem of degeneration encountered with the 3-D algorithm by Koenigsberg was 

overcome by Wilke and Wright (1984) with the use of 3-D increments in the form of 

minimum removal cones over each block. This necessitates a new formulation of the 

recursion formula for the block pit value, Pyfa However, the basic procedure of the 2-D

dynamic programming case is preserved and remains valid; namely, the pit value, Pyfa,

on the block, by fa, can be calculated from the value of the removal cone over and

including the block by fa added to the best value neighbouring pit compatible with the

block by fa It must, however, be ensured that no block value is counted more than once.

Thus, all the block values, My fa which are contained in both the removal cone, Cyfa and

in the value of the respective neighbouring pits P / .y y t  yt fa /*/ j ±  j t fa and Pj+y j±  y fa

must be deducted from the neighbouring pit values. According Wright (1990), the 

optimum value of the block bijk is given by the recurssive formula,

P,jk =Cljk+Max
P - P  n Cr t~ l , j± l .k  'i-ljtl,*  ' ' ^ i j k

P i . j± l ,k  P i , j± l ,k  j k  2.19
P - P  - Ci+ l,j± l ,k  t - l , j ± l , k  ijk

2.4.6 Dynamic Path Level Pit Design and Optimization

The 3-D dynamic path level algorithm becomes a very useful approach when positive 

value blocks in the upper levels contribute to pit values in the lower levels. In this case,
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the dynamic path algorithm which employs a sectional pit optimization approach fails. 

Thus employing the dynamic path in level-wise instead of section-wise results in the 

correct answer. The steps involved in this approach are (i) the application of the dynamic 

path to the first level of the block model to determine and mine the value of the positive 

pit if one exists, (ii) apply the dynamic path to the remaining first and second levels and 

mine any positive valued pits, and (iii) add another deeper level, one at a time until final 

pit limits are reached (Wright, 1990).

2.4.7 Machine Learning Algorithms and Open Pit Mine Design and Optimization

It is apparent from the above discussions that various heuristic and mathematical 

algorithms have been applied to the open pit design and optimization problem. Most of 

the algorithms have short-comings and their applications will lead to sub-optimal pits. In 

view of the complexity of the open pit mine design and optimization problem, machine 

learning algorithms may offer the best methodology for their resolution.

2.4.8 Neural Network (MCS/MFNN) Algorithm for Open Pit Optimization

Frimpong and Achireko (1997) introduced a set of algorithms that address the random 

field properties of the various parameters involved in open pit optimization. This thesis 

is directed towards the development of a new stochastic algorithm to solve the open pit 

optimization problem. The modified conditional simulation and multilayer feed-forward 

error-back propagation algorithm was developed to capture the stochastic behavior of ore 

grades and reserves on one hand and to utilize neural network architecture in the 

optimization process. The modified conditional simulation (MCS) algorithm involves
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Figure 2.5 A Local and Global Maxima in A Typical Optimization Problem.

the use of linear average subdivision technique (LAS) and best linear unbiased estimation 

(BLUE) to model the stochastic nature of ore reserves and grade. In this case conditional 

simulation is employed to model the grade using the mean and the standard deviation. 

The MFNN is then used for classifying and partitioning the conditionally simulated 

blocks.

The 2-D model as presented by this algorithm does not represent reality. As depicted in 

the Figure 2.5, there is the possibility of the existence of both local and global maxima in 

a maximization problem. The learning algorithm can converge to a solution that does not 

minimize the mean square error. The back-propagation algorithm can converge to point 

A, a local maximum point (sub-optimum) with one set of initial conditions and converge 

to point B, a global maximum (optimum) with another set of initial conditions (Hagan, 

Demuth and Beale, 1995). To ensure that a global optimum point has been achieved, 

several different initial conditions have to be evaluated. The situation may even get worse

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in multi-dimensional problem with multiple parameters. Therefore an optimal solution 

may not be achieved when a back-propagation algorithm is used to solve this problem. 

Therefore there is the need to search for a robust technique that can overcome the 

limitations of the back-propagation algorithm. The above literature review is indicative of 

the various attempts at solving the open pit design and optimization.

2.5 Overview of Machine Learning
Machine learning can be described as the application of artificial intelligence, probability 

and statistics, computational complexity theory, control theory, information theory, 

philosophy, psychology and neurobiology to the solution of computationally intractable 

problems. Machine learning involves searching through a hypothesis space defined by an 

underlying representation (artificial neural network, decision trees, linear functions, 

logical descriptions, and fuzzy logic) to determine the hypothesis that best fits the given 

data and any prior constraints or knowledge [Mitchell, 1997]. As opposed to natural 

learning, machine learning is essentially the use of computer programs based on some 

algorithm (hypothesis) to improve their performance of some task through experience.

2.5.1 Neural Network

The human audio/visual capabilities are superior to any kind of super-computer in 

mankind’s history. The brain is composed of a large number, (10n), of nonlinear 

processing unit called neurons. Figure 2.6 depicts a biological neuron reported in the 

literature [Haykin, 1994; Hertz et al, 1991; Zurada, 1992]. The dendrites are nerve cells 

that are connected to the neuron body, called the soma. Axons are the long fiber cables 

extending from the soma. Synapses are located at the end of axons, and are connected to
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other neurons. An axon is composed of several thousand synapses. Information 

transmission from one neuron to another takes place at a synapse which is considered to 

be a complicated chemical process.

S y n a p se Axon

Dendrites

S o m a

Figure 2.6 A Biological Neuron.

The goal is to increase or decrease the potential of a neuron that is receiving information. 

If the potential exceeds a threshold limit set in the receiving neuron, the neuron is 

triggered to send an information along the axon to the other neurons. The way these 

neurons are connected to each other makes us capable of recognizing speech or images 

very easily. Biological neurons are robust and fault tolerant. This means that if one or 

more neurons die or do not function properly, the overall performance of the brain does 

not change. They are highly parallel, very small, compact and low powered and they can 

deal with noisy, inconsistent data with no difficulty. These features motivated the new
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research field called artificial neural networks. McCulloch and Pitts (1943), in their initial 

attempt at modeling a neuron, proposed a binary threshold unit as a neuron. Their model 

is depicted in Figure 2.7 and equations 2.1 and 2.2. The McCulloch-Pitts neuron has 

proven to be capable of doing universal approximation for appropriately chosen weights 

as long as a number of them are connected in parallel and working simultaneously.

W 1 A c t i v a t i o n
^1 ---------------------------  F u n c t i o n  0

X ?

x3 

'4

Figure 2.7 McCulloch-Pitts Neuron Model

©00 =
1, i f  y ^ o  

0, otherwise
2.20

2.21
t=0

Haykin (1994) has described various activation functions. These activation functions as 

well as their mathematical representations are shown in Figure 2.8. The first one is piece 

wise function, and the latter one is sigmoidal function. Both logistic sigmoid function 

and hyperbolic tangent function are considered as sigmoidal functions.
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Figure 2.8 Mathematical Representation of Activation Functions.

There are various types of neural network architectures. The famous neural network 

architectures are multilayer feedforward neural network (MFNN) or multi-layer 

perceptron, Hopfield network and Kohonen network. Each of them is described in th>: 

next sections.
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2.5.2 Multilayer Feedforward Neural Network

Multilayer feedforward neural network consists of simple McCullogh-Pitts type neurons 

in a massively parallel structure (Figure 2.9). It is composed of an input layer, also called 

sensory unit layer, hidden layer, which could be as many as necessary, and an output 

layer. The input signal is usually propagated forward layer by layer. These types of 

artificial neural networks are referred to as multilayer feedforward (perceptrons). These

'no no

* 0

Input
layer

Output
layer

Hidden
layer

Figure 2.9 Multilayer Feedforward Neural Network

networks were widely used to solve some classification and approximation problems 

employing a very popular training algorithm named error back propagation (EBP). The 

EBP is a learning scheme where the error is backpropagated and used to update the 

weights.

In a multilayer feedforward neural network (Figure 2.9) the nodes are grouped in input,

hidden, and output layers, by the network. The result of the computation is displayed by

the output layer. The hidden or intermediate layers follow the input layer. Generally all
52
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the nodes within the input layer are connected to all the nodes of the first hidden layer 

which are subsequently connected to all the nodes of the second and other hidden layers 

and eventually to the nodes of the output layer. A weight, depicted in Figure 2.9, is 

associated with each one of the connections. The - l ’s in Figure 2.9 are biases to the input 

and hidden layers.

The input nodes perceive the data to be processed by the network and then transmit the 

results to the hidden nodes. Within the hidden layers, the values received from the input 

layer nodes are multiplied by the connection weights and then each hidden node sums all 

the weighted values it receives. On the other hand any other type of linear transformation 

can be used instead of the usual arithmetic summation. Finally a non-linear 

transformation, such as a sigmoid function, is applied to the summation result and the 

resulting value (the activation level of the node) is then transferred to each of the nodes of 

the second hidden layer or of the output layer. The output layer plays the same role as the 

hidden layer however, the linear and non-linear transfer functions within the output layer 

can be different from those of the hidden layer. The activation level of the output nodes 

are the network outputs or results.

2.5.3 Hopfield Network

The Hopfield network consists of two layers, an input layer and a Hopfield layer (Figure 

2.10). Each node in the input layer is directly connected to only Hopfield layer. The 

nodes in the latter layer are neuron models previously described with either hard limiting
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or sigmoidal activation functions [Hopfield, 1982]. The outputs of these nodes are 

weighted and fed back to the inputs of all of the other nodes.

During training, the network output is often required to be the same as the input. 

Connection strengths are weakened by reducing the corresponding weight values if the 

output of a neuron is different from the input, and strengthened when the converse is true. 

The trained network is used by applying an input pattern to the network. The network 

outputs are then continually fed back through the weights until a convergence criterion is 

met, typically when there are no changes at the network output nodes on successive 

iterations.
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Figure 2.10 Hopfi<
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;ld Network, z '1 is the Unit Delay Operator.

This is the final network output for the input pattern. Binary input and output values, 

often represented as + 1 and -1, are usually used with the Hopfield network.
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2.5.4 Kohonen Network
The main distinguishing feature of this network, from the MFNN and Hopfield networks, 

is that no output data is required for training [Gomm, Page and Williams, 1993]. A 

Kohonen network is constructed with a fully interconnected array of neurons (i.e. the 

output of each neuron is an input to all neurons, including itself) and each neuron 

receives the input pattern (Figure 2.11) [Kohonen, 1988]. There are two sets of weights: 

an adaptable set to compute the weighted sum of the external inputs and a fixed set 

between neurons that controls neuron interactions in the network.

I n p u t
p a t t e r n

—( ) — ■ i —  i

-------- i
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•
!

A d a p t a t i o n  
’ z o n e

N e u r o n  wi th  
l a r g e s t  e x c i t a t i o n

r° i-1. — , ii'I L~, L~ L -
Figure 2.11 Kohonen Network

Training involves applying an input pattern to the network, consisting of a set of 

continuous-valued data, and the output of each neuron is computed. The neurons are then 

allowed to interact with each other and the neuron that responds most to the input stimuli 

(i.e. the one that has the largest output) is found.
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Only this neuron and neighbourhood neurons, within a certain distance, are allowed to 

adjust their weights to become more responsive to the particular input. This form of 

training has the effect of organizing the “map” of the output nodes such that different 

areas of the map will respond to different input patterns. Hence, the Kohonen network 

has self-organizing properties and is capable of recognition.

2.6 Conclusion

In summary the various algorithms employed in the design and optimization of open pit 

mines have been inadequate. One of the main reasons for the failure of the various 

algorithms is the complexity of the design and optimization problem. The open pit mine 

design and optimization problem belongs to the class of complex problems that can not 

be solved by heuristic and traditional mathematical models. The use of mathematical 

modelling by machine learning, namely adaptive logic and neuro-genetic networks may 

resolve the problems associated with the foregone algorithms.
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CHAPTER 3

THEORY AND PHILOSOPHY OF OPEN PIT DESIGN AND OPTIMIZATION

In this chapter, the philosophy, conceptual framework and theory of open pit design and 

optimization as presented in this thesis are discussed.

3.1 Design Paradigms and Optimality Criteria

Generally, the design and optimization of an open pit commence with a conception of the 

various objectives, goals and functions. On the basis of the requirements of the mine 

operator, the operational constraints and assumptions, a mine is designed to achieve the 

desired intentions. Different techniques are used to resolve various aspects of the design 

process. Using some criteria such as maximization of net value or net present value and 

minimization of costs, the layout of the designed open pit mine is optimized.

Design
Process

Problem
Definition

Optimization! Algorithm

Figure 3.1 Generalized Design and Optimization Model

Justification

The success of the optimization process is dependent on the algorithm employed. The

optimization algorithm is coded, run and the results are compared with other algorithms
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(and the problem definition (see Figure 3.1)). The design of an open pit optimization 

problem incorporates various processes, theories and/or hypotheses. In this work, the 

optimization problem is regarded as a physical system constrained by four major 

constraints: geotechnical, production costs/expenses, ore reserves/grade, and price as 

depicted in Figure 3.2.

Solution Space

Constraint I = geotechnical; Constraint 2 = cost; Constraint 3 = price; 

Constraint 4 = grade/block values.

Figure 3.2 Solution for a Typical Constrained Design.

The optimized solution or design is the solution space formed by the intersection of the 

four sets. In an over-constrained situation none of the sets would intersect, whereas the 

area of the solution space could be wider in an under-constrained solution. Both of these 

situations will not lead to an optimized solution and may require the relaxation or 

tightening up of the requirements or parameters. As depicted in Figure 3.3, the solution 

space is bounded by a lower and upper limits, UPLi and UPL2 respectively. In the case of 

UPLi, more ore can be taken for the same amount of waste already taken (increasing
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returns to scale). Whereas in UPL2 , for each ore mined a higher quantity of waste must 

be taken.

Sub-ecoi Sub-econ

Uneco 1 Pit LimitUPL, UPL-

Ultimate Pit Limit

Figure 3.3 The Domain of the Solution Space

A higher discount rate may also have the same effects as a higher quantity of waste. 

Assuming there is perfect information, the optimized pit (the ultimate pit limit) is 

characterized by a maximum net present value, NPVmax. In reality (in the absence of 

perfect information), the relationship between the optimized pit and NPVmax is uncertain 

and can only be captured by a stochastic model. An efficient optimization algorithm is 

the one that can search the solution space till it finds the optimum pit limit. Most of the 

optimization (search) algorithms, especially the learning algorithms approach the 

optimum pit limit assymptotically as shown is Figure 3.4. An inferior algorithm may 

take a longer time to reach the optimum, whereas an efficient algorithm will reach the 

optimum at a faster rate.
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Another interesting feature of an inferior algorithm is that it may not reach the optimum 

at all, independent of the amount of time it is run. An algorithm may stabilize as it gets 

near the optimum and may never get to the true optimum resulting in a degree of error xy.

.Degree of error
NPVmax

Timetechnological
boundary

Figure 3.4 The Optimization Process.

As depicted in Figure 3.4, if the algorithm is much more inferior, the degree of error is 

wider (xz). An inferior algorithm takes a longer time to solve the problem, consumes 

more computer memory. Algorithms which searches only the sub-economic sub-spaces 

can also be considered as inferior since the quality of their final answers are sub-optimal.

3.1.1 Design Evaluation

If the state of the design solution is evaluated at regular intervals or stages of the design 

process, chances are that the resulting design (end product) may be optimal and satisfy 

the desired constraints/criteria. Such an analysis can be done employing an 

amalgamation of probability, statistics, machine learning and quality methods/techniques 

(Green, 1997). It is assumed among other things that the design space can be subdivided
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into subspaces. The benefits of the design process is maximized by employing advanced 

technology and a first-right approach is adopted within the design process to minimize 

the number of deficiencies discovered during the optimization stages. In the mine design 

model described above, the design space is subdivided into sub-spaces or modules, each 

having a design characteristic (DC).

Model Design Solution (MDS)

DF1 DF2 DF3 DF4

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

Figure 3.5: A Series Combination of Design Factors (After Green 1997)

The solution to the mine design (MDS) problem comprises of a set of design 

characteristics (DC’s). Thus the DC’s are the dimensions of the solution space which are 

subdivided into a finite number of cells each containing a potential solution model. A 

particular design characteristic is considered critical and denoted DCC, if it must be fully 

satisfied before a design process can proceed. If a particular universal set of design 

characteristics must be satisfied before the resulting design is accepted, then they can be 

modelled as a series system (see Figure 3.5). A union of a number of design
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characteristics is termed a design factor (DF). Generally in a complex design situation

hierarchical manner. This hierarchy of interactive design levels combine to form a model 

design solution (MDS). In some situations, especially where there is less complexity a 

MDS may be a glorified DF. The impact of a particular characteristic can be defined in 

terms of the degree of match the target level of the design specification.

3.1.2 Design Uncertainty

Assume that each design characteristic has a variable target function f(PDF}r with 

minimum and maximum limits labeled minx and maxj respectively. The corresponding 

function, minimum and maximum for the estimated value of the design characteristic are 

f(PDF)E, mine and maxE, respectively. A probability density function can be employed to 

define the uncertainty associated with a particular design characteristic. At the early 

stages of a design where there is lack of information, a higher level of uncertainty can be 

associated with the design. According to Green(1997), the probability that the design 

estimate will fall within the desired limits are given by;

In the presence of further information, the characteristic probability distribution function 

can be modelled. The degree of separation or overlap of the design characteristic target 

distribution [f(PDF)i] and design characteristic estimate distribution |T(PDF)e] is 

depicted in Figure 3.6.

such as ore reserve modelling, a number of sub-models and design factors exists in a

min(max T .max E)

maxfmin r ,nun £)
3.1
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The reliability domain describes the degree to which the design characteristic target and 

the design characteristic functions overlap. The reliability domain approaches zero as the 

degree of matching increases.

Pdf

0

f(PDF)r

m

f(PDF)E

D ? valuesnr minE ftiaxT maxE

Figure 3.6 Design Characteristic Values with a Uniform Distribution 

(After Green, 1997)

PDFe(u)

maxE DC ValuesminT mmE maxT

Figure 3.7 Design Characteristic Values with a Non-uniform Distribution 

(After Green, 1997)
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The reliability domain or design margin is given by (Green 1997),

K f { P D F T ) - K { P D F E ) 3.2

Where kPDFt(u) and kPDFe(u) are the m ean target distribution and estimate distribution 

values respectively.

3.1.3 Interaction of Design Characteristics

The joint probability that the estimate and the target values fall within each other’s limits 

is given by Green(1997) as,

In a situation where the design characteristics are noncritical and can therefore be 

modelled in parallel, the probability that the target values will not be met is given by 

Green (1997) as,

min (max r  ,max £ )

3.3

3.4
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3.1.4 Optimization and Optimality Criteria

The optimization process is outlined in the lower part of Figures 3.8 and 3.9 below. 

There are two types of inputs into the model, namely soft data or domain knowledge and 

hard data. The hard data consist of grade values, price, costs and rock properties. The 

domain knowledge is basically qualitative hints.

Domain Knowledge

Qualitative hints

Input Information/Data

grade, price, rock properties, costs, etc

Design

Geostatistical
Spatial
Characterization

Geo­
technical

Economic
/Financia

Other 
Field 

Constraints

Summer(Optimizer]

Optimization

Output. — i► Is Sensitivity
Analysis Completed ?

1
Yes

r

3D OPTIMIZED PIT

No

Figure 3.8: A Traditional Open Pit Design and Optimization Process
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These data are fed into the corresponding parts of the model (spatial characterization, 

geotechnical, economic and other field constraints sub-models). As depicted in Figure

3.8, the output from the first stage of the design phase of the modelling become the input 

of the summer(optimizer), which is the machine learning algorithm. The results of the 

optimization algorithm is subjected to sensitivity analysis to yield the final 3-D optimized 

pit.

Design

Summer(Optimizeri

Optimization

No

Yes

Output.

Geo­
technical

Economic
/Financia

Other
Field

Constraints

3D OPTIMIZED PIT

Is Sensitivity 
Analysis Completed ?

Machine Learning
Continuous
Characterization

Domain Knowledge

Qualitative hints grade, price, rock properties, costs, etc

Input Information/Data

Figure 3.9: An Intelligent Open Pit Design and Optimization Process
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3.2 Computer Modelling of Mineral Deposits

There are two broad approaches to building 3-D computer models of orebodies, namely 

geometrical and volumetric modelling.

Geometrical modelling techniques (regular block, gridded seam, serial slice, solid 

geometry, mathematical functions and boundary representations) are geared towards the 

identification and interpretation of orebodies with well-defined boundaries. The volume 

of the geologically different materials in these boundaries are then estimated. A 

summary of the geometric modelling structures applicable to mineral deposits is 

presented in Table 3.1 below. Volumetric modelling of ore deposits is used to deal with 

attributes that vary continuously within the volumes defined by geometric modelling.

Table 3.1 Geometrical Modelling Techniques for Orebodies

Model Type Description

Block A series of 3-D square/rectangular blocks are used to represent the 
volume being modelled.

Serial-Slice A number of polygonal shapes are digitized from or interpreted on 
series of regularly-spaced parallel sections or plans representing 
parts of the mineralized orebody. Polygons are assigned a volume of 
influence halfway to the next section.

Gridded Seam 
Block

Grids of elevation and/or thicknesses are used to represent multiple 
sub-parallel surfaces.

Solid Groups of primitives(e.g. planes, cubes, spheres, etc.) are used to 
represent complex objects and thus define volumes with common 
properties.

Mathematical Mathematical functions (polynomial trend surfaces, cubic B-splines, 
etc.) are used to represent discontinuities in a global or piecewise 
fashion.

Boundary
Representation

A collection of points (vertices) and planar surfaces (facets) are used 
to represent volume boundaries.
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Such properties are normally defined through sampling and geostatisical modelling. After 

defining the volumes of the main geological units, geostatistical techniques are then 

applied to define ore reserve block grade estimates taking into account block size, 

position, orientation and spatial distribution of the sample values.

3.2.1 Block Modelling

A 3-D block model of the mineralization is fundamental to the implementation of any 

open pit optimization algorithm. In open pit optimization, the depth and width of the pit 

from which the ore is extracted at a profit is defined using an open pit optimization 

algorithm. The first step involves building a block model and assigning grades to each 

block in the model using a database of grade samples from drill-holes. An interpolation 

technique is then used to assign grades to all the blocks. The maximum allowable slope 

based on rock mechanics studies of the ore deposit and the wall rock is factored into the 

optimization algorithm.

It cannot be gainsaid that an accurate and reliable ore reserve estimate is fundamental to 

the success of any mining operation (Lane, 1997). Reserve risk is an important 

component of the mine feasibility, optimization and operations process. A banker looks 

for such key aspects as ore model construction, lithology, compositing, data analysis and 

statistics, variography, interpolation, recovery and dilution factors, and reserve estimates. 

The success of any optimization algorithm is dependent on estimates of reserves and 

grade together with the assessment of uncertainty and risk. In this study geostatistical 

modelling is used to provide reserve estimates and the associated risks.
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Geostatistical study of a mineralized zone of interest is a multiple-stage process (see 

Figure 3.10). The first stage of an actual geostatistical study involves the modelling of the 

spatial variability within the study area. The variogram can be simply defined as the 

relationship between geological distance and Euclidean distance. The variogram

Modelling Geostatistical Constraints

Representative StatisticsCoordinate Transform

Spatial Statistics

Kriging Simulation, Selectivity 
and Uncertainty

Grade Control, Reporting and Planning

Figure 3.10: Sequence of Actions in Geostatistical Modelling 
and Evaluation of Ore Reserves.

quantifies the spatial variability of the contained mineral/metal by computing the 

variance of the grade values measured some distance h, apart. The variogram/variance 

increases with the separation distance. Kriging techniques arc estimation methods that 

minimize the error variance of estimation (as calculated with the variogram model) for
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spatially distributed data. The kriging estimation variance can be affected by errors in the 

calculation of the variogram.

Some of the reasons for estimation errors include (1) sparse data, (2) high variability, and 

(3) incorrect assumptions in the modelling procedure. Kriging-type estimates are known 

to be smooth (that is they have less variability than the original data) and can not 

therefore be used directly for mine planning. Simulation of the mineral/metal values will 

be employed to correct for this smoothing effect. One major advantage of simulation is 

that the simulation model corrects for smoothing regardless of the data spacing and 

provides a measure of uncertainty about the predicted grades. The level of statistical, 

geostatistical and systematic uncertainty (e.g. head grade, tonnage,) as well as the risk 

(probability of loss or gain) associated with the numbers are modeled in order to calculate 

at some degree of confidence the global reserves and short term mine plans. This enables 

the decision-maker to quantify the degree of uncertainty, the level of risk and economic 

return associated with the optimized pit value obtained.

The results of the geostatistical analysis will be the estimation of resources/reserves and 

classification into various categories. It is evident that the entire in-situ mineral resource 

identified and estimated by geostatistical analysis cannot be mined because of variable 

mining and treatment costs and spatial variability inherent in the deposit. Besides 

geological insitu resources, mineable or recoverable reserves according to Joumel and 

Huijbregts (1978) depend on such factors as selection criteria, cut-off grade or minimum 

mineable thickness, technological constraints, support effects, information available at
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the time of selection, geological boundaries and regulatory requirements. The influence 

of support and level of information is expressed by the geostatistical variances of 

dispersion and estimation.

The stochastic gold price as modelled via multiple regression and multilayer feed 

forward neural networks (Achireko and Frimpong, 1996) are employed in this work.

3.2.2 Block Model for Open Pit Design

A block can be defined as the smallest basic volume of material to which it is practical to 

assign grade, tonnage and geologic variability at an acceptable level of dilution. The 

block model is the basis for almost all computer supported pit designs. For a block 

model, an imaginary rectangular block large enough to cover the area of interest is placed 

around the mineral deposit [Wright, 1990]. The large block, as shown in Figure 3.11, is 

then subdivided into smaller three-dimensional blocks (Figure 3.12). The smaller blocks 

may be of various different sizes and shapes. The geometrical position of a block is 

uniquely fixed with reference to any suitable coordinate system. Each block is assigned 

geological, rock mechanical, processing and economic data pertaining to each type of 

material contained in the block. Though several types of block models exist (Kim, 1978), 

the regular 3-D fixed block model is the most widely used one in practice. The vertical 

height of each block is usually the bench height and the horizontal shape will normally be 

a rectangle or a square. The main characteristic of a 3-D fixed block model is that each 

block has the same measurements.
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Figure 3.11 Large rectangular box to encompass area of interest

j Panel

Row 
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Column
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Figure 3.12 Large box is subdivided into smaller three-dimensional blocks

The size of a block are dependent on such factors as grade variability, geologic

continuity, machine-time capabilities, slope stability and data storage limits. Though

geostatistics is the dominant method for determining the minimum block size, the

presence of major discontinuities throughout the deposit affect the block model. By
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employing such numerical techniques as geostatistics (kriging and simulation), inverse 

distance weighting methods and polygonal method, data are assigned to each block from 

a given database. Geostatistical simulation is superior to such reserve estimation 

methods as triangulation, inverse distance and polygonal. This is because simulation 

honors the mean and is more likely to result in an accurate representation of the deposit.

3 J  The Economic Value of a Block

The criterion for maximizing the pit value is equivalent to finding the collection of blocks 

within a pit limit within the layout, which will give the maximum possible value; subject 

to mine stability and mining constraints. Hence the economic value of a block is of 

utmost importance. The economic value of a block value (EBV) is defined by the 

equation;

EBV = I -D C  - IC 3.5

Ore blocks and blocks containing both ore and waste (= mixed blocks) will have EBV 

less than zero, equal to zero or greater than zero, depending on the amount and quality of 

the ore contained in such blocks. Waste blocks will always have a negative EBV since 

income from waste is zero. The optimization criterion for the pit limit design problem 

can thus be stated as:

Maximize Z = H(EBV)j 3.6
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subject to slope stability and mining constraints.

After the determination of the EBV, the algorithm for combining the blocks which will 

yield the maximum profit is applied to the gridded blocks. A comprehensive treatment of 

this section is accorded in Chapter 4. In Chapter 4 the principles underlying the 

algorithm used for searching for the optimized pit layout is also discussed.

3.4 Rock Slope Design

Stochastic processes have been known to underlie rock formation. The use of discrete 

factor of safety values are therefore not reliable. The probabilistic approaches to open 

pit slope design have been advanced by such workers as Pine (1998), Priest and Brown 

(1983), Coates (1977), McMahon (1975), Piteau and Martin (1977) and Moss and Steffen 

(1978). The measure that will be employed in this work is the reliability index, which 

considers both the mean factor of safety and its variability.

3.4.1 Slope Design

In classical slope design the factor of safety is considered as;

Resisting Forces Strength R .  _
r . o   ------------------------------- ------------- — —  J . /

Disturbing Forces Stress D

For a plane slope failure mode with a unit thickness, the factor of safety is given by 

{c*A  + [fV »cosif/p - t / - F  » s in ^ pjtan<I>)
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The slope is considered to have failed if the safety factor < 1. Though there are many 

slope failures the plane failure mode is used in this work.

3.4.2 Uncertainty Analysis

In geomechanical design, there are 4 approaches which can be employed to deal with 

uncertainty in the factor of safety and the risk associated with it. The first approach 

involves plotting the probability density functions (PDFs) of all the variables in equation

3.8. The factor of safety is calculated from values which are randomly-selected from the 

various PDFs. Generally, Monte Carlo simulation is used to generate each of the variable 

values. The resulting cumulative density function (CDF) is used to calculate the 

coefficient of reliability or the coefficient of failure and the consequences of failure. The 

second approach used in dealing with uncertainty and risk is the safety margin which is 

defined here as the difference between the resisting forces and the disturbing forces, 

equation 3.9. In this case failure occurs if S.M=0.

S.M = ^:*A + ]fV *cosy/p -  U - V  *sinv/p]tan<I>}- ^  * cosy/p - U  - V  *siny/p\ 3.9 

The reliability index for n units, with the probability of failure, pn is given by

Where r< if the reliability of a single unit. Note that the reliability index of the ith cell of 

unit, n is given by;
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r, =1  ~ P i 3.11

The input variables and the safety margin are analyzed statistically. In this case Latin 

hypercube sampling together with @Risk/Excel can be employed to complete the 

calculation. The third approach involves geostatistical modelling and techniques. The 

fourth approach (which is the method employed in this work) involves the use of machine 

learning to develop the geomechanical design.

3.5 Optimization of Engineering Systems

Engineering optimization problems/systems can be classified into linear, non-linear and 

complex systems (Figure 3.13).

Linear
Systems

Nonlinear
Systems

Complex Systems

Figure 3.13 Classification of Engineering Systems

Linear systems are well-defined and have established optimization methodologies. 

Nonlinear systems are difficult to optimize and can be computationally tractable. 

Complex systems are computationally intractable and cannot be adequately modelled 

with mathematics. Even though it is possible to model and optimize nonlinear systems,
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their solution presents considerable difficulties. Nonlinear systems do not have closed 

form solutions and cannot therefore be solved analytically. Thus the process of solving 

non-linear optimization problems involves the use of numerical techniques to search for 

an optimal solution in the corresponding search space. It is quite difficult to obtain a 

global optimum for a nonlinear optimization problem. Using nonlinear objective 

functions entails dealing with a solution space with many local optima which makes the 

global optimum difficult to find. The nonlinear constraints can also form feasible regions 

that are hard to find and mostly difficult to deal with. Since the nonlinear constraints 

result in small feasible regions that are difficult to locate or very few feasible solutions 

(multi-modal problems), numerical search methods must be used with care.

In both constrained and unconstrained optimization problems, nonlinear multi-modal 

objective functions can be the most difficult to solve. Some of these challenges are 

illustrated in Figure 3.14. The terrain represents various characteristics that can cause 

problems for search methods that adapt to a subset of these characteristics (Shang, 1997). 

For instance, gradient search methods cannot effectively deal with the steep and gentle 

slopes at the same time. The large shallow basins and plateaus may equally be difficult to 

model as small step size may take a considerable amount of time to search.
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Types of Systems

Figure 3.14 Difficulties in Solving Nonlinear Optimization Problems (After 
Shang, 1997).

Figure 3.15 represents a multiple model approach to engineering optimization. By 

employing appropriate axes of demarcation, a nonlinear problem can be subdivided into 

smaller regions (regions 1, 2 and 3). Different optimization techniques can then be 

applied to solve each of the regions. The optimal solution is therefore developed from 

these 3 sub-solutions. In the mine design and optimization process, the subdivisions are 

done on the basis of the natural processes underlying the various phenomena to be 

modelled/designed and/or optimized. For example in the design of the pit, the ore body is 

modelled using geostatistics. In order to make reliable predictions from the model, 

machine learning (neuro-genetic) algorithm is used to build an intelligent block predictor.
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Figure 3. IS Multiple Model Approach to Optimization of Nonlinear Systems

Optimization is the principle underlying the analysis of many nonlinear systems, complex 

systems, decision and resource allocation problems. Optimization can simply be defined 

as finding the maximum or minimum of a certain function or system defined on some 

domain. An optimization problem consists of a set of unknown variables, an objective 

function and a set of constraints with associated set of solutions. Some optimization 

problems are not constrained. Optimization theory can be considered as a body of 

mathematical and numerical algorithms, which is employed in identifying the best 

candidate from a number of alternatives. This best candidate (optimized solution) is 

chosen without having to evaluate all possible alternatives. In optimization methods, the 

best results are obtained by using mathematical, heuristic and iterative algorithms. In 

view of the intensity and complexity of the optimization processes, most optimization 

algorithms are computerized.
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Classical theories of optimization are differential calculus, variational calculus and 

optimal control theory. Generally only a single criterion of optimality is employed. Some 

of the vast ranges of choice of optimality criterion are total capital cost, annual cost, 

return on investment, cost-benefit ratio, net present value, minimum production time and 

maximum pull down force[Anon, 1995].

The best candidate must however be the minimum or maximum value of the chosen 

performance index. The boundaries of the engineering system must be well defined to aid 

in the selection of the best model. A system which is described as the area of interest in 

Figure 3.16 is a restricted portion of the universe. The universe is the unconstrained

Area of 
Interest

Figure 3.16 A System Within a Universe

solution space. The system boundary thus separates the area of interest from the universe. 

The quantitative criterion of optimization must also be defined. It is considered 

impossible to find a solution that maximizes profitability and minimizes cost 

simultaneously. A choice is normally made between profit maximization and cost
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minimization in optimization problem formulation. The model thus expresses the manner 

in which the variables are related. An optimization problem P is a 4-tuple <Ip, Sp, fp, 

Optp>, such that for each pair of x €  Ip and y €  Sp(x), fp(x,y) is a real number and Optp € 

(max,min} defines the problem as maximum or minimum. For a given input instance x €  

Ip , the optimization problem P is solved by finding the required solution y in Sp(x) which 

optimizes the value of the objective function fp(x,y) among all other solutions in Optp. 

[Anon, 1995].

3.5.1 Combinatorial Optimization

In the framework of computational theory, combinatorial optimization problems are 

typically finite and the best results are chosen from a finite number of possibilities. It is 

however true that these possibilities may include all trees on n nodes and/or all 

Hamiltonian circuits of a complete graph. Exploring all the possibilities of finding the 

best solution for a small problem is practically impossible [Grotschel, 1993].

3.5.2 Global Optimization

Optimization can be local or global depending on the way that particular algorithm works 

(Figure 3.17). Nonlinear optimization problems generally contain a large number of local 

optima. These optima can be classified as weak or strong depending on their relative 

importance to the global optima. One of the strong optimum solutions invariably 

qualifies as the global optimum. Global search methods must be able to overcome local 

optima in order to obtain a global optimum. Solution methods for nonlinear optimization 

problems can be local and global.
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Figure 3.17 Local and Global Optima for Unconstrained Optimization Problems 
(Anon, 1995).

Local optimization methods (simplex, gradient-descent and Newton), use local 

information (gradient or Hessian) to achieve local minimum (Shang, 1997). Local 

optimization methods are best suited for uni-modal problems. However, global 

optimization methods employ heuristics, gradients and Hessians to get out of local 

optima into the global optima. Even though local optima may be good for some 

problems, many engineering applications require global optima. Many nonlinear 

problems have multimodal objective functions with many local optima. In an 

unconstrained optimization problem as depicted in Figure 3.17, all the optima are 

considered during the solution to the problem. Strong local minima is the set of all the 

well-defined minima. This includes the global minima. The global minima is the absolute 

minima. The global optimum solution is therefore the true optimum. The situation may 

be different in a constrained optimization problem. The global optimum is the optimum
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solution within the constraints (see Figure 3.18). in this case the solution space lies to the 

right of the constraint. Though the optimum point to the left of the constraints is the 

actual optimum if the constraint is removed, it is not considered at all (Anon, 199S).

strong local 
mini ins

Figure 3.18 Local and Global Optima for Constrained Optimization 
Problems (Anon, 1995).

3.5.3 Stochastic (Probabilistic) Global Optimization

There are a large number of real world optimization problems which cannot be 

satisfactorily solved by discrete optimization search algorithms like gradient descent and 

Newton’s methods. Thus these global optimization methods are weak in their local and 

global searches. The global minimum is this case is within the set of local minima. 

Random search or stochastic techniques therefore become the methods of choice (see 

Figure 3.19). Stochastic/probabilistic global optimization employ probability theory to
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solve nonlinear optimization problems. In the simplest form, stochastic search methods 

employ a series of restarts to get out of local into global optima. Stochastic optimzation

Stodufitic global algorithmm

Figure 3.19 Stochastic Global Optimization (Anon, 1995).

methods are employed in solving large-scale problems. Within the context of the global 

search, the same strategies are employed in solving unconstrained and constrained 

problems. The pure random search methods are namely random line search, adaptive line 

search, adaptive random search, evolutionary algorithm, tabu search and simulated 

annealing [Anon, 1995 and Shang, 1997].

3.6 Conclusions

In this chapter, conceptual frameworks which can be applied to the design and 

optimization of an open pit mine are discussed. Even though some of these frameworks
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are theoretical in nature they will be put to use in one form or the other in the following 

chapters. The importance of the correct design and optimization of an open pit mine to 

the success of future mining operations can not be overemphasized. Mine operators, 

financial institutions and other stakeholders, depend on the results of an open pit design 

and optimization to make crucial decisions. A general approach for solving the design 

and optimization problem is a definition of the problem followed by the design process 

and then the optimization algorithm. The output is checked against the problem definition 

to see whether it is satisfactory. The design problem is divided into slope design and 

block modelling, each of which requires a different solution methodology. Optimization 

involves the application of mathematical, numerical, heuristic and machine learning 

algorithms to identify the best candidate solution from a number of alternatives. Various 

optimization methodologies have been developed to solve a diverse number of problems. 

However most real world problems cannot be satisfactorily solved by discrete methods 

such as gradient descent but rather by stochastic methods such as simulated annealing, 

genetic algorithms, tabu search, random line search and adaptive line search. The 

particular frameworks that will be applied to the various aspects of the design and 

optimization will be discussed in the following chapters.
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CHAPTER 4

MATHEMATICAL MODELLING USING MACHINE LEARNING

This thesis is aimed at designing and optimizing an open pit mine. This chapter therefore 

deals with the mathematical foundations of the various design and optimization 

algorithms employed. The mathematical models will cover slope design, geostatistical 

ore reserve estimation, simulated annealing, neural networks and genetic algorithms.

4.1 Open Pit Optimization Modeling Paradigm

The fundamental paradigm in open pit mine design and optimization is the maximization 

of net present value of the ultimate pit. The optimization algorithm must select the set of 

blocks which maximizes the net present value when mined together over the life of the 

mining operation. For a n-period pit, the maximum discounted net present value can be 

defined as;

U axN PV  ( ' - f r .X R e v ,  -T C , -R , - N C C ,)-C C , +NCC,
t r  ( i+ 0 '

Subject to FS > 1.25(sIope constraints); Price > Cost (economic viability) and

£(rr+»v) < n ,
r=i

Due to the time value of money represented by a discounting factor, cash flow earned in 

the earlier years of the mining operation have a higher impact than that earned at later
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years. However the scheduling aspect of an open pit operation is beyond the scope of this 

work. Employing the number of ore and waste blocks mined from years 1 through n, the 

first part of equation 4.1 becomes;

Max. NPV
n

0 - T x , { - ±
+--------L_2±

cq W q -O C ,-R , -C C , +NCC,

(1 +  i )
4.2

Air blocks (blocks with values of zero) have been omitted since they have no effect on 

the net present value.

Figure 4.1 Relationship Between Sample and Universal Spaces.

4.1.1 Design Paradigms for Machine Learning Algorithms

It is assumed that a finite hypothesis space represented as the universe or search space 

(H) exists with a single truth hypothesis H(x). It is further assumed that the sample space 

is randomly selected and falls totally within the universe. The data points are

Universe of Search Space

Sample Space (random)
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representative of the search space and are unbiased. Machine learning involves choosing 

a hypothesis/learning algorithm, h(x) based on sample data such that H(x) = h(x) V x in 

X.

4.1.2 Hypothesis Testing

The accuracy of the chosen hypothesis can be easily evaluated if there is abundance of 

data. On the contrary, the absence of adequate data introduces bias and variability in the 

estimates from a hypothesis. Bias is defined as the difference between the value of the 

estimator (errs(h)) and the true value/underlying population to be estimated (err<j(h)) and 

is given by the equation,

If S is the training set used to produce h, then h and S must be chosen independently in 

order to obtain an unbiased estimate. The variance of the estimate is defined as the 

difference between the measured accuracy and the true accuracy for an unbiased 

estimator. The measured accuracy may still vary from the true accuracy even if random 

test samples are used to evaluate the hypothesis. The variance is known to be indirectly 

proportional to the sample size.

The true error of a hypothesis h with respect to a target function, H and a distribution d is 

the probability of h mis-classifying an instance drawn from d. Thus

4.3
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errd(h) = Pro&[//(x) * A(x)] 4.4

Also the sample error of h with respect to the target function, H and the sample data, s is 

the proportion of samples mis-classified by h. This is given by the equation;

err(h) = £ d [ //(x )  * h{x)] 4.5
1 XCJ

where

*(* )]=  ft 4 .6

As depicted in Figure 4.2, if by careful analysis and modelling, the chosen hypothesis is 

equivalent to the true function, then the right hand side of equation 4.4 becomes zero.

3
a
73
2d
3
£<u

Equivalence

Chosen hypothesis

Iterations

Figure 4.2. True and Chosen Hypotheses
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In reality the function of the chosen hypothesis approaches the true hypothesis

assymptotically. Suppose that the data samples are drawn independently of one another 

and of the discrete-valued hypothesis, h then the N% confidence interval of the true error 

is given by;

4.2 Mathematical Modelling by Adaptive Logic Networks (ALN)

Artificial neural networks have become one of the tools used by researchers to model 

complex systems, networks, and physical phenomena that do not lend themselves to 

accurate classical mathematical representation and analysis. According to Philip (1989), 

artificial neuron was initially designed to mimic the first order characterization of the 

biological neuron. Some researchers believe that problems that can not be modeled by 

partial differential equations, graph theory, heuristics and operations research techniques 

can be adequately modeled and solved using artificial neural networks and or fuzzy logic.

Neural networks have been successfully employed in pattern recognition or classification 

and function approximation. Like the open pit optimization problem, most of the 

problems that are now been solved using neural networks are described as 

computationally intractable.

4.7
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4.2.1 Perceptron Network

The perceptron is a paradigm that requires supervised learning based on a set of examples 

of required or proper network behavior. Suppose we have a set of variables x* and tj, 

given as.

(x,,ti), (X2,t2), (X3,t3), (X4 ,t4 ) , . . .(X i,tj),.. . (Xq,tq) 4.8

where Xj is an input and tj is the corresponding target/desired/true input. The error 

function is defined by;

e =t — y  4.9

where t is the target output and y is the real output. The learning rule for the weight 

vector is given by the equation,

W™ =W°'d+eX = W°'J + {t-y )x  4.10

Where Wincw is the new weight vector; W|0ld is the old weight vector and X is the 

matrix of variables. This rule can be extended to train the bias by noting that a bias is 

simply a weight whose input is always 1 and its weight is 0.

The perceptron rule in matrix notation is written as

W ttew = W oU + e X T

gnew  _  g o ld  +  g
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Where e is the error vector and eXT is the outer product of the matrix. The perceptron 

will always converge to a solution in finite number of steps if one exists for the problem 

under investigation. The perceptron learning rule of Frank Rosenblatt has been 

successfully used to classify input vectors that can be separated by a linear boundary. 

Such vectors are called linearly separable. In situations where the problem is not linearly 

separable, the single layer perceptron can not be used. In such situations a multi-layer 

perceptron together is used.

4.2.2 Adaptive Logic Network (ALN)

The adaptive logic network, which was invented in 1974 (Armstrong and Bochmann, 

1974) and improved thereafter, is essentially a variant of the AD ALINE. It is considered 

a feedforward neural network formed from perceptrons or linear threshold units which 

send their output to a tree of units that realize OR and AND logic gates. It is an effective 

tool for approximating any continuous real-valued function on N-dimensional space 

given a set of sample points.

An ALN can be considered a linear combination of a column vector of parameters and an 

input or predictor variable vector. As a feature of neural network, the initial component of 

the input vector is made equivalent to 1 in order to allow for a constant term or bias. Each 

of such hyperplane is referred to as a linear piece. Node values are calculated as either a 

maximum (logic OR) or minimum (logic AND) of at least one leaf node in the next layer 

of the tree. Subsequent layers are calculated in the same way until the final layer, which 

computes the models scalar output y. Any continuous function can be approximated to
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any desired accuracy by a piece-wise linear approximant - ALN with a suitable 

architecture (layers, nodes, node types) and coefficients (weight vectors in the leaf layer). 

The simple max-min (OR-AND) structure of an ALN makes it computationally efficient 

in modeling non-linear systems. Once the ALN has learnt its pattern recognition, 

computational or functional representation from the data set, it could be used to predict 

future behavior or control the functioning of the equipment in the required fashion.

ALNs represents complex functions by piecewise linear functions. The general 

expression for a linear function is

+ W2 * 2 + W3X3 + ............. + 4.13

where xm is the output variable, X|...xm.| are the input variables, Wj is the sequence of 

weights and m is the dimension of the problem. The expression representing an ALN is 

formed using a tree expression of maximum and minimum operations, corresponding to 

the OR and AND units in the ALN tree to form the piece-wise linear function: shown as a 

thick curve (see Figure 4.3). ALNs can be viewed from 2 different directions. First an 

ALN can be considered as a network that computes a logical value which indicates 

whether the following inequality is true;

^  / ( * | . * 2 ................x m - i )  4 .14

given m real-valued inputs including xm. An ALN can also be considered as a neural 

network which computes a real-valued function;
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*m =  / ( *  1   * ™ - l ) 4 . 15

Xm

Other variable

Figure 4.3 Representation of a Function by ALN ( After Armstrong et al., 1995).

Least squares fitting/linear regression is used to fit the linear piece on the data point in a 

certain portion of the input space. In order to produce real values from the logical values, 

AND and OR gates are converted to minimum and maximum nodes respectively. Linear 

threshold units are also converted to linear functions. Linear functions of the form,

m -  1

X m =  W 0  +  X  W i X i 4 1 6
/  =  1

According to Armstrong, over the years three distinct versions of the ALN concept have 

evolved, namely versions 1, 2 and 3 ALNs. The adaptive logic network, which was 

invented by Professor W.W. Armstrong (University of Alberta) is essentially a variant of 

the AD ALINE. Once the ALN has learnt its pattern recognition, computational or
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functional representation from the data set, it could be used to predict future behavior or 

control the functioning of the equipment in the required fashion.

4.23 Network Architecture of ALN

ALNs differ from other multilayer perceptrons in that logic gates are used in all the 

hidden layers except the first. Version 1 ALNs are essentially limited to Boolean inputs, 

whereas version 2 ALNs involve networks of logic gates whose inputs are computed by 

fixed thresholds on the continuous input variables. Version 2 ALNs are adequate for 

sensor measurements, for instance. A measured value greater or less than a fixed 

threshold is input into the neural net as a 1 or 0 respectively. A version 2 ALN adapts any 

of the four kinds of functions - AND, OR, LEFT and RIGHT, at the nodes of the logic 

tree. Supynuk (1992) successfully used a version 2 ALN for control applications. In spite 

of their potential usefulness, version 2 ALNs are difficult to encode and decode, giving 

rise to difficulties in understanding them and therefore casting doubts on their usefulness. 

On the other hand, version 3 ALNs employ a logic network of ANDs and ORs with input 

from LTUs. A version 3 adaptive logic network is essentially a type of feed-forward 

multilayer perceptron which employs linear threshold units in a first hidden layer, and 

logic gates AND and OR in the other hidden layers in the output layer (Armstrong, et al, 

1995). An example of version 3 ALN and an illustration of how the ALN represents a 

function are shown below.

According to Armstrong, the units of an ALN form a tree with a single boolean output. 

As shown in Figure 4.3 the output of ALNs is a zero or 1. A is one if the point is on or
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under the graph of a function, and a zero otherwise. Other characteristics peculiar to 

version 3 ALNs are summarized below;

(1) Partial derivatives or arbitrary bounds can be imposed on functions during the 

training stage. The learned function can be weakly or strongly monotonic increasing 

(or decreasing) in any variable.

(2) As mentioned earlier the open architecture of the logic tree can be used to impose 

qualitative constraints such as convexity on parts of learned functions. Qualitative 

apriori knowledge in the form of physical laws can be employed.

(3) A separate program evaluates the function trained by the ALN.

(4) There is no black box involved. A learned piecewise function can be checked for 

conformity to a specification by examining all the blocks of the input space 

determined by the decision tree and the simple combinations of linear 

functions/pieces using maximum and minimum operations that compute the output of 

that particular block.

(5) A different output variable can be used to convert the results of an ALN training into 

a DTREE computation. A function inverse is obtained in this way. The variable must be 

one in which the original ALN output was forced to be monotonic.

Larger ALNs can be used to represent a continuous function to any required precision 

uniformly on a compact set. In this case, Riemann sums are employed to approximate the 

area under the continuous function. The only modification required is to slant the edges 

of each pillar slightly so that a function is obtained which is represented by a two-layer 

ALN in the form of an OR or ANDs of linear functions. The weight on the output of each
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of the linear pieces can be normalized to -1. Though other neural networks have adopted 

curvi-linear functions in their computation, ALNs use linear functions for the following 

reasons;

• using linear pieces to fit training point can easily be conceived and a linear 

approximation resulting from such fitting is reliable and easy to accomplish;

•  using synthesized functions require computing values that deviate a lot from the 

training points. A linear extrapolation is reasonable in such a situation;

• ALN Decision Tree can be used to evaluate the piecewise linear function at a high 

speed.

• The monotonicity of each linear piece is completely controllable. Bounds can even be 

placed on the rate of change of the output with respect to each input. The user can 

also have a great influence on the qualitative properties of functions produced by 

ALNs.

• On creating an ALN Decision Tree, one can obtain all the weights of all the linear 

pieces and information on how they are put together to form the learned continuous 

function. This enables one to analyze the results of learning for accuracy or 

conformity to a specification.

4.3 Mathematical Modelling by Continuous Adaptive Time Neural Networks

The continuous adaptive time neural network (CATNN) is analogous to the time delay 

neural network (TDNN), except that the look back intervals are adaptive in the CATNN. 

The look back in CATNN is interpolated smoothly across records (BioCOMP Systems, 

2000). The output of neuron is given by;
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0,00 = I ' 0 0  ifibel0nES' ° A 4.17
(n) if i belongs to B

For j €  B, the net internal activity of neuron j at time n is given by;

Pj  (n) = £  wJt {n)0,  (n)  4.18
ieA u B

The output of the neuron j, for the next (n+1) step is computed by running pj(n) through 

the non-linearity y(.),

y j {n  + \) = y,{P j {n)) 4.19

The jth element of the error vector is defined as,

i f j e# (n )  4.20
0 otherwise

The set of visible neurons as specified by ^(n) can be varying over time. Thus the 

instantaneous value of the sum of squared error is at time n,

The main objective is minimization of the total cost function which is defined as the 

value of the 4 (n) computed over all time;

- I « » )  4.22
n

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since we are using the method of steepest descent, the cost function is differentiated with 

respect to the weight vector Wjj,

Using chain rule to express the derivative of cost function t̂otai with respect to the weight 

vector,

tout _ y  d t̂otal dv j (n) ^  ^
d w p (n)  7  3 Vj ( » )  3 w ^ ( » )

Where the time index n runs over Vj(n) and not ^(n). The first term on the right hand side 

(RHS) of equation 4.24 is considered as the change in the cost function t̂otai produced by 

a change in the internal activation potential Vj of neuron j at time n. The equality of the 

equation holds only when the RHS is summed over n. Thus,

dwp{n) dVj(n) dwp(n)

The weights are updated using the ideal gradient descent, the learning rate q and 

equation 4.24,

S 22, =y W 4.23

4.25

wJt(n + 1 ) = w Jt (n) -  rj
d v j ( n )  d w p (n)

4.26
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The derivative of the activation potential Vj(n) with respect to the weight vector W jj(n) for 

any given neuron j is equivalent to the input vector applied to neuron j.

dvj(n)
—  ------= x (n )
dWjAn)

4.27

The gradient for neuron j is given by;

dj (n)  =  -
dvj(n)

4.28

Equation 4.26 can be re-written as,

w (n  + 1 ) = w Jt ( n)  -  rjd j { n ) x , (n) 4.29

The expression for the local gradient for neuron j is dependent on whether the neuron is 

in the hidden or output layers. These local gradients are given as;

dj{ri) =
e(n)0‘(vj(n)) neuron j is the output neuron 

0'(Vj («)) (n)wmj neuron j is the hidden neuron 4.30
meA

and

A Tm ( n ) w mj is the inner product o f the vectors A m ( n )

and w mj

Both of the vectors have a dimension of (m+1).
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A » (« )  = [ d m( n ) , d m( n  + I),......, d m( n  +  M ) , J 4.31

4.4 Mathematical Modelling by Generalized Regression Neural Networks

The generalized regression neural network which is also called the Nadaraya-Watson 

neural network can accept both discrete and continuous valued inputs. In this 

nonparametric approach, binary least squares or logistic regression methodologies are 

employed. In the binary regression case, two class cases are defined by the response yj = 

1 or 0 depending on whether the ith training vector Xj emanates from class 1 or 2. To 

indirectly estimate the posterior probability, a family of functions R is defined by the 

form (Holmstrom, et. al., 1996);

Another approach is using a logistic regression methodology to model the posterior 

probability directly as in,

R = {/•(•,/) : t e T } 4.32

The dot in the function r means the inner product. A function r is then selected that

minimizes the sum of squared errors criterion,

~XG', - r M ?  = min!n r*R
4.33

The error function (equation 4.33) is actually an estimate of the expected value

4.34
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4.35

Given that X|=xi, ,Xn=xn> the unknown parameter t can be estimated by

maximizing the conditional likelihood of yi,.. ..,y„.

The least squares fitting criterion in equation 4.33 can be thought as the results of using 

the maximum likelihood principle to estimate a regression model with normally 

distributed errors. The logistic model uses a binomially distributed error and is therefore 

statistically superior. These two approaches are easily mapped to situations more than

two classes by using a one-of-c coding. If the response yj is the unit vector [0,   0 ,

1,0................ , 0]T e Rc, with I in the jjth place, the least squared method yields,

4.5 Decision Analysis in Design and Optimization

Decision theory is the amalgamation of probability and utility theories. A decision 

involves irrevocable allocation of resources and must therefore be based on adequate 

information, analysis and ordering of preferences and alternatives. If the present state of

4.36

The conditional log approach is maximized by using the fitting criterion,

n c  n

£ £  y, ^ g  qj{x,) = £ lo g ^ ( x , )  = min! 4.37
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a system is unique, completely specified, with a complete knowledge of the outcome of 

an action and an unambiguous, totally ordered utility function, then decisions are simple 

and easy. However if the current state of a system is not precisely known, the effect of an 

action is probabilistic and the utility function is unspecified, the optimal decision is 

unknown. Conceptually, an optimal action can be defined by,

a*(s)=  argmaxa[t/(Rejw/r{a,5 })] 4.38

It is assumed here that a rational agent will choose an action or a set of actions that 

maximizes his expected utility and is strictly Pareto superior (or at least Pareto superior). 

The hypothesis Hm is Pareto superior to the hypothesis Hn if the outcome O j ( H M)  >  

0 |(Hn) for every state i, with a strict inequality for at least some single value of i. 

Hypothesis HM is strictly Pareto superior to the hypothesis Hn if the outcome Oj(HM) > 

0 ( ( H n )  for all i (Kreps, 1990).

Though the expected utility cannot be calculated directly due to the lack of adequate 

information, an agent can be made to maximize some performance measure to achieve 

the highest performance score; summing or averaging over the possible environments in 

which the agent is placed. This performance measure could be the maximization of the 

net present value of the final pit. If U(M) and U(N) are real valued functions that operate 

on states M and N, then U(M) > U(N) if and only if the axioms of utility are fulfilled and 

M is preferred to N. However if the learning agent is indifferent between M and N, then 

U(M) = U(N). The maximum expected utility of a lottery (complex scenario with
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probabilistic outcome) is some sum of the expected utilities. The equations representing 

the above utility theories are;

U(m ) = U(n )<̂ > M  y  N  

U{M) = U{N)<* M  * N

U ( P „ X I ; ~ P . . „ X , . „ P , X , ) =  ± PlU(x,) 4.39
;=i

In the case of outcomes described by two or more attributes, the multi-attribute utility 

theorem is employed. If the probability distributions of 2 actions M and N on an 

attribute A, are Pm(a) and pn(a), respectively, M stochastically dominates N on A if

^  fPnfa 'W  4.40
-« -oo

In this case N can be discarded.

In a sequential decision problem like open pit optimization, the reward for an action as 

well as the system environment dictate what sequence of actions an intelligent agent can 

take. An agent is a combination of computer program and machine learning architecture. 

The goals of an agent, its behavior and the percept sequence from the environment can be 

very complex. Simplifying assumptions can be used to reduce the level of complexity.

Suppose that the present state of an agent R is the block position (St = Sx,y,z -  5,1, 5) in a 

rectangular slice of 3-D blocks MNOP, depicted in Figure 4.4.
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/ Starting Point

* 3

-  R-
0 + + + + 0

+ + + + / +
+ T

l

O
Figure 4.4. Sequential Motion of A 3-D Intelligent Agent 
Through A Typical Open Pit.

In view of the time value of money and the need to obtain a positive cash flow as early as 

possible, the agent will start at state Sx,y,z (point R). The 3-dimensional agent can move 

to the right Sx+i>yiZ (positive) or left Sx.i>y,z (negative), into S x ^ i  (positive) or out Sx,yz.i 

(negative) of the paper and down SXiy+i,z (positive).

The surface topography is represented by MQN. The boundaries of the property are 

represented by MP and NO. The movements of the agent terminate on reaching T, the 

bottom of the pit. Lines MSi and QS2 represent the slopes of the pit. The reward for an 

action (change of state) can be immediate, intermediate or cumulative. If the agent 

performs an action a, the probability of reaching the state j is given by the transition 

model equation;

*7 = P(SM =j\S, = l,A = a) 4.41
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As in a standard planning problem, if the effects of an action and the values of the block 

are deterministic, then

T‘ e  {0 ,1} 4.42

Starting Point

M (l?l 5) rve +ve Q
-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5

0 +3.8 +2.9 +3.3 + 1 . 6 +2 . 6 0

+3,4 +2.5 +2 . 6 +2.5 +2.4

+1 . 8 + 1 . 6 + 1 . 2

I
O

Figure 4.5 Sequential Motion of A 3-D Intelligent Agent 

Through A Typical Open Pit.

Generally the utility of an ore block is considered positive, that of a waste block is 

negative (dis-utility) and an air block (zero).

The immediate reward of an agent for an action is the value of the block it moves into. 

Using the block values in Figure 4.5, the rewards are given as;

-2 .5 S,«
-2 .5 i f s,«
-2 .5 i f Sl+l
-2 .5 i f s,+l
+ 3.3 i f

= [6,1,5] 
= [5,1,6] 
= [5,1,4]

= [6,1,5]

4.43
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The cumulative immediate reward becomes the utility function (U) of a sequence of 

actions and states. Assuming the utility of the block in front and that behind this slice is 

zero, the utility is given by,

Cffco'flpSpO,,....... xtn, s„J=
t

= 14.70 4.44

Obviously the utility depends on the episode (ore, waste and air) and the maximum 

reward is obtained after a series of actions, not a single state. The best agent, given by the 

equation below is therefore the optimal multi-step agent which maximizes the expected 

utility by taking a sequence of actions.

4.6 Simulated Annealing

Many real-world optimization problems like, 3-D open pit optimization, cannot be 

adequately solved by any of the above methods. Simulated annealing is a widely accepted 

stochastic iterative technique for solving a lot of combinatorial optimization problems. It 

is based on the principle governing the freezing of liquids or recrystalization of metals in 

the process of annealing. The melted material initially at a higher temperature cools to its 

lowest energy state at a temperature, T=0 via an adiabatic process. If the system 

temperature is too low or cooling is done very slowly, the cooling stops and the system is 

left in a meta-stable state (trapped in a local minimum).

argmax 4.45
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The algorithm accepts changes that increase or decrease the objective function. A 

decrease in the function value is achieved through the use of probabilistic acceptance 

criteria. The probability of accepting decreases in the objective function values in a 

maximization process, decreases to zero according to the equation;

Where 5u is an increase in the objective function, u and T is the control parameter. U can 

also be termed the cost function (Hamiltonian), which associates a cost with the sate of 

the system (temperature). The algorithm is able to avoid being trapped in local maxima.

Generally, there are 2 versions of the simulated annealing algorithm -  homogeneous and 

inhomogeneous types, each of which represents a different way of decreasing the control 

parameter T (annealing schedule, cooling strategy or annealing scheme). In the case of 

the inhomogeneous algorithm, T is decreased after each transition and is therefore similar 

to a single inhomogeneous Markov chain. In the homogeneous case, T is decreased after 

a number of transitions L and is therefore similar to a sequence of homogeneous Markov 

chains each generated at a fixed value of T. The 5 major components of a simulated 

annealing algorithm are;

• the temperature function, T„, where T is the temperature or control parameter and n is 

the number of times the parameter has changed,

• the repetition function Ln which is used to decide how many changes are to be 

attempted at each value of T,

• the probability density function, g(x) of the state-space of D parameters,

P  = Boltzman Factors exi 4.46
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• the probability P of acceptance of the new net present value given the previous value,

• a stopping criteria which is to be used to terminate the algorithm.

4.6.1 Boltzmann Annealing

The probability of acceptance is based on the chances of obtaining a new state with net 

present value, NPVk+i relative to the previous state with net present value NPVk,

NPVy,

P(SNPV) =
exi

cxp( m/ t  J ( s n p v \

; p ( - ^ ^ )  +  e x p ( - ^ ) =eXIl  7  J
4.47

The above equation is referred to as the Gibbs distribution. A logarithmic temperature 

schedule can also be used, the temperature schedule is taken as,

r‘=7# }
where k is the time index of annealing and ko is some starting index.

4.6.2 Simulated Quenching

An exponential schedule can be used to speed up the annealing time, namely;

Tk =T0 exp{*(c-l)} 4.45

where c is a constant and 0  < c < 1 .
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4.63 Fast Annealing

A Cauchy distribution can be used as the probability density function of the state space.

4.7 Genetic Algorithms

These class of algorithms which are also purely stochastic optimization algorithms 

employ the evolution theory of Darwin in computational modeling and simulation. They 

can be described as a stochastic directed search algorithm that can be employed in finding 

the global optima in static and dynamic environments. The problem solving methodology 

involves encoding the potential solution in chromosome-like data structure. 

Recombination operators are then applied to the resulting structures to preserve critical 

information (Whitley, 1995). The first step in the implementation of a genetic algorithm 

is the randomized generation of a population of chromosomes. The chromosome 

structures are then evaluated and allocated reproductive opportunities so as to enable the 

chromosomes which present a better to solution to survive.

Generally, a genetic algorithm can be described as any population-driven computational 

model that employs selection and recombination to produce new samples in an n-search 

space. The two major parts of a genetic algorithm are the encoding of the problem and 

the valuation of the function. Most applications of genetic algorithms involve non-linear 

functions. Its is however assumed that the variables representing the parameters of the 

function in question can be represented by bit strings. The variables are thus discretized 

to some power of two. The discretization must represent the underlying function. Since 

genetic algorithms can be classified as global search methods that do not employ gradient

1 1 0
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information in their search, non-differentiable functions and functions with multiple local 

optima are good candidates for this computational algorithm. In the context of the 

canonical genetic algorithm the initial developmental step is the generation of the first 

population of chromosomes by some random process. This is then followed by evaluation 

and the assignment of a fitness function to each string.

Selection Reoombinadon
(Duplication) (Crossover)

String l String L Offspring-A (1X2)

String 2 m- ----------- String 2 Offspring-B (L X 2)

String 3 String 2 •  •  -- Offspring-A (2X4)

String 4 Suing 4 — _ . . . . Offspring-B (2 X 4)
---------

^ ^ — w* ^ —

Current Intermediate Next
Generation t Generation t Generation t + 1

Figure 4.6: Process of Breakdown of a Generation into Selection and 
Recombination Phases and Assignment of Strings into Slots.

The evaluation is driven by the evaluation/objective function which provides the measure 

of performance which is transformed by the fitness into an allocation of reproductive 

opportunities (Whitley, 1993). In this case fitness is given by the equation;
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f
fitness -

fm
4.50

where fi is the evaluation associated with string i and fav is the average evaluation of all 

the strings.

Commencing with the current population, an intermediate population is created through 

the application of selection (Figure 4.6). The next generation is then created by applying 

both recombination and mutation to the intermediate strategies generation.

4.S Neuro-Genetic Algorithms

Even though neural networks have been known to be powerful tools for modeling 

nonlinearity, finding the best neural network has not been an easy task. For this reason, 

genetic algorithms have been combined with neural networks for automatic generation of 

the best network to solve a particular problem. These classes of hybrid algorithms are 

termed neuro-genetic algorithms.

4.9 Conclusions

In this chapter various mathematical models have been developed to address the 

algorithms employed in the design and optimization of an open pit mine. Most of these 

algorithms are machine learning algorithms. The prominent ones are the adaptive logic 

networks and the hybrid of neural networks and genetic algorithms. These mathematical 

representations will be reduced to computer models in the next chapter. In a situation
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where a commercial software exists which is based on the algorithm that software will be 

used in the place of coding.
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CHAPTERS

COMPUTER MODELLING

5.1 Introduction

The 3-D open pit optimization problem involves finding a set of air, waste and ore blocks 

which maximizes the net present value of a pit layout when mined together subject to 

slope and boundary constraints. The mathematical models described in chapter 4 are 

transformed into computer models in this chapter. Other models representing additional 

procedures, which are not part of the mathematical models in chapter 4, are also 

presented.

5.1.1 Transformation of Mathematical Models into Computer Models

As depicted in Figure 3.1, the three major design and optimization computer models are

Mathematical Models

Computer Models

ALN Simulated
Annealing +

Neuro-
Genetic
Model

Figure S.l Transformation of Mathematical Models into Computer Models
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adaptive logic networks, simulated annealing and neuro-genetic models. The various 

mathematical models in Chapter 4, representing adaptive logic networks, simulated 

annealing and neuro-genetics are transformed into computer models. The adaptive logic 

network models are on a stand-alone basis. However the simulated annealing model is 

complimented by the neurogenetic model in the pit optimization process. Geostatistical 

methods are employed in the block modeling and reserve evaluation.

5.2 Adaptive Logic Network Computational Algorithm

The computational algorithm for converting the sequence of equations into code and

No
Testing

Yes

Software

Coding

Reduction into Objects

Development of Equations 
Representing ALNs

Figure 5.2 Flowchart for Transforming ALN Equations into Code/Software
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software for the adaptive logic network is summarized in Figure 5.2. Initially, an arbitrary 

system of equations is developed to represent the ALN model. The equations and the 

processes involved in the modelling are reduced into various objects and then coded. The 

code is tested to see if it is accurate before being released.

The equations in the computer model representing the ALN are developed through the 

following steps;

Step 1: the development of an arbitrary number of linear functions of the form;

F k = l y > f X j - Y  5.1
/-«

Generally some flexibility is built into the model through the introduction of a constant 

term in each function (i.e. Xo = 1). This is equivalent to the inclusion of a bias term in the 

neural network.

Step 2: assign values to weights (wjk) and initialize it together with a threshold to a small 

random number.

Step 3: change the weights to produce the desired output.

Step 4: check to verify whether Fk = 0. If Fk = 0 and n = 1, the model is defined by a 

straight line. If Fk = 0 and n = 2, the model is a plane. However if Fk = 0 and n > 2, the 

model is a hyperplane. Thus at a threshold of zero, the system of equations becomes;

F k  = £  w  jk *  j  5 .2
y = i
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Step 5: the linear functions are then incorporated into the leaf node of a decision tree. 

Each leaf node evaluates whether Fk ^  0, resulting in a true(l) or false(O) value. If the 

function evaluates to true, a threshold has not been reached and thus,

F t  ^  Z  w jk X  j  5 .3
y = i

for that particular combination of values for the input and output variables. The inclusion 

of linear threshold units in an ALN is central to its success. The logic term in ALN is the 

decision tree of AND and OR logic functions. Figure 5.3 describes the architecture of a 

three-layer ALN.

AND

OR

AND

m + pXi+ qX2 - Y > 0 ?

Output

4 + X,+ X2 - Y > 0 ?

4 + 3X,+ X2 - Y > 0 ?

3 + 3Xi+ 4X2 - Y > 0 ?

2 + 5Xi+ 2X2 - Y > 0 ?

 4*-------------------------- ----------------------------- 4* H
Input Linear Threshold Units Logic Function Output

Figure 5.3 Computational Architecture of the Adaptive Logic Network
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In this case only the LTU and logic functions are counted as layers. If the input and 

output layers are counted as well, this particular ALN can be described as a 5-layer neural 

network. The completed upper section of the ALN can be described by the following OR 

(AND(2), AND(2)) ALN structure. Even though the possible number of ALNs is 

infinite, only a small number of ALNs need to be considered. For n independent 

variables, each linear piece has (n+1) variable weights. The weights are also limited to 

the number of observations in the estimation sample. ALN employs sequential least 

squares as the estimation criteria during learning. The initial step in the ALN learning 

process is the random selection of parameter values. These values are then assigned to all 

the linear functions in the ALN. Apriori knowledge can also be used to assign parameter 

values. The next step involves the sequential input of training (input) values (Xt, Yt) into 

the ALN. The resulting truth values are then propagated through the network to produce 

the tree output. After the first set of values has passed through the network, the next set 

of training pair is presented to it. A training epoch is completed after the entire data set 

has passed through the network. The rules of logic are employed in assigning formal 

responsibility to every logic node in an ALN. This enables the ALN to determine which 

linear piece is responsible for the output error. The output node is assigned the initial 

responsibility. The responsibility is then worked backwards. In this case responsibility is 

assigned to the nodes which will affect the value of the network's output node if they 

undergo a change in their truth values.

The software product so developed by Dendronic Decisions using object-oriented 

programming in C/C++ in a Microsoft Windows visual studio development environment.
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Libaln is a library of object-oriented (C/C++) programs. The various adaptive logic 

network objects are listed in Appendix 5.1. Computer modelling in this case will be 

limited to the actual computations within this software environment.

Even though structured programming is employed in most engineering computations, 

there are number of other reasons why object-oriented programming is used in ALN 

software.

5.3 Computerization of Three-Dimensional (3-D) Optimization Algorithm

The optimization of a 3-D pit involves mining a sequence of blocks the total value of 

which maximizes the net present value over the life of the pit. The incremental policy 

iteration algorithm is employed. Let the current state of the open pit be the root of the tree 

of possible actions. This current state is defined by a set of blocks that form the minimum 

mineable 3-D pit (complete outline). These sets of blocks (ore, waste and air) form a 3-D 

ellipsoid of extraction (Figure 5.4). The geometrical model of the pit shell is constrained

Figure 5.4 An Incremental 3-D Open Pit
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by the slope angles of the pit walls. The pit shells can expand in all directions (Frimpong, 

et al, 1997). As depicted in Figure 5.5 in the present state there are 3 possible actions -  

movements of the intelligent agent.

Figure 5.5 A Section Showing the Incremental Movement of the 3-D 
Intelligent Agent

Each action will result in one of three possible outcomes namely;

8NPV =
> 0 V mining "ore" blocks 

= 0 V mining "air” blocks 

< 0 V mining "waste" blocks
5.4

In the case of an increasing NPV (6 NPV > 0), the intelligent agent mines a combination 

of ore or ore and waste blocks with a positive net benefit. When an equally-weighted ore 

and waste blocks are mined, there is no change in the net present value and the intelligent 

agent is considered to be mining air blocks.

1 2 0
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In a situation where waste or a higher percentage of waste blocks are mined, the net 

present value is decreased (increased cost). The state of the net present value (NPV) is 

dependent on the set of blocks enclosed in the incremental pit outline.

function incremental policy iteration(R, SNPV) returns a policy 
inputs: R = transition model

SNPV = incremental NPV 
local variables: NPV= net present value, initially equivalent to SNPV 

P = incremental pit, initially optimal w.r.t NPV
Repeat

NPV <-------  Determination o f Value (P, NPV, R, SNPV)
Unchanged? <-------  True
For each state i do

i f  max e £  R'NPV  [ / ]>  £  R ^ N P V  [ / ]  then
j j

P[i] <- arg maxc £  R‘ NPV\j]
j

unchanged? False
end

until unchanged or end o f blocks? 
return MAX PIT

Figure 5.6 Incremental Optimization Algorithm.

The outcome 0(S, P) denotes the history/incremental tree starting from the state S and 

taking action according to the policy P. This can be considered as a random variable 

which depends on a transition model R. Thus the NPV of the state i is dependent of the 

historical state at the beginning of the action and the results of following the optimal 

policy;

NPV t  + 1 Q) = SNPV (>) + y  Rjj Policy Q )n P V  t ( j )  5.5

j
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In this case the algorithm works by picking a policy (incremental pit), then calculating 

the incremental NPV of this state using the set of block values in the state. It then 

updates the policy using the NPV of the successor states. This algorithm is represented in 

Figure 5.6.

5.4 Search Procedure and Situation Calculus of the Intelligent Agent

The issues that must be addressed by a typical search procedure are completeness, time 

complexity, space complexity, and optimality. Completeness addresses the issue of 

whether a particular strategy will find a solution provided there is one. Time complexity 

deals with the time it takes to find a solution. Space complexity addresses the memory 

requirements of the search. Optimality is concerned with whether the strategy employed 

will find the highest quality solution from a set of possible solutions.

In this case the entire block model is perceived as situations each of which is a snapshot 

of a state of the world. Present situations are generated from previous situations by 

actions of the agent. The situation argument is written as;

At (Agent , [1,0,0]), SO a  At (Agent , [0,1,0 J),S l )  5.6

The results of performing an action is given by;

Result (Right, So) = Si 

Result (Down, Si) = S2
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5.5 Tracking Location

The agent must remember where it has already traversed and what it saw there in order to 

deduce the location of ore, waste or air blocks to ensure that a complete evaluation of all 

the blocks occur. Though the initial location can be described by At(Agent,[ 1,0,0], So), it 

must know the angle in degrees (0 = x-axis, 90° in z-axis, and y in levels). Figure 5.7 

depicts three movements of the agent.

0 1

0 + -4
2 3

Sz

Figure 5.7 Location Tracking in An Intelligent Agent

5.6 Stochastic Optimization Methods

In the iterative deepening and widening algorithm, the search can be complicated if a 

large number of sections and/or subsections are involved. The search can also end up in a 

local maximum. Hence the need for other search methods. Consider the generalized 

global optimization problem outlined in Figure 5.8. A maximization problem involves 

locating the global optimum. Most of the discrete optimization algorithms like the 

iterative search; hill climbing and others may end up in the local maximum. Some of the 

stochastic optimization algorithms, which have been used to alleviate these problems, are
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random search, heuristic repair, random incremental improvement, Monte Carlo 

simulation and simulated annealing.

5.6.1 Random Search Algorithms

These algorithms use a prescribed probability density function or a set of probability 

density functions to generate a sequence of points in the feasible solution space. The 

basic random search algorithm generates independent and identically distributed random 

variables (points) from a single probability density. The random search algorithms are 

namely pure random search, random search, pure adaptive search and adaptive search.

5.6.2 Heuristic Repair

This iterative improvement algorithm involves assigning arbitrary values to all the 

variables. Modification operators are then employed to move them to the solution. A 

typical example of this class of algorithms is the min-conflicts heuristics, which selects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 5.8 Dynamics of Iterative Improvement Algorithms
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values that result in the minimum number of conflicts with other variables (Russell and 

Norvig, 1995). It is very similar to the GSAT or Random Incremental Improvement 

algorithm presented below.

5.63  Random Incremental Improvement Algorithm

This is a random-restart, hill-climbing search algorithm. It starts by randomly generating 

a solution (Stephens, 1996). Random changes are then made to the solution. Each change 

to the solution is tested to see if there is improvement. The new solution is accepted if 

there is improvement. A stopping criterion should be imposed on the algorithm. One can 

stop the changes after a certain number of random changes. Generally for N items 

making N random changes may be sufficient. Alternatively, one can make changes until 

several test changes do not result in any improvement.

5.6.4 Monte Carlo Simulation

This type of numerical methodology uses a sequence of random numbers to perform 

statistical simulation. A probability density function is employed to describe the 

evolution of the physical or mathematical system. The simulation is achieved by 

randomly sampling the PDF and averaging over the number of observations. Generally 

the statistical error of the average can also be estimated.

The main components of a typical Monte Carlo algorithm are;

• A set of PDF's to represent the physical or mathematical system,

• A uniformly distributed set of random numbers on the unit interval,

• Some sampling rule utilizing the set of random numbers and the pdfs,
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• The outcome of the quantities of interest must be tallied,

• Determination of the statistical error (variance) as a function of the number of trials 

and other quantities,

• The use of a variance reduction technique (for reduction of the variance in the 

estimated solution) to reduce the computational time of the Monte Carlo 

Simulation,

• the use of parallelization or vectorization algorithms/methods to enable efficient 

implementation on a computer.

5.7 Logic Flow Network for Simulated Annealing Algorithm

The mathematical formulae for simulated annealing will be transformed into algorithms 

and pseudo-code. Its will then be coded in MS Visual C/C++. The neuro-genetic 

algorithm is also developed from the combination of genetic and neural network 

mathematical models. BioComp’s neurogenetic optimizer will be employed in the 

computer modelling. The output from the simulated annealing algorithm will be fed into 

the neurogenetic optimizer which will yield an actual optimized pit. In the simulated 

annealing paradigm, once an objective function has been established, the initial 

realization is modified so as to increase the value of the objective function in the 

maximization. The realization so obtained must be acceptably close to the target statistic. 

A flow diagram for the algorithm is depicted by Figure 5.9.
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Accept New 
Solution?

No
ind Search?

Update Stores

Stop

Assess New Solution

Change Temperature

Determine Initial Temp.

Calculate New Solution

Input Values and 
Assess Initial Solution

Fig 5.9 Flow Diagram of a Simulated Annealing Algorithm
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Start
Initialize (n, Tn, I, Ln) while n = 0;
Repeat

Repeat
Generate state j a neighbour to i;
Calculate 5NPV = NPVj - NPVj;
If Accept (8NP V, Ln) = = true then i = j

until Ln;
n = n+  1;
Update Ln;
Update Tn ;

Until StoppingCriterion = = true
End

Subroutine Accept(8NPV, T„)
if 8NPV < 0 then true
else

if random(0,l)<p((8NPV) then
return true

else
return false

endif
endif

End

Figure 5.10 Pseudo-Code for Homogeneous Simulated Annealing

5.8 Pseudo-Code Development for Simulated Annealing

The pseudo-code for a homogeneous simulated annealing algorithm is given in Figure 

5.10.

5.9 Simplified Computer Program Development Process

The development steps of a typical computer program are definition of the problem,
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No Yes End

Validation C++ Implementation

Class
Diagram

Use Case Analysis

Using CRC Cards 
for Design

Statement of Requirements Identification of Objects

Development of State and 
Interaction Diagrams

Detailed Class Design using Class 
and Operation Description Forms

Fig 5.11 Flow Diagram of the Object-Oriented Design Method

development of a solution, development of an algorithm, drawing of flowchart, creation 

of a pseudo-code, program coding, program debugging and documentation. In OOP, the 

process is a little different.
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5.10 Object-Oriented Design of the Optimizer

The design and programming of the 3-D optimizer begins with a statement of 

requirements. This is followed by the identification of objects, use-case analysis and the 

development of state and interaction diagrams. The actual design process starts with the 

preparation of component-responsibility-collaborator (CRC) cards, the development of a 

class diagram and detailed class design using class and operation description forms. The 

resulting design is then coded in C++ language by employing Microsoft’s Visual C++ 

5.0. The entire process is represented by Figure 5.11. Characterization of software in 

terms of actions to be performed (behaviour) is central to object-oriented programming 

(Budd, 1997). In the initial stages, the behaviour of the entire software is characterized at 

a high level of abstraction. The behaviour of the various software subsystems is then 

described. Coding will only commence after the identification and description of all the 

behaviour.

5.11 Requirements Analysis

The software that is being designed will search through an array of 3-D block (block 

model) and pick a collection of ore, waste and air blocks to optimize the net present value 

of the pit when mined. The optimization process involves the use of stochastic 

simulation -  simulated annealing as the search algorithm. The simulated annealing 

algorithm, its logic flow net as well as the pseudo-code is described in previous sections. 

A simulated annealing algorithm -  SimAnnealOpt, has been designed and coded. The 

newly selected blocks will be added to those already in the bunch of selected blocks, to
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calculate the net present value according to equations S.4 and 5.5. The computer will 

communicate the net present value of the ultimate pit to the user.

5.12 Identification of Objects for Open Pit Optimization Problem

The identification of objects and classes from the written problem specification is an 

important step in the OOP design process. An object type contains methods of procedures 

and functions together with data. Since objects are at the core of a successful OOP 

system, a clear understanding of which objects are to be included in the model is an 

imperative component of OOP. A program can be considered as a pool of objects.

Original r 
input [ 

Variables

Figure 5.12 Using Genetic Algorithms to Configure Network Problems 
(After NeuroGENESYS, 2001)

Discovering objects is challenge faced by OOP designers and analysts. One way of

discovering objects is the use of nouns and verbs in the project description as the

candidate object. One should try to discover as many objects as possible and refine them
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the candidate object list later. The problem is examined in more detail once objects are 

discovered.

5.13 Neuro-Genetic Algorithm.

The use of genetic algorithms in combination with neural networks have been achieved 

via 3 processes, namely using the genetic algorithm to configure the problem for the 

neural network, using the genetic algorithm to configure the neural network architecture 

and using the genetic algorithm to train the neural network.

Trained
ANNDecodingOffspring

PhenotypesGenotypes

FitnessjEvaluation labelSelection
Mutation
Recombination

Neural Network LearningGA Encoding

Figure 5.13 Using Genetic Algorithm to Design Neural Network Architecture

5.13.1 Using Genetic Algorithms to Design Neural Network Architectures

In this case the genetic algorithm is employed to transform the inputs or outputs of the 

problem. The transformed problem may be easier to learn, may require fewer weights or
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inputs or may aid in obtaining a better output. Such a process is outlined in Figure 5.12. 

This involves the use of a genetic algorithm to specify and optimize the network 

structure. This optimization addresses such network architectural issues as the overall 

topology, size and connectivity of the particular network.

Using genetic algorithms to configure and optimize neural networks involves the 

development of a population of candidate neural networks. Each individual neural 

network in the population is evaluated using the neural network criteria developed in 

sections 4.3 and 4.4 as well as the fitness function. This strategy enables the genetic 

algorithm to search for a single optimized neural network architecture for the particular 

application. A more elaborate explanation of the process is outlined in Figure 5.13. In 

this system a population of genotypes (an arrangement or a string of genes - genetic 

algorithm encoding scheme) is developed. Each gene is accorded values from a defined 

set of values. Genotypes are considered encodings of phenotypes or neural networks. 

The genetic code or genes represent numeric values or complex symbolic structures, 

which are translated into artificial neural networks by an appropriate decoding process. 

The resultant artificial neural network is tested using the available data and suitably 

defined performance measures or user-defined constraints. A fitness label is assigned to 

the artificial neural network after the evaluation is completed. Artificial neural networks 

are selected based on the fitness. Variety is introduced in the population of candidate 

artificial neural networks through the use of mutation and inversion. By repeating this 

processes over many generations, the population of neural networks evolves towards the 

king of the hill neural networks with highest fitness. In most cases the competing

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



networks are also indicated with their performance scores. In the case of BioComps, 

neuro-genetic optimizer, other architectures are ranked behind the optimized neural 

network.

Thus a genetic algorithm can also be used to train the network. This actually involves 

find the best set of weights to optimize the network.

5.14 Computer Modeb for Computer-Aided Design (CAD)

The block models are developed using GSLIB software. The computerized mine design 

software employed are Gemcom and/or AutoCAD. The procedures used will be 

described in the experimentation process in Chapter 6.

5.15 Conclusion

In this particular chapter, the mathematical equations have been transformed into 

computer models. The major models are adaptive logic networks, simulated annealing 

and the neurogenetic optimizer.
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CHAPTER 6

EXPERIMENTAL DESIGN AND EXPERIMENTATION

6.1 Introduction

This chapter is focused on experimental design and experimentation. In situations where 

appropriate software is available, it will be employed in the experimentation. Thus the 

models presented in Chapter 4 and the computer algorithms and programs described in 

Chapter 5 are employed in the design and optimization of an actual gold mine. The 

design of the various experiments, experimental setup and the experimentation are 

performed in this chapter. The gold data came from the Star Gold Mine, Zimbabwe 

(Frimpong, 1988) and the coal data from a Western Coal Mine in North America.

6.1.1 Machine Learning Algorithms

The various machine learning algorithms employed in this chapter are the back 

propagation neural network, continuous adaptive time neural network, generalized 

regression neural network, neurogenetic optimizer and the simulated annealing -  

neurogenetic optimizer. The backproagation algorithm (BP) employs gradient descent to 

train multilayer feed forward neural networks. An error function is defined in the final 

output of the network and weights are adjusted in the neural network to minimize the 

sum-of-squared error in the backpropagation algorithm. The generalized regression 

neural network (GRNN) stores the input and output variables in the network itself. It then 

looks at the difference between the current record and all the stored record to obtain an
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estimated output through interpolation. The continuous adaptive time neural network 

(CATNN) is a variant of time delay neural networks except that the look back intervals 

are changed by the connections as learning progresses. This makes it a little more 

advanced than time delay neural network. Time delay networks are somewhat similar to 

backpropagation neural networks. However there are multiple connections between input, 

hidden and output neurons. Each of these connections looks back to its weight to 

minimize the mean square error of the overall neural network. The neurogenetic 

optimizer combines the learning abilities of neural networks with the search properties of 

genetic algorithms to search through the data to uncover variables that contribute to the 

best models. It simultaneously searches through multiple neural network architectures 

and types to maximize the accuracy of the resulting neural network (BioComp, 2000). 

The simulated annealing -  neurogenetic optimizer is a combination of the simulated 

annealing algorithm and the neurogenetic algorithm. Output from the simulated annealing 

algorithm is input into the neurogenetic optimizer to complete the optimization process.

6.2 Verification and Validation

Whereas verification deals with whether the design/system has been built right so as to 

meet the set of requirements or specifications, validation is concerned with determining 

whether the engineering process has produced the required product or design/system. 

Verification is the comparison of configuration items, components, subsystems, systems 

to their requirements to ensure correctness. There are several types of validity, namely 

operational validity, conceptual validity, requirements validity and design validity 

(Buede, 2000). Whereas conceptual, requirements and design validity are major players
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in the early part of the design, operational validity is employed in the latter stages. 

Conceptual validity exists if there is agreement between the system needs and the 

operational concept. Generally it is established at the initial stages of a design.

6 J  Experimental Design

In scientific studies, experimental design is meant to either depict the effect of a 

particular variable on the dependent variables or to extract the optimum amount of 

unbiased information from a process (Pukelsheim, 1993). In many scientific (practical 

and theoretical) problems, the relationship of interest is given as;

y  -  /(*.«) « i

Generally the experimental condition x is selected from the given experimental domain 

by the experimenter while the parameter system 0 can be assumed to lie in the parameter 

domain. In order words, 0 is controlled by nature whereas x is chosen by the 

experimenter. The type of function f, employed is instrumental to the success of the 

modelling process.

However due to the complexity of engineering, single linear models have given way to 

multiple nonlinear approaches. Unfortunately in spite of the increasing mathematical 

sophistication and higher computing capabilities, problem complexity is still a hurdle to 

model adequacy. Consequently, other non-traditional approaches to modelling and 

problem solving like qualitative modelling, neural networks, fuzzy logic, expert systems 

and probabilistic reasoning have been explored by various scientists and engineers
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(Johansen and Murray-Smith, 1997). The divide-and-conquer approach to modelling 

complex systems has been employed for many years. In this case the problem is 

decomposed into a number of simpler sub-problems which are then solved independently. 

The solutions of the individual problems become the solution of the original complex 

problem. Its success is however dependent on finding the right axes for decomposition.

A complex system can be decomposed along 5 axes -  physical components, phenomena, 

mathematical series expansions, operating regimes and goals (Johansen and Murray- 

Smith, 1997). This new methodology - the operating regime approach - partitions the 

range of the complex system into multiple models or operating regimes where simpler 

functions can be employed to represent the relationships we want to model. One has to be 

aware of the trade-off between the size of the operating regimes and the complexity of 

the local models. At one extreme, a model can be represented by one large operating 

regime that covers the entire range of operation. In this case the local model is complex 

and equivalent to the global model. The operating regime on the other hand can be 

divided into such smaller units in which the local functions are constant values. 

Polynomial local models of arbitrarily low order (e.g. linear or constant local 

approximation) on a compact domain can be used to approximate any continuous 

function to an arbitrary uniform accuracy (Johansen and Murray-Smith, 1997; Kosko, 

1994 and Singh, 1994).

The operating system approach is very useful in modelling nonlinear dynamic systems 

using computationally intensive data-driven techniques (Johansen and Murray-Smith,
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1997). The method is knowledge-driven and integrates experimental data with the user’s 

knowledge about the system. The processes essential to this method are experimental 

design and data acquisition, raw data processing and analysis, analysis of a priori 

knowledge including physical laws and available models, machine modelling (structure 

and parameter identification), model reduction and simplification and model validation, 

analysis and interpretation (Johansen and Murray-Smith, 1997).

Generally, an experimental process is iterative and the results of experimentation can 

offer valuable insights into the improvement and understanding of a system’s response. 

However one can obtain good experimental results by using efficient methods of 

experimental design and good data modelling and analysis techniques.

6.3.1 Experimental Design Framework and Model Correctness

The problem solving methodology employed in this framework consists of a solution 

paradigm, expected solution criteria and assumptions. In order to obtain reliable 

experimental results, the paradigm employed in solving the problem must be able to 

capture the true definition or nature of the problem, the data involved, some basic data 

structures, file management issues, tasks and subtasks involved in solving the problem as 

well as a generic control regime (Fensel and Motta, 1996). The expected solution criteria 

involve the methods employed in obtaining the solution. These methods may be limited 

to a single solution methodology or a number of solution methodologies each of which 

can be specifically employed in solving certain predetermined tasks. In this case specific 

methods are used for the various tasks. This approach appears to yield a better solution.
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The underlying assumptions are based on prior knowledge and they cover the type and 

properties of the knowledge structure that are required to solve the problem. These 

assumptions are especially important for intractable and complex problems. The general 

problem solving methodology employed in this work is outlined in Figure 6.1. In general 

in a well-defined problem, the determination of an axis of decomposition is the starting 

point of the experimental design process. This is then followed by an optimized 

experimental design process. This may be the single most difficult and time consuming 

element of the experimental design framework. The experimenter will basically have to 

deal with the question of what to do to get the right answers.

Determination of Axis 
of Decomposition

Optimized Experimental Design

Model
Correct­
ness

Experimentation a -

Results

Figure 6.1 Methodology for Designing Correct Experiments

There are several measures of model correctness such as lowest cost, quality, highest 

benefit/value, process-dependent, level of error, tolerance, and deviation from a
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benchmark. The measure of correctness applicable to each type o f experimental model 

and various sections of the same experimental model may be different. The measure of 

the correctness is also dependent on the sub-processes driving the experiment. Model 

correctness should be reflected in every stage of the experimentation process.

63.2 Experimental Design for Optimized 3D Open Pit Mine

In this chapter, the models presented in Chapter 4 and computer algorithms in Chapter 5 

are validated using data from an actual gold mine and a coal mine. Even though the gold 

mine models will involve both the design and optimization process, the coal mine models 

are limited to the block models. This is because coal mining follows a different process 

and the methods developed in this work cannot be directly applied to optimize it. In the 

case of the gold mine (an actual open pit mine), the two main experimental designs 

involved are (i) the design experiments and (ii) the optimization experiments.

3-D Optimized Pit

Sensitivity Analysis

Open Pit Design

Open Pit Optimization

Figure 6.2 Design and Optimization Experiments
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The new intelligent simulated annealing -  neurogenetic and Lerchs-Grossmann 

algorithms are applied to 3-D models of the Sabi Gold Project to optimize the pit limits, 

evaluate its economic potential, and compare the optimized results. The mineral price 

model has already been validated by Achireko(1998) and will be employed directly in 

this work. Slope angle, and block value (ore grade) are the random variables studied in 

this experimentation as the net present value of an optimized pit (set of block) is 

dependent on them. The sequence of experimentation is outlined below in Figure 6.3.

Geostatistical 
Block Modelling 
-  GSLIB (30 
Realizations)

Neuro-Genetic 
Optimizer to Learn 
Block Model

(fiT Intelligent 3-D 
Block Predictor

Figure 6.3: Intelligent Block Design Paradigm (Gold Mine)

The intelligent 3-D open pit mine design and optimization experiments commence with 

geostatistical modelling and evaluation of the ore reserve (grade block modelling) and the 

use of artificial intelligence to design stable slopes. The slope is then converted to block 

equivalent. The selection of the block to be mined is done by using the 1 to 9 block 

convention. This 3-dimensional array of blocks is then employed in the optimization. 

Slope design experiments are also performed using adaptive logic network (ALN) and
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neuro-genetic optimizer (NGO). The two major processes involved in the block design 

are geostatistical block modelling with GSLIB followed by neuro-genetic predictor of 

block values. Parts of the rock data and block model are shown in Appendices 6.1, 6.2, 

and 6.3.

Two algorithms have been developed for the optimization, namely the incremental pit 

and the simulated annealing algorithms. However the simulated annealing algorithm is 

employed since it is a stochastic search process. As shown in Figure 6.3, the optimization 

process will involve some sensitivity analysis. During the sensitivity analysis a number of 

experiments will be run using the simulated annealing algorithm and the standard 

statistics will be analyzed.

In the case of the coal mine (an actual open cast or strip mine), the experimental designs 

involves only an aspect of the design phase and nothing on the optimization phase. This 

has everything to do with the nature of the open cast mining system itself and the way the 

block models were developed in Mincom. This will be further explained in Chapter 7. 

Part of the coal mine block data is shown in Appendix 6.4.

The framework for the entire optimization experiments is summarized in the flowchart 

shown in Figure 6.4. At the start of the optimization process, data from the simulated 

block models and the optimized pit slopes are input into the simulated annealing 

algorithm. The output from the first part of the optimization process is stored. If the
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number of experiments in this phase is less than 30, more experiments are run. Altogether 

about 33 experiments were run. The objective of each of the experiments is to find the 

combination of blocks, which optimizes the open pit mine. The input data are the 

simulated block values from the GSLIB program and the optimized pit slope. The block 

data is first input into D45BLK.C program (Appendix 6.5) which outputs vital statistics 

as the number of blocks, average grade total value of all the blocks, the maximum grade 

value and the minimum grade values. The 3D block program SIM3D.C (Appendix 6.6) is 

then activated which optimizes the pit and output the optimized pit value.

In the second phase of the optimization process, pit values together with the average 

grade and the search distance are input into the neurogenetic optimizer. The optimizer is 

run and the output is checked to see whether it meets requirements. If it does meet 

requirements the process is ended. If it does not meet requirements the NGO building 

process is repeated. The optimized or best NGO has the minimum deviation between the 

predicted and actual values.

6.3.3 Experimental Design for Optimized Pit Slopes

Due to the complex field properties, experimental design for the pit slope is aimed at 

using intelligent algorithms to find the best pit slope. Slope walls define the amount of 

extra waste material that will have to be excavated to gain access to ore. A lower slope 

angle may reduce the risk of slope failure and increase the amount of overburden to be 

excavated. However a higher slope angle can increase the slope failure risk and reduce 

the total overburden material to be excavated. Determination of the right slope angle is
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therefore important to the economics of the entire mining operation. The slope angle 

experiments were done using artificial intelligence (neuro-genetic algorithm).

6.4 Block Modelling Experiments Using Geostatistics

There are two main aspects of the open pit design experiments, namely the geostatistical 

modelling and evaluation of the ore deposit which will result in a 3-D block model and 

the slope design. In this section the geostatistical modelling processes and software are 

described. Figure 6.5 depicts the entire geostatistical modelling and evaluation processes, 

which are carried out using the Geostatistical Software Library (GSLIB) package.

Kriging

Spatial Statistics

Coordinate Transform Representative Statistics

Simulation, Selectivity 
& Uncertainty

Modeling Data and Information

Grade Control, Reporting & Mine 
Planning

T
Ordinary
Statistics

Spatial 
Statistics & 
Block 
Modeling

Mine 
Design & 
Planing

Figure 6.5: Sequence of Actions in Reserve Modeling and Evaluation
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The executables to be employed in the initial part of the experimentation are LOCMAP, 

fflSTPLT, PROBPLT, HISTSMTH, DECLUS, SCATPLT and DRAW. The programs to 

be used in the variogram modelling are GAMV and GAM, VARMAP, NSCORE and 

BIGAUS. The KT3D and SASIM programs are used in the kriging and simulation stages 

of the experimentation. Other programs to be used are AFFINE, BLKAVG, 

GAMMABAR, and GTCURVE (Deutsch, 1998).

6.4.1 Location

The Star Consolidated Gold Mine a subsidiary of Zimbabwe Mining Development 

(ZMDC) is located 10 kilometers south-east of Zvishavane in the midlands province of 

Zimbabwe (Frimpong, 1988).

6.4.2 Description of Input Data

The Star Gold Mine is created from a variant of the actual gold mine in Zimbabwe. This 

project contained an oxidized outcropping gold deposit. Feasibility studies in 1988 

established open pit mining and leaching technology for extracting the deposit. The data 

used in the block modelling are assayed gold grade values from the Star Project open pit 

mine. These grade values are estimates of the overall compositions of mining blocks, 

each obtained from a composite of the biast-hole samples collected within a block. They 

are used as known samples to find the values of other gridded blocks. The data set of the 

Star Gold project which as employed in the analysis contains 5624 gold data points. The 

mean of the gold values is 1.62 g/t. The minimum gold grade is 0.00 g/t and the
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maximum value is 3.86 g/t. Part of the data is displayed in Appendices 6.1 and 6.2. It 

consists o f x, y, z coordinates, rock types and grade values.

6.4.3 Geology and Background Information

The deposit is situated within the basement gneiss in the Chikuraukwe Ridge along the 

North-South fault (Frimpong, 1988). The outcropping mineralized body is essentially 

contained within two sub-parallel, almost vertical shears varying from about 50 to 100 

meter apart. The orebody extends for more than 2 km with a north-ward trend, mainly at 

or near the crests of the ridge. The gold is made up of 20-25 % free gold and the rest is 

associated with pyrites. Other associated minerals include chalcopyrite, bomite, calcite, 

epidote, magnesite, and the main gangue mineral is quartz. Past mining activities have 

been confined to auriferous pods aligned along stressed-relief fractures running at a few 

degrees east of north. These pods are discontinuous horizontally and vertically, pitching 

steeply to the north, and are highly siliceous. Average overburden thickness is about 0.5 

m and the oxidized zone (with ore amenable to heap leaching) persists to a depth of about 

30 m. The bank density of the ore is in the order of 2.76 tonnes/m3, and the loose density 

is 1.700 tonnes/m3.

The rock quality designation (RQD) is about 40 %. Metallurgical tests of the ore has 

indicated that the deposit is amenable to heap leaching. Actual ore processing have 

yielded recoveries of between 60-76% and further tests are underway to improve the 

recovery.
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6.5 Block Modelling

The block modelling experimentation which is aimed at modelling and evaluating the ore 

reserve, is a multistage process. As depicted in Figure 6.5, the entire process can be 

divided into ordinary/classical statistical analysis, spatial statistics and block modelling, 

and mine design and planning. Built into the process are such things as checking for 

model correctness, change of support correction and kriging/simulation.

6.5.1 Machine Learning (Adaptive Logic Network) Experiment

The objective of the ALN training is to fit an optimized model to the slope data so that

this optimized value can be employed in the pit optimization model. The process outlined 

below is used to run a factor of safety experiment for the slope design and to investigate 

estimation of block values. Using a combination of the right architecture and 

coefficients, an ALN can be a powerful tool.

ALN Creation

Data

Repeat cycle 
if any changes 
are required or 
to investigate 
other options

Parameter 
Setting & 
Training ALN

OK?

Validation Save/Output Files

Figure 6.6: ALN Experimentation Processes
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The ALN software employs an iterative least squares technique in reducing the root- 

mean-square error. To use the ALN, a root mean square error tolerance is stated. The 

ALN then starts with a single linear piece, which is equivalent to a standard multiple 

regression.

The single weight vector coefficients are estimated to minimize the root-mean square 

error. If the calculated root-mean square error is larger than the error tolerance, the single 

piece breaks into two pieces which are either AND (maximum) or OR (minimum) 

functions. If any of these new pieces is responsible for a prediction error, its coefficient 

vector is altered to enable the new piece adapt. The process ceases when the root-mean 

square error is lower than the threshold value for all the pieces. The entire process is 

represented in Figure 6.6.

Thus the steps involved in the creation of an ALN include,

(i) creation of the correct ALN

(ii) putting training and test data into the ALN

(iii) ALN training

(iv) ALN testing

(v) ALN validation

(vi) Saving and ending

The initial step in the experimentation process is the creation of an ALN of appropriate 

geometry and dimension. The dimension of the ALN should match the number of 

variables in the problem to be solved. There are 2 types of geometry for ALNs, namely

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fixed and growable. A fixed geometry has a given number of layers and is used in 

situations where we know that the particular geometry fits the data perfectly. The default 

mode - a growable tree, commences with a single linear piece and expands automatically 

to fit the data.

The training and test data can be loaded into the model via the file-import format, 

keyboard entry or through cut and paste from a spreadsheet or data file. If the data is 

loaded directly from another file, one must ensure that it is tab-delimited. Parameters for 

the loaded data are set prior to training. Optimal results can only be achieved by setting 

these parameters correctly. There are 2 settings -  parameters for each variable and 

parameters for the entire tree. These training parameters which are error tolerances, 

weight and value bounds are set for each variable. In the advanced mode, the following 

parameters are set within the entire tree - learning rate, number of epochs and the root 

mean square error (RMSE). The ALN is trained thereafter (Dendronic Decisions, 2000).

When training stops, the various text files are examined to determine if the ALN so 

achieved is appropriate. If the answer is in the affirmative, the new ALN is then 

validated with a third set of data. Files can then be saved and the program ended. If the 

ALN is found wanting, the ALN creation process is repeated. At this stage the parameters 

are changed to achieve better results. The cycle can also be repeated to investigate other 

options.
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6.6 Grade and Block Modelling with Neuro-Genetic Algorithm

In this section the neurogenetic optimizer is employed to model the block values. Grade 

values are not only required for exploration decisions but are also the basis of block 

models in mine design. It is therefore necessary to be able to obtain accurate values 

during interpolation and extrapolation, based on the model. Even though most earth 

science data, including ore grade are lognormal, they are transformed into normal 

distributions in order to be able to subject them to gaussian statistical techniques. Even 

though these are linear transformations, the underlying phenomena may not be linear. 

The use of gaussian techniques will therefore introduce errors into the model and may 

lead to inaccurate results in some instances. This may be especially true when dealing 

with multiple variables, for example a lead-zinc-copper deposit. This may also be true in 

gold deposits where the underlying variability is so pronounced that a simple variogram 

model can not fully capture it. In this work, a stochastic method -  a neuro-genetic 

algorithm is used to model the grade values. The input data consist of x-, y- and z- 

coordinates and grade values of the gold deposit.

Block models developed using geostatistical software can not be used off-line to predict 

block values in an advancing pit. The entire process of changing the parameters and 

generating the blocks again to make operational decisions can be long and tedious. The 

data employed are the coordinates of the block and the block values. The data is imported 

into the neuro-genetic optimizer (NGO) [BioComp Systems Incorporated, 1995]. Data 

can be entered manually or brought into the software from a text file. Once the data has 

been loaded, the application is configured to build an optimized model. The NGO runs in

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



two modes -  the standard and the optimized. In the standard mode, one can build neural 

networks of their own choice. In the optimizing mode, however the capabilities of the 

NGO are called into play to search and select data inputs and perform genetic engineering 

of neural network structures. Data is automatically scaled using either logistic sigmoid, 

tanh or linear functions, depending on whether the data is exclusively positive or positive 

and negative. Data can be split proportionately or disproportionately into test-train- 

validation sets. Data can also be selected randomly and placed in the test set with 

reference to the proportion you specify.

The network structure, hidden neuron and output neuron parameters of the neural 

network can be adjusted. The network architectures available are back propagation, 

continuous adaptive time neural network, time delay neural network, probabilistic neural 

network, generalized regression neural network, self organizing map and temporal self 

organizing map. The genetic algorithm in the NGO generates a host of possible neural 

network structures. It then searches for and optimizes the best neural network in this pool 

of neural networks. Each neural network in the population is trained, the best networks 

are selected and their attributes are recombined to create a new population of networks. 

This cycle continues until some stopping criteria is reached. This criteria is either the 

root-mean square error, the number of cycles or the length o f time (BioComp, 2000). The 

software displays the best network and about 5 to eight other ones, numbered from 

second best to the least.
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6.7 Open Pit Slope Design Experiments with Neuro-Genetic Algorithm

As depicted in equation 3.8, the calculation of the factor of safety involves a number of 

parameters. Most of these parameters have an underlying variability, which cannot be 

captured in a single factor of safety calculation. The neuro-genetic software that is being 

used however has an input limit of 5 variables.

The data is therefore pre-processed by calculating the disturbing, resisting forces as well 

as the factor of safety for the various scenarios. The process for calculating the optimum 

factor of safety and building a predictive model for the open pit mine slope is depicted in 

Figure 6.7. In Figure 6.7, the rock data is employed in calculating the disturbing and 

resisting forces.

Rock Data

Calculation of Safety

Optimized Pit Slope Design

Calculation of 
Disturbing Forces

Calculation of 
Resisting Forces (RF)

Input Variables into Neuro-Genetic Optimizer 
(DF, RF, Slope Angle, Factor of Safety)

Figure 6.7 Open Pit Slope Design with Neuro-Genetic Algorithm
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The safety factor for the set of disturbing and resisting forces is calculated as the ratio of 

resisting to disturbing forces. The disturbing force (DF), resisting force (RF), the slope 

angle and factor of safety are then employed as input into the neuro-genetic algorithm. 

The model is then run to obtain an optimized pit slope. There were 30 experiments run 

altogether using the various combinations of slope angle, factor of safety, disturbing and 

resisting forces.

6.8 Design of Optimization Experiments

As depicted in Figure 6.2, the open pit optimization process follows the design phase. 

The 3-D block model resulting from the design phase is employed in the optimization.

Simulated Annealing

3D Block 
Model

Comparison

LG Optimized

Optimized 3D Pit

Neurogenetic
Algorithm

Whittle
3D
Software

Figure 6.8 Design of Optimization Experiments
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The three methodologies used in the optimization phase are simulated annealing, Lerchs- 

Grossmann and neurogenetic algorithms. Figure 6.8 illustrates a diagrammatic 

representation of the intelligent simulated annealing-neurogenetic optimization process. 

The output from the simulated annealing algorithm is fed into the neurogenetic optimizer.

The optimized pits resulting from both routes are compared to accounts for the 

differences. The optimized pit of choice is then compared with the pit resulting from the 

Lerch-Grossmann’s algorithm.

6.8.1 Optimization by Simulated Annealing

Stochastic or randomized optimization algorithms like simulated annealing are used when 

there is no closed form analytic solution and the solution space is quite large. Thus the 

simulated annealing algorithm is an effective means of accounting for the stochastic 

processes underlying the parameters employed in open pit optimization. The central 

element of the simulated annealing algorithm as described in Chapter S is that the point 

(pit value) is in continuous random walk or motion; searching for the combination of 

blocks that will yield the minimum (-maximum).

In the case of the open pit optimization, the problem can be stated as finding the pit - 

combination of blocks of ore and waste, which will optimize the total value of the mine. 

Thus the problem is;

Find Bt ={Bx,B2,.......... . Bk_x) so as to

Max Pk{BT) 6.2
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The algorithm commences with an initial non-optimal set of blocks (which may be 

randomly selected). The algorithm improves itself by selecting a new set of blocks. This 

is because more often than not the mine will either start at an outcrop or in overburden. 

The mine operator will have to make a number of excavations before recording some 

revenue. The algorithm compares the value of the function at the trial point to the initial 

value. A random decision is then made to determine whether to move to this new point. 

The probability of accepting the new point is based on the value of the objective function 

at this point (Pk+i) as compared with the value at the previous point (P k ).

The four stages involved in translating and implementing the simulated annealing 

algorithm/pseudo-code outlined in Chapters 4 and S, in the experimental setups are,

1. The basic program algorithm

2. The setup algorithm

3. The anneal algorithm

4. The decision algorithm

To facilitate the use of the basic program algorithm in the experiments, the algorithm is 

further broken down into the following experimentation steps;
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• create initial list and set needed variables;

• try up to 100 different temperatures;

• anneal the list at this temperature and return the number of successful alterations 

made

• if there were no improvements found, end the program

• reduce temperature by 10 percent points

In the experimental setup, the setup algorithm creates the initial list and sets the initial

temperature.

In the third stage of the experimentation, the annealing algorithm anneals the list of

blocks at one temperature to find the best solution. The steps involved are;

• setting the number of successive changes to zero;

• run up to a 100 trials at the current temperature

• select a section of the list randomly to deal with

• randomly decide to select the next set of blocks and check if previous blocks have 

been mined

• calculate the change in net value (energy)

• make a decision on whether to include these new blocks in those to be mined using 

the decision algorithm

• if the decision is made to add these set of blocks to the list to be mined, then go 

ahead and change the list

• if sufficient number of successes have been attained, break out of the loop so that the 

temperature can be lowered.
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Thus the annealing schedule consists of an initial temperature, a decrement factor and a 

final temperature. In order for the annealing algorithm to accept all proposed transitions, 

the initial temperature must be high.

The decrement in the temperature is given by the geometric progression;

T k = a T k _x 6 . 4

The annealing process is discontinued if the desired number of acceptances is not 

achieved after 3 successive temperatures. In these experiments the temperature is defined 

as the quotient of the energy and the number of items in the list.

The run limit is set as the product of 100 and the number of items in the list and the 

success limit is one-tenth of the run limit. The decision part of the algorithm decides 

whether to accept the proposed new list of blocks. The steps involved in the decision­

making process in the experimental setup are;

• a new list should always be kept if it has lower energy than the old list

• using the Boltzmann algorithm to decide whether a higher energy list should be kept

• if all hell break loose (failure occurs), reject the list

A decrease in value is more likely to be accepted than an increase in value. The 

acceptance or rejection of a block is governed by Boltzmann’s probability depicted in 

Figure 6.9.
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Figure 6.9 Boltzmann Probability Distribution of Energy States 
According to Temperature (After Spinellis and Papadopoulos, 2000)
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Figure 6.10 Trajectory of a Simulated Annealing Experiment
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The algorithm can wander uphill as well as downhill (see Figure 6.10). A higher energy 

path is not immediately rejected. Local or temporary higher energy paths -  Hi and H2 are 

accepted or rejected by using the Boltzmann probability distribution criterion described 

above. Global optimum is reached when there is no further decline on the energy 

minimization. In order to ensure that a global optimum as opposed to a local optimum has 

been reached, the lowest energy is first stored. Then the algorithm is perturbed to see 

whether there will be a further deterioration in the energy (see Figure 6.10).

The results obtained from optimizing 30 different pits using the simulated annealing 

algorithm are fed into the neuro-genetic algorithm for true optimization of the open pit 

mine. Each of these block models have different grade values. The optimum pit value 

obtained from the new algorithm is compared with Lerchs-Grossmann and multilayer 

feed-forward algorithms. Finally the merits and demerits of the various optimization 

algorithms are discussed.

6.8.2 Risk/Sensitivity Analysis and Optimization by Neurogenetic Algorithm

The results from the simulated annealing experiments are fed into the neurogenetic 

optimizer for which will produce a trully optimized pit.

6.8.3 Optimization by Lerchs-Grossmann’s Algorithm

Whittle’s 3-D Lerchs-Grossman algorithm has been the standard industry-wide software 

for open pit optimization. The steps involved in using the Whittle 3D software can be 

summarized as follows pre-calculation of the slope using LGST.EXE file, 3D
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optimization using LG3D.EXE and examination of the results with LGPR.EXE (Whittle, 

1990).

Pit Value

New 3D 
Aleorithm

Lerchs- Grossmann 
Algorithm

Input Data from Design 
Phase

Statistical Analysis 
Comparison of Pit Values

Figure 6.11 Comparison of Optimization Results

6.8.4 Comparative/Statistical Analysis of Open Pit Optimization Algorithms

The results from the 2 algorithms, namely, Lerchs-Grossmann and the simulated 

annealing-neurogenetic optimizer will be compared (see 6.11). This involves running 30 

further experiments.
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6.9 Conclusions

In summary, the design and optimization of an open pit mine involves a number of 

processes and algorithms. In order to obtain a numerical solution to the problem, the 

computer models are translated into actual code. The code is then employed in the 

running a series of experiments. Computer models are graphical and algorithmic 

representation of the solution to the problem at stake. The code is the set of written 

instructions in a specific programming language (C/C++ in this case), which the 

computer employs in solving the problem. The author wrote the program that generates a 

summary report from of the block data files. The simulated annealing program is a 

modification of the Algorithm of the Gods, which was originally written by Carlson 

(1997). In a situation where appropriate software exists like the AlnFit (Dendronic 

Decisions) and neurogenetic optimizer (BioComp), they are used in running the 

experiments.
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CHAPTER 7 

DISCUSSION OF RESULTS

This chapter constitutes a detailed discussion of the results obtained from the design and 

optimization experiments. It is quite evident from the literature survey and the work 

outlined so far that the parameters underlying the open pit design and optimization 

processes are stochastic in nature. The results discussed here were obtained from running 

experiments with the Alnfit, GSLIB, NGO, and SA-NGO codes and/or software.

7.1 Resource Modelling and Evaluation

Modelling and evaluation of a mineral resource is paramount to the design and 

optimization process and the subsequent planning and exploitation of the deposit so 

defined. The proper definition of the ore in terms of the quantity and grade of the 

underlying mineralization is at the heart of every mineral project. Bankers, analysts and 

mine operators are therefore very interested in the resource modelling method employed 

to outline the mineralization. Geostatistical ore reserve modelling and evaluation has 

taken center stage. Geostatistics in itself constitute a set of techniques and numerical 

methods aimed at modelling and evaluating regionalized (mineral resources) data. The 

methods range from statistical analysis through estimation to block modelling and 

simulation. The output from the various GSLIB programs are discussed in this particular 

section.
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7.1.1 Exploratory Data (Statistical) Analysis

Mineralization was not uniform throughout the Sabi gold deposit and so it was necessary 

to categorize the data under different rock types. Even though all the various rock type 

models were finally put together to constitute the final model, the statistics from one of 

the rock types is presented here. Figure 7.1 depicts the histogram of rock type 2. It is 

quite evident from the histogram that the underlying distribution is lognormal. Almost all 

regionalized variables have a lognormal distribution and the presence of lognormality is 

important to the application of some of the techniques used in geostatistics (Deustch, 

1998).

3 0 0 _

g  .200 —BZ

Gold Values 
Figure 7.1: Histogram of Rock Type 2

A cumulative probability plot of the same data is shown in Figure 7.2. It also depicts a 

non-linear and non-uniform data. The data is declustered and normal scored. This makes

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



it possible to apply the central limit theorem and other nice properties of the normal 

distribution to the data.
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Figure 7.2: Cumulative Probability Plot of Rock Type 2
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7.1.2 Variogram Modelling

In geostatistical modelling the variogram is the most important element. It is used to 

represent the relationship between euclidean and geological distance. Figure 7.3 is the 

normal scores variogram in the horizontal direction. Normally mineralizations are not the 

same in both the horizontal and vertical directions. The presence of anisotropy was also 

investigated. Variability could also be different for the horizontal and vertical directions. 

All the directional variograms for a particular direction follow the same pattern in each 

rock type, indicating the absence of anisotropy. However the variograms for the 

horizontal direction are different from those in the vertical direction (Figures 7.4 and 7.5).
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Figure 7.3 Normal Scores Variogram in Horizontal Direction
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Figure 7.4 Horizontal Variograms in the N22.5°E, N67.5°E, 
N112.5°E and N157.5°E Directions.
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The variograms fitted to the 2 rock types in the horizontal and vertical directions are of 

the form;

y(h) = C0+C,Sph 7.1

1.60_

Y .80 _

.40 _

.00 .

0. 200 . 300 . 400 . 500 .100 .

Distance

Figure 7.5 Vertical Variograms in the N22.5°E, N67.5°E, 
N112.5°E and N157.5°E Directions.

where y(h) is the semivariogram of geological distance, Co is the nugget effect, C| is a 

coefficient, h is the euclidean distance and aj is the practical range or the distance within 

which the variogram value is 95% of the sill, in the horizontal or vertical direction. A 

summary of these parameters for two of the rock types are;
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Parameter Rock Type 1 Rock Type 2

Co 0.1 0.05

c, 0.9 0.95

ai=ah 105 130

aj — av 105 500

The subscripts h and v represent the horizontal and vertical directions respectively.

7.1 J  Model Correctness

There is always some level of uncertainty associated with a variogram model even 

though it is considered as representative of the data employed in developing it. A 

variogram model must enable correct estimation of the phenomena or quantity of interest 

(grade, contaminant concentration) at the non-sampled locations within a reasonable 

degree of accuracy. The correctness of the variogram model is determined by a process 

termed cross-validation. The method involves removing one sample point at a time and 

using the neighboring samples to estimate the value of the “non-sampled” location. The 

actual error is the difference between the actual and estimated values. The expected or 

theoretical error is either the kriging variance or the kriging standard error calculated by 

the estimation. Generally the actual errors are averaged. This average error is zero for 

unbiased estimation and the ratio of the average variance and the average kriging 

variance is expected to be one.
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Another method of comparison is to plot the kriged estimate against the true grade for a 

visual inspection of how well they compare. A correlation coefficient of 1.0 indicates that 

the model fits the data perfectly. The correlation coefficient for the various rock types 

averages about 0.87. This means that the experimental model can account for 87% of the 

variability in the gold deposit. The part of variability that can not be accounted for may 

be due to just sheer lack of information. The information effect could be more 

pronounced in precious metal vein-type deposits, intercalated by complex stockworks. 

The information effect can also be due to the data set and number of samples.

7.1.4 Kriging

Kriging is an estimation technique that is used for spatially distributed data. It is 

considered a generalized linear regression method that is used to estimate a continuous 

attribute. The results of running the kriging programme at radii of 45m, 60m, 75m, 90m, 

105m and 135m with various block sizes were compared. The mineralization trend seems 

to be the same for all the radii. The Q-Q plot of the kriged and the actual grade values 

approximately fell on the 45° line thus indicating that the estimation process honoured the 

actual grades. The kriging estimation variance can be affected by errors in the calculation 

of the variogram. Any errors in the data set, stationarity assumptions, sampling and 

sample preparation results in high estimation variance. Negative weights can occur in 

kriging as a result of some samples being beyond the range or from shadow effects. A 

negative weight could even be your central value. Though some programs are known to 

eliminate negative weights, an action that increases the estimation variance, negative
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weights are not important if good and reliable estimates can be obtained in the presence 

of negative weights.

7.1.5 Simulation

Computer modeling and simulation of various processes have become acceptable forms 

of non-destructive testing, validation and extrapolation of diverse phenomena. The 

advantages of computer simulation can not be over-emphasized. During computer 

simulation, model parameters of systems are changed rapidly without jeopardizing 

system integrity. Theoretically, a sample point or grade is considered as a single 

realization of the regionalized random function. The class of random functions forming 

the basis of the phenomena under investigation has a characteristic distribution function 

and a variogram (covariance) model. The geostatistical model developed to date is one 

realization (albeit a smoothed version) of this random function in bounded space. 

Simulation can be used to draw realizations of the random function from the pool, which 

honor the model parameters including the variogram developed to date. In geostatistical 

modeling and evaluation of natural resources, such as the gold-copper deposit of this 

study, the reproduction of the presence or absence of spatial dependence of the one or 

several variables is paramount to the success of the modeling and evaluation process.

Gaussian-related simulation algorithms are applicable to continuous data. In Gaussian 

simulation model, the methodology adopted in this treatise, the z-covariance function is 

used to determine the spatial laws. Sequential gaussian simulation involves modeling and 

sampling one-point conditional distribution function at each of the nodes visited by the
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random sequence. The GSLIB subroutine SGSIM (Deutsch, 1992) was employed in the 

sequential simulation. The executable files could not handle the 3-D model. The main 

error message was that the available grid size is 150X150X1 but I have asked for 

150X150X150 or 50X50X50, depending on the nx, ny and nz values entered in the 

parameter file. Changes were also made to the “include” file in order to run the program. 

The SGSIM.FOR (Deutsch, 1992) file was also edited, compiled, and run to build a new 

parameter file which was later altered and employed in the simulations. Fifty simulation 

runs were made for gold. The mineable tonnage was calculated to be about 15 million 

tonnes at a cut off grade of 0.9g/t.

7.1.6 Resources/Reserves Reporting:-

The results of this geostatistical analysis is the estimation of resources/reserves and 

classification into various categories. It is evident the entire in-situ mineral resource 

identified and estimated by geostatistical analysis cannot be mined because of variable 

mining and treatment costs and spatial variability inherent in the deposit. Besides 

geological in-situ resources, mineable or recoverable reserves according to Joumel and 

Huijbregts (1978) depend on such factors as;

• selection criteria -  maximization of the net present value of the entire operation is the 

predominant economic criteria. Other selection criteria can utility maximization, 

pareto optimality, net benefit maximization and cost minimization,

• cut-off grade or minimum mineable thickness - a grade above which a resource can 

be classified as ore can be used. Mineable thickness is an important issue in mining
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thin high grade veins where access may only be gained through increase in mining 

thickness, for example in underground stopes.

• technological constraints - in a typical open pit environment, a block X can be mined 

if only all the blocks above defined by the cone of influence have been removed,

• support effects -  size and geometry of the selection unit as compared to the support of 

the exploration unit (core samples),

• information available at the time of selection -  selection may be based on kriged 

values with some level of uncertainty, whereas real values are recovered by the mill,

•  geological boundaries -  limits of various geological structures/rock types may affect 

the selection, and

• Regulatory requirements -  regulations may define what can be classified as ore or 

waste.

The influence of support and level of information is expressed by the geostatistical 

variances of dispersion and estimation.

7.2 Adaptive Logic Network

Adaptive logic network is one of the fastest neural networks in application today. The 

ALN employs piecewise linear regression techniques to model complex non-linear 

systems. The training of a typical ALN consists of many linear pieces depending on the 

complexity of the function that is being fitted. The goal of training is obtaining a 

combination of linear pieces which fit the data with the lowest error. The error is obtained 

by summing the squares of the distances between the approximating surface and the 

output values. The output from the Alnfit is discussed in this section.
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When dealing with real world data, which is complex and diverse in nature, there is 

concern for the tradeoff between precision and computational efficiency. ALNs use a 

supervised learning algorithm to learn patterns and complex relationships by using 

training set data, which consists of inputs and outputs. Supervised learning is equivalent 

to parameter estimation in statistics. In neural network terminology, an ALN can be 

regarded as some sort of feed-forward neural multi-layer perceptron. Linear threshold 

units are used in the first hidden layer. The other hidden layers as well as the output layer 

consist of logic gates of ANDs and ORs.

7.2.1 A Detailed Example of ALN Training or Estimation

In this work the data was assumed to have been generated from a function with unknown 

properties. It was assumed that the values had random noise in them. The data had been 

divided into two sets. Each data set was assumed to have come from the same function 

with the same type of noise. The noise is inferred from the two sets of data. The initial 

step was to train an ALN in standard mode with very small tolerance on the output 

variable. The value in the Smoothing Parameters window was set to 0.0001 and it 

disappeared when the "Epsilon" button was clicked. Then the Create ALN button was 

clicked to create a new ALN. The results have been displayed in Appendix 7.1. An 

extremely small root mean square error (RMSE) of 0.0035 was obtained on the training 

set, but a much larger one of 0.04 was obtained on the test set. This was characteristic of 

overtraining. In this case both the information and the noise have been fitted. 

Nevertheless, this indicates that the overfitted function has RMSE about 0.04. The data
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should never be any closer than that. This value was taken and divided by the square root 

of 2 to get an estimate of how far the test set is away from the real function. This yielded 

an output tolerance = 0.04 /l.414 = 0.028. Actually the noise was generated by adding a 

random value to the function that varied uniformly in -0.05 to 0.05. The correct value of 

the RMS error due to noise is thus 0.288. This value is very close to what has already 

been estimated.

The process is started over, but this time the output tolerance is set to 0.28. The allowable 

RMSE value on the training set should not be less than the output tolerance. If the output 

tolerance is set lower, the tree will grow very quickly and overtraining will result. The 

new results are presented in Appendix 7.2. According to this, there is still some 

overtraining, so increase the output tolerance to 0.07. The higher this is, the sooner the 

splitting of linear pieces will stop and the better generalization obtained. This process is 

continued until a good ALN is created.

Part of the ALN for the block values are shown in Figure 7.6. The filename appears in 

the uppermost left-hand comer. The first three columns (inputs 0, 1 and 2) are x-, y-, and 

z- coordinates of the blocks. Output is the block value. The ALN values during training 

and testing are shown in the final columns of the training and test sets. This screen shot 

depicts how the workspace appears after executing the model. As can be seen from this 

snapshot, even though the model fitted very well to the training set, there are some errors 

in the test set. Once again there are 4 variables involved. Note that the naming of the 

variables start from 0 to 3. In this case the dependent or reponse variable is the block
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grade (X3) and the independent variables are x o (x  coordinate), x i  ( y  coordinate) and X2 (z  

coordinate).

mmx
z.:m.

22.5 4 4 039  03099756155
22.5 4 12 0.39 0.38999951
22.5 4 20 0.39 0.3899995305
22.5 12 4 0.39 0.3899994871
22.5 12 12 0.39 0.3899995076
22.5 12 20 0.39 0.3899995281
22.5 20 4 0.39 0.3899994847
725 20 12 0.39 0.3899995052
22.5

^  _
20 0.39 0.3899995257

22.5 28 4 0.39 0.3899994823
77 5 , . n nqQ n WWQHTtt

r**it

wmmm

-ulV :-

0.39 0.3099994090 
0.39 0.3099995102 
0.39 0.3099994669 
0.39 0.3936957902 
0.39 0.4021020363

Figure 7.6: A Screen shot of the ALN for the Block Values.

wm 37.5 12 12
mm 37.5 12 20
mm- 37.5 20 4

37.5 20 12
37.5 20 20

The ALN employed 312 linear forms to fit this model. The model involves 8 blocks and

15 decision trees (Appendix 7.3). It must be noted that the data shown in Figure 7.6 is

only a snapshot of the actual data. Typically, an entire data set consists of about 5000

data points. If the x and y coordinates are the same the z coordinate is different, which

indicates that each of the data set is different block of ore or waste. There are also charts
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and various statistics that describe the ALN model so developed. An example of a chart 

output by the model described above is shown in Figure 7.7.
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Figure 7.7: The Behavior of the Error Function During Training and Testing

This figure shows the behaviour of the training and the testing errors with respect to the 

number of iterations.

It is evident from these charts that the training error settled down rather quickly, just after 

200 epochs. The training error settled at (a root mean square error) value of about 0.28. 

After this the training error oscillated around a mean value and did not change much even 

with increased iterations. The test error reduced to a value of about 2.3 and then rose
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again to a high of 2.5. This may be due to the differences in the test and training data sets 

and possibly overtraining. These issues were fully investigated but the training error did 

not improve much. Indications are that the ALN is sensitive to outliers and may not 

effectively model large discrepancies in the data. The variability may also represent the 

inability of adaptive logic networks to model gold mine grade data.

73  Neuro-Genetic Modeling of Block Values

Neural networks have the capacity to estimate non-linear functions and perform pattern 

recognition among other things. However developing an optimized neural network to suit 

a particular data can be a monumental task.

There could be hundreds and in some instances thousands of possibilities. With a 

complex combination of performance requirements such as learning speed, compactness, 

ability to generalize and noise-resistance together with growth in size and model 

complexity, a well-engineered solution as required by the block model, is a non-trivial 

task. The divide-and-conquer approach has therefore given way to model automation. 

Genetic algorithms, a stochastic optimization approach, have for good reasons become 

the methods of choice in optimizing neural network architectures. The genetically 

optimized neural network architecture employed in this work, is a problem-solving 

methodology that applies the rules of genetic reproduction, gene crossover, and mutation 

to a population of candidate neural network solutions. The operational cycle of a typical 

neuro-genetic optimizer as employed in this work is shown in Figure 7.8.
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Figure 7.8 A Typical Neuro-Genetic Modeling Process

7.3.1 Modelling of Gold Block Values

The block modeling application was considered a classification problem. Using the 

features of the input data as a basis, the neuro-genetic optimizer learns to distinguish 

between 2 or more categories prevalent in the data. The network's highest neural output 

indicates the category or class the data record falls into. The upper limit of the accuracy is 

100%, where all the records are properly classified. The first neural network model was 

evaluated by employing all the data available together with the maximum allowable 

hidden neurons. This use of all the available inputs may lead to the best neural network. 

This may however not be the case as it is evident in the block model. The software 

automatically employed the x-, y- and block values to obtain the maximum neural
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network. The predictions were completely out of order and only 40% of them were 

correct. The resulting model was also 2-dimensional and since the focus of this work is 3- 

D modelling, the 2-D model was not considered any further. This issue will be revisited 

later since it is quite interesting and may have resulted from the software methodology or 

some underlying phenomena in the data.

A portion of the population of genetically generated neural network architectures is 

depicted in Figure 7.9. The best neural network generated by the neurogenetic optimizer 

is on top of this list of candidate neural architectures. Using a probability of selection 

proportional to fitness, a set of parents is chosen in reproduction. Crossover mapping 

involves 2 parental or two offspring chromosomes. This process is random.

i 1 1 1 1 1 1H * m i i  11111 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  111 i i 1 1 1 1 1 1 1 1 1  ] ] 11 n  11111 i p i

0.000E+00 010011011110001010111101110000101 
O.OOOE+OO 011100010001001110011011100000111 
0.000E +00 010100000000101010011101000100101 
0.000E +00 100011010000001010011011100100111 
0.000E +00 110100010011101010001000111100110 
O.OOOE+OO 100111001000101010011011000100111 
0.000E +00 110100000011100110001011110100111 
0.000E+00 100100010000111011110101110100111 
0.000E +00 010100000001101110001011011100111 
0.000E+00 100100010001111110011111110100110 
0.000E+00 100100001010101011011011110100101 
0.000E +00 101111001010001000001010100000111 
0.000E+00 010100011110101100000011100000111 
0.00QE+00 111100010111000010101111111000111 
0.000E+00 011100000000101110110010110100111 
0.000E +00 010100000000101010101010000000110

Figure 7.9 Portion of Genetic Population for Gold Block Model
(with Back-Propagation Learning Algorithm)
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Figure 7.10 shows 2 parents in the process of generating two offsprings. Note that the 

offsprings are not identical. No two of the genetic population in Figure 7.9 are therefore 

supposed to be identical. This results in a lot of different neural network options. 

Mutation as depicted in Figure 7.10, ensured diversity and prevented death (premature 

stalling or stopping).

Chromosome
Population

New Population 
Of Offspring 
Chromosome

Figure 7.10 Generation of New Population (After Looney, 1997)

Reproductive
Crossover

Mutate
Gene

Mutation

A portion of the population of genetically generated neural network architectures is 

depicted in Figure 7.9. The best neural network generated by the neurogenetic optimizer 

is on top of this list of candidate neural architectures. Using a probability of selection 

proportional to fitness, a set of parents is chosen in reproduction. Crossover mapping 

involves 2 parental or two offspring chromosomes. This process is random. Figure 7.10 

shows 2 parents in the process of generating two offsprings. Note that the offsprings are 

not identical. No two of the genetic population in Figure 7.9 are therefore supposed to be 

identical. This results in a lot of different neural network options. Mutation as depicted in
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Figure 7.10, ensured diversity and prevented death (premature stalling or stopping). 

Reproduction, crossover, and mutation are the driving elements of the entire evolutionary 

process whereas fitness guides it.

The fitness measure affects which parents are chosen by the selection process to 

reproduce new population (offsprings). Fitness serves as a guide to the best or fittest 

population while mutation encourages diversity and thus prevents stalling. When the 

model was forced to employ the x-, y-, z- and block values, the NGO fitted another back- 

propagation neural network as the “best”. The relationship between the desired and 

predicted values as given by the back-propagation model is depicted in Figure 7.11.

Block Numbers

Fieure 7.11: Desired and Predicted Values From Back-Pronaeation Model
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The predicted values deviated substantially from the desired values. Even though the 

correlation coefficient as calculated in a Microsoft Excel (1997) spreadsheet was about 

70%, it is evident that the deviations were substantial when they occurred. In some places 

the deviations were as much as 60 basis points (see Figure 7.11).

The f-statistic and t-statistic are 6.5 X lO"6  and 2.5808 X 10' 5 respectively. In the case of 

the t-statistic, it was assumed that the data was paired.

A diagram representing the results of 30+ experiments using this model is shown in 

Figure 7.12. As can be seen from this diagram, the feedforward neural network (with 

backpropagation learning) could not predict the block values to an acceptable degree of 

accuracy. The experiments actually substantiated the problems with the back-propagation 

neural network. It was wrong more than 50% of the time. It cannot therefore be used a 

reliable estimate for mine planning. The output report for the back-propagation network 

is in Appendix 7.4. The best results were obtained by using a probabilistic approach. The 

2  competing algorithms employed were the generalized regression neural network and 

the probabilistic neural network models to classify the data. The generalized regression 

neural network came up as the ultimate neural network for this application.
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Figure 7.12: Graph of Experimental Versus Actual Results Using the 
Feedforward (Back-Propagation) Neural Network

As depicted in Figure 7.13, the predicted results highly correlates with the desired results. 

The correlation coefficient is 92%. The corresponding f-statistic and t-statistic are 

5.31822 X 101 and 2.6785 X 10*2 respectively.
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Figure 7.13: Desired Versus Predicted Values from GRNN

The results of experimenting with this particular generalized regression neural network 

(GRNN) are presented in Figure 7.14. The predicted values are mostly equivalent to the 

actual values. The only exception may be the extreme values. Generally the predicted 

values followed the trend of the actual values and can therefore be used as reliable 

estimates. The report for the best neural network model is a generalized regression neural 

network and it is outlined in Appendix 7.5.
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Figure 7.14: Graph of Experimental Versus Actual Results Using GRNN

Figure 7.15 is a graph showing the linear correlation between the actual block values and 

the values predicted using the neurogenetic optimizer. The network had two hidden 

layers with the first layer containing 213 neurons and the second layer, 2 neurons. The 

network so built was able to predict grade values at a considerably higher accuracy. The 

graph virtually falls on the 45° (one-to-one correspondence) line. This NGO predictor can 

therefore be effectively used to predict grade values in the pit.
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Figure 7.15: Predicted Versus Actual Block Values.

7.3.2 Results of Modelling of Coal Block Values

The results from the NGO software presented so far depict the performance of the 

algorithms in a gold ore block model. In this section the results of the coal block model 

experiments are presented. This time the NGO in the automatic mode generated a 

continuous adaptive time neural network (CATNN) as the best model to fit the data.

A graphical representation of the output is shown in Figure 7.16. The genetic algorithm 

representation of the candidate neural networks are coded by 0’s and 1 ’s. Thus each of 

the rows of 0’s and 1 ’s represent a particular neural network. These networks are sorted
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Figure 7.16: Continuous Adaptive Time Neural Network Model for Coal 
Block Model.

by fitness. The resulting network consisted of 3 inputs, 2 hidden layers and 3 output 

layers. This particular network is ranked number 9 and has fitness value of 69.68. One 

output layer for each seam. A summary of this network is in Appendix 7.5. The desired 

and predicted results from the network are presented in Figures 7.17 and 7.18.

There are a number of places in Figure 7.17, where there is considerable difference 

between the actual and predicted values. In the initial part of the modelling process the 

values predicted by the neural network were quite low when compared to the actual
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Figure 7.17: Desired and Predicted Results from CATNN -  Coal Seam 1

values. The highest level of underestimation is in the initial and middle parts. The 

underestimation in these areas amounts to about 10,000 tons of coal. Most of the other 

deviations are overestimates. The highest level of overestimation is about 8,000 tons of 

coal. One half of the model almost qualifies as a mirror image of the other half. The 

overestimates are spread evenly in either half of the model.

The relationship between the desired and predicted results for seam 2 is very similar to 

that of seam 1 (Figure 7.18). This means that the two seams are in the same depositional 

environment and might have been formed by the same depositional processes.
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Figure 7.18: Desired and Predicted Results from CATNN -  Coal Seam 2

However the level of overestimation is quite high. The underestimation at the beginning 

and mid-section of the model amounts to about 18,000 tons. This is due to the fact that 

seam 2 contains more coal than seam 1. The average amount of coal in seam 1 is about

18,725 tons, whereas the average in seam 2 is about 46,981 tons.

The results of running experiments using the continuous adaptive time neural network 

model for the 2 seams are presented in Figures 7.19 and 7.20 respectively.
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Figure 7.19: CATNN Experimental Results for Coal Block Model - Seam 1.

Its is quite evident from both Figures 7.19 and 7.20 that the predictions using CATNN 

model could not follow the actual trend of the block values. In the case of seams 1 

(Figure 7.19), the difference between the predicted and actual values is about 15,000 tons 

of coal in the initial stages. This difference dropped during the course of the experiments 

and became equivalent at about 6  different places. The major discrepancies between the 

two models occurred in the mid-section of the block model. The difference in the actual 

and the predicted model (continuous adaptive time neural network) here amounts to about 

18,000 tons of coal. This is equivalent to the average block value of seam 1, which is
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18,725 tons. This big drop in the value of the blocks is localized and does not spread 

throughout the model.

Average
Block

Block Numbers

Figure 7.20: CATNN Experimental Results for Coal Block Model - Seam 2.

The sharp drop in block value may be due to a partial washout, an old coal fire or the 

location of an old river. The seam 1 model predicted rather higher block values (Figure 

7.19). Generally the predicted values are higher than the actual values and almost all the 

predicted values are above the block average of seam 1 .
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Figure 7.21: Desired and Predicted Results from GRNN - Coal Seam 1

In the initial experiments, the predicted value (55,000 tons) was twice the actual value 

(27,000 tons). The situation improved after two to three experiments. The actual and 

predicted values are equivalent in about 7 places on the graph (Figure 7.20). Once again 

the CATNN predictor could not pick the large depression in the block values in the about 

the middle of the experiments. The difference in value amounts to 33,000 tons. Though it 

is lower than the average block value in this case but it is still very high.
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Predictions from the seam 2 continuous adaptive time neural network model are equally 

higher than the average values (see Figure 7.20). It is even more evident here that the 

CATNN models for the two coal seams could not be used to predict accurate values for 

mine planning/scheduling.
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Fig. 7.22: Desired and Predicted Results from GRNN -  Coal Seam 2

The best neural network is a generalized regression neural network. Figures 7.21 and 7.22 

depict the best (king of the hill) models for the 2-seam coal deposit. The deviations in 

both seams 1 and 2 are small. The level of deviations (overestimates and underestimates) 

are not as pronounced as in the CATNN case (Figures 7.17 and 7.18). In seam 1 (Figure
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7.21), the highest deviation is about 8,000 tons. The frequency of the deviations is also 

about one-third of those of the CATNN model. In a two-colour display where the 

differences are much more evident, the deviations estimated using a simple count is about 

12%. The most interesting feature of this neural network model is that the model was able 

to accurately predict the depressed value at the washout.
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Figure 7.23: GRNN Experimental Results for Coal Block Model -  Seam 1.

A similar picture is portrayed in the case of seam 2 (see Figure 7.22). The deviations are 

mostly underestimates. The model is also able to pick up the abnormally depressed block 

values in the middle of the block model.
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The difference between the actual and the predicted values in the initial experiment is 

about 5,000 tons. The estimated/predicted value of about 17,000 tons is nearer to the 

average of 18,000 tons than the actual block value of 12,000 tons. The actual and 

predicted values are equivalent to each other in about 8  places in the graph (Figure 7.23). 

It is quite interesting to note that the predicted values are nearer the average value than 

the actual values and do not exhibit the erratic behaviour of the actual model.

oo

Block

Figure 7.24: GRNN Experimental Results for Coal Block Model -  Seam 2

The predicted model was able to follow the general trend of the actual model and was 

even able to accurately predict the trough in the actual values.
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A similar trend is portrayed in the seam 2 case (see Figure 7.24). The difference in the 

initial estimates amount to about 13,000 tons. The two models cross each other in about 8  

different places.

7.4 Significance of Prediction of Block Values Using the Neuro-Genetic Algorithm

The backpropagation and continuous time neural networks failed in predicting block 

values accurately. Even though the NGO is a good and reliable estimation methodology, 

all the automatically generated predictors fell short of expectations. The reason for this is 

that the neurogenetic algorithm, like any other machine learning and or search algorithm 

can be considered as a black box or blind search when allowed to operate automatically. 

In this mode the NGO is given minimum information, obtains only scanty information 

from the environment as well and therefore outputs the wrong results. Even though the 

NGO has helped resolve one aspect of the neural network modelling problem • model 

building complexity, it cannot suffice as a black box. The main reason for the failure of 

BP and CATNN in both block models has to do with the stochastic nature of the 

underlying phenomena of the block data. Even though the backpropagation algorithm has 

its own problems, the absence of stochasticity in both the BP and CATNN could not be 

compensated for in any other way, leading to poor results.

However the generalized regression neural network emerged as the best modelling 

technique in both situations when a probabilistic approach was adopted. This is proof of 

the fact that a little knowledge goes a long way. According to the No Free Lunch (NFL) 

theorems of Wolpert and Macready (1996), it is entirely hopeless to use any algorithm to
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solve a problem without any prior knowledge. In fact a little knowledge is considered a 

quantum leap in modelling situations such as the above work. The GRNN model block 

values can be predicted from neuro-genetic optimizer with considerable accuracy.

The ability of a machine learning algorithm like the neuro-genetic algorithm to accurately 

learn and predict block values is a significant step in the automation of the mine planning 

and production processes. Prior knowledge and the accurate prediction of block values 

prior to mining will enable the automation of many mining production processes and can 

lead to considerable cost reduction and savings in plant chemicals. This breakthrough 

will actually serve as the basis of automation of open pit mine planning and production 

operations.

7.5 Results of Open Pit Optimization by Simulated Annealing and Neuro-genetic 

Algorithms

Due to the stochastic nature of the phenomena underlying the block grades, the output 

from the simulated annealing algorithm is input into the neurogenetic optimizer. It is also 

true that in an actual production operation, pit optimization is a dynamic process. The 

final pit may vary from what was conceptually envisaged in the initial stages of mining. 

However the entire pit design and optimization will have to be repeated every time there 

are changes. This is especially true in the Lerchs-Grossmann’s algorithm. This is because 

it is a discrete optimization method and does not take the stochastic processes underlying 

the parameters into consideration. The process is thus tedious and repetitive and does not
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support a quick and effective mine production and managerial decision making in today’s 

competitive environment.

16.415.74831

Figure 7.25: Predictions from Neuro-Genetic Back-Propagation Network

In order to find an appropriate NGO to effectively build an optimized open pit model and 

predict pit values, all the neural network models were allowed to work during the 

optimization process. In this normal operating mode of the NGO, the back-propagation 

algorithm emerged as the best choice. When trial predictions were made from the 

resulting neural network, it became obvious that the output was not good enough in this 

particular case. Figure 7.25 is the results of predictions using the NGO. As depicted in
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Figure 7.2S, the values predicted from the BP neural network was short by about $10 

million dollars. However using the same figures but disabling the back-propagation 

algorithm altogether, the resulting GRNN predictor could predict with much higher 

accuracy (see Figure 7.26). This figure depicts the learned relationship between the block 

grade and the optimized pit value.

27.113.7851

18.221.89991

Figure 7.26: Predictions from Neuro-Genetic General Regression Neural Net

Once again the automatic generation of neural networks is fatally flawed and must not be 

encouraged (see section 7.4). Thus extra care must be taken during the modelling of 

neural network applications else the resulting networks/values may not be representative 

of the underlying phenomena.
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In fact if the graph of this two methods are examined, it becomes quite obvious that the 

back-propagation algorithm could not leam the phenomena effectively at all (see Figures 

7.27 and 7.28). The BP could only predict a straight line whereas the GRNN followed 

the trend of the desired results. This same thing happened when modelling the grade 

values. This may be also due to the nature of the back-propagation algorithm. It normally 

does a local optimization and can not effectively model hill-climbing and/or descent 

problems.
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Figure 7.27: Graph of Desired Vs. Predicted Pit Values - BP
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Figure 7.28: Graph of Desired Vs. Predicted Pit Values - GRNN

From Figure 7.29, a number of pits were generated by the simulated annealing algorithm. 

These pits range in value from over $15 million to over $27 million dollars. Finding the 

best/optimized pit to represent the ore body involves the use of the NGO as a predictor of 

pit values. When the optimum was reached the NGO values became asymptotic to an 

optimum value of about $27.5 million. The NGO converged and no optimum value 

significantly higher than this could be predicted with it.
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Figure 7.29: Open Pit Optimized Using the NGO

7.6 Sensitivity and Comparative Analysis of Results of Simulated Annealing -  

Neuro-Genetic and Lerchs-Grossmanns Algorithms

The results of further experimentation with the simulated annealing -  neurogenetic 

optimizer (SA-NGO) and the Lerchs-Grossmann (LG) algorithms are plotted in Figure 

7.30. In the initial stages the SA-NGO algorithm is lower than the L-G algorithm, but it 

rises faster than the LG algorithm. This behaviour can be explained by the fact that the 

LG algorithm is discrete whereas the SA-NGO algorithm is stochastic. Initially the LG 

algorithm performed better than the SA-NGO. The SA-NGO improved faster as block
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values were increased. The SA-NGO and the LG values were actually equivalent to each 

other at about 5 different places (see Figure 7.30). However the fast rise in the value of 

the SA-NGO levelled off around the optimum value of about $27.5 million. The value of 

the LG output however kept rising with rising block values. This can be a serious 

problem in pit design and may account for failure of about 25% of all new gold ventures. 

An important aspect of the results are the use of stochastic optimization which took into 

consideration the phenomena underlying the parameter employed in open pit mine design 

and optimization.

31000

37000

35000 IG
NGO

31000

11000

17000

15000
3.53S

Block Values, g/tonne

Figure 7.30: Graph of Lerchs-Grossmann and Neurogenetic Optimizer Pit Values
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The results can also be very useful to mine operators. The various predictors like the 

block value and the optimized pit predictors can provide accurate answers for quick and 

reliable mine production decisions. The mine design and planning engineers may not 

have to re-invent the wheel any time any of the parameters change as in the case of the 

LG algorithm. This work also laid out a decent mine design and optimization procedures 

that are amenable to automation in an appropriate development environment.

The methodologies employed in this work are at the cutting-edge of today’s information 

technology and it can be combined with data mining for effective mine production 

management decisions. The vital statistics for the comparative analysis are summarized 

in Table 7.1. The mean grade used was 2.20 g/tonne which lead to an average pit value of 

$25,828.12 x 103 for the Lerchs-Grossmann and an average of $25,839.67 x 103 for the 

SA-NGO algorithms respectively. The minimum grade employed in this study was 1.25 

g/tonne which yielded pit values of $20,500x103 and $18221.9xl03 for L-G and SA-NGO 

respectively. The stochastic characterization of the pit values is a beta distribution with 

the following statistics, namely chi-square test value of 77.963866, Kolmogorov test 

value of 0.274324 and Anderson-Darling test value of 1.640264.

The maximum grade of 3.01g/tonne led to pit values of 29,800xl03 for L-G and 

27521.lxlO3 for the SA-NGO (see Table 7.1). Thus the pit value of the LG algorithm 

kept increasing with increase in grade whereas the SA-NGO algorithm levelled off. This 

behaviour of the LG algorithm can be termed the augmented gold value effect. In this 

case the value of the pit increases with increasing grade even beyond the reasonable
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limits of the pit. The SA-NGO algorithm on the other hand does not exhibit this problem 

since it learns the features inherent in the pit values and then employs it to predict the 

value of the pit. Once the maximum pit value has been obtained the SA-NGO does not 

predict higher values even for higher grades.

Table 7.1: Summary Statistics of LG and SA-NGO

Grade (g/tonne) Lerchs-Grossmann

($’000)

SA-NGO

($’000)

Minimum 1.25 20500 18221.9

Maximum 3.01 29800 27521.1

Average 2.20 25828.12 25839.67

Standard Deviation 0.43 2293.94 2614.59

It is quite clear therefore that the use of L-G algorithm can lead to pit values higher than 

the actual value of the pit. This becomes extremely important in the case of a gold deposit 

in lieu of the high variability in gold grade values and the high failure rate of new gold 

projects. Thus the high failure rate of new gold projects can be partly attributed to this 

feature of the L-G algorithm. This apparent failure of the L-G algorithm to capture the 

true variability of the pit values can lead to escalated net income levels and higher than 

required investments which together spell doom for a mining project.
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The graph in Figure 7.31 represents the relationship between the alpha values and 

confidence limits for both the LG and SA-NGO. In this case the confidence level is (100- 

a)%. The confidence limits for 99% confidence level are $24,799.53x103 and 

$26,856.71xl03 for L-G and $24,667.30x103 and $27,012xl03 for SA-NGO respectively.
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Figure 7.31: Graph of Alpha Values and Confidence Limits for LG and NGO Pits.

At a 95% confidence level, the confidence limits are $25,045.46x103 and $26,610.78xl03 

for L-G and $24,947.6lxlO3 and $26,731.73xl03 for SA-NGO respectively. The 

variability increases as the confidence level increases. The variability of the LG is lower
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than that of the SA-NGO. The LG algorithm is a discrete optimization method and can 

not therefore capture the true variability of the block grade values.

7.7 Stripping Ratio Results

The stripping ratio, which is defined as the quantity of waste to be removed in order to 

mine a unit quantity of ore is considered as one of the defining characteristics of open pit 

mines. The response of the value of the pit to a change in the stripping ratio for the 

Lerchs-Grossmann algorithm is depicted in Figure 7.32. Figure 7.33 represents the 

relationship between the pit value and the stripping ratio for the SA-NGO algorithm. It is 

quite evident from both Figures 7.32 and 7.33 that generally, the value of the pit 

decreases as the stripping ratio increases. An increase in stripping is tantamount to the 

mining of extra waste to gain access to the ore blocks. The specific behavior of the value 

of the ultimate pit in response to a change in the stripping ratio varies from one orebody 

to the other.

Figure 7.33 portrays the relationship between the pit values and the stripping ratio for the 

simulated annealing -  neurogenetic algorithm. The downward nature of the general trend 

is evident once again.
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In Figure 7.32, an increase in the stripping ratio results in an decrease in the pit values. 

Though the general trend is downwards, the pit value increases momentarily when the 

stripping ratio increases. The downward trend is resumed again thereafter. The pit value 

increases just slightly again when the stripping ratio increases from 1.95 to 2.2. This is 

likely due to the topography.
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The decrease in pit value is more pronounced and steeper beyond a stripping ratio of 2.3. 

The 2 pit value versus stripping ratio graphs have been plotted together in Figure 7.34.
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3.002.001.00 2.401.60 200 2.201.401.00 1.20

Figure 7.34: Graph of Pit Values versus Stripping Ratios for SA-NGO and L-G 
Algorithms

The L-G and SA-NGO values are the same at the low stripping ratios. The NGO pit value 

however increases and maintains a relatively higher value than the L-G.
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7.8 Graphical Representation of An Optimized Open Pit Mine

Each of the long design together with the optimization procedures results in a single open 

pit A graphical representation of three SA-NGO optimized pit developed using 

AutoCAD 2000 are shown in Figure 7.35.

Optimum value pit 
with a total pit value 
of $27.5211 million

Average value pit 
with a total pit 
value of
$25.83967 million

Minimum value pit 
with a total pit value 
of $18.2219 million

Figure 7.35: Three-Dimensional Representation of Three SA-NGO Pits
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7.9 Conclusion

This chapter represents a discussion of the results of the design and optimization 

experiments performed using the algorithms and computer programs / software discussed 

in the earlier chapters. The computer software used during the experimentation are the 

Alnfit (Dendronic Decisions, 2000), NGO (Biocomp, 2000), GSLIB (Deustch, 1998) and 

AutoCAD (2000). In addition, two ANSI C programs written in MS Visual C++ 5.0 

environment were also employed. Intelligent block models developed using machine 

learning algorithms like the ALN, MFNN with backpropagation learning and CATNN 

produced inaccurate results in both the gold and coal ore deposits. A stochastic approach, 

employing the GRNN was successful in both cases. The GRNN, MFNN and CATNN 

models were developed in a genetically-optimized learning environment. It became 

evident that the stochastic processes (natural phenomena) underlying the ore deposits 

must be taken into consideration in order to develop reliable models. A blind search or 

black box approach to intelligent computational modelling is bound to be futile, at best. 

The intelligent open pit model developed using a combination of simulated annealing and 

GRNN in a genetic environment outperformed the Lerchs-Grossmann’s model in the 

prediction of the optimized pit. Both the intelligent block model and pit optimizer can be 

used to make just-in-time operational decisions as the models do not have to be re-run 

any time operational conditions change.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The open pit mine design and optimization problem has been plaguing the surface mining 

industry for a long time. Various attempts have been made to address one form of this 

problem or the other. Most of these attempts were not aimed at only the optimization 

aspect of the problem, but also did not address the stochastic nature of the parameters 

involved in the design and optimization process. Though the neural network algorithm of 

Achireko and Frimpong (1996) addressed the stochastic nature of the input parameters, it 

is two-dimensional and therefore did not represent reality. Besides the short-comings of 

the back-propagation algorithm employed in this work, their work was also limited to the 

optimization aspects alone.

The main achievement of this work is the successful application of machine learning

(adaptive logic network, neural network and genetic algorithms) to the complex processes

underlying three-dimensional open pit mine design and optimization. A formalized

procedure for geostatistical ore-body modeling and reserve evaluation using

Geostatistical Software Library (GSLIB) has also been established. Machine learning was

used to design a 3-D open pit mine. This has been accomplished in a gold as well as coal

block model. The resulting neurogenetic mining block predictor can be effectively

employed in automated mining/production systems. Simulated annealing and machine

learning (neurogenetic) algorithms were then employed to optimize the designed open pit

mine. Due to the complicated nature of the entire design and optimization process, it was
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broken down into various unit processes. The geological data for the gold mine was 

modelled using geostatistics and machine learning. The adaptive logic network and the 

neurogenetic algorithms were employed to build a block model predictor. Various 

machine learning algorithms were applied to the block model. The adaptive logic 

network employed 312 linear forms to fit the gold block model. The model error was 

high and the resulting ALN model could not predict the block values to an acceptable 

level of accuracy. This is because the ALN is sensitive to outliers and can not be 

effectively used to model data with sporadic changes. Predictions from the model 

developed using the feed-forward neural network with a back-propagation (genetic) 

learning algorithm were also inaccurate. There were wrong 50% of the time. A new 

intelligent block model was developed using the genetically configured generalized 

regression neural network (GRNN) algorithm. The architecture of this particular GRNN 

consisted of input and output layers, which are separated by 2 hidden layers. The first 

hidden layer consisted of 213 neurons and the second layer, 2 neurons. The correlation 

coefficient between the predicted and the actual values was 92%. Thus the GRNN 

neurogenetic block predictor was able to predict grade values at a considerably high 

accuracy and can be effectively used in an open pit operation to aid in grade control and 

other mining decisions. The GRNN neurogenetic predictor was therefore declared an 

acceptable block predictor. In the case of the coal model, two algorithms -  the continuous 

adaptive time neural network and the generalized regression neural network models were 

employed. The highest level of underestimation in seam 1 obtained using the CATNN 

optimizer was 10,000 tons of coal. The highest level of overestimation in the same seam 

was 8,000 tons of coal. The average quantity of coal in seam 1 was 18,725 tons. The
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underestimation in the case of seam 2 amounted to about 18,000 tons of coal. The 

average quantity of coal in seam 2 is 46,981 tons. The predictions of the block values in 

both seams 1 and 2 using CATNN model could not follow the actual trend portrayed by 

the originating blocks. The major discrepancies between the actual and the predicted 

models in both seams occurred in the middle section of the deposit. Part of the coal seam 

has been washed away in the middle section but the CATNN model could not leam that. 

The best algorithm for both coal seams was once again the generalized regression neural 

network model. The estimated deviation using a simple count amounted to about 12% of 

the blocks in seam 1. The model was able to predict the depressed values at the position 

of the washout. These features were also true for the second seam.

The optimized 3-D open pit values for the L-G and SA-NGO algorithms are $29.8 

million and $27.5211 million respectively. Even though the SA-NGO algorithm could 

leam the open pit values and effectively optimize the pit, the LG algorithm kept 

increasing in value with increase in block value. This could be misleading in a design and 

optimization environment and may lead to pit values higher than the actual value of that 

particular deposit. This work represents the first successful attempt at developing an 

intelligent 3-D block model and an open pit optimizer. In both the block model and open 

pit optimizer, the resulting intelligent predictors can effectively be used to predict block 

or pit values in an operational environment.

It evident from this study that a black box approach to the solution of a complex problem 

may not work. The solution methodology employed should take into consideration the
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phenomena underlying the various processes within the system under consideration. 

Stochastic processes must be modelled using stochastic neural networks. Even though 

machine learning algorithms like neural networks, adaptive logic network and genetic 

algorithms are very powerful tools, they must be used with care. Proper consideration 

must be given to the underlying phenomena. In this work a new modelling paradigm was 

successfully employed. Under this paradigm, a complex system / problem can be solved 

by breaking it down into units of smaller systems / problems. A recipe of appropriate 

solution methodologies can then be employed in solving the complex system or problem. 

The development of real-time intelligent 3-D block models for gold ore and coal is also 

significant. Block models developed using geostatistics alone can not be used off-line to 

predict block values in an advancing pit. The entire process of changing the parameters 

and generating the blocks again to make effective operational decisions can be tedious. 

This research has also resulted in an innovative design and optimization process. This 

new design methodology takes into account the stochastic (variability) nature of the 

parameters in the design process.

8.2 Recommendations

Even though the methods developed in this thesis has provided a very good model for 

open pit mine design and optimization, some specific differences may occur when 

applied to other mining ventures. There should be extensive studies to expand its 

usefulness to the mineral industry. Some of the recommendations for further research 

therefore are;
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1. Studies aimed at incorporating some other modelling methods, neuro-genetic 

algorithms into orebody modeling and evaluation. Gaussian statistics may not be 

applicable in all cases.

2. Product, metal prices have not been effectively modelled and the use of neuro-genetic 

algorithms can be of tremendous benefit.

3. Aside from the methods described in this work, expert systems can be developed 

through the addition of knowledge, data-mining in appropriate environment for 

effective mine production decision making.

4. Appropriate procedures can be developed from this work to prevent software 

problems in the mining industry.
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APPENDICES

APPENDIX 5.1: Adaptive Logic Network Objects

Some of the objects employed in the ALN modelling process are; 

ALNCALLBACKINFO - used to specify a user-defined callback function to receive 

notifications during the ALN training and evaluation process,

ALNCONFIDENCE - this is an object used to evaluate the confidence interval of ALN 

errors,

ALNDATAINFO - this particular object is used specifies the input data during an ALN 

training or evaluation process,

ALNCONSTRAINT - this structure specifies the properties of an ALN variable, 

LTUSTATS - this holds the regression statistics of an ALN,

LTUWEIGHTSTATS - this object holds the regression statistics of an LTU weight, 

VARINFO - this object maps ALN variable inputs to locations within a data block 

specified in a separate ALNDATAINFO object or by user-defined callback with the 

ALNVECTORINFO notification,

ALNAbort - this is used to abort operations and clean up allocated resources 

ALNAddMultiLayer - this object enables conversion of an LTU node into a subtree, 

ALNAddLTUs - this object is called when an LTU is to be added to an existing LTU 

node of the ALN,

ALNAddTreeString - this object is called when a subtree needs to be added to an existing 

LTU node of an ALN. The ALN as well as the parent LTU node should have already 

been created,
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ALNCalcConfidence - this object calculates the lower and upper bound of the 

(confidence interval) on the errors produced by the ALN pointed to by pALN a pointer to 

an ALN object),

ALNCalcRMSError - the root-mean-square of an ALN specified by pDatalnfo is 

estimated by this object,

ALNConfidencePLimit - this object is used to calculate the tail area (*pdblPLimit), such 

that there is a probability (dblSignificance), usually between 0.05 or 0.01, of such a tail 

area meeting the confidence bounds specified in pConfidence,

ALNConfidenceTLimit - this object calculates the probability *pdblTLimit that the 

confidence interval specified in pConfidence (pointer to an ALNCONFIDENCE 

structure) covers at least a minimum fraction of the error distribution,

ALNConvertDtree - this object is used to create a DTREE from an ALN,

ALNCreateALN - an ALN is created using this object,

ALNDestroyALN - this object destroys the ALN created by ALNCreateALN,

ALNEval - a created ALN is evaluated on one or more data points by this object, 

ALNinvert - this is used to compute the inverse of the original ALN,

ALNLTUAnalysis - this performs a statistical analysis of the ALN, 

ALNLTUFreeAnalysis - this is used to free the analysis buffer allocated by the system by 

the previous call to ALNLTU Analysis,

ALNLTUStats - this objects retrieves and displays the LTU statistics from the analysis 

buffer obtained from a previous call to ALNLTU Analysis,

ALNLTUWeightStats - this objects retrieves and displays the LTU weights from the 

analysis buffer obtained from a previous call to ALNLTUAnalysis,
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ALNQuickEval - this function is used for a quick evaluation of an ALN from an input 

vector supplied user,

ALNRand - this object is called to retrieve the next value from a pseudo-random number 

generator,

ALNRandFloat - this object is called to retrieve the next value from a pseudo-random 

number generator and convert the value to floating point,

ALNRead - this reads an ALN saved by using the ALNWrite function, 

ALNSetAbortProc - this object is used to chain the abort procedure for another library 

when the ALNAbort function is called,

ALNSetGrowable - this object is used to enable a subtree growable during training, 

ALNSRand this is called to re-initialize the seed value of the ALN pseudo-random 

number generator,

ALNTrain - this object trains an ALN on one or more data point specified by pDatalnfo, 

ALNWrite - this object writes an ALN to a file
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APPENDIX 6.1: Part of Rock Type 1 Data

Au Values from Tabu
RX #NAME?
RY #NAME?
Z #NAME?
Rtype rock
Au #NAME?

2992 2059.6 4664.82
2987.75 2055.35
2983.59 2051.19
3068.93 2136.53
3065.16 2132.99
3061.99 2130.02
3060.48 2128.59
3058.33 2126.58
3056.68 2125.03
3055.87 2124.27
3052.08 2120.71
3046.29 2115.27
3042.88 2112.08
3040.74 2110.07
3034.47 2104.18
3028.77 2098.83
3026.77 2096.95
3024.5 2094.82
3022.89 2093.31
3018.91 2089.57
3014.72 2085.64
3011.72 2082.82
3006.67 2078.08
3000.05 2071.87
2996.26 2068.31
2993.86 2066.06

Mine Project

1 0
0 
0
6.342
3.02
2.416 
5.134 
3.624
1.51
1.51 
0
1.54 
0.604 
0
3.684 
1.812 
2.718 
0  

0  

0

3.02 
0  

0  

0  

0

2.416

4649.18
4633.83
4942.32 
4938.07
4934.5 
4932.79 
4930.37
4928.5 
4927.59 
4923.29 
4916.72
4912.85
4910.42 
4903.27 
4896.74 
4894.46
4891.85 
4890.01
4885.43 
4880.61 
4877.16
4871.32 
4863.67 
4859.26 
4856.48
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APPENDIX 6.2: Part of Rock Type 2 Data

Au Values from Tabu 0
5 0

RX #NAME?
RY #NAME?
Z #NAME?
Rt ype - rock 0

Au #NAME?
2990.21 2062.64
2987.19 2059.8
2984.59 2057.35
2982.57 2055.46
2981.26 2054.23
2979.14 2052.24
2974.19 2047.59
2970.76 2044.37
2968.37 2042.13
2965.78 2039.7
2964.6 2038.59
2961.35 2035.54
2957.14 2031.59
2954 2028.64
2952.41 2027.15
2948.1 2023.11
2939.15 2014.7
3066.38 2134.19
3059.78 2127.99
3055.35 2123.83
3052.38 2121.04
3050.99 2119.74
3044.9 2114.01
3039.16 2108.62
3038.35 2107.86
3027.51 2097.67
3015.54 2086.43
3013.79 2084.79
3010.55 2081.75
3006.54 2077.98
2999.81 2071.66
2986.21 2058.88
2976.51 2049.76
2973.15 2046.61
2971.17 2044.75
2970.28 2043.91
2943.44 2018.7

Mine Project

0

0

0

0

4852.24 2 0

4848.71 2 4.53
4845.68 2 0

4843.33 2 0

4841.79 2 1.51
4839.31 2 0

4833.51 2 1.42
4829.49 2 0

4826.68 2 0

4823.63 2 0

4822.25 2 0

4818.42 2 6.976
4813.45 2 0

4809.73 2 0

4807.85 2 1.208
4802.75 2 0

4792.11 2 0

4943.54 2 2.9
4939 2 «1

4935.94 2 0

4933.88 2 0

4932.93 2 0.604
4928.7 2 0

4924.72 2 0

4924.16 2 0

4916.6 2 0

4908.22 2 0

4907 2 0

4904.72 2 0

4901.9 2 1.208
4897.16 2 0

4887.53 2 0

4880.63 2 0.604
4878.24 2 1.208
4876.83 2 0

4876.19 2 0

4856.93 2 0
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2911.79 1988.97 4833.97 2 0

2899.04 1976.99 4824.66 2 0

2890.63 1969.1 4818.53 2 0

2888.82 1967.4 4817.21 2 0

2886.17 1964.9 4815.28 2 0

2882.67 1961.61 4812.72 2 0

2879.45 1958.59 4810.37 2 0.604
2873.9 1953.38 4806.33 2 0

2868.39 1948.2 802.3 2 0

2866.26 1946.2 4800.75 2 0

2862.92 1943.06 4798.32 2 0.362
3074.91 2142.32 4949.75 2 0

3072.35 2139.84 4949.11 2 0

3067.67 2135.3 4947.95 2 3.474
3062.63 2130.42 4946.71 2 0

3058.61 2126.52 4945.73 2 0

3052.11 2 1 2 0 . 2 2 4944.15 2 1.872
3038.8 2107.31 4940.96 2 0

3027.69 2096.55 4938.34 2 1.208
3022.83 2091.83 4937.2 2 1.51
3018.09 2087.24 4936.1 2 0

3014.15 2083.42 4935.19 2 0

3010.75 2080.12 4934.41 2 0

3008.04 2077.5 4933.79 2 0

3004.15 2073.72 4932.9 2 1.48
3000.25 2069.94 4932.02 2 0

2997.95 2067.71 4931.5 2 0

2993.34 2063.25 4930.46 2 0

2989.35 2059.38 4929.57 2 0

2987.05 2057.15 4929.06 2 0

2983.86 2054.06 4928.35 2 0

2980.22 2050.53 4927.55 2 0

2976.46 2046.88 4926.72 2 0

2972.64 2043.18 4925.89 2 0

2927.62 1999.54 4916.38 2 0

2883.59 1956.86 4907.64 2 0

2875.55 1949.06 4906.06 2 0

2868.17 1941.91 4904.62 2 0

3074.89 2142.25 4950.46 2 0

3070.99 2137.57 4951.85 2 1.208
3065.74 2131.25 4953.74 2 0

3061.76 2126.48 4955.17 2 0

3057.55 2121.42 4956.69 2 2.234
3047.46 2109.3 4960.34 2 0

3038.28 2098.26 4963.69 2 0

3031.97 2090.68 4965.99 2 0
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APPENDIX 6 3 : Part of Block Model of a Gold Mine

X Y Z Block Value

22.5 4 1 2 -1.812
22.5 4 2 0 -1.812
22.5 1 2 4 -1.739
22.5 1 2 1 2 -1.739
22.5 1 2 2 0 -1.739
22.5 2 0 4 -1.840
22.5 2 0 1 2 -1.840
22.5 2 0 2 0 -1.840
22.5 28 4 -1.887
22.5 28 1 2 -1.887
22.5 28 2 0 -1.887
22.5 36 4 -1.931
22.5 36 1 2 -1.931
22.5 36 2 0 -1.931

127.5 52 4 6.870
127.5 52 1 2 6.870
127.5 52 2 0 6.870
127.5 60 4 6.870
127.5 60 1 2 6.870
127.5 60 2 0 6.870
127.5 6 8 4 6.870
127.5 6 8 1 2 6.870
127.5 6 8 2 0 6.870

172.5 4 4 6.769
172.5 4 1 2 6.769
172.5 4 2 0 6.769
172.5 1 2 4 8.603
172.5 1 2 1 2 8.603
172.5 1 2 2 0 8.603
172.5 2 0 4 8.603
172.5 2 0 1 2 8.603
172.5 2 0 2 0 8.603
172.5 28 4 8.603
172.5 28 1 2 8.603
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APPENDIX 6.4: Part of Block Model of a Coal Mine

Block Overburden Interburden Seaml Seam2
2701 104.754 349.18 10.4776 26.194
2702 112.926 376.42 12.5048 31.262
2703 118.239 394.13 17.5784 43.946
2704 119.496 398.32 19.2304 48.076
2705 116.433 388.11 19.292 48.23
2706 115.749 385.83 18.0152 45.038
2707 83.418 278.06 15.1032 37.758
2708 99.828 32.76 18.7712 46.928
2709 103.692 345.64 20.8712 52.178
2710 110.805 369.35 21.2408 53.102
2711 114.303 381.01 22.1984 55.496
2712 113.832 379.44 22.1088 55.272
2713 97.272 324.24 21.1064 52.766
2714 90.633 302.11 21.7056 54.264
2715 90.897 302.99 22.3888 55.972
2716 81.759 272.53 22.6072 56.518
2717 78.312 261.04 22.0024 55.006
2718 82.119 273.73 21.2016 53.004
2719 82.107 273.69 17.7016 44.254
2720 93.981 313.27 19.796 49.49
2721 104.895 349.65 16.8168 42.042
2722 103.752 345.84 12.992 32.48
2723 99.441 331.47 1 2 . 8 6 8 8 32.172
2724 64.098 213.66 8.1536 20.384
2801 65.724 219.08 7.644 19.11
2802 8 6 . 6 8 8 288.96 15.064 37.66
2803 86.793 289.31 18.9672 47.418
2804 87.306 291.02 18.8664 47.166
2805 87.42 291.4 19.5496 48.874
2806 87.663 292.21 17.3432 43.358
2807 81.711 272.37 15.8424 39.606
2808 100.548 335.16 19.2304 48.076
2809 110.76 369.2 21.896 54.74
2810 98.79 329.3 21.9016 54.754
2811 107.823 359.41 22.6576 56.644
2812 92.835 309.45 22.0808 55.202
2813 91.203 304.01 21.2184 53.046
2814 89.946 299.82 21.728 54.32
2815 87.675 292.25 23.0776 57.694
2816 80.523 268.41 23.2848 58.212
2817 78.873 262.91 21.8176 54.544
2818 80.649 268.83 20.6584 51.646
2819 80.529 268.43 18.4408 46.102
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2820 79.632 265.44 18.4296 46.074
2821 77.28 257.6 15.8312 39.578
2822 78.312 261.04 13.132 32.83
2823 76.542 255.14 1 2 . 6 31.5
2824 22.908 76.36 4.1776 10.444
2901 53.313 177.71 5.712 14.28
2902 85.644 285.48 17.4104 43.526
2903 85.977 286.59 18.4968 46.242
2904 85.782 285.94 18.4632 46.158
2905 87.303 291.01 19.768 49.42
2906 8 8 . 2 1 2 294.04 19.0568 47.642
2907 83.772 279.24 15.9544 39.886
2908 87.639 292.13 20.1208 50.302
2909 97.305 324.35 22.9656 57.414
2910 92.361 307.87 22.2992 55.748
2911 92.916 309.72 22.568 56.42
2912 92.016 306.72 21.9016 54.754
2913 90.951 303.17 21.3136 53.284
2914 88.92 296.4 21.896 54.74
2915 81.564 271.88 24.9424 62.356
2916 78.984 263.28 24.2928 60.732
2917 78.93 263.1 21.5488 53.872
2918 79.179 263.93 20.3672 50.918
2919 78.792 262.64 18.6816 46.704
2920 77.358 257.86 17.1472 42.868
2921 74.655 248.85 18.256 45.64
2922 76.305 254.35 13.02 32.55
2923 70.608 235.36 11.8272 29.568
2924 2.118 7.06 0.532 1.33
3001 40.305 134.35 4.0824 10.206
3002 85.323 284.41 17.7352 44.338
3003 85.119 283.73 18.0432 45.108
3004 84.138 280.46 17.8696 44.674
3005 86.739 289.13 20.3 50.75
3006 88.71 295.7 21.0448 52.612
3007 85.023 283.41 16.3464 40.866
3008 88.107 293.69 21.0336 52.584
3009 89.874 299.58 23.492 58.73
3010 93.795 12.65 22.6352 56.588
3011 92.04 306.8 22.5064 56.266
3012 91.281 304.27 21.8176 54.544
3013 90.585 301.95 21.4088 53.522
3014 87.675 292.25 22.3104 55.776
3015 77.565 258.55 26.7568 66.892
3016 78.318 261.06 24.7072 61.768
3017 78.246 260.82 1.168 52.92
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APPENDIX 6.5: D45Blk.c Program

/* This program generates a summary report from of the block data files */ 

/* Just remember to change the file names */

#include <stdio.h>

#define FILENAME "d3blk45.txt" 

intmainO

{

/* Declare and initialize variables. */ 

int number_of_blocks=0, k; 

double x, y, z, p, sum=0, max, min;

FILE *d3blk45;

/* Open file. */

d3blk45 = fopen(FILENAME,"r");

/* While not at the end of the file, */

/* read and accumulate information. */

while ((fscanf(d3blk45,"%lf %lf %lf %lf',&x,&y, &z, &p)) == 4)

{

number_of_blocks++; 

if (numberofblocks == 1)

max = min = p;
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sum += p; 

if (p > max)

max = p;

if (p < min)

min = p;

}

/* Print summary information. */ 

printfC’Number of Block Values: %i \n",

number_of_blocks); 

printf("Average Block: %.2f \n",

sum/number_of_blocks); 

printf("Total Value of all the Blocks: %.2f \n",sum);

printf("Maximum Block Value: %.2f \n",max);

printf("Minimum Block Value: %.2f\n",min);

/* Close file and exit program. *1

fclose(d3blk45);

return 0;

}

/*  */
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APPENDIX 6.6: Sim3D.c Program

/* This program generates an optimized block summary report from of the block data 

files. It is a modification of the Algorithm of the Gods (Carlson, 1997) */

/* Just remember to change the file names */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#define TEMPF ACTOR 0.9 

#define YES 1 

#define NO 0

#define REVERSE 1

#define TRANSPOSE 0

#define NUMLISTITEMS 200 /* NUMBER OF ITEMS ON THE LIST. CHANGE

THIS NUMBER TO SUIT APPLICATION.*/

#define FILENAME "d3blk45.txt"
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#define ALEN(a,b,c,d,e,f,g,h) sqrt(((b)-(a))*((b)-(a))+((d)-(c))*((d)-(c))+((f)-(e))*((f)- 

(e))-K(h)-(g))*((hHg)))

struct ListElement

{

I* DEFINE YOUR DATA STRUCTURE HERE. WE'VE ASSUMED SOMETHING 

LISTED IN CARTESIAN COORDINATES. IF YOU’RE DATA IS NOT IN 

THESE COORDINATES, YOU WILL NEED TO MODIFY THIS STRUCTURE 

AND ALSO MAKE THE NECESSARY CHANGES IN THE ENERGY FUNCTION. */

float x; 

float y; 

float z; 

float p;

};

int CHECKBEST = NO; 

float BESTENERGY; 

struct ListElement **bestList;

main()

{ struct ListElement **list;

int runLimit, sucLimit, numListltems, i, numSuc;
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int AnnealO;

float temperature, energy; 

struct ListElement **setupO;

FILE *outFile, *energyFile; 

void printListO;

float GetEnergyO, ener;

numListltems = NUMLISTITEMS;

list = setup(&energy, &temperature, &runLimit, &sucLimit, numListltems);

outFile = fopen(”InitList.dat","w"); 

printList(outFile,list, numListltems); 

fclose(outFile);

energyFile = fopen("energy.dat", "w"); 

fprintf(energyFile,''Temp\tEnergy\tnumSuc\n”);

for(i = 1; i < numListltems; i++)

{

numSuc = Anneal(list, numListltems, runLimit, temperature, sucLimit, 

numListltems);
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ener = GetEnergy(list,numListItems);

printf("%f\t%f\t%d\n", temperature, ener,numSuc); 

fprintf(energyFile,"%f\t%f\t%d\n",temperature, ener, numSuc);

/* Start checking for the best solution?*/

if(numSuc <= runLimit*0.01 && CHECKBEST =  NO) { 

CHECKBEST = YES;

BESTENERGY = ener;

}

if(numSuc == 0) break; 

temperature *= TEMP FACTOR;

}

fclose(energyFile);

outFile = fopen("FinalList.dat","w"); 

printList(outFile,list, numListltems); 

fclose(outFile);
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outFile = fopen("BestList.dat","w"); 

printList(outFile,bestList,numListltems); 

fclose(outFile);

outFile = fopen("lowestEnergy.dat",,,w");

fprintf(outFile,"Lowest Energy = % f\n " ,B E S T E N E R G Y );  /* store energy. 

fclose(outFile);

>

void printList(outFile,list, numListltems)

FILE *outFile; 

struct ListElement **list; 

int numListltems;

{

int i;

for(i=0; i< numListltems; i++)

fprintf(outFile,"%f\t%f\n",list[i]->x,list[i]->y,list[i]->z,list[i]->p);

}
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struct ListElement **setup(energy, temperature, runLimit, sucLimit, numListltems) 

int * runLimit, * sucLimit, numListltems; 

float * temperature, *energy;

{ struct ListElement **CreateInitialList(), **list; 

float GetEnergyO;

list = CreatelnitialList(numListltems);

"■energy = GetEnergy(list, numListltems);

"'temperature = *energy/numListItems;

"■runLimit = 100 * numListltems;

"■sucLimit = 10 * numListltems;

return list;

}

struct ListElement *"‘CreateInitialList(numListItems) 

int numListltems;

{ inti;

struct ListElement **list; 

void InitializeElementO;

/* Allocate memory for the array of pointers. */
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list = (struct ListElement **)malloc(sizeof(struct ListElement *) * numListltems); 

bestList = (struct ListElement **)malloc(sizeof(struct ListElement *) * 

numListltems);

/* Create the data structures and install pointers to them into the list. */ 

for(i = 0; i < numListltems; i++)

list[i] = (struct ListElement * )malloc(sizeof(struct ListElement));

for(i = 0; i < numListltems; i++) /* Set initial values. */

InitializeElement(list[i]);

return list;

}

int num_data_pts=0 , k;

double x, y, z, p, sum=0 , maximum, minimum;

void InitializeElement(element) 

struct ListElement *element;

{

/* NOTE: YOU WILL HAVE TO CHANGE THIS FUNCTION. THIS 

FUNCTION SETS THE INITIAL VALUES IN THE DATA STRUCTURE. 

HERE WE JUST SET THE COORDINATES TO NUMBERS BETWEEN

ZERO
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AND 100. */

FILE *d3blk45;

if ((d3blk45 = fopen(FILENAME,"r"))=NULL)

fprintf(stderr, "Cannot open the file named %s\n","d3blk45"); 

while ((fscanf(d3blk45, "%ld %ld %ld %ld", &element->x, &element->y, 

&element->z, &element->p)) =  4);

element->x = (float)rand()/RAND_MAX * 100; 

element->y = (float)rand()/RAND_MAX * 100; 

element->z = (float)rand()/RAND_MAX * 100; 

element->p = (float)rand()/RAND_MAX * 100;

float GetEnergy(list; numListltems); 

struct ListElement * * List; 

int numListltems;

{ int i;

float ener, energyO;

for(ener = 0, i = 0; i < numListltems -1; i++) 

ener += energy(list, i, i+1 );

return ener;
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}

I* THIS FUNCTION CARRIES OUT THE ANNEALING PROCEDURE. *1

int Anneal(list, listSize, runLimit, temperature, sucLimit, numListltems);

struct ListElement **Iist;

int listSize, runLimit, sucLimit, numListltems;

float temperature;

{

int numSuc, start, end, insertPoint, alteration, answer, i, j;

int OracleO, PickAlteration();

float Ediff, EnergyDif();

void GetSegment(), AlterList();

FILE *bestFile;

float GetEnergyO, ener;

numSuc = 0;

SucLimit = 0;

for(i = 0; i < runLimit; i++){

GetSegment(&start, &end, &insertPoint, numListltems);
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alteration = PickAlterationO;

EdifF = EnergyDifflist, start, end, insertPoint, numListltems, alteration);

if(Oracle(Ediff, temperature) == YES){

AlterList(list,start,end, insertPoint, alteration, numListltems); 

numSuc++;

if(CHECKBEST =  YES) {

ener = GetEnergy(list, numListltems); 

if(ener < BESTENERGY) { /* Save best list. */

BESTENERGY = ener;

for(j = 0; j < numListltems; j++) bestList[j] = listjj];

}

}

}

if(numSuc >= sucLimit) break;

}

return numSuc;

}
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I* THIS FUNCTION DECIDES IF A NEW PATH SHOULD BE KEPT. */

int Oracle(Edif, temperature) 

float Edif, temperature;

{

if(Edif < 0.0 || exp(-Edif7temperature) > (double)rand()/RAND_MAX) return

YES;

return NO;

}

/* THIS FUNCTION DECIDES WHETHER TO TRY REVERSING THE PATH OR 

TRANSPOSING IT. */

int PickAlteration(void)

{

if((double)rand()/RAND_MAX < 0.5) return REVERSE; 

return TRANSPOSE;

}
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I* THIS FUNCTION SELECTS A SEGMENT FOR POSSIBLE ALTERATION. */ 

void GetSegment(start, end, insertPoint, listSize) 

int * start, *end, * insertPoint, listSize;

{ int shuffie[3], done = NO, i, j, hold;

do{ I* Select three different numbers between 0 and listSize -1 */

for(i = 0; i <3; i++)

shuffle[i] = (int)(((float)rand()/RAND_MAX)*(listSize -1));

if(shuffle[0] == shuffle[l] || /* Make sure no two are the same. */ 

shuffle[0 ] =  shuffle[2 ] || 

shuf¥le[l] == shuffle[2 ] ) ; 

else done = YES;

}while(done =  NO);

/* Sort these numbers. *1

for(i = 0; i < 3; i++){

for(j = i + 1; j < 3; j++){
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if(shuffle[i] > shuffle[j]){ 

hold = shuffle[i]; 

shuffle[i] = shuffle[j]; 

shuffle[j] = hold;

}

}

}

/* Decide whether to set the insertPoint above or below the block to be altered. ♦/

if((double)rand()/RAND_MAX < 0.5 || shuffle[2] -1 =  shuffle[l]){

♦insertPoint = shuffle[0];

♦start = shuffle[l];

♦end = shuffle[2 ];

}

else{

♦start = shuffle [0 ];

♦end =shuffle[l];

♦insertPoint = shuffle[2];

}

}
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float EnergyDif(list, start, end, insertPoint, listSize, alteration)

struct ListElement **list;

int start, end, insertPoint, alteration;

{

float trans costO, reversecostO;

s witch(alteration) {

case TRANSPOSE:

return trans_cost(list,start,end,insertPoint,listSize); 

case REVERSE:

return reverse_cost(list,start,end,listSize);

}

}

float trans_cost(list, start, end, insertPoint, listSize)

struct ListElement **list;

int start, end, insertPoint, listSize;

{ float cost, energyO;

cost = 0;

/* Break the current connections. */
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if(start > 0) cost -= energy(list, start-1, start); 

if(end < listSize - 1) cost -= energy(list, end, end+1); 

if(insertPoint > 0) cost -= energy(list,insertPoint, insertPoint -1);

/* Build the new connections. */

cost += energy(list, insertPoint, end);

if(insertPoint -1 >= 0 ) cost += energy(list,insertPoint - 1, start); 

if(start > 0 && end < listSize - 1 )

cost += energy(list, start - 1, end + 1);

return cost/listSize;

}

float reverse_cost(list,start,end,listSize) 

struct ListElement * * list; 

int start, end, listSize;

{ float cost, energyO;

cost = 0;

/♦Subtract the old cost. */
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if(start > 0) cost -= energy(list, start -1, start); 

if(end < listSize- 1) cost -= energy(list,end,end+l);

/* Add the new cost. */

if(start > 0) cost += energy(list,start -1, end); 

if(end < listSize-1) cost += energy(list,start,end+l);

return cost/listSize;

}

float energy(list, v l, v2) 

struct ListElement **list; 

int vl, v2;

{

/* YOU MUST CHANGE THIS FUNCTION TO CALCULATE THE 

THE "ENERGY" BETWEEN TWO ELEMENTS IN A LIST. */

return (float)ALEN(list[vl]->x,list[v2]->x,list[vl]->y,list[v2]->y,list[vl]-

>z,list[v2]->z,list[v 1 ]->p,list[v2]->p);

}
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void AlterList(list, start, end, insertPoint, alteration, listSize)

struct ListElement **list;

int start, end, insertPoint, alteration;

{ struct ListElement *holder, **dumList;

int i, j;

switch(alteration)

{ case REVERSE:

for(i = start, j = end; i < j; i++, j~){ 

holder = list[i]; 

listfi] = list[j]; 

list[j] = holder;

}

return;

case TRANSPOSE:

dumList = (struct ListElement * * )malloc(sizeof(struct ListEIment 

*)* listSize);

for(j = 0, i = start; i <= end; i++, j++)/* Copy group. */ 

dumListfj] = list[i];
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if(insertPoint > end){ /* Move downward. */

for(j=end+l, i = start; j < insertPoint; i++, j++) 

list[i] = list[j];

for(j = insertPoint - (end - start + 1), i = 0; j < insertPoint; i++, j++) 

list[j] = dumList[i]; /* Reinstall group. */

}

else {

for(j=start - 1, i = end; j >= insertPoint; i—, j—)

list[i] = list[j]; /* Move upward. *!

for(j = insertPoint, i = 0; i <= (end - start); i++, j++) 

list[j] = dumList[i];

}

free(dumList);

return;
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APPENDIX 7.1: Results of First Gold Block Model ALN Created

—New ALN Created, training starts over—

—Train Entry Start—

Start: TuesdayJanuary 16,2000 

Elapsed Time: days: 0, hours: 00, mins: 01, secs: 44 

Train Set RMSE: 0.00351474 over 101 points 

Test Set RMSE: 0.0400385 over 101 points 

Tree is growable

Max Epochs: 601 Min RMSE: 0.001 

Learning Rate: 0.2 Jitter is ON 

LFs: 100/2601

Var 0 Epsilon: 0.0580201 Min: -1.79769e+308 Max: 1.79769e+308 WeightMin: - 

le+006 WeightMax: le+006

Var 1 Epsilon: 0.0001 Min: -1.79769e+308 Max: 1.79769e+308 WeightMin: -1 

WeightMax: -1

90.00 % confidence interval (error) [-0.0580165, 0.0569366]
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APPENDIX 7J2: Results of Second Gold Block Model ALN Created

New ALN Created, training starts over—

—Train Entry Start—

Start: Tuesday, January 16,2000 

Elapsed Time: days: 0, hours: 00, mins: 00, secs: 18 

Train Set RMSE: 0.0136416 over 101 points 

Test Set RMSE: 0.0396191 over 101 points 

Tree is growable

Max Epochs: 601 Min RMSE: 0.001 

Learning Rate: 0.2 Jitter is ON 

LFs: 47/315

Var 0 Epsilon: 0.0580201 Min: -1.79769e+308 Max: 1.79769e+308 WeightMin: - 

le+006 WeightMax: le+006

Var 1 Epsilon: 0.028 Min: -1.79769e+308 Max: 1.79769e+308 WeightMin: -1 

WeightMax: -1

90.00 % confidence interval (error) [-0.0508585,0.0615852]
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APPENDIX 7 J : Architecture of Second Gold Block Model ALN Created

/ /  3d45xl.dtr exported on January 1616:08:40 2000
/ /  ALN D e c i s i o n  T re e  f i l e  f o r m a t  v l . O  (C)1994 D e n d r o n i c  
D e c i s i o n s  L i m i t e d

VERSION = 1 . 0 ;
VARIABLES =  4;
xO : [ - 1 . 7976931348623157e+308, 
x l  ; [~1 .7 9 7 6 9 3 1 3 4 8 6 2 3 1 5 7 e+ 3 0 8 f 
x 2  : [~1 .7976931348623157e+ 308 ,  
x 3  : [ -1 .7 9 7 6 9 3 1 3 4 8 6 2 3 1 5 7 e+ 308 , 
OUTPUT = x 3 ;
LINEARFORMS -  3 1 2 ;
0 : 0 .0 0 21050502052649329
0 .0 0 0 1 2 8 1 4 2 5 3 6 8 2 5 1 4 7 4 7  ( x l
0 .0 0 0 1 4 8 3 4 8 7 2 0 1 5 9 5 9 5 2 3  (x2 -  
0 .390 0 0 0 0 0 0 9 2 9 1 2 7 6 2 )  ;
1 : 0 .0 0 21050502052649329
0 .0 0 0 1 2 8 1 4 2 5 3 6 8 2 5 1 4 7 4 7  ( x l
0 .0 0 0 1 4 8 3 4 8 7 2 0 1 5 9 5 9 5 2 3  (x2 -  
0 .3 9 0 0 0 0 0 0 0 9 2 9 1 2 7 6 2 ) ;
2 : 0 .0020264528204810722
0 .0 0 0 1 0 7 5 3 3 6 6 0 2 4 1 9 9 3 9 6  ( x l  
0 .0 0 0 3 2 7 6 339416573591  (x2 -
0 .3 9 0 0 0 0 0 0 0 2 0 4 7 5 0 0 1 ) ;
3 : 0 .0020264528204810722
0 .0 0 0 1 0 7 5 3 3 6 6 0 2 4 1 9 9 3 9 6  ( x l  
0 .000327 6 3 3 9 4 1 6 5 7 3 5 9 1  (x2 -
0. 3 9 0 0 0 0 0 0 0 2 0 4 7 5 0 0 1 ) ;

1. 7976931348623157e+308] ;  
1.  7 9 7 6 931348623157e+ 308] ; 
1. 7 9 7 6 931348623157e+ 308] ; 
1. 7 9 7 6 931348623157e+ 308] ;

(xO -  1 9 .0 2 3 3 9 1 7 7 9 7 9 6 4 8 7 )  +
2 6 .0 5 5 2 1 5 4 2 4 7 8 5 0 4 )  +

12 . 728 791 925928162) -  1 (x3 -

(xO -  1 9 .0 2 3 3 9 1 7 7 9 7 9 6 4 8 7 )  +
2 6 .0 5 5 2 1 5 4 2 4 7 8 5 0 4 )  +

1 2 . 7 2 8  791925928162)  -  1 (x3 -

(xO -  1 6 .3 8 7 4 2 1 4 4 6 0 6 8 5 6 1 )  +
2 7 .0 3 5 5 4 7 5 7 5 5 4 6 5 6 3 )  +

1 5 .2 6 2 7 3 9 7 4 5 5 5 1 4 8 5 )  -  1 (x3 -

(xO -  1 6 .3 8 7 4 2 1 4 4 6 0 6 8 5 6 1 )  +
2 7 .0 3 5 5 4 7 5 7 5 5 4 6 5 6 3 )  +

1 5 .2 6 2 7 3 9 7 4 5 5 5 1 4 8 5 )  -  1 (x3  -

308 : 0 .05856078088683913
0 .0 2 6 4 2 4 7 1 0 7 3 5 6 4 0 9 4 5  ( x l
0 .0 0 2 5 3 2 0 5 7 6 1 3 8 5 2 3 4 8 6  (x2 -  
5.  7656243831892349)  ;
309 : 0 .05856078088683913
0 .0 2 6 4 2 4 7 1 0 7 3 5 6 4 0 9 4 5  ( x l
0 .0 0 2 5 3 2 0 5 7 6 1 3 8 5 2 3 4 8 6  (x2 -  
5.  7656243831892349)  ;
310 : 0 .09058 1 4 0 8 3 6 5 4 9 1 9 8 6
0 .0 3 3 3 7 7 6 5 8 6 0 0 2 1 4 7 0 9  ( x l
0 .0 0 2 9 1 8 4 0 4 4 2 9 5 0 9 8 3 6 9  (x2 -
5.  7800360624512743)  ;

(xO -  69 .7 0 2 7 9 3 5 0 8 8 3 0 0 2 7 )  +
3 0 .1 8 7 7 6 5 2 3 5 6 5 6 7 4 1 )  +

1 6 .6 5 8 0 8 2 3 3 3 5 4 0 3 3 2 )  -  1 (x3 -

(xO -  69 .7 0 2 7 9 3 5 0 8 8 3 0 0 2 7 )  +
3 0 .1 8 7 7 6 5 2 3 5 6 5 6 7 4 1 )  +

1 6 .6 5 8 0 8 2 3 3 3 5 4 0 3 3 2 )  -  1 (x3 -

(xO -  65 .5 9 2 1 5 3 3 0 9 3 8 1 3 8 8 )  +
3 1 .0 5 2 7 5 3 4 7 3 8 1 4 7 8 6 )  +

1 2 .3 3 1 5 0 6 5 0 6 5 3 4 7 1 7 )  -  1 (x3 -
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311 : 0 . 0 9 0 5 8 1 4 0 8 3 6 5 4 9 1 9 8 6  (xO -  6 5 .5 9 2 1 5 3 3 0 9 3 8 1 3 8 8 )  + 
0 .0 3 3 3 7 7 6 5 8 6 0 0 2 1 4 7 0 9  ( x l  -  3 1 .0 5 2 7 5 3 4 7 3 8 1 4 7 8 6 )  +
0 .0 0 2 9 1 8 4 0 4 4 2 9 5 0 9 8 3 6 9  (x2 -  1 2 .3 3 1 5 0 6 5 0 6 5 3 4 7 1 7 )  -  1 (x3  -
5. 7800360624512743)  ;

BLOCKS = 8 ;
0 : MAX (MIN (9 7 ,  9 8 ,  MAX(99, 100 ,  1 0 1 ) ,  MAX(102, 1 0 3 ) ,  
MAX(62 ,  63 ,  64 ,  65 ,  6 6 ,  67 ,  68,  69, 70,  71,  72,  47 ,  48,  4 9 ,  
50 ,  5 1 ,  5 2 ,  5 3 ,  5 4 ,  5 5 ,  5 6 ,  5 7 ,  5 8 ,  5 9 ,  60 ,  6 1 ) ,  MAX(83, 8 4 ,
85, 86 ,  8 7 ,  8 8 ,  8 9 ,  9 0 ,  9 1 ,  92 ,  93 ,  9 4 ,  9 5 ,  73,  74,  75, 76,
77, 78, 79,  8 0 ,  8 1 ,  8 2 ,  9 6 ) ,  MAX(121, 1 2 2 ,  1 2 3 ,  124 ,  1 2 5 ,
116,  1 1 7 ,  118 ,  1 0 9 ,  1 1 0 ,  1 1 1 ,  104 ,  105 ,  1 0 6 ,  10 7, 108,  1 1 2 ,
113,  1 1 4 ,  1 1 5 ,  1 1 9 ,  1 2 0 ,  1 2 6 ) ,  MAX(147, 1 4 8 ,  1 4 9 ,  150,  1 5 1 ,
145,  1 4 6 ,  1 5 2 ,  1 2 9 ,  1 3 0 ,  131 ,  132 ,  1 3 3 ,  1 3 4 ,  1 3 5 ,  136,  1 2 7 ,
128,  1 3 7 ,  1 3 8 ,  1 3 9 ,  1 4 0 ,  1 4 1 ,  142 ,  1 4 3 ,  1 4 4 ,  1 5 3 ) ,  MAX(168,
169,  1 7 0 ,  1 7 1 ,  1 7 2 ,  1 7 3 ,  1 7 4 ,  156 ,  157 ,  1 5 8 ,  1 5 9 ,  160 ,  1 6 1 ,
162 ,  1 5 4 ,  1 5 5 ,  1 6 3 ,  1 6 4 ,  1 6 5 ,  166 ,  1 6 7 ,  1 7 5 ,  1 7 6 ) ,  MAX(17,  
18,  1 9 ,  2 0 ,  2 1 ,  1 5 ,  1 6 ,  4 ,  5 ,  6,  7, 8 ,  2 ,  3 ,  9 ,  10 ,  11 ,  1 2 ,
13, 1 4 ,  0 ,  1 ,  2 2 ) ,  MAX(37, 3 8 ,  3 9 ,  40 ,  4 1 ,  4 2 ,  4 3 ,  44 ,  45 ,
27 ,  2 8 ,  2 9 ,  3 0 ,  2 5 ,  2 6 ,  3 1 ,  3 2 ,  2 3 ,  2 4 ,  3 3 ,  3 4 ,  3 5 ,  36 ,  4 6 ) ,  
MAX (184 ,  1 8 5 ,  1 8 6 ,  1 8 7 ,  1 7 9 ,  180 ,  1 8 1 ,  1 7 7 ,  1 7 8 ,  182,  1 8 3 ,
1 8 8 ) ,  MAX (1 9 2 ,  1 9 3 ,  1 9 4 ,  1 9 5 ,  196,  1 8 9 ,  1 9 0 ,  1 9 1 ,  197 ,  1 9 8 ,
199,  2 0 0 ) ) ,  M IN(2 2 1 ,  2 2 2 ,  2 1 8 ,  2 1 9 ,  2 2 0 ,  2 2 3 ,  2 1 6 ,  217 ,  2 2 4 ,
225 ,  2 2 6 ,  2 0 8 ,  2 0 9 ,  2 0 1 ,  2 0 2 ,  2 0 3 ,  2 0 4 ,  2 0 5 ,  2 0 6 ,  207 ,  2 1 0 ,
211 ,  2 1 2 ,  2 1 3 ,  2 1 4 ,  2 1 5 ,  2 2 7 ) ,  MIN(MAX(247,  2 4 8 ) ,  2 4 9 ,
MAX (MIN(MAX(2 5 0 ,  2 5 1 ,  2 5 2 ,  2 5 3 ) ,  MAX(260, 2 6 1 ,
MIN (MAX (MIN (2 6 5 ,  2 6 6 ,  2 6 7 ) ,  MIN(268,  2 6 9 ) ) ,  2 7 0 ,  MAX (2 7 1 ,
2 7 2 ) ,  273  , 262 , 263  ,  2 6 4 ) ,  2 7 4 ,  M IN (2 5 8 , 2 5 9 ) ,  256 ,  2 5 7 ,  
254 ,  2 5 5 ) ) ,  2 7 5 ,  MIN (MAX (276,  2 7 7 ,  2 7 8 ,  2 7 9 ) ,
MAX (MIN(MAX (MIN (MAX (2 9 4 ,  2 9 5 ) ,  2 9 6 ) ,  2 9 7 ,  M IN (288 ,  2 8 9 ) ,
290 ,  MIN (MAX (2 9 1 ,  2 9 2 ) ,  2 9 3 ) ,  MIN (298 ,  2 9 9 ) ,  M IN(300 ,  3 0 1 ) ,  
MIN (285 ,  2 8 6 ,  2 8 7 ) ,  MIN (302 ,  303 ,  3 0 4 ) ) ,  MAX (305,  3 0 6 ,
3 0 7 ) ) ,  M IN(3 0 8 ,  3 0 9 ) ,  M IN (2 8 2 ,  283 ,  2 8 4 ) ,  M IN (280 ,  2 8 1 ) ) ) ) ,  
MAX(310 ,  3 1 1 ) ,  MAX(2 4 3 ,  2 4 4 ,  2 4 5 ) ,  2 4 6 ,  2 3 6 ,  2 3 7 ,  MAX(238,  
239 ,  2 4 0 ) ,  2 3 4 ,  2 3 5 ,  MAX(241, 2 4 2 ) ,  MAX(230,  231 ,  2 3 2 ,
MIN(228 ,  2 2 9 ) ) ,  2 3 3 ) ) ;

7 ; MAX (MIN (9 7 ,  9 8 ,  MAX (99 ,  100 ,  1 0 1 ) ,  MAX (102,  1 0 3 ) ,
MAX (62 ,  63 ,  64,  65 ,  66 ,  67 ,  68, 69, 70,  71,  72,  47 ,  48 ,  49 ,
50 ,  51 ,  5 2 ,  5 3 ,  5 4 ,  5 5 ,  5 6 ,  5 7 ,  58 ,  5 9 ,  60 ,  6 1 ) ,  MAX(83, 8 4 ,
85,  86 ,  8 7 ,  8 8 ,  8 9 ,  9 0 ,  91 ,  92 ,  93,  9 4 ,  9 5 ,  73, 74, 75, 76,
77 , 78, 79, 8 0 ,  8 1 ,  8 2 ,  9 6 ) ,  MAX (121 ,  1 2 2 ,  1 2 3 ,  124,  1 2 5 ,
116,  117 ,  1 1 8 ,  1 0 9 ,  1 1 0 ,  111 ,  104 ,  105 ,  1 0 6 ,  1 0 7 ,  108,  1 1 2 ,
113,  1 1 4 ,  1 1 5 ,  1 1 9 ,  1 2 0 ,  1 2 6 ) ,  MAX(147, 1 4 8 ,  1 4 9 ,  150,  1 5 1 ,
145,  1 4 6 ,  1 5 2 ,  1 2 9 ,  1 3 0 ,  1 3 1 ,  132,  1 3 3 ,  1 3 4 ,  1 3 5 ,  136,  1 2 7 ,
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128 ,  137 ,  1 3 8 ,  1 3 9 ,  1 4 0 ,  141 ,  1 4 2 ,  1 4 3 ,  144 ,  1 5 3 ) ,  MAX(168,  
1 6 9 ,  170 ,  1 7 1 ,  1 7 2 ,  1 7 3 ,  174 ,  1 5 6 ,  1 5 7 ,  158 ,  1 5 9 ,  1 6 0 ,  161 ,  
162 ,  154 ,  1 5 5 ,  1 6 3 ,  1 6 4 ,  165 ,  1 6 6 ,  1 6 7 ,  1 7 5 ,  1 7 6 ) ,  MAX(17, 
1 8 ,  19 ,  2 0 ,  2 1 ,  1 5 ,  1 6 ,  4 ,  5 ,  6 ,  7, 8 ,  2 ,  3 ,  9 ,  10 ,  11 ,  12,  
1 3 ,  14 ,  0 ,  1 ,  2 2 ) ,  MAX(37, 38 ,  3 9 ,  40 ,  41 ,  4 2 ,  4 3 ,  44 ,  45,  
2 7 ,  2 8 ,  2 9 ,  3 0 ,  2 5 ,  2 6 ,  3 1 ,  32 ,  2 3 ,  2 4 ,  3 3 ,  3 4 ,  3 5 ,  3 6 ,  4 6 ) ,  
MAX (184,  185 ,  1 8 6 ,  18 7, 179,  1 8 0 ,  1 8 1 ,  1 7 7 ,  1 7 8 ,  1 8 2 ,  183,  
1 8 8 ) ,  MAX(1 9 2 ,  1 9 3 ,  1 9 4 ,  195,  1 9 6 ,  1 8 9 ,  190 ,  1 9 1 ,  1 9 7 ,  198,  
199 ,  2 0 0 ) ) ,  M IN( 2 2 1 ,  2 2 2 ,  218 ,  2 1 9 ,  2 2 0 ,  2 2 3 ,  2 1 6 ,  2 1 7 ,  224 ,  
2 2 5 ,  2 2 6 ,  2 0 8 ,  2 0 9 ,  2 0 1 ,  2 0 2 ,  2 0 3 ,  2 0 4 ,  2 0 5 ,  2 0 6 ,  2 0 7 ,  210 ,  
2 1 1 ,  2 1 2 ,  2 1 3 ,  2 1 4 ,  2 1 5 ,  2 2 7 ) ,  MIN(MAX(247, 2 4 8 ) ,  249 ,
MAX (MIN(MAX (2 5 0 ,  2 5 1 ,  2 5 2 ,  2 5 3 ) ,  MAX(260,  261 ,
MIN (MAX (MIN (2 6 5 ,  2 6 6 ,  2 6 7 ) ,  M IN (268 ,  2 6 9 ) ) ,  2 7 0 ,  MAX (271,
2 7 2 ) ,  273 , 262  , 263  , 2 6 4 ) ,  2 7 4 ,  MIN (2 5 8 ,  2 5 9 ) ,  2 5 6 ,  257 ,  
254 , 2 5 5 ) ) ,  2 7 5 ,  MIN (MAX (2 7 6 ,  2 7 7 ,  2 7 8 ,  2 7 9 ) ,
MAX (MIN(MAX (MIN(MAX (2 9 4 ,  2 9 5 ) ,  2 9 6 ) ,  2 9 7 ,  MIN (2 8 8 ,  2 8 9 ) ,
2 9 0 ,  MIN (MAX ( 2 9 1 ,  2 9 2 ) ,  2 9 3 ) ,  M IN (298 ,  2 9 9 ) ,  M IN (300 ,  3 0 1 ) ,  
MIN (285,  2 8 6 ,  2 8 7 ) ,  MIN (302,  3 0 3 ,  3 0 4 ) ) ,  MAX (3 0 5 ,  306,
3 0 7 ) ) ,  M IN(3 0 8 ,  3 0 9 ) ,  M IN(282,  2 8 3 ,  2 8 4 ) ,  M IN(2 8 0 ,  2 8 1 ) ) ) ) ,  
MAX(310,  3 1 1 ) ,  MAX(2 4 3 ,  244 ,  2 4 5 ) ,  2 4 6 ,  2 3 6 ,  2 3 7 ,  MAX(238,  
2 3 9 ,  2 4 0 ) ,  2 3 4 ,  2 3 5 ,  MAX (241,  2 4 2 ) ,  MAX(230,  2 3 1 ,  232 ,
MIN(228,  2 2 9 ) ) ,  2 3 3 ) ) ;

DTREE = 1 5 ;
0 : (xO <= 4 . 2133432848335523e+306)  ? 2 ; 2;
1 : (xO <= -6 .5 2 1 9 7 2 8 6 9 5 3 2 7 9 5 8 e + 3 0 6 )  7 3 : 4;
2  : b l o c k  1;
3 ; ( x l  <= 1 . 1 2 3 5582092889472e+308) 5  :  6;
4 : ( x l  <= 2 . 94934 02 993834865e+307) p 11 : 12;
5 : (x2  <= 8. 42668  65 69 667104 6e+306) p 7 ; 8;
6 : (x2 < =  8. 42668  65 69667104 6e+306) p 9 : 10;
7  ; b l o c k  0;
8 : b l o c k  4;
9 : b l o c k  3 ;
10 : b l o c k  5;
11 : ( x l  <= 6 . 6 0 5 2 9 3 3 7 8 8 2 75987e+306) ? 13 : 1 4 ;
12 : b l o c k  6;
13 : b l o c k  2 ;
14 : b l o c k  7;
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APPENDIX 7.4: Multilayer Feed-forward Neurogenetic (Back-propagation)

Network

Summary Results o f NeuroGenetic Optimizer Trial run on 01-23-2001 at 20:21:29 

Source Data File: 3dblk45.txt 

This file contains 425 records and 4 fields.

Every 2 records were split to create

213 training records and 212 testing records.

Parameters used in this run:

Generations Run: 10 

Population Size: 100

The minimum network training passes for each network were 20 

The cutoff for network training passes was 50 

The input neural node influence factor used was 0 

The hidden neural node influence factor used was 0 

The limit on hidden neurons was 64.

Selection was performed by the top 50% surviving.

Refilling of the population was done by cloning the survivors.

Mating was performed by using the TailSwap Technique.

Mutations were performed using the following technique(s):

Random Exchange technique at a rate of 25%.

Information on network rank: 1 that evolved:

Found on generation 5 after a runtime o f00:04:18
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Training of this network is considered complete.

Accuracy on training set: 95.31%.

Max. accuracy on test set: 94.81%.

Accuracy on validation set: 60.00%.

This network is a Fast-Back Propagation neural network. 

The network employed 3 inputs and 1 hidden layer with 

4 Logistic 2 Tanh 1 Linear neurons.

There were 1 output neurons using the Tanh transfer function.
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APPENDIX 7.5: Generalized Regression Neurogenetic (Optimizer) Network

Best Network Report: Summary of Results of NeuroGenetic Optimizer

Trial run on 01-21-2001 at 09:15:57

Source Data File: d3blk45.txt

This file contains 425 records and 4 fields.

Every 2 records were split to create

213 training records and 212 testing records.

Parameters used in this run:

Generations Run: 50 

Population Size: 100

The minimum network training passes for each network were 20 

The cutoff for network training passes was 50 

The input neural node influence factor used was 0 

The hidden neural node influence factor used was 0 

The limit on hidden neurons was 64.

Selection was performed by the top 50% surviving.

Refilling of the population was done by cloning the survivors.

Mating was performed by using the TailSwap Technique.

Mutations were performed using the following technique(s): Random Exchange 

technique at a rate of 25%.

Information on network rank: 1 that evolved:

Found on generation 1 after a runtime o f00:00:19 

Training of this network is considered complete.

Accuracy on training set: 98.12%.

Max. accuracy on test set: 97.64%.

Accuracy on validation set: 95.00%.
This network is a Generalized Regression neural network.

The network employed 2 inputs and 2 hidden layers.

The second hidden layer used a summation transfer function.

There were 1 output neurons using a direct transfer function.
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The following columns in the datafile were used: 

22.5 

4
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