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ABSTRACT

Three practical hydraulic engineering problems have been

studied analytically and experimentally with the help of free jet and
wall jet models as an initial step towar&s understanding the mechanics
of these flows. These are, the plane turbulent wall jets with finite
submergence, the mechanics of sloping channel jumps and the mechanics
of forced hydraulic jumps.

In connection with the study of plane turbulent wall jets
with finite submergence, a theoretical analysis of the flow is made
considering zero pressure gradient when the submergence is appreciable
and considering adverse pressure gradient when the submergence is
small and the water surface profile is not level. Simple power law
type expressions have been developed for the decay of velocity, growth
of the jet and the bed shear stress distribution and correlated with
the available experimental cbservations.

In connection with the mechanics of jumps on sloping channels,
an analytical basis has been presented for the similarity of flow. The
theoretical prediction for velocity scale, length scale and bed shear
stress distribution have been correlated with the experimental observations.

In connection with the study of forced hydraulic jumps,
presented herein is a detailed description of the various types of

jumps and the mechanics of flow patterns of some jumps formed with the
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assistance of baffle walls with and without tailwater. The form drag
on the baffle walls under a forced hydraulic jump has also been
measured and analysed. A preliminary design chart has been developed

indicating the design procedure of stilling basins.
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CHAPTER I
INTRODUCTION

1.1 General

Flow through submerged outlets is a common feature in many
of the water-resources projects. At present, a large number of
experimental observations are available describing the mean flow
characteristics of flow below submerged outlets, but no rational
analytical basis has yet been established. The submerged flow below
an outlet, if the jet issues tangentially to the wall,can be analysed
as a turbulent wall jet. In contrast to the classical wall jet flow,
the jet under a sluice gate issues into a finite depth of fluid down-
stream. Consequently the flow picture consists of an expanding jet
superimposed by a roller where in the flow recirculates. If the sub~
mergence is not appreciable the water surface profile downstream might
not be horizontal, in which case adverse pressure gradients are set
up. As a first step, a preliminary analytical basis has been worked
out explaining the flow mechanism below submerged sluice gates con-
sidering the effects described above. It is believed that such a basis
could be used for developing suitable design procedures for the
submerged outlets.

Secondly, a large number of experimental investigatioms
and model studies are available establishing the relationship between
gross characteristics of jumps formed on sloping channels and forced

hydraulic jumps. Information regarding the mean flow characteristics



and the analytical basis explaining the flow mechanism is not available.
The hydraulic jump can be considered as a case of free turbulent

shear flow. The flow pattern is determined by the turbulent diffusion
process under adverse pressure gradient and the model of turbulent jet
diffusion is a useful tool in explaining the flow mechanism. Extensive
information is readily available about the mechanism and diffusion
characteristics of free turbulent jet issuing iato an infinite extent
of ambient fluid (Abromovich, 1963). It is believed that sufficient
knowledge about the flow mech2nism and a gational analytical basis
would help explain some of the misconceptions of the phenomenon and
improving the design methods. Such a study is undertaken in the later
part of this thesis.

Since the turbulent free jet and turbulent wall jet have
been used as basic flow models in the analysis, it is considered
necessary to give a review of the method of analysis of their diffusion
process in the following sections.

1.2 Diffusion of Free Jets

Consider a plane turbulent jet issuing from a nozzle into
an infinite expanse of the fluid of the same nature at rest as shown
in Fig. I-1. The region of diffusion can be divided into two zones,
namely the zone of flow establishment and the zone of established flow.

1.3 Zone of Flow Establishment

This zone starts from the efflux section, at which the

velocity is uniform throughout the jet. When the jet enters into the



surrounding fluid, eddies are generated along the boundaries due to the
large velocity discontinuity between the jet and the surrounding fluid.
These eddies mix laterally into the potential core and out into the
ambient fluid. Due to this mixing process the surrounding fluid is
accelerated and the fluid within the jet is decelerated till the entire
potential core is consumed. The end of the potential core is con-
sidered as the end of zone of flow establishment.

1.4 Zone of Established Flow

The beginning of this section is marked from the point
vhere the lateral eddy mixing spreads up to the central part of the jet
causing an end to the potential core. The flow from this point is
turbulent and is considered ag fully established because the diffusion
process continues from this point without essential change in character.
In this zone the inertial balance occurs between the surrounding fluid
and reduction in velocity of entire central region.

1.5 Theoretical Analysis

The Reynolds equations of motion for a steady incompressible

and two dimensional flow are @

du 3u _ _13p 2 ou' du'v'
Y 3x tv 3y  p ox A ax + 3y ) (1.1)
v v 13 2 u'v? av’z
A4 9V _ _ 29 4v - v
u 3o + v 3y > 3y +V 7 v - ( e + 3y ) (1.2
3u L v _, (1.3)

Ix 3y



vhere u and v are the turbulent mean velocities in the
x (longitudinal) and y (normal) directions, u' and v' are the corresponding
velocity fluctuations, p is the mean turbulent-piezometric pressure,
p is the mass density of the fluid and V 4is the coefficient of kinematic
viscosity.

With the assumptions that

2 9
u>> v, = (ce) << 3; (co.)

14,1
%ﬁ-v is negligible

v Vz v is negligible

equation 1.2, reduces to

_1 ot
p 3y 9y
or
§ - - v'z + constant (c)
for

g+ ©v'? >0 and if P = P, then

P
o
c = —
p
P P
P o 02
a2 _ 1.4
S =3 v (1.4)

substituting equation (1.4) in equation (1.1)



3p —_—
du du__1 "o 2 _3 g2 _ 02| L3
U tv oy p 3x tvivou ax [F v ] * dy (1.5)

where 1_ = -p u'v’

t —_—— 2
the quantity %;'(u' -v'z) is small and hence can be neglected. 3—%

2 %X

is also negligible. Further in the developed flow region v g;% is

negligible as the flow is turbulent and the pressure gradient along x
direction is also negligible. With these assumptions, equations of

motion for a plane turbulent free jet reduces to

du du _ 1 31y
u o + v _3y =53y (1.6)
du v _
™ + 3y 0 (1.7)

Now assuming similarity of flow, the flow field can be described by
a single velocity scale and a single length scale. Choosing gn the
maximm velocity at any section as the velocity scale and 'b' the
normal distance from the jet axis to a point where the velocity is

gﬁ/z as the length scale, the various quantities can be expressed as,

- T =
u=u fl(y/b), ;5‘7 g(y/v) (1.8)
m
In order to evaluate these functional forms let us assume
u a xp
m
b a xq

For further analysis and to evaluate the exponents p and qwe use

the equations of motion and the momentum integral relationship as



shown below,

Writing y/b = A

3 _f gt ou 2E'
9x m m

- T T - o= ' - ==
where £ = f(}), u 23X’ f!' = D b Ix

A
= 1t _ '
I (umk £'b bf um) d A

o
- u f'
Su o
3y b
f! A 2
u_m "y :
v 3y N Ju, A £'° (@) - b £ uy (dy)
o o
2
and 3Tt _ u o
oy b

where g' = %%

substituting 1.9, 1.10 and 1.11 in equation (1.6)

1.9

(1.10)

(1.11)



or

2
A u_u' X ug'
' 2_ 2 _A_ 1 T ZPL ! v - oo = m
u un f LI £f£'b* + U3 £' £t (62)) 5 £fr £ (d) 5
0 [o]
o' A A
g' =b 22 % £ £ b +b7 £ IAET(@N) -Z—uu': £' £ £ (dA) (1.12)
um (o] m [o)

In equation 1.12 g' is the function of A only. Therefore for similarity

of flow, all the coefficients of functions of X on right hand side of
equation (1.12) should be either zero or constants. I1f we consider the
condition that b' = 0, then b = constant, i.e. the width of mixing
region along x direction is constant which is unrealistic.

Therefore b'a x°

or b=cx
and q=1
To evaluate D we consider the integral momentum equation. Since %§-= 0
the momentum along the x direction is preserved.
d 7 2
ie. 3 J pudy=0
o
or -
2
J o u” dy = constant (1.13)
o

substituting u = umf

2
ou b

which can also be written as

.2 .
f~ (d)) = constant

0o -8



2 2 °
pu_ b S £° @) = c x°. (1.14)
o

comparing the exponents of x on either side of equations (1.14)

x2p+q = x°
or
=1
P 2
Thus we could write b = ¢, x (1.15)
and u
w
T = SZ__ (1.16)
/b’

o

where qo }£:2§;Pvelocity at the efflux section b; is the mozzle half width.
The well known experimental results for the decay of maximum velocity

U and the variation of b, taken from Abramovich (1963), Newman (1961),
Zijnen (1957) and Albertson et al. (1950) indicate averxge values of

c. = 0.1 and c. = 3.5 in the equations (1.15) and (1.16) respectively.

1 2
1.6 Velocity Distribution

Considering equation (1.6) it is obvious that to determine
the expression for velocity digtribution, we must know the expression
for shear stress Te- if T, is expressed in terms of mixing length
hypothesis then any choice of velocity distribution will result in a
particular distribution of the mixing leagh 1 across the section.
Conversely, a choice of the distribution of mixing length across the
section, together with the assumption, that 1 = ?3 x £ (0) will lead

to a particular form of the velocity distribution.



1.7 Tollmien's [47] Solution for Velocity Distribution

Considering the mixing length hypothesis

_ 2 %u ,du
Te =P 1 dy (By)

It is reasonable to assume that at any section

lea b or 1/b = constant.

(1.17)

Substituting the above expressions in équation (1.6) and simplifying,

using equation of continuity, one could obtain

2

F''“+FF' =c

where
&
F= s £ (d0), F' = fand F'" = £', 0 = L

a being constant.

(1.18)

Using the following boundary conditions, the value of ¢ can be found

as equal to zero.

(1) y=0, $¢=0,F'=1
y=0, ¢6=0,v=0, F(o) =0

0 and therefore F*'(0) = 0

b
L}
o
)
-
[}

(2) As y -+ o, ¢ » » where u + 0 and therefore F(=) = 0

goro, Ao T 0 and therefore F''(=)= 0
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Thus equation (1.18)can be written as
F'% FF =0 (1.19)
The solution of equation (1.19) is shown on Table I-2 and Fig. I-3.

1.8 Goertler [15] Solution

According to Gdertler solution, the assumption for shear

stress expression is,

) u
T, =9 12 3y (1.20)

where £ is the kinematic eddy viscosity and is assumed thatf @ b um=K£;

Using the above assumptions equation (1.6) can be reduced to

F'' + F F' = constant C (1.21)

f (dn)

o]
1]
o}
~
3
~
1]
[= B Y

and

F' = £, F'' = £', n = ¢ y/x, ¢ being constant
Using the following boundary conditions the value of C=0 in the equation
(1.21).

l)Fory=0,n=0,z—=landl-"(0)=1
m

y=0,n=0,v =0 and F(0) = O

y=0,n=0, T, T 0 and F''(0) = 0
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2) Fory—-=o,n>o, u=0and F' (0) =0

i.e. F"'"+F' ' F =90 (1.22)
Evaluation of various parameters using the equation (1.22) is shown
in Table I-1 and Fig. I-2.
1.9 The Wall Jet

‘ The classical Wall Jet is described as a jet of fluid which
issues on to a wall tangentially and grows along the wall in a surrounding
stationary fluid of infinite extent as shown in Fig. I-4.

The phenomenon of the two dimensional wall jet was first
investigated experimentally by Férthman {12] in 1936. A theoretical
analysis of the problems was made by Glauert [14] in 1956 and later by
Schwarz and Cosart [44]. 1t was found that similar to a free jer the
wall jet flow can be divided into two regions, the flow development
region and the developed flow region. The velocity profiles are
similar in the wall jet if we exclude a small portion near the boundary
where the effect of viscosity is dominant. The velocity scale at
any section is the maximum velocity at that section and the length
scale is the normal distance b from the boundary to the plane where
the velocity u is equal to half the maximum velocity.

1.10 Theoretical Analysis

The Reynolds equations of motion for this problem could

be written as

-~

7 —
Ju ou 13 du' du'v’
SU L 8. _ 2P vz - + —— (1.
usst Vg StV (ax 3y ) .1'23)
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a'v' vi2
2)v+ a_v=_£_§2+vv2 su'v dv'e

aom— - (-
u 3% v ay ) ay A4 \ax + By ) (1.24)
du , av _
ax T3y 0 (1.25)

With the boundary layer assumptions similar to that made in the case

of free jet, equations of motion (1.23) and (1.25) can be reduced to

3T 2
uiteyRo2 L, el (1.26)
y P y 3y
3u v _, (1.27)
3x 9y )

Further, assuming similarity of flow, the flow field can be described
by the length scale b and the velocity scale u . To evaluate the

functional form of u and b we can assume

(1.28)

For further analysis, to evaluate the exponents p and q we can use
the equations of motion and the momentum integral equation. Using
equations of motion and adopting the simplification procedure as in-
dicated in the case of free jet it could be shown that

u; 2 by b )
g’ =b ;—-f -2 f£"b'+b" £ Nf'dQA) - ;—-u; £f' J £ 40)

o o m o

and q =1 (1.29)
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where the viscous term has been neglected.
Considering the integral momentum equation, since ax 0 the re-

lationship between momentum and the bed shear stress along the x

direction could be written as

& oy --n | (1.31)
dx ° e y o :
or
= - 2
M=M - fr dx (1.32)

where M is the momentum at any section distant x from the efflux section
and M is the initial momentum. If the magnitude of bed shear stress
is negligible compared to Ho then M = Ho which means that the momentum

flux along the x direction is preserved.

o
J ou dy=0 (1.33)
o

from which using a procedure similar to the case of the free jet
we can show that p = -<%

or

(1.34)
u = czl\/x
Experimental studies on plane turbulent Wall Jet under
zero pressure gradient have been conducted by Sigalla [46], Bradshaw
and Gee [4}, Schwarz and Cosart [44], Myers et al [23] and others. It
was found that the length of the flow development region was about

10 Yy and the length and velocity scales were given by the equations
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b/b, = 0.50 + 0.065 :— (1.35)
(o]

- x )03 (1.36)

A 3.45 G—

The Reynolds number Rl = EEEE.’ wiere v is the kinematic
viscosity has not been found to influenc: these relations to aay
appreciable extent when it is greater than about 104. The velocity
distribution in the boundary layer was found to follow the one-seventh
power low [12] . However, it was found by later investigations
[ 44, 23, 10 ]that depending on the Reynolds number where R; lies
between 104 abd 107, The value of the exponent is closer to 1/14 and
that the logarithmic low can be a better fit [10 ]with the values of
the coefficients being somewhat different from the well known equation
for boundary layers. The flow structure of the boundary layer in a
wall jet is different from that of a classical boundary layer because
in a wall jet the boundary layer grows under a superimposed turbulent

decelerating flow. Tne boundary shear stress in a fully developed

wall jet flow has been found to be given by the equation

2
,=cs m (1.37)
2
where
ce = 0.0565/ (1.38
£ utn6 1/4
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and e is the coefficient of shear stress

p 1is mass density of £fluid and
4 is boundary layer thickness at that section

Equation (1.38) shows that Ce is a weak function of x. Myer et al [23]
Ub

. o o N
have expressed ce as a function of R1 = — . Recently, experiments
v

on free and submerged hydraulic jumps on horizontal floors were
presented by Rajaratnam [30,31] as turbulent wall jets under adverse
pressure gradient. The deeply submerged flow below sluice gate

over smooth and rough boundaries was analysed by Rajaratnam [32, 42] as
a wall jet. Lau [21] studied the wall jet growth on a porous

boundary with and without suction.

1.11 The Present Investigation

The ma2in aim of this investigation is :

1) to present an analytical basis describing the flow picture
below sluice gates under finite submergence with and without
reverse flow and with and without pressure gradient.

2) to explain the flow mechanism of free and submerged hydraulic
jumps on sloping floors

and 3) to study the drag force experienced by baffle walls located
inside forced hydraulic jumps and explain the flow processes
of different types of forced hydraulic jumps.
The test facilities and limitations of measurement technics

are described in Chapter II.
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These studies are arranged in Chapters III, IV and V
respectively.

In the first two problems, an analytical basis has been
presented for the existence of fiow similarity. The velocity profiles
on center line were measured at various sections along the channel
and were examined for similarity. The expressions for the variation
of length and velocity scales and bed shear stress distribution along
the flow have been correlated with the experimental observationms. In
the third problem an analysis of the experimental observations of
form drag distribution on baffle walls and the velocity profiles on
the centre line, (measured at various sections along the channel)
are analysed for similarity and the variation of length and velocity
scales along the flow have been studied and compared with the correspond-
ing characteristics of classical hydraulic jump and the classical
wall jet.

Chapter VI gives the general conclusions of the present
investigation and recommendations for future studies.

The experimental investigation was carried out at the
Hydraulics Laboratory of the University of Alberta, Canada, during the

period 1969 - 1970.
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PLANE TURBULENT FREE JET - GOERTLER SCLUTION

TABLE I-1

1=c L “Iu YIb

0 1.000 0
0.10 0.990 0.114
0.20 0.961 0.227
0.30 0.915 0.341
0.40 0.855 0.455
0.50 0.786 0.568
0.60 0.711 0.682
0.70 0.635 0.795
0.80 0.558 0.909
0.90 0.486 1.022
1.00 0.420 1.136
1.20 0.302 1.362
1.40 0.218 1.590
1.60 0.149 1.820
1.80 0.102 2.045
2.00 0.070 2,270
2.20 0.048 2.500
2.50 0.021 2.840

18
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TOLLMIENS SOLUTION FOR THE PLANE TURBULENT FREE JET

TABLE I-2

=L F')= 3—m
0 1.00
0.10 0.979
0.20 0.940
0.30 0.897
0.40 0.842
0.50 0.782
0.60 0.721
0.70 0.660
0.80 0.604
0.90 0.538
1.00 0.474
1.10 0.411
1.20 0.357
1.30 0.300
1.40 0.249
1.50 0.2C9
1.60 0.165
1.70 0.125
1.80 0. 095
1.90 0.067
2.00 0.046
2.10 0.030
2.20 0.020
2.30 0.009

2.40 0

pA u
b u

0 1.0
0.105 0.979
0.209 0.940
0.314 0.897
0.419 0.842
0.524 0.782
0.628 0,721
0.733 0.660
0.838 0.604
0.942 0.538
1.048 0.474
1.150 0.411
1.255 0.357
1.360 0.300
1.465 0.249
1.570 0.200
1.675 0.165
1.780 0.125
1.880 0.095
1.990 0.067
2.100 0.046
2.200 0.030
2.300 0.020
2.400 0.009
2.510 0

20
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CHAPTER II

EXPERTMENTAL FACILITIES

2.1 General
This chapter describes the experimental arrangement,
instruments used and the limitations of the observed data.

2.2 Experimental Set-up

The experimental investigation was carried out in three
flumes, Flume A, Flume B and Flume C. Flume A was 18 in. wide, 36 in.
deep and 16 ft. long with a horizontal aluminum bottom and plexiglass
sides. Fig. II-1 gives a schematic representation of Flume A. The
setup consisted of a recirculating system with a head tank with stilling
arrangements, an upstream control gate, a downstream control gate and
a sump. A calibrated orifice meter in the supply line was used to
measure the discharge.

The upstream gate~slot was used to install any desired
type of outlet, for example, a nozzle, a sluice gate etc. The down-
stream gate was used for controlling the tailwater elevation. Piezometer
holes of 1/8 in. diameter were provided along the center line of the
flume at 3 in. intervals. Bed préssures were recorded by connecting
the piezometers to a manometer board. Baffle walls of 1 in. and 2 in.

heights were used in the flume to measure the form drag.

23
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Flume B was used to measure the mean flow characteristics
of forced hydraulic jumps cu horizontal beds and the free and submerged
hydraulic jumps on bed slopes 15% and 25%. It consisted of a flume
12.25 in. wide, 24 in. high and 16 ft. long with glass walls and smooth
brass bed. Fig. II-2 shows the set-up. The flume was fed by the
laboratory main supply line and discharged into the sump. The tail
water level was controlled by a downstream flap gate. The discharge
was measured by a calibrated orifice meter.

Flume C was used to observe the mean flow characteristics
of free and submerged hydraulic jumps formed on sloping channels of 5%
and 10%Z slope. It consisted of a 5 in. wide, 12 in. deep and 8 ft. long
flume with plexiglass bottom and sides. This flume has got tilting
arrangement to set it at slopes of 5%, 10% and 15%. The flume consisted
of a recirculation system with a head tank with stilling arrangements,
an upstream valve to control the discharge, a downstream flap gate and
a sump.
2.3 Measurements

The main instruments used in collecting the data are, point
gauges for depth, Prandtl -type Pitor-static tubes and pitch probe
for velocity and Preston tube (Preston 1954) for boundary shear measure-
ments. The instruments were mounted on a traverse which could be positioned
with an accuracy of 1/1000 ft.in the longitudinal direction and 1/1000 ft.

in the transverse direction.
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2.3.1 Depth
The depth measurements were made using point gauges which
could be read to an accuracy of 1/1000 ft. The water surface elevations

were normally measured along the centre line.

2.3.2 Velocity

The velocity observations were yade with commercial Prandtl -
type Pitot-static tubes of 3 mm. external diameter. No corrections
were made for turbulence, displacement and viscous effects.

A Pitot—static tube is insensitive to angle of attack less
than about S5 degrees and gives an error of about 4% at 15 degrees.
To measure the velocity vector in a highly inclined flow region, a
pitch §robe made of three 3 mm. tubes with a total nose angle of 90
degrees was used.
2.3.3 Discharge

The discharge was measured with the commercial orifice meter
located in the supply line (Flumes A & B)

2.3.4 Bed Shear Stress

Bed shear stress along the centre line of the jumps was
measured using a Preston tube [29] 3 m. external diameter and having
a ratio of internal to external diameter of 0.67. Some shear stress
measurements were made with a Prandtl ~type Pitot tube, as it was

observed by Rajaratnam [37] that a Prandtl -type Pitot-static tube can



also be used for bed shear measurements like a Preston tube. The
calibration curve used for calculating the bed shear stress T, was
that computed by Patel {26] which is slightly different from that
computed originally by Preston [29]. The use of the Preston tube for
shear measurements is based on the fact that, in all shear flows past
a wall, there is a region of local dynamical similarity near the wall
such that when a tube of small diameter is placed on the surface, the
dynamic pressure recorded by the tube is related to the local shear

by the relation,

2 T d
Ypd _ ¢ |2
4ov2 4pvl (2.1)

where d is external diameter of Preston tube

¢ is mass density

v is kinematic viscosity of fluid

Vp is differential pressure between the Preston tube and the

static pressure on the wall
For the present purpose, equation (2.1) as evaluated by

Patel [26] shown in Fig. II-3 was used in preparing a simple plot showing
the relationship between L aand Vp in inches depth of water.

2.3.5 Pressure Field

In order to measure the pressure distribution along the centre

line of the channel, the piezometer holes were connected to a2 manometer
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board and the corresponding pressures were computed.

2.3.6 Flow Visualisation

Colour injection and tuft probes were used for flow visual-

isation and qualitative descriptions.
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CHAPTER III

PLANE TURBULENT WALL JETS WITH FINITE SUBMERGENCE

3.1 Introduction

This chapter presents an analytical basis for the diffésion
of wall jets issuing through sluice gates into a finite depth of
standing water downstream. The theoretical developments have also
been correlated with the available experimental observations.

Consider the case of a plane turbulent jet of uniform
velocity Uo’ and depth Yoo issuing from a sluice gate tangential to the
horizontal bed as shown in Fig. III-1(a). The outlet is submerged
under finite depth of water downstream. The flow picture consists of
a diffusing jet superimposed by a roller. The behaviour of plane
turbulent wall jets in semi infinite expanse of the same fluid and with
zero pressure gradient has been extensively studied [14,32,44,46] where-
as the wall jet problems occurring in the field of hydraulic engineer-
ing often have a finite depth of submergence which induces, in some
cases appreciable backward flow above the wall jet. Further, these
problems more often impose adverse pressure gradients on the wall jet.
Even though a number of experimental studies have been conducted on
these aspects in the recent years [30.31,32,34,35], a comphrehensive
theoretical analysis has not been performed and this chapter presents
such an analysis along with a correlation of the above theory with the

available experimental observations.

.
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3.2 Theoretical Considerations

3.2.1 Plane Turbulent Wall Jets with Zero Pressure Gradient

Conside:ing plane turbulent wall jets with finite submergence
but with an essentially zero pressure graéienl, i.c. a level water
surface in the direction of flow, firstly the reverse flow near the
water surface is neglected and the forward flow is analysed. In the
last section the shear on the bed is relaxed and the reverse flow is
included in the analysis.

For the first analysis, neglecting the reverse flow, and
with reference to Fig. III-1(a), the relevant Reynolds equations could

be written as

2
Bu, du_ _13p412 _ '
Y ax 3y  p 9x p 3y [ﬁ.+1t] 3x (3.1)
Toy!?
v, w__1 3p_3""7 _ a2 (3.2)
uax y p 3y ax 3y °
%}%4-2—;:0 (3.3)

where certain obviously negligible terms have been left out and u
and v are the turbulent mean velocities in the x~ (longitudinal) and
y (mormal) directions, u' and v' are the corresponding velocity fluctu-

3 PR
=uy<=and 1_ = - pu'v', p is the mean turbulent piezometric

ations, T
> 1 3y t

pressure, p is the mass density of the fluid and u is the coefficient

of dynamic viscosity.
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From the nature of the flow and from earlier experimental
observations, one could assume that v<<u and gradients in the x
direction are much smaller than the corresponding gradients in the y
direction in a major portion of the flow. With these assumptions,

Eq. (3.2) reduces to

] ] '

35 -- 3;"" (3.4)
Integrating

P=7p, " ov'? (3.5)

where P, is the piezometric pressure on the bed. Substituting Eq. (3.5)

into Eq. (3.2) and rearranging

dp 2 a1 — —
du, 3 1% 2% 1Tk 3 22 (3.6)

Yax T V% T TP ax

It appears reasonable to neglect the last term and hence the equations

of motion for the zero pressure gradient case become

2 o1
ou Ju 3 u 1 t
Uu—+v—=v—-+ = (3.7)
3x 3y ay2 p 3y
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Based on available experimental observations (34, 35) one could write

flL1=£ () (3.9)

ele
]

where u, is the maximum velocity at any section, known as the velocity

scale, b is the length scale, defined here as the value of y where

u = l-u and Su

3 U 3y is negative., Using the continuity equation, one

could show that

n n
= ' ' - t
v = umb S nf' dn bum J £ dn (3.10)
o o

where the primes on b and v denote differentiation with respect to
X. Based on the observations on turbulent jets and wall jets, one

could further assume

‘t

002
m

= g(n) (3.11)

Using the above expressions, the equation of motion could

be reduced to the form

bu ' n
“m .2
g' = S f° -~ b' nff' + b'f' S nf' dn
n o
bu ' n
-—2 ¢ ffdn- ——f'" (3.12)
u bum

o
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where the primes on f and g denote differentiation with respect to
: . bu
n. In most of the problems of practical interest, —;E-is bound
to be very large and hence the last term in Eq. 3.12 could be neglected

in a major portion of the wall jet.

From Eq. 3.12, one could write

b' « x° ‘ (3.13)
bum' o
2 o _ (3.14)
m
If
u = «P (3.15)
b« x° (3.16)

Eq. 3.13 gives q = 1. Eq. 3.14 also gives q = 1. To evaluate the

second exponent p, one could develop the integral momentum equation.
Integrating Eq. 3.7 with respect to y fromy = 0 to Y

which is above the level where u is assumed to become zero, {[see

Fig. I1I-1(a)].

d 2
dx S pu” dy = - T, (3.17)

where T is the bed shear stress. Neglecting T
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Y%

d 2 _

i S pu  dy = 0 (3.18)
(o]

Y%
d 2 2 _
ix P bum S f"dn=20 (3.19)
°
Eq. 3.19 gives
bu  « x° (3.20)
or
q+2p=0
i.e. (3.21)
=1
P 2

The above analysis is essentially the same as that of Schwarz and Cosart
(44) for the wall jet with large submergence.

At this stage, it is interesting to use some dimensional
arguments to derive once again some expressions for the scales. As in
the case of jet problems, the momentum flux Ho’ which is preserved
in the x direction (if T is neglected) appears to be the dominant

factor in this phenomenon. Hence, one could possibly write
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u = f [Ho,o, x] (3.22)

Using the n- theorem, one could show that

32———-— = constant C (3.23)
AT
or
u c
if! = (3.24)

(=]
Nkl
S~
o

o

where bo is the height of the nozzle producing the wall jet, Uo is
the uniform velocity at the nozzle and C1 is an empirical constant.

Similarly one could show

b = C2 x (3.25)
and
To
M Jx =C (3.26)
o
or
To C3

(3.27)

©
[~
o
N
~
N
o
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where C, C2 and C, are empirical coefficients. Strictly speaking C

3 3
is a function of the Reynolds number. The experimental observations
of Rajaratnam and Subramanya (34,35) on plane turbulent wall jets
" with zero pressure gradient but with finite depth of submergence have
shown that the velocity distribution is similar [See Fig. III-2].

The variation of b with x has been found to be linear as shown in

Fig. III-3(a) and is described by the equation
b = 0.097 x (3.28)

where x is the distance measured from the virtual origin, located at
a distance of about 5b° behind the nozzle and x is the distance
measured from the nozzle. Fig. III-3(b) shows a plot of [Uo/um]2
versus ;Ybo where again the relationship is linear as predicted by
the analytical considerations and the equation for the velocity scale

could be written as

° V;

C:IB:
&~

.0

b
o

(3.29)

o
\

Fig. III-3(c) shows the variation of 1/1o with ;Ybo and it is seen that

the points could be described by a straight line having the equation
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2
puo 1

T, 0.075 — . Yy
o

2 (3.30)

5

for Reynolds number R. in the range 104 -10

1

3.3 Plane Turbulent Wall Jet with Pressure Gradient

Fig. III-1(b) is a schematic representation of.a submerged
jump [ with a moderate value of the submergence factor (16)] which is
a good example of the plane turbulent wall jet with finite submergence
and adverse pressure gradient. The free jump [Fig. III-1(c) could
also be studied under this category. Once again neglecting the
backward flow in the surface roller and making the boundary layer type
assumptions as in the earlier section, the equations of motion simplify

to the form

dp 32 at
ou Jdu 1 o u 1 t
S+vE==-22 += — .
Yax T Viay p dx +"ay2 o 3y (3.3
and
v, N _y (3.32)

ax 3y

The velocity distribution in the submerged jumps has been

found to be similar (31) and hence one could write

Y -4 =
o £ 5] =¢£ [n] (3.33)
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Further,assume

—~, =g (3.34)
The pressure profile on the bed is known to be essentially the same
as the surface profile and if ;'is the depth of flow at any sectionm,

i.e.

(3.35)

<

Po(x) =y
Let

R .36

(o]

P S RO
where y = y (x) [see Fig. III-1 (b and ¢)] and Ve is the tailwater
depth.

Substituting the above expressions into the equation of

motion and simplifying

bum' 2 ¢ bum' (
g' =7 £° - b nff" + b'f’ S nf’ dn - — f° S f dn
m o m )
by Ly g
7 5 y + ba f (3.37)
u o
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The last term in Eq. 3.37 is neglected as before. Then for similarity,

b' « x° (3.38)
bu !
= L ‘ (3.39)
m
. .
37 y' « x° (3.40)
u
m
if,
u_ = <~ (3.41)
b = x% (3.42)
and
*
y = x* (3.43)

Eqs. 3.38 and 39 give q = 1. Considering Eq. 3.40,

x3 - 2pt+r-1=« x°

or (3.44)
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Dimensional considerations (as shown later in this section)

indicate that p = - 1/2. Then, using Eq. 3.44, r = - 1.0. Hence for

similarity
u <« L.
m Vx
b« x (3.45)
* 1
y £ 3 ;

A consideration of the integral momentum equation (neglecting
the bed shear stress) showed that the prediction of the exponents based
on the integral momentum equation would agree with Eq. 3.45 only when
the momentum flux is much larger than the piezometric pressure.

Using dimensional considerations if it is assumed that the
pressure plus momentum is the dominant parameter describing the flow,

one could obtain the following relations

u —_—
m o X _ 1 1/2
G \[b =C, 1+ — (3.46)
o o 2F
1
Yo x 1
3 . B— = CS [2 + -—-2—] (3.47)
on /2 o ?1
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for the free jump and

u y 1/2
m |x__ 1 ’3.,2
= \Ib—'ce 1+ == . () ] (3.48)
o o 2F c
' ]
and
T y
° X _¢ [24— 1 (-3-)2] (3.49)
2 b 7 2 b
on /2 o Fl o

for the submerged jump, where y., is the backed-up depth at the nozzle
3

and C, to C, are empirical coefficients and F, is the supercritical

4 7
Froude number. It should be moted that bo =¥y and Y1 is retained

1

because of its frequent use in describing hydraulic jumps.

The experimental observations of Rajaratnam [31] have
shown that the velocity distribution in the jump is similar [see
Fig. III-4] and the length has been found to vary linearly with the
distance from the beginning of the jump, Fig. III-7. Data from three
typical runs of Ref. 31 are plotted in Fig. III-5(a) with 1/; versus
;; which is indeed linear in the region under consideration. A detailed
discussion regarding the profile of the jump could be found in (36).
Fig. III-5(b) shows that in a certain region of the jump (i.e. for
5 up to about 30, [ ;2 ]2 varies linearly with ino, thereby showing

1 ™
that u 7 l-. Fig. T1II-5(c) shows that 1_ varies as L is predicted

X o x

by the theoretical considerations. Using the results of dimensional

analysis and the experimental results of Ref. 31, the foiiowing two
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equations have been developed

u

= - 2.4 (3.49)
o \/x7bo

T
o _0.01 (3.50)

ot 2/2 x/yy
[e]

wherein the term involving the supercritical Froude number has been
left out for the sake of simplicity and x is taken as the distance
from the nmozzle. If more accurate results are needed, one should use
the plots of Ref. 31.

For submerged jumps, in the recent years some observations
have been made as student projects at the University of Alberta and
one set of these results for Fl = 4.62 and submergence factor S = 0.15,
0.34, 0.62, 0.95, 1.41 and 2.18 (1A to 1F) is considered herein.

Fig. 11I-6(a) shows the results of runs 1A - 1C with %—versus<; and the
runs 1D - 1F, fall under the almost zero pressure grazient case. It

is seen from Fig. III-6(a) that %-varies linearly with x. Fig. I1I-6(b)
shows the variation of [uolu=]2 ywith;/bo and it is seen that over a
certain region of ;Ybo, the extent of which increases with the sub-
mergence factor, the variation is reasonably linear. The shear stress
results are shown in Fig. III-6(c), where T is plotted against 1,; .

and the theoretical prediction is indeed found to be true.
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For the submerged jump, if the submergence is not large
enough to provide a level surface, the following approximate relations

were obtained

. , 12
== 2.40 | ;4 —1—2 ( 32 (3.52)
o \/x/yl 2F1 Y1
T y
° =2}°1 2+15 . (2)? (3.53)
pU_“/2 b4 Fy 41

The empirical coefficient 2.40 in Eq. 3.52 was found to de-~
crease as the submergence factor increases and in the above equations,
x has been taken as x.

It should be mentioned that Eqs. 3.50-53 are given only
as rough approximations for simple calculations and for more accurate
results, one should refer to Ref. 31 for free jumps and Refs. 16 and
30 for submerged jumps.

3.3.1 Analysis including Reverse Flow

To consider the reverse flow above the wall jet for the
zero pressure gradient case, the shear on the bed is rel axed thereby
allowing a slip at the bed as shown in Fig. III-8(a). 1If ;; is the

backward velocity at the surface, let

U=u- U (3.54)
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where :m is negative. Based on the few experimental results of Liu

(22) and also from experience in treating somewhat similar cases, one

could write

-t -t m (3.55)
m b
where Um is the maximum value of U and b is the value of y where
U= L U . Assuming further
2 m
T, _
CLR
the equations of motion reduce to the form
o ¢ _ bu _
h' = -b f'Sfdn+ T [ £-nf"]
m
o
buU_' . =
+ —2— [f-f' Ceam+2s T
U ) 2 mn
m U
o n
bulU’ B'u _
- ]
+ 3 f T nf (3.57)
U m
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For similarity,

3 o« 5O (3.58)
bu'
5 L (3.59)
m
b u' o
. D, (3.60)
m
g_m;m' o
—5— =x ' (3.61)
Um
g —m Um' (o]
— = x (3.62)
Um
if
u_ = 1 (3.63)
|
= x4 (3.64)

I.'m « xP2 (3.65)
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q = 1.0 from Eq. 3.58. From Eq. 3.59, P, = pz. The other equations
of this group do not furnish any other information.

The integral momentum equation could be reduced to the form

[uzf2+'62+u 3 26]bdn = 0 (3.66)
m m o

4
dx m

o g |

where‘; is the constant depth of flow downstream of the nozzle. A

consideration of Eq. 3.66 shows that for ;; < Um and for ;; =y

m’

shows that for

=1
Py 2
(3.67)
=1
Py 2
That is, considering the reverse flow,
v =i
~ vx
u = L (3.68)
/x



49

The interesting relation of this group is the manner of vari-
ation of ;;. The results of Rajaratnam (31) and that of Liu (22) shown
plotted in Fig. III-8(c) indicate that the theoretical prediction for
the variation of ;; is not supported by experimental observations. This
difficulty could not be resolved and hence the reverse flow for the ad-
verse pressure gradient case was not attempted.

3.4 Conclusions '

The plane turbulent wall jet with finite submergence and
with or without pressure gradient has been analysed theoretically and
the theoretical predictions have been correlated with the available

experimental observations. The attempt to analyse the reverse flow has

not been successful.
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CHAPTER IV

MECHANICS OF SLOPING CHANNEL JUMPS

4.1 Introduction

This chapter presents the study of the mechanics of jumps

formed on favourable sloping floors under free and submerged conditions.

" Hydraulic jumps on sloping floors are used as hydraulic
energy dissipators in a large number of hydraulic structures under
suitable tailwater and topographic considerations. A large amount
of experimental work has been done on the sloping channel jumps and
Kindsvater's semiempirical equation (20) is generally used for comput-
ing the subcritical sequent depth. Fig. IV-1 shows the well-known
classification in which ¥y is the supercritical depth normal to the
bed, yl' is its vertical projection, ¥, is the vertical subcritical
sequent depth at the end of the jump, taken generally as the end of
the surface roller (unless the slope of the bed is very small), Ye is
the vertical tailwater depth measured above the horizontal downstream
bed, Lj is the horizontal length of the jump and € is the slope of
the bed with the horizontal. For the C-jump, Kindsvater's equation

could be written in the Belanger form (38)

Y2 1 2
—y—I'-— '5 [Vl*-&;l - 1] (“‘1)

where
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and

log,, T, = 0.0276 (4.2)

8 being the angle of the bed in degrees and Fl is the supercritical
Froude number at the toe of the jump equal to U1/ /§§1 , where Ul
is the mean supercritical velocity and g is the acceleration due to
gravity. For the C-jump, Yy = Y- Eq. 4.1 could be used for D-jumps
also with the only difference that y, # e The length of the jump
has been measured and analysed well by Bradley and Peterka (6).
Apparently no signifiéant attempt has been made to explore
the sloping channel jump to study the mean flow patterns, velocity,
pressure and bed shear distributions, turbulent fluctuations and
turbulent shear. Such a knowledge would be very useful in improving

upon the present design methods.

4.2 Review of Previous Work

The problem of hydraulic jump on sloping floors was studied
by Riegel and Beebe (1917), Ellms (1927), Yarnell (1934) Rindlaw (1935),
Bakhmeteff and Matzke (1936), and Puls (1941). In 1944 a rational
approach was presented by Kindsvater. Hickox [18] presented the ex-
perimental results of jumps on 1:3 slopes. Dutta (1949) developed design

charts for few slopes based on Kindsvater's analysis. An extensive
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experimental study of free jumps on sloping floors was made by Bradley
and Peterka [6] at U.S.B.R. Flores [11] attempted to develop math-
ematical solutions for jump characteristics in sloping exponential
channels. In 1958 Wigham extended the work of Bradley and Peterka

to steeper slopes. Argyropolous [3] presented the experimental
results on sloping parabolic and triangular channels. Rajaratnam [38]
made a complete reanalysis of the problem with regards to various
types of jumps on sloping floors and the available theoretical and
experimental developments.

4.3 Experimental Arrangement

The experiments were conducted in two flumes. Flume B
and Flume C. The first two series with tan & = 0.05 and 0.10 were
conducted in Flume C and the last two series with tan 6 = 0.15 and
0.25 conducted in Flume B. Plywood planks were installed to give 15
and 25% slopes. In both the flumes the supercritical stream was
provided by sluice gates and necessary tailwater was caused by tailgates.
On the whole thirteen experiments were conducted, five
experiments on free jumps and eight experiments on jumps with varied
degree of submergence. The Froude number was varied over a range of

U,y

F o was in the range of

1.93x104 to 3.2x10a. The significant details of the data are given

6.24 to 8.05 and the Reynolds number R

in Table IV-1.
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Considering firstly, the sloping channel jump (of the
D-type), observations of the water surface profiles showed that as the
slope increases, the jump surface appears to become reasonably level,
which is distinctly different from the jumps on level floors. Fig. IV-2
shows some typical cases. If the height of the sloping channel jump
is taken as h as shown in Fig. IV-1, then h decreases rapidly as the
slope increases for a given FProude number. There is a surface roller
as in the level channel case. The mean velocity measurements were
made only in the forward flow and a few typical velocity distributions
are shown in Pig. IV-3,

A careful loock at these velocity distributions shows that
the supercritical stream diffusing through the jump behaves like 2
turbulent wall jet (14, 33). To see whether these distributions are
similar, they were plotted in the conventional manner in which the
dimensionless velocity u/um is plotted against the dimensionless distance

A=y161 in Pig. IV-4 where v is the maximum velocity at any section

u
and 61 is the distance y from the bed where u = EE and %3—13 negative.
These two non-dimensionalising quantities um and 61 are known as the

velocity and length scales respectively. A study of Fig. IV~-4 shows
that there is some scatter in the boundary layer portion (i.e. the
region close to the wall) for the two flatter slopes. Otherwise, they
indicate similarity in velocity distribution even though there is some
difference from the corresponding curve of the plane turbulent wall

jet on smooth walls with zero pressure gradient referred to normally
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as the classical wall jet (44).

From the submerged flow experiments, which were only of an
exploratory nature, some typical velocity distributions are shown in
Fig. IV-3. The results for the runs with the highest submergence
for each slope have been analysed for similarity and presented in
Fig. IV-5. Here the agreement with the wall jet curve is very good.
Other results will be presented in a later section after presenting

a theoretical analysis in the following section.

4.4 Theoretical Analysis

Consider the hydraulic jump in a sloping channel either free
(Fig. IV-6(a)) or submerged (Fig. IV-6(b)). Let x be the distance
measured along the bed from the so-called virtual origin which may or
may not coincide with the outlet and y be the distance in the perpendicular
direction with u and v as the turbulent mean velocities and u' and v'
the fluctuations in the respective directions. Then one could write

the Reynolds equations as

- 2
ug—:+v;—ll-=—l-ga+gsin9+v{-a—l;-+-3—;- }
y o x X~ 3y
72
du' u'v’
- + .
= = ! (4.3)
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2 2
oV v 13p dv K6 dvVv
Uu—+v—==-= - gcosé + v {-——+—}
9x 9y p 3y 3x2 ayz
—_— 2
u'v’ v
- — * 5 t (4.4)
du , v _
T __a_y_ = 0 (4.5)

From the nature of the flow in this phenomenon one could make the
following assumptions.

In a major portion of the flow u>>v; gradients in the y
direction are generally much larger than the gradients of the correspond-

ing quantities in the x direction, for example

du ,, 3u
3y 9x

With these assumptions, Eqs. 4.3 and 4.4 become

2 — 2
du su_ _ _13p 37u _ 3u'v' _ 3u'
Lrws + v 3y - 5 3x + g-sin + v 3y2 3y P (4.6)
2
_l3p v'
0= o 3y g cosb 3y 6.7



Integrating Eq. 4.7 after some rearrangement, from y = Otoy

y y
£ 2
3 Sa ov'
— + = -
jay (p + Yy cos®) dy 2y dy
o o]
2
P + vy cos® “P, = - PV
or:
'2
p+ Yy cosé = P, — PV
where P, is the pressure on the bed.
Substituting Eq. 4.10 into Eq. 4.6;
u_a_u_+v_§_g=_}_dpo+v azu_ u'v’
ox dy p dx ayz 3y
- %;»[ ﬁ'z - v'2 j + g sind

Without much error, the last but one term in Eq. 4.11 could be ne-

glected. Hence, the final simplified equationms of motion for the

sloping channel jump could be written as

64

(4.8)

(4.9)

(4.10)

(4.11)
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Ly, w1 P,k
ox By p dx ay2
du'v! .
- 3 + g sin® (4.12)
Ju , oV _
_3_;4_3;_0 (4.5)

From the experimental observations, mentioned in the early part of this

part, one could write

E _ s Y 7=
5 - fig 1=£ ) (4.13)
m 1

. From the knowledge of the experimental measurements and theory for
similar turbulent flows like jets and wall jets, ome could further

write

=G (1) (4.14)

With these assumptions and using the continuity equation, Eq. 4.12

could be reduced to the form
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A A
6.u ' 6.u’
¢ =28 2545 e fasrar - L2 g | g
u 1 1 u
m m
o o
dp
-V e l_o_ .
5o £'' + [ > o g sinf ] (4.15)
l™m
Where the primes on f and G denote differemtiation with respect to

A and the primes on u and 61 denote differentiation with respect to x.
6,u

Since is generally very large, the term S— f'' could be

6lum

neglected. Rearranging, Eq. 4.15 becomes

by A
Glu ! 2
G' == [ £ - fh 1 -6 [ME' - £ |2f'dr ]
m

o o
dp
1 %o

+[ rerraning sing] (4.186)

Regarding the last term in Eq. 4.16; one could write for level water sur-

face

P. =71 Y cos6 = {; (4.17)

o
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Where Y is the normal depth of flow and ;'is the vertical depth.

Further
dp —
l.__o_ :l QZ- =
S I g sind 5 Y & g siné 0 (4.18)

Then, in Eq. 4.16, since the left hand side is a function of only i,

the right hand side should only be a function of A. Hence, one could

write

Glum' (o}

a x (4.19)

um

5' a x° (4.20)
If

u ax?

m

6, ax 4 (4.21)
From Eq. 19

9+p-1-p=0

or

q=1 (4.22)
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Eq. 4.20 also gives q = 1. To evaluate the other unknown exponent,
one could use an integral form of Eq. 4.12.

For the horizontal water surface, integrating Eq. 4.12 with
respect toy fromy = 0 to y = Y and neglecting the backward flow on

the surface, one could obtain

Y

g™

jp uzdy =-1, (4.23)

o
where the shear stress on the surface of the water has been neglected

and 10 is the bed shear stress.

For the present neglecting the shear stress on the bed,

Eq. 4.23 becomes,

Y

d 2,

Ix Jp udy =0 (4.24)
o

That is, the momentum flux in the x direction is preserved.
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Equation 4.24 could be written as

Yls1
%x-pélumz [ 2 = o (4.25)

o

Since the integral will be a number, Eq. 4.25 could be rewritten as

Glum a x (4.26)
or

q+2p =0 ; (4.27)
or

1

P=3 (4.28)
Hence,

51 ax (4.29)

Bwe = (4.30)

Equations 4.29 and 4.30 could be verified using dimensional

analysis as shown below,
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Since in this problem, the momentum flux Hl is preserved and

appears to be the dominant parameter, one could write
= €
u = £ [ Ml,.p, x] (4.31)

Using the m theorem, Eq. 4.31 could be reduced to the form

u
— = const C, (4.32)
\/ui/ox
Since 31 = plelz, Eq. 4.32 becomes
u C
U_m - i (4.33)
1 xly1

The constant C1 has to be determined experimentally. The length scale

could be easily written as

8, = Cx (4.34)

or

— c — (4.35)



71

Again C, is another coefficient to be determined experimentally.

2

T, = f1 [Ml, p, X ] (4.36)

Using the 7 theorem, Eq. 4.36 could be reduced to

TO/O
H = const C3 (4.37)
11
p x
or
T 2C
0 3
= —= (4.38)
2,. x/y
Uy /2 1
or
T, 2C3
2/ = c 7 = Ca (4.39)
oum 2 1

For plame turbulent wall jets, Sigalla (46) found that Tolpu 2 is a
m

function of some type of Reynolds number and Myers et al (23) found that

¥
Yo x Ul‘i
3 - = . " is a constant equal to 0.20. The
U, %/2 1

relationship of Myers et al could be shown to agree with the predictions
of Eq. 4.31.

The foregoing analysis was confined to a case where the

vater surface in the jump was horizontal. It could be applied for free

as well as submerged jumps. If the water surface is not level, then
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dp
the term I_o_ g siné will be different from zero. But, if it

p dx
is still small in comparison with the other terms of Eq. 4.15, similarity
of velocity distribution will still be satisfied along with the other
relations for the scale factors. These points will be considered

again while discussing the relevant experimental data.

4.5 Analysis of Experimental Results

Considering the velocity distribution, Fig. IV-4 shows a
plot of the dimensionless velocity distribution along with the curve
of the classical wall jet. It is seen that the results for the 15 and
25 percent slopes indicate well the existence of similarity, whereas
those of the 5 and 10 percent slopes show some scatter in the region
near the bed, similar to the bahaviour of jumps on level floors (28).
For practical purposes like computing the momentum and energy, the
difference from the curve of the classical wall jet could possibly be
neglected for the sake of simplicity and the classical wall jet curve
itself be used.

The variation of the dimensionless velocity scale um/U1
against x/y1 is shown in Fig. IV-7. All the data points are confined
between the curves of the classical wall jet (34) and the jump on a
level rectangular channel kmown as the classical jump (31). These
data are replotted in Fig. IV-8 in accordance with the prediction of

the results of the similarity analysis and dimensional arguments. It
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u
is seen that for larger values of x/yl, EE'indeed varies linearly with
1
L . The value of the coefficient C1 has been found to increase
/x/y1

from 2.6 for 8 = 0 to about 3.5 for 6 = 90 degrees. It will be useful
to obtain some information for steeper slopes in the future investigationms.

Experimental results for the length scale are shown in Fig.
IV-9 where 61/y1 is plotted against x/y1 along with the other two
curves. For the two flatter slopes, the variation is linear for x 212,
whereas for the steeper slopes, it becomes linear for x/y1 2 25. ;he
interesting observation is that in general the length scale is much
largér than that for the two standard cases. For slopes greater than
5%, for any x/yl,.61/yl decreases with increase in slope. Then for the
slopes flatter than about 5%, it should be increasing with slope. This
aspect also should be given consideration in future studies.

Regarding the variation of the bed shear stress L with 1/x,
dimensional analysis and similarity analysis predicted a linear

variation of T, with 1/x or c, = To/oumzl2 shculd be a constant with

f
respect to x. Fig. IV-10 shows the variation of 1, against x for all

the experiments. When Ce is plotted against x, it is found that for

the steepest slope, for x/yl greater than 18, ¢ becomes almost independent
of x or x/yl. For the smaller slopes, e varies strongly with x/yl.

Fig. IV-11 shows the effect of bed slope on the bed shear in which yz*

is the subcritical sequent depth of the corresponding classical jump.
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The velocity distribution data for the submerged cases
(with the highest submergence for each slope) are shown plotted in the
standard non-dimensional manner in Fig. IV-S. It is interesting to
find that the distribution is fairly well described by the curve of the
classical wall jet. The variation of the velocity scale is shown in
Fig. IV-13 for all the submerged cases and in Fig. IV-14 for the
extreme in each slope. Fig. IV-14 shows that in most of the cases
the data approach the linear variation asymptotically and the value of
the coefficient C1 is indicated in the relevent places. In Fig. IV-13,

u

=

Uy

gradient wall jet curve. The reason seems to be that in those cases

it is found that in some cases is larger than the zero pressure

the water surface is not level and possibly i-%ﬁ - sinf was negative,

©

thereby accelerating the flow.

The variation of the length scale is studied in Fig. IV-15.
The variation appears to be generally linear and the lines shift to-
wards the wall jet line as the submergence increases. The variation
of the skin friction coefficient Ce with x/yl, is shown in Fig. IV-16

for the case of extreme submergence for each slope. For the two steeper

slopes, c. appears to be independent of x whereas for the two flatter

f
slopes, Ce decreases as x increases. It is reasonable to conclude that
as the slope and submergence increase, ce will become invariant with x.

Based on the observations on wall jets, it could be said that ¢ will
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be a function of the Reynolds number of the flow.

4.6 Boundary Layer

Fig. IV-17 (a to d) shows the velocity distribution in
boundary layer part of the forward flow for free jumps on different
slopes. It is quite 15tetesting to observe the profiles exhibitiﬁg
the decay of the effect of pressure gradient with increased bed slopes.

Fig. IV-18 shows the velocity distribution in the boundary
layer for submerged jumps on different bed slopes. The data for all
the cases shows good correlation between u/um and Y /& drawn on
arithmetic scale with some scatter near the bed. Fig. IV-19 shows

*

the relationship between U/u* and yu/v for the same data showing the

functional form

u
u*

= 3.8 log 1325 + 9.5 (4.40)
The values of constants in Eq. 4.40 are different from that of well
known boundary layer equation. This is justified because the turbulent
structure of the boundary layer flow is different from the well known
boundary layer formed on a smooth flat plate. The boundary layer in a
jet flow is growing under a turbulent decelerating flow rather than

potential flow,
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Fig. IV-20 shows the velocity distribution in the inner
layer (boundary layer) of the forward flow for submerged jumps formed
on different bed slopes. The correlation is shown between'u/u and y/(Sl
plotted on logarithmic scales. It can be observed that over t:e range
of experiments conducted for submerged jumps, the correlatien with

velocity scale u and length scale 6, is very good with an expected

1

scatter near the bed (submergences not being same and appreciable).

This correlation once again indicates the fact that the flow under

appreciable submergences can be analysed as a wall jet.

4.7 Conclusions

Based on a theoretical and experimental study of sloping

channel jumps with and without submergence on four slopes of 5 to 25%Z,

it could be concluded that,

1. The theoretical analysis, inspite of some simplifying assumptions
predicts the scale variations reasonably well. Prediction for Ce
was successful only for the steeper slopes indicating the influence
of pressure gradient for smaller slopes.

2. The turbulent wall jet model is quite useful for predicting some of
the mean flow characteristics.

3. The velocity distribution in the boundary layer for free jumps was
found to exhibit the decay of adverse pressure gradient effects
with increasing bed slopes. In the submerged jumps, the boundary
layer velocity distribution when correlated with u and é, was found

1
good indicating the existence of similarity.
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EXPERIMENTAL DETAILS
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u U, Y

Expt. Bed 4 Y F1=Lfg= -5

No. Stope  (inch) ft/sec. 7 Comments
5-5-2 & o040 8235 7.95  238x10" Free (F)
5-5-3 ss 040 8.0 7.82  2.34x 10 submerged (S)
5-5-4 ss  0.40 8.0 7.82  2.34x 10t s
5-5-5 s 0.0 8.00 7.5  2.32x 10*
5-5-7 o o040 668 645  1.93x10° s
$-10-1 i0¢  0.40  8.33  8.05  2.41x 10* F
sj0-2  10% 040 7.9 770 2.30x 10* s
s.15-1-1 158 0.50  7.37  6.37 2.67 x 10° F
s.15-1-2 15t 050 8.82  7.63  3.20x 10t F
s.15-2 152 0.50  7.31 6.3 2.65 x 10° s
s.15-4 158 0.50  7.37  6.37 2.67 x 10° s
5-25-1 6y 050 7.5  6.53  2.74x 10t F
5.2  25% 050 7.2 624 262 10% s
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CHAPTER V

MECHANICS OF FORCED HYDRAULIC JUMPS

5.1 Introduction

This chapter presents the experimental results of drag
distributions on baffle walls and the mechanics of some types of forced
hydraulic jumps formed with the assistance of baffle walls.

The forced hydraulic jump is a jump formed with the assistance
of baffles {or baffle piers) with or without a subcritical tail-water
and is the basic design element of most of the hydraulic jump type
stilling basins. A considerable amount of experimental work has been
done on forced jumps in the course of the hydraulic model studies for
the stilling basins for the large number of dams that have been con-
structed all around the world. But the first attempt at organising
a reasonable theory for forced jumps appears to have been made by
Forster and Skrinde [13] in 1950. This case followed by the studies
of Harleman [17], Rajaratnam [41] and more recently my McCorquodale and
Regts [24]. On the experimental side, careful studies have been
made by Bradley and Peterka (6), Rand (43) and others.

In general, in all the above studies, only the gross charac-
teristics of the forced jump have been studied with very little attention
being given to the detailed fiow processes that occur in the phenomenon.

It is believed that a better understanding of these will enable better
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control of the forced jump, giving rise to more rational and economical

design procedures for the hydraulic jump~type stilling basins. As a
first step in this direction, the mean flow patterns inside forced
jumps created by baffle walls have been studied and described using

the flow models of the turbulent wall jet and turbulent free jet in

the appropriate regions. In addition, the form drag on the baffle
wall has been measured using a large number of suitably placed pressure
tappings and analysed. Further, this analysis has been used to

develop preliminary design procedure for stilling basins.

5.2 Drag on the Baffle Wall

Fig. V-1 is a schematic representation of a forced jump,
in which y1 is the depth and U1 is the mean velocity of the super-
critical stream before the jump, Y, is the tailwater depth after the
jump, h is the height of the baffle wall located at a distance of
X, from the toe of the jump and Yo is the maximum depth in the forced

jump. If D is drag on unit length of the baffle wall, one could write
D =1£, Iy;» Uy5 8 ¥» X5 by 0, V] (5.1)
where g is the acceleration due to gravity, p is the mass density

and v is the kinematic viscosity of the fluid. Using the = - theorenm,

Eq. 5.1 could be reduced to
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Uy y
_D _ _ 1 _ 1’1 h c ‘'t
Cy = 7 —fz[Fl——,R-— - — ] (5.2)

pUl L4
2

where Cd is some type of a drag coefficient, Fl is the Froude number
and R is the Reynolds number of the supercritical stream. In the
forced jump, if R is very large, say greater than about 104, the
effect of viscosity on the turbulent diffusion and hence on the gross

characteristics could be assumed to be negligible and Eq. 5.2 would

then reduce to the form

x y

h (o] t

C.=f¢f [F s T = _] (5:3)
d 3 1 yl yl y1

Applying the integral momentum equation along with the continuity

equation to the forced jump, one could obtain, as shown in (41)

y y y
[—5-1][252—4(1+—t)]
71 Loy v, ]

C, = (5.4)
d 2 ¢ n
Fl ..
Y1 ¥
yt
From Eq. 5.4, it is seen that, ;— is specified for given values of the
1
set of Cd, Fl and'g— . Hence, Eq. 5.3 could be further reduced to
1

the form
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h %o
c=f[p,_,_] (5.5)
a1y 0y

At the present state of kmowledge of turbulent flows, it
does mot appear to be possible to evaluate Eq. 5.5 theoretically and
hence it has to be evaluated only experimentally. To evaluate the
drag coefficient, Rajaratnam (41) used Eq. 5.4 and measured values of
Fl, h, Y, and ¥y In this process it was found that Cd was very
sensitive to even small errors in measurement of Yer which is quite
difficult to measure accurately due to the fluctuating nature of the
tailwater. The best solution would be to measure the drag force
directly as was done by Harleman (17) and by McCorquodale and Regts (24).
Due to the non-availability of such a device, the pressure drag on the
baffle wall was measured by providing a large number of piezometric
holes in the baffle wall. The skin frictiom drag on the baffle wall
is assumed to be neglible and hence the pressure drag will comstitute
the total drag. This method has of course got the superiority of
furnishing the pressure distribution on the baffle wall.

The first series of experiments were devised to evaluate
Eq. 5.5. These experiments were done in Flume B. Different types of
forced jumps could be created by adjusting the tailwater with another
control gate located at the downstream end of the flume. Baffle walls
of heights of one and two inches shown in Fig. V -2 were used in this

study. The pressure distribution on the baffle walls was obtained from
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water manometers. Depths of flow were measured by means of precision
point gauges.

Fig. V -3 shows some typical piezometric pressure distributions
on the baffle wall. On the front face, for X, = 11.0 inches, the
piezometric pressure decreases from a certain value on the bottom to
some minimum value and then increases to a maximum value at %-= 0.85
and would drop down to some low value at the crest, where the flow
separates from the baffle wall. For large values of X the piezo-
metric pressure on the front face becomes almost uniform. Tne base
pressure on the rear side of the baffle wall was uniform for all values
of X, -

From these pressure distributions, the drag and the drag

A . h
coefficient were computed. The variation of Cd with xo/y1 for ¥ = 0.625,

0.954, 1.25 and 1.90 are shown in Fig. V -4 (a) to (d). The first
conclusion is that for a given value of h/yl, the variation of Cd
with xoly1 appears to be independent of Fl. In Fig. V -4 (b) and
(d), the results for the one inch and two inch baffle walls do not agree
and it is difficult to imagine that the absolute height difference
would be responsible for this difference and hence no special signi-
ficance is given to this disagreement.

For the purpose of developing a design procedure for the
baffle wall, it appears to be more convenient to plot the variation of

the quantity A = Cd. %—-wich xoly1 as is done in Fig. V -5(a) to (d).
1
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The mean curves are all collected together in Fig. V.-6. Using Pig., V -6
and Eq. 5.4 which is displayed in a graphical fom.in Pig. V -7,
stilling basing could be designed using the procedure suggested earlier
by Rajaratnam (41). Discussing this procedure further, from the work

of Rand (43) it appears that for a given supercritical stream and any
baffle height, there is a minimm position for the forced jump and

let X, for this minimum position be denoted by Ll. The variation of
L,/y, vith F, has been obtained by Raﬁd (43). Using this minimum

position any other forced jump could be defined by a parameter £ defined

L (5.6)

From the work of Rand (43),it is found that for the range of Fl from
2 to 10, Llly1 varies from 5 to about 10. Hence, Llly1 is given an

average value of 7.5 for further use. Then

1 1 %

|

§=—53 "75 3, (5.7

Using the above equation, lines of £ = 0, to 5.0 are drawn in Pig. V -6.
If Eo is the value of £ when x, is equal to the length of the correspond-

ing natural jump, i.e. the jump formed without a baffle, using the data
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of Bradley and Peterka (7), the variation of Eo with Fl is shown in
Fig. V -8. Por any forced jump with any given Fl, if its § is close
to zero the forced jump is very similar to the minimum jump; if £ is
clogser to 50, then it approaches the corresponding natural jump.

5.3° Plow Characteristics:of the Forced Jump

When the forced hydraulic jump is formed in the minimum
position, it is very violent and is considerably different from the
corresponding natural jump with the same supercritical Froude number.
On the other hand, when the baffle wall is placed far away from the
toe so that § » Eo’ then as mentioned in the previoué section the
resulting phenomenon is approximately the same as the corresponding
natural jump. In the intermediate range of 0 < § < 50, the geometrical
configuration of the forced jump and the violence of flow changes
continuously. The geometrical configurations have been qualitatively
studied earlier by Rajaratnam (41), who connected certain forms with
certain ranges of the drag coefficient. Rand (43) classified these
flow patterns with the parameter X defined as

xo - L1

K=125L.-L
3

(5.8)
1

where Lj is the length of the natural jump. For the minimum jump

K = 0 and when K approaches unity, the forced jump approaches the natural

jump. The two parameters K and § are connected by the relation
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1.5¢
L

1.25 _3 - 7.5
4!

(5.9)

and Eq. 5.9 is shown plotted in Fig. V-9.

Six forced jumps were studied to obtain the mean flow
characteristics as given in Table V-1 (second series). For three experi-
ments K = 0, with supercritical and subcritical tailwater, for two
runs K = 0.4 with subcritical tailwater and for one experiment K = 1.0,
with subcritical tailwater. The supercritical Froude number was varied
from 4.30 to 7.15.

) Fig. V-10 shows the forced jump with K = 1.0 with the surface
profile, velocity distribution in the region between the toe of the

jump and the baffle wall (Region 1) and in the region beyond the baffle
wall (Region 2). The velocity distribution before the baffles in-
dicates that the flow could possibly be analysed using model of the
plane turbulent wall jet (14, 44, 34). 1t appears that the forward flow
downstream of the wall (Region 2) could be analysed, using the model

of the curved free turbulent jet. The above comments apply reasonably
well to Fig. V-11 for K = 0.4, and Fig. V-12 for K = 0 and to Fig. V-13

for K = 0 with supercritical tailwater.

5.4 Flow Characteristics of Region 1
The velocity distribution to Region 1 which appeared to be

amenable for analysis using the model of the wall jet was tested for
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similarity of velocity distribution in the conventicnal manner by
plotting the dimensionless velocity~§— against the dimensionless

m

ordinate‘%—-where u is the turbulent mean velocity in the x direction
1 A

at a distance of y normal to the bed, u is the maximum value of

u at any x station and 61 is the value of y where u = ;Eand %?’is
negative. Generally, L and 61 are known respectively as the velocity
and length scales., It was found that there was considerable amount

of scatter, especially in the layer in which u increases from zero
tou, this being known as the boundary layer zone. The region above
this is the so-called free-mixing zone, and, the velocity distribution
in this region was tested for gimilarity by plotting u/um against

: %:gg where & is the thickness of the boundary layer. This operation
1

is shown in Fig. V'-14 for a few typical runs. For the jumps with
K = 0.4 and 1.0, the similarity is reasonably good and the data agree
reasonably well with the correspondimg curve of the plane turbulent
wall jet with zero pressure gradient, known as the classical wall jet.
For the cases with K = 0, there appears to be more scatter in the
experimental observationms.

In the boundary layer region, the velocity distribution
is satisfactorily described by the power laws as shown in Fig. V-15,

with the exponent n in the power law written as

1/n

=11
b

=||
[

(5.10)
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varying from 5.0 to 8.65.

The variation of the boundary layer thickness & is studied
in Fig. V-16., It is seen that in the forced jump due to the additional
adverse pressure gradient created by the baffle wall, the boundary
layer grows faster than that in the natural jump. The length scale
for the free mixing region is plotted in Fig V-17 with %;f:-against
xlyl. It is interesting to find that this scale factor grows at the
same rate as that in the natural jump showing that the effect of the
baffle wall on the growth of the free mixing region is negligible.

The next important parameter is the velocity scale u .

The data for u are shown plotted in Fig V-18 along with the curve
for the jump in a ievel rectangular channel known as the classical
jump (31). The date points for forced jumps with K equal to and
greater than 0.4 lie on the curve of the classical or natural jump
whereas the points for K = 0 are located much lower thereby indicating
more violent turbulent mixing of the supercritical stream. In con-
clusion it could be said that the forward flow in region 1 could be
described by the turbulent wall jet model with some modifications to

the classical case.

5.5 Flow Characteristics of Region 2

With reference to Fig V-1, it could be seen that behind
the baffle wall there is a region of circulation which could be termed

a standing eddy, the length of which is denoted as Le. On top of this
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eddy there is a region of forward flow which is similar to a plane
turbulent-"curved free jet. The surface roller in cases with small
values of K would extend beyond the baffle wall, but the reverse
flow in this region was not measured.

Studies on curved jets are mainly of a empirical nature
(for example see 27, 19, 28) and the velocity distributions are
normally correlated with the solutions for straight jets. The
velocity distribution in region 2 is plotted in Fig. V-19 with u/um
against the nondimensional distance y/61 where y is measured from the

axis of the curved jet (which is taken as the line of maximum velocity)
u
and 61 is the length scale defined as the value of y where u = EE .

The data for all the cases studied agree reasonably well with the Tollmien
curve for the plane straight jet (45).

The variation of the velocity scale is studied in Fig. V-20,
u

in which ;E— is plotted against ;7y1 where umj is the maximum velocity

m3 -
in the plane of the baffle wall and x is the longitudinal distance

from the baffle wall. The variation appears to be roughly linear, with
um/unu decreasing to about 0.57 at ;— = 12.0. A study of the length

8 1 .
scale showed that — = 0.23 which 1s considerably greater than the

corresponding straight jet value.
The backward flow in the eddy close to the bed appears to

be fairly uniform. If Uk is the maximum backward velocity in the

u

*

eddy, EE— = 0.25 for K = 0 and decreases to about 0.1 for K = 1.0.
1
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Rough estimates of the ﬁed shear stress in forced jump were
obtained using the Preston technique ( 26, 29) and a typical variation
is shown in Fig.V~10 & 12. If T % is the maximum bed shear stress in
the eddy, To*/D U12/2 was found to be about 3 x 10-4 for K = 0 and
0.5 x 10-4 for K = 1.0. The length of the eddy Le was found to vary
from 4 to 12 times the height of the baffle wall.

5.6 Conclusions

This chapter presents an experimental study of forced
hydraulic jumps formed with two dimensional baffles or baffle walls.
Using dimensional analysis, the integral momentum equation and experi-
mental results, the drag on the baffle wall has been analysed and a
design chart for a preliminary design of stilling basins has been
presented. Further, the mean flow characteristics in the forced jump
have been analysed using the model of turbulent wall jet and plane
turbulent curved free jet in the proper regions. Some observations
have also been made regarding the flow in the eddying region behind

the baffle wall.
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DETAILS OF SECOND SERIES OF EXPERIMENTS

Expt. 1 Y A Yt
No. (in) (ft/sec) (in) K Remarks
2-1 1.2 11.8 6.60 8.85 0 Subcritical
Tail water
(Sub TH)
2-2 1.2 11.8 6.60 8.85 0.4  Sub TW
2-3 1.2 11.80 6.60 8.85 =1.0  Sub TW
2-4  1.00 7.3 4.30 5.6 0 Supercritical
Tail water
(Sup TW)
2-5 1.15 10.00 5.72 7.6 0 Sub TH
2-6  1.00 1.6s 7.15 7.15 0.4  Sub THW

TABLE V-1
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Three practical hydraulic engineering problems have been
studied analytically and experimentally with the help ¢f free jet and
wall jet models as an initial step towards understanding the mechanics
of the phenomena. These are, the plane turbulent wall jets with finite
submergence, the mechanics of sloping channel jumps and the mechanics
of forced hydraulic jumps.

These studies have been discussed in Chapters III through
V and the conclusions of the various studies have been given in respective
chapters. The significant conclusions are reproduced in this chapter
for convenience and recommendations are made for further study.

6.1.1 Plane Turbulent Wall Jets with Finite Submergence

The plane turbulent wall jets with finite submergence and
with or without pressure gradient has been analysed theoretically.
The correlation of theoretical predictions with the experimental
observations was found to be reasonably good. The attempt to analyse
the reverse flow has not been successful.

6.1.2 Mechanics of Sloping Channel Jumps

The turbulent wall jet model is found to be quite useful

in predicting some of the mean flow characteristics. Simple power-law
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type expressions have been developed for the velocity and length scales.
Prediction of Cp was successful only for the steeper slopes.

The boundary layer flow analysis has indicated the fact
that in the case of free jumps formed on steeper bed slopes the effect
of adverse pressure gradient decreases and in the case of submerged
jumps the assumption of flow similarity is reasonably valid.

6.1.3 Mechanics of Forced Hydraulic Jumps

The drag on the baffle wall has been analysed and a design
chart for a preliminary design of stilling basins has been presented.
The mean flow characteristics of four types of forced hydraulic jumps
have been analysed using the models of plane turbulent wall jet and
plane turbulent curved free jet in the proper regions. Some observations
in the eddying region behind the baffle wall have also been presented.

6.2 Recommendations for Further Study

The following topics are recommended for further study:

1. The backward flow region in the plane turbulent wall jet with
finite submergence and turbulence characteristics in the entire
region.

2. Study of free and submerged hydraulic jumps on bed slopes steeper than
25%Z including the turbulence characteristics.

3. Study of jumps on adverse bed slopes.

4. Study of various types of forced hydraulic jumps formed with the

help of baffle piers.

5. The theorctical analysis of curved jet region and the eddying regions

of forced hydraulic jumps.
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