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Abstract

With the emerging proliferation of electric vehicles (EVs) in traffic, the optimal de-

ployment of EV charging stations has become a critical issue due to the foreseeable

significant impact on conventional power distribution systems and traffic networks.

With the complex coupling between time-varying traffic flow demand and power de-

mand during a day, it is challenging to intelligently compromise the infrastructure cost

and service quality to ensure cost-effective investment as well as customers’ comfort.

To deal with this particular challenge, in this study, an iterative algorithm comprising

three stages with comprehensive formulations is presented to optimize the locations

and sizing of charging stations, considering the EVs’ behavior and customers’ per-

spective in the composite transportation and power network. To verify the proposed

algorithm, a case study based on a 25-node transportation network integrated with

IEEE 33-bus system is done. Numerical results show that our algorithm can efficiently

solve the problem in power-traffic coupled networks while accounting for time-varying

flow demand and power demand.

Additionally, we addressed the high power needs of charging stations by treating

them as microgrids capable of generating their own power from renewable sources.

This new approach aims to make the system more robust and dependable. To do this,

we introduced a sophisticated online algorithm based on thresholds. This algorithm

is crucial in managing the energy storage in each microgrid, finding the best balance

between charging, discharging, and interactions with the main grid. We conducted a

thorough mathematical analysis to understand how well this algorithm performs in

worst-case scenarios. Then, we tested it with two detailed case studies: one using
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generated data and the other using real-world information. In both cases, our model

consistently showed strong performance, often reaching nearly optimal results.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Addressing urgent global challenges such as climate change and energy scarcity has

led to a significant emphasis on replacing fossil fuels with cleaner energy sources

across various sectors. Embracing renewable energy, such as photovoltaic or wind

power, presents a compelling opportunity to achieve the zero-emission goal pursued

by many countries. This initiative aligns with the increasing adoption of electric

vehicles (EVs), seen as an effective solution to reduce fossil fuel consumption and

mitigate noise pollution (Boucher, 2019).

Despite the feasibility of using EVs to combat fossil fuel consumption, several

challenges persist, including battery design technologies, electric vehicle safety, in-

stallation of charging facilities, load balancing, and more. One major issue is the

need for meticulously orchestrated infrastructure capable of seamlessly integrating

into existing transportation systems while reinforcing long-term sustainability goals.

Strategically placing this infrastructure becomes crucial to alleviate range anxiety, en-

hance efficiency, and minimize environmental impact. Predictions indicate that the

projected surge in EV usage, aiming for a 30% replacement of conventional vehicles

with EVs, could result in an 18% increase in energy demand on a typical summer day

in the US [1]. Furthermore, this 30% of replaced EVs lead to a 7% demand increase

in peak hours and a 20% increase in off-peak hours in the Netherlands [2].

Hence, designing charging station facilities should consider factors such as customer

welfare, installation costs, and compatibility with existing infrastructure. This raises

questions about the ideal location and size of the charging stations (CSs), an area of
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significant focus among researchers in recent years.

Furthermore, the escalating power demand in recent years has prompted consider-

ations for a more resilient approach to address power shortages. Major power outages

affecting millions highlight the need for alternative solutions. Installing equipment

in charging stations capable of generating their own energy could contribute to more

resilient power networks. Simultaneously, the exploration of Microgrids (MGs) as a

means to harness renewable energy sources (RES) has gained traction. MGs, with the

capacity for self-generation and ESSs, offer a promising solution. However, due to the

intermittent nature of RES, MGs need to maintain connectivity with the main power

grid or be equipped with adequate energy storage system (ESS) to ensure consistent

supply. Functioning in two distinct modes – connected and islanded – MGs have

the capability to operate independently, but uncertainties regarding energy demand,

pricing fluctuations, and resource availability influence decision-making.

Enhanced cooperation among MGs, particularly during blackouts, is vital to meet

collective energy demands. The convergence of increasing EV adoption and the evo-

lution of MGs presents multifaceted challenges and opportunities in energy manage-

ment, supply dynamics, and grid resilience. This study aims to explore the intricate

interplay between optimal EV charging infrastructure deployment and the evolving

landscape of MGs. Its goal is to navigate complexities and uncover potential synergies

between these domains within the evolving energy paradigm.

1.2 Background and Literature Review

1.2.1 Electric Vehicle Charging Infrastructure: Challenges
and Optimization Approaches

Since constructing a new charging station needs a considerable amount of invest-

ment based on its charging technology, which can affect the charging time, locating

and sizing these charging stations need to be optimized to cope with the foreseeable

dramatically increasing EV load.

Many publications try to deal with the above challenge by considering different

aspects, e.g., planner side perspectives, and customer side perspectives, which led to

two main solutions to this problem are flow-based optimization (FBO) and node-based
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optimization (NBO) formulations [3]. Fig. 1.1 summarizes the formulations.

Figure 1.1: A summary of charging station placement problem algorithms.

In the FBO, a set of flows is often selected to be covered by a certain number

of stations where the flows pass by, and the objective is normally to maximize the

covered flows. The objective can be set to find the optimal locations of the charging

facilities in a way that all vehicles can reach their destination points without running

out of energy [4]. There are several algorithms based on FBO that try to find the

optimal locations of the charging stations, such as the flow capturing model, flow

refueling model, arc covering model, etc. In the FBO formulation, the driving range

plays a significant role since the distance between charging stations should be less

than the driving range. Many different publications have been working on this type

of formulation.

The work in [5] is one of the first research efforts that propose FBO as a possible

solution to the charging station placement problem and call it the Flow Refueling

Location Method (FRLM). In this work, they consider various possible combinations

of location sets and then find the optimal set based on traffic constraints. However, the

complexity can soar for a large network and results in the Curse of Dimensionality,

which tends to require unpractical computation resources. In addition, since the

FRLM is not specifically considered for EVs, the constraints from power distribution

systems are not considered.

The work in [6] introduces another formulation based on the FRLM method and
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calls it Capacitated-FRLM (CFRLM). In this study, the transportation network is

expanded based on the algorithm introduced in [7] to consider the state of charge

(SoC) at both ends of each trip. In this study, certain selected candidate paths are

considered for each origin-destination (OD) pair, and the charging station placement

problem is formulated as a mixed-integer linear programming problem. Nevertheless,

this study does not consider the different traffic flow demands over time and the power

loss terms, which can have a large impact on the locations of charging stations.

The work in [8] proposes a graph-based algorithm to find the optimal locations

and size of the charging stations. Although the time-varying charging demand is

considered in this study, the power network constraints such as power balance and

power losses are not considered. This may lead to not choosing the optimal locations

because power loss is an important factor to contribute.

On the other hand, several studies are mainly focused on the power system part of

the charging station placement problem. In [9], the active power loss and the voltage

deviation are considered as the main objective while the time-varying power demand

and the RES are considered. The work in [10] also sets the active power flow loss

and the annual maintenance costs as the main objective to be minimized, yet is also

considers different sets of charging station locations and finds the one that can mini-

mize the objective function. The work in [11] proposes a model based on CFRLM to

find the optimum locations to place the charging stations and also proposes a strat-

egy to expand the existing transportation and power network; however, the charging

demand in this study is assumed as a steady state amount, which is not practical in

real life situation.

As it is mentioned before, another approach to solving the siting and sizing problem

is the NBO formulation. In this formulation, a set of nodes (charging/recharging

demand) is normally selected/assumed to be covered by a certain number of stations

with a certain coverage (driving) range. The main idea of this formulation is to

locate charging stations in the network such that each charging station can satisfy

the demand in its neighborhood. It means that the EVs of a network are put in a

cluster based on their distance from the charging stations, and each charging station

should satisfy the demands of EVs in that cluster. The set covering model, the

maximal covering model, and the fixed charging model are some of the models that
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are proposed based on the NBO formulation. The work in [12] uses this approach

to find the optimum locations of the charging stations. In this study, the charging

station placement problem is basically turned into the set covering problem. However,

the power network characteristics are not considered, and it could lead to non-optimal

charging station locations and sizing in power-traffic coupled networks.

Also, there are other algorithms aiming to solve this problem that consider different

aspects of the problem, such as the battery SoC tracking model, tour-based model,

etc. The battery SoC tracking model is introduced in [13]. This paper proposes a

model to identify the optimal locations of refueling stations for road vehicles based

on the characteristics of the road network and the demand for refueling. The authors

also propose one heuristic algorithm to address large-scale instances of the problem

based on a combination of clustering and a greedy procedure. The model is tested

in a case study of a highway network in China. However, in this study, assumptions

are simplified and limited data are used. Additionally, the study has a limited scope,

which excludes other potential factors that might affect the effectiveness and efficiency

of the transportation system.

In addition to the aforementioned research efforts, in Table 1.1, we provide a com-

prehensive overview of recently published papers, offering insights into various aspects

of their studies. This comparative analysis allows us to identify key differentiators

between these papers and our own research. By examining common factors typically

considered in this field, we highlight the unique contributions and advancements of

each publication.
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Table 1.1: Overview of related research.

Ref Year Vehicle
Types

Objectives Power-
traffic
coupled

Traffic
flow de-
mand

Power-
flow
demand

User be-
havior

Model

[14] 2020 EVs optimal number and sizing of
charging piles and the maxi-
mum profit

– ✓ – ✓ –

[15] 2020 PEVs minimize the expected plan-
ning cost

✓ ✓ ✓ – Modified
CFRL model

[16] 2021 SEV minimum annual total cost – ✓ – ✓ –

[17] 2021 PEV minimize direct cost of FCS
installation, its induced rev-
enue, and long-term cost on
the power grid

✓ ✓ ✓ – Graph-based
network ap-
proach

[18] 2022 BEVs minimize the construction cost
and total BEV travel cost

– ✓ – ✓ Bilevel model

[19] 2022 EVs minimize total facility deploy-
ment costs, EV users travel
times and charging expenses
and maximize the revenue

– ✓ – ✓ –

[20] 2022 EVs minimize the investment and
operation costs

– ✓ ✓ ✓ carbon emis-
sion flow model

[21] 2022 EVs minimize the total cost ✓ ✓ ✓ – stochastic
scenario-based
model

[22] 2022 H2EVs Minimize constructive cost
with optimized PV utilization,
voltage deviation, transmis-
sion loss, etc.

✓ ✓ ✓ – Modified MCL
model

[23] 2022 EVs Maximize annual income of
charging stations

– – – ✓ Charging
Queuing Model

[24] 2023 EBs minimize operation cost and
maximize reserve service rev-
enue

✓ ✓ ✓ – spatial-
temporal
operation
model

[25] 2023 EVs Minimize voltage deviations,
energy losses, and EVs owners
dissatisfaction

– – ✓ – two-level opti-
mization model

[26] 2023 EVs minimize the mean extra time
with a minimal sitting and siz-
ing

– ✓ – ✓ graph of the
road network

[27] 2023 BEVs minimize the total electricity
costs of all BEVs per interval

– – ✓ ✓ Grid-aware
model

[28] 2023 EVs minimize the operation cost
with minimum extra user
charges

✓ ✓ ✓ – coupled power-
transportation
network model

[29] 2023 EBs minimum cost design with op-
timal siting and sizing

– ✓ – ✓ mixed-integer
nonlinear
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1.2.2 Microgrids as a Solution for Self-Sustaining Charging
Stations

As previously mentioned, establishing EV infrastructure significantly increases power

demand, especially during peak hours, amplifying the criticality of power outages.

The vast infrastructure of the United States’ electric power system, responsible for

delivering approximately 4184 TWh annually to millions, grapples with substantial

disruptions resulting in multifaceted losses encompassing economic, social, and psy-

chological impacts [30]. Studies conducted by EPRI, LBNL, and DOE estimate eco-

nomic losses stemming from power outages to range between $30 billion and $400

billion per year [31, 32]. Furthermore, analysis from the Carnegie Mellon Electricity

Industry Center underscores a notable uptick in blackout frequency, especially during

peak daily and seasonal periods, attributing this surge notably to weather-related

outages. Incidents have surged from 5-20 occurrences yearly in the 1990s to 50-100

annually in recent years [33].

Therefore, in response to the pressing challenges, there has been a growing emphasis

on embracing RES as a viable solution. For example, Brazil and Costa Rica rely

predominantly on RES for their primary energy needs. In Brazil, renewable energy

makes up 85% of the energy supply, while in Costa Rica, it accounts for 90% [34].

Furthermore, numerous studies have forecasted a complete transition to RES by 2050.

[35–37].

One promising approach involves the utilization of MGs, which first introduced in

[38, 39] and considered CSs as one individual MG [40]. In the quest for a dependable

integration of Distributed Energy Resources (DERs) like ESSs and manageable loads,

the concept of a MG emerges as a unified system responsive to centralized control

signals within the larger grid network. While there’s ongoing discourse about the

precise definition of MGs in technical circles, they can be visualized as an assem-

blage of loads, Distributed Generation (DG) units, and ESSs operating harmoniously

to ensure a reliable electricity supply. These components interconnect with the pri-

mary power system at the distribution level, converging at a single Point of Common

Coupling (PCC). Embracing MGs as the cornerstone for widespread distributed gen-

eration integration facilitates decentralized problem-solving, diminishing reliance on
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an intricately coordinated central system and promoting the realization of the Smart

Grid vision [41]. Figure 1.2 shows a typical topology for CSMG.

Figure 1.2: Charging Station Microgrid

Although the utilization of RES brings various advantages, it cannot serve as the

sole energy source due to its intermittent nature. Consequently, MGs must maintain

a stable energy supply, often by remaining connected to the main power grid or by

equipping adequate energy storage. The operation of MGs comprises two distinct

modes [42, 43]. The first mode is known as the grid-connected mode, in which an

MG is capable of drawing energy from the main power grid. The second mode is

referred to as the islanded mode or stand alone mode, during which the MG operates

independently without relying on energy from the main grid. This islanded mode

may come into play when the MG has a surplus of energy from renewable sources or

when a blackout occurs in specific sections of the power network due to factors like

feeder failures or damage to power lines.

Hence, owing to the sporadic nature of RES and the various uncertainties within

MGs, the study of control strategies has emerged as a significant focus in recent years

[44]. The aim is to cultivate a dependable and robust system capable of meeting

energy demands consistently. Control strategies in MGs encompass multiple tiers,

commencing from the micro-source level, which primarily revolves around distinct

converter types (e.g., DC/DC and AC/DC), contingent upon the Distribution Gen-
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erator (DG) units. At the pinnacle, we encounter the energy management aspect of

MGs [45, 46]. This multifaceted control structure seeks to ensure a reliable power

supply by efficiently orchestrating and optimizing various elements within MGs.

An inventive approach to power MGs involves peer-to-peer (P2P) energy trading

among various MGs [47]. This method facilitates the exchange of surplus energy

between MGs, effectively meeting each other’s energy needs. Within the realm of

energy coordination and P2P trading, distributed algorithms have been suggested.

These algorithms involve individual prosumers maintaining a localized estimate of

their energy profile and typically sharing this approximation directly with their con-

nected neighbors [48–50].

As previously mentioned, the energy management level of MG controls encompasses

four primary types of uncertainties, detailed below [51]:

1. Energy demand from each MG: This stands as the most evident uncertainty

within the model. Despite the potential utilization of historical data for predic-

tion, its variability can significantly disrupt system load balance.

2. Available renewable energy at each MG: The volatility of renewable energy

has garnered significant attention in recent years. Various models, such as

Maximum Power Point Tracking (MPPT) [52], are employed to manage these

fluctuations. However, its intermittent nature renders it unreliable as a sole

energy source.

3. Purchasing energy price from the main grid: Dynamic energy pricing constitutes

another uncertain factor affecting MG operational costs. While different pricing

policies exist, they are not the focal point of this study.

4. Blackout occurrences: The possibility of system parts being unable to directly

access the main grid to purchase energy due to unforeseen incidents is a constant

concern. Addressing these uncertainties is crucial for fostering a resilient system.

Numerous studies have been conducted with the primary objective of addressing

the multifaceted uncertainties associated with energy systems. These studies endeavor

to develop algorithms and employ various methodologies to enhance the optimization

9



of the entire system’s operational costs. A prevalent approach in these investigations

involves leveraging historical data of power demand and the availability of RES.

Machine learning techniques are often harnessed to extrapolate future trends from

this data [53]. For example, in [54], a combination of a Deep Recurrent Neural

Network (DRNN) and Dynamic Programming (DP) was utilized to develop a nearly

optimal real-time scheduling policy.

In addressing decision-making under uncertainty, numerous methodologies are de-

ployed, each serving as a potential solution. Among these, Stochastic Optimization

(SO) and Robust Optimization (RO) emerge as pivotal and extensively utilized ap-

proaches.

In the domain of energy management within single or multiple MGs, researchers

have extensively explored stochastic optimization techniques to tackle the complex-

ities arising from uncertainties. Studies such as [55–58] have delved into employing

stochastic optimization to optimize energy distribution under various uncertain con-

ditions. The fundamental principle behind stochastic optimization involves the gener-

ation of multiple hypothetical scenarios, each representing a potential outcome based

on probability distributions characterizing uncertainties. By computing the expected

outcomes or optimizing objectives across this array of scenarios, it aims to arrive at

a robust decision [59]. However, a drawback that accompanies this method is the

computational burden imposed by the necessity to evaluate a multitude of scenarios.

Moreover, the reliance on pre-existing and accurately known probability distribu-

tions for each uncertainty poses practical challenges, making its implementation less

feasible in real-world scenarios.

As mentioned before, another widely adopted methodology is RO. Unlike stochas-

tic optimization, RO operates without requiring prior knowledge of probability dis-

tributions for uncertain parameters. Instead, it defines the range of fluctuations for

these uncertainties by establishing an uncertain set. If the uncertain parameters re-

main within this predetermined set, RO typically generates feasible solutions [60, 61].

Studies such as [62–64] have employed RO to effectively manage the energy in MGs.

However, a drawback of this approach is its inherent conservatism, as it operates on

the premise of addressing the worst-case scenario for uncertainties, potentially leading

to overly conservative solutions.
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Beyond conventional methods, a diverse array of methodologies offers innovative

approaches. Distributionally Robust Optimization (DRO) is a notable amalgama-

tion of Stochastic Optimization (SO) and Robust Optimization (RO) principles [65–

67]. In parallel, Model Predictive Control (MPC) adopts an iterative, horizon-based

strategy, solving optimization problems continuously within a rolling framework [68].

Additionally, Deep Reinforcement Learning (DRL) undergoes offline training using

historical data, facilitating its seamless real-time application for dispatch optimization

[69–71].

Table 1.2: Overview of related research.

Ref Year MG Type
Uncertainties

Model
RES Load Price Fault

[72] 2015 AC MG ✓ ✓ ✓ MPC

[73] 2017 AC MG ✓ ✓ MPC

[74] 2017 AC MG ✓ MPC

[75] 2016 AC MG ✓ ✓ SO

[76] 2020 AC MG ✓ ✓ ✓ MPC

[77] 2015 AC MG ✓ ✓ RO

[78] 2016 AC MG ✓ RO

[58] 2021 AC MG ✓ ✓ RO

[79] 2020 MMG ✓ SO, DRO

[80] 2015 MMG ✓ SO

[63] 2018 MMG ✓ ✓ ✓ RO

[61] 2017 MMG ✓ ✓ RO

[65] 2016 MMG ✓ DRO

Another effective strategy for mitigating system uncertainties is through the imple-
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mentation of online optimization techniques. This approach is particularly valuable

in scenarios where inputs unfold sequentially, requiring algorithms to make decisions

based solely on the information available at each step of the process. Online opti-

mization offers a dynamic and adaptable framework that is well-suited to real-time

decision-making. It enables systems to respond promptly to changing conditions,

making it highly valuable in applications such as energy management, finance, and

logistics. By continuously updating decisions as new information becomes available,

online optimization algorithms can optimize system performance while accounting for

evolving uncertainties.

1.3 Research Objectives

This study stands at the intersection of traffic and power networks, aiming to revolu-

tionize the deployment of CSs within this integrated system. The primary goals are

twofold: optimizing the physical placement of CSs and refining their energy manage-

ment strategies by treating them as MGs equipped with ESS.

1. Sizing and Placement Optimization: The study delves into the intricate

dynamics between traffic patterns, power demands, and user behavior to strate-

gically determine the ideal locations and sizes of CSs. This involves formulating

a comprehensive algorithmic approach, divided into three stages. The aim is to

handle the complexities inherent in this problem by transforming non-convex

optimization aspects into more manageable convex formulations. By doing so,

the research endeavors to achieve optimal placement solutions that align with

both traffic and power flow demands efficiently.

2. Online Optimization Model for Energy Management: Treating CSs as

MGs, this research pioneers an innovative threshold-based online optimization

model. This model is designed to navigate and effectively manage uncertainties

inherent in the energy management of these stations. The mathematical un-

derpinning aims to validate the optimality of these thresholds, showcasing their

ability to adapt to real-world scenarios and simulated datasets. This approach

seeks to ensure robust and adaptable energy management strategies, crucial in
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ensuring the resilience and efficiency of the integrated traffic and power net-

works.

Through these objectives, this study seeks not only to redefine the physical land-

scape of CS deployment but also to revolutionize their functional role within the

larger network, ensuring optimal energy utilization and robustness in the face of un-

certainties.

1.4 Research Methodology

This study delves into a range of optimization methods to effectively pinpoint the

ideal locations and sizes for the CSs operating within the network. Moreover, it

orchestrates their collaboration to streamline operational costs.

To achieve these research objectives, the study progresses through a series of in-

terconnected stages:

1. Formulating an Extended Traffic Network: Using a fresh approach pro-

posed in this study, the formulation of an extended traffic network allows for

expedited determination of the shortest routes between all pairs of nodes. This

method surpasses well-known algorithms like Dijkstra’s in terms of speed and

efficiency.

2. Iterative Three-Stage Optimization: The study employs a three-stage op-

timization algorithm in an iterative manner. This method systematically identi-

fies optimal locations and sizes for each CS. Crucially, it ensures that customer

waiting times remain within predefined limits. Should the initial constraints

not be met, the algorithm adapts by introducing new constraints and repeating

the optimization process.

3. Designing an Online Cooperation Algorithm: The study crafts an on-

line algorithm to facilitate collaboration among CSs functioning as MGs. This

algorithm accounts for the uncertainties inherent in the system. It establishes

two key thresholds: one for energy procurement and another for charging limits

within each CS’s ESSs. Furthermore, it evaluates the worst-case performance
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through competitive-ratio analysis, providing a robust understanding of its ef-

ficacy.

4. Benchmarking and Comparative Analysis: To showcase the superiority

of the proposed algorithm, the study compares it against existing threshold-

based approaches. Leveraging the cooperation among MGs yields multifaceted

benefits for the overall model. Furthermore, a comparative analysis between the

results derived from our algorithm and those of an offline optimization approach

demonstrates that our method closely approaches optimal performance under

specific conditions.

These steps intricately weave together to form a comprehensive methodology that

not only optimizes CS locations and sizes but also ensures efficient collaboration

among them, thereby enhancing the network’s overall performance and cost-effectiveness.

1.5 Thesis Organization

The rest of this thesis is structured into distinct chapters. Chapter 2 covers the in-

tegrated traffic and power networks, exploring the problem formulation of the CS

siting and sizing problem. Moving forward, Chapter 3 delves into the proposed three-

stage iterative algorithm for the CS siting and sizing problem, accompanied by a case

study showcasing the model’s performance. In Chapter 4, we present the problem

formulation and the online optimization algorithm crafted specifically for managing

energy in multiple MGs amid uncertainties. Finally, Chapter 5 serves as the conclu-

sion, summarizing the thesis’s unique contributions and discussing future prospects

for enhancements and further work.
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Chapter 2

Charging Station Problem
Formulation

2.1 Integrated Networks

In this study, a coupling system consisting of transportation and power distribution

networks is considered. These two networks are connected to each other on some

points, which basically are the possible locations to place the charging stations. In

this section, the description of these networks and the way they can interact with each

other are presented. In particular, first, the introduction of our studied traffic network

is followed by the proposal and proof of a new time-efficient formulation for finding

the shortest path between every two nodes in the expanded graph. Second, the power

network and AC power flow analysis, which are utilized in our study, are introduced.

Lastly, the integration of these two networks is demonstrated. The notations which

are used in Chapter 2 and 3 of this study can be found in Table 2.1.

2.1.1 Traffic Network

The transportation network graph is noted as a directed graph GT (VT , ET ) where VT
is the set of locations and ET ⊂ VT × VT is the set of all roads between different

locations.

The connection matrix of a graph GT with n nodes is defined as

C = [cij]n×n, (2.1)
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Table 2.1: Table of notations used in Chapter 2 and 3

Symbol Definition Symbol Definition

GT The transportation network graph GP The power network graph

ĜT The transportation network
expanded graph

VT Set of vertices of graph GT ; indicates
the potential charging station

locations

VP Set of vertices of graph GP ; indicates
the power buses

V̂T Set of vertices of graph ĜT ; which is
equal to VT ∪ S ∪ T

VI Set of vertices where the
transportation graph and power

graph are coupled

ET Set of vertices of graph GT ; indicates
the roads between locations

EP Set of vertices of graph GP ; indicates
the transmission lines between power

buses

ÊT Set of vertices of graph ĜT ; indicates
real and virtual roads

T Set of sink nodes of ĜT S Set of source nodes of ĜT
Di(t) Cumulative departures from node i

at time t
du,w The length of edge from node u to

node w

fu,w
i (t) The flow of commodity i on the edge

from node u to node w at time t
dmin The minimum total distance of EVs

at all times within a day

θij(t) The voltage phase angle difference
between bus i and bus j

xi A binary variable that is equal to 1
if a charging station is placed at i

and equal to 0 otherwise

P d
i (t), Q

d
i (t) The active and reactive power

demand at bus i at time t
gij, bij The conductance and susceptance of

line between i and j of the power
network

P g
i (t), Q

g
i (t) The generated active and reactive

power of bus i at time t
Vi(t) The voltage of bus i at time t

Vi, Vi The minimum and maximum
allowable voltage magnitude at bus i

P g
i , P

g
i The minimum and maximum

allowable generated active power at
bus i

Qg
i , Q

g
i The minimum and maximum

allowable generated reactive power
at bus i

yi An integer variable which indicates
the number of charging units at

node i and it is equal to 0 if xi = 0

λi(t) The arrival rate of EVs at node i at
time t

µ The service rate of an individual
charging unit

Wi The total waiting time of all EVs at
node i

Ai(t) Cumulative arrivals at node i at
time t
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in which

cij =

⎧⎪⎨⎪⎩
1 i = j,

0 i ̸= j and there is no edge from i to j,

eij i ̸= j and edge eij is from i to j,

where eij is basically the distance from node i to node j.

Assume the simple graph of Fig. 2.1 as an example of the traffic network which

has 3 nodes and 5 edges. In this graph, VT = {X, Y, Z} and ET = {e1, e2, e3, e4, e5}.

X Y Z

e1 e3

e4e2

e5

Figure 2.1: A simple example of graph expansion algorithm.

The connection matrix of this graph is:

C =

⎛⎜⎜⎝
X Y Z

X 1 e1 0

Y e2 1 e3

Z e5 e4 1

⎞⎟⎟⎠.
To find optimal locations of charging stations, we should analyze EVs’ behavior

in the traffic network. The graph expansion, which is described in [7], can be used

in order to make this analysis much easier. By using this expanded graph, it is

guaranteed that if a combination of the nodes meets all constraints, this combination

is a feasible solution to the problem. Graph expansion consists of two simple steps:

the first step is to add two virtual nodes for each node in the transportation network

graph, and the second step is to add a virtual link between any pair of nodes whose

shortest path length is below the driving range.

Step 1

Since each node could be an origin or the destination for EVs, a virtual source node

and a virtual sink node are added to each node. For node i in the transportation

network graph, e′i is the edge from the virtual source node (Si) to node i and its
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length is 1 − SoCo, and e
′′
i is the edge from node i to its virtual sink node (Ti) and

its length is SoCd. Here SoCo and SoCd are the State-of-Charge at the origin point

and the destination point, respectively. The set of all virtual source and sink nodes

are denoted by S and T , respectively.

Considering these virtual nodes, the expanded graph ĜT (V̂T , ÊT ) now has 3n nodes

because V̂T = VT ∪ S ∪ T . Thus, the connection matrix of expanded graph is intro-

duced as:

Σ = [σij]3n×3n =

⎛⎜⎜⎝
VT S T

VT Cn×n 0 C ′′
n×n

S C ′
n×n I 0

T 0 0 I

⎞⎟⎟⎠, (2.2)

where I is an identity matrix. In (2.2), the source matrix C ′ and sink matrix C ′′ are

block matrices written as

C ′ = [c′ij]n×n,

C ′′ = [c′′ij]n×n,
(2.3)

where

c′ij =

{︄
0 i ̸= j

e′i i = j
, c′′ij =

{︄
0 i ̸= j

e′′i i = j
.

In the aforementioned simple example of Fig. 2.1, the set of virtual source nodes is

S = {SX , SY , SZ}, and the set of virtual sink nodes is T = {TX , TY , TZ}. After adding

the virtual source nodes and virtual sink nodes, this graph is turning to Fig. 2.2 which

shows the first step of the graph expansion algorithm. C ′, C ′′ and Σ matrices are

showed below:

C ′ =

⎛⎜⎜⎝
X Y Z

SX e′1 0 0

SY 0 e′2 0

SZ 0 0 e′3

⎞⎟⎟⎠, C ′′ =

⎛⎜⎜⎝
TX TY TZ

X e′′1 0 0

Y 0 e′′2 0

Z 0 0 e′′3

⎞⎟⎟⎠,
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X Y Z

SX

TX

SY

TY

SZ

TZ

e1 e3

e4e2

e5

e ′
1

e
′′
1

e ′2
e ′′2

e
′
3

e ′′3

Figure 2.2: First step of the graph expansion algorithm.

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X Y Z SX SY SZ TX TY TZ

X 1 e1 0 0 0 0 e′′1 0 0

Y e2 1 e3 0 0 0 0 e′′2 0

Z e5 e4 1 0 0 0 0 0 e′′3

SX e′1 0 0 1 0 0 0 0 0

SY 0 e′2 0 0 1 0 0 0 0

SZ 0 0 e′3 0 0 1 0 0 0

TX 0 0 0 0 0 0 1 0 0

TY 0 0 0 0 0 0 0 1 0

TZ 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 2

Create a virtual link between any pair of nodes whose shortest path length is below the

driving range. This ensures that if two nodes have a connection and each includes

a charging station, there will always be a feasible path between them that can be

traversed by an EV without exhausting the energy supply.

We develop a novel algorithm that efficiently determines the shortest path between

all pairs of nodes simultaneously. This innovative approach has a time complexity of

O(8n4). As a comparison, the Dijkstra algorithm, which is a conventional method has

the worst-case time complexity of O((3n)4 log(3n))[81]. Thus, our algorithm is better
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than the Dijkstra algorithm for finding the shortest paths in the network. Initially,

we introduce a set of rules, followed by the subsequent proofs of Theorem 1 to 4,

which establish the validity and correctness of our algorithm.

As [82] shows, if C is the connection matrix of graph GT , all paths in graph GT
can be got by computing matrix Cn−1, considering some rules. These rules are noted

below:

1 + ei ≡ 1, (2.I)

ei + ei ≡ ei, (2.II)

eiei ≡ ei, (2.III)

ei + eiej ≡ ei(1 + ej) ≡ ei. (2.IV)

Rule (2.I) stands out to make sure that there is not any self-loop in the graph,

where self-loop is an edge that connects a vertex to itself. Rule (2.II) guarantees that

there is not any duplicated path between the vertices, and Rule (2.III) ensures that

a path does not include any loop. Rule (2.IV) is basically an extension of Rule 2.I.

Now by adding an additional rule, all paths of the graph ĜT can be obtained by

calculating the matrix Σn+1. This rule is noted below:

e′ie
′′
i ≡ 0. (2.V)

Rule (2.V) is added to account for the fact that idel cars, where drivers stay in the

same spot and do not travel, are not considered in this work. In addition, each round

trip is considered as 2 smaller parts, i.e., the origin and the destination of the trip

cannot be the same.

The validity of our proposed formulation is established by proving Theorems 1, 2,

and 4. Additionally, it is demonstrated in Theorem 3 that no loss is incurred in the

overall analysis when the simplified version of the connection matrix for the expanded

graph is employed.

Theorem 1 If C is the connection matrix, Ck + I = Ck,∀k ∈ N.

Proof. Each diagonal element of Ck matrix is in the form of (1 + ...). Based

on rule (i), every diagonal element of Ck is equal to 1. In addition, every diagonal
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element of Ck + I is in the form (1 + ...), which is equal to 1 based on rule 2.I. So it

is proved that Ck + I = Ck,∀k ∈ N.

Theorem 2 k-th power of matrix Σ is in the form of

Σk =

⎡⎢⎢⎢⎣
Ck 0 Ck−1C ′′

C ′Ck−1 I C ′Ck−2C ′′

0 0 I

⎤⎥⎥⎥⎦ . (2.4)

Proof. Mathematical induction is employed to prove Theorem 2 in this study.

• Base case:

Σ2 =

⎡⎢⎢⎢⎣
C 0 C ′′

C ′ I 0

0 0 I

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
C 0 C ′′

C ′ I 0

0 0 I

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C2 0 CC ′′ + C ′′

C ′C + C ′ I C ′C ′′

0 0 I

⎤⎥⎥⎥⎦
C ′C ′′=0−−−−−→

⎡⎢⎢⎢⎣
C2 0 (C + I)C ′′

C ′(C + I) I 0

0 0 I

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C2 0 CC ′′

C ′C I 0

0 0 I

⎤⎥⎥⎥⎦ .
• Induction step:

Σm =

⎡⎢⎢⎢⎣
Cm 0 Cm−1C ′′

C ′Cm−1 I C ′Cm−2C ′′

0 0 I

⎤⎥⎥⎥⎦
⇒ Σm+1 = ΣmΣ

=

⎡⎢⎢⎢⎣
Cm 0 Cm−1C ′′

C ′Cm−1 I C ′Cm−2C ′′

0 0 I

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
C 0 C ′′

C ′ I 0

0 0 I

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Cm+1 0 CmC ′′ + Cm−1C ′′

C ′Cm + C ′ I C ′Cm−1C ′′ + C ′Cm−2C ′′

0 0 I

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Cm+1 0 (C + I)Cm−1C ′′

C ′(Cm + I) I C ′Cm−2(C + I)C ′′

0 0 I

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Cm+1 0 CmC ′′

C ′Cm I C ′Cm−1C ′′

0 0 I

⎤⎥⎥⎥⎦ .
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Theorem 3 Σ matrix could be simplified as a 2n× 2n matrix without loss of gener-

ality. The simplified Σ matrix is expressed as:

Σ′ = [σij]2n×2n =

⎛⎝
VT T

VT C C ′′

S C ′ 0

⎞⎠ (2.5)

Proof. Here it is shown that the k power of the original Σ matrix is equivalent to

the k power of the simplified Σ. It means:

(Σ′)k2n×2n =

⎡⎣ Ck Ck−1C ′′

C ′Ck−1 C ′Ck−2C ′′

⎤⎦ .
The mathematical induction is performed again:

• Base case:

(Σ′)2 =

⎡⎣C C ′′

C ′ 0

⎤⎦⎡⎣C C ′′

C ′ 0

⎤⎦
=

⎡⎣C2 + C ′′C ′ CC ′′

C ′C C ′C ′′

⎤⎦
C ′C ′′=0−−−−−→

⎡⎣ C2 CC ′′

C ′C 0

⎤⎦ .
• Induction step:

(Σ′)m =

⎡⎣ Cm Cm−1C ′′

C ′Cm−1 C ′Cm−2C ′′

⎤⎦
⇒ (Σ′)m+1 = (Σ′)mΣ′

=

⎡⎣ Cm Cm−1C ′′

C ′Cm−1 C ′Cm−2C ′′

⎤⎦⎡⎣C C ′′

C ′ 0

⎤⎦
=

⎡⎣Cm+1 + Cm−1C ′′C ′ CmC ′′

C ′Cm + Cm−2C ′′C ′ C ′Cm−1C ′′

⎤⎦
C ′C ′′=0−−−−−→

⎡⎣Cm+1 CmC ′′

C ′Cm C ′Cm−1C ′′

⎤⎦ .
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Theorem 4 If GT is a graph of n vertices, all paths of its expanded graph (ĜT ) can

be calculated by obtaining P n+1, where P is the simplified connection matrix of GT̂ .

Proof. If C is the connection matrix of GT with n vertices, then Cn−1 can show

all paths with at most n− 1 edges. If a path has n edges, it is obvious that there is

at least one loop in that path. Vertices of the expanded graph are in VT or S or T .

In each path of graph ĜT , there is at most 1 vertex in S because the in-degree of all

vertices of S is 0. Similarly, since the out-degree of all vertices of T is 0, at most one

of the vertices of T can be in each path. Thus, each path has at most n+ 2 vertices

without any loop. So (Σ′)n+1 can completely consider all paths of graph ĜT .

After obtaining all paths of the graph ĜT , the shortest path matrix can be cal-

culated from matrix (Σ′)n+1.1 We denote matrix (Σ′)n+1 as matrix Σ′s. Then the

adjacency matrix of the expanded graph is calculated as equation (2.6):

Â = [âij]2n×2n (2.6)

where:

âij =

⎧⎪⎨⎪⎩
0 i = j,

0 i ̸= j and Σ′s
ij > R,

1 otherwise,

where R is the driving range of EVs.

This adjacency matrix is constructed from the simplified version of the connection

matrix and has size 2n× 2n. Thus, in order to make a corresponding graph from the

adjacency matrix, it is necessary to convert it into the original 3n× 3n form. Thus,

the adjacency matrix of the expended graph could be expressed as equation (2.7):

A =

⎡⎢⎢⎢⎣
Â11 0 Â12

Â21 0 Â22

0 0 0

⎤⎥⎥⎥⎦ (2.7)

where Â11, Â12, Â21 and Â22 are n× n matrices, and are the upper-left block, upper-

right block, bottom-left block, and bottom-right block of Â, respectively.

1Regarding calculation of matrix (Σ′)n+1, we need nmatrix multiplications, and each matrix mul-
tiplication involves two 2n× 2n matrices. Each matrix multiplication has a complexity of O((2n)3).
Thus, the overall complexity for calculation of matrix (Σ′)n+1 is O(n · (2n)3), which is O(8n4).
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The upper bound for the number of edges of expanded graph ĜT is 4n2−2n, where

n is the number of vertices of graph GT . The exact number of edges depends on the

length of each edge, SoCo and SoCd.

In the aforementioned example in Fig. 2.1, based on (Σ′)4 matrix, there are 2 paths

from node Y to node TX . The first one is e2e
′′
1 and the other one is e3e5e

′′
1. Thus, if

the length of each edge is known, the shortest path between every 2 nodes could be

calculated. In the above example let us assume SoCo = 55% and SoCd = 30%. In

addition, e1 = 30%, e2 = 40%, e3 = 60%, e4 = 50% and e5 = 80%. Thus, the shortest

path matrix corresponding to these numbers is:

Σ′s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X Y Z TX TY TZ

X 1 60% 90% 30% 60% 120%

Y 40% 1 60% 70% 30% 90%

Z 80% 50% 1 110% 80% 30%

SX 45% 75% 135% 0 105% 165%

SY 85% 45% 105% 115% 0 135%

SZ 115% 95% 45% 145% 125% 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X Y Z SX SY SZ TX TY TZ

X 0 1 1 0 0 0 1 1 0

Y 1 0 1 0 0 0 1 1 1

Z 1 1 0 0 0 0 0 1 1

SX 1 1 0 0 0 0 0 0 0

SY 1 1 0 0 0 0 0 0 0

SZ 0 1 1 0 0 0 0 0 0

TX 0 0 0 0 0 0 0 0 0

TY 0 0 0 0 0 0 0 0 0

TZ 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, Fig. 2.3 shows the expanded graph of Fig 2.1. Dashed edges are the virtual

edges that are added to the graph.
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Figure 2.3: Second step of the graph expansion algorithm.

2.1.2 Power Network

The power distribution network is defined as an undirected graph GP (VP , EP ), where

VP is the set of all buses. Define V̄P = VP\{v0}, where v0 is the slack bus. EP is the

set of transmission lines between different buses. In this study, it is assumed that all

buses but the slack bus are integrated with the traffic network nodes, i.e., V̄P ⊆ VT .

The power flow patterns will change as soon as a new power demand is added to the

existing network. Thus, when a charging station connects to the distribution system,

the power flow pattern will change significantly, and as a result, the transmission

losses would be increased in the network[83]. Hence, the power losses should be

considered in order to find the optimal charging station locations [84].

Based on the power flow analysis, it is known that:

I = YV, (2.8)

where Y is the admittance matrix, I is the diagonal matrix of injection currents, and

V is the diagonal matrix of bus voltages. In addition, the injection complex power

to the network can be calculated as:

S = VI∗ × 1⃗ = VV∗Y × 1⃗. (2.9)

Here 1⃗ is a column vector with all elements being 1 and its size is same as the number

of buses of the power network, S is the vector of apparent powers, and (∗) is the

conjugate transpose.
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In order to find the active power loss of each line, it is necessary to first calculate

the current of each line [85]. Let us assume there is a line with admittance ymn =

gmn+ jbmn between bus m with voltage Vm∠θmn and bus n with voltage Vn∠θ0 where

θ0 = 0. Thus, the current on this line is:

Imn = (Vm∠θmn − Vn∠θ0)gmn

= ((Vm cos(θmn) + jVm sin(θmn))− Vn)gmn

= ((Vm cos(θmn)− Vn) + jVm sin(θmn))gmn.

(2.10)

Since the active power is the real part of the apparent power, it is equal to

PL
mn = VmnI

∗
mn

= ((Vm cos(θmn)− Vn) + jVm sin(θmn))

× ((Vm cos(θmn)− Vn)− jVm sin(θmn))gmn

= (V 2
m cos2(θmn) + V 2

n − 2VmVn cos(θmn)

+ V 2
m sin2(θmn))gmn

= (V 2
m + V 2

n − 2VmVn cos(θmn))gmn.

(2.11)

Hence, the total power loss can be calculated as

PL =
∑︂

(i,j)∈EP

PL
ij . (2.12)

The consideration of reactive power losses is omitted in order to keep the optimiza-

tion problem simple. However, it can be incorporated into the objective function at

a later stage.

In addition, when the bus voltage limits in the constraints are taken into account,

it results in an unattractive voltage profile. To overcome this problem, an objective

function that measures the deviation of load bus voltage can be set. For voltage

profile improvement, the following objective function should be used [86]:

V D =
∑︂
i∈VP

|Vi − 1|. (2.13)

2.1.3 Coupled Network

The power network and traffic network join together on some points and thus can

form layered graphs [87]. These nodes are called common nodes. In other words, these
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are the points that can be assumed as potential places for placing charging stations.

These nodes are basically the intersections of the set of vertices of the traffic network

and power network (equation (2.14)).

VI = VT ∩ VP . (2.14)

In these nodes, the power demand could change by the charging demand of EV

flows of the edges connected to these nodes. Since the charging demands are only

considered active power loads, they only affect the active power demands. This

demand is based on the number of EVs that request to charge at each time and also

the length of edge that they come from because the EVs which travel longer edges

have higher power demands. It is worth mentioning that the consumption rate of

EVs has a significant effect on the power demand for EVs. Since it is assumed that

all EVs are identical in this study, the consumption rate γc for all EVs are the same.

For node u ∈ VI , the active power demand at time t is

P d
u (t) = pdu(t) + γc

K∑︂
i=1

∑︂
w∈VT

du,wfw,u
i (t), (2.15)

where K is the number of commodities. Here P d
u (t) is the total active power demand

at bus u, and pdu(t) is the demand from the grid. For the nodes u /∈ VI , the active

and reactive power demands only come from the grid. In other words, the following

two equations show the active and reactive power demands:

P d
u (t) = pdu(t), (2.16)

Qd
u(t) = qdu(t). (2.17)

2.2 Optimization Formulation

The objective of charging station siting and sizing problem is to minimize the overall

cost, considering the planning of the charging station costs, power loss costs, and

social welfare costs. In this study, an iterative algorithm is employed to find the

optimum solution for charging stations’ locations and the number of charging units

at each station. The most important factors for finding the location of a charging

station are how this location impacts the path that EV owners need to choose and
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how the power distribution pattern changes by applying this additional load at some

locations, especially in peak hours. In addition, the number of spots at each location

is only affected by the allowable waiting time at each station, and other factors do not

have a significant impact on the number of required spots. As far as the authors are

aware, other studies have taken all factors into account altogether, and it can cause

some problems. In this study, all EVs can flow arbitrarily in the system, as long as

their traveled path is within a threshold.

2.2.1 Optimization Assumptions

In this part, all the assumptions that are made in order to make the model simpler

are stated.

• The charging process is performed at a constant rate, specifically focusing on

constant current charging for the EVs while omitting the constant voltage charg-

ing part of the process [88].

• It is assumed that the speed of vehicles are constant over a day on every roads.

In other words, the traffic does not affect the charging station choice from EVs.

• It is assumed that there is enough space at each charging station for EVs to

wait in order to receive service. In other words, the waiting line does not have

any impact on the traffic flows.

• The land cost is constant over all the possible locations of placing the charging

stations.

• When EVs reach the charging station, they charge their battery up to the

maximum possible. In other words, the SoC is 100% as they leave the charging

station.

• EVs are getting service in a first-come first-serve discipline. It means that the

only contributing parameter for the order of receiving service is the time they

arrive at the charging station.

• All EVs and all charging units are identical.

28



• The driving range of EVs do not change over time of study and the battery

degradation is relaxed in order to make the problem simpler.

• It is assumed that each node v ∈ VI could be a possible location for the place-

ment of charging station. Other contributing factors to find the best locations of

charging station (such as the traffic constraints, different land costs and the pos-

sibility of constructing a charging station at locations from construction point

of view) are omitted in order to make the problem simpler.

2.2.2 Problem Formulation

Objective function

As it is mentioned before, the objective function of this problem consists of different

terms and can be written as

min{CI
1 + CS

1 + CE
1 + CI

2 + CS
2 }. (2.18)

Each term in this equation corresponds to one of the costs that are mentioned before.

1. Charging station installation costs:

CI
1 = C1

∑︂
i∈VP

xi, (2.19)

where C1 is the cost of installing a charging station, and xi (a binary variable)

is equal to 1 if there is a charging station at node i; or equal to zero otherwise.

2. Social welfare cost:

CS
1 = C2

⎡⎣⎡⎣ K∑︂
i=1

∑︂
(u,w)∈ET

du,w
∫︂
fu,w
i (t)dt

⎤⎦− dmin

⎤⎦ , (2.20)

where C2 is the cost of additional driving distance that EVs should travel in

order to make their trip without running out of charge. K is the number of com-

modities. Each commodity Ki is noted as a set of three such Ki(Si, Ti, Fi(t)).

Here Si and Ti are the source and the sink nodes of the i-th commodity, re-

spectively, and Fi(t) is the flow demand function from Si to Ti over time. K

is the total number of commodities in the network, and du,w is the distance of
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edge (u,w). fu,w
i (t) is the flow of commodity i on edge (u,w), and dmin is the

minimum total distance that EVs travel during a day. This term shows the cost

of increased milage caused by placing charging stations in certain locations.

3. Power loss costs:

CE
1 =C3

∑︂
(i,j)∈EP

∫︂
[V 2

i (t) + V t
j (t)

− 2Vi(t)Vj(t) cos(θij(t))]dt

+C4

∑︂
i∈VP

∫︂
|Vi(t)− 1| dt

(2.21)

where C3 and C4 are the cost of power loss and voltage deviation.

4. Charging units additional costs:

CI
2 = C5

∑︂
i∈{j∈VI |xj=1}

yi, (2.22)

where C5 is the cost of additional land use, required equipment, and installation,

and yi (an integer variable) represents the number of charging units in a charging

station.

5. Waiting time costs:

CS
2 = C6

∑︂
i∈{j∈VI |xj=1}

Wi, (2.23)

where C6 is the time cost that EVs need to wait in the queue in order to get

service, and Wi is the total waiting time of EVs in the queue in a day at node

i.

Waiting time is a function of the arrival rate (λi(t)), service rate (µi(t)), and

the number of charging units (yi). In this study, it is assumed that the service

rate is constant over time. Fig. 2.4 shows the cumulative charging request over

time (Ai(t)). Thus, the relation between Ai(t) and λi(t) is:

dAi(t)

dt
= λi(t), (2.24)

dDi(t)

dt
= µ, (2.25)
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Figure 2.4: Cumulative arrival and departure figure.

Wi =

∫︂ tf

t0

(Ai(t)−Di(t))dt, (2.26)

where t0 is the time that the queue starts growing. In other words, it is a time

when the arrival rate gets larger than the service rate. Thus, on this point, we

have {︄
λi(t0) = yi × µ
Ai(t0) = yi ×Di(t0)

. (2.27)

In addition, tf is a time when the queue vanishes, and after that, there is no

wait time in the queue. It means

Ai(tf ) = yi ×Di(tf ). (2.28)

At each location, the cumulative charging request is equal to the sum of all

cumulative flows that are injected to the charging station placed at that location.

In other words,

Ai(t) =
K∑︂
j=1

∑︂
w∈VT

∫︂ ti,w

fw,i
j dt, (2.29)

where ti,w is the time needed to reach node i from node w.
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Constraints

The constraints of the first-stage optimization problem are listed in this section. Each

of these constraints is related to a term of the objective function.∑︂
w∈VT

∫︂
fu,w
i (t)dt−

∑︂
w∈VT

∫︂
fw,u
i (t)dt

=

⎧⎪⎨⎪⎩
∫︁
Fi(t)dt u ∈ S,
−
∫︁
Fi(t)dt u /∈ S,

0 otherwise,

,∀u ∈ VT .
(2.30)

This constraint is related to the multi-commodity term (equation (2.20)). This

term is simply to make sure that all the flow demand of commodity Ki reaches from

its source node to its sink node and that there is no flow remaining in other nodes.

0 ≤ fu,w
i (t) = xwf

u,w
i (t) ,∀i ∈ {1, . . . , K},∀w ∈ VT . (2.31)

Constraint (2.31) makes sure that if an edge is in a route, it is possible to take that

edge without running out of energy in the middle of that edge. In other words, this

constraint checks the feasibility of a selected route. This constraint is related to the

locations of the selected nodes as charging stations (equation (2.19)).

P g
i (t)−P d

i (t) =

Vi(t)
∑︂
j∈VP

Vj(t)(gij cos(θij(t)) + bij sin(θij(t)))

,∀i ∈ VP ,

(2.32)

Qg
i (t)−Qd

i (t) =

Vi(t)
∑︂
j∈VP

Vj(t)(gij sin(θij(t)) + bij cos(θij(t)))

,∀i ∈ VP ,

(2.33)

Vi ≥ Vi(t) ≥ Vi ,∀i ∈ VP , (2.34)

P g
i ≥ P g

i (t) ≥ P g
i ,∀i ∈ VP , (2.35)

Qg
i ≥ Qg

i (t) ≥ Qg
i ,∀i ∈ VP . (2.36)

Equations (2.32) to (2.36) are the constraints of the power flow in the network. Equa-

tions (2.32) and (2.33) are the power balance equations, and equations (2.34) to (2.36)
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are the limits of the voltage, active power and reactive power, respectively. Here P g
i

and Qg
i are the generated active and reactive power, and P d

i and Qd
i are the demand

active and reactive power.

yi ≤ yi, ∀i ∈ {j ∈ VI |xj = 1}. (2.37)

This constraint shows that the number of charging units at each charging station

should not exceed the limit. Due to the traffic problems that a large charging station

can cause, it is not possible to have a charging station with unlimited units.

Wmax
i ≤ Wi, ∀i ∈ {j ∈ VI |xj = 1}. (2.38)

where Wmax
i is the maximum wait time and according to Fig. 2.4, is equal to

Wmax
i = t2 − t1 =

(Ai(t)− yiDi(t))

yiµ
. (2.39)

This is the maximum wait time of all EVs using charging station i during the day.
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Chapter 3

Charging Station Optimization
Algorithm

3.1 Optimization Algorithm

Our iterative algorithm, which is first introduced in this study, can address the issues

regarding the complexity of the optimization. In the flow chart of Fig. 3.1, the

optimization’s procedure is explained.

The algorithm operates by relaxing constraint 2.38 and splitting the objective

function and constraints into two distinct groups. The initial set involves equations

2.19, 2.20, and 2.21 as its objective function, and equations 2.30 through 2.36 as its

constraints. This segment focuses solely on determining the optimal positions of CSs

within the network. The subsequent group encompasses 2.22 and 2.23 as the objective

function, with 2.37 serving as the constraint. Here, the aim is to address the required

number of charging units at each charging station. Given that the shared variables

between these groups are solely the traffic flow and CS locations, and considering

the relaxation of constraint 2.38, an additional stage becomes necessary to verify

compliance with constraint 2.38. If it’s not met, a new constraint is added, and

the process iterates. Each stage of the optimization problem can be summarized as

follows:

First Stage: In this stage, the optimal locations of the charging stations are deter-

mined in a manner that ensures every vehicle can complete its trips without

experiencing a depletion of charge. In order to obtain the optimum set of loca-

tions, it is necessary to consider the fixed costs associated with the installation
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of a charging station, irrespective of the number of charging units. Further-

more, the power loss in the network throughout the day, considering the power

demand pattern of the existing network, as well as the additional demand re-

sulting from the implementation of the charging stations, and the welfare costs

arising from not situating the charging stations along the optimal route of the

travelers, need to be taken into account. In this section, the objective function

and constraints are defined in turn.
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Start

Find the shortest path
for each (St

i , T
t
i ) pair

Find the locations of charg-
ing stations in a way that
the distance deviation and
power loss are minimized

Stage 1

Find the number of charg-
ing units in a way that the
waiting time is minimized

Is
Wi ,∀i ∈
VI less
than its
maximum
allowable?

Stage 2

Done

Set Ai(t) ≤ Ai(t)

Calculate the max-
imum penetration

flow at each node and
set a new constraint

Stage 3

yes

no

Figure 3.1: Optimization flow chart.

Second Stage: In this stage, the number of optimal charging units at each charging

station is calculated, considering the maximum waiting time in the queue and

also the maximum allowable number of charging units at each station.

Third Stage: In this stage, the maximum waiting time is checked to determine if

it exceeds its limit. If this is more than the allowable waiting time (Wi), the

locations of the charging stations need to be reconsidered. It means returning
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to stage 1, considering a new constraint. This constraint is:

Ai(t) ≤ Ai(t). (3.1)

While acknowledging the challenge of precisely analyzing the overall approach’s

complexity due to the combination of various algorithms and specific problem char-

acteristics, we address the time-consuming aspect, the integer programming part,

which traditionally has an exponential complexity of O(22k) (where k is the number

of integer variables in VI). Our multi-stage algorithm significantly reduces the num-

ber of integer variables at each iteration, from k to l (l ≤ k), resulting in a reduced

complexity of O(2k + 2l). Moreover, the division of the problem into stages helps

ease constraints, leading to a more efficient algorithm that utilizes l integers and l

continuous constraints instead of 2k integer constraints.

The first stage of the optimization problem contains continuous and integer vari-

ables (x) and linear and non-linear equations. Thus, this part of the problem forms

a Mixed Integer Non-Linear Programming (MINLP) problem, which is in general

NP-hard complex. In addition, since there are non-convex constraints and objective

functions, solving the problem is more difficult and computationally expensive. Also,

the number of traffic flow variables in the multi-commodity term is 9 × n4 where

n is the number of transportation nodes. In order to reduce the complexity of the

problem, some of the non-convex constraints are relaxed and the number of variables

is reduced, as detailed in this section.

3.1.1 Convergence of the Optimization Stages

We have three optimization stages. If optimization stage 1 or 2 does not give a solu-

tion, it means our research problem is not feasible (for example, due to inappropriate

settings), and thus, our algorithm is terminated. If optimization stage 1 and 2 give

solutions, we proceed to optimization stage 3 and check the maximal wait time con-

straints. If all the constraints are met, then our obtained solution in optimization

stage 1 and 2 will be our final solution of our research problem; otherwise, we add

constraint(s) to one or more node i and then we go back to stage 1 to repeat the

procedure. If we still have solutions in stage 1 and 2, then we again proceed to stage

3, and add constraint(s) and go back to stage 1 if necessary. Please note that if we
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add a new constraint for node i in stage 3 of an iteration, we will not need to add

a new constraint for node i in later iterations. This means that the total number of

added new constraints in all iterations is bounded by n (the total number of nodes).

Thus, our algorithm will have at most n iterations, which means that our algorithm

is guaranteed to converge.

3.1.2 Non-Convex Relaxation

In the first stage of the optimization formulation, constraints (2.31) - (2.33) are non-

convex, and the cost function (2.21) includes non-convex terms. In [89], a second-order

cone programming (SOCP) formulation for optimal power flow analysis is proposed for

the radial networks, which fits our studied network. The radial networks are basically

a tree graph. It means that each bus has a specific parent. Thus, |EP | = |VP | − 1. In

this formulation, new variables are defined such that

ui =
V 2
i√
2
, (3.2)

Rij = ViVj cos(θij), (3.3)

Iij = ViVj sin(θij). (3.4)

In this way, equation (2.21) will change to

CE
1 = C3

∑︂
(i,j)∈EP

∫︂ (︂√
2 (ui(t) + uj(t))− 2Rij(t)

)︂
dt. (3.5)

And constrain (2.32) and (2.33) can be rewritten as

P g
i (t)− P d

i (t) =
√
2ui(t)

∑︂
j∈VP

gij +
∑︂
j∈VP

(gijRij(t) + bijIij(t)) , (3.6)

Qg
i (t)−Qd

i (t) =
√
2ui(t)

∑︂
j∈VP

bij +
∑︂
j∈VP

(gijIij(t)− bijRij(t)) . (3.7)

All of the equations (3.5) to (3.7) are linear. So they are convex as well. However,

since two variables (V and θ) are replaced with three new variables (u,R and I),

another constraint is required to render this new formulation solvable. Equation

(3.8) is a new constraint that should be added to the previous formulation to make

it solvable.

2ui(t)uj(t) = R2
ij(t) + I2ij(t). (3.8)
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Equation (3.8) is also non-convex. In [89], it is shown that the optimal power flow

(OPF) can be obtained using the following second-order cone programming.

max
∑︂

(i,j)∈EP

Rij (3.9)

s.t. (2.35) and (2.36),

2uiuj ≥ R2
ij + I2ij, (3.10)

Rij ≥ 0, ∀(i, j) ∈ EP . (3.11)

Thus, by adding equation (3.9) to the objective function of stage 1 and equations

(3.5) to (3.8), (3.10), and (3.11) to the existing formulation, the OPF part can be made

convex. In addition, constraint (2.31) is also non-convex. The equality constraint can

be changed to an inequality constraint by considering an upper bound for the in-flow

of each location, thereby making it convex. In other words, equation (2.31) can be

rewritten as

0 ≤ fu,w
i ≤ xwfmax ,∀i ∈ {1, . . . , K},∀w ∈ VT , (3.12)

where fmax is a constant value at all nodes. By using this formulation instead of

the previous one, the stage 1 of the optimization algorithm turns to a mixed integer

second-order cone programming [24].

3.1.3 Reduce the Number of Variables

For each pair of origin and destination, there is a 3n× 3n matrix of variables, which

shows the commodity flow on each edge. Although many of the elements of this

matrix are zero, there are significant amounts of non-zero variables remaining that

make the calculation time-consuming. In order to reduce the number of non-zero

variables, the paths which have a length of more than γdu,vmin from the origin to the

destination are omitted. Here γ is a constant value, and du,vmin is the length of the

minimum path from u to v. In order to find these paths between any two nodes, the

algorithm of section II.A can be used. If matrix A is raised to the power of n + 1,

all the possible paths between every two nodes can be easily found, and for each

origin-destination pair, a set can be defined

Eij = {(u,w)|(u,w) ∈ Pij & len(Pij) ≤ γdi,jmin}, (3.13)

39



where Pij is a path from i to j and len(·) means length of a path. Thus, the set Eij

is a set of all edges that are in at least one of the paths from i to j with a length less

than or equal to γdi,jmin.

3.2 Case Study

In this study, a 25-node transportation network integrated with IEEE 33-bus system

is used. Fig. 3.2 shows the topology of these two networks. The data of the 33-bus

system can be found in [90]. This power network consists of one generation bus and

32 load buses.

3.2.1 System Settings

It is assumed that the hourly power demand at each node follows equation (3.14) and

(3.15):

Figure 3.2: Power network and traffic network.

pdu(t) = αp(t)p
d
u + βp(t) ∀u ∈ VP , (3.14)

qdu(t) = αq(t)q
d
u + βq(t) ∀u ∈ VP , (3.15)

where pdu (q
d
u) is the total active (reactive) base power demand of bus u. αp(t), αq(t), βp(t)

and βq(t) are the same for all buses in the network. A distribution of 3000 vehicles

in the network at peak hours is randomly performed. It is assumed that the flow

demand for each commodity follows the equation (3.16).

F t
i = αt

TFi, (3.16)
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where Fi is the flow demand at the pick hours, and αt
T is a coefficient that changes

over time. As [91] shows, the traffic flow changes over time and has two peaks, one

around 9 AM and the other around 5 PM. Thus, it is assumed that αt
T follows the

same pattern as the traffic flow demands over time.

The maximum allowable number of charging units is considered as yi = 100,∀i ∈

VT , and the maximum allowable waiting time is set as Wmax
i = 20 min,∀i ∈ VT . The

service rate is also set to µ = 3 vehicles/hour. The driving range is set as 300 km, and

the fuel consumption rate is set as 0.14 kWh/km. The construction cost of a charging

station is set as $163, 000 with 10 years of effective life and it is assumed that the

land use cost is constant in different locations of the network. In addition, the cost of

adding a charging station is set as $23, 500. The cost of waiting in the queue to get

service is set as $5/min and the cost of power loss is set as $0.105/kWh. These inputs

are set based on the inputs of [6]. The SoC at the origin and destination points are

set as 40%. It means that each EV has at least 40% charge when it starts its trip or

ends it. In addition, it is assumed that all EVs and all charging units are identical.

Table II summarizes the setting of the base case scenario of the optimization problem.

Algorithm 1 Pseudocode of proposed three-stage optimization algorithm

1: Input: GT ,GP , R, pdi (t), qdi (t), gij, bij, µ, yi,Wi, fmax

2: Initialization: Obtain graph GT̂ based on graph GT and R.
3: while c ̸= 0 do
4: xi ← argmin{CI

1 + CS
1 + CE

1 }, ∀i ∈ VI
5: Ai(t)← xi
6: yi ← argmin{CI

2 + CS
2 }, ∀i ∈ VI

7: c← 0
8: for i = 1 to |VI | do
9: if Wmax

i > Wi then
10: Ai(t) ≤ Ai(t) and c← c+ 1
11: end if
12: end for
13: end while
14: return xi and yi ∀i ∈ VI

In addition, it is assumed that the number of EVs that need to use the charging

station does not affect the traffic flow and that the traffic flow speed on each road is

constant over time. Also, this speed is the same for all roads; thus, in this way, the

only effective parameter that makes EVs choose their path is the length of that path.
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Table 3.1: System settings

Symbol notion Value

yi maximum allowable number of charging units 100

Wmax
i maximum allowable waiting time 20 min

µ service rate 3 Veh/hr

R driving range 300 km

γc fuel consumption rate 0.14 kWh/km

C1 cost of installing a charging station $163,000

C2 cost of additional driving distance $0.03/km

C3 cost of power loss $0.105/kWh

C4 cost of voltage deviation $1050

C5 cost of adding a charging station $23,500

C6 cost of waiting in the queue $5/min

SoCo battery SoC at the origin points 40%

SoCd battery SoC at the destination points 40%

3.2.2 Optimization Formulation

Since the size of VT is 25, it means that the number of nodes in the expanded graph

of this network is 3 × 25 = 75. As mentioned before, in order to reduce the number

of decision variables related to transportation, only the paths with a length of γdu,wmin

or less are considered. In this study, γ is assumed as 1.5. In this way, the number

of flow-related decision variables dropped 88%. In addition, this problem consists of

|VI | binary decision variables (which refers to xi) and the same number of integer

variables (which refers to yi). Finally, there are 3 × (|VP | − 1) variables related to

the power network. Algorithm 1 is the pseudocode of the implemented algorithm

for this optimization problem. The Gurobi1 optimizer in the Python environment is

utilized to solve the optimization problem on an 8-core computer equipped with an

1https://www.gurobi.com/
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Intel Core i7 (11th generation) processor. Each iteration of the optimization problem

takes about 10 minutes on average, and in our test scenarios, no case takes more than

5 iterations.

Figure 3.3: An example of locations and sizes of the charging stations after optimiza-
tion. The numbers indicate the number of charging units of charging stations.

Figure 3.4: Power losses on the transmission lines.

Fig. 3.3 shows how the charging stations are distributed in the traffic network

graph, and the number beside each station shows the number of charging units in

that station. In addition, Fig. 3.4 shows the active power loss in each line in this case.

The results of our experiments demonstrate that the active power loss cost increases

2.31 times when the charging stations are placed in the network, and this shows the

importance of considering the active power loss in this optimization problem.

3.2.3 Driving Range

In order to ascertain the effect of the driving range, different driving ranges of EVs are

considered. Table 3.2 presents a selection of battery models that are currently popular
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in the market [92], [93]. The driving range can affect the optimization problem in

different ways. First of all, the expanded graph would be changed by the changes

in the driving range because when we want to construct matrix Â, more edges will

satisfy the condition γsij < R. Thus, the number of candidate paths changes and it

makes more options for the EVs to choose their paths. In addition, higher driving

range means that the number of EVs that need to charge their batteries is reduced

because more EVs can complete its trip without running out of charge. Fig. 3.5 shows

how the charging stations change under the driving range from 300 km to 500 km.

As this figure suggests, the number of charging stations decreases when the driving

range increases. The total cost would be reduced too.

Table 3.2: Environmental Protection Agency estimates range of selected commercial
EV models

Make,model Battery capacity (kWh) Total Range (km)

Nissan, Leaf 40 240

BMW, i4 83.9 444

Mercedes, EQS 120 521

Tesla, Model Y 82 531

Tesla, Model 3 75 576

Volkswagen, ID4 82 468

Hyundai, ioniq 5 77 487

3.2.4 State-of-Charge

In addition, another factor that can have a significant impact on the number and

the locations of the charging stations is the SoC at the origin and the destination

point. This can affect both the power network and the traffic network. Since in the

expanded graph, the virtual source nodes and sink nodes are considered based on

the SoC in the origin and the destination, the traffic network would be affected. In

addition, the number of EVs required to charge their batteries would be increased

when the SoCd increases or the SoCo decreases. Fig. 3.6 shows the total cost of
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(a) Driving range 350 km (b) Driving range 400 km

(c) Driving range 450 km (d) Driving range 500 km

Figure 3.5: Optimal locations and size of the charging stations with different driving
ranges. The numbers indicate the number of charging units of charging stations.

the optimization problem with respect to the changes in the SoCo and the SoCd.

As this figure suggests, the minimum investment cost is achieved when the SoCo is

90% and the SoCd is 10%. It means that the EV can start its trip with an almost

full battery and end with an almost empty one. It is worth mentioning that in the

figure, the points with an investment cost of 1000 are essentially infeasible. However,

for aesthetic purposes, they are included in the graph. Also, since it is assumed

that it is impossible to place the charging station at all nodes, the scenario in which

SoCo = 100% and SoCd = 0% is also infeasible.

3.2.5 Waiting Time

Other important factors that should be considered are the effect of maximum al-

lowable waiting time and charging rate. These two factors only have an impact on

the second stage of the optimization problem. They do not have a direct impact

on the traffic network. However, this can have an indirect impact on the locations

of the charging stations because the constraint of the third stage depends on the

maximum allowable waiting time, and this can have a noticeable impact on the first

stage of the optimization. In addition, the charging rate basically depends on the

charging technology of chargers that are used in the charging stations. Although a
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Figure 3.6: SoC effect on the investment costs.

higher charging rate can be beneficial in many aspects, there are some drawbacks as

well. Higher charging rates can lead to increased demand and transformer overload-

ing, which can reduce the lifespan of grid infrastructure. Additionally, the EV fast

charging can cause voltage drops and fluctuations, which can affect the stability of

the power grid. In addition, a higher charging rate would reduce the waiting time

for EVs in the charging stations. Different scenarios are considered in which the only

changing factors from the base scenario are the maximum allowable waiting time and

the charging rate. This is done to observe the effects of these parameters. It is worth

mentioning that in this study, a penalty for the unsatisfied demand is not consid-

ered, resulting in some cases being infeasible. It means that there is no solution that

can satisfy all the constraints. The power balance constraints are the most sensitive

constraints of our formulation. The results of the optimization problem show that

when the waiting time is reduced to 5 minutes, it is impossible to place the charging

stations unless the maximum allowable charging units is set to at least 500 units at

each station. In addition, when the charging rate is reduced to 1 vehicle/hour, the

investment cost increases 2.26 times. On the other hand, as the charging rate in-

creases to 12 vehicles/hour, the investment cost decreases by 20%. The results show

that the maximum number of charging units at each station has the least effect on
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the locations of the charging station. However, it can make the problem infeasible. It

means that when this factor reaches the feasibility threshold, it does not have much

effect on the results. The results show that when the maximum number of charging

units is less than 25, the problem is unsolvable unless the number of vehicles in the

system is less than 1500.

3.2.6 Discussions and Recommendations

The charging station planner and customer perspectives provide different insights into

the factors that affect the efficiency of charging infrastructure for EVs. It is essential

to consider both perspectives to optimize the infrastructure for cost-effectiveness and

convenience.

• Driving Range: Regarding driving range, the charging station planner should

consider the balance between reducing the number of charging stations required

and the total investment cost with the increased charging time that comes with

higher driving ranges. On customers’ side, higher driving ranges provide more

flexibility and convenience, allowing for longer trips without frequent charging

stops.

• State-of-Charge: The state-of-charge factor requires the charging station plan-

ner to balance the number and locations of charging stations required with the

investment cost while considering the traffic and power networks’ impact. From

the customers’ side, high starting SoC and low ending SoC levels can maximize

driving range and reduce the need for frequent charging stops, but planning

around charging station availability may be necessary.

• Waiting Time: The waiting time factor requires the charging station planner to

strike a balance between minimizing waiting time for EV customers and ensur-

ing the charging network can handle the load. From the customers’ perspective,

selecting charging stations carefully to avoid long wait time during peak usage

periods while choosing shorter waiting time and higher charging rates can in-

crease convenience and reduce trip time.
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Table 3.3 summarizes these recommendations. Overall, optimizing charging infras-

tructure for EVs requires considering all these factors together. It is necessary to

minimize investment cost, reduce the pressure on the power network, and provide

efficient charging solutions for EV owners.

Table 3.3: Recommendations

Factors Influence Recommendations

Driving
Range

Less charging facilities
are needed

Developing the battery technology to
increase the driving range of EVs

State-of-
Charge

More EVs can com-
plete their trip with-
out charging needs

Making the home charging available

Waiting
time

More charging units
are needed

Using the fast charging units in the
charging stations
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Chapter 4

Cooperative Microgrid
Management System: Online
Optimization Algorithm

4.1 Problem Formulation

As outlined in the introductory chapter, one promising approach to addressing the

high load demand in CSs involves the use of Charging Station Microgrids (CSMGs).

In this framework, each CS is equipped with its own RES and ESS, with the EV

charging demand managed as an unpredictable load. Within this section, we delve

deeply into a model centered around implementing energy storage management. Our

primary goal is to curtail operational costs, all while accommodating the uncertain-

ties inherent in this model. Our exploration begins with a comprehensive look at the

offline setting, where all relevant information is readily available in advance. Subse-

quently, we introduce the crux of this chapter: our groundbreaking online algorithm.

This algorithm stands as our principal contribution, specifically designed to navigate

real-time scenarios, adapting to dynamic changes and uncertainties in the system.

4.1.1 Offline Setting

In Figure 4.1, the coordination of three MGs is depicted as an example of Multi-

MicroGrid (MMG) energy management [94]. In this system, each MG has access to

its individual renewable energy sources (RES) and is equipped with an Energy Storage

System (ESS) to store the energy for later use. MGs can also purchase energy from

the main grid, which follows an unknown dynamic pricing, namely p(t). Without
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loss of generality, although the exact price at each time is unknown, it is possible to

assume that the price is bounded, i.e., m ≤ p(t) ≤M . This price is set based on the

demand of users, which is beyond the scope of this study.

Figure 4.1: Cooperative MMGs example

Furthermore, MGs can even monetize their surplus energy generated from RES

by selling it back to the main grid. This becomes particularly relevant when energy

storage systems reach their capacity limits, necessitating an outlet for the excess

energy produced by the RES. However, it is hard to know when is the right time

of buying the energy, selling the energy, storing the energy or sharing it due to the

uncertainties of the system related to the energy demand from the customers side,
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the price of the energy, and the amount of available energy from RES. Thus, it is

assumed that MGs can share their surplus energy with other MGs in order to reduce

the purchasing cost from the main grid. However, it is presumed that this is not a

cost-free action. MGs must pay P ′ as a unit sharing price in this procedure, which

is less than p(t) (p′ ≤ p(t)). Furthermore, MGs can sell their surplus energy to the

main grid to make a profit. The unused renewable energy can be sold to the main

grid with the unit price of p′′. It is believed that this price is always less than the

purchasing price from the grid, and this indeed makes sense because otherwise, MGs

can just buy energy from the grid and sell it again to main power grid and make

a profit, which is impractical from the perspective of the main power grid. In fact,

assume there are two MGs that one of them needs X units of energy, and the other

one has X unit surplus energy. We want to make sure that MGs prefer to share their

surplus energy instead of selling and purchasing energy. Thus,

p(t)X − p′′X ≥ p′X ⇒ p(t) ≥ p′ + p′′

mint p(t)=m
=======⇒ p′ + p′′ ≤ m (4.1)

We can assume that p′ + p′′ = m. In this way, we can always ensure that sharing

energy among MGs is more profitable for the whole system compared to purchasing.

Thus, we defined α such that p′ = m(1− α) and p′′ = mα.

Let I be the set I different CSs, while T represents the discretized time horizon,

ranging from 0 to T . Table 4.1 outlines the specific notations employed in this study

for clarity and reference.

In the following section, we present the offline-optimization formulation designed

to minimize overall operational costs. These costs consist of three key components:

purchasing energy directly from the main grid, sharing energy among MGs, and

revenue from selling surplus energy back to the main grid. Notably, this optimization

model simplifies by excluding considerations of battery degradation costs associated

with charging and discharging.

The optimization formulation of this problem is formulated as:
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Table 4.1: Table of notations used in Chapter 4

Symbol Definition Symbol Definition

ri(t) Renewable energy of MG i
at time t

ηc/ηd Charging/Discharging
efficiency of batteries

rbi (t) Renewable energy of MG i
to charge battery at time t

µc Maximum charging rate of
batteries

rgi (t) Renewable energy of MG i
to share with other MGs at

time t

µd Maximum discharging rate
of batteries

dai (t) Energy from battery of MG
i to full-fill demand at time

t

p(t) Purchasing energy price
from the main grid at time

t

dgi (t) Energy from battery of MG
i to share with other MGs

at time t

p′ Sharing energy price from
one MG to other MGs

gai (t) Energy from main grid to
MG i to full-fill demand at

time t

p′′ Selling energy price to the
main grid

gbi (t) Energy from main grid to
MG i to charge battery at

time t

xi(t) Binary variable: 1 if MG i
connects the main grid at

time t, 0 otherwise

ci,j(t) Shared energy from MG i
to j at time t

ai(t) Unsatisfied Demand of MG
i at time t

ui(t) Penetrated energy from
MG i to the system at time

t

B Maximum energy level of
batteries

Ei(t) Energy storage level of MG
i at time t

B0 Energy level at initial time
horizon

bi(t) Purchased energy of MG i
from the main grid at time

t

BT Energy level at final time
horizon

si(t) Sold energy from MG i to
the main grid at time t
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min
T∑︂
t=1

I∑︂
i=1

[︄
p(t)bi(t) +

I∑︂
j ̸=i

p′ci,j(t)− p′′si(t)

]︄
(4.2)

s.t. gai (t) + dai (t) = ai(t), ∀i ∈ I (4.3)

rbi (t) + rgi (t) ≤ ri(t), ∀i ∈ I (4.4)

gai (t) + gbi (t) = gi(t), ∀i ∈ I (4.5)

dgi (t) + rgi (t) = ui(t), ∀i ∈ I (4.6)

gi(t) +
∑︂
j

ci,j(t) + xi(t)si(t)

= ui(t) +
∑︂
j

cj,i(t) + xi(t)bi(t), ∀i, j ∈ I (4.7)

ci,j(t)cj,i(t) = 0, ∀i, j ∈ I (4.8)

ui(t)gi(t) = 0, ∀i, j ∈ I (4.9)

rbi (t) + gbi (t) ≤ µc, ∀i ∈ I (4.10)

dai (t) + dgi (t) ≤ µd, ∀i ∈ I (4.11)

Ei(t+ 1) = Ei(t) + ηc
(︁
rbi (t) + gbi (t)

)︁
− ηd (dai (t) + dgi (t)) , ∀i ∈ I (4.12)

0 ≤ Ei(t) ≤ B, ∀i ∈ I (4.13)

Ei(0) = B0, ∀i ∈ I (4.14)

Ei(T ) = BT , ∀i ∈ I (4.15)

rbi (t), r
g
i (t), g

a
i (t), g

b
i (t), d

a
i (t), d

g
i (t), ci,j(t), si(t), bi(t) ≥ 0

The constraints (4.3) to (4.7) within this formulation ensure that the power flowing

in and out of individual nodes remains balanced. Specifically, these constraints main-

tain equilibrium between the incoming and outgoing power at each signal node. Con-

straint (4.8) serves to enforce unidirectional energy sharing, allowing energy transfer

in one direction only at any given time. This restriction prevents simultaneous bidi-

rectional energy exchange between nodes. Furthermore, constraints (4.10) and (4.11)

are integral in regulating the charging and discharging rates, preventing these actions

from surpassing their designated limits. These limitations are crucial in maintaining

the stability and operational boundaries of the system. Finally, constraints (4.12) to
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(4.15) are dedicated to upholding power balance within the battery across different

time intervals. These constraints play a pivotal role in ensuring that the battery op-

erates within prescribed power thresholds, guaranteeing its optimal functioning while

adhering to predefined energy parameters.

Moreover, this offline optimization is a convex problem, because the only non-

linear constraints are constraints (4.8) and (4.9), which are quadratic and convex.

Therefore, there are multiple options and solvers to solve these type of optimization

problems. In this study, we used Gurobi to solve the convex programming problem

of the off-line setting.

4.1.2 Online Optimization Algorithm

In the online optimization setting, we assume that there is no prior information

about the power demand, available renewable energy, the occurrence of the fault,

and the electricity price. However, it seems to be impossible to design a good online

algorithm to solve this problem. In order to make this problem solvable, we can use

some assumptions without losing any generality. These assumptions are stated as

follows:

• The electricity price is unknown. But we can assume that the electricity price

is fluctuated between m and M . In other words, m ≤ p(t) ≤M

• The proportion between available renewable energy and demand over time,

as highlighted by [95], exhibits higher predictability compared to the precise

values at each time step. Denoted as ρi, this ratio is defined as ρi =
∑︁T

t=1 ai(t)∑︁T
t=1 ri(t)

ηd
ηc
,

assuming 0 ≤ ρi ≤ 1.

• At each time, there is at least one MG that remains connected to the main grid,

which can be expressed as
∑︁

i xi(t) ≥ 1,∀t ∈ T . In other words, it is ensured

that all MGs cannot be in islanded mode simultaneously. This assumption is

made to guarantee the possibility of meeting the energy demand of all MGs at

any given time. Additionally, it is assumed that the blackout duration is known

in advance and is represented as
∑︁

t xi(t)

T
= ki.
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In this online optimization problem, the inputs consist of sequences rep-

resenting demand, market prices, renewable energy supplies, and fault oc-

currences. The decision variables for our problem are denoted as D =

(rb(t), rg(t), ga(t), gb(t), da(t), dg(t), s(t), l(t), c(t))Tt=1, and the inputs are represented

by I = (a(t), p(t), r(t), x(t))Tt=1. However, I is not known in advance and is revealed

over time, placing this problem in the setting of online optimization.

Let us assume OPT(σ) represents the optimal solution in an offline setting, sig-

nifying the objective function’s value when all information is known in advance in

instance σ. The goal is to design an algorithm that can perform as close as possible

to the OPT solution. To evaluate the online learning algorithm, various metrics can

be used, such as regret and competitive ratio. In this study, we employ the competitive

ratio (CR) as our metric [96]. CR is defined as the worst-case ratio between the cost

of the online algorithm and that of an offline optimal solution. Let ALG(σ) be the

output of the online optimization algorithm. Then, CR is the maximum competitive

ratio over all possible instances.

CR = max
σ

ALG(σ)

OPT(σ)

To develop an algorithm for the energy management of the Multi-MicroGrid (MMG)

system, we have designed a threshold-based online optimization approach. Two dis-

tinct thresholds need to be defined for this purpose.

The first threshold, denoted as θ, represents the purchasing price threshold. When

the energy price falls below this threshold, it is more cost-effective to procure energy

from the main grid. When the energy price exceeds θ, MGs prioritize using the stored

energy in their ESS rather than purchasing energy from the main grid. It is intuitive

to understand that if θ is set too high, there’s a risk of missing lower charging prices.

Conversely, if set too low, the ability to find sufficiently low prices for recharging

batteries is reduced, compelling MGs to procure energy at higher costs to meet their

demand.

The second threshold, denoted as B̂, pertains to the storage capacity of each MG.

The design of this threshold requires careful consideration. If it is set too low, it may

lead MGs to purchase energy during periods of high prices. Conversely, if set too

high, MGs may miss opportunities to charge their storage systems at lower prices.
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Figure 4.2: Algorithm 2 summary

If an MG is not directly connected to the main grid, it can still maintain an indirect

connection. Let β ≥ 1 be the factor representing indirect buying/selling of energy

to/from the main grid. In this way, MG i can procure energy from the main grid at

the unit price of βp(t).It is reasonable to prioritize certain MGs for receiving shared

energy from other MGs, especially those not directly connected to the main grid, as

they face higher purchasing prices.

The Multi-Online algorithm outlined in Algorithm 2 can be summarized in Figure

4.2. Note that in this study, we define [·]+ = max {0, ·}.
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Algorithm 2 Multi-Online algorithm

1: P(t) = {j|xj(t) = 0} ▷ Set of MGs that are disconnected

2: for i ∈ I do ▷ Use RE to charge the storage up to B̂i

3: rbi (t)← min
{︂
µc,

B̂i−Ei(t−1)
ηc

, ri(t)
}︂

4: for j ∈ P(t) do ▷ Use RE to satisfy disconnected MGs demand

5: cr,ai,j (t)← min

{︃
aj(t),

[︂
ri(t)− rbi (t)−

∑︁
j c

r,a
i,j (t)

]︂+}︃
6: aj(t)← aj(t)− cr,ai,j (t)
7: end for
8: for j ∈ I/P(t) do ▷ Use RE to satisfy connected MGs demand

9: cr,ai,j (t)← min

{︃
aj(t),

[︂
ri(t)− rbi (t)−

∑︁
j c

r,a
i,j (t)

]︂+}︃
10: aj(t)← aj(t)− cr,ai,j (t)
11: end for ▷ Use RE to charge the storage up to B

12: rbi (t)← rbi (t)+min

{︃
µc − rbi (t),

B−Ei(t−1)
ηc

− rbi (t),
[︂
ri(t)− rbi (t)−

∑︁
j c

r,a
i,j (t)

]︂+}︃
13: end for
14: if p(t) ≤ θ then
15: for i ∈ I do
16: bi(t)← xiai(t) ▷ Purchase energy from the grid
17: for j ∈ P(t) do ▷ Purchase energy for other MGs
18: bi,j(t)← xi(t)aj(t)
19: aj(t)← aj(t)− bi,j(t)
20: bi(t)← bi(t) + bi,j(t)
21: end for
22: end for
23: for i ∈ I do

24: gbi (t)← xi(t)min

{︃
µc − rbi (t),

[︂
B̂i−Ei(t−1)

ηc
− rbi (t)

]︂+}︃
▷ Fill upto B̂i

25: bi(t)← bi(t) + gi(t)

26: si(t)←
[︂
ri(t)− rbi (t)−

∑︁
j c

r,a
i,j (t)

]︂+
▷ Sell energy to the grid

27: dai (t)← 0
28: dgi (t)← 0

29: rgi (t)←
[︁
ri(t)− rbi (t)

]︁+
30: for j ∈ I do
31: ci,j ← cr,ai,j
32: end for
33: end for
34: else
35: for i ∈ I do ▷ Use SE to satisfy the demand

36: dai (t)← min
{︂
µd, ai(t),

Ei(t−1)
ηd

}︂
37: ai(t)← ai(t)− dai (t)
38: end for
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39: for i ∈ I do
40: for j ∈ P(t) do ▷ Use SE to satisfy disconnected MGs demand

41: cd,ai,j ← min

{︃
aj(t), µd − dai (t),

[︂
Ei(t−1)−B̂i

ηd
− dai (t)

]︂+}︃
42: aj(t)← aj(t)− cd,ai,j

43: end for
44: for j ∈ I/P(t) do ▷ Use SE to satisfy connected MGs demand

45: cd,ai,j ← min

{︃
aj(t), µd − dai (t),

[︂
Ei(t−1)−B̂i

ηd
− dai (t)

]︂+}︃
46: aj(t)← aj(t)− cd,ai,j

47: end for
48: end for
49: for i ∈ I do
50: bi(t)← xiai(t) ▷ Purchase energy from the grid
51: for j ∈ P(t) do ▷ Purchase energy for other MGs
52: bi,j(t)← xi(t)aj(t)
53: aj(t)← aj(t)− bi,j(t)
54: bi(t)← bi(t) + bi,j(t)
55: end for
56: end for
57: for i ∈ I do
58: gbi (t)← 0

59: si(t)←
[︂
ri(t)− rbi (t)−

∑︁
j c

r,a
i,j (t)

]︂+
▷ Sell energy to the grid

60: dgi (t)←
∑︁

j c
d,a
i,j

61: rgi (t)←
[︁
ri(t)− rbi (t)

]︁+
62: for j ∈ I do
63: ci,j ← cr,ai,j + cr,bi,j
64: end for
65: end for
66: end if

Now we need to design θ and B̂ and then calculate the competitive ratio of our

algorithm. In order to calculate these parameters, we can use the results of ref [95] to

have some intuition. In this case, if α = 0, I = 1 and
∑︁

t xi(t) = T , then the problem

is reduced to the problem [95] tried to solve. In addition, if we assume that I = 1,∑︁
t xi(t) = T , ρ = 0, ηc = ηd = 1, and µc = µd =∞, then the results of this problem

are the same as the One-way trading problem [97].

However, our problem differs in several aspects. Firstly, there are multiple MGs in

the system. Additionally, an MG may be unable to acquire the required energy from
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the grid due to the blackout of certain system segments. Sharing energy with other

MGs and selling excess renewable energy back to the grid are further distinctions

between our problem and the previously mentioned one. Nonetheless, some insights

can be gleaned from the work in [95]. For example, when ρ approaches 1, it implies

that most of the demand can be met by RES; thus, necessitating minimal battery

charging. Conversely, if ρ is too small, it indicates that the majority of the demand

must be satisfied using stored energy in the ESS.

In our problem, since it is possible that some MGs may be in the islanded mode, B̂

should be related to ki as well. Because if the MG is in the islanded mode most of the

time, then it prefers to charge its battery more aggressively when it is possible. It also

has less desire to share its energy with other MGs since it may force it to purchase

energy in the high price hours. Additionally, the amount of renewable energy is

another factor that can affect B̂. If MG can satisfy its own demand by its produced

energy from RES, then the interest in charging the ESS by purchasing energy is less.

Therefore, B̂ is also related to ρi.

B̂i = B(1− kiρi)

Figure 4.3: Illustrating B, B̂, and E(t) dynamics

In this context, if ki is close to zero, it indicates that the connection of MG i with

the main grid is mostly not established. Therefore, MG i must significantly charge its

battery whenever possible. On the other hand, if ρi is too high, it implies that MG i

is likely able to meet its energy demand solely from its own RES; thus, requiring less

charging.
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4.1.3 Competitive Analysis

Theorem 5 Let B̂i = B(1−kiρi) for all i ∈ I with the terminal condition of Ei(T ) =

B for all i ∈ I and the assumption that Mβ ≥ ηd
ηc
αm, the competitive ratio of

Algorithm 2 is

CR = max
i

max

{︄
θ1i

ηd
ηc
(1− kiρi) + kiρi(Mβ − αηd

ηc
m)(1− ρi)− (ρi − kiρi)ηdηcαm

m(1− ρi)
,

(4.16)

θ1i
ηd
ηc
ρi(1− kiρi) + (Mβ − αkiρi ηdηcm)(1− ρi)− (ρi − kiρi)ηdηcαm

θ1i
ηd
ηc
(1− ρi)

,

(4.17)

θ2i
ηd
ηc
(1− kiρi) + kiρi(Mβ − αηd

ηc
m)− (ρi − kiρi)ηdηcαm

(1− αρi ηdηc )m
, (4.18)

Mβ − αkiρi ηdηcm− (ρi − kiρi)ηdηcαm
θ2i

ηd
ηc
− ρiαηd

ηc
m

}︄
(4.19)

where θ1i is the answer of equality of equations 4.16 and 4.17, and θ2i is the answer of

equality of equations 4.18 and 4.19. Also, θ is the maximizer of CR.

Proof. See Appendix A for the proof.

Remark 6 Based on Theorem 5, we can have mulitple observations.

1. The product of α, ρ, and ηd
ηc

cannot exceed 1. This limitation arises from the neg-

ativity of Equation 4.18 in such instances, rendering it an impossibility. Practi-

cally, it has been observed that when ηd
ηc
αρ ≥ 1, the optimization problem becomes

unbounded. This scenario implies that in the optimization process, the sale of

energy becomes significantly more profitable than satisfying the demand. Con-

sequently, Microgrids (MGs) prioritize selling all their renewable energy instead

of meeting the demand, leading to an infeasible solution for the optimization

problem.

2. By incrementing α from 0 to 1, the competitive ratio initially declines, then

ascends. During the declining phase, θi = θ1i , and transitioning to θi = θ2i

during the ascending phase. Intuitively, as α increases, the online algorithm
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approximates the offline solution more closely until a certain threshold. How-

ever, as the selling of energy becomes more lucrative than meeting demands,

the offline algorithm significantly outperforms the online approach. This diver-

gence occurs because the offline algorithm has foresight into future prices and

demands. Consequently, it can leverage this information advantageously. Figure

4.4 demonstrates how the competitive ratio varies concerning different α values.

Figure 4.4: Changes of the competitive ratio with respect to α

3. When α = 0, the worst-case scenario of our online algorithm for multiple MGs

aligns with that of the Single MG online algorithm. This equivalence arises

from the fact that a zero selling price implies that selling does not contribute

any profit to the MG management system.

4. When k = 1, it implies that ρ = kρ, or in other words, MGs are consistently

connected to the main grid. As k decreases, the competitive ratio first decreases

θ concomitantly decreases. This is a logical conclusion, indicating that with a

less stable connection of the MG to the main grid, the algorithm becomes more

inclined to accept higher prices for charging its ESS from the main grid. Figure

4.5 illustrates the variations in competitive ratio with changing k when α = 0.5.
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Figure 4.5: Changes of the competitive ratio with respect to k

4.2 Case study

In this section, we delve into two distinct case studies, demonstrating the superior

performance of our model compared to existing models in cooperative MG operations.

The initial case involves the creation of data to address unknown inputs within the

problem. This primary case comprises several subcases, each elucidated in compre-

hensive detail later on.

Moving to the second case, we utilize real-world data, conducting a comparative

analysis between our algorithm and established algorithms already in use. This com-

parison serves to underscore the efficacy and advantages of our approach when applied

to practical scenarios, emphasizing its superiority over existing methods.

4.2.1 Randomized Dataset

In this segment of our case study, we generated a randomized dataset to gauge our

model’s performance. Establishing ηc = 0.95 and ηd = 1.05, we standardized the

battery storage across all MGs at 20 MWh with an initial half-charge. Our assessment

spanned 2 days, structured in 20-minute increments (T = 2 × 24 × 3). Within this

framework, we randomly generated renewable energy data spanning 40 MWh and
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demand requests from 0 to 50 MWh. Additionally, we created random energy prices

ranging between 10 and 40 $/KWh.

We analyzed our model using the algorithm referenced in [95] alongside an offline

algorithm to benchmark its performance. This evaluation was iterated 50 times to

fortify the simulation’s robustness. Figure 4.6 showcases our model’s performance

within a 95% confidence interval. Setting α = 0.8, the figure distinctly illustrates our

algorithm’s superiority over existing online algorithms, which in turn outperformed

established models like the Lyapunov stochastic optimization algorithm proposed in

[98]. Notably, augmenting the number of MGs accentuated the performance disparity

between our model and existing ones.

Figure 4.6: Algorithm performance comparison

Figure 4.7 shows how much energy microgrids share. It is clear that as more

microgrids join, the shared energy increases. Additionaly, the offline algorithm, which

knows future information, shares more energy compare to the multi-online algorithm,
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which makes sense.

Also, when there are more charging stations, the difference between the Multi-

Online and offline algorithms grows. This happens because the offline one plans

better with future data, while the Multi-Online reacts in real time, causing a larger

gap in shared energy between the two.

Figure 4.7: Shared energy comparison

In Figure 4.8, we’ve observed the behavior of 10 MGs in the system while adjusting

the parameter α from 0 to 1. This exploration aims to uncover how changes in α

influence the performance of the algorithms utilized. The insights gleaned from this

figure shed light on how these algorithms respond to varying α values.

Remarkably, the Single-Online Algorithm remains steadfast in its behavior irre-

spective of changes in α. This consistency aligns with the algorithm’s inherent design,

where the absence of energy selling capabilities results in a consistent performance

regardless of α variations.
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Conversely, both the Multi-Online Algorithm and the offline algorithm display a

fascinating trend of improved performance as α increases. This trend stems from

these algorithms’ ability to sell energy. With higher α values, the potential for selling

energy grows, leading to a noticeable reduction in the total incurred cost. This

observed pattern underscores a direct link between the ability to sell energy and the

subsequent cost reduction, playing a pivotal role in enhancing the performance of the

Multi-Online and offline algorithms.

Figure 4.8: Algorithm performance comparison

In another test, we played around with the B/max(a) ratio from 1 to 20 in a 10

MG system to see how our algorithm behaves. Our algorithm always has a set limit

(B̂) for buying energy, but the offline one doesn’t have this restriction. Figure 4.9

shows how the operational cost changes with different B/max(a) ratios.

Both algorithms make costs go down as the ratio goes up. But notice something

interesting: the cost reduction in the Multi-Online algorithm slows down as the ratio
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gets higher. This happens because buying more energy stops making sense when the

microgrids already meet their needs using renewables and stored power.

On the flip side, the offline algorithm has an edge. It cleverly buys energy when

prices are low and sells it at higher prices, always reducing operational costs. This

smart strategy can even lead to negative costs, meaning it could make a profit.

This advantage comes from the offline algorithm being able to predict and use price

changes, a trick not available to real-time algorithms like the Multi-Online.

This difference highlights how the offline algorithm’s savvy planning, especially

with price shifts, not only cuts costs but also opens the door to potential profits.

Figure 4.9: B/max(a) ratio changes impact

4.2.2 Real-World Dataset

In this section, we embarked on evaluating our model’s performance using real-world

datasets. These datasets encompass hourly records of both renewable energy produc-

tion and demand across ten distinct locations within the USA’s California province,
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spanning from September 10, 2023, to September 30, 2023 [99]. Figure 4.10 visu-

ally represents these ten locations. While these locations might not conventionally

be classified as microgrids, their ability to independently generate energy via RES

and potential for interconnection led us to consider them as analogous to microgrids.

Consequently, we employed scaled data derived from these ten locations to simulate

our model’s behavior. This approach allowed us to adapt and apply our model within

the context of these diverse yet interrelated energy production sites.

Figure 4.10: locations of the used points as the dataset

Additionally, we integrated hourly energy price data within the same time frame.

This dataset originates from the UK’s energy pricing policies but mirrors the pric-

ing structures observed in California. Illustrated in Figure 4.11, this comprehensive

depiction showcases the fluctuations in demand, renewable energy generation, and

energy pricing over a span of 20 days. Notably, each day exhibits nearly two distinct

peaks in demand, underscoring the dual high-demand periods.

Furthermore, it is pertinent to highlight the diverse sources contributing to re-

newable energy generation, primarily stemming from photovoltaic (PV) panels, wind

turbines, or a combination of both. This variance in energy sources is reflected in the

figure, where certain locations exhibit pronounced, sharp spikes in generated energy,
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while others display more gradual, subtle peaks. Such fluctuations underscore the

heterogeneous nature of renewable energy production across these sites, influenced

by the prevailing environmental conditions and energy generation technologies in use.

Figure 4.11: Dataset of the Hourly demand, Hourly generated RES and energy price

Our simulation highlights that our algorithm performs better than the Single-

Online algorithm in terms of total cost. Notably, the simulation results reveal that our

algorithm exhibits significantly lower total battery charging and discharging compared

to both the Single-Online and offline algorithms. This aspect is crucial considering

battery degradation, although not accounted for in this study, could pose a significant

concern.

Figure 4.12 presents changes in the average State of Charge (SoC) of batteries

across all 10 MGs, along with the average energy purchasing behavior of these MGs.

The figure indicates that the offline algorithm aggressively manages charging and

discharging, leveraging its advantage of possessing all information beforehand. This

algorithm aims to profit by buying energy when the price is low and using it when

the price is higher.

68



Moreover, the energy purchasing trends demonstrate that the Multi-Online algo-

rithm consistently procures less energy compared to other algorithms. This occurs be-

cause in the Multi-Online algorithm, MGs collaborate, sharing surplus energy among

themselves instead of solely relying on purchases from the main grid.

Figure 4.12: Comparison of the state of charge of ESSs and the amount of purchased
energy

Moreover, Figure 4.13 provides insights into the average sharing and selling of

energy across these 10 MGs. These figures hint at a notable observation: considering

that the total demand consistently falls below the renewable energy generated by

these MGs (refer to Figure 4.11), selling energy is not a viable option for MGs.

Instead, they prioritize sharing surplus energy among themselves to collectively meet

the demands of all MGs.

This figure underscores a significant point: the performance of the Multi-Online

algorithm closely aligns with that of the offline algorithm. This alignment signifies

the robust performance of our model, demonstrating its efficiency in managing energy

sharing among MGs.
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Figure 4.13: Comparison of the amount of sold and shared energy profiles

In our recent experiment, we explored how MGs would function when disconnected

from the main grid. This investigation involved four distinct scenarios, each repre-

senting different average ki values: 0.2, 0.5, 0.8, and 1. Figure 4.14 portrays the

outcomes obtained from these simulations.

The findings from this figure strongly indicate that as the k value decreases, there

is a noticeable reduction in the amount of purchased energy. This decline suggests

that MGs face limitations in directly accessing energy from the main grid to charging

their batteries. Instead, they rely more on indirect methods, likely involving energy

exchanges among MGs within the network.

Moreover, the figure highlights an intriguing trend: as k decreases, the significance

of energy sharing among MGs becomes more pronounced. This underscores the vi-

tal role of cooperation among these MG systems, particularly in blackout scenarios.

Even without advanced future information, these systems demonstrate an impressive

capability to manage and distribute energy effectively during disconnection from the

main grid.
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Figure 4.14: Effect of the blackout on the amount of shared and purchased energy

4.3 Discussion

This chapter’s findings present an innovative approach to cooperative MG manage-

ment through a threshold-based online optimization algorithm. This discussion sec-

tion reflects on the implications, limitations, and potential future directions based on

the results obtained.

4.3.1 Effectiveness of the Threshold-based Approach

The threshold-based online optimization technique has demonstrated notable effec-

tiveness in managing the dynamic and unpredictable nature of energy resources within

MGs. By setting predefined thresholds for energy generation and consumption, the

system can make real-time decisions that optimize energy distribution and storage.

This method allows for a more responsive and adaptable energy management sys-

tem compared to traditional static strategies. However, the study also highlights the

need for fine-tuning these thresholds based on changing grid conditions and energy

demands to ensure optimal performance continually.
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4.3.2 Integration with Renewable Energy Sources

A significant aspect of the study was its focus on integrating renewable energy sources

into the MG management system. The algorithm’s ability to accommodate the vari-

ability and unpredictability of renewable energy sources, such as solar and wind, is

critical for modern energy systems that aim to be sustainable and reduce reliance on

fossil fuels. Future iterations of the study could explore more sophisticated prediction

models for renewable energy outputs to further enhance the algorithm’s performance

and reliability.

4.3.3 Implications for Energy Efficiency and Sustainability

The proposed online optimization algorithm has important implications for energy

efficiency and sustainability. By optimizing the use and distribution of energy within

MG, the system can reduce waste and ensure that energy production closely matches

consumption patterns. This not only leads to cost savings but also contributes to

the overall sustainability of the energy system by minimizing unnecessary energy

generation and the associated environmental impact.

4.3.4 Limitations and Challenges

While the study’s results are promising, it is important to acknowledge the limitations

and challenges faced. One of the key challenges is the need for accurate and timely

data to inform the optimization algorithm. Delays or inaccuracies in data can lead

to suboptimal decisions and reduced system performance. Additionally, the study’s

scope may be limited to specific types of MGs or geographic areas, and further research

is needed to validate the algorithm’s applicability across various contexts and scales.

4.3.5 Future Research Directions

The study opens several avenues for future research:

1. Dynamic Threshold Adjustment: Investigating methods for dynamically

adjusting thresholds in response to real-time data and predictive analytics could

enhance the algorithm’s adaptability and performance.
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2. Economic and Policy Implications: Further research could explore the eco-

nomic benefits and policy implications of widespread adoption of such online

optimization algorithms in MGS, including potential incentives and regulatory

frameworks.

3. Scalability and Robustness: Testing the algorithm’s scalability and robust-

ness across a wider range of microgrid configurations and external conditions

will be important to understand its broader applicability.

4. Advanced Forecasting Techniques: Integrating advanced forecasting tech-

niques for renewable energy outputs and consumer demand can improve the

predictive capabilities of the system and lead to more efficient energy manage-

ment.
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Chapter 5

Conclusion

5.1 Research Summary and Conclusion

In the chapter 1 and 2 of this study, an iterative optimization algorithm is developed

to find optimal sites for charging stations and the optimal number of charging units

at each station:

1. The proposal of a comprehensive extended-graph-based formulation to capture

the composite EVs’ behavior in transportation and power networks enables the

optimization of infrastructure investment costs and service quality simultane-

ously.

2. The proposed iterative algorithm comprises three stages and can effectively

address the optimization requirements from both the planner and customer

sides. The algorithm calculates the optimal locations of charging stations, the

number of charging units at each station, and examines the maximum waiting

time obtained to ensure customer satisfaction.

3. Important factors, such as driving range, SoC, and waiting time, are investi-

gated in the case study based on a 25-node transportation network integrated

with IEEE 33-bus system. The numerical results demonstrate that both the

availability of home charging and the driving range play important roles in in-

vestment cost (positive correlation), while a higher charging rate can greatly

improve the service quality within a limited waiting time.

Overall, the work contributes to addressing the critical question of the optimal
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deployment of EV charging stations in power-traffic coupled networks and provides

an efficient algorithmic solution to this problem.

Additionally, in chapter 3, we introduced and scrutinized an online algorithm tai-

lored for multiple cooperative microgrids aimed at effectively sharing energy to meet

collective demands. Our approach comprehensively accounted for various uncertain-

ties inherent in microgrid energy management: the fluctuations in energy demand,

renewable energy generation, electricity pricing, and the occurrence of blackouts.

Furthermore, we devised a threshold-based algorithm with two optimal thresh-

olds, mathematically substantiating their optimality within our proposed framework.

Furthermore, we extensively assessed our model’s performance across diverse scenar-

ios, comparing it against both the offline algorithm and individual non-collaborative

microgrids. Our evaluation encompassed two distinct case studies: one generated

randomly and the other derived from real-world data.

The outcomes derived from our simulations unequivocally showcase the superior

performance of our model compared to non-collaborative microgrids, often approach-

ing optimality across various scenarios. These findings underscore the efficacy of our

approach in fostering collaboration among microgrids, paving the way for efficient

and robust energy management systems.

5.2 Research Contributions

1. Graph-Based Formulation Extension: Our study employs a novel graph alge-

braic algorithm to enhance traffic network graphs. Unlike traditional expanding

graph methods, our approach introduces theoretical advancements outlined in

Theorem 2-4. These advancements effectively reduce the size of the expanded

graph. Additionally, we devise an algorithm utilizing this reduced-size expanded

graph, enabling the computation of shortest paths between any node pair with

significantly lower computational burden compared to the Dijkstra algorithm.

2. Holistic Optimization: Existing methods, as depicted in Table I, often overlook

four critical factors in the identification and sizing of charging stations: the

power-traffic coupled network, traffic flow demand, power-flow demand, and

user behavior. To bridge this gap, we integrate all four factors into our problem

75



formulation, resulting in a more comprehensive and challenging problem to

solve. To address this complexity, we propose a three-stage iterative algorithm.

1

3. Efficient Computational Framework: Within the first and second stages of our

iterative algorithm, we optimize the process by relaxing specific constraints.

Our engineering-driven methodology merges branch and bound with interior

methods, yielding nearly optimal solutions. This approach significantly reduces

algorithmic complexity, consequently minimizing overall running time.

4. Addressing Microgrid Uncertainties: This study delves into various uncertain-

ties impacting microgrids. Its objective is to fortify microgrids, enhancing their

reliability by effectively managing these uncertainties.

5. P2P Energy Trading Analysis: We explore the scenario of peer-to-peer energy

trading and introduce an innovative online algorithm. Additionally, we provide

theoretical evidence demonstrating the assured performance of this algorithm.

6. Real-World Validation: Utilizing authentic data in our analysis, we demon-

strate the superior performance of our algorithm compared to existing online

algorithms. Remarkably, even in scenarios without system blackouts, our find-

ings showcase the algorithm’s effectiveness.

5.3 Future Works

In our study, we acknowledge certain limiting assumptions and commit to address-

ing them in future research endeavors. One such assumption involves our reliance

on prior knowledge of EV travel time and an assumption that all EVs require a full

battery charge. However, these factors are often unknown and uncertain in practical

settings, potentially not aligning with real-life scenarios. To confront this challenge,

we propose the utilization of a stochastic online optimization framework. This frame-

work aims to incorporate uncertainties associated with EV travel time and power

1While iterative algorithms are not new in literature, our approach introduces unique value. In
the third stage, we derive a new set of constraints. These constraints refine the optimization variables
from stage one in subsequent implementations, alongside simplifying certain constraints to expedite
our iterative algorithm.
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demand. Additionally, exploring the interplay between user behavior and the siting

and sizing of charging stations presents an intriguing and crucial aspect. We aspire

for our work to serve as an initial step, paving the way for investigations into such

coupled problems.

Another prospective avenue involves leveraging predictions to enhance performance,

specifically within the realm of learning augmented algorithms. Typically, a learn-

ing augmented algorithm operates on an input (I,A), where I represents a problem

instance, and A denotes advice—a prediction concerning a specific property of the

optimal solution. The nature of the problem instance and prediction varies based

on the algorithm. Such algorithms typically adhere to two key properties, Consis-

tency and Robustness. Consistency in learning augmented algorithms is demonstrated

when accurate predictions align with well-performing models, while robustness en-

sures bounded worst-case performance, even in scenarios with inaccurate predictions

[100].
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Appendix A: Proof of Theorem 5

Theorem 7 Let B̂i = B(1−kiρi) for all i ∈ I with the terminal condition of Ei(T ) =

B for all i ∈ I and the assumption that Mβ ≥ ηd
ηc
αm, the competitive ratio of

Algorithm 2 is

CR = max
i

max

{︄
θ1i

ηd
ηc
(1− kiρi) + kiρi(Mβ − αηd

ηc
m)(1− ρi)− (ρi − kiρi)ηdηcαm

m(1− ρi)
,

(A.1)

θ1i
ηd
ηc
ρi(1− kiρi) + (Mβ − αkiρi ηdηcm)(1− ρi)− (ρi − kiρi)ηdηcαm

θ1i
ηd
ηc
(1− ρi)

,

(A.2)

θ2i
ηd
ηc
(1− kiρi) + kiρi(Mβ − αηd

ηc
m)− (ρi − kiρi)ηdηcαm

(1− αρi ηdηc )m
, (A.3)

Mβ − αkiρi ηdηcm− (ρi − kiρi)ηdηcαm
θ2i

ηd
ηc
− ρiαηd

ηc
m

}︄
(A.4)

where θ1i is the answer of equality of equations A.1 and A.2, and θ2i is the answer of

equality of equations A.3 and A.4. Also, θ is the maximizer of CR.

Proof. Demand sequence at indexed by t = 1 to T is referred to as a one-shot

demand when there exists a solitary time slot tnz within the range of 1 to T such

that:

at =

{︄
0 if t ̸= tnz

ā if t = tnz

Utilizing the decomposition of one-shot demands, as discussed in [95], offers an

alternative to the demand profile. Considering our scenario involving multiple MGs,

the introduced one-shot decomposition here deviates slightly from the definition in

the referenced literature. It is formally expressed as:
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1sDecompose
[︂(︁
(ai(t))

T
t=1

)︁I
i=1

]︂
=

(︂
(tns , t

n
nz, ā

n
i )

Ni

n=1

)︂I

i=1

In this formulation, Ni signifies the count of decomposed one-shot demands for MG

i. The variable tnnz denotes the time slot of the non-zero demand, while āni represents

the peak demand for the n-th one-shot demand. Additionally, tns (≤ tnnz) stands for

the minimum starting time slot for the n-th one-shot demand. The decomposition

adheres to the following constraints:

1. Reconstruction of ai(t) using the one-shot demands is given by:

ai(t) =
∑︂

n:tnnz=t

āni ∀t ∈ T

2. There exists a non-decreasing order between starting time slots and non-zero

demand time slots:

tns ≤ tn+1
s and tnnz ≤ tn+1

nz ∀t ∈ T

3. DefineDi as the set of one-shot demands with nonzero durations: Di = {n | tns <

tnnz}. Further, let Dn
i represent the subset within Di where the peak demands

fall within [tns , t
n
nz]. For n ∈ Di, the condition is:

∑︂
l∈Dn

i

āl ≤ B

ηd

This ensures that accommodating other one-shot demands in [tns , t
n
nz] using en-

ergy storage reserves enough capacity for the n-th one-shot demand.

The core rationale behind employing one-shot decomposition lies within storage

management, where each time step facilitates a transfer of up to B
ηd
. This delineates

that any offline optimization decisions can be individually executed for each one-shot

demand. For instance, if the optimal offline decision involves purchasing energy during

a demand-free period, the purchase amount remains confined to B
ηd
. Consequently,
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the cumulative impact of applying an offline algorithm to each one-shot demand

mirrors applying the same algorithm to the entire demand of each MG. The pivotal

consideration centers on the sequence of occurrence for one-shot demands. With the

involvement of multiple MGs, it becomes imperative to arrange one-shot demands

sequentially, ensuring that the initiation time of each subsequent one-shot demand is

greater than or equal to the non-zero time of the preceding one-shot demand.

Here in figure A.1 an example of decomposition of one-shot demands of two MGs are

considered. In addition, the ordering of these one-shot decompositions are mentioned

as well.

Figure A.1: One-shot decomposition

Now we can say that

Aofl

[︂
(ai(t))

I
i=1

]︂
=

I∑︂
i=1

Ni∑︂
n=1

Aofl [(t
n
s , t

n
nz, ā

n
i )]

Next, we need to perform the same analysis for our proposed algorithm. Given

that each one-shot demand has a demand request denoted as ā, and considering

that online algorithms operate when each demand is received, we can observe that

B̂i = āi(1−kiρi) can also represent the outcomes of the online algorithm on the entire

demand. In the context of Constraint No. 3, we can conceptualize it as follows: we

partition the battery capacity into ān portions, where
∑︁
l :∈ Dn

i ā
l ≤ B

ηd
.
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Therefore, we can rewrite the competitive ratio as:

CR = max
Aalg

[︂
(ai(t))

I
i=1

]︂
Aofl

[︂
(ai(t))

I
i=1

]︂ =

∑︁I
i=1

∑︁Ni

n=1A [(tns , t
n
nz, ā

n
i )]∑︁I

i=1

∑︁Ni

n=1A [(tns , t
n
nz, ā

n
i )]

Now let assume the unconstrained case where µc, µd could be higher than B. There

are different cases based on the amount of renewable energy that can be satisfied by

the renewable energy, and the energy price. Consider that if MGs had the ability

to share energy among themselves, the combined cost of both Aalg and Aopt would

decrease. However, the ratio between these costs would be lower compared to when

energy sharing isn’t an option. Consequently, the adversary will consistently opt for

scenarios where energy sharing is not feasible.

Case 1. p(t) ≥ θi for all t ∈ [tns , t
n
nz]. In this case, the algorithm will not charge the

storage from the grid. However, it is possible to charge it using the renewable

energy. Let γinā
n
i be the amount of renewable energy that is available for one-

shot demand of anī from time tns to tnnz. Based on the amount of γni there are

different scenarios that can happen:

Case 1.1. ηc

ηd
γn
i ≤ 1 : In this case, the algorithm will charge γni â

n
i completely

in the storage. Thus in the worst case, MG has to purchase the the rest

from the grid. This is exactly the case in the offline setting.

Cost [Aalg] ≤ (1− γni
ηc
ηd
)āniMβ

Cost [Aofl] ≥ (1− γni
ηc
ηd
)āni θi

ηd
ηc

Case 1.2. 1 ≤ ηc

ηd
γn
i : In this case, since the adversary will select the cases

that no sharing is possible, our algorithm and the optimal solution will

work similarly. They both charge the battery completely and will sell the

excessive energy to the grid with the price of αm. Thus in this case, the
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costs are:

Cost [Aalg] ≤ (
ηd
ηc
− γni )āmi αm

Cost [Aofl] ≥ (
ηd
ηc
− γni )āmi αm

Case 2. In this case, it is assumed that p(t) ≤ θifor some t ∈ [tns , t
n
nz]. In this case,

the algorithm will purchase energy from the main grid to charge its battery

upto āni (1 − kiρi). Same as Case 1. based on the amount of γni there are

some possible scenarios. Here, in the worst-case scenario of online setting, MG

charge its battery upto āni (1 − kiρi) by purchasing energy from the grid first,

and therefore there is not storage to store the renewable energy in it. there are

only two scenarios:

Case 2.1. ηc

ηd
γn
i ≤ ρiki ≤ 1 : In this case, the the worst scenario of online

setting would buy energy from the grid with the price of θi at first and

then has to satisfy its demand with the price of Mβ. However, the offline

setting could purchase energy at the at the minimum cost in the best-case.

Cost [Aalg] ≤ (1− kiρi)āni θi
ηd
ηc

+ (kiρi − γni
ηc
ηd
)āniMβ

Cost [Aofl] ≥ (1− γni
ηc
ηd
)ānim

Case 2.2. kiρi ≤ ηc

ηd
γn
i ≤ 1 : In this case, the worst-case of online algorithm

will buy the energy from the grid first, and then sell the extra energy to

the grid. In the offline setting, since still some purchasing is needed, the

cost is similar to the previous case.

Cost [Aalg] ≤ (1− kiρi)āni θi
ηd
ηc

+ (kiρi
ηd
ηc
− γni )āni αm

Cost [Aofl] ≥ (1− γni
ηc
ηd
)ānim

Case 2.3. kiρi ≤ 1 ≤ ηc

ηd
γn
i : In this case, the online algorithm is same as the

previous one.However, in the offline setting, no purchasing is needed and
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all we have is selling to the grid.

Cost [Aalg] ≤ (1− kiρi)āni θi
ηd
ηc

+ (kiρi
ηd
ηc
− γni )āni αm

Cost [Aofl] ≥ (
ηd
ηc
− γni )āni αm

It is worth to mention that ηc
ηd
γni could be greater or less than 1 or ρi for some n, but∑︁Ni

n=1
ηc
ηd
γni ā

n
i = ρi

∑︁Ni

n=1 ā
n
i = ρiai(t).

Now, let A1, A2, A3, A3 and A5 be the indices of one-shot demands that correspond

to the Case 1.1, Case 1.2, Case 2.1, Case 2.2 and Case 2.3 respectively. To ease the

notation, let kiρi = ϱi and
ηd
ηc

= ε. Define a :=
∑︁I

i=1

∑︁Ni

n=1 ā
n
i , and

a1i :=
∑︂
n∈A1

āni

a2i :=
∑︂
n∈A2

āni

a3i :=
∑︂
n∈A3

āni

a4i :=
∑︂
n∈A4

āni

a5i :=
∑︂
n∈A5

āni

b1i :=
∑︂
n∈A1

ηc
ηd
γni ā

n
i

b2i :=
∑︂
n∈A2

ηc
ηd
γni ā

n
i

b3i :=
∑︂
n∈A3

ηc
ηd
γni ā

n
i

b4i :=
∑︂
n∈A4

ηc
ηd
γni ā

n
i

b5i :=
∑︂
n∈A5

ηc
ηd
γni ā

n
i

Also the relation between these new variables can be seen below:

b1i ≤ a1i

ϱia
2
i ≤ a2i ≤ b2i

b3i ≤ ϱia
3
i ≤ a3i

ϱia
4
i ≤ b4i ≤ a4i

ϱia
5
i ≤ a5i ≤ b5i

(A.5)

Given that
∑︁

i xi∑︁
i yi
≤ maxj

xj

yj
holds for xi, yi ≥ 0,∀i, and considering the equality

maxi maxj · = maxj maxi ·, the CR can be reformulated as follows:

CR = max
i

{︃
max

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ3(a

3
i , b

3
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

5
i , b

5
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ3(a3i , b

3
i ) + ψ4(a4i , b

4
i ) + ψ5(a5i , b

5
i )

}︃
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where

ϕ1(a
1
i , b

1
i ) = (a1i − b1i )Mβ

ϕ2(a
2
i , b

2
i ) = ε(a2i − b2i )αm

ϕ3(a
3
i , b

3
i ) = (1− ϱi)a3i θiε+ (ϱia

3
i − b3i )Mβ

ϕ4(a
4
i , b

4
i ) = (1− ϱi)a4i θiε+ ε(ϱia

4
i − b4i )αm

ϕ5(a
5
i , b

5
i ) = (1− ϱi)a5i θiε+ ε(ϱia

5
i − b5i )αm

ψ1(a
1
i , b

1
i ) = (a1i − b1i )θiε

ψ2(a
2
i , b

2
i ) = ε(a2i − b2i )αm

ψ3(a
3
i , b

3
i ) = (a3i − b3i )m

ψ4(a
4
i , b

4
i ) = (a4i − b4i )m

ψ5(a
5
i , b

5
i ) = ε(a5i − b5i )αm

The location of the maximum value can be on the boundary of the feasible region or

within it. If it is found within the region, it necessitates that the function’s gradient,

comprising all its partial derivatives, equals zero. This stipulation arises from the

foundational concept that:

ai = a1i + a2i + a3i + a4i + a5i

ρiai = b1i + b2i + b3i + b4i + b5i

we can see that the partial derivative with respect to a2i (
∂

∂a2i
) is always non-zero. This

implies that the maximum cannot be within the feasible region. Thus, it must be on

the boundary of the feasible region. There are 10 variables in total (a1i . . . a
5
i , b

1
i , . . . b

5
i ).

Based on the constraints of equations A.5, we can deduce that there are 15 boundary

points, and any combination of these 15 points could be critical in determining the

maximum. Therefore, there are 215 − 1 possible combinations of boundary points.

Many of these combinations are identical due to the relationships between them, and
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many are not feasible because both the numerator and the denominator must be

greater than zero. Our observations indicate that, among all combinations, there are

6 critical cases that can lead us to the competitive ratio of this algorithm.

a. a1i = b1
i , a

2
i = b2

i , a
5
i = b5

i : Now we can rewrite the CR in this case as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ3(a

3
i , b

3
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

5
i , b

5
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ3(a3i , b

3
i ) + ψ4(a4i , b

4
i ) + ψ5(a5i , b

5
i )

≤ θiε(1− ϱi) + ϱi(Mβ − αεm)(1− ρi)− (ρi − ϱi)εαm
m(1− ρi)

This conclusion is derived through standard algebraic manipulations.

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ3(a

3
i , b

3
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

5
i , b

5
i )

=(1− ϱi)a3i θiε+ (ϱia
3
i − b3i )Mβ

+ (1− ϱi)a4i θiε+ ε(ϱia
4
i − b4i )αm

+ (1− ϱi)a5i θiε+ ε(ϱia
5
i − b5i )αm

=(1− ϱi)aiθiε+ (ϱi − ρi)aiεαm+ (ϱia
3
i − b3i )(Mβ − εαm)

Since: ϱia
3
i − b3i ≤ ϱi(ai − bi) = ϱiai(1− ρi)

⇒ϕ3(a
3
i , b

3
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

4
i , b

5
i )

≤ (1− ϱi)aiθiε+ (ϱi − ρi)aiεαm+ ϱiai(1− ρi)(Mβ − εαm)

Also:

ψ1(a
1
i , b

1
i ) + ψ2(a

2
i , b

2
i ) + ψ3(a

3
i , b

3
i ) + ψ4(a

4
i , b

4
i ) + ψ5(a

5
i , b

5
i )

=m(a3i − b3i )m+ (a4i − b4i )m = m(1− ρi)ai

=⇒ ✓

The proof for the other cases is straightforward and similar to this one. They

are omitted for brevity.
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b. a1i = b1
i , a

4
i = 0, a5i = 0,b3

i = 0 : We know a4i = 0, a5i = 0 ⇒ b4i = 0, b5i = 0.

Now we can rewrite the CR as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ3(a

3
i , 0)

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ3(a3i , 0)

≤ θiε(1− ϱi) + ϱi(Mβ − αεm)− (ρi − ϱi)εαm
(1− αρiε)m

c. a1i = b1
i , a

2
i = b2

i , a
5
i = b5

i , a
3
i = 0 : We know a3i = 0 ⇒ b3i = 0. Now we can

rewrite the CR in this case as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

5
i , b

5
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ4(a4i , b

4
i ) + ψ5(a5i , b

5
i )

≤ θiε(1− ϱi)− (ρi − ϱi)εαm
m(1− ρi)

d. a1i = b1
i , a

4
i = 0, a5i = 0,b3

i = ϱia3i : We know a4i = 0, a5i = 0 ⇒ b4i = 0, b5i = 0.

Now we can rewrite the CR in this case as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ3(a

3
i , ϱia

3
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ3(a3i , ϱia

3
i )

≤ θiε(1− ϱi)− (ρi − ϱi)εαm
(1− ϱi)m− (ρi − ϱi)εαm

e. a2i = b2
i , a

4
i = b4

i , a
5
i = b5

i , a
3
i = 0 : We know a3i = 0 ⇒ b3i = 0. Now we can

rewrite the CR in this case as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i ) + ϕ4(a

4
i , b

4
i ) + ϕ5(a

5
i , b

5
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i ) + ψ4(a4i , b

4
i ) + ψ5(a5i , b

5
i )

≤ θiερi(1− ϱi) + (Mβ − αϱiεm)(1− ρi)− (ρi − ϱi)εαm
θiε(1− ρi)

f. a3i = 0, a4i = 0, a5i = 0 : We know a3i = 0, a4i = 0, a5i = 0⇒ b3i = 0, b4i = 0, b5i = 0.

Now we can rewrite the CR in this case as:

ϕ1(a
1
i , b

1
i ) + ϕ2(a

2
i , b

2
i )

ψ1(a1i , b
1
i ) + ψ2(a2i , b

2
i )

≤ Mβ − αϱiεm− (ρi − ϱi)εαm
θiε− ρiαεm
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Figure A.2 shows the competitive ratio as a function of θi for all these cases.

(a) a1i = b1i , a
2
i = b2i , a

5
i = b5i (b) a1i = b1i , a

4
i = 0, a5i = 0, b3i = 0

(c) a1i = b1i , a
2
i = b2i , a

5
i = b5i , a

3
i = 0 (d) a1i = b1i , a

4
i = 0, a5i = 0, b3i = ϱia

3
i

(e) a2i = b2i , a
4
i = b4i , a

5
i = b5i , a

3
i = 0 (f) a3i = 0, a4i = 0, a5i = 0

Figure A.2: Critical boundary cases of the competitive ratio

It is evident that case c. consistently yields lower results than case a., attributed to

the premise Mβ ≥ αηd
ηc
m. Furthermore, it is straightforward to confirm that case d.

falls below case a. when αηd
ηc
≤ 1, and beneath case b. when αηd

ηc
≥ 1. Consequently,

these two cases can be disregarded as they are not dominant. Moreover, only two

viable pairings exist between cases a., b., e., and f.: specifically, the combination of
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case a. with e. and case b. with f. These lead to two distinct competitive ratio

solutions, with the higher value being designated as the competitive ratio for that

MG. Thus,

CR ≤ max

{︄
θ1i ε(1− ϱi) + ϱi(Mβ − αεm)(1− ρi)− (ρi − ϱi)εαm

m(1− ρi)
,

θ1i ερi(1− ϱi) + (Mβ − αϱiεm)(1− ρi)− (ρi − ϱi)εαm
θ1i ε(1− ρi)

θ2i ε(1− ϱi) + ϱi(Mβ − αεm)− (ρi − ϱi)εαm
(1− αρiε)m

,

Mβ − αϱiεm− (ρi − ϱi)εαm
θ2i ε− ρiαεm

}︄
where θ1i and θ2i are the results obtained from the following equations (see Figure

A.3).

θ1i ε(1− ϱi) + ϱi(Mβ − αεm)(1− ρi)− (ρi − ϱi)εαm
m(1− ρi)

=
θ1i ερi(1− ϱi) + (Mβ − αϱiεm)(1− ρi)− (ρi − ϱi)εαm

θ1i ε(1− ρi)

θ2i ε(1− ϱi) + ϱi(Mβ − αεm)− (ρi − ϱi)εαm
(1− αρiε)m

=
Mβ − αϱiεm− (ρi − ϱi)εαm

θ2i ε− ρiαεm

(a) θ1i equations. (b) θ2i equations.

Figure A.3: θ1i and θ2i illustration.
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Now, let’s consider the cases that charging and discharging rates are less than the

battery capacity. With µc less than B, energy must be stored over multiple time

slots rather than a single slot, which is possible when rates are not limited. This

restriction can prevent the system from capitalizing on the lowest market prices at

a given moment for energy uptake from the grid. The algorithm, which operates on

a fixed threshold θ, maintains its competitive ratio; it is not worsened by limited

charging rates compared to when rates are unlimited.

On the other hand, if µd is less than B, demands that could have been met by

immediate energy release from storage must instead be fulfilled by direct grid energy

during the time of need, altering the strategy for both online and offline algorithms.

Nevertheless, this constraint on discharging rates does not increase the competitive

ratio beyond that of the scenario with unrestricted rates.

Once the competitive ratio for each MG is calculated, the competitive ratio of the

whole algorithm is determined as the maximum among them.
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