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ABSTRACT

Three methods were compared for estimating the parameters of a nuclear
magnetic resonance free induction decay (FID) signal composed of an unknown number
of complex exponentially-damped sinusoidal signals in white Gaussian noise: the
conventional discrete Fourier transformation (DFT) method, the Tufts-Kumaresan (TK)
algorithm, also called the li-i-ar prediction singular value decomposition (LPSVD)
algorithm, and a proposed method which uses estimates from the [.LPSVD algonthm as
initial estimates for a Levenberg-Marquardt nonlinear leasi squares algorithm.
Comparisons were made using simulated FID signals, each composed of two or three

sinusoidal signals to which had been added white Gaussian noise of varying intensity.

The biases (mean of estimated less true value), variances and mean-square errors
(MSE's; variance plus square of the bias) of the parameters estimated by the three
methods were compared to one another, to values predicted by first order perturbation
analysis of the LPSVD algorithm, and to the Cramer-Rao lower limits. Qur results
showed the LPSVD algorithm to yield variances of the estimated parameters consistent
with those predicted by perturbation analysis, but significant parameter biases, in
contrast to zero bias for all parameters predicted by perturbation analysis. In general, the
proposed methed, using 150 data points and an LPSVD tentative model ordes of
approximately 75, out performed the 150-point LPSVD algorithm, which in turn out
performed a 1024-point DFT method. Both the LPSVD method and the proposed
method were able to estimate the signal parameters more accurately with significantly
fewer data points than was the DFT method. In all simulations tested, the proposed
method yielded variances and MSE's equal, within statistical uncertainty, to the Cramer-

Rao lower limits.
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Chapter 1

Introduction

1.1 Definition of the problem

The problem discussed here is that of estimating the unknown parameters of a
tim: domain waveform y(n) that is the sum of M complex exponentially damped
w soidal signals in white Gaussian noise. In particular, let there be given N

samples of the waveform y(n), forn =0, 1, ..., N-1, of a noise corrupted process,

M . .
3 Akewke 2n (-oy + jf)nat +wn) ,

yoyo o=

k=1
3 j0k o 27 (-2 + jfidn

= kgl A eltke kTR 4 w(n) ,
M

= Y akeSkn +w(n) ,
k=1

= s(n) + w(n) , 0<£n<N-1 (1.1.1)

where Ay, ¢y, oy and fi are the amplitude, phase, damping rate and frequency of the
k-th exponentially decaying signal, and the o, 's are positive for decaying signals, At
is the sampling interval, and 08, and f, are defined as the normalized damping rate
and normalized frequency, respectively, of the k-th exponentially decaying
component. w(n) is a zero mean, white Gaussian noise signal with uncorrelated real
and imaginary parts, each having a variance of 6,2 a, and s, fork=1,2,..., M,
are unknown complex numbers. M is also an unknown. In this thesis, we will

denote wy, which is equal to 2nf,, as the angular frequency of the k-th exponentially

decaying signal.



Given the N samples of noise corrupted data, the probiem is to estimate the

unknown value M, and also a, s, fork=1,2,..., M.

1.2 Organization of the thesis

This thesis begins with an overview of the history of the above problem,
some possible solutions and the objective of the thesis. In chapter 2, we will present
a review of nuclear magnetic resonance (NMR) and the traditional ways of signal
processing in NMR spectroscop . Some mathematical background, namely, pseudo-
inversion and singular value decomposition, that is essential to understand an
advanced method called the linear prediction singular value decomposition (LPSVD)
algorithm, is treated in chapter 3. In chapter 4, the LPSVD algorithm is treated in
more detail, and a proposed algorithm described. In chapter 5, comparisons are made
between the LPSVD algorithm, the proposed algorithm and a conventional NMR
spectroscopy technique which uses the discrete Fourier transformation using
simulated data. The estimation accuracy, measured in terms of bias, variance and
mean square error of the parameter estimates of the three methods, is calculated based
on several hundred independent trials and compared to the appropriate Cramer-Rao

lower bounds. In chapter 6, major conclusions are listed.

1.3 History of the problem

The above is an age old problem and has occurred in many different areas. In

pulsed nuclear magnetic resonance, to be described in more detail in Chapter 2, the



signal collected, which is called the free induction decay (FID), is thought to be of

the form of Equation (1.1.1). It is proportional to the net transverse magnetization in

a frame rotating about the direction of a static magnetic field B, with an angrlar

velocity of w, =y By, where y is the gyromagnetic ratio of the nucleus being

studied. This transverse magnetization is assumed to be decaying exponentially due
to factors like transverse relaxation, magnetic field inhomogeneity, etc. Although the
assumption of exponential decay is not always valid in NMR, for example, it is
manifestly untrue in dipolar broadened solids, it is valid in liquid samples. Equation
(1.1.1) is therefore expected to be an accurate description of the FID signal from
tissue samples and to constitute a reasonable model for biomedical applications of
NMR. By using a quadrature detection scheme for the NMR signal, and after analog-
to-digital conversion, we will have a set of data composed of samples of a sum of M
unknown, complex exponentially damped sinusoidal signals and additive noise
described by Equation (1.1.1) (see section 2.6). In this thesis, we will compare some

of the methods designed to estimate the parumeters of such a model function.

1.4 Some current methods

Since this is an age old problem, an exhaustive review of the extensive
literature is almost impossible. However, there are at least four major approaches to
estimating the unknown parameters from the N given samples of data y(0), y(1), . .

., Y(N-1). We shall briefly review these below.

In section 1.4.1 we discuss methods based on the maximum likelihood
estimation (MLE). It is proven that for multiple sinusoids the MLE of the damping

rates and frequencies is found by maximizing Equation (1.4.1.7), which



unfortunately cannot be done analyrically. However, if the sinusoidal frequencies are
well resolved in a periodogram, and the damping rates approach zero, then the
maximization of Equation (1.4.1.7) can be approximated by locating the peak
frequencies and getting the full width at half-height of the peaks from the

periodogram.

In section 1.4.2, the use of autoregressive (AR) spectral estimation for the
sinusoidal damping rate and frequency estimation is shown to produce poor results at

low signal-to-noise ratios (SNRs).

In an effort to improve the performance further, some methods based on
principal component estimation and noise subspace estimation are described in
sections 1.4.3 and 1.4.4. Principal component damping rate and frequency
estimation metheds discard the non-principal eigenvectors of the estimated
autocorrelation matrix; Pisarenko harmonic decomposition, which is one of the
methods based on the noise subspace eigenvector approach, finds the eigenvector of
the autocorrelation matrix associated with the minimum eigenvalue and then roots a
prediction error filter for the damping rates and frequencies as given by Equation

(1.4.4.1.1).

1.4.1 Maximum likelihood estimation (MLE)

Assume that we are given N samples of data y(n) as described by Equanca

(1.1.1) where y(n) is composed of M complex damped sinusoids, and zero mean,

complex, white Gaussian noise, w(n). Assume that the variance of w(n) is 20w2.

The probability density function (PDF) of y = [ y(0) y(1) .... y(N-1)]T



for a signal in complex Gaussian noise (Kay, 1987, p. 42) is

Py -8) = ——t——expl (y-s MRk (y-5)] (14.1.1)
™ det(Ruw)
where 'H' denotes complex conjugate transposition, 'T* denotes transposition, R,
is the NxN autocorrelation matrix of the noise and s = [ s(0) s(1) ....s(N-1)]T is

M
the vector of signal samples, i.e.,,s(n) = ¥ a e S
k=1

Since the noise is assumed to be white,

R = 20,21,

ww

where I'is the identity matrix, and hence, to find the MLE of A, ¢;, 08; and fi' we

need to maximize

-) = —L— _exp -—L-(y-s)H(y- 14.1.2
ply - s nNdet(zc&I)exv{ 20%()! sH(y S)] ( )

for all A, ¢;, C8; and f;. Alternatively, maximizing Equation (1.4.1.2) is equivalent

to minimizing

M H M
S = (y- z aicci) (y- 2 aicci) (1.4.1.3)

i=1 i=1

where a, = AieJq’i ,
e;=[1 €% e .. e™DsT ang
Let E =[e, €, .... el
a =[a a ....ayll,

f = [fl f2 ....fM]T,and
d = [-@1 -@2 e ae -’ﬁ_?M]T,



then Equation (1.4.1.3) can b written as

S(a,d,f) = (y-Ea)i(y-Ea). (1.4.1.4)
If E is assumed to be a known matrix, then S(a, d, f) is minimized over a by

a = (BUE)'Fy. (1.4.1.5)

Note that a will be the MLE if E is replaced by E, the MLE of E. Substituting
Equation (1.4.1.5) into Equation (1.4.1.4) yields

S@a,d, ) = yl(y-Eg)

yiy - yHE(E"E )lEiy. (1.4.1.6)
To find the MLE of the damping rates and frequencies we must maximize
Ld, ) = yHE(E'E y'Hly, (1.4.1.7)

over (d, f). L(d, f) is a highly nonlinear function of the unknown normalized
damping rates and frequencies. To maximize this function will require a search over
2M-dimensional space, which for several sinusoids is clearly impractical.
Alternatively, an iterative optimization may be used, but convergence to the global
maximum is not guaranteed. In fact, Bresler and Macovski (1986), and Kumaresan,

et al. (1986) have developed iterative algorithms based on Equation (1.4.1.6).

If the MLE of the damping rates and frequencies can be obtained, then the

MLE of the amplitudes and phases can easily be found from Equation (1.4.1.5).

To see how the periodogram is related to the MLE in a limited sense, consider

the case of two sinusoids. Then,



H H

€.1€c1  €.1€c2

EHE = [ :{1 ¢ ;‘ © } , (1.4.1.8)
€c2€c1  €c2€c2

and so Equation (1.4.1.7) becomes

H H H
€.HC -€.1€ €
yH[ ec1 ec2 ][ c:l <2 l:l czjl[ ;l ] y
Ld,f) = ~CcaCel CciCo1 L €c) (1.4.1.9)

(eglecl) (e‘l;{chZ) - | c?] ec2|2

(eBeco) ety P+ (e )| ethy - 2RelyHe ety B)
(eglecl) (e?2ec2) - | Blz

(1.4.1.10)
where P = e}:lec2 .

A sufficient condition for the MLE to equal the estimation from the

periodogram given by Equation (1.4.1.11) is that B = 0, which is exactly equivalent
to having both normalized damping rates 08, and &, equal to zero and their

normalized frequency separation be any integer multiple (besides zero) of L . This

means that from Equation (1.4.1.10), that if f = 0, we need only maximize

1
Ld, ) = JUY(f)E+I1Y(FYR), (1.4.1.11)
N-1
where Y(f;) = ¥ y(n) exp(-j2rnf;n), by choosing the two normalized frequencies
n=0

that yield the two largest values of the periodogram.

For the case where both sinusoids are non-decaying, but their frequencies are
not separated by an integer multiple of TEI_ , we can see from Figure 1.4.1 that 1Pl is

approximately equal to zero if | f, - f, | >> ’Ilﬁ . In other words, if the two peaks are

well separated, the MLE of the frequencies may be approximated by finding the
locations of the peaks from the periodogram.
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Figure 1.4.1 If/ = lef [Sc2! verses normalized frequency separation of two peaks

for three different sets of ag; + 0@, , the sumn of the two normalized damping rates.

For the case where both sinusoids are decaying slightly, that is, 08, = ce, =
0, then

H H
€11 = €% = N,

and | |is approximately equal to zero provided that either | fi-fpl = _II?T’ form=

1,2,... ,I-;I—, or If -f,I >>§ is satisfied, so that from Equation (1.4.1.10),
1
Ld,H = [(YF) Z+1Y(f)R). (1.4.1.12)

The trend of | B | for decreasing values of e, + 08, can be seen from Figure 1.4.1.



In all of the above cases, the maximization of Equation (1.4.1.10) may be
approximated by locating the peak frequencies and getting the full width at half-height
of the peaks from the periodogram. For closely spaced or highly damped sinusoids,
however, which is often the case in NMR, the periodogram is not close to the MLE.
We must therefore maximize the exact expression as given by Equation (1.4.1.7) to

obtain the MLE.

1.4.2 Damping rate and frequency estimaticii by spectral estimation

Since the periodogram cannot be used to estimate frequencies and damping
rates of sinusoids that are not well resolved or are not close to non-decaying, much
effort has been directed toward using the "high resolution” techniques of spectral
estimation. But this approach may not be optimal in the maximum likelihood (ML)
sense, because for damped sinusoids closely spaced in frequency, the MLE is not
based on anything that may be interpreted as a spectral estimator. However, iri light
of the connection between the MLE and the spectral estimation of well resolved
sinusoids as described in section 1.4.1, it is a reasonable alternative to the intractable
MLE. In the following section, we choose to describe Prony's method because many
indirect approaches to the problem are based on this idea, and this method is identical
to the well known covariance method of linear prediction, which is one of the

autoregressive (AR) spectral estimators.



1.4.2.1 Prony's method and some close relatives

Prony's method transforms the nonlinear estimation probiemn: into a linear one.
It is based on the following observation. Given N sampies of s{nj which are

composed of M complex damped exponential signals, as describec & v

M
sm) = ¥ az”, 0<n<N-1 (1.4.2.2.1)
k=1

where a, = Akewk, z, = ek, and S, = -2nCe, + j2rnf, , it can then be shown

(Oppenheim and Schafer, 1975) that s(n) may be generated by the recursive

difference equation
M
sn) = - ¥ gk)s(n-k), n2M, (1.4.2.2.2)
k=1
with the appropriate initial conditions {s(0), s(1), . . . , s(M-1)}. Therefore, the

signal may be viewed as the natural response of an autoregressive (or called all-pole)

filter with the given initial conditions. The coefficients g(k) are related to the poles z,

by

M
Gz = 1+ Z 80 7k =

k<

(zz!) = 0. (1.4.223)
1

Therefore, if we are given the data {s(0), s(1), . . ., s(M-1)}, the poles may be
determined exactly by solving the set of linear equations given by Equatiou
(1.4.2.2.2) for n = M, M+1, . . ., 2M-1 to find the g(k)'s and then rooting the
polynomial of Equation (1.4.2.2.3).

Summarizing, Prony's contribution was to transform the problem of finding

the parameters that enter in a non-linear fashion, namely, s,, k=1,2,...,M,intoa



problem of finding the coefficients g(1), g(2), . . . , g(M) of an M-th degree
polynomial given by Equation (1.4.2.2.3).

To extend Prony's method to the case of exponential signals in noise,
consider the following. If y(n) denotes the noise corrupted process and w(n) denotes

white observation noise so that
y(n) = s(n)+ w(n),
then Equation (1.4.2.2.2) becomes

M
ym)-wm) = - k‘;l gk) [y(n-k)-wn-k)], n2M,

or

M M
yln) = -kgl gk) y(n-k) + w(n)+ k§1 g(k) w(n-k) . (1.4.2.2.4)

If we now define an error function £(n) such that,

gn) = win)+ khzdl g(k) win-k) , (1.4.2.2.5)

which may be thought of as an error due to noise, a least squares estimator of the
g(k)'s is found by minimizing the sum of squares, E, i.e.,
1 N 2
E = <557 X len)!
N‘M n=M
1 N-1

M 2
= NM n§'M ly(n) + kg'l gk) y(n-k) I, (1.4.2.2.6)

with respect to the g(k)'s.

Notice that the minimization of Equation (1.4.2.2.6) is identical to that of the

11



well known covariance method of linear prediction (Makhoul, 1975).

The minimization of Equation (1.4.2.2.6) is equivalent to solving

ey e oawm |[ 9] o8e ]
cyy(l\;'l,l) cyyaia,z) CW&,M) &M MG
R, g = - £y (1.4.2.2.7)
in a least squares sense for gk), k=1, 2,..., M, where
¢y G0 = Tour E:; y*(0-) y(n-k) , (1.4.2.2.8)

A

and "*" denotes complex conjugation. Ryy is an estimated autocorrelation matrix of

y(n).

Once we obtain an estimate of the g(k)'s (denoted by g(k)), the values of the

z's can be found by rooting the polynomial of Equation (1.4.2.2.3), and then the

values of 4,'s can be found by solving the system of linear equations given by

Equation (1.4.2.2.1).

Generally, Prony's method will produce an inferior 'fit' of the data to that of
the direct least squares approach because Prony's method attempts tc minimize an
equation error, \isu(n = MN-1, ) |&(n) Ns\up6(2) , instead of the true least squares

N-1

error 3 | y(n) - §(n) 12 (Kumaresan, 1982). To alleviate this provlem, Kumaresan
n=

(1982) suggested increasing the order of the AR model employed (i.e., M in Equation
(1.4.2.2.4)) to L where M < L £ N-M. This means that he was proposing to

minimize

12



N-1
E = wmr DRED 2
1 N 2
= NL ; fy(n) + Z g(k) y(n-k) I*, (1.4.2.2.9)
with respect to the g(k)'s.

The minimization of Equation (1.4.2.2.9) is equivalent to solving

Cyy(1.1) cyy(1.2) ce Cyy(LL) g(1) Cyy(1.0)
Cyy(2.1) cyy(2.2) o Cyy(2L) g | _ | w20
cyyé.,l) cyy(:L,z) cyy(:x_'l_) g(L) cyy(:L,O)
ﬁyy g = -i, (1.4.2.2.10)
in a least squares sense for g(k), where k = 1, 2, . . ., L. But Kumaresan also

observed that at low signal-to-noise ratios, SNRs, increasing the AR model order
may result in spurious peaks. A second suggestion was therefore made, namely, to
find an estimate of M called M, and the best subset of size M that best explains the
data. What he did was to increase the value of M and calculate the corresponding best
least squares error until a significant drop in the rate of decrease of the error occurred.
By using these modifications Kumaresan showed by an example that Prony's method

could be used at relatively lower SNR than had previously been thought possible.

1.4.3 Principal component estimation

It has been shown that AR spectral estimation provides reliable frequency

estimates for high enough SNR. At lower SNRs the model order needs to be

13



increased to the point where spurious peaks become a problem. This limits the utility
of the spectral estimates at lower SNR. However, by choosing M out of L
exponentials (where L > M) that best explain the data results in better estimates and

provides us with some interesting insights.

Assuming that the phases of the M exponentially damped sinusoids in

Equation (1.1.1) are independent random variables, uniformly distributed over

[0,27), one can show that the theoretical L. x L autocorrelation matrix Ryy , where L
> M, is composed of the signal autocorrelation matrix R__ and the noise

autocorrelation matrix wa as follows :

R, = R, + R,
M
= I Alegey +R,,, (1.4.3.1)
where e, =11 S e e(L-l)si]T’
s; = -2mnce;+j2rnf ,and
R, = 2°1.

R, is not full rank since it is of dimension L x L and the rank is M only.

The total autocorrelation matrix Ryy is, however, full rank due to the inclusion of

the 2O'W2I term. Since R_ is Hermitian (see Appendix 1), it can be decomposed as

follows :

ss

M H
R = ¥ Avv', (1.4.3.2)
i=1

where the ki's are real eigenvalues corresponding to the eigenvectors v;'s, and the

v;'s are orthonormal (Stewart, 1973, pp. 308). This is called eigendecomposition or

spectral decomposition and is a special case of the more general decomposition called

14



singular value decomposition (SVD) as will be described in Chapter 5. Therefore, the

eigendecomposition of Ryy produces

M 2 H L H
R, = T (M+20)v,v,"” + I 20,2v,v7,  (1433)
i=1 i=M+1
where {Vp, 1, Vpy2s - - - » ¥} SPan the noise subspace. Equation (1.4.3.3) relies on

the decomposition of the identity matrix

Equation (1.4.3.3) clearly demonstrates that the effect of noise is to introduce noise
eigenvectors with, hopefully, small eigenvalues into the signal autocorrelation matrix.
These non-principal eigenvectors bias the autocorrelation matrix estimate by adding
components that are not present in the noiseless case. Hence, to gain some noise
immunity it is reasonable to retain only the principal eigenvector components in the

estimate of the autocorrelaton matrix.

Methods that use standard spectral estimators but impose the constraint on the
autocorrelation matrix that it be of low rank to match the rank cf the theoretical signal
autocorrelation matrix are generally called principal component techniques. The Tufts-
Kumaresan (TK) algorithm, also called the linear prediction singular value
decomposition (LPSVD) algorithm, is in fact one of the principal component

methcds. We are going to describe this algorithm in more detail in Chapter 4.

1.4.4 Noise subspace estimation

The second general approach to frequency estimation, which also relies on an



eigendecomposition of the autocorrelation matrix, is based on the orthogonality of the

signal vectors to the noise eigenvectors. It can be sesa f om Equations (1.4.3.1) and

(1.4.3.2) that the principal eigenvectors {v,,v,, ... ,v; , span the same subspace as

the signal vectors {e_;,€_,, ..., €,}. As a consequence, we have
H & .
e X Mve = 0, i=1,2, ..., M, (1.4.4.1)
k=M+l1

where the A, 's are some arbitrary constants.

Hence, the signal vectors are orthogonal to all vectors in the noise subspace.
This property forms the basis for the algorithm called Pisarenko harmonic

decomposition (PHD). The PHD is now discussed.

1.4.4.1 Pisarenko harmonic decomposition (PHD)

The original PHD algorithm (Pisarenko, 1973) was applied to non-decaying

sinusoids and L was assigned to equal M + 1, so that the noise subspace has the

dimension 1. Therefore, as proven in general in Appendix 2, if vy, is the

eigenvector of the (M+1) x (M+1) autocorrelation matrix Ryy associategi with its

minimum eigenvalue, then the zeros of

M
):0 Mmatlper 27 (1.4.4.1.1)
n=

are at  z; = exp( j21tfi ), fori=l,2,..., M. Unfortunately, th:s method generally
has poor performance in the presence of noise.

Some extensions to the PHD method have been psoposed. Instead of using L

= M+1, one such method used L > M+1. As shown in Appendix 2, the minimum

16



eigenvalue is still ZGWZ, but it now has a multiplicity of L-M. One can therefore

average the L-M smallest eigenvalues and use this, hopefully, to improve the

estimate.

Another approach was given by Reddi (1979) and Kumaresan (1982). They
found a vector that was a linear combination of the eigenvectors in noise subspace.
They then proceeded with the solution by fixing the first element of the solution
vector to 1 and minimized the 2-norm of the other elements in the vector. In other
words, as given in Appendix 2, if g is a linear combination of the noise subspace
eigenvectors,

L
g = T Av
i=M+1

where g =[g(0) g(1) ....gL-1)]T and (Vp,;.Vpyq4r - - -V} are noise

subspace eigenvectors, Reddi and Kumaresan constrained g(0) = 1 and minimized
L-1
PREO
j=

with respect to A;. This technique has been shown to out perform the original PHD

method and appears to work well for undamped sinusoids (Kumaresan, 1982).

Recently, Shinnar and Eleff (1988) applied a modified PHD technique to the
NMR decaying FID signal. They modified the algorithm to incorporate knowledge of
the noise power into the mathematical model and calculated a weighted average of the
eigenvectors in order to reduce the effects of perturbations secondary to random
noise on the eigenvectors. They said that by using these modifications, the algorithm

may be useful in low SNR experiments.
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1.5 Objectives of the thesis

The objective of the present study is to compare three methods designed to
obtain 'accurate’ estimates of the unknown parameters described in Equation (1.1.1).
In section 1.4.1, we have shown that the periodogram cannot be used to estimate
frequencies and damping rates of sinusoids that are not well resolved or are rot close
to non-decaying, so much effort has been directed toward using the "high resolution"
techniques of spectral estimation. But these approaches may not be optimal in the
maximum likelihood (ML) sense, because for damped sinusoids closely spaced in
frequency, the MLE is not based on anything that may be interpreted as a spectral
estimator. However, in light of the connection between the MLE and the spectral
estimation of well resolved sinusoids as described in section 1.4.1, it is a reasonable
alternative to the intractable MLE. One of the high resolution techniques of spectral
estimation is Prony's method. But, generally, Prony's method resulted in poor
estimates for noisy data. Since the theoretical autocorrelation matrix of Equation
(1.1.1) (assuming the phases of the M exponentially damped sinusoids are
independent random variables uniformly distributed over [0,21)) is composed of the
signal autocorrelation matrix and the noise autocorrelation matrix, hence, to gain
some noise immunity, it is reasonable to retain only the principal eigenvector
components in the estimate of the autocorrelation matrix. The Tufts-Kumaresan (TK)
algorithm, also called the linear prediction singular value decomposition (LPSVD)
algorithm, is one of the methods that uses standard spectral estimators but imposes
the constraint on the autocorrelation matrix that it be of low rank to match the rank of

the theoretical signal autocorrelation matrix.

In this thesis, we implemented the LPSVD algorithm, studied more about the

18



algorithm's properties, developed another algorithm based on the LFSVD method
and, using simulated data, compared the performance of the above two methods
with a conventional NMR spectroscopy technique which uses the discrete Fourier

transformation.
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Chapter 2
The basis of NMR

2.1 Introduction

To understand nuclear magnetic resonance (NMR) spectroscopy and the
traditional way of analyzing NMR spectra, it is necessary to provide some background
material. The contents of this chapter are intended to provide a simple summary of the
above topics. Detailed treatments of NMR phenomenon and NMR spectroscopy may be
found in Abragam (1961), Slichter (1963), Farrar and Becker (1971), Gadian (1984),
Harris (1986), and Ernst et al. (1988).

Nuclei which possess spin angular momenta and therefore magnetic moments
will, when allowed to equilibrate in a static magnetic field, distribute themselves among
discrete stationary energy states. Transitions of the nuclear spin between one state and
the next can be induced by the application of electromagnetic radiation at the appropriate
frequency and this gives rise to the nuclear magnetic resonance phenomenon. As we
shall see, the term resonance implies that the exciting radiation is in tune with a natural
frequency of the magnetic system, in this case the frequency of gyroscopic precession
of the magnetic moment in the external static magnetic field. A proper description of this
phenomenon requires quantum mechanics. However, a number of properties are more

easily visualized through a classical treatment (Slichter, 1963; Farrar & Becker, 1971).

2.2 Simple resonance theory

Nuclei are made up of nucleons called protons and neutrons. A nucleus with

either an odd number of protons and/or neutrons has a nuclear spin angular momentum
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that is characterised by the total nuclear angular momentum quantum number, I, which
is an integer or a half-integer greater than zero. In fact, the value of I for each nucleus

depends on the number of protons and neutrons. This is summarized in the following

table.

proton number neutron number spin number [
odd odd integer: 1, 2, 3, .......
odd even half integer: % % 55
even odd half integer: % % 55 .....
even even 0

Nuclei of interest in biological applications of NMR and having spin% are 'H, 13C,

31p, and 9F.

. . . 1
A nucleus with unpaired nucleons (i.e., I 23) possesses a net angular

momentum (total nuclear angular momentum)

) = 12 - n 2.2.1)
2n

and, as a result, a net magnetic moment,
n= yvI = vy#al (2.2.2)

colinear with it. Here the proportionality constant y is called the gyromagnetic (or

magnetogyric) ratio, a unique constant for a given nucleus; h is Planck's constant

(=6.625x10'34 J-sec ) and Iis a dimensionless spin angular momentum operator.

The magnitude J of the total nuclear angular momentum is given in terms of [/

by the relation



J =T % .

In the presence of a static magnetic field By, the vector Ji can assume only
certain discrete orientations with respect to Bg. In this thesis, we assume that the
direction of By is along the z-axis unless otherwise stated. The measurable components

of 1 in the direction defined by B are given by the magnetic quantum number, m, in

the equation

J, = fim ; m=1LFFE2,...,-I

BOTZ BDTZ
4--

J;=fim

J=AED) T

@) (b)

Figure 2.2.1 Angular momentum vectors : (a) showing the use of quantum numbers
I and m, (b) the possible orientations for an angular momentum vector of quantum
number = 1.

Hence, there are 2I+1 such discrete orientations. These orientations correspond to

different energy states as follows :

E

-n - BO
M BO
-mY#Bg, m=LF,I2,...,-, (2.2.3)
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where [, (=m Y#) is the z component of the nuclear magnetic moment. The energy
differnece between two such states is referred to as "nuclear Zeeman splitting" of the

energy levels. Energy levels are shown in Figure 2.2.2 for nuclei with spin quantum

numbers [ =% and 1. The lowest energy state is defined as the one in which the

measurable comporent of M aligns parallel to the field By. The highest one

corresponds to the case where Jl is anti-parallel to By,

B,
'\
m=-1 'YfiBO
1
2 /AR, 4
7 /
—X< m=0 & — 0
~
—_— \
-3 VhB, \
m=1 - YAiB,
I=1 I=1
2

Figure 2.2.2 Magnetic energy levels for nuclei of spiné and 1.

Restricting ourselves to spin-half ( = -;- ) nuclei results in two energy states, an

upper and a lower state denoted by E and E, . respectively. The energy

upper

separation AE between these two states is
AE = Eupper “Eower = Y#ABoy . (2.2.4)

The Bohr condition (AE = hv) permits us to give the frequency of the radiation required

to excite the nuclear transition, namely
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v = - ¥B _ Ygp o (2.2.5)
h h e

where vy is called the Larmor frequency. Normally, magnetic fields in the range of

0.5 T to 14 T are used for biomedical NMR, and it can be seen that frequencies of the
order of tens to hundreds of MHz are necessary. Therefore, for any particular nucleus
in a given magnetic field, the NMR frequency will be characteristic, depending
exclusively on the gyromagnetic ratio peculiar to that particular nucleus. Some examples
are given in Harris (1986, p.5) and Bovey (1988, p.3). Transitions of the spins

between these energy states, brought about through the application of an alternatin
gy g g PP g

electromagnetic field of frequency v, is referred to as the "on resonance" condition.

In Figure 2.2.3, the separation of the proton magnetic energy levels is shown as

a function of magnetic field strength.

Y (M)

1 1 i ] ]
141 234 473 635 846 11.75

By (tesla)

Figure 2.2.3 The splitting of magnetic energy levels of protons, expressed as
resonance frequency Vg, as a function of magnetic field strength.
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2.3 Interaction between magnetization and magnetic field

In treating the experimental observation of nuclear magnetic resonance, it is
convenient to use Bloch's approach. Bloch's approach was macroscopic and classical
and is complementary to the use of : spin Hamiltonian. The Bloch equations can be
used to describe the phenomena involved in a simple spectrum, but they are not

applicable to a complex spectrum,

In the next subsection, 2.3.1, the effect of a static magnetic field on the

magnetization will be discussed. It is shown that in a static magnetic field B, the

magnetization will precess around the field with an angular velocity @, = -yB,,. In

subsection 2.3.2, we will show the influence of an applied radio-frequency field on the

magnetization that was originally at thermal equilibrium. It will be shown that the

magnetization will precess in a cone of fixed angle about an effective field, B, given

by Equation (2.3.2.3) at an angular frequency of -yB, in a frame rotating at the

angular frequency of the applied radio-frequency field.

First, we define the total magnetic moment per unit volume of sample or
magnetization M. The magnetization is the resultant sum, per unit volume, of all the
individual magnetic moments with the magnetogyric ratio y, M, in an assembly of

identical nuclei,

M =3n,, (2.3.1)
J

or in terms of the total spin angular momentum J,

M =yJ) . (2.3.2)



In the absence of a static field B, the magnetic moments are oriented at random.

However, when By, is applied more of the magnetic moments orient along the field than

against it as predicted in Equation (2.5.1.2). Therefore, a net magnetization of

amplitude My may be assigned along the axis colinear with B,,. Furthermore, since the

orientation of the xy component of each magnetic moment is uncorrelated at

equilibrium, the average xy component of the resultant equilibrium magnetization M,, is

ZEro.

2.3.1 Motion in a static magaetic field : Larmor precession

If M is perturbed away from the z-axis it precesses around B, with an angular

frequency @, =-YB, as seen in the laboratory frame of reference. This can be shown

as follows. Corsider an ensemble of magnetic moments placed in a static magnetic field

By. The effect of an applied magnetic field B, can be predicted from classical

mechanics. The field results in a torque on the magnetization, changing the angular

momenturn J according to

d
a—tJ = M x By |
or
M@y = yYM@ x B
i = YM(@ x By | 2.3.1.1)

In the absence of both relaxation effects and rotating fields B, the projection of M(t)
on the z-axis, M,, would remain constant, i.e.,

SM =0 . (2.3.1.2)
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The magnitudes of the x and y projections, M,(t) and My(t), will vary with time as M(t)

precesses, and can be expressed by

EM(O = Y(MOxBy), = YM,By = M,
d (2.3.1.3)
aVy(® = Y(MOxBg), = -YM,By = -apM,

In other words, M(t) rotates about B, with an angular velocity of ®, = - YBy, the

Larmor angular frequency, in addition to having a constant magnitude and a constant

angle with B, (see Figure 2.3.1.1).
B,
A

/— W dt
—_—*

M+dM

Figure 2.3.1.1 Precession of a classical angular momentum I, having a
proportional magnetization M = yJ, about a static magnetic field B,

2.3.2 The influence of a rotating field : resonance

One way to perturb the net magnetization from its thermal equilibrium state is by

irradiating the spin system with a circularly polarized RF magnetic field of angular
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frequency ® ¢ and amplitude B, restricted to the transverse plane and rotating in the

same sense as the spins. Let us now iook at the effect of the RF field.

The equation of motion of M(t) in the presence of the total field

B() = By + B, (1)

becomes

gzM(t) = M@ x y[By+By(1)] . (2.3.2.1)

To solve this equation, it is convenient to place ourselves in a frame rotating about the

direction of By with the same angular velocity as B, (t). In Figure 2.3.2.1, we shall

designate by Oxyz (unit vectors ey, €y, €,) a fixed laboratory coordinate system whose
Oz axis is the direction of the field B, and by Ox'y'z' (unit vectors e,., ey, €,) the
axes obtained from Oxyz by rotation through an angle w st about Oz, where Ox' is the

direction of the rotating field B, (). Then, the relative velocity of the vector M(t) in the
rotating frame is

IM@O = SMO - ogx M@

= M@ x YB() - o, x M(t)
= M() x yB_(t) , (2.3.2.2)

where M(t) is the magnetization vector in the rotating frame, and the "effective field"

B_¢(t) (which is static with respect to the rotating reference frame) can be written as

w
B(t) + —X

Y @
= B, + B,(1) +T'f

Beff(t)

((})
= B, ey + (BO-—Y'—f) e, . (2.3.2.3)



B, (1)

Figure 2.3.2.1 Oxyz is a fixed laboratory coordinate system. The static magnetic
field B, is aiong the Oz axis. The Ox'y'z’ is a rotating system about Oz with the

angular frequency ,p and Ox’ axis is the direction of the rotating field B,(t).

Physicsily, Eguations (2.3.2.2) and (2.3.2.3) state that in the rotating frame the

magnetization acis a5 rbough it effectively experiences a static magnetic field B.d0. In

the rotating frame therefove, the magnetization precesses in a cone of fixed angle about

the direction of B_g(t) at angular frequency -YB g(t). The situation is illustrated in

Figure 2.3.2.2 for a magnetization which, at t =0, was orientated along the z-direction.

The angle B by which M tilts away from the z'-axis about B off iN the clockwise

direction under the action oi the RF magne:  field B of duration T (commonly

known as the pulse width) is

= yBy1. . (2.3.2.4)
B Y 1'%
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Figure 2.3.2.2 In the rotating frame Ox'y'z|, the effective field B4 has a fixed

direction about which the magnetic moment M(t) rotates with a constant angular
frequency -yYB g about B e

Consider the special case where the angular frequency of B, is the same
as @y = -yB,. This is called the "on resonance” condition. From Equation (2.3.2.3),
the effective field is then simply B, e, Therefore, magnetization that is parallel to the
static field initially will precess in the y'z' plane at a frequency ®, = -yB, for as long as
the RF irradiation persists. A short application of an RF magnetic field, B,, which tilts
M by exactly 90° or 180° is referred to as a 90” or a 180° pulse, respectively.
Following a 90° pulse, the excess magnetization will be perpendicular to B, and will

precess at angular frequency -yB in the laboratory frame, as shown in Figure 2.3.2.3.



&

B =90° t2t

y
M(tz )
/Bl/ z

Figure 2.3.2.3 {(a) Nutation of M away from its equilibrium position onto the
rotating frame y' axis produced by a 90° RF pulse at resonance polarized along +x°

axis of rotating frame. (b) Continued free precession of M in the laboratory frame
after the termination of the RF pulse.

2.4 The chemical shift

The resonance frequency of a nucleus is directly proportional to the local magnetic
field experienced by the nucleus. Since the applied field By induces electronic currents
in atoms and molecules, and these produce an additional small field By, at the nucleus
proportional to B, not all nuclei in a sample may experience the same local magnetic

field. The total effective local field B, at the nucleus can therefore be written

Bi,c = Bg- Bog

By (l1-0), (2.4.1)

where ¢ is a dimensional constant, known as the shielding or screening constant. It
has values typically in the region 10 to 10~ (Gadian, 1984, p.5). ¢ is dependent
upon the electronic environment of the nucleus, and therefore nuclei in different
chemical environments experience different fields and hence produce signals at

different frequencies. The separation of resonance frequencies from an arbitrarily



chosc.: reference frequency is termed the chemical shift, and is expressed in terms of
the dimensionless units of parts per million (ppm). If one nucleus is more shielded
than another, its signal will be shifted to a lower frequency; by convention it will
appear further towards the right-hand side of the spectrum. Table 2.4.1 indicates some
of the chemical shifts observed in NMR spectroscopy, along with some values

observed in in-vivo NMR spectroscopy (Jardetzky and Roberts, 1981, p.27).

nucleus chemical shift range approximate chemical shift
(ppm) in high-resolution range (ppm) in in-vivo
spectra spectra
H 12 8
13C 350 200
31p 700 30

Table 2.4.1 Chemical shifts observed in high-resolution and in in-vivo
spectroscopy.

2.5 Relaxation phenomena

As indicated in the last section, a 90° RF pulse rotates the magnetization M into
the x'y’ plane (i.e., M, = 0). However, after termination of the RF pulse, we know
from experience that the net ragnetization will return to the z-axis, and the transverse
component of the magnetization will disappear. They are called longitudinal (or spin-
lattice) relaxation and transverse (or spin-spin) relaxation, respectively. In the following

subsections, we will briefly describe these phenomena.



.5.1 Longitudinal relaxation

Just after a 90° RF puise, the net magnetization M lies in the x'y' plane. This
means that the proportion of the spins in the lower energy state is the same as that in the
upper energy state. However, the eventual return of M to the z-axis after terminaiion of
the RF pulse means that in returning to equilibrium, the populations readjust so that
there are more spins in the lower (spin-up) energy state than in the upper (spin-down)
energy state. Hence, there must exist some means by which the upper level spins could
relax to the lower level in order to reestablish an equilibrium spin population distribution

and permit a resonance signal to be observed again.

This mechanism can occur because each spin is not entirely isolated from the
rest of the assembly of atoms, commonly referred to as the "lattice”. The spins and the
lattice may be considered to be essentially separate coexisting systems with a very
inefficient but nevertheless very important link by which thermal energy may be
exchanged. This link is provided by the modulation of spin interactions by "molecular
motion". Each nucleus sees a number of other nearby magnetic nuclei, both in the same
melecule and in other molecules. These neighboring nuclei are in motion with respect to
the observed nucleus, and because these neighboring nuclei have magnetic moments,
this motion gives rise to fluctuating magnetic fields. If these internal fluctuating fields
have frequency components at the resonant (Larmor) frequency, they can stimulate the
de-excitation of nuclear spins from the upper state, the energy being transferred from
the spin system into thermal kinetic energy of the lattice (or heat reservoir). Let us

denote the probability per second that such a coupling will induce a spin transition

upward in energy (from Jower energy level to upper level) by Wy, and the reverse

process by W . If the number of spins in the lower and upper energy state are denoted

by Njower(t) and Nypper(t), respectively, then we have a rate equation
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%Nlower(‘) = Nupper®Wy - Niower®W1 - (2.5.1.1)
Since at equilibrium %Nlowe,(t) is zero, Equation (2.5.1.1) tells us that
Noppey _ W1
Nower Wy
= BT = TR (2.5.1.2)

where Nouppe, and Noummr are the number of spins in the upper and lower energy state,
respectively, at equilibrium. The last two equalities in Equation (2.5.1.2) assume that at
equilibrium the relative spin populations are given by the Boltzmann distribution, where

k is Boltzmanr:'s constant which is equal to 1.381 x 10°34 J/°K.

Let n(t) = Ny yer(D) - Nupper(t) be the difference in population of the energy
levels, n be the equilibrium population difference, and N be the total number of spins.
(t) may be replaced by n(t) and N, using the

The two variables N (t) and N

lower upper
equations
N = Nlower(t) + Nupper(t)
n( = Nlower(t) ) Nupper(t) .

This results in

Nowa® = 7(N+0(0)

Nppa® = 7 (N-n(9)

(2.5.1.3)

Substitution of Equation (2.5.1.3) into Equation (2.5.1.1) gives us

%n(t) = N(W,-W3p)-n() (W, +W;p) . (2.5.1.4)



Hence, at equilibrium we have

ng _ Wi-Wp

N ~ WL’*WT
and so, defining

Lo ow+w

T, ~ Lt We

we may rewrite Equation (2.5.1.4) as

d S U
50 T (N n() . (2.5.1.5)

By analogy to Equation (2.5.1.5), and recognizing that M, =u, n, Bloch expected that

it would be reasonable for M, to be established according to the equation

%Mz(t) - . .1_1; (M,() - M,) (2.5.1.6)

where My, is the thermal equilibricsn magnetization. In other words,
/T
M@® = My+(M,0p-My)e "1, (2.5.1.7)

where M, (0,) is the z component of the magnetization just after the RF pulse. Hence
Equation (2.5.1.7) predicts an exponential return to equilibrium with time constant T,.

Following a 90° RF pulse, M, (0,) =0, hence

M@® = My(1-e*/T1). (2.5.1.8)

T, is therefore a measure of the time required to establish thermal equilibrium between

the spins and their surroundings. If a static field By is applied to a sample that is

initially unmagnetized, T, is also the characteristic time for the equilibrium



magnetization M, to be established. T, is called the spin-lattice relaxation time or the

longitudinal relaxation time, emphasizing the relationship of M, and the static field.

The nature of the rotational and translational motions permitted by the lattice
significantly influences the longitudinal relaxation efficiency. Remember that it is only
the component of the fluctuating magnetic fields at the Larmor frequency which is
efficient in inducing T, relaxation. Although the time behavior of the the -mal motion is
random, it can be Fourier analyzed to estimate its component at the Larmor frequency.
A method of analysis of this random motion is the following. The randomness of the
thermal motion produces random magnetic fields over all time and space. The
magnitude of these fluctuating fields can be characterized by the autocorrelation function
which measures how well the fluctuating field correlates with itself at a certain time
later. If the process is wide sense stationary (i.e., the autocorrelation function is a
function only of the time difference) and if the autocorrelation function is absolutely
integrable, then the power spectral density function exists for all frequencies, and is
given by the Fourier transform of the autocorrelation function. The power spectral
density function tells us the distribution of power over all frequencies. Assuming that
the autocorrelation function is simply a mono-exponential decaying function (therefore
absolutely integrable) with the correlation time 1 _ (a measure of the average time that the
environment can be considered to be in a particular state), then the power spectral
density function becomes

@) = GO) —&—s
- l+w2t2?

[+

where G(0) is the autocorrelation function at time t = 0. The forms of J(w), where we

-]

assume [J(w)dw = constant for different T _ values, are shown in Figure 2.5.1.1.
0
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(@  Slow motion, long 1,

J(w)

(b) Moderate motion,
intermediate T .

©

Fast motion, short 1

Figure 2.5.1.1 Motional frequency spectrum at (a) slow motion, (b) moderate
motion, and (c) fast motion. J(w) represents the relative intensity at the motional

frequency . The observing frequency for spin transitions is @y .

Slow rotational motions in solids have long T _ values, which then result in a
low-frequency power spectrum of the fluctuating fields. The resulting small component
at the Larmor frequency leads to a very long T, value. Similarly, very fast motions have
short 1 values, and hence a wide power spectrum with a small Larmor frequency
component, and thus a long T, value. However, intermediate thermal motions of water
protons bound to macromolecules in tissue, for example, result in a large Larmor
frequency component and hence a short T, value. For solids, T, has been found to vary
from 10 to 10* seconds, while for pure liquids the range is 10" to 10 seconds, but the
presence of paramagnetic species may reduce the lower end of this range to 107

seconds (Emsley, 1965).



2.5.2 Transverse relaxation

The second relaxation process, called transverse relaxation or spin-s;:'n

relaxation, causes the disappearance of the transverse component of the magnetization.

The transverse component of the magnetization disappears due to the dephasing
of its numerous component W's, without any energy transfer to the lattice. If the
magnetization were tipped into the xy plane with a 90° pulse, the individual spins would
remain in phase with each other if each one felt exactly the same magnetic field B,
However, in addition to interacting with the lattice, magnetic nuclei can also interact

amongst themselves. These interactions of spin dipoles with other neighboring dipoles

lead to the superimposition of a time dependent local magnetic field upon B, Suppose
the net field over the sample varies over the range B, £ AB, then the set of spins which
feel the field B, will remain fixed in the rotating frame (which rotates in the laboratory
frame with a frequency ©, = yB); however, those spins that feel a field B, + AB will
precess faster by Aw = YAB, and those experiencing a field B, - AB will precess more
slowly. The net transverse component of the magnetization M will disappear as the
spins come out of phase with each other, and the free induction signal will therefore

decay, as illustrated in Figure 2.5.2.1.

The equilibrium value of Mxy is zero, as there is no preferred orientation within
the xy plane, and therefore one way to describe the return of the magnetization to

equilibrium may be

4 My
My = T (2.5.2.1)

This equation expresses the exponential decay of to zero with a time constant T,
p p y y 2

called the spin-spin relaxation time (or transverse relaxation time).
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X (a) X ®) X ()

Figure 2.5.2.1 Dephasing of spins in the rotating frame due to differences in the
local magnetic field felt by the various spins. {) represents the situation immediately
after the application of a 90° pulse; the net magnetization is represented by the heavy
arrow. The individual nuclear magnets gradually fan out, as shown by the light lines
in (b), and (c). Therefore, the net transverse component of the magnetization gradually
declines.

In general, T, < T,, with T, = T, occuring in the case of very rapid molecular

motion in non-viscous liquids. In a solid or viscous liquid where the internal fields can

have a large static component, T, << T, . For pure water, T, = T, = 3 seconds. If

additional factors such as a magnetic field inhomogeneity appear, the decay is even

more rapid. The observed decay under these circumstances is usually characterized by

the ime constant Tz* where T,*< T2 .

2.6 Bloch equations in the rotating frame

Summarizing the results of sections 2.3 and 2.5, we have the Bloch equations in

the laboratory frame, which may be written in vector notation as



M) = YM@®xB@ - T, { M(®)-M,}, (2.6.1)
oo d
where M(t) = aM(t).

The magnetization vector M has the thermal equilibrium value My, and T, is

the relaxation matrix

- 1 .
T—2 0 O
1
T, = 97T 0| (2.6.2)
0 0 T

with the longitudinal and transverse relaxation times T, and T,, respectively. The

external magnetic field B(t) is composed of a static fizld B, and an RF field B, (1), i.e.,

B(t) B, + B,(1), (2.6.3)

with B, (1) B, ( cos(wt + E)e, - sin(wt + &)ey ). (2.6.4)

€ in Equation (2.6.4) is a fixed angle between the direction of the resultant B, field and

the x-axis (excursion from the x-axis towards y-axis). As mentioned in section 2.3.2, it
is usually r..ore convenient to calculate the response of a nuclear spin system to RF
pulses in a.irame rotating with the applied radio-frequency. So let us denote R,(8) as
the rotation matrix that will rotate the coordinate axes counterclockwise 0 degrees about
the z-axis, i.e.,
cos(B) sin(@) O
R,8) = -sin(@) cos(@) 0 | . (2.6.5)
0 0 1

40



Assume that the pulse lengih is short compared to T, or T, so that the relaxation during

he pulse is negligible. The magnetization vector in the rotating frame is given by

M) = R, (-m ) M(1) , (2.6.6)

and the Bloch equation in the rotating frame becomes

M@ = YM(@)xB' - T, { M(t)-M, ), (2.6.7)

where the effective magnetic field in the rotating frame B" has the components

B, = B, cosf ,
B;, = -B;sin§
Of -y Q
B, = B,- T STy Ty o (2.6.8)

In explicit notation, Equation (2.6.7) is equivalent to

M© = yIM{@®3]- M;()B ]- %; M (1)

My

ML)

YIM[OB, - M,0B] - 7 M09

YIMOB] - MOB]] - T (M{0-Mg) . (269)

2.6.1 Ideal pulse experiment

-
Iﬂy——'-f—l , the effective magnetic

From Equation (2.6.8), if IBl|>>|%—| -

field in the rotating frame is basically in the transverse plane. An RF pulse of duration



T, will rotate the equilibrium magnetization M, about the direction of the applied RF

field B,, irrespective of the resonance ofizzt €, by (Equation (2.3.2.4))
B = vBv,. (2.6.1.1)

For an RF field applied along the x-axis (§ = O in Equation (2.6.4)), the initial

magnetization just after the pulse will be

M©) = 0,

M;(O ) = Mgsinf,

M@©O) = M,cosp . (2.6.1.2)
The subsequent magnetization in the rotating frame can be described as follows :

M(t) = Msinfsin(Q) exp(-vT,) ,

M;(z) = M, sin cos(Qt) exp(-vT,) ,

M:(t) = M, + (MgcosP -My) exp(-vT),) ; (2.6.1.3)
or in the laboratoiy fr.une,

M, (tt = M, sinf sin{eyt) exp(-vT,) ,

M) = M, sinf cos(wgt) exp(-T,) ,

M, () = M, + (M cosf-My) exp(-vT)). (2.6.1.4)

Hence, after the RF pulse the ransverse magnetization will be precessing about the axis

of B, with angular frequency g but in contrast io section 2.3.1, it is decaying
exponentially with the time constant T,. At the same time, M, recovers with the time

constant Tl.
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43
2.6.2 The effect of finite RF pulse amplitude

In the previous section, we assumed that the amplitude of the applied RF pulse
was strong enough to allow the neglect of all off-resonance effects. However, if nuclei
are present in several different chemical environments, the resulting transverse
magnetization will contain contributions with several different precessional frequencies.
As a result of this, the width of the spectrum to be investigated may be comparable to

the maximum available RF field strength B, and off-resonance effects would not under

these circumstances be negligible. We now consider this off-resonance effect.

As shown in Figure 2.6.2.%. the tilted effective field about which the

magnetization rotates is determined by the offset field

,
AB, = Bo-—yr£ = % (2.6.2.1)

along the z-axis and by the RF field B, in the transverse plane. It has the amplitude

By = \ B2+(ABy? (2.6.2.2)
and is tilted by an angle 8 with respect to the z-axis, where
tan® = E = 0 - (2.6.2.3)

The effective nutation angle B of the magnetization vector about B, in the clockwise

direction during a pulse of duration T is

2
B = vBgt, = YB 1, H(T!lf) : (2.6.2.4)



Figure 2.6.2.1 Tilted effective field in the rotating frame. @ is defined in Equation
(2.6.2.3).

For an RF field applied along the x'-axis of the rotating frame, i.e., § = 0 in
Equation (2.6.4), the components of the magnetization immediately after the RF pulse

can be computed as follows :

M) = R (®) R,(B) R, (6 M), (2.6.2.5)
with
cos{8) 0 -sin(0)
R,(8) = 0 1 0 , (2.6.2.6)

sin(@) 0 cos(0)

where R_.is defined as in Equation (2.6.5), and M"(0) represents the magnetization in

the rotating frame just before the RF pulse.
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If M(0) =M,e, , Equation (2.6.2.5) results in

M(@©,) = M,(1-cosP)sinb cosd ,
M(0) = MgsinBsing ,
M(C. = M;(cos?0 +cosfsin?f ). (2.6.2.7)

The transverse magnetization immediately ai'ter the RF pulse is no longer along the y'-

axis, as in the case of on-resonance irradiation, but has developed a phase shift @,

measuring from x'-axis towards y'-axis, which depends on the resonance offset Q as

well as the effective pulse rotation angle Beff ,
M0,
M,(0,)

sin 1
(1-cosp) * cosb

tan¢@ =

(T-cosP) * Q0 - (2.6.2.8)

For the on resonance condition and a strong B, field applied along the x'-axis, we have
£ =0 and B¢ = By, and hence, 6 = 90°. Substituting these results in Equation
(2.6.2.8), we have @ = 90°. This means that the magnetization just after the RF pulse is

always in the y'z-plane, which is consistent with Equation (2.6.1.2).

At the same time, the amplitude response of the transverse magnetization is

given by

M0, = \/[Tw;(ogﬂ + M0
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= M, sin@ V(1-cosB)?cos?8 + sin2P. (2.6.2.9)

Figure 2.6.2.2 shows the dependence of the signal phase ¢ and effective pulse rotation

angle P as functions of Q/(yB,). Figure 2.6.2.3 shows the amplitude response of the
transverse magnetization versus /(yB,). Note that the response remains almost

constant up to an offset {2 approximately equal to the RF field strength ¥B,. However,

for larger offsets, the response decreases to zero, then increases again and starts to
oscillate as a function of the offset. Vanishing transverse magnetization implies that the
effective pulse rotation angle B, about the tilted axis is a multiple of 2=, and the
magnetization vector is rotated back along the z-axis at the end of the RF pulse. Some
typical ratiog of spectral width and B, field strength in in-vivo spectroscopy are shown
in Table 2.6.2.1 for By = 2.35 T and B, in the range of 10 T to 10 T. For the
definition of the unit 'ppm’, please see Appendix 3. This range of B, field corresponds

to pulse length 1, from about 500 s to 5 ps for effective pulse rotation angle B¢ = 90°

for protons.

vx 108 1 v chomical .| Q.

Nucleus| (g (MHz) Y B, (kHz) Q (ppm) B,
H 2.6752 100 0.4258 - 42.58 10 0.0235 - 2.349
Bc 0.6726 | 25.156 | 0.1070 - 10.70 200 0.4702 - 47.02
Ap 1.0829 | 40.502 | 0.1723 - 17.23 40 0.094 - 9.403

Table 2.6.2.1 Approximate spectral width and B, field strength in in-vivo
spectroscopy, assurning B, =2.35 T and B, is in the range of 1 0’ Tt 103 T
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Figure 2.6.2.2 Effect of offset {)/(yB,) on the signal phase defined in Equation

(2.6.2.8) and effective pulse rotation angle [ defined in Equation (2.6.2.4) for a single-
pulse experiment. The pulse width (A is assuried to be a constant such that 3 = 90° at §2

= () throughout all frequency offsets.
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Figure 2.6.2.3 Effect of offset {)/(yB,) on transverse magnetization M;y(OJ
defined in Equation (2.6.2.9) for a single-pulse experiment. The pulse width 1, is

assumed to be a constant such that § = 90° at 2 = 0.

47



48

If M7(0) = M, e,. and the RF pulse is applied along an x'-axis which is 1

degree away from the x-axis to the y-axis at time t = 0 as shown in Equation (2.6.4),

then one can show that the subsequent magnetization in the rotating frame can be

described by
M® = M (0 sin(Qt-¢) exp(-T)) ,
M = M(0,) cos(Qt-g) exp(-tT) ,
My = M+ M0)-My)exp(-vTy), (2.6.2.10)

or equivalently, in the laboratory frame,

M, = M,/(0,) sin(wgt+-¢) exp(-tTy) ,
M@ = M;y(O ,) cos(wyt+5-¢) exp(-vT,) ,
M@ = My + (MO, -My) exp(-tT,) . 2.6.2.11)

Equation (2.6.2.11) is expanded from

M1 = R+ M) . (2.6.2.12)

Notice that @ is a function of the resonance offset Q = @, - @ ;.

2.7 Detection of NMR signals

Let us now consider the detection of the NMR signal. In the last few sections,
we have shown that by applying an RF field with the appropriate radio-frequency and
pulse width, one can obtain a net transverse magnetization. This transverse

magnetization will precess about the direction of B, and decay due to factors like

transverse relaxation and field inhomogeneity after the RF pulse is terminated. If a



conducting coil is placed so that its axis lies in the transverse plane, there will be a time
dependent change of magnetic flux through this coil as the wagnetization precesses.
Faraday's law of electromagnetic induction says that the induced electromotive force
(EMF) in a circuit is proportional to the rate at which the magnetic flux through a closed
circuit is changing. Therefore, an EMF will be induced in the coil by the rotating

magnetization. This is the origin of the measured NMR signal.

Suppose we have nuclei present in K different environments; then from

Equation (2.6.2.11), and Faraday's law of induction, we have

EMF o ig‘,l ML, (0,) cos( ot + ) e/ Tai 2.7.1)
where
Miy(O ,) = transverse magnetization just after the RF pulse from i-th environment
in the laboratory frame;
o, = angular frequency of the transverse magnetization from i-th
environment ;
G, = sum of the phase of the receiving coil with the initial wansverse

magnetization, &, and the phase problem due to factors like off-
resonance effect, @;;

T,; = decay constant of the transverse magnetization from i-th environment .

This decaying sinusoidal signal is commonly called the free induction decay (FID)

signal. It describes the decay of the induced signal arising from free precession of the

nuclei in the field BO.

Usually the NMR signai detected from the receiver coil is in the form of a very

small voltage, typically a few 10's of uV's for in-vitro samples or 10's of mV's for in-
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vivo samples. It is therefore essential to preamplify the signal before any further
processing. Figure 2.7.1.1 shows a simplified block diagram of the receiver chain of a

typical pulsed NMR spectrometer.

Since the frequencies in Equation (2.7.1) are typically on the order of tens of
megahertz and occupy a total spectral width of only a few kilohertz, it is difficult for the
computer to sample at such high frequencies. Moreover, the filter has difficulty
selecting a region occupying only a few kilohertz at a frequency of tens of megahertz.
Therefore, the approach taken is to subtract the frequency o /(2n) of the applied B,
field from the frequ::u<ies of the signals, thereby generating a group of frequencies in
the range zero to a few kilohertz. These frequencies, which are in the audio-frequency
range, can be handled by the computer and filtered adequately. The required frequency
translation is accomplished with the aid of a device called a phase-sensitive detector.
This device multiplies the incoming signal by a sine-wave of some arbitrary reference
frequency. In NMR the reference frequency is usually derived from the same RF
generator used to provide the excitation of the spin system. Assume that the incoming
signal to the phase-sensitive detector, neglecting the proportionality constant, is given

by Equation (2.7.1),

K /T,
s®) = 3 M) cos@p+g)et Tz, (2.7.2)
i1

then the output v,(t) from the detector is

vi(D) s(t) cos(w )

S M /T,
T M, (0,) cos(t +) cos(wt) e 2
i1
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T

Vi) = M, (0,) cos[(®; - 0t + )] et/ Ta

to} =
i

K . -
+ -12_%1 M;y(O,,_) cos[(@; + o)t +gle /T,

Thus, the output of the phase-sensitive detector consists of two types of sine wave, one

with angular frequency of (; - ®) and the other with angular frequency (®; + ®).

This output is then filtered by a low-pass filter of bandwidth 2W, resulting in the

passage of only those components having angular frequencies of (®, - ) to pass

through, i.e.,
1K /T,
vy() = -2—.21 M,,(©0) cos(Qt+¢g)e " 2, (2.7.3)
1=

where Q. = @ - Wy .

This output is converted to a digital signal by an analog-to-digita! converter, for which

the sampling rate is at least W/r.

If we have only one channel of signal available for Fourier transformation, all
signals will appear on one side of the reference frequency, regardless of the sign of
o, - ©4 To overcome this problem, we usually use two phase-sensitive detectors, as
illustrated in Figure 2.7.1, but the phase of the reference is shifted by 90° in one of the
detectors. The outputs from the two phase-sensitive detectors differ in phase by 90°.
This combination is called quadrature detection. The outputs from the quadrature
detector are both filtere-! and sampled before being fed into a2 computer. The result may

be represented by

va(t) = %ié Miy(O,._) cos(QLt + ¢) et/ Tai

K
*] %Ex M, (0, sin@t + gy et/ T
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- A, 2% el Ty +HEL (2.7.4)

i=1

Therefore, the outputs from the filters after the quadrature detector are effectively the
components of the transverse magnetization in the rotating frame, each of which are
basically a sum of exponentially decaying sinusoidal signals. After analog-to-digital

conversion, the recorded FID may then be represented by Equation (1.1.1).

2.8 Conventional signal processing in pulsed NMR spectroscopy

Following accumulation of the FID, the resuliing signal must be transformed in
order to produce a spectrum in which signal amplitude is plotted as a function of
frequency. This is usually done by Fourier transformation. In addition to this process, a
number of additional sieps are also required, and in this section we discuss briefly all

the important aspects of data processing.

2.8.1 Fourier transformation

In traditional pulsed NMR spectroscopy, the parameters that we want to
estimate, namely the number of exponentially decaying components, the amplitudes, the
phases, the damping rates and the frequencies of each component in the FID, are
usually estimated from the spectrum which is obtained bv discrete Fourier
transformation (DFT) of the sampled FID. Before we define the relationship of Fourier
transformation between the discrete-time signal s(nAt) and the discrete-frequency

function S(mF), let us define the following quantities :
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t = continuous-time variable;

At = time interval between successive samples v.aen a time function .

digitized, also called dwell time (At=1/f_);

t, = effective period of data collection, also called acquisition time ( t,=
1/F = NAt );

f = continuous-frequency variable;

F = frequency increment between successive components when a

frequency function is sampled (F=1/ L)

f. = sampling rate when a time function is sampled, i.e., the number of
samples per second ( f,=1/At = NF);

N = number of samples in the range 0 <t < t when the time function is

sampled. N is also equal to the number of samples in the range

0 < f < f, when the frequency function is sampled.

Some of the above quantities are illustrated in Figure 2.8.1.1. The discrete Fourier

transform pair of s(nAt) and S(mF) is defined as follows :

N-1 mn
S(mF) = At ¥ s(nAt) exp(-j2n _N_)
n=0
1 N1 .
swh) = g T S(mP) exp(j2n 1) - (2.8.1.1)

If the noise-free time-domain signal is described as in Equation (1.1.1),
s(nAt) = A el e2n(-a+jnat n=0,..,N1, (2.8.1.2)

where a is positive, then one can show that the first order approximation of its discrete
Fourier transform is equivalent to the continuous Fourier transform of the continuous-

time signal provided aNAt is much less than zero, and also that aliasing, leakage and
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picket-fence effects are negligible (one can find more about these effects from Stanley et

al., 1984, p.283). The first order approximation of the discrete Fourier transform of

Equation (2.8.1.2) is as follows :

jo
S(mF) = Ael o
21ta-j2n(f-m)
m , . . m
Aacow-A(f-—N-A—t)suw Aasm¢+A(f—N—A—t-)cos¢
= +j
202 + 2n(f- N—m&—t)z 2na? + 2 ( f- i)
(2.8.1.3)
s(nAt)
t, =1/F
1“—'— p —‘l
Ly
“HH“L
0 — f— N-1 Time integer n
A[= 1 /fs
S(mF)
l o —— fs =1/At———>l
A
“ bis d”] ,
0 - |— N-1 Frequency integer m

F=1/t,

Figure 2.8.1.1 Illustration of a Fourier transform pair
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The aliasing effect can be minimized by sampling the data at at least twice the frequency
of the signal; leakage and picket-fence effects can be minimized by increasing the

number of data points being sampled.

If the spectrum is phase corrected, the real part of it has the characteristic
Lorentzian lineshape of the form given by

g(mF) = Ao : (2.8.1.4)

2 m 2
2na +2n(f-NAt)

This is commonly termed the absorption mode, and it is usually this part of the

spectrum that is finally displayed.

2.8.2 Zero filling

Zero filling involves adding an array of zeros to the end of the FID. One reason
for doing this is that the typical fast Fourier transform algorithm requires the number of
data points be 2 to the power of some integer. So if the sampled FID does not meet this
criterion, then zero filling is needed. The second reason is that by padding zeros to the
end of the FID, the density of points in the transformed spectrum is increased. By
sufficient zero padding of the given N samples before the DFT, we can locate the
frequency of an isolated spectral peak as accurately as we wish. However, the spectral
resolution does not change because the spectral resolution that can be achieved by zero
padding is limited by the bandwidth of the rectangular window transform, which is

about 2r/(NAt), and the linewidth of the peaks.



2.8.3 Baseline correction

Sometimes an NMR spectrum exhibits a baseline distortion. One possible cause

of this probiem is that there are spike signals at the beginning of the FID.

Traditionally, there are at least two ways to handle this problem. Firstly, replace
the first few FID data points by zeros. An example of this is illustrated in Figure
2.8.3.1 where the first FID has strong spike signals at the beginning. This FID then has
subtracted from it a second signa] :-hict . uly the spike signal in the first part and

the rest of it is zeros. The resulting sigr2’ (< < wn in Figure 2.8.3.1(c). If we let the

first FID be s,(n) and the second s -». - - . iiy, then by the linearity property of the
DFT, the above operation is equivaleni to subtracting the DFT of s, (n) by the DFT of

So(n). Therefore, this is a reasonable operation provided the region of spike signals is

very short compared with the data acquistation period, i.e., just a few sampled points.
Practically, this solution leads to another problem, and that is, the difficulty in justifying
the region of spike signals. If one deletes too many data points, one destroys
information about the correct signals, especially for fast decaying signals. In addition,
after baseline correction, one usually needs to phase correct the spectrum. If it is not
possible to phase correct it, then one needs to go back and try another baseline

correction.

A second way of handling this baseline problem is by fitting arbitrary functions

to the spectrum in place of the spikey region around t = 0.
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(a) (b)

(c)

Figure 2.8.3.1 Illustration of one method of baseline correction

2.8.4 Phase correction

The aim of phase correction is to ensure that all the signals in the real part of the
transformed spectrum are in the absorption mode. Phase problems can be caused by

many things. For instance,

(i) finite delay between the end of the RF pulse and the start of data acquisition;

(i) finite RF pulse amplitude as mentioned in section 2.6.2;

(ili) phase difference between the RF field and the receiver, like the angle & defined
in Equation (2.6.4);

(iv) baseline correction, etc.

A typical way to alleviate this problem is to use a first order phase correction

giver. vy



o(f,.f) = Py + P (f-f) (2.8.4.1)

where fp is called the pivot point. One first selects the pivot point, then adjusts P, and
P, unul the final spectrum is phase corrected. If the spectrum cannot be phase corrected

with all possible combinations of P and P, then one needs to choose another pivot

point and go through the whole process again. Sometimes this can be an extremely
difficult process, especially if there is a baseline problem in the spectrum. This practice
assumes that the phase of the whole spectrum is linear with respect to a pivot point
frequency. If that is not the case, then people usually correct a smaller region of the

specttum and ignore the rest of it.

2.8.5 Apodization

In practical Fourier spectroscopy, the acquisition time L for the FID is always

limited and the signal s(t) may have a sharp cut-off at the end. The truncated signal can
be thought of as the product of the untruncated signal with a rectangular weighting
function. The corresponding Fourier spectrum is then obtained by convolution of the
undistorted spectrum with the Fourier transform of the rectangular weighting finction.
This Fourier transform of the rectangular weighting function produces oscillating signal
tails (ripples or sidelobes). The peak sidelobe of a rectangnlar window is about -13 dB
from the mainlobe level and the sidelobes thereafter fall off by only 6 dB/octave!. This
ceverely limits the ability of the DFT to resolve a weak signal in the proximity of a
stronger one. It is the purpose of apodization to modify the envelope of the truncated
signal by multiplication with a weighting function such that these sidelobes are largely

suppressed. Typical apodization (window) functions are :

! For window amplitude response function in dB scale, see Appendix 5.



1. rono-exponential window

[SS)

. cosine window
Hanning window
Hamming window

Blackman window

o N N

Kaiser window

The price we pay for the improvements of peak sidelobe and sidelobe rolloff rate is a
reduced spectral resolution because these windowitig function have a larger mainlobe
width. For example, the mainlobe width of the Hanning window is approximately twice
that of the rectangular window transform, but the peak sidelobe is approximately -31 dB
and the sidelobe rolloff rate is about 18 dB/octave for the Hanning window. The other
problem associated with apodization is that the information about the original signals
might be altered by the operation. One can find more about apodization functions in

Ernst et al. (1988, p.101-106) or Jackson (1989, p.145-152).

2.8.6 Resolution enhancement

Resclution enhanceirient attempts to achieve a transformation of the lineshape to
narrow the resonance lines artificially. In practice, resolution enhancement can only be
achieved at the cxpense of reducing the signal-to-noise ratio (SNR). This is because
resolution enhancement necessarily iniplies the enhancement of the latter part of the FID
signal, and as a result random noise contributions in the latter part of the signal may also
be enhanced. In order to obtain a compromise between resolution and sensitivity, some
people have designed resolution enhancement functions that decay towards zero at the

end of the FID. Some commonly used resolution enhancement methods are :
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1. muldplying the FID by a growing exponential ;
2. convolution difference ;

3. Lorentz-Gauss transformation ;

The ultimate resolution enhancement requires complete flattening of the FID by

multiplication with the inverse envelope of the FID, leading to a rectangular FID of

duration t The lineshape will now exhibit excessive ripple. The full width at half-

height of the mainlobe of the spectrum is

Al e

This is the minimum achievable width. Hence, we see that the achievable resolution

enhancement is restricted by the acquisition time to Notice again that resolution

enhancement methods often generate some distortion of the spectral lines, and gr=at care

must be taken when interpreting the resulting peak areas and linewidths.
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Chapter 3

Pseudo-inversion and singular value decomposition

3.1 Introduction

In section 1.4.1, we showed that the periodogram cannot be used to estimate
frequencies and damping rates of sinusoids that are not weil resolved or are not close
to non-decaying. Then, in section 1.4.2, we mentioned AR spectral estimation where
we focused our attention on Prony's method. We showed that Prony's method tried to

find least squares estimates of the g(k)'s by m'nimizing Equation ({.4.2.2.6) with

respect to the g(k)'s. Equation (1.4.2.2.6) is written here again:
E = o S lem P
VL n=M
| N M ) /
= NM n§M ly(n)+k§l gk) y(n-k) I°. (3.1.1)

But unfortunately, Prony's methcd attempted to minimize the 'false’ error equation
N-1

(3.1.1), 1ot the true least squares error Y, | y(n) - y{n) Iz, where y(n) is the estimated
n=0 :

signal at time n. So in general, it produces an inferior 'fit’ to the data. Kumaresan

(1982) tried tv increase the order of the AR model empioyed (i.<., he increased M in

Equation (3.1.1) to L where M < L £ N-M). This meant that he modified the error

equation to

1 N-1

v 2
E = NL néL le(n) |

1 N-1 L 2
= NI ):L t_v(n)+k2=‘,l g(k) y(n-k) I, (3.1.2)

n=

or equivalently solved
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y(L-1) y{L-2) o y(0) ] g(1) y(L)
y(L) y(L-1) s y( { g2 | _ | y@+D
L Ny o y(N-El-L) e yN-D)
Ag = -n, (3.1.3)
in a least squares sense for the g(k)'s, where k = 1, 2, . ., L. The hat " means that the

correspending variable is affected by noise or estimated under noise. For noiseless
quantities, the hat ~ is dropped. ¥ umaresan observed :* .. -: \~w SNRs, increasing the
AR model order may result in spurious peaks. He then :::2mpted to use only a subset
of the L exponentials that best explained the data. This resulted in principal component

estimation and noise subspace estimation mettic:ls.

Now, let us look at Equation (3.1.3) again (because this is what the linear
prediction singular value decomposition algorithm will use). One can show that
Equation (3.1.3) is equivalent to Equation (1.4.2.2.10) mathematically, but not
aecessarily .umerically. By that we mean that solving Equation (1.4.2.2.10) by
computer is usually numerically poorer than solving Equation (3.1.3) directly because

of the round-off errors introduced by multiplications in forming the elements of

Iéyy = AHA and i, = ABh in Equation (1.4.2.2.10), and also due to problems

associated with the property of the condition number of R vy and that of A (tcz(li yy) =

K%(A)). The condition number of a matrix A, KZ(A), is defined as

K (A) = 1A 1A%, (3.1.4)

which tells us how errors in the given system of equations may be magnified in the

least squares solution (Stewart, 1973, p. 221-230). llAll, is the 2-norm of A, and A*

is the pseudo-inverse of A. Therefore, if it is possible, one prefers solving Equation

(3.1.3) to Equation (1.4.2.2.10).



The least squares solution of g in Equation (3.1.3) is
g = -(APA)1AHL . (3.i.5)

Equation (3.1.5) assumes that A is full column rank so that the inverse of AHA exists.
Unfortunately, one can show that in the noiseless case A is not full column rank, but
of rank M only, so that the inverse of AHA does not exist! To offset this, we introduce

another concept, namely, the pseudo-inverse of a general matrix.

3.2 Pseudo-inversion and minimum 2-norm least squares solution

It is well known that if A is a square non-singular matrix, then there exists a
matrix G which is called the inverse of A and denoted by A}, such that AG= GA =
I, where I is the identity matrix. If A is singular or rectangular, no such matrix G
exists. Now, if Al exists, then the system of linear equations Ax = b has a unique
solution x = A''b. However, in many cases solutions of a system of linear equatioris
exist even when the irverse of the matrix defining ihese equations does not. For
example, if L = M and there is no noise in the linear system defined in Equation
(3.1.3), the matrix A'! does not exist because A is rectangular; but the solu*ion g
exists, as shown in Equation (1.4.2.2.2). In cases where there is no solution to a
system of lincar equations, we call these equations inconsistent (in other words, there
is no x such that the equality Ax =b holds). These problems, along with others in
numerical linear algebra, control, optimization, statistics, and other areas of analysis,

are readily handled via th: .oncept of a generalized inverse of a matrix.

In 1920, Moore (1920) extended the notion of the "inverse" of a matrix to

singular or rectangular matrices. His definition of the generalized inverse of an mx n
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matrix A, is equivalent to the existence of an n x m matrix, G such that

AG=P,, GA=P;,

where P, stands for the projection operator onto the range of A, i.e., the space
generated by the columns of A (denoted by R(A)). In 1955, Penrose (1955)
rediscovered Moore's general inverse, which he called the "generalized inverse".
Penrose's definition of the generalized inverse is as follows: for any matrix A, square

or rectangular, there exists a ynique matrix G satisfying the four conditions :

AGA=A (3.2.1)
GAG=G (3.2.2)
(AG)"=AG (3.2.3)
(GA)l=GA (3.2.4)

where "H" denotes complex conjugate transposition. These conditions are equivalent
to Moore's conditions. The unique matrix G that satisfies these relations is now

known as the "Moore-Penrose pseudo-inverse”, and is denoted by A*.1

The applications of pseudo-inverse matrices are diverse, e.g., least squares,

linear equations, projections, statistical regression analysis, filtering, linear

1 Some writers have adopted descriptive names to designate various ciasses of generalized inverses.
But there is a lack of consistency in the use of these terms by different writers. A G which satisfies
(3.2.1) is called a generalized inverse (Ra2o, 1965; Boullion and Odell, 1968), pseudo-inverse
(Sheffield, 1958), inverse (Bjerhammar, 1973), or g,-inverse {Pringle and Rayner, 1971). A G which
satisfies (3.2.1) and (3.2.2) is called a semi-inverse (Frame, 1964), reciprocal inverse (Bjerhammar,
1973), reflexive generalized inverse (Rohde, 1965; Boullion and Odell, 1968), or g,-inverse (Pringle
and Rayner, 1971). A G which satisfies (3.2.1-3.2.3) is cailed a normalized generalized inverse
(Rohde, 1965), left weak generalized inverse (Boullion and Odell, 1968), or g;-inverse (Pringle and
Rayner, 1971). A G which satisfies (3.2.1), (3.2.2) and (3.2.4) is called a right weak generalized
inverse (Boullion and Odell, 1968), or g*;-inverse (Pringle and Rayner, 1971). A G which satisfies
(3.2.1-3.2.4) is called the generai reciprocal (Moore, 1920), generalized inverse (Penrose),
pseudoinverse (Greville, 1959; Boullion and Odell, 1968), the Moore-Penrose inverse (Rao and Mitra,
1971), Moore-Penrose pseudoinverse (Albert, 1972), or the g-inverse (Pringle and Rayner, 1971). In
view of this diversity of terminology, the pseudo-inverse is used to represent a matrix that satisfies
(3.2.1-3.2.4) in the whole thesis.



programming, optimization, nonlinear analysis, control and system identification,
games theory, network and econometrics. A deeper understanding of these topics is
achieved when they are studied in the generalized inverse context ( Pringle and
Rayner,1971; Albert,1972; Klema and Laub, 19¢)). Handy bibliographies on
pseudo-inverse matrices can be found in Boullion an:i Odell (1968), and Nashed

(1976).

In this thesis, we will use pseudo-inverse matrices to obtain leas: squares
solutions. But before we proceed to do so, we state the following thei s, The

proofs of these theorems are given in Appendices 6 and 7.
Theorem 3.2.1 : The pseudo-inverse A* of an m x n complex matrix A is unique.

Theorem 3.2.2 : The matrix G = (AHA)*AH = AH(AAH)* is the pseudo-inverse
of A.

The uniqueness of the pseudo-inverse of a given matrix is important because if
there were many pseudo-inverses for one given matrix, pseudo-inverse rnatrices might
not be as useful. As a consequence of this uniqueness property, we need not worry
about getting many pseudo-inverses from a given matrix because there is only one that
exists and it always exists. Theorem 3.2.2 gives us two equalities for the pseudo-
inverse of A. Note that this definition applies to any kind of matrix: non-singular,
singular, rectangular, etc. Cne can usc either one of the equalities, whichever is more
convenient to the problem. For example, if the columns of A are linearly independent,
so that AHA is non-singular, then (AHA)* = (AHA)"1, and one would choose
(AHA)*AH as the pseudo-inverse of A. On the other hand, if the rows of A are
linearly independent, AAH is non-singular, then (AAH)* = (AAM)"!, and hence one

would choose AH(AAH)* as the pseudo-inverse of the matrix A.
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As mentioned above, the pseudo-inverse of a general matrix is very useful in
many disciplines. One particularly important application of the pseudo-inverse matrix
applicable to us is that it can be used to obrain a least squares solution of a system of
equations, and this least squares solution has one important property. Let us review
some properties of solutions of a system of equations, then we will show that

important property 2ssociated with the pseudo-inverse.

For a given m x n complex matrix A (denoted by A € C™X" ) and an m-
dimensional complex vector b (denoted by be C™), the linear system
Ax =D (3.2.5)
is consistent (i.e., the system has a solution of x) if and only if b is in the range of A
(this means that b is a linear combination of the vectors in A, and is denoted by b &
R(A)). Otherwise, the residual vector

r =b-Ax (3.2.6)

is nonzero for all x € CP. In this case it may be desired to find an approximate
solution of Equation (3.2.5), by which is meant a vector x making the residual vector
defined by Equation (3.2.6) "closest" to zero in some sense, in other words,
minimizing a norm of Equation (3.2.6). An approximation that is often used is the

least squares solution, defined as the vector x which minimizes the sum of the squares

of the moduli of the residuals r. For convenience, let us denote !l x Il, as the square

root of the sum of the squares of the moduli of the elements in x, i.e.,

n 12
Ixll, = lejﬂ = (xHx)” (3.2.7)
=1 )

where x is a complex n-vector (denoted by x € C"), and "H" denotes complex

conjugate transposition. Equation (3.2.7) is often called the 2-norm (or Euclidean
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norm) of vector X.

From now on, we will focus our attention on the case where the linear system
in Equation (3.2.5) is inconsistent, and we want to find a least squares solution of the

problem, i.e., we want to minimize the function

el = lo-AxIZ, (3.2.8)

with respect to x. The following theorem tells us the existence of least squares

solution and its uniqueness. Its proof can be found in Stewart (1973, p. 220).

Theorem 3.2.3 : The linear least squares problem of minimizing Equation (3.2.8)

with respect to x always has a solution which is given by

xo = A*b + (I-Ry)z, 3.2.9)

where R, = A*A is the projection onto the row space of A, and z is arbitrary.
A proj P ary

The solution is unique if and only if the nullity of A (denoted by null(A)) is equal

to zero (that means, rank(A) = number of columns in A).

Going back to our protlem, i.e., finding the least squares solution of Equation
(3.1.3), one can show that in the noiseless case and for M < L £ N-M , null(A) is
always greater than zero because A has L-M linearly dependent columns. Therefore,

from Theorem 3.2.3, the least squares solution of Equation (3.1.3) is not unique.

Of all the possible least squares solutions g's, one of them is extremely useful

in the development of the LPSVD algorithm. This is the one which has the minimum

sum ¢f zquares. We denote this particular solution as g g. In the following theorem,
we wiil show that §; ¢ = -A*h is either the unique vector (approximate solution or
exact solution) for which f A g +hIl, is minimized, or is the unique vector for

whichboth I Ag+hll, and Il gll, is minimized. The proof is given in Appendix 8.
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Theorem 3.2.4: Let Ae CMXM b e C™M and X = A*b.Theneach xe C",x

# X| g , satisfies one of the two conditions :
(@ INAx-bll, <lAx-bll, or

(b) NAxg-bl, =IlAx-bll, and Nx !, <lxl, .

Theorem 3.2.4 can be rcatated as follows: let Ae CM*Mand b e C™, then amongst
the least squares solutions of Ax =b, A*b is the one of minimum 2-norm.
Conversely, if Ge C"*M has the property that, for all b, G b is the minimum 2-
norm least squares solution of Ax = b, then G = A*. This is the property of pseudo-
inversion that will be used in the development of the LPSVD algorithm (see Theorem

4.2.1.3).

3.3 Singular value decomposition (SVD)

There are a few ways to calculate the pseudo-inverse of a general matrix.
Some of them are described in Albert (1972, chapter 5), Golub and Van Loan (1985,
chapter 6). Among all of these techniques, singular value decomposition is one of the
most powerful, especially in solving the rank deficient least squares problem!. The

existence of SVD of a matrix is established in the following theorem.

Theorem 3.3.1 : Singular value decomposition (SVD)
Let A be an m x n matrix of rank r and, without lost of generality, assume that m>n.

Then, there exists two unitary matrices U of order m and V of order n such that

! In fact, Golub and Van Loan (1985, p. 170) said that SVD is the only reliable way to treat rank
deficient least squares problem.
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zZ 0
UHAV = [ ] (3.3.1)
0 0

where Z_is an r x r diagonal matrix which contains the square root of the nonzero
eigenvalues 6,%'s of the matrix AAH arranged in the order of 6,22 6, 2 ... 2

2
o, .
Proof :

Since AAH is positive semi-definite, its eigenvalues are non-negative. Let them be
2 2 2 2 2 2 — 2 _ 2_
0,5 05" v, 0,5, where 6,°206,°2 ..... 26°>0= 0,,,°=0,,°= ...

.= cnz. Let U be a set of orthonormal eigenvectors of AAH corresponding to its

eigenvalues. Then we have

AARU =U

Let U= [U,U,],then
UHAARU, UMAAly, 32 ¢

UHAARU = =
UHAARY, UMAARU, 0 0

Consequently, we have

UHAARU, = 22 = Z'UHAAYU I = 1 (332

UHAAYU, = 0 = AHU, = 0.
Let V, =AY U Z'\. Then from Equation (3.32)V,HV, =1, that s, the

columns of V| are orthonormal. Let V, be chosen so that V= [V, V,] is unitary.

Then



7
[ UHAvV, UHav, ]

MHAV = J
UHAV, UHAV,

viaiu g (viEh'y,

o(v) 0(V,)
rzZ 0 ]
“lo ol

are called the singular values of A and the column vectors of U and V are,

ely, called the left singular vectors (the orthonormal eigenvectors of AAH)

:ht cingular vectors (the orthonormal eigenvectors of AHA) of A.

»¢ the relationship of the pseudo-inverse and SVD of a matrix, one can

..ai¢ Equation (3.3.1) into Theorem 3.2.2 as follows:

A* = AH(Aaan)y*

L 07 220 *

=V vi| vl ’ A
L 0 0 J 0 0
(%, 07 20

=V Wyl ° o
L 0 o0 0 0
[ 3! 0

=V Ut . (3.3.3)
L 0 0

An alternate proof of the relationship of pseudo-inverse and SVD can be found ir

Pringle and Rayner (1971, p. 4).



The SVD has very important applicaticns to the linear least squares problem.
This can be seen by substituting Equation (3.3.3) into Theorem 3.2.4. We have the
following theorem which tells us how to obtain the minimal 2-norm least squares

solution of Ax =b from SVD.

Theorem 3.3.2: If A* is the pseudo-inverse of A € C™*" having rank r 2

min(m,n), then the minimal 2-norm least squares solution of Ax ="V is

XLs = A+b = i

i=1

vi , (3.3.4)

G

and the minimum residual sum of squares is

max ( m,n )
3 = VAxs-biZ = Y (aHbf, (3.3.5)

i=r+l

where the u;'s and v;s are the column vectors of U and V, respectively.

Hence, by using the above theorem, the minimum 2-norm least squares solution of

Equation (3.1.3) is

M Hpl
- Atk = -Y “--lo——_h)vi , (3.3.6)
1

i=1

g5

where the u,'s and v;'s are the column vectors of Uand V, respectively, and

At =V Ut

and rank(A) = M < p = min(N-L,L). As mentioned before, this particular solution

will be used in the development of the LPSVD algorithm.

~J
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3.4 SVD and rank determination

The above introduction of pseudo-inversion is mainly based on finding the
inverse of a rank deficient matrix because rank({A) defined in Equation (3.1.3) is equal
to the number of exponential components in an FID (i.e., M). In theory, this presents
no problem. One applies the SVD on A e CN-LxL and observes that if rank(A) = M,
where 0 <M < p = min(N-L,L), then

2 2

= = = 52 =
= Opy2" = +v-eo= 5°=0.

OM+1 P

In practice, rounding errors and noise are present in the system. The given
noise corrupted matrix Ain Equation (3.1.3) is no longer defective in rank, but is
near a matrix of defective rank. Standard n:ethods of solving Equation (1.4.2.2.10)
may take this matrix and turn it into one that is clearly of full rank. This introduces
large errors in the least squares solution which may explain why Kumaresan (1982)
observed that at low SNRs, increasing the AR model order resulted in spurious
peaks. Also, recall from section 1.4.3 that from the theoretical autocorrelation point of
view, it makes sense to retain only the M principal eigenvector components in the
estimate of the autocorrelation matrix because the effect of noise is to introduce noise
eigenvectors with, hopefully, small eigenvalues into the signal autocorrelation matrix.
Therefore, it is necessary to obtain an estimate of the rank of matrix Ain Equation
(3.1.3). In fact, rounding errors and fuzzy data make rank determination a nontrival
exercise because they perturb the singular values. For example, suppose we have an
FiD composed of three components and sampled at 2500 Hz. The parameters of the

components are listed in the following tabulation :
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phase normalized  normalized

amplitude [rad/sec] damping rate  frequency!
250 0 0.003183 -0.3
200 0 0.012732 -0.28
200 0 0.013369 -0.25

The effect of noise on the singular values of A given by Equation (3.1.3) for the case
L =75 and N = 150 is demonstrated in the following table and Figure 3.4.2.
Representative spectra are shown in Figure 3.4.1. From Figure 3.4.2, one finds that

in the noiseless case, o5 is far greater than 6, 65 and so on, which indicates that the

rank of A is 3. This is exactly equal to the number of components in the FID as one

would predict. But as the noise level increases, 6; becomes less well separated from

the other smaller singular values. Increasing the noise variance further will eventually

make even 6, hard to distinguish from the rest of the smaller singular values.

singular time domain noise standard deviation oy,
values
0 15 30 45
S, 5888.60 5887.09 + 3.869 | 5892.94 + 7.719 | 5906.3 + 11.535
) 1238.06 1262.30 + 1.642 | 1334.16 + 3.240 | 1457.58 + 4.577
!

O3 473.54 521.18 £ 2215 | 778.44 £2959 | 1147.90 + 4.260
O4 0.00 381.38 + 1.456 | 714.96 + 2.093 | 1054.04 + 3.102
Os 0.00 349.28 + 1.067 | 674.45 + 1.801 | 996.57 + 2.639

Table 3.4.1 Demonstration of the effect of noise on the singular values of A given
by Equation (3.1.3).

1 The relationship of normalized frequency and frequency in units of ppm is shown in Appendix 3.
For example, if the spectrometer frequency is 100 MHz, then the frequencies of the three components
in units of ppm will be -7.5, -7.0 and -06.25. On the other hand, if the spectrometer frequency is
40.55 MHz, then the frequencies become -18.496, -17.263 and -15.413 ppm.
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on the singular values.

oo

S

Figure 3.4.1 The range of simulated spectra used to demonstrate the effect of noise
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singular values

index of singular value

Figure 3.4.2 Graphical presentation of the results in Table 3.4.1.
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To demonstrate the combined effects of near rank deficiency and noise on the
singular v~lues of A, consider the following example. Suppose now we have an FID
consisting of three components and again sampled at 2500 Hz. The parameters of the

components are listed as follows :

amplitude phase normalized  normalized
[rad/sec] damping rate  frequency

250 0 0.003183 -0.3
200 0 ce -0.28
200 0 0.013369 -0.25

where the 0@ was varied in thre¢ simulation studies as shown below :

simulation 0]
1 0.003183
2 0.009549
0.015915

We first observed the singular values of A given by Equation (3.1.3), where L was

set to 75 and N to 150 in the noiseless case. Then, sequences of Gaussian noise of
variance 26&, = 2(15)2 = 450 were added to the FIDs. Six hundred independent tries

were - -rformed in each simulation. Representative spectra are shc - ‘a Figure 3.4.3.
Table 3.4.2 and Figure 3.4.4 show the largest five singular values of A in each
simulation. From Figure 3.4.4, one makes the following observations. Firstly,
increasing damping rate of an exponentiai component in an FID can make the matrix

A in Equation (3.1.3) closer to rank deficiency. Secondly, the same sets of noise can
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affect the rank of a rank deficient matrix more seriously than that of a rank non-
deficient matrix. From both Figure 3.4.2 and Figure 2.4.4, one notices that the

principal singular values are not perturbed as seriously as the extraneous singular

values.
Ow | singular normalized damping rate ce
values
0.003183 0.009549 0.015915

o, 5810.39 5833.21 5928.88
C, 4208.98 1390.08 1213.20

0 ) 961.69 668.65 339.10
o, 0.01 0.00 0.00
o 0.01 0.00 0.00
0, 5810.48 + 3.522 5831.67 * 3.865 5927.40 + 3.873
c, 421495 + 3.654 1410.03 + 1.986 1238.51 + 1.678

15 Oy 991.58 * 2.171 703.18 + 2.309 422.24 £ 1.660
G, 382.69 + 1.499 382.27 + 1,497 37190 + 1.205
Cs 349.99 + 1.072 349.60 + 1.071 346.16 + 0.989

Table 3.4.2 Influence of near rank deficiency and noise on the singular values of

~

A,
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e =0.003183 ‘/ﬂ
L\_ Ml'{;- \
o2 =0.009549 L l

o2 =0.015915

jLW

Figure 3.4.3 The range of simulated spectra used to demonstrate the effect of near
rank deficiency and noise on the singular values : (left) noiseless spectra, (right) noise

corrupted spectra.



magnitude of singular values

0=0.003183

8= 0.009549

0=0.015915

index of singular values

Figure 3.4.4 Graphical presentation of the results in Table 3.4.2.

—0O— no noise; —&—— with noise of oy, = 15.
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From the above examples, one sees that the mere observaticn of s:mx't sinqular
valucs does not solve the ill-conditioned least squares problem becau.2 we must

decide upon a value for rank(A). One approach to this difficult problem is to have a

parameter § > 0 and a convention that A has “numerical rank” M if Gy satisfies

o, 2 265 >0 206y, 2 2 6,.
When this is the case, we can regard
M (~HD
~ /\+>’\ . —~
g, = -Aih = -} (—L——“A h)vi : (3.4.1)
i= Ci

as an approximation to g . Since Il gy Il = 1/G5, < 1/8, & may be chosen with the
intention of producing an approximate least squzres solution with suitably small

norm.

If &5 >> 0, then one may be comfortable with gy, because A can then be
unambiguously regarded as a rank M matrix. Yet (G4,... ,6p} might not clearly
split into subsets of large and small singular values, making the determination of M by
this mean somewhat arbitrary. So far not much has been done in analyzing this
difficult problem, but we will do some simulation studies on the problem where signal

singular values and noise singular values are indistinguishable later in chapter 5.



Chapter 4

Two algorithms

4.1 Introduction

In section 2.6, we demonstrated that theoretically, digitized FIDs may be
represented by multi-exponentially decaying sinusoids as in Equation (1.1.1). But in
section 1.4.1, we showed that the periodogram cannot be used to estimate frequencies
and damping rates of sinusoids that are net w=ii resolved or are not close to non-
decaying. Then, in section 1.4.2, we discussed AR spectral estimation, where we
focused our attention on Prony's method. But unfortunately, Prony's method results
in poor estimates for noisy data. Kumaresan and Tufts (1982) attempted to increase
the order of the AR model employed (i.e.. increased M in Equation (3.1.1) to L where
M < L. £ N-M) and applied singular value decomposition (SVD) to filter the data. This,

hopefully, will result in a promising method.

In the following section, we will briefly describe the Kumaresan-Tufts (KT)
method, also called the Tufts-Kumaresan (TK) or the linear prediction singular value
decomposition (LPSVD) method. Then, in section 4.2.1, we will show how the
LPSVD method behaves in the noiseless situation. In section 4.2.2, we will show how

it behaves in a noisy case. Ir section 4.3, we will give a proposed algorithm.

4.2 LPSVD method

Step 1 : Form the backward linear prediction data mamix A p and data vector ﬁB,

respectively, as follows :



te

l:
to
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{ y* (1) y*Q) A
*(2 * {(L+1
Ap = y ( ) y F3) y*{L+1) 42.1)
| YD) yR(NLeD) ey
By = [y*0), y*(1),. ..., y*NL-D 1T, (4.2.2)

where "*" denotes complex conjugation; "T" denotes transposition; and L

should satisfy M <L < N-M; and the y(i)'s are defined in Equation (1.1.1).
Form the coefficient vector gg of a polynomial of order L by

gg = -[Aglihy . (4.2.3)
where [.@B]rf4 is the "truncated rank ‘1" pseudo-inverse of A g Which is

defined with the use of SVD as in Equation (3.4.1):

A ot M ~ ~H 5
[AB]M = ig‘l -o_z—ivi u o, (4.2.4)
where Gy 2 6, 2 ... 2 Gy 2..... are the singular values of AB, and

the U;'s and ¥;'s are the corresponding left and right singular vectors,

respectively. The superscript "H" deno s complex conjugate transposition.

It is clear from section 3.4 that for the noiseless case, [Agl} = Aj.

Find the zeros of the polynomial equation

L
1+kz gac* =0 (4.2.5)

where g5  is the k-th element of gg- The M' (M' may be different from M if

SNR is low) zeros which are outside the unit circle are chosen as estimates

of the zeros z; = exp[2n(0e; + jf;)]. From these zeros one can find the



e;\p[Zn(-éei +j fi)]'s by reflecting them inside the unit circle. These zeros are

called signal zeros.

Step 4 : Find the solution a of

Za = §, (4.2.6)
- 1 1M
esl 652 eSM’
Z = : (4.2.7)
_esl(N-l) esz(N'l) CSM'(N'I)__
y = [y@. y), .....,y(N-DIT | (4.2.8)
B o= [Apeid Ayeids | Apedbin T, (4.2.9)

where §; =2n(-@i +]j fi). The solution vector a can be solved by 1uinimizing

any norm (1-norm, 2-norm, eo-norm, etc.) of the residual vector
r = y-Za. (4.2.10)

In chapter 5, the a's are estimated by minimizing the 2-norm of the residual

vector defined by Equation (4.2.10).

4.2.1 Noiseless case

Now, let us see how the LPSVD method behaves in the noiseless situation. We

hope that the method will give us the correct value of the parameters in this situation.

Before we say anything, one might notice that Equations (4.2.1) to (4.2.5)

were all written in backward linear prediction instead of the usual forward linear
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prediction as in Equation (3.1.3). We will justify the reason for using backward linear

prediction in this section. Suppose we write the forward linear prediction data matrix

Apand data vector h, respectively, as follows :

sL-1)  s(L-2) s(0)
L L-1 1
Ap = 0 st S(_) (4.2.1.1)
s(N-2)  s(N-3 . s(N-11)
hg = [sL), sL+1),....,sN-1)]T. (4.2.1.2)

Then, the second step of the LPSVD algorithm becomes forming the coefficient vector

gg of a polynomial of oraer L by

g = -[Adybg . (4.2.1.3)

Now, we will examine the properties of the M signal zeros for both forward
and backward linear prediction. Then, we will show the behavior of the L-M
extraneous zeros, from that we will see how backward linear prediction is suitable for
estimating the parameters for exponentially decaying sinusoidal signals. From the
above examination, we can also understand the choice of the AR mcdel order L (i.e.,
M <L < N-M) that was mentioned in chapter 3. This section is based mainly on the

paper of Kumaresan (1983) and all the theorems will be proved in Appendices 9to 11.

M
Theorem4.2,1.1 Let s(n)= 3 a, k" n=0,1,..,N-1, where a, and s, are
k=1

unknown complex numbers, s; # s, fori # k, and

— s(L)  s(L-1) .... s(0) ]
s(L+1) s(L) .... s(1)

Ap = ' ' ' = [Bp, Al . (4.2.1.4)

L §(N-1) s(N-2) ... s(N-L-1) =
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If the coefficient vector g'r = [ g¢ s 1> 8p2» - - -» 8p,L )T  satisfies the
homogeneous equation A'rgE =0, and if L satisfies the inequality M <L < N-M,

L
then Gg(z) = ¥ gg, z-K has M of its L zeros at esk, fork=1,2, ... M,
k=0

M
Theorem4.2.1.2: Let s(n)= Y, akeskn, n=0,1, .., N-1, where a, is the complex
k=1

amplitude with unknown magnitude A, and phase ¢, and s, /(2n) is the comple::
frequency with unknown normalized damping rate e, and normalized frequency f,.

s; # sy for i # k. M is the number of complex sinusoids. If a coefficient vector

g =[8&po 81 8p2 -+ BpLlT

satisfies the homogeneous equation A'g g'y =0, and if L satisfies the irequality M <

L
L <N-M, the polynomial Gg(2) = ¥ ggy 2’k has zeros at e'sk*, fork=1,2,..,
k=0 '

M, where
[~ s*(0) s*¥(1) ... s*¥L) ]
s*(1) s*(2) .... s*(L+1)
A = ' ' ' = [hg, Ag]l. (4.2.1.5)
. s*(N-L-1) s*(N-L) ... s*(N-1) -J

Basically, both Theorems 4.2.1.1 and 4.2.1.2 say that if M < L € N-M, we
can accurately obtain all the signal zeros back. For exponentially damped sinusoidal
signals Theorem 4.2.1.1 states that the signal zeros are within the unit circle if forward
linear prediction is used, while Theorem 4.2.1.2 states that the signal zeros are outside
the unit circle if backward linear prediction is used. Therefore, if one chooses to use
backward linear prediction estimation, the estimated signal zeros needed to be reflected

inside the unit circle in order to have the correct sign of the component's damping rate.
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What about th~ L-M extraneous zeros? We have the following condition which can

constrain the extraneous zeros to be inside th': unit circle.

L M L-M
Theorem 4.2.1.3: Let G(z) =1+ ¥ gzk B(z)= ¥ bzk C)= T ¢z and
k=1 k=0 k=0

G(z) =B(z)C(z). IfQ=1+ Igll2 + |g212 + ...+lng2 is minimal, and B(z) is given,
then the roots of C(z) must be inside the unit circle (see e.g., Lang and McClellan,

1979, Pakula and Kay, 1983; Stoica and Nehorai, 1987).

Notice that in Theorem 4.2.1.3, G(2) can be either forward linear prediction or

backward linear prediction. In other words, provided that M < L < N-M so that the

signal zeros are calculated accurately and if Q = 1 + Ig,2 + lg,12 + .. +Ig; 12 is
minimized, then the L-M extraneous roots must not be on nor outside the unit circle no
matter which direction of prediction is used.

The coefficient vector g's =( 1, 8g.1» 88,2: - - » 8B.L )T = (1, gg ) can be

found as follows. Since g'g satisfies the homogeneous equations A'gg'y =0 (or

A'sg'r=0)and ggo = 1, we can rewrite the homogeneous equations as follows:
Agg=-hg, (4.2.1.6)

because A'gis partitioned as in Theorem 4.2.1.2 (i.e., A'g=[hp, Ag]) . Hence,

from Equation (3.3.6), the unique minimum 2-norm solution of Equation (4.2.1.6) is
simply

M

gs = -Aghs = -2

i=1

uiH hB

i

vi L, (4.2.1.7)

where Agt is the pseudo-inverse of Ap, o;'s are the singular values of Ap, and the

u;'s and v;'s are the left and right singular vectors of Ap, respectively.
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In conclusion, if the LPSVD algorithm is used under the constraints developed
in Theorem 4.2.1.1 to Theorem 4.2.1.3, it will estimate the signal parameters

accurately in the noiseless situation.

An example to demonstrate the signal zeros and extraneous zeros obtained

from LPSVD algorithm under the correct constraints is as follows.
Example 4.2.1 : This example is used to demonstrate Theorems 4.2.1.1-4.2.1.3.

The simulated data are given by the formula

y) = a; e’ + a,eS2n, n=0,1,2,..... , 24
where

a; = = 250,

s, = -50At+j2r(-03),

s, = -50At+j2n(-0.275),

At = 4x10% sec.

Figure 4.2.1.1 shows the zeros of the polynomial G(z) calculated by the LPSVD
algorithm for L = 6 and L = 16, respectively. Figures 4.2.1.1(a) and (c) show the
result when the forward LPSVD method is used; figures 4.2.1.1(b) and (d) show
the result when the backward LPSVD method is used.



Forward LPSVD Packward LPSVD
L=6

-

(=)}

(a) ®)
Forward LPSVD Backward LPSVD
L=16 L=16
- ]
a
n
—1& —14 | —
B a
B ]
o

© (d)

Figure 4.2.1.1 Demonstration of the zeros of G(z) obtained from the LPSVD
algorithm : The zeros of G(z) are superposed with the unit circle. The "+" shows the
true locations of the two zeros. If "+"s are inside the unit circle they correspond to €51
and €52 and if they are outside they correspond to ¢S and 52",

(a) Forward LPSVD : L=6, M=2, N=25;
(b) Backward LPSVD : L=6, M=2, N=25;
(c) Forward LPSVD : L=16, M=2, N=25;

(d) Backward LPSVD : L=16, M=2, N=25 .
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4.2.2 Perturbation analysis

In this section, we present the first order perturbation analysis of the LPSVD

method used for estimating the normalized damping rates @@; and normalized
frequencies f; (or w; = 2rf;/At) under relatively small noise. At this moment,

perturbation analysis for estimating amplitudes and phases is still under research.

Since for exponentially decaying sinusoids, backward linear prediction
provides us a means to distinguish signal zeros from extraneous zeros in the noiseless
case, we will consider only backward linear prediction and the subscript "B" is
dropped for simplicity. We denote perturbations by preceding the corresponding noisy
quantity by A. It is assumed that the number of sinusoids M is known and s; # s, for
1 # k. The following theorem is important in our derivation. The proof is given in

Appendix 12.

Theorem 4.2.2.1 : Assume

~

A = A + 4A

Af, A* + 44}, (4.2.2.1)

where A € CIN-DIXL hag rank M. 4A is a small perturbation matrix. Ay, is the

"truncated rank M" pseudo-inverse of A. A* s the pseudo-inverse of A having rank
M. AA;'A is the corresponding perturbation matrix. Then, if 44 is small, we have

VE4AL Uy = -vh A*4A Atyg, (4.2.2.2)

where vg is any row vector in the row space of A; ug is any column vector in the

column space of A.
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Using this theorem, we can show that first order perturbations in the estimated

zeros, nommalized frequencies and normalized damping rates are

| DisA'E
Az = i TC (4.2.2.3)
b3 kg Rl
k=1
 H A |
1 P, 4A’'g
ofi = g™ T | (4.2.2.4)
ke
k=1 N
" H o, arr |
-1 P, aA'g
ACe; = m Re ‘—L'——_k' ) (4.2.2.5)
2 KB

where pl;l is the i-th row of the pseudo-inverse of Z; defined by Equation (4.2.2.11),

Im( ] is the imaginary part of the data in the bracket, Re[ ] is the real part of the data in

the bracket, g' =[ 1, gT }, and 4A"is matrix filled with noise components, i.e.,

4A' = [ah,4A]
— w*0) w¥*(1) .... w¥L) T
w*(1) w¥*(2) ... w¥(L+1)
= ' ' ' . (4.2.2.6)
. w*(N-L-1) W*(N-L) ... W*(N-1) —

where the w(k)'s are the noise sequences added in the noiseless FID signal as in

Equation (1.1.1).

To show Equation (4.2.2.3), first obtain the first order perturbation of the i-th

zero in Equation (4.2.5) (see Appendix 13) which is
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S k
AZ; L- s
3 kg z. k-1
k=1 k“i
z"ag
= k-1
> kg .z ™
K1 ki
where zh=[z1272 ...,z ],
Ag =[ 48, 88y, . .. . og 1T

Then, obtain the first order perturbation of g in Equation (4.2.3) (see Appendix 13)

which is

E-8 =

Now, let us decompose A into

A

where

Z, AZg

'j¢1

o
&S 1%

28,%-j
=51 19

- 4A} h- A*sh .

e %2
g
S2 1%

25,%-j
o252 1%

e(N‘L‘l)Sz*'j¢2

(4.2.2.9)

(4.2.2.10)

eI
Spa¥-i
M JoM

28y *-j
M JoMm

(NL-Dsy* oy _

-

(4.2.2.11)



la,!
Ia2|
A = ,
- -
s ¥ 25 % Ls,*
el el e !
So* 28, % Ls,*
el e 2 e 2
ZR =
Spe¥*  25pF LSy *
L eM M eTM

(4.2.2.12)

(4.2.2.13)

Since z;H is the i-th row of Zy defined by Equation (4.2.2.13), it is in the row space

of A, and h is a linear combination of columns of Z; so that it is in the column space

of A. Therefore,

zH ag

zH [ - 4A} h - A*ah ]

zH[ A*4AA*h- At ah]

-zH AYaA'g .

(4.2.2.14)

(4.2.2.15)

(4.2.2.16)

The right-hand side of Equation (4.2.2.14) is obtained from Zquation (4.2.2.9),

Equation (4.2.2.15) is obtained from Equation (4.2.2.2), and 4A’ is defined by

Equation (4.2.2.6).

From Equation (4.2.2.°9), we have

At

1}

ZR+ A'l ZL*

ZH (Zg ZpH y A (Z Mz ) Zi M

(4.2.2.17)

(4.2.2.18)
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Equation (4.2.2.18) is derived from Theorem 3.2.2 in which the properties of full
row rank of Zp and full column rank of Z; are used. Since the row rank of Zy is

equal to the rank of Zg,
ZpZgt = 1T,

where Iis an identity matrix. In other words,

zHZp* = [0,..,0,1,0,...... 0] . (4.2.2.19)

Let p;H be the i-th row of Z;*. Then, from Equation (4.2.2.17),
ZiH At = ZiH ZR+ A-l ZL+
- L H (4.2.2.20)
- Iall p‘ . Y2y

Combining Equations (4.2.2.20), (4.2.2.16) and (4.2.2.8). we can prove Equation
(4.2.2.3).

To show Equation (4.2.2.4), notice that

A

2n f,

1

Im [ In(%;) ]

Im[In(z +az ;-

Im| In(z) + 2 S | T |
1 1

Therefore, the first order perturbation of f, may be written as

u

L 1l 2% 42221
Afi:i—TEIm_Z_l—. (...)

Equation (4.2.2.5) can be shown similarly.
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We assume that the additive noise w(k) is zero mean white noise, with the real

and imaginary part uncorrelated, and has variance ow?2 for each part. In other words,

E{wk} = 0, (4.2.2.22)
E{ww®} = 0, (4.2.2.23)
E (w)w*()} = 20w?8, , (4.2.2.24)

where 8‘“ is the Kronecker delta function. Then, one can verify from Equation

(4.2.2.3) that the mean and variance of Az, are

E@z) = 0, (4.2.2.25)
H
20y,? Pi Rgpi
Var(az,) L s (4.2.2.26)
3 kgez !
where
L * .
. k_z, BBy (i) 0< i-j <L
(Rg);; = Rg)ij = Rp); =9 (4.2.2.27)

0 ;. otherwise.

The proof is given in Appendix 13.
From Equation (4.2.2.21), we can find the variance of Af, and ace, as

follows:

Var(af)

|

1)
a(—

¥

ys]
—N—
-
IR
N’
| I—— |
[3¥)
——
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|
o] —

L yar[25) (4.2.2.28)
w3 e )

The second equality is obtained by assuming (or approximating)
\Y {R i } \ {Im‘ i } L var[ 2 (4.2.2.29)
ar<{ Ref — = Var - = 5 Var|— |.  (4.2.2. 2
Similarly, we can show that

Var(ace) =

H
1y AN ow? P R;p;
an? a’( )' amrlal | L
kglkgkzi-

IQI —

- . (4.2.2.30)

A number of other properties can also be developed from the above

observations.

Property | : Var(az), var(Afi) and var(ace,) are invariant of Iajl for j =i, but

tional to L
proportional to 2

Property 2 : Var(az), var(af,) and var(ace,) are invariant to shifting all frequencies

by a constant value and/or changing all phases by another constant.

Property 1 can be shown easily using Equations (4.2.2.26), (4.2.2.28) and
(4.2.2.29). The proof of property 2 is given in Appendix 14.

In chapter 5, we will compare examples of var(af) and var(ace;) to their

corresponding Cramer-Rao (CR) lower bound.
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4.3 A proposed method

Although from Equation (4.2.2.25), first order perturbation analysis of the
LPSVD algorithm indicated that estimates of the parameters are unbiased, simulation
studies seem to show that the estimators are biased and their variances may depart

from the lowest variances given by the CR bounds.

Here, we propose to use estimates from the LPSVD algorithm as initial
guesses for any standard nonlinear iterative algorithm which minimizes the 2-norm of
the residual vector as given by Equation (1.4.1.4), or equivalently,

N-1 .
S = % ly(n)-yn)! (4.3.1)

n=0
with respect to A;, 0;, 0, and f; (o, = 2nf;/At), fori=1,2, ..., M, where

3’(]‘]) = khél Ak eiék ezn(-wk +jfk)n . (4.3.2)

Fopefully by doing this, we can improve the estimates.

As shown in section 1.4.1, if the M noiseless exponentially decaying
sinusoidal signals are embedded in a sequence of independent, zero mean, complex
valued, Gaussian random noise, then the maximum likelihood estimate of the
parameters A;, ¢;, 08, and f; (0; = 2nf;/At), fori =1, 2, ..., M, is equivalent to
solving Equation (4.3.1). Coarse searches that look for the minimum of the objective
function S evaluated for a range of values of A;, ¢;, 0, and f; can be used to obtain
the initial estimates. But such techniques are unsuitable for search in many

dimensions, and convergence to the global minimum is not guaranteed. Therefore, we
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propose to use estimates from the LPSVD algorithm as initial guesses for a

minimization method that minimizes Equation (4.3.1).

The minimization method used in this thesis is basically the Levenberg-
Marquardt method (Appendix 21, Press, et al., 1986, p.521-528). The only major
difference is that we modified the algorithm so that the updated parameters have the

following constraints :

® 2 0,
05 < f < 05,

fori=1,2,.., M.
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Chapter 5

Simulation results
5.1 Introduction

In this chapter, we provide a quantitative comparison cf the performance of the
following three algorithms: the discrete Fourier transform (DFT) method, the LPSVD
algorithm and the proposed algorithm discussed in section 4.3. By the DFT method,
we simply mean the discrete Fourier transformation of the time domain FID data. To
simplify ¢ mnparisons, we will not include any of the techniques such as zero-filling,
convolution difference, etc., that were mentioned in sections 2.8.2 to 2.8.6, with the
only exception being that in section 5.9 we will use the spline function for baseline
correction. To further simplify comparisons, we will study spectra that have no phase

problem, so that no phase correction will be required for the DFT method.

In order to provide a better understanding of the performance of the
algorithms, we have measured the bias (mean of the estimated value - correct input
value), the variance and the mean-squared error (MSE, which means, variance + the
square of the bias) of the parameter estimates. The variance and mean-squared error of
the estimates are compared to their Cramer-Rao (CR) bounds, if possible. The CR

bound specifies the lowest bound on the variance of unbiased parameter estimates.

This is because for an unbiased estimator A'(vg, Vi, ..., VN-1), Where the
dependence of the estimator on the observations vy, vy, . . ., VN.; has been explicitly
indicated,
o2, 2 — , {5.1.1)
[d In p(vIA)]z plviA) dv
dA

where o2 is the variance of the unbiased estimator A,
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v = (Vg Vi, - - -5 YNZT)s
av = dVOdVI...dVN_l,
p(vIA) is the probability density of obtaining the N data samples given that the

true parameter is A.

The right-hand side of Equation (5.1.1) is defined as the CR lowest bound. These
bounds serve as a goal for our estimation algorithms. Proof of the existence of CR
bounds can be found in Fante (1988, p. 398). Derivation of the CR bounds for the
parameters of M exponentially decaying signals in white Gaussian noise is given in

Appendix 15.

A summary of the parameters to be compared is given in Table 5.1.

DFT the the perturbation; CR
spectrum | LPSVD | proposed theory lower
method method bounds
ratio of areas from J
the real part of the v v
spectrum
amplitude N N N \
phase N N N N
damping rate N N J N \
frequency N N N N J

Table 5.1 Parameters that will be compared by different methods in this chapter

The ratio of the peak areas from the real part of the 'phase corrected’ spectrum is
included be ause some NMR spectroscopists are interested in this parameter when

comparison with a concentration standard is not possible.
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The perturbation theory values for the normalized frequencies of M
exponentially decaying sinusoids embedded in complex white Gaussian noise are
given by Equation (4.2.2.28), while their normalized damping rates are given by

Equation (4.2.2.30).

We have not yet derived the CR bounds for the ratio of the areas of the peaks
from the .. part of the spectrurn, so we can only use the CR lower bounds to
compare the variance and MSE of other parameters. The CR bounds for the
amplitudes, phases, normalized damping rates and normalized frequencies of M
exponentially decaying signals in white Gaussian noise are given in Equations

(A15.8), (A15.9), (A15.10) and (A15.11), respectively.

The relationship of the amplitude and phase of an exponentially decaying signal
in the time domain to the area under the real part of its spectrum is given in Appendix

17.

The relationship of the damping rate of an exponentially decaying signal to the
linewidth of the corresponding peak in the frequency domain for the real part of the
spectrum with no phase error is given in Appendix 18. The damping rate estimated

from the DFT metliod is obtained from the measured linewidth of the peak.

In section 5.2, we will study the effect of the tentative model order L and the
available number of data points N defined in Equation (4.2.1). In section 5.3, we will
study the effect of choosing a different cut-off number of singular values M defined in
Equation (4.2.3). Since L and M are not related to the DFT based algorithm, the

results in theze two sections will not be compared with DFT spectrum analysis.

Starting from section 5.4, where we will study the effect of noise, we will

compare the parameters as tabulated in Table 5.1. In section 5.5, the effect of peak
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frequency separation will be evaluated from well separated to partially overlapping
peaks. The effect of changing a peak's damping rate will be studied in section 5.6,
where we will see how the three algorithms perform under the problem produced by
overiapping Lorentzian peaks. In section 5.7, we will study the effect of changing one
peak's amplitude, while the effect of adding a well separated narrow peak to a
spectrum will be discussed in section 5.8. Finally, in section 5.9, we will study the

effect of variable baseline in the frequency domain.

For the following sections, there is always at least one peak in the spectrum to
be analyzed. The one located at normalized frequency! -0.3 is the reference peak
which will not be changed within an example. We numbered this peak as the first
peak. The other peaks in the spectrum are numbered in order of increasing

frequencies.

5.2 Number of tentative model order and data points for the LPSVD

method and the proposed method

In this section, we examine three examples to show the effect of changing the
tentative model order L defined in Equation (4.2.1) and the available number of data

points N on the performance of the LPSVD method and the proposed method.
Exam 2

We assume that there are two signals present (M = 2), sampled at At = 4*10-4 sec

(or 2500 Hz), the second at a normalized frequency of -0.275. The number of

1 The relationship between normalized frequency and frequency in units of ppm is shown in
Appendix 3. For example, if the spectrometer frequency is 100 MHz and the sampling rate is 2500
Hz, then the normalized frequency of -0.3 is equivalent to -7.5 ppm. On the other hand, if the
spectrometer frequency is 40.55 MHz, then the normalized frequency -0.3 is equal to -18.496 ppm.
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data points is N = 50. The n-rmalized frequency difference is £y - £ =-0.3 - (-
0.275) = -0.025. The normalized damping rates 08, and e, are 0.00318 for
both signals (which is equivalent to 0.00318/At =7.96 Hz or 50 rad/sec). The
amplitude and phase are, respectively, 250 and O for both signals (A; = A, = 250;

6, = ¢, = 0). Sequences of white complex Gaussian noise, with independent real

and imaginary parts, each having a variance of G%v = (12.5)2 = 156.25 are added

to the sum of the two signals.

To give a feeling of where the peaks are located in the spectrum, a

representative 1024 point DFT spectrum is shown in Figure 5.2.1.1.

N=1024
cw= 12.5
WMW | ot
G
f 0.5 : T 05

21

Figure 5.2.1.1 A representative 1024-point DFT spectrum for Examples 5.2.1 to

5.2.3 consisting of two time domain sinusoids of equal amplitude (250), equal
damping rate (0.00318) and of normalized frequency separation 0.025. oy is the

noise standard deviation in time demain defined in Equation (1.1.1).

Figures 5.2.1.2 - 5.2.1.6 show the results of the estimates of the performance
measures of the spectral parameters listed in Table 5.1. The straight lines are the
CR lower bounds. The "dotted" lines are computed from perturbation analysis.

The "squares” and "diamonds" are the results from the LPSVD method and the
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Figure 5.2.1.2 The area ratio of the two peaks from the real spectrum versus the
ratio of the tentative model order L to the number of data points N. N=50; At = 4 x
10 sec; Ay= Ay=250; ¢, =, =0; 0@, =@, = 0.00318; f; - [ =-0.3 - (-0.275) =
-0.025. Each point was obtained from over 400-run simulations. Bias and MSE are
defined in section 5.1.
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proposed method, respectively. Each estimate was computed from at least 400

independent runs, each with different sequences of noise.

As we can see, the proposed method performs better than the LPSVD method
for L > 0.16N = 8 in this example. If we define the optimal choice of L for each
parameter to be in the range where the parameter has the smallest MSE, then the

optimal ranges of L for each parameter obtained from the LPSVD algorithm are

shown in Table 5.2.1.1.

For the proposed method, the optimal range of L is extended from 0.16N to

0.96N.

optimal range of L MSE (xN)
area ratio 0.24 - 0.72
amplitude A, 0.44 - 0.80
phase ¢, 0.48 - 0.80
normalized damping rate ce, 0.40 - 0.80
normalized frequency f, 0.44 - 0.80

Table 5.2.1.1 Optimal range of the tentative model L for tt.e LPSVD algorithm

with N = 50.
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110
Example 5.2.2 :

This example is designed to test the performance of the LPSVD method and the
proposed method for a different number of data points while at the same time
allowing L to vary. The same assumptions as in Example 5.2.1 hold, except that

N = 100.

Figures 5.2.2.1 to 5.2.2.5 show the results of the estimates of the
performance measures of the spectral parameters. In order to facilitate comparison
with the last example, the results from the previous example are displayed with the
current results. The lighter "squares” and "diamonds” are the results from the

previous example for the LPSVD method and the proposed method, respectively.

Again, we see that the proposed method performed better than the LPSVD
method. If we define the optimal choice of L for each parameter to be in the range
where the parameter has the smallest MSE, then the optimal ranges of L for each

parameter obtained from the LPSVD algorithm are shown in Table 5.2.2.1.

optimal range of L MSE (xN)
area ratio 0.12- 092
amplitude A, 0.36 - 0.80
phase ¢, 0.36 - 0.68
normalized damping rate ce, 0.40 - 0.80
normalized frequency f, 0.36 - 0.76

Table 5.2.2.1 Optimal range of the tentative model L for the LPSVD algorithm
with N = 100.
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For the proposed method, the optimal range of L is extended from 0.12N to

0.98N.

Comparing the results for N = 50 and those for N = 100, we see clearly that
increasing the number of data points improves the performance of both the

LPSVD method and the proposed method.

From Figures 5.2.2.1 to 5.2.2.5, we notice that not only the ratio of the
tentative model order to the number of data points available affects the performance of
the LPSVD and the proposed algorithm, but also the available number of data points
itself. The following example is designed to observe the effect of the available number
of data points N on the performance of the two methods when the ratio of the .entative

model order L to the number of data points N is kept constant.
Example 5.2.3:

The same assumptions as in Example 5.2.1 hold, except that N is varied from 25
to 225, while the tentative model order L is kept equal to 0.52N in all cases, which
is a good choice from the last two examples. At least six hundred independent

runs were used for each value of N.

Figure 5.2.3.1 shows the statistical result of the first three singular values
from the LPSVD method for different number of points N. Figures 5.2.3.2 to
5.2.3.6 show the results of the performance measures of the spectral parameters.
Again, we see that the proposed method performs like the best unbiased estimator
whose performance is predicted by the CR lower bounds. As predicted by

perturbation theory in section 4.2.2 and the CR bounds in Appendix 15, the
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12.5.

performance of the LPSVD method and the proposed method improve as the
number of data points increases, and finally "levels off" at N = 200 data points.
The threshold value of N, below which both methods start to deteriorate
significantly, is about 50. This threshold value is especially pertinent for the

estimate of the ratio of areas of the real part of the spectrum.
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5.3 Indistinguishable signal and noise singular values

Recall that in section 4.2, the rank of Ag derined in Equation (4.2.1), where
the y(i)'s were replaced by the s(i)'s as defined in Equation (1.1.1), was equal to the
number of exponential components in an FID. But the presence of noise can perturb
the singular velues as demonstrated in section 3.4. Sometimes noise can be strong
enough to obscure the signal singular values. In this section, we will *xamine a case
where noise is strong enough to make one signal singular value indistinguishable from

noise singular values.

The signal we are creating is one of those studied in the second example of
section 3.4. The FID consisted of three components, sampled at 2500 Hz. The
amplitudes were 250, 200 and 200, respectively. The phase was O for all components.
The normalized damping rates were 0.00318, 0.0159 and 0.0134 (or equivalently,
50, 250 and 210 radian/second), respectively. The normalized frequencies were -0.3,
-0.28 and -0.25, respectively. One hundred and fifty points were used by both the
LPSVD and the proposed method. The tentative model order L was 75. Six hundred

independent sequences of white Gaussian noise, with independent real and imaginary

parts of variance 6,2 = (15)2 = 225, were added to the three noise-free signals.

Figure 5.3.1 shows a representative spectrum of the signal obtained from 512
points DFT. Figure 5.3.2 shows the statistical result of tie first eight singular values
from the LPSVD method. Here, we see that the third singular value is not drastically
different from the other smaller singular values. By looking only at the graph, one
might mistakenly think that there are only two components, because the largest two
singular values are well separated from the other singular values. Let us see what will
result from the LPSVD method if we select the cut-off number of singular values M

defined in Equation (4.2.3) as 2, 3 and 4.
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normalized frequencies -0.3, -0.28 and -0.25, respectively. Time domain noise
standard deviation oy is 15.
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In Figure 5.3.3, we show the probability of finding a different number of peaks in the
noise corrupted FID signals versus the cut-off number of singular values of the
LPSVD method. If we select two principal singular values, the LPSVD method
detects only two peaks almost 100% of the time. They are the twc Il cated at
normalized frequencies of -0.3 and -0.25. Selecting a cut-off of three singular values,
we detect two components 20% of the time, three components 73% of the time, and
7% of the time more than three components. Choosing four cut-off singular values,
we have a 7% chance of finding only two components, a 54% chance of three
components, and a 39% chance of more than three components. Increasing the cut-off
number of singular values results in a greater chance of detecting extraneous peaks,
and this is consistent with Kumaresan and Tufts' observation (1982). On balance, it
might be better to select the cut-off number of singular values, M, at least one more
than the expected number of peaks, so that the chance of picking less than the
expected number of peaks is small. However, we might pay the price of finding

spurious peaks.

Figures 5.3.4 to 5.3.17 show the statistical results for the performance
measures of the spectral parameter estimates from the LSVD method and the proposed
method for M equal to three and four. Here, we see that incrcasing the cut-off number
of singular values generally decreases the biases and variances of the estimates.
Unfortunately, the estimates from both methods are still far away from the theoretical

lowest CR bounds.
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Figure 5.3.3 Percentage probability of finding different number of peaks versus the
cut-off number of singular values of the LPSVD method for the example in section
5.3. For other informatinn, see Figure 5.3.2.
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5.4 Effect of noise (i.e., spectral sensitivity)

In this section, we will examine the effect of noise on the three methods: the
LPSVD method, the proposed methcd and the DFT method. Recall that the noise we

will consider is zero mean complex white Gaussian noise with uncorrelated real and

imaginary parts each having a variance of 6, 2.

If we define the signal-to-noise ratio of the i-th component in the time domain

(SNR)), to be the ratio of the average power of the noise-free signal to the average

power of the noise, then one can show that for exponentially decaying signals as

defined in Equation (1.1.1), we have

2
(SNR), = LA

2N 2na; At 262 G.4.1)

where A, is the amplitude of the i-th exponentially decaying component in the signal

defined in Equation (1.1.1), ¢ is the corresponding damping factor in frequency unit,

N is the total number of time domain data points; At is the sampling interval in time

domain, and 20,2 is the time domain variance of the white complex Gaussian noise.

The derivation of Equation (5.4.1) is given in Appendix 19.

Since NMR spectroscopists are more familiar with a SNR defined in the

frequency domain, we have derived, in Appendix 20, the statistical relationship

between white complex Gaussian noise of zero mean and with variance 26,2 in the

time domain, and the corresponding Gaussian noise in the frequency domain. It turns

out that the relationship is as follows:
(6. = Ato, VN, (5.4.2)

where (0,,)¢ is the noise standard deviation in the frequency domain.
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The SNR of the i-th peak in the frequency domain (denoted by (SNR))4; is
usually defined as

i-th peak-height

(SNRy; = 1.96* (RMS noise 1n frequency domain) °

(5.4.3)

where the RMS (root-niean-square) value of the noise defined as

N-1 N-1 2
= 1 L ,
RMS = ,\/ o > twf(n) ~ > wf(m)] (5.4.4)

n=0 m=20

is an unbiased estimate of the noise standard deviation in the frequency domain. w{(n)

is the noise value in the frequency domain. The factor 1.96 in Equation (5.4.3) is the
ratio between the peak value (not peak-to-peak) to the RMS value of the Gaussian

noise, for a confidence level of 95% (Barford, 1985, p. 148).

The relationship of Lorentzian peak-height and the corresponding time domain
parameters, given in Equation (A18.7), is

A
2noy

i-th peak-height = (5.4.5)
Therefore, the relationship between the SNR of the i-th Lorentzian peak in the
frequency domain in white complex Gaussian noise and the corresponding time
domain parameters is

Aj 1
2rno; 1.96 (o)

(SNRi)¢ (5.4.6)

! Aj
1.96 YN 2no; At Cw

(5.4.7)

Equation (5.4.6) is obtained from Equation (5.4.3) using Equation (5.4.5). Equation
(5.4.7) is obtained by substituting Equation (5.4.2) into Equation (5.4.6).

Now we will present an example to see the effect of noise.
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Example 5.4

In this example we will use the same signal parameters as in Example 5.2.1 except
that N =150 and L = 60 for the LPSVD method and for the proposed method. For
the DFT method, we use three different values of N. They are 128, the multiple
power of 2 that is nearest to 150; 512 and 1024 which are often acquired in NMR
FID. Different amounts of complex white Gaussian noises ranging from 6,, = 2.5
1o 125 are added to the noise-free signals, and over six hundred independent runs
are used for each choice of o,,. Since At = 4 x 104 sec, this range of noise is
equivalent from 833.33 to 0.33 for (SNR), with N = 150. In the frequency

domain with N = 128, 512 and 1024, this range of noise gives us signal-to-noise

ratios (SNR); from 225.48 to 4.51, 112.74 to 2.25, and 79.72 to 1.59,

respectively.

Figure 5.4.1.1 shows some representative spectra obtained using DFT, where
the different SNRs arise from the different values of ¢,,. Figure 5.4.1.2 shows the
statistical result of the first five singular values at different SNRs. As we see, for
this particular signal embedded in this range of noise, no ambiguity arises in the
correct number of components. Figure 5.4.1.3 shows us how noise perturbs the
singular values. Basically, all singular values are affected, but the noise related

singular values vary linearly with the time dornain noise standard deviation o,

and each noise singular value has a different rate of change of magnitude.

Figures 5.4.1.4 to 5.4.1.12 show the results of the performance measures of
the estimates of spectral parameters from different methods. From these figures,
we see that the variance estimates obtained from both the LPSVD and the
proposed method vary linearly with noise variance. The MSE estimates obtained

from the DFT method seem to vary linearly with noise variance at low SNRs, but



(SNR); for L
512-points DFT 512 points
spectrum

100 2.819

75 3.758

50 5.637

25 11,274

l
2.5 112.74 - f e —J L—{

0.5 -0.5
Figure 5.4.1.1 Some representative DFT spectra for Example 5.4.1, consisting of

two equal amplitude (250), =qual normalized damping rate (0.00318) sinusoids of

normalized frequency separation 0.025 at different SNRs. N is the number of data
points; oy is the noise standard deviation in the time domain defined in Equation

(1.1.1); (SNR), is the time domain SNR defined in Equation (5.4.1); (SNR)¢is the
frequency dormain SNR defined in Equation (5.4.7).
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Figure 5.4.1.2 Statistical result of the first five singular values of the LPSVD
method for the noise corrupted signals described in Example 5.4.1. ¢, is the time

domain noise standard deviation ; A, (= 250) is the time domain amplitude of the 2-nd
component of the noise-free signal. Number of data points used was 150. Tentative
model order L was 60. For other information, see Figure 5.4.1.1.
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Figure 5.4.1.5 Time domain amplitude of the I-st peak versus A,y/c,, where A; =
250. For other information, see Figure 5.4.1.4.
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Figure 5.4.1.7 Phase of the 1-st peak versus Ayc,, where Az = 250. For other

information, see Figure 5.4.1.4.
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Figure 5.4.1.10 Normalized damping rate of the 2-nd peak versus Ay/c,, where
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eventually become noise invariant at high SNRs. The LPSVD method of 150
points, the proposed method of 150 points, and the DFT method of 512 points
and 1024 points, seem to give very similar results in the estimate of the ratio of

peak areas. But, the DFT method with only 128 points behaved poorly.

5.5 Effect of peak separation (i.e., spectral resolution)

In this section, we will evaluate the effect of moving the location of one peak

relative to a standard peak.

Example 5.5.1:

Here we have two signals. The time domain amplitudes A;, phase ¢;, normalized

damping rate 02, and normalized frequencies f; of the signals are tabulated as

follows:
i A d; e, b
] 250 0 0.003183 -0.3
2 200 0 0.003183 fa

where f, varies from -0.2 to -0.296. The sampling interval is kept at 4 X 104 sec
and the location of the second peak is movable from the normalized frequency -0.2
to -0.296. In other words, the normalized frequency separation between the two
peaks is changing from 0.1 to 0.004. Again over six hundred independent
sequences of complex white Gaussian noise, each having independent real and
imaginary parts of variance 0,2 = (15)2 = 225, were added to the noise-free
signals. The number of points used by the LPSVD method and the proposed
method is 150, and the tentative model order for the LPSVD method is 75.



Figure 5.5.1.1 shows some representative spectra at different normalized
frequency separations transformed by DFT from 1024 data points. Figure 5.5.1.2
shows the statistical results of the magnitude of the first five singular values from
the LPSVD method. Figure 5.5.1.3 shows the magnitude of the first three
singular values versus normalized frequency separation Af. Here, we see that
moving a peak's location changes both signal singular values nonlinearly. The
noise singular values stay constant over the range of frequency separation studied

in this example.

Figures 5.5.1.4 t0 5.5.1.12 show the statistical results on the performance
measures of the three methods for calculating the spectral parameters. For 128 data
points, the DFT method cannot resolve the two peaks separated by less than the
normalized frequency 0.01, while for 512 and 1024 data points, it cannot resolve
the peaks separated by less than the normalized frequency 0.006. Thus, some
point estimates from the DFT method are omitted in Figures 5.5.1.4, 5.5.1.6,
5.5.1.10 and 5.5.1.12. Recall from Appendix 3 that if the sampling frequency
SW is 1000 Hz and the spectrometer frequency is 100 MHz (typical settings for
'H spectroscopy), then normalized frequency separations of 0.01 and 0.006 are
equivalent to 0.1 ppm and 0.06 ppm, respectively. On the other hand, if the
sampling frequency is 2500 Hz and the spectrometer frequency is 40.55 MHz
(typical settings for 3!P spectioscopy), then normalized frequency separations of

0.01 and 0.006 are equivalent to 0.62 ppm and 0.37 ppm, respectively.

As shown in Figures 5.5.1.4 10 5.5.1.12, both the LPSVD method and the
proposed method tecome unstable (i.e., some estimates have large increases in
biases and variances) when Af is less than 0.004 (which is equivalent to 0.04

ppm and 0.25 ppm, respectively, for the above settings in 'H and 3P



normalized
‘requency
separation,

Af

(.005

0.010

0.025

0.050

‘H@2T p@21
SW=1000Hz) SW=2500Hz)
[ppm] {ppm]
0.05 0.31 | &
0.1 0.62 k\’
.
0.25 1.54 U\L"‘
0.5 3.08
-7
-0.125 feAf > -0.375

Figure 5.5.1.1 Some representative 1024 data points DFT spectra at different
normalized frequency separations, transformed from two sinusoids of time domain
amplitudes 250 and 200, equal normalized damping rate (0.00318). The noise
standard deviation in the time domain, as defined in Equation (1.1.1), is 15.
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Figure 5.5.1.2 Statistical result of the first five singular values of the LPSVD
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of data points used is 156. The tentative model order L is 75. For other information,
sec Figure 5.5.1.1.

3P @ 2T (SF = 40.55MHz, SW = 2500Hz) ppm
1 19
aal

eddedl, P S S R WA T A Aedd Sk

» 10000 o : e
Q r L

© ] [

> o S

.

8 ' -

5 -~ G4
o

£ -*+- 0
7] 1000 - L

“6 E : —'-0-«.- 03
@ ] s

© ﬁ 3

o ] !

-~

<

g ! |

g

100 et
001 .01 1 1 If

f T LA Bt o a0 § ¥ VYT L Y LEme e an e an s |

.01 .1 1 10
'H@ 2T (SF =100MHz, SW = 1000Hz) ppm

Figure 5.5.1.3 Magnitude of the first three singular values of the LPSVD method
versus normalized frequency separation between two peaks Af. For other
information, see Figure 5.5.1.2.



DFT resolution for 512 and 1024 points
. « DFT resolution for 128 points
" sl i

159

12 — l:. L‘f I WA G S U -
= 10 A i
[qs] i H . -
(o8} 1 H H i
G 0.8 4 B
° 2 0.6 - P _
I M = ) ’
m S 1 .
LN 04 Pl _
a73] g o . + 5
§  02- b, i + -
E’ p ! 0 - ~ o -
o (1] R 'w@ 3 @ ................ »
-0.2 - et —r S
1.OOl 01 1 1
]O g addal i L ol " .E
S 109 .
R E
g 1074 F
c = E 3
m N Rl b
5 c 107 5 3
> £ _ ORRCING, ‘
b3 1073 4 @ 3
i : * " ;
3 F
10 S ——
.001 01 1 1
10! sl - ol Lo
T 109 ] ++
s E
8 %
= +
E/JW -y 2 *u
=g 071 O/
S © 0 ©
5 1673 9 L
& 3 ¥ o F
4 1
10 -y v fTrY—' v R LS v 'f"l . ﬁ(ﬁ“l
.001 .01 . 1
Af

a LPSVD of 150 pt
+ DFT of 128 ot

¢ proposed method of 150 pt
DFT of 512 pt

O DFTof 1024 pt

Figure 5.5.1.4 The area ratio of the two peaks from the real spectrum versus Af,
where Af is the normalized frequency separation between the two peaks. A; = 250,
A, =200; ¢; =¢,=0; 08, =08, = 0.00318. The tentative model order for the

LPSVD method is 75. All estimates are obtained from over 60(-run simulations.



160

100 1 A P
_ 50 4 ) [
(< : s
6 : ‘ﬂ ()
Od oo X R G R - P |
wa) 4 *
-50 4 - [
-100 3 SRR - .
.001 1 1
104 3 — !
< ; [
© 107 5 3
* 3
3 3
Q s
R 5 i
g 1074 3
> E 3
10! .
.00: 1
104 N n dd 3
< 10%, 3
= 3
w s
w 2 i
2 10° < -
] -
101 v i AL
001 01 1 1
Af
@ LPSVDof150pt 4 proposed method of 150 pt —— CR lower bound
DFT of 128 pt + DFT of 512 pt & DFT ot 1024 nt

Figure 5.5.1.5 Time domain amplitude of the 1-st peak versus normalized
frequency separation between the two peaks, Af. For other information, see Figure
5.5.1.4.



161

IOO 1 a2 1221 A IS | Y PR W T AJ.
N i A
50 4 a -
N E
< ] O ¥ * L
S 0o - .
@ o 3 & @ @ [ E
® 0 :
100 4 - e, - [
.001 .01 1 1
104- aaal I 1 aal
N ] F
e L
S 103 .
Q 3 3
2 ;
O ]
— 2
] 10
- o
16! ———rrrrr S
001 .01 B! 1
104 T ST | T
E 3
N 3 T s
X~ 10 ? E
5 E
% j [
= 1074 !
101 v T T
001 01 1 1

Af

o LPSVDof150pt e proposed method of 150 pt —~ CR lower bound
+ DFT of 128 pt + DFT of 512 pt ¢ DFT of 1024 pt

Figure 5.5.1.6 Time domain amplitude of the 2-nd peak versus normalized
freguency separation betwezn the two peaks, Af. For other information, see Figure
5.5.1.4.



162

0_5 X r a3l " Acdddaal L N SN
_. 044 §
ko) L o] 3
g 034 !
< 0a] : :
o 1 L
FESE g .
M A & i
O4...cvvvinn e oA . AREEE 3 Wi 5
0.1 N —
001 01 1 1
100 2 to a1 a1 a3l i AT N | i A S W
— E
N 1 -
I 1] :
2=, 10° 3 E
— 3 J
> : :
o 10 21 E
D 3 E
8 ] s
S 07
8 ; ]
> ] ;
107 N
001 1
109 s NS
o -
g 10 3
- 2 [
< 102
S 3
4 o] |
1077 o
= : 1
4] s
10 SE— :
001 01 1 1

Af

o LPSVDof150pt e proposed methodof 150 pt — CR lower bound

Figure 5.5.1.7 Phase of the 1-st peak versus normalized frequency separation
between the two peaks, Af. For other information, see Figure 5.5.1.4.



01 T S T | PO S T Y 41 2 21432
04 . vvvennnn nﬁun ..... G....a.. F TR =
o) “ x b
S 014 ) N
02 - .
e ] ) !
n -0.3 4 =
o ] X
B 04 - R
i g :
0.5 e —
.001 .01 4 1
100 - L a2l I S W U S e el 14:.1-
— 3 E
N 3 3
g 1 [
= 1075 3
& = 3
S 1077, s
ol 3 3
g ] F
8 1073 1
© 3 ]
> ‘ i :
o —
0.001 .01 1 1
10 4 I s a2 22131 1 i 1t 233l i a1 1233t
< ) ]
o -1
] 10 E
=, 3
N -
S 107,
o 3
%) 3 3
s 10 -g
1074 S — . .
.001 .01 B I

Af

@ LPSVDof150pt e Hroposed method of 150 pt

— CR lower bound

Figure 5.5.1.8 Phase of the 2-nd peak versus normalized frequency separation
between the two peaks, Af. For other information, see Figure 5.5.1.4.

163



164

0005 AR | - g aasl 1 .Y JEY
e - L L o
0.004 4 L
_ 0.003 4 !
8 -
8 0,002
o E C
8 0.001 ] GEJ . . . -
& olo--- @@ @ oo !
-0.001 4 _
d L]
0.002 T v r———r -
001 01 1
10 4 ‘l 1 L aaal Lk raal A PV Y A l

,_.
O
<n
Ty

c8‘w 4
S 10 s
@ E
7 i
g b 3
q 1
> 10 "
1094 i
.001 1
10'4 v f n 4 heodo LA 12
E
1075 ] [
B 6] i
5 ] ]
wl 7 F
1078 ] :
3 4
10-9 ] RAAS T v !
001 01 1 1
Af
@ LPSVDof150pt e proposed method of 150 pt —— CR lower bound
+ DFT of 128 pt % DFT of 512 pt O LrTof 1024 pt
--- perturbation theory

Figure 5.5.1.9 Normalized damping rate of the 1-st peak versus normalized
frequency separation between the two peaks, A4 f. For other information, see Figure
5.5.1.4.



165

Bias of e,

Variance of &,

T T I T TmT

LER L e

10'4 A S I TS | b 202 L 2 I I N

Ay,
Ty Ty

|

MSE of &,
3

TY Ty YITVeT Y Iy

S
—
[
L
Yt
[l

Af

@ LPSVDof150pt e proposed method of 150 pt — CR lower bound
+ DFTof 128 pt + DFT of 512 pt O DFT of 1024 pt
--= perturbation theory
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spectroscopy). The results from the proposed method agree very well with the CR
lower bounds. In addition, frequency and damping rate estimates from the LPSVD
method are close to the results obtained from perturbation analysis in section
4.2.2. As expected, the LPSVD method and the proposed method produced very
similar results for the estimates of the first peak and that of the second peak. The
biases of the parameters from the LPSVD method deteriorate as the two peaks get

closer to one another.

In this example, we see that in general both the LSPVD method and the
proposed method with only 150 points out perform the DFT method with 512
points and 1024 points, and both former methods have higher resolving power.

The DFT method of 1024 data points behaves similar to that of 512 data points.

5.6 Effect of changing a peak's damping rate (i.e., T, dependence)

In this section, we want to see how a peak's dumping rate (or linewidth)

affects the LPSVD method, the proposed method and the DFT method.
mpl

To demonstrate further the resolving power of the LPSVD method and the
proposed method, we will create two closely spaced exponentially decaying

sinusoids and allow the damping rate of one to change. The time domain

amplitudes A,, phase ¢;, normalized damping rate 08; and normalized frequencies

f; of the two signals are as follows:



169

i A ¢, o5 fi
1 250 0 0.003183 -0.3
2 200 0 e, -0.29

where 8, varies from 0.003183 to 0.015. The sampling interval At is still
4 x 10 sec. The number of points used by the LPSVD method and the proposed
method is still 150, and the tentative modei order for the LPSVD method is 75.

The input complex Gaussian noise standard deviation is 15.

Figure 5.6.1.1 shows some representative spectra at different normalized
damping rates evaluated with the DFT for 512 and 1074 data points. The DFT of
128 data points cannot resolve the two peaks. But for 512 and 1024 points, the

‘wo peaks can barely be seen from the spectrum when ce, increases beyond about

0.0064.

Figure 5.6.1.2 shows the statistical result of the magnitude of the first five
singular values. Figure 5.6.1.3 shows the magnitude of the first three singular

values versus input G2,. From this graph, we see that the noise singular values

stay constant over the range of damping rates studied in this example. But, the

second singular value o, varies significantly with input 0e,.

Figures 5.6.1.4 to 5.6.1.12 show the statistical results of the estimates from
the three methods. As mentioned above, the DFT method with 128 points cannot
resolve the two peaks, so all figures related to the second peak do not have results

from the 128-point DFT method. For 512 and 1024 points, the DFT method
cannot resolve tie peaks as 08, increases beyond 0.0064. But the L.PSVD methed
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Figure 5.6.1.1 Some representative DFT spectra acquired using different
normalized damping rates for the 2-nd peak, transformed from 512 and 1024-point

FID data which is composed of two decaying sinusoids plus Gaussian noise. The
time domain parameters are : amplitudes A; = 250, A, = 200; normalized damping
rate 08, = 0.00318; normalized frequencies f, = -0.3, f, = -0.29; noise standard

deviation 15.



magnitude of singular values

Figure 5.6.1.2 Stadstical result of the first five singular values of the LPSVD
method. 8, is the normalized damping rate of the 2-nd peak. The number of data

points used is 150. The tentative model order L is 75. For other information, see

Figure 5.6.1.1.
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and the proposed method with 150 points can still resolve the peaks for ce,

increases to 0.016.

Except for the normalized damping rate and frequency of the second peak, the
variance estimates of the other parameters from the LPSVD method and the

proposed method seem to increase and then gradually decrease again as the input

damping rate of the second peak increases. For normalized damping rate 08, and
normalized frequency f,, the variances continue to increase as the linewidth (or

damping rate) of the second peak increases.

5.7 Effect of changing a peak's amplitude

In this section, we will present an example that evaluates how changes in a
component's amplitude affect the performance of the LPSVD method, the nroposed
method and the DFT method. As before, we will simulate noise corrupted FID data
with twy exponentially decaying components. All parameters are kept constant, except
for the amplitude of the second component. From property 1 of the first order
perturbation analysis of the LPSVD method in section 4.2.2, we expect that the
variance of damping rate and frequency estimates of the first peak are not affected by
changing the amplitude of the second peak. But the corresponding variance estimates
of the second peak will be inversely proportional to the magnitude square of the
amplitude of the second peak. Now, we will see if simulation results are consistent

with perturbation analysis.
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Example 5.7.1 :

As before, we have basically the same two signals as in Example 5.2.1, except

that the time domain amplitude of the second peak is changed from 25 to 225. For

clarity, the time domain amplitudes A;, phases ¢;, normalized damping rates 0,

and normalized frequencies f; of the two signals are tabulated as follows:

i A; 0; 08 fi
1 250 0 0.003183 -0.3
2 Ay 0 0.003183 -0.275

where A, varies from 25 to 225. The sampling interval At is still 4 x 104 sec.
Over six hundred independent sequences of complex white Gaussian noise, each
haviii;; independent real and imaginary parts of variance 6,2 = (12.5)2 = 156.25
are added to the noise-free signals for each value of A,. For the LPSVD method
and the proposed method, we used 150 data points. For the DFT method, we used
128, 512 and 1024 points. The tentative model order for the LPSVD method is
75.

Figure 5.7.1.1 shows some representative DFT spectra for different time
domain amplitudes of the second peak and transformed from 512 and 1024 data

points, respectively.

Figure 5.7.1.2 shows the statistical result of the magnitude of the first eight
singular values from the LPSVD method. Figure 5.7.1.3 shows the magnitude of

the first three singular values versus input time domain amplitude of the second

peak, A,. It seems that as the input A, changes, both the first and second singular
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Figure 5.7.1.1 Some representative DFT spectra for different time domain
amplitudes of the 2-nd peak, iransformed from 512 and 1024 point FID data which is
composed of two decaying sinusoids plus Gaussian noise. The time domain
parameters are : amplitude A = 250; normalized damping rates 0@, = 08, = 0.00318;
normalized frequencies f, = -0.3, f, =-0.275; noise standard deviation o,, 12.5,
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Figure 5.7.1.3 Magnitude of the first three singular values of the LPSVD method
versus input time domain amplitude of the 2-nd peak, A,. For other information, see

Figure 5.7.1.2.
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values change. The largest singular value o, decreases ana then increases as input
A, increases. But the second singular value o, increases linearly as the input A,

increases. The noise singular values stay constant in the range of input A being

studied in this example.

Figures 5.7.1.4 to 5.7.1.12 show the statistical results of the performance
measures for the estimates of the spectral parameters from different calculation
methods. In general, the proposed method performs better than the LPSVD
method, which in turn performs better than the 512-point DFT method, which in
turn performs better than the 128-point DFT method. The perturbation analyses
from section 4.2.2 are consistent with the simulation results of the LPSVD
method for the variance estimate of the damping rates and frequencies. In other
words, the damping rate and frequency variance of the first peak are invariant of
input A,, but those of the second peak are inversely proportional to |A,I2. The
LPSVD method is a biased estimator. The bias estimates of the area ratio, the
phase and the normalized damping rate of the second peak seem to increase as
input A, decreases. The proposed method is an unbiased estimator, and it seems
to be able to attain the CR lower bounds. For the DFT method, we make the
following observations: first, bias estimates of the parameters obtained even for
512 points deviate, in general, more than those of the LPSVD method. Secondly,
the variance estimate of the ratio of the peak areas increases with increasing input
A,. The variance estimate of the amplitudes also tend to increase as input A,
increases. But, the variance estimates of the normalized damping rate and

frequency of the second peak have an opposite tendency.
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5.8 Effect of adding a well separated peak

So far, most simulation studies we have carried out consisted of two
exponentially decaying components embedded in Gaussian noise. In this subsection,
we want to see how much effect the addition of a well separated peak to the spectrum
has on the performance of the three methods. We know that if the extra peak is too
close to the other two peaks, all methods we are studying will be affected. Peaks that
are located too close to one another in the presence of noise can make A p defined by
Equation (4.2.1) so ill-conditioned that SVD might not be able to separate the signal
sir.gular values from the noise singular values, hence making the LPSVD algorithm
fail to estimate the signal parameters accurately. On the other hand, resolution of the
DFT method depends on the number of data points being sampled and the linewidth
of the peaks. Even if the peaks can be seen on the specirum, highly damped signals
located close to one another are likely to result in a less accurate estimate of the signal
parameters. Here, we want to see the effect of adding a well separated narrow peak to
the spectrum. The following example is basically the same as Example 5.7.1, except
that a third narrow peak located far away from the previous two peaks is added to the

spectrum. Other parameters are not changed.

Example 5.8.1:

The time domain parameters: amplitudes A;, phases ¢;, normalized damping rates

g, and normalized frequencies f;, of the noise-free signals are as follows:

i Ay ;i o f;

1 250 0 0.003183 -0.3
2 Ay 0 0.003183 -0.275
3 250 0 0.003183 0.1

i95



where A, varies from 25 to 225. The sampling inzerval At is still 4 x 104 sec. As
before, over six hundred independent sets of complex white Gaussiari noise, each
having an independent real and imaginary part of variance ¢,,2 = (12.5)? = 156.25
are added to the noise-free signals for each value of A,. For the LPSVD method
and the proposed method, we used 150 data points. The tentative model order for
the LPSVD method was 75. For the DFT method, we used 128, 512 and 1024

points.

Figure 5.8.1.1 shows some representative DFT spectra for different input

values of A, transformed from 512 data points.

Figure 5.8.1.2 shows the statisticai result of the magnitude of the first six
singular values from the LPSVD method. Figure 5.8.1.3 shows the magnitude of
the first four ~ingular values versus input time domain amplitude of the third peak,
A,. Comparing with Figure 5.7.1.3, one observes that a signal singular value of
magnitude of about 6000 is added to Figure 5.8.1.3. The third singular value in
this example is similar to the second singular value in the previous example, and

SO on.

Figures 5.8.1.4 to 5.8.1.17 show the statistical results of the performance
measures for the estimates of the spectral parameters from different calculation
methods. Comparing with the results of the previous example, we notice that
adding a well separated small decaying component to the previous signals does
not change significantly the estimates of the parameters of the first and second
components arrived at by the three methods. The estimates of the signal
parameters of the third, well separated narrow, peak by the proposed method is

better than the LPSVD method, which in turn is better than the DFT method.
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Figure 5.8.1.1 Some representative DFT spectra for different time domain
amplitudes of the 2-nd peak, transformed from 512 points FID data, which are
composed of three decaying sinusoids plus Gaussian noise. The time domain
parameters are : amplitudes A; = A3 = 250; normalized damping rates ce, = ce, =
083 = 0.00318; normalized frequencies f, = -0.3, f5 = -0.275, f5 = 0.1; noise
standard deviation 12.5,



198

A 1
N
S - A =175 T
.(_.‘6 -.....o_.-- Az = 125 -
5 SR WS
| T O S N T Ny S =
& 0---Ax=25
©
[} -
©
2
.E -
g

— el

& T T

5 6

index of singular values

Figure 5.8.1.2 Statistical result of the first six singular values of the LPSVD
method. A, is th: i1 ut ime domain amplitude of the 2-nd peak. Number of data

points used is 150. Tentative model order L is 75. For other information, see Figure
58.1.1.

n
@
: b .
™ S000 4 | L
> ] ,-"°’ X
1] B .o".
-g 4\Iw - ‘.'.'. -

o ".. e
5 3000 - . R
6 h .,v".' U '-01 L
o 2000 4 o -—=6--0s, L
S ) "',.I ~tsefrer=Og |
‘e 1000 4 .,.ol' somedeaedGy |
U) y .“
g LY LT SRy Sy STy YAy SRy

0 v T T T o T T T v
0 50 100 150 200 250
input A,

Figure 5.8.1.3 Magnitude of the first four singular values of the LPSVD method
versus input time domain amplitude of the 2-nd peak, A,. For other information, see

Figure 5.8.1.2.



Bias of
Re(area‘2 )YRe(area,)

Variance of

Re(area )/Re(area )}

MSE of
Re(area,)/Re(area, )

B LPSVD of 150 pt

1 t . , )
0.35 - : -
+
+
0.25 - + + i
+
0.15 - _
+ +
0054 & o . -
-8.9.9.9.0.2 2.0.0.
-0.05 l . ; .
100 0 32 100 150 0 250
1] :
107! Er
102 4 '
] , : * + o+ + + §
03] O d 6 © ©® O
: ¢ v v 9 ") 9 9 ] 9 g
-4 -
10 : . | |
) 50 100 150 200 250
100 : , . :
1071 ] .
1024+ o+ r
1073
o] a a :
] E e o ¢ ¢ 8 § & @ E
-4 -
10 . | ' |
’ % 100, 150 200 250
input A,

+ DFT of 128 pt

Figure 5.8.1.4 The area ratio of the 2-nd peak to the 1-st peak from the real
spectrum versus input time domain amplitude of the 2-nd peak, A,. Tentative model

order for the LPSVD method is 75. All estimates are obtained from over 600-run

* proposed method of 150 pt
+ DFT of 512 pt

simulations. For other information, see Figure 5.8.1.1.

O ODFTof 1024 pt

199



200

2 - | 2 1 4 ] 't L
=035 - .
©
9 d
8 025- A A SR SN S S &
S 9
o ] . I
o= +
ﬁmm 0.15- -
9 J L
©
T 54 © o o .
0 v LG
2 Losw.3.9.2.0.0. 0.0/
-0.05 —
0O 50 100 150 200 250
10 . P X (] 1 1
,— E
& o N
58 3 E
< ] {
(%E 1072 3
= 5 3 + + + + + 3
S © 3 ]
58 1 6606006666 ¢
S 1074 3
é) 3 9 9 ] Q | ] ] a | 3
10-4 1 1 1 4
00 50 100 150 200 250
10 i | Y ) Iy 1 1 A
3 E
i -1 F
g 107 4 + o+ o+ o+ o+ o+ o+ 3
M—E 4 + + o
L 107 o .
N "o i © : 3
-1 B © 0 ®
@ 10 3 3
> ] ¢ ¥ 9 ® 8 8 ¥ ® g
o 4
10 v T v T v T T T Y
0 50 100 150 200 250

input A,

g LPSVDof150pt e proposed method of 150 pt
+ DFTof 128 pt + DFT of 512 pt O DFT of 1024 pt

Figure 5.8.1.5 The area ratio of the 3-rd peak to the 1-st peak from the real
spectrum versus input time domain amplitude of the 2-nd peak, A,. For other

information, see Figure 5.8.1.4.



10 2 1 1 1 M 1 N
1 = a a @ 8 g o a o
04.... R R R S N
~ .10 R
< © O o ©
o -20 -
m -
Y -30 4 -
m -
-40 4 - " N
-50 - 5
J *+ © = + * + e
-60 T T T
30 50 100 150 200 250
10 1 ] 1 1
‘6 3
® 2
e VY ©® 000000 00 |
-% : o
> 4
——3— % 2 5 g 9 3
101 4
T v T v T T T d T Y
0 50 100 150 200 250
104= L 1 . i r i A 1 2
] + + + + + + +
1 +
& 103, ¥ s
5 1 006 0
" @ @ o © @
2 102 © e -
g (o} a a [o] o] [u] a [u] a
101 ——— ———
0 50 100 150 200 250
input A,

@ LPSVDof150pt e proposed methodof 150pt —— CR lower bound
+ DFT of 128 pt + DFT of 512 pt O DFTof 1024 pt

Figure 5.8.1.6 Time domain amplitude of the 1-st peak versus input, A,. For

other information, see Figure 5.8.1.4.



202

60 1 1] i 1 1
50 i
o 40 -
(X4 L 9
5 07 R T T
@ 0] 2
@ 10 3 é + "
4 @ @ o] o [c] 3
0-....0....0....4...@...&...@...@...@.....-
-10 T T T T T Y
30 50 100 150 200 250
10 - 1 1 S | S N .
o ] E
<
S I
o))
S 10 @ @® @ © @ P O Q @ |
o] L
@ o
> [
a
o2 § g o 8 8 g o
101 S
0 50 100 150 200 250
104= ; 1 . ] : 1 ; 1 A
]
3
=3 10‘; + o+ o+ o+ o+ o+ 4+ F
(@]
L + i
Q02 © Qo0 0@ |
o o] a e o a a o a E
1. L ‘ ‘ A4 v ‘ ‘ A 4 v [
10 T T v T T v T
0 50 100 150 200 250

input A,

@ LPSVDof150pt e proposed method of 150pt — CR lower bound
+ DFT of 128 pt + DFT of 512 pt © DFTof 1024 pt

Figure 5.8.1.7 Time domain amplitude of the 2-nd peak versus input A,. For
other information, see Figure 5.8.1.4.



2
-
Y

60 1 1 1 1
50 ] :
<ff’ 40-. [
— 30 4 5
O 4
.8 20-: 5
Q 10 4 l
4 a a o] a a a a Q a
0: ..... ::*#::r .::..
WO B B OO O QO
0 50 100 150 200 250
103_ . 1 L 1 1 N ! !
™ ]
g 4
kS
@® - -
e 104 OO0 QR QQQ QL
o ] [
@ ] '
> d
10! 98 5 5 8 0 g
v T v r v " . r v
0 50 100 150 200 250
104- N 1 s 1 2 1 5 L 2
‘<('9 103_: 3
5
5 ,1] © 0 0 000 6 6
s 101: + + + + + + + + + 2
3 9 @ g @ @ @8 B g g F
101. & — e + ¢ . e -
- - - I ’ T ' T '
0 50 100 150 200 250

input A,

@ LPSVDof150pt e proposed method of 150 pt — CRlowerbound
+ DFTof 128 pt + DFT of 512 pt O DFT of 1024 pt

Figure 5.8.1.8 Time domain amplitude of the 3-rd peak versus input A,. For other
information, see Figure 5.8.1.4.



0.08 1 i 1 A
= 0.06 + ‘
3 . I
T 0.04 4 L,
[Z=2 i
O 0.02 5
o)

g 1
88 N 1[0 1S SRR S DA P S SN &
= a
002 4——28._ 8 8 7 Z
0 50 100 150 200 250

10'3 A 1 . 1 1 1 I 1 1
— ]
o
o
o
e o] o] a a a a

o}

3 —
c
8
@
>

1074 , . ) ——r

0 50 100 150 200 250
10’3 1 L 1 A 1 2
(\!‘—
8 a o] o] B a o
>, a o] a
o
u? —t ., -
2]
=

10.4 § ¥ ¢ ] v I v

0 50 100 150 200 250
input A,
@ LPSVDof150pt e proposed method of 150pt -— CR lower bound

Figure 5.8.1.9 Phase of the 1-st peak versus input A,. For other information, see

Figure 5.8.1.4.

204



0.08 2 | L 1 L
§ 0.06 % L
& 1 ]
o 0.04 4 = S
:g ] 2 5
P 0.02 4 @ & g -
a8} 04.... I....i....;.. TR O L . =
-0.02 . r T . v T
0 50 100 150 200 250
10°1 J . 1 N 1 1 ) .
R 3
pe] 3
o ]
_ 2
© ]
8 L
c 10..3 - \9\\“\4
8 3
@ ]
> J
4
10 T v T v T Y T v i
0 250
1071 4
< ;
®
L1023 3
o E 3
el ] i
© 3] [
B 1073 ]
= 3 d
]0‘4 T T i v ¥ M
0 50 100 150 200 250
input A,
@ LPSVDof150pt e proposed method of 150 pt —— CR lower bound

Figure 5.8.1.10 Phase of the 2-nd peak versus input A,. For other information,
see Figure 5.8.1.4.

o

05



206

0.01 : L —
i)
o
™ 3 E
& 1 SUUR- ¢ .8 e T R .l
[72]
oo
s}
-0.01 d T T T v T ¥ T
0 50 100 150 200 250
10'3 M 1 i 1 1 1
& ] g
8 [
[ap]
(2=
°©
4]
e —s—F— —4 92 2 9
3 v v v i
©
> 4
10 T T T T T T T T Y
3 0 50 100 150 200 250
10' A i A | 4 1 1 | i
[
- [
3 J
‘.et-‘) .‘ L
S a .
& 1 +—5—F—p——8 53 F
=
104 e —
0 50 100 150 200 250
input A,

@ LPSVDof150pt e proposed methodof 150 pt — CR lower bound

Figure 5.8.1.11 FPhase of the 3-rd peak versus input A,. For other information,
see Figure 5.8.1.4.



207

0.005 : —— !
| L I B e !
0.004 L
:8— 0.003 4 -
S 0002 ] X
% . s
@ 0001 ’ e 2R S S S NS & i
0004 -B-B -8 - -@-@ -G -@-@--[
-0.001 ————y : :
50 100 150 200 250
104 R 1 R ! L R 1
3 ]
_ 105 s
& E 3
S 1076 !
g ] 5
7 1 i
g 1075 ]
@ o ] F
> 10'“" r
F
10°° —
0 50 100 150 200 250
10'4 2 1 1 1 A ] N [ A
E E
5 + + + + + + + + + s
1077 o -
3 3
- % 3
8 0%y c e e s .
o 7 F
o 1 © 0 o 0o © o 0 o o© ]
= 8 b o] B o a a a o} o] 3
107" 5 3
E E
1079 —_—
0 50 100 150 200 250

input A,

@ LPSVDof150pt e proposed method of 150 pt — CR lowerbound
+ DFTof 128 pt + DFT of 512 pt O DFT of 1024 pt
-~ perturbation theory

Figure 5.8.1.12 Normalized damping rate of the 1-st peak versus input A,. For
other information, see Figure 5.8.1.4.



0.005 . 1

208

0.004 4
0.003 4 E
0.002 +

Bias of ("192

0.001 4

Ot = = = - =

Q-2 @ R -®-®--|

+

+ o+ + +

-0.001 —

1 v 1

150 200
1

] A

250

Variance of &,

MSE of &,

@ LPSVD of 150 pt
+ DFT of 128 pt
--- perturbation theory

¢ proposed method of 150 pt
» DFT of 512 pt

— CR lower bound
O DFT of 1024 pt

Figure 5.8.1.13 Normalized damping rate of the 2-nd peak versus input A,. For

other information, see Figure 5.8.1.4.



0.005 —
0.004 - 5
& 0.003 - .
S 0002 4 X
(%2}
8 1 i
@ 0001 ] + O+ o+ o+ o+ o+ o+ o+ i
o4 & B8 & &8 8 8 8 8 8 |
-0.001 T T T T T T
0 50 100 150 200 250
10'4 ] : 1 L 1 A 1 ] Y
3
- 107 :
& ] F
S 10°
@ ]
Q ) X
€ 10 L
g e 2 9 ¢ Q@ 9 @ @ o F
J -8
> 10
Lans SRl TEEE LS ey Iy ey - Bee) 3
10-9 i L] 1 i |
50 100 150 200 250
10'4 1 ! N 1 L
4
10 E,
&’ 06 F
S + + 4+ + + + + + + F
& 107 i
S O 0 0006 6 00 §
8 a @ @8 @ @ @ @8 @ F
10°8 .
e
0 50 100 150 200 250
input A,
o LPSVDof 150 pt ¢ proposed method of 150 pt —— CR lower bound
+ DFT of 128 pt + DFTof 512 pt & DFTof 1024 pt
--- perturbation theory

Figure 5.8.1.14 Normalized damping rate of the 3-rd peak versus input A,. For
other information, see Figure 5.8.1.4.

&~

09



210

0_004 AL 1 " 1 M 1 A 1
0.003 - + + + + + + + + + 2
:’_o“ 0.002 4 i
Py s
.L%’ 0.001 - 5
0} - B-2-2-@ - -6 @ @ -@--|
A o I3 3 3 K > i
'0.001 ¥ T T . ) sl T
0 50 100 150 200 250
]04. o Iy 1, ] N L
107 "
3
I ]
— -6
S 10 1 r
Q 1 3
Q -7 i
s 1 ©O0 0 0000 60 0 |
kS 108 ] i
§ i ik Rt s s - Il ~ ke L ) 3
1072 ———  —— — ey
0 50 100 150 200 250
10'4. 2 1 1 1 " 1 3 1 1
3 3
10'51; + + + + + + + + + r
T o108 o [
c, E - -~ " o ¥ §
u_' _7. S
cé) W3 ©¢ ¢ o o © o 0o o © 3
8 :
o L
7yt fogofegong |
]0-9 T T T T ¥ T v T T
0 50 100 150 200 250
input A,

@ LPSVDof150pt e proposed method of 150 pt ~— CR lower bound
+ DFT of 128 pt + DFTof 512 pt O DFTof 1024 pt
~-- perturbation theory

Figure 5.8.1.15 Normalized frequency of the 1-st peak versus input A,. For other

information, see Figure 5.8.1.4.



0.004 ] 1 1 1
0.003 A i
L ON
= 0.002 4 i
g J + O+ o+ 4+ o+ o+ o+ o+ 4
©  0.001 - i
m -
T-E-e-@-e-e-9-0--0-o--|
¥ &+ -+ ~ 2
-0.001 : . : .
0 50 100 150 200 250
10'4 2 1 i 1 1 1 1 i
i © E
-5 7 3
sy 10 1
S w8y ¢ ,'
e 3 F
@ 10 k- 3
IS .
107° <
3 1
9 [
109 i L |4 1
0 50 100 150 200 250
10'4 Y 1 1 1 2 1 ] " [
i o
107
gy
-6
"5 10 b
L
f 107]
E -
1078
;
10-9 v T ' T T v T v —
0 50 100 150 200 250

input A,

@ LPSVDof150pt & proposed method of 150 pt — CR lower bound
+ DFT of 128 pt + DFTof512pt O DFTof 1024 pt
--~ perturbation theory

Figure 5.8.1.16 Normalized frequency of the 2-nd peak versus input A,. For
other information, see Figure 5.8.1.4.



0.004 1 1 A 1 i 1 4
0.003 - -
(\é") o b
s 0002 -
» . + F O+ o+ O+ o+ o+ o+ ¢ i
-g 0.001 - L
TS ® - - -0 & -®--O--®--|
p - ES + <+ - = 4 +
-0.001 T Y T Y
0 50 100 150 200 250
104 . . - N 1 )
. g
S 6 ] L
% 10'7 ] Q¢ O O 8] O &) Q ] o] s
= 108 [
] wesspotgocogeccogeacgecagocogenoay
1079 e e —
0 50 100 150 200 250
1044 1 . 1 . i . y
3
1073 s
9 + + + O+ o+ o+ o+ + +
5 108 r
L E
B 107 R R 2 Q@ @ @ Q@ @ ¢ a
2 s
10°8 "
L S ane L o Tl CIEE ELIE E
10-9 | 1 ] ] 1
0 50 100 150 200 250
input A,

a LPSVD of 150 pt
+ DFT of 128 pt
--- perturbation theory

Figure 5.8.1.17 Normalized frequency of the 3-rd peak versus input A,. For other

information, see Figure 5.8.1.4.

¢ proposed method of 150 pt
+ DFT of 512 pt

—— CR lower bound
O DFT of 1024 pt

212



5.9 Effect of variable baseline (i.e., broad underlying signal)

In many in-vivo spectra there is a variable baseline which must be removed
before quantitative analysis of the spectral lines can take place. A question is whether
this baseline influences the accuracy of the parameter estimates. To address this
question simulated FIDs or spectra with increasing baseline components are quantified
using the three methods. The kind of baseline we will address is the same as that
studied by Nelson and Brown (1989). It comprised a single Lorentzian peak of

constant broad linewidth but varying intensity, to which are added two narrow peaks.

Example 59.1:

The time domain parameters: amplitudes A;, phases ¢;, normalized damping rates

e, and normalized frequencies f;, of the noise-free signals are as follows:

i A 0; 0B, fi

1 7 0 0.003183 -0.3
2 5 9 0.003183 -0.1
3 As 0 0.127324 0.1

where Aj varies from 75 to 350. The sampling interval At is still 4 x 104 sec.

Over six hundred independent sets of complex white Gaussian noise, each having
independent real and imaginary part of variance 6,2 = (1.5)2 = 2.25 are added to
the noise-free signals for each value of A;. For the LPSVD method and the
proposed method, we used 150 data points. The tentative model order for the
LPSVD method was 75. For the DFT method, we use 128, 512 and 1024 data

points. Baselines of the DFT spectra are inodelled by spline functions.



The range of different spectra considered is shown in Figure 5.9.1.1.

Figure 5.9.1.2 shows the statistical result of the magnitude of the first eight
singular values from the LPSVD method. Figure 5.9.1.3 shows the magnitude of

the first four singular values versus input time domain amplitude of the third peak,

A5. From the figure, we predict that the LPSVD method will run into trouble
when input Aj is reduced to around 50. In fact, Figures 5.9.1.11 and 5.9.1.12

show that the corresponding frequency estimates already exhibit significant

deviation when input A; is reduced to 75.

Figures 5.9.1.4 t0 5.9.1.12 show the statistical results of the performance
measures for the estimates of the spectral parameters from different calculation
methods. From the figures, we see that, except for the frequency estimates where
input A3 decreases to 75, the LPSVD method outperforms the 1024-point DFT
method. The proposed method, in turn, out performs both the LPSVD method
and the DFT method. In addition, the proposed method is able to correct the

frequency estimates from the LPSVD method to attain CR lower bounds for input

Aj equal to 75. For input Az greater than 75, the variance estimate of the damping
rates and frequencies estimated by the LPSVD method are independent of input
A3, which is consistent with property 1 of section 4.2.2. The variance estimate of
all parameters estimated by the proposed method attain CR lower bounds for this
range of input A; being studied. For the DFT method, the amplitude (or area)
estimates of the first peak are not affected as much as the second peak which is
closer to the high intensity broad peak, by increasing the intensity of the broad
peak. A large baseline component caused a reduced time domain amplitude (or
frequency domain peak area) estimate, especially for the peak close to the

mountain of the baseline peak.
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Figure 5.9.1.1 Some representative DFT spectra for different time domain
amplitudes of the 3-rd peak, transformed from 512-point FID data which is composed
of three decaying sinusoids plus Gaussian noise. The time domain parameters are:
amplitudes A) =7, A, = 5; normalized damping rates 0@, = 08, = 0.003183, cg4 =
0.127324; normalized frequencies f; = -0.3, f, = -0.1, f; = 0.1; noise standard
deviation 1.5.
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Figure 5.9.1.2 Statistical result of the first eight singular values of the LPSVD
method. Aj is the input time domain amplitude of the 3-rd peak. Number of data

points used is 150. Tentative model order L is 75. For other information, see Figure

5.9.1.1.
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Figure 5.9.1.3 Magnitude of the first four singular values of the LPSVD method
versus input time domain amplitude of the 3-rd peak, A;. For other information, see

Figure 5.9.1.2.
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Figure 5.9.1.9 Normalized damping rate of the 1-st peak versus input A3. For

other information, see Figure 5.9.1.4.
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Figure 5.9.1.10 Normalized damping rate of the 2-nd peak versus input As. For

other information, see Figure 5.9.1.4.
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Figure 5.9.1.11 Normalized frequency of the 1-st peak versus input A;. For other
information, see Figure 5.9.1.4.
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Chapter 6

Conclusions

Conventional NMR spectroscopy bases its estimations on frequency domain
spectra. The transformation from the sampled time domain FID signal to the frequency
domain spectrum is done by discrete Fourier transformation (DFT). Poor resolution,
implicit windowing and spectral distortion uue to the initial delay are soine of the
disadvantages of this method. Recently, Tufts and Kumaresan developed an advanced
time domain method called the TK method or LPSVD method. In section 4.2.2, we
have performed first-order perturbation analysis of the LPSVD method. This work
was extended from Hua and Sarkar's paper (1988) in which perturbation analysis of
the LPSVD method on non-decaying exponential signals was studied. In section 4.3,
we developed a proposed method. In Chapter 5, we compared the performance of the

DFT, LPSVD and the proposed methods.

The LPSVD method has considerable advantages over the DFT method for the
type of spectra considered in Chapter 5, the most important in practical terms being the
ability to obtain automatic estimates of the peak parameters. In addition, the method
does not assume that the peaks are linearly phase shifted, making it more flexible than
the DFT method. Moreover, it is able to resolve components which have overlapping
peaks in the frequency domain. In Chapter 5, we discovered that the LPSVD method
has another advantage: it is able to estimate the signal parameters more accurately with
significantly fewer data points than the DFT method. This observation is particularly
valuable in multi-dimensional NMR where accumulation time constraints often lead to
limited sampling in at least one of the time dimensions. In a three- nmensional
experiment, for =:ample, each complex point in the slowest incrementing time
dimension may take as much as an hour to accumulate. Therefore, the LPSVD method

can be used to estimate the signal parameters or predict additional points in the time
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domain data (Gesmar and Led, 1989; Zeng, et al., 1989; Brown and Campbell, 1990;
Olejniczak and Eation, 1990). The main disadvantage of the LPSVD method is its
specific assumption abot.t lineshape: if the lineshape is not a good model to the data,

the results are difficult to interpret.

We discovered that the performance of the LPSVD algorithm can be affected

by the following:

(@) The ratio of the tentative model order to the number of data points:
The tentative model order affects the performance of the LPSVD method as
demonstrated in Examples 5.2.1 and 5.2.2. If we are given a number of data
points N, it may be optimal to choose the tertative model order L to be

between 0.4N and 0.8N.

(b) The number of data points:
Keeping the ratio of the tentative model order to the number of data points
constant as in Example 5.2.3, we found that the performance of the LPSVD
method improves as the number of data points increases, but the improvement
seems to "level off™. This suggests that it might not be useful to use too many
data points for the LPSVD method. The LPSVD method is a very
computational intensive algorithm as compare with the DFT method. If we
only need a small number of data points to obtain an estimate of the parameters
as accurate as, say, the 1024-point DFT method, then this property can save
computation time. Of course, in reality, no one knows how many data points
are needed to obtain the optimal solution. One way to deal with this problem is
as follows. Since the proposed method, which takes the solution from the
LPSVD method as an initial estimate for a nonlinear curve fitting routine, is

able to give a solution that attains the theoretical lowest CR bound and is
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unbiased, then we can first use a reasonable number of data points, say 150,
to obtain a solution from the proposed method, then use this solution to obtain
a plot of the CR lowest bound versus number of data points. If the chosen
number of data points does not seem to be optimal, we can rerun the proposed

method using a larger number of data points.

(¢) The amount of noise:
As shown in Example 5.4.1, noise makes the LPSVD algorithm give biased
estimates of the parameters. The biases of the estimated parameters do not
seem to be linear with respect to the input time domain noise. As noise
increases, the biases become more serious. The variance estimate of the
parameters also increase as noise increases. Although, as shown in Example
5.4.1, the biases of some parameters estimated by the LPSVD method are
larger than those of the DFT method with 512 or 1024 points at low signal-to-
noise, the variance of the parameters estimated by the LPSVD method are

about 10 times smaller than those of the DFT method.

(d) Peak separation:
As shown in Example 5.5.1, when the frequency separation between two
peaks decreases, the bias estimates of the parameters increase slowly, and the
variance estimates of the parameters also increase. The trend of increase in the
variance is very much like the trend of the CR bounds. As the normalized
frequency separation decreases to about 0.005, the biases of the parameters
seem to be more noticeable. However, the LPSVD method still has a higher
resolving power than the 1024-point DFT method, which cannot resolve
peaks separated by less than 0.006 of a normalized unit. Notice that the
resolving power of the DFT method is not only a function of frequency

separation and the number of data points in the time domain, but also a
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function of the linewidths. In Example 5.6.1, we had two peaks separated by
a normrlized frequency of 0.01. The 1024-poi..t DFT method could not
resol = the two peaks as the linewidth of one of the peaks increases to 0.01 of
a normalized unit (linewidth = 2 x damping rate), but the LPSVD method was
still able to resolve the peaks until the linewidth increased to about 0.032 of a
normalized unit. In conclusion, the LPSVD method of 150 points had a higher

resolving power than the 1024-point DFT method in these two examples.

(e) Linewidth of the peaks:
As shown in Example 5.6.1, changes in a peak's damping rate affect the
performance measures of the parameters of not only that particular peak, but
also one close to it. However, the later is affected much less seriously than the
former. In Example 5.6.1, we called the peak whose damping rate was
changing the second peak. Except for the normalized damping rate and
frequency of this changing peak, the variance estimates of the other parameters
(including this peak and the other peak) from the LPSVD method increased
and then gradually decreased as the input damping rate increased. For the
normalized ¢amping rate and normalized frequency of the second peak, the
variances continued to increase as their input linewidth increased. The variance
estimates of the amplitudes were very similar to those of the corresponding
phase. The variance estimate of the normalized damping rate, in turn, was

very similar to that of the corresponding normalized frequency.

As mentioned before, the 128-point DFT method could not resolve the
two peaks in these simulations. The 512-point and 1024-point DFT method
resolved the peaks if the input normalized damping rate of the variable peak
was less than 0.0064, while the LPSVD method of only 150 points resolved

the two peaks for an input normalized damping rate increase of up to 0.016,
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2.5 times wider than the 1024-point DFT could resolve.

(f)  Amplitudes of the signal components:
As shown in Example 5.7.1, ii:ie LI’S™/D method is a biased estimator. The
bias estimates of the phase and normalized damping rate of a peak (we called

this the second peak) increased as the input time domain amplitude A,

decreased. The biases of the other parameters did not change significantly as

A, changed. The variances of the normalized damping rate and frequency of

the constant peak (we called this the first peak) were not affected by changing
A,, but those of the second peak were inversely proportional to |A,I2. This
observation was consistent with the perturbation analysis given in section

4.2.2. In general, the estimate performance of the first peak was not affected

by changing the input A,.

Compared to the 1024-point DFT method, variances of the parameters
obtained from the LPSVD algorithm of 150 points were significantly smaller.
The biases of the parameters from the two methods were very close to one
another. But, if we used only 512 points, the DFT method behaved poorer

than the LPSVD method of 150 points.

Both methods, together with the proposed method, deteriorated

significantly for input A, less than 25 in this simulation.

(g) Broad underlying peak:
From Example 5.9.1, we saw that except whern the broad underlying signal
was small such that the frequency estimates of the peaks had larger biases and
variances than the estimates obtained from the 1024-point DFT method, the
LPSVD method out performed the 1024-point DFT method. When the broad

underlying signal became larger, the variance estimate of the damping rates



and frequencies from: the LPSVD method were not affected much by the
intensity of the broad peak. This is consistent with property 1 of section

4.2.2.

Since the LPSVD method produces biased estimates in general, we developed
a method to reduce these biases. We called it the proposed method. It uses estimates
from the LPSVD algorithm as inidal guesses. It turns out that the pr- - osed method
improves the estimates (including biases and variances) of the LPSVD method. The
improvement is due to the fact that maximum likelihood estimates of the parameters of
M exponentially decaying sinusoidal signals embedded in independent, zero mean,
complex valued, Gaussian random noise is equivalent to obtaining the parameters
which minimize the least-squares error. It is difficu:- .0 use coarse searches to obtain a
global minimum least-squares error, so we suggested using the results from the
LPSVD algorithm as initial estimates. From the simulation studies in Chapter 5, the
results from the proposed method, in general, are unbiased and attain the lowest
theoretical Cramer-Rao bounds. Its solutions are, in general, better than those of the

LPSVD method, which in turn, are better than those of the 1024-point DFT method.

Although many questions have found their answers in this thesis, new
problems are always emerging faster than solutions. A few examples of questions that

might be worthy of more study are the following:

(@) Almost all examples in Chapter 5 showed that the LPSVD method is biased.
Since our first-order perturbation analysis suggests that it is not biased, higher-order

perturbation theory is needed for analytical comparison with the simulation results.

(b) Although both the LPSVD and the proposed methods have better performance
than the 1024-point DFT method in general, they fail in situations when the signal and

noise singular values are not well separated. Research to extend the operational range
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further is needed. Application : f robust estimation technigues may exsend the

operational range further.

(c) The LPSVD algerithm is very computational inten. /e omp.re i~ the DFT
method. It is about 30 times slower, so improving the speed of the al;urithm is

needed for real-time data analysis.

(d) The proposed method minimizes the residual error square; other error equations

could also be minimized.

(e) Although linear-prediction methods have recently been developed in multi-
dimensional NMR spectroscopy, their behaviors have not been studied extensively. In

fact, as far as we know, perturbation analysis has not been developed.
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Appendix 1 Theoretical autocorrelation matrix of M complex exporentially
damped sinusoids

Assuming the phases of M complex exponentially damped sinusoids are
independent random variables uniformly distributed on [0,2x), it is shown that the
theoretical L x L autocorrelation matrix is given by

M
R, = i§l Ale e H,
= EPE1, (AL1)
where

E = [e, €o ---- €],
P = diag( A% A2,. Ay?),
e; = [1 z z2.... zLDIT,
z, = expl2n(-ce, +jf)],
a = A ej¢i,

and the signal vector is given by
M

s(n) = T az", O0<sngN-1. (Al.2)
k=1

Proof :

The theoretical autocorrelation function (ACF) for the process given by Equation

(Al.2)is

re(nm) = E[s(n) s*(m) }

Z

L\k

oz |

[ M %‘: Ax A; ellox - 8) g-2rdceen + ceim) gj2nd fin - f*"‘)}

=E2

(A1.3)



Assuming that the phases are independent random variables uniformly distributed on
[0, 2m), that is, the probability density functions of the phases are

p(¢;) = % ,

and hence,

2n 2x
E[eftx- ¢:)] f f el - &) p(¢3) p(x) do; doy
o Jo

= &y ,
where J;; denotes the Kronecker delta function. This means that the ACF becomes

M
Igs(n,m) = E[ z Ai2 e-2re{n+m) ejznf-,(n-m):,

i=1

Moo
= ) Alzrgm

i=1

Therefore, the L x L autocorrelation matrix is given by

M
2 H
Rss '21 Ai € eci :

Notice that the process is NOT wide-sense stationary, instead it is nonstationary.
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Appendix 2 Proof of generalized Pisarenko property for damped sinusoids

It is proven in this appendix that the eigenvector associated with the minimum
eigenvalues of an L x L Hermitian autocorrelation matrix for M complex
exponentially damped sinusoids in white Gaussian noise described by Equation
(1.1.1) has its zeros at the positions z, = expl2r(-ce; +jf)], fori=1,2,... M,

v Ay

assuming all the A,'s are nonzero and the frequencies to be distinct.

The theoretical total autocorrelation matrix can be decomposed as a sum of
signal autocorrelation and noise autocorrelation matrices as follows :

- 2

R, = R, + 20,°1, (A2.1)
M L

= E.l (M +20,2)wv vl o+ 2cw2i=hzd+lviviH, (A2.2)

where the v's are orthonormal. Consider an arbitrary vector which is a linear

combination of the eigenvectors in noise subspace, that is,

L
g = Y Bv, ., (A2.3)
i=M+l

where g=[gy g ....g.; 1T and the B,'s are some arbitrary constants. Then,

together with Equation (A1.1), we have

R.g = EPEig=0.

Premultiplying by gH yields

g"EPERg = (ElghP@Elgyg = 0.

Since Pis positive definite, it follows tha: Elg = 0,

or e.llg = 0, fori=1,2,..., M,

or LZIO gn expl2n(-ce, - jf)n] = O, fori=1,2,...,M, (A24)
n=

which is the desired result.



Appendix 3 Definition of NMR spectroscopy frequency in units of "ppm"

frequency [Hz]
(spectrometer frequency + offset frequency * 10-6) [MHz]

frequency [ppm]

normalized frequency * spectral width [Hz]
(spectrometer frequency +offset frequency * 10-6) {MHz]

_noimalized frequency * SW
SF+(01*106) ’

where

SW spectral width [Hz] = sampling frequency [Hz],
SF = spectrometer frequency [MHz] ,

01 offset frequency [Hz].
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Appendix 4 First order approximation of the discrete Fourier transform of
complex damped sinusoid

Let s(nAt) be the complex exponentially damped sinuscid given as
s(At) = A el® e2nC-a+jhnat (A4.1)

Define the discrete Fourier transform pair as

N-1 .
S(mF) = At T s(nAt)ed2mnmN  yrere FAt=1ﬁ; (A4.2)
n=0
1 N-1 i
sAY) = Tar zo S(mF) ei2nnm/N | (A4.3)
n=

Substituting Equation (A4.1) in Equation (A4.2), we have

N-1
oS A it g2nl-anAt+ j(FAL- Thn]

n=

S(mF)

. N-1 .
At A ei® 5 ¢2nl-anAL j(fAt- Tha)
n=

I - e2nl-oNAL+j(FAL- XON]

= AtAe ifa#0 andf#0
1 - gl-2raAts 2n (fAL- 0]
~ AtAe® ! —— ifaNAt<< 0
1-{ 1-2r0At +j2m (fAt- ) )
Ael®

20t - 2 (f- N%)

The second last approximation was obtained from the following approximation :

X
eX =1+X+T+.....
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To show Equation (A4.3) from Equation (A4.2), substitute Equation (A4.2)

into Equation (A4.3), i.e.,

N-1  N-1 ,
s(nAt) = FI&_ Y At T s(kAt) ed2n-mmN
m=0 k=0

1 N-1 N-1
N T skAy 3 e-121t(k-n)m/N
k=0 m=0

r4

1
- 3 S0 * By

=0

% s(nAt) N

I

s(nAt) ,

where o is the Kronecker delta function.



Appendix 5 Amplitude response of window function in decibel scale

In studying the amplitude frequency response of window functions, it is
desirable to employ a decibel scale. In each case, the decibel response is normalized
with respect to the Fourier transform of the time domain window function evaluated

at frequency zero.

Let W(f) represent the Fourier transform of a time domain window function
w(t), and let W(0) represent the dc value of the transform. The amplitude response
fo: the window function in decibel scale is defined by
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Appendix & Proof of Theorem 3.2.1

The pseudo-inverse A* of a matrix A € C"*™ j5 unique.

Proof :

Suppose Be C"*™M, C € C"'™, and B # C, but both are pseudo-inverses of

A, then

B BAB = BBHAH = BBH(ACA)H = BBHAH CHAH

BBHAH AC = BABAC = BAC = BACAC

= BAAHCH C = AMBH AHCY C
= AHdi c=cACc=C

An alternative proof of the uniqueness of A* can be found in Boullion and Odell,

1971, p.3.



Appendix 7 Proof of Theorem 3.2.2
The mamrix G = ( 4F4)* AH = AH ( AAH)* i5 a pseudo-inverse of A.

Proof:  First consider G = ( AHA)* AH We have

AGA = A(AHA)* AHA

= AA* (AD* (4H) A

= (AA%) (AA*)HA

= (AA*) (AA") A

= AA*A

= A.
GAG = (AHA)* (AHA) (AHA)*AH = (AHA) AH - G |
(GA) = [(ABA)*(AHA)H = (AHA*AHA - GA .
(AG)H = [A(ARA)*AH H

A (AHA)HAR - A (AHAY AH - 4G .

The identity G = AH ( AAH)* can be proved similarly.



Appendix 8 Proof of Theorem 3.2.4

Let Ae C™X" be CM and X s = A*b.Theneach x¢e C",x#xLS ‘atisfies

one of the two conditions :

(@ NAx-bll, <lIlAx-bl, or
(b) WAxg-bl,=1Ax-bll, and Ux I, <lixll, .
Proof:
(a) Forany xe CM, write
Ax-b = Ax-AA'b+AA'b-b
= A(x-A*b)-(I-AA*)Db
= A(x-x5)-(I-AA")b .

Therefore,

IAx-bl,

NA(x-xg)ll, + 1(I-AA*)bl,

HA(x-%x)l,+ IAXg-bll,

v

tA X;s-b f,,
with equality only if Ax= Ax.
(b) Inthe caseof Ax= Ax; g, we have, since x; (= A*b,
A*Ax = ATAx;s = A*AA'D = A'D = xg.

Thus, we may write
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X = X+ (xX-%Xg) = A'b - (I-A*A)x.

Therefore,

Ixll, = IA*bI, + Il (I-A*A)x I,

= IIxLSII2 + IIx-xLS II.z

v

I %g Il2 ,

with equality if and only if x = X5 -

Theorem 3.2.3 can be restated as follows :

Let Ae C™*", be C™. Then, amongst the least-squares solutions of
Ax =b, A*b is the one of minimum 2-norm. Conversely, if Ge CMXM hag the
property that, for all b, Gb is the minimum 2-norm least-squares solution of

Ax =b, then G= At



Appendix 9 Proorf of Theorem 4.2.1.1

M
Let s(n)= 3% a, Sk ,n=0,1,..,N-1, where a, and s, are unknown complex
k=1

numbers, s, # s, fork #1, and

~ s(L) s(L-1) .... s(0) ]
s(L+1) s(L) .... s(1)
Ap = ' ' ) = [hp, Agl .
— §(N-1) 5(N-2) ... s(N-L-1) =
If the coefficient vector g'p = [ gF.0» 8F.1» BF.2» - - - » 8F,L]T satisfies the

homogeneous equation A'rg's = 0, and if L satisfies the inequality M < L < N-M,

L
then Gg(z) = Y. gy z* has M of its L zeros at ek fork=1,2,.., M.
k<0

Proof:

If s(n) is given as described in the theorem, then one can show that A’z can be

rewritten as

Ap=2Zg Z'gp ,

where
~ Y(L) Y@L ... ¥(ML) ]
Y(1,L+1) Y(Q2.L+1) .... ¥Y(ML+1)
ZFL = . . aree . ’ (N'L)XM
. W(1,N-1) WY(2N-1) ... Y(MN-1) ~

W(kh) = lal e h+j oy |
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1 e'sl e'-SI ‘LSI
-s,  -2s -Ls
1 2 ™2 e ¢
FR = . C : M x (L+1)
-S =28 -Ls
L1l eMeg ™M M

We know that A g = hy has a nontrivial solution if and only if rank(Ap) =
rank(Ag, hp) . Suppose s, # S; fori# j. By Sylvester's law (Marcus and Minc,
1964, p.28),

rank(Zg,) + rank(Z’.;) - - AK(Zgy Z'gp) < min { rank(Zp), rank(Z'gp) |

S(M+M-M) < ,) Smin { M,M}
if (N-L)2M and M<(L+1).

rank(A;) =M if M-1SLEN-M,
Similarly,
rank(Ap) =M if M SLSN-M.
Therefore,
rank(Ag) = rank(A%) =M if MESLSN-M. (A9.1)

Equation (A9.1) means that the row vectors of A’z are linear combinations of the
M row vectors of Z'gp .

Suppose rank(A'z) = M. Let f(k)H be the k-th row vector of Z' , ie.,
fOH =(,e ke %), ko1,2 ..M

Then, the i-th row of A r8'F s

M
2 2 fp gr =0



9
w
[ 8]

M "
S +1)+ .
=> 3 e kLHD4% £ (gHg = 0
=> lall eSl (L+i)+j ¢, (gF,O + gme-sl + gF,ze-zsl .+ gF,Le-LSI)
+ 1 2002 (g0 gp €24 gre™2 4+ gp e

. S i)+] -S -2s, -Ls
+ 'aMl e M(L'H)'H ¢M ( gro0 * 8F1€ M+ gg € M+ + gr.Le M) =0,
In other words, the polynomial

L
Gp(z} = T gpxzk
K=o

has M of its zeros at ek for k = 1,2,.., M.



Appendix 10 Proof of Theorem 4.2.1.2

M
Let s(n)= Y akeskn, n=0,1, ..., N-1, where a, 1s the complex amplitude with
k=1

unknown magnitude A, and phase Oy 8/2m is the complex frequency with unknown
normalized damping rate G2, and normalized frequency fi.s;# s, fori#k. M is the
number of complex sinusoids. If a coefficient vector gp=[gg, 8B.1' 8R2v - -
gB'L]T satisfies the homogeneous equation A'p g's =0, and if L satisfies the

L S -
inequality M <L < N-M, the polynomial Gg(® = T gg, z¥ has zeros at e >k,
k=0 '

fork =1, 2, ..., M, where

— s*(0) s*¥(1) ... s*L) T
s*(1) $¥(2) ... s*¥(L+1)
Ay = ' ' ' = [hy, Agl.  (4.2.1.5)
— S*(N-L-1) $*(N-L) ... s*(N-1) -

Proof: The proof is the same as that of Theorem 4.2.1.1.

Rewrite A’B as follows
Apg=2p Z', ,

with
™ P(i,0) ¥(2,0) ... ¥M,0
¥(1,1) Y(2,1) ... ¥(M,1D

Z, = ' ' ' ,  N-L)xM

— W(1,N-L-1) ¥(2,N-L-1) ... W(M,N-L-1) -

tJ
‘h



254

.
P(kh) = la, ) "SI O

S * 25 ¥ Ls, * ]
1 el 71 .. et
S,*  28,% Ls,*
1 e2 72 ., 2
’BR = . . . . , MX(L""I)
Saa* 28, ¥ Ls,,*
L1 eM "M M
and
Ag=2Zp Zpp
where
[~ s, *  2s.% Ls,* 7]
el el e 1
S,*  2s.% Ls, *
el e 2 e 2
Z = MxL
BR
Sp¥ 28, 0% LSy *
e M M e M

Again by Sylvester's law (Marcus and Minc, 1964, pp. 28), we have
rank (A%) =M if M-1<SLEN-M,
rank(Ag) =M if M SLSN-M,

In orcer for Aggg =hy to have a nontrivial solution, we require

rank( Ap) = rank( Ag) =M,

and this can happen if M<L<N-M.



This means that each row vector of A’B is a linear combination of the M row

vectors of Z'p ..
If rank(A'g) =M, let

fH =1, ¢k , e sk*, AU eLSk* ),
Then the i-th row vector of A’y g'y can be written as,

M
kgl 3k ka g'B =0

M . .
=> 3 lale’ I gH g <0

k=1
BT T S * 25, * Ls,*

=> l. T (gpotgp €l +ggpeTl 4.+ gpieTl)
isy¥* g, So* 25,* Ls,*

+ laple ™2 T (ggo+gp €t +gg.eT% 4.+ ggL€ 2)

N * * *
+ layl e'Sm Titm ( gpo+ gB'leSM + gB‘zest +..+ gB'LeLSM )=0.
And hence the polynomial

L
Gp@ = I gpz¥

o X
has M of its zeros at ek Jfork=1,2, ..., M.

to

N



Appendix 11 Proof of Theorem 4.2.1.3
L M L-M
fet G@)=1+ 3 gzk B(z)= T bz¥ C(z) = ¥ c.zk, and G(z) = B(z)C(z).
k=1 k=0 k=0

IfQ=1+Ilgl2+ lg,2 + ..+lg 12 is minimum, and B(z) is given, then the roots of

C(z) must be inside the unit circle (see e.g., Lang and McClellan, 1979; Pakula and
Kay, 1983; Stoica and Nehorai, 1987).

Proof :

Before we prove the theorem, we will try to find out the coefficients of C(z)

if B(z) is given and Q is minimized. To do this, from the definition of G(z), we have

G(2)

B(z) C(2) . (All.1)

(:éobkz ) (ECZJ)

NEU

b M N LM y
( 0+k§1bkz ) (Co"’ .Elcjz )

J:

L
1+ ¥ g zk
k=1

M L-Msk
= boco+002bkz +b02czl+z z b z™
k=1 m=k+l
M 0 L-M+k
= by + T bzk+ ¥ T b, zm
070 0k=1bk k=0m= k+Pk mk
M L-M+k
+3Y Ybc 2™
k=1ms= k+?k m-k
M - M LM+k
-— - m
- bOCO"'COZ ka Z bkcmkz
k=1 K=0m=k+l
Equating the coefficients for different powers, we have
1 = b => ¢y = o (A11.2)
= DpCo = 0~ p° .

0



and

g, 7] ~b;,] [by O 0
8 b, A |
&3 by . .0 €2
g = =cyl - |+]| Pum bo “
ou 0 by
0
. . - . - . _CL_M_
L g, - Lod Lo ... 0 by

L)
]

cob + B,__Mc

!

g'g = (Cob +BL-MC‘)'{ (cob+B: ..

(co*bH + cHB:M) (Cob + Z_ar0)

! H H
= leg?b¥b + c*t"R; yc+cchB ! b+ B B, c .
0 H H H H L
Jc (878 = 2B, b+ 2B, B; ¢ = 0 for g"g to be minimized.
. gl isminimumif B B yc = Pl b (A11.3)

Combining Equations (A11.2) and (A11.3), we have

, H , Ibgl?
R per© = BL-M+1 BL-M+I ¢ = ¢ 0 ) (All.9)
where
b, OH ]
B = , (A11.5)
L-M+1 b BL_M_]
¢ =1[cypec]T, (A11.6)

b =[ b}, by, ey by, 0, ..o, O]T . (A11.7)

| ]
‘N



Equation {A11.4) can be shown as follows :

H :
B, ate1 Brmar ©

b(; bH bo OH [ Co ]
B

0 By |l b Y
_ | cobobo + cobb + BHBLy c} . (All18)
COBEMb + BF_MBI,MC
From Equation (A11.3) we have
BL}_{MBL_MC = -cOBSMb
[BL}-‘M]* BL}fM By yc = -G [BL*:‘M]+ BI?Mb
B, y¢ = -cpb. (A11.9)

Equation (A11.9) was obtained by using the full rank of B?_M . Substituting
Equation (A11.9) into Equation (A11.8), we can prove Equation (A11.4).
Now we are ready to prove Theorem 4.2.1.3. Let us introduce the following

companion matrix :

cfcg, 10 ...0"
o . I
C = = .& (A11.10)
1 CO
CLmalC 0 : of
b 'CL_M/cO 0 ...... Od

LM
The roots of C{z) = ¥} ':krk are equal to the eigenvalues of C (see e.g., Usmani,
k=0

1987, pp. 138). Let A denote an arbitrary eigenvalue of C and u = [1, U, ...,
upmlT # 0 the associat=d eigenvector
Cu = )u,

or equivalently,



HERHRSI iy

Cp

It follows from Equations (A11.3), (Al 1.4), (A11.5), (A11.7) and the Toeplitz
structure of R, , ., that

u
R yu = [of O]RL_M[O]

H
N
/ 3

19ﬂ} + A*[ 0 uH]
ct

RLvi {M +1[9])

&

b 2
ca Lo u
= |bgl? + 1[1 ﬂ]RbMﬂ[O] +
. u
o
ARL0 ) Brei| V]
2 wH
= |bof + 7&[1 ﬁ} Ibol* bABL M [O] .
o BEMb R; m u
L[ 0 uH) |bol?  bHB; p [0]
Ou H u
B mb R pm

[bol + l[bHBL-Mu + L!.{RL-M“J + A uH Ry pmu
Co

Ibolz +A {bHBL,MU - Sg}bHBL-MuJ +|M2 uH RL.Mu
Co

H

|bol? +|A)2uH R ppu

2
MR = I“H—IEOI— ) (A11.12)
u® Ry mu

We know that ufR; ,,u > 0 because

wR, yu =uiB B yu = B, ,ui >0



In addition, Il B, ,,u II% = 0, if and only if B, ,,u = 0. However, because of the

Toeplitz structure of By ,,,

" by, 0 ... 07
by ~ 1T
0 "2
u
0 by, '
. . . . o Uy pf
_ 0 ... 0 by

if and only if all b;'s are zeros. Therefore, we conclude that uHR ; i >0, and so

from Equation (A11.12), IAI% is always less than one, hence, the z¢-::. :.f C(z) are

always within the unit circle.



Appendix 12 Proof of Theorem 4.2.2.1
Proof :

From Wedin (1973) we have

261

A* - AT = CATSA AT+ (AHAY AAR P & ROLAAH (4AH )

(A12.1)

where PAJ- =I- AA" is the projector onto the orthogonal complernent of the column

spaceof A; R; L=71-A*A isthe projector onto the orthogonal complement of the

row space of A.

Let v, be any vector belonging to the space spanned by { V. v,

be any vector belonging to the column space of A, then

Pla, = 0,

S-S
R;*vy = 0.

Thus, from Equation (A12.1) we have

QOH (A+ - A+) 110 = - QOH A+ AA A"‘ uO .

However, by the SVD of A, we have

Z»

I . o«
+ H
AT = 3 FvuT,

and so,
M

i+
AM = ¥

Therefore,
VoHA* N

]
<>
(==
ool
>
<

and so, from Equation (A12.2),

- :VOH AA* AA A+ llo = QOH (A+ - A*) uo

—~ & H.aat
=V, AAMuO.

....,\“IMlanduO

(A12.2)

(A12.3)

(A12.4)



Let 4A approach zero, so we have
A+ 5 A+,
v H H
Voo = vy

and hence Equation (A12.4) becomes

H + = H A+ +
Vo dAy B, = -Vt AYAA Aty
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Appendix 13 Proof of Equation (4.2.2.26)
Proof :

First, we derive the first order perturbation of Equation (4.2.5) :

L
1+ T g2k = 0 (4.2.5)
k=1

L
1+ 3 (g, +ag)z+az)k = 0
k=1

L
1+ 3 (gk+Agk)(z'k+kz‘k‘1Az) = 0
k=1
L L L
1+ 3 gz*l+ 3 agz*- T kgz%az = 0.
k=1 k=1 k=1

Therefore, the first order perturbation of the estimated i-th zero is

L
k
lE'lAgkzi ZiHAg
sz = —4—— = A% (Al3.1)
k Z-'k'l k Z~'k'1
k2=:1 8% k§1 8%
where zH =z, 2%, ..., z'L), ag= (88 a8y ..., ag. 1T

Next we derive the first order perturbation of Equation (4.23)withM =M :

g = -ALh, (4.2.3)
-[A*+ 44} ] (b +4ah)

o
]

= - A'h- A*sh- 4A%h

g - A*ah - sAjh .
Ag = E-g = -A*ah-4Ajh . (A13.2)

If zH is the i-th row of Zy defined by Equation (4.2.2.13), then one can show that
the first order perturbation of z; is given by Equation (4.2.2.3),
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4 DiaA'g

Az = ﬁ T

T kg ™!
k=1

(4.2.2.3)

where p? is the i-th row of the pseudo-inverse of Z; defined by Equation

(4.2.2.11). g'=[ 1, g' ], and 4A'is matrix filled with noise components, i.e.,

4A' = [ ah, 4A ]
[~ w¥0)  w*(1) .... w*L) 7
w*(1)  w¥(2) .... w¥(L+1)
- ) ' ) , (4.2.2.6)
~ W¥*(N-L-1) W*(N-L) ... w*(N-1) -~

where the w(k)'s are noise added to the system.

If the additive noise w(k)'s are zero mean white noise, with the real and

imaginary part uncorrelated and have variance oy,2 for each part. In other words,

E{wx} = 0, (4.2.2.22)
E{wkw®} = 0, (4.2.2.23)
E (ww*()) = 20y’ , (4.2.2.24)

where Sk.l is the Kronecker deita function. Then from Equation (4.2.2.3),

1 Epflaa'g)
Elszl = g ——— =0, (A13.3)
T kgez*!
k=1
because
Elp; 4A"g] = p'E[aA'lg = 0. (A13.4)

Now, since
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E[pHaa g

E[ pa4’ ggH aAHp; ]

pHE[ 44" g'gH sAH | p,

L 2
Z gxw* (k)
k=0
) L . L
= pHE : Y gw, -, Y g;w(N-L-m)] P
k=0 k=0 A
L
Y gwH(NL1+k)
L k=0 -
= i (264R,)p; , (A13.5)

whara

L * . .
k; BBy > 0<i-j <L
=t (4.2.2.27)

F
g ) ji
[ 0 ;  otherwise.

r.Rg )i.j = (Rg)i-j = (R

Therefore, the variance of Az, is given by

Var (Az;) = E[laz12]-EY az] (A13.6)
. Elplad’g i)
- W T > (A13.7)
T kgz*!
k=1
2 H
o K Rgp
= W L > (A13.8)
;lkgkzxkl

= — (A13.9)




where
& - & 0
G - 0 8 . &
0 0 g

is an (N-L) x N complex matrix.

Equation (A13.7) is obtained by substituting Equations (A13.3) and (13.5}

into Equation (A13.6).

&o
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Appendix 14 Proof of property 2 in chapter 4

Var(az;) is invariant to either shifting all frequencies by a constant value or changing

all phases by a constant value or both.

Proof :
Let F = f;+C; and § = ¢,+C,, (A14.1)
then % = e2n(-i+jfi) = e-2r0Bj+j2n(f;+Cp) - z ei2nCy | (A14.2)

L L .
and 1+ 3 FZ¥ = 0= 1+ 3 g z*ei2%C = ¢

= F = g 7™, (A14.3)

Therefore, from Equation (A14.3) we have

g =Dg (A14.9)
where D = diag[1, eJ27Cy, ei47Cy ,e2"LCr), and g' =1, g1, g5, ..., g IT.
Now if
B o0 el eim i
e *-joy esz"‘-ﬂ’2 e ethj@M

ZpL = 2510 S T T Y :

| (LD oy (INLDsy*-joy o NE-Dsy ey |
(A14.5)

where s; = 2n(-08; + jf;), then
Zy, = EcZy,, (A14.6)

where E. = eJCe [ diag(l, eJ27Cy, e-44nCy, | | , e2n(N-L-1)Cyy 1,
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Defining §g jas the i-th row of Z B+L , then

Pg; = i-throwof (ZBI,{L Zg ! ZB},lL

i-throw of (Z, Zg, ) Z 2 EMeiCo

i-th row of pg’i Eg{ elCo . (A14.7

Hence, from Equation (A13.7),

) . EllBg;2A'E 1]
Var (87,) = o T —5 . (A14.8)
2 KEE

From Equations (A14.2) and (A14.3),

2 2

L . . .
Z k gk ej21tkC.,' zi-k-l e-th’kC, - jZ‘J‘I:C,
k=1

L
| I kgZ*!
k=1

L
= | Zker® . (A14.9)

From Equation (A14.7) and Equation (A14.4),

E[IPy,; A" B 1]
E[1pg;Eq e/ aA'Dg 2]

E[(p; Eq ¢/C04A'Dg)(gH DR 2A M eI B py )

- pg’i ENE[4A'Dg gHDHsAH ] Ecpy;

Py; (204R,) Py (A14.10)

where the element of the m-th row, n-th column of Eg for 0<Sm-n<L,is

~

L *
[Rg]m'n = k=2i_j gk gk-(m.n)
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L * )
= 2 %8 _(mn ei2nmnCy
k=i-j
Since,
~ L * in . .
[ECH Pg EC ]m‘" - k—zi-"j g gk-(m-n) ei2m(m-n)Cy e-JZ?t(m-l)C, e]21((11-1)(3,
§ *
= 8k §
k=i-j k Sk-(m-n)
= (R,
therefore, from Equation (A 14.10),
H PPN H 2
E(IPg; 44" E'P] = pg;(204R,) Py - (A14.11)

Comtining Equation (A14.8), Equation (A14.9) and Equation (A14.11), we
conclude that

Var (aAZ;) = Var(az;).



Appendix 15 Derivation of Cramer-Rao (CR) bounds for the parameters of M
multiple exponentially damped signals in white Gaussian noise

Let the data samples y(tp) be given by the formula
68 0k o (g + oty
ytn) = T Agelke %MW Ly, 0<n<N, (A15.1)
k=1
wherc w(ty) is a white Gaussian sequence. We will assume a constant sampling rate
of 1/At [Hz] with the first sarple taken at t = tg. Thus
= tp + nAt = (ng +n) At [sec].

2
w

Each real and imaginary part of w(t,) has a zero mean and variance o2 = 6—2—. If we
write

yitn) = xp +jzp,

then the joint probability density function (PDF) of the elements of the sample vector
y when the unknown parameter vector is @ is given by
2]

(A15.2)

N-1

Nexp '12 z

no? 1262 ;Do

M
f(y; ) —( Yt - > Ag eife gbou+ it
1

k=

= (—I—_Nexp —12' Z un)z"' (zn ‘Yn)z]

2no? -
where, if Ay, Oy, o, and ay, fork = 1,2, ... , M, are all unknown,

o = [Alv 01, 0, @1, A2, G2, 02, @2, .. ... » AM, OM. oM, mM]T,

Hn Ay e%h cos (okty + ¢k) ,

[{]
» MZ

M
Tn Z Ay e %k sin (ogt, + Ox) -

The unbiased CR bound are the diagonal elements of the inverse of the Fisher
information matrix 3, whose elements are given by
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o azlnf(l;___a_)j _—
[T = - Yo o J s =L 2,. ... , 4M (A15.3)

where the expectation E[ ] is with respect to the sample vector y. The variance of the
estimated parameters is then given by

var { &) 2 F 1) (A15.4)

where &; is the estimator of o; and [3 “1]; is the i-th diagonal element of S -L.
If f(y; a) is given by Equation (A15.2), then one can show that the elements
of 3 can be written as

N

Oltn Oin + 9Yn 0Yn

[J];; = doi doy  doy do; | (A15.5)

-1
1
a? n=0

The first-order partial derivatives are given by

)

at;’: = e%h cos (wty + §;)

din _ Aje%b sin (@it + ;)

do;

)

a;l: = -ty Aje%t cos (@ity + ;)
a N

3%,; = -ty Ajet sin (ot + 0)
) .

a};': = e sin (Wit, + ¢

d

3% = Ajetit cos (Wty + ¢i)'

a .

F‘Y&r_ai_ = -ty Aje %t sin (Wit, + )
i{_’l = th Aje %k cos (wity +¢;) .
o (A15.

From this, one can show that the Fisher information matrix is as follows:



[ S5 Sz e S
1 321 322 ....... ~anm
1 b (A15.7)
I T SOOI

where J; is the following 4 x 4 matrix

i Vijn A A AL,

na | AGn AAVE AARS, AAnw,
3 = - At Wiin 'AiAjtngijn AIA_]tn\Vijn -AA, tnéijn
2

2
“ASn AALYE AALE AAG Vijn

and
Vi = e cosA fij] |
Ein = e ginA fij]
A lij] = (O)i-(t)j)tn + (¢i'¢j)

The matrix J can then be inverted to compute the CR bounds of the estimated
parameters Ay, &y , &y and &, fork = 1,2, ...., M. The results are as follows :

varA) 2 62 [3 Vyaenyanay » (A15.8)
var@) 2 %1% Viyogyansy [rad?), (A15.9)
var@) 2 0[S My  [(rad/sec)?]

o? -1 2
= W [3 ](4k-l)(4k-1) [HZ ] , (AISIO)

v

var(@,) 02 [3 Ny  [(rad/sec)?]

2
) (21t)2(§F+01)2 [3 anay [ppm?] . (A15.11)

to
2



Appendix 16 Derivation of the magnitude square area of an exponentially

decaying signal peak
Let the timc domain exponentially decaying signal be

YO = Agelhe (TRt

for t 2 0. Denote the Fourier transformation of y(t) by Y(w), then
!Om

Yw) = y@)eitd
J-oe

= I Agedo e(-2rao + joolt e-jot dt
0

e-2mao t + j(o - )t |
-2mag + j(@o - )] ¢ = 0

]

Ageido [

Ageito
2map - j(wo - ©)

(Al6.1)

21tAp0pcosdo - Ag(wp-w)sindo +i 2Apopsindg + Ao(wo-w)cosdo

From Equation (A16.2), we have

A}
(2rog) + (0p-)?

Y@P = Y*0)Y@ =

The area under IY(w)R is then given by

« (210gf + (wo-w)?

-

(2rogf + (wp-0)2 (200 + (0o-0)2

- 2 _ - A(z) dw _ i%)_
fIY((D)I do = j = g

(A16.2)

(A16.3)



274

Appendix 17 Derivation of the area under the real part of the spectrum for an
exponential decaying signal

Let the time domain e >on: 1tially decaying signal be defined by Equation (A16.1).

Then from Equation (A16.2). the real part of the frequency spectrum is

21tA0pc0osdp - Ag(wg - w)sindyg
Re (Y =
e (Yt (2ol + (0o - ©)?

(Al17.1)
We will consider two cases: first the spectrum has no phase error, and secondly, the
spectrum has phase error.

(@) Re(Y(w)) has no phase error, i.e., ¢y = 0, then the area under Re(Y(w)) is
given by

= ” 2n Ag oy do
R d = = A . Al7.2
f e(Y(w)) dey L el 1 (o om.  (Al7.2)

~o0

(b) Re(Y(w)) has phase error, i.e., ¢ # 0, then the area under Re(Y(w)) is given
by

- I Re(Y(@) do = f 2MAQB0COSP0 - Ag(@o-)sindo 4 (4173
- (2i:00f + (0-0)2

O

Since, from Equation (A17.2),

i do = L (A17.4)
o (2100P + (00-w)2 2rag

and

B
im | —XdX - jim n{2reoR+x¥) By = 0. (A17.5)
B~ | o (2nogf + x2 B—e
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Therefore, substituting Equations (A17.4) and (A17.5) into Equation (A17.3)
results in

f Re(Y(w))dw = Apcosdg . (A17.6)

o
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Appendix 18 Linewidth of an exponentially damped signal

Let the time domain exponentially decaying signal be defined by Equation (A16.1),
then its Fourier transformation is given by Equation (A16.2),i.e.,

Y(w) = 21t Apacosdp - Ao{wo-w)sindg v 2rApopsingg + Ag(wg-w)cosdn

(2mag) + (wp-w)? (2rogf + (wo-0)?
(A18.1)
IY(@)! = \/ AS , (A18.2)
(2nopf + (wo-w)?
and so, IY(w)! at ay is
Y(@g) = th“’ao. (A18.3)

To find the frequencies where the magnitude is half-height of that from Equation
(A18.3), solve the following equation for c:

1 Ao _ \/ Ay
2 2mog (2mog)? + (wo-)?

which results in

© = w23 ay. (A18.9)
Therefore, the full-width at half-height for magnitude spectrum is

Ao = 2V32naq,. (A18.5)

Now consider the real part of the spectrum with ¢ = 0. We have from Equation
(A18.1) that

2rAq0g
(2rag)? + (0g-w)? ’

Fe (Y()) (A18.6)

and so,

Ao
2ragy -

Re (Y(wp)) (A18.7)



To find the frequencies where the real part of the spectrum is haif-height of that from
Equation (A.18.6), solve the following equation for w:

1 Ao 2nAg0y

22r0p T (2rag)+(0g)?

The result is as follows :

® = ot 22nay. (A18.8)

Hence, from Equation (A18.8), the full-width at half-height for the real part of the
spectrum with no phase error is
Aw = 4roy,. (A18.9)
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Appendix 19 Derivation of time domain signal-to-noise ratio ior an exponentially
decaying signal embedded in complex white Gaussian noise

Let us denote the time domain exponentially decaying signal by

y(n) = Agelfe (2mog+jognat n=0,...,N-1, (A19.1)

where a > 0. We further assume that the noise sequence w(n) is white complex

Gaussian noise with uncorrelated real and imaginary parts each having a variance of
2

G, L&,
E{wk)}] = 0, (A19.2)
E {(wk)wQ)} = 0, (A19.3)
E{wlw*()} = 20?3, , (A19.9)

where 8“ is the Kronecker delta function and E{w(k)} is the ensemble average of

w(k)'s. Define the time domain signal-to-noise (SNR) to be

average power of signal y

(SNR), = average power of noise w
E{PI!}
= E{P,] - (A19.5)
Now,
E{Py} = E{mnéoly(n)l }
_ 1 N1 2 . “dmognAt
= W& I, Aol
_ IAOIZ l_e-4wonNAl .
= .0
NAL o dmat ], since oy
IA0|2 1
= Nat 1-[1-4mogat+...] ° for -4m o at<<0
2
= 20 1 . (A19.6)

NAt  drogat

278



Next,

1

N-1
E(P) = Elxg 2, lw(n)!2 }

1 M
Nat EO E {|W(rl)|2}
n=

1

1,2
Nat 20, N

2
20,

At

(A19.7)

Therefore, substituting both Equations (A19.6) and (A19.7) into Equation (A19.5)

results in

1 1 1Agl?
2N ZKQOAt 20.‘2‘, :

(SNR), =

(A19.8)

279
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Appendix 20 Statistical relationship of zero mean white Gaussian noise in time
domain and frequency domain

In this appendix, we will show the statistical relationship of sequences of
zero mean complex white Gaussian noise in time domain and frequency domain. By
statistical relationship, we mean the average and standard deviatio .

Le. us denote w(n), forn= 0,1,... N-1,tobe a sequence of white
complex Gaussian noise with zero mean, with uncorrelated real and imaginary parts
each having a variance of o&, ie.,

E{w®} = 0, (A20.1)
E {w)w()} = 0, (A20.2)
E {(wow*()} = 20?3, (A20.3)

where 81(.1 is the Kronecker delta function and E{w(k)} is the ensemble average of
w(k)'s. From Equation (A4.2), the DFT of w(n) is

N-1 .
WmF) = At ¥ wi(n)ei2mmN (A20.4)

n=0

where F= NLAt and At is the sampling interval in the time domain,

If we take the ensemble average of Equation (A20.4) and use Equation
(A20.1), w2 get

N-1 .
E{(W(mF)} = At ¥ E{w(n))ei2rmmN _ o (A20.5)
=0

n

Next, the variance and covariance of the estimator in Equation (A20.4) must
be derived. The covariance is defined as

cov {(W(mF),W(kF)} = E (W*mF)W(kP)} - E (W(mF)} E (W(kF))}.
(A20.6)

From Equation (A20.5) the last term in Equation (A20.6) is zero, so we only need
to compute E {W*(mF)W(kF) }. If Equation (A20.4) is used, we get



N-1 N-1 R .
E(WXmP)WkF)} = (a)? ¥ 3 E{w*n)w(l)} ed2rnm/Ng-j2nkiN
n=0 1=0
(A20.7)
Substituting Equation (A20.3) into the above equation we have
N-1 R
E (WXmF)W((kF)} = (a2 T 202 ciZrnm-kN (A20.8)
n=0

Therefore, from Equation (A20.6), (A20.5) and (A20.8), we find

N-1 .
cov (WmF), WnF)] = (a22oy? 3 ed2nnm-N (A20.9)
0

n=

Let us now use Equation (A20.9) to study the variance of the estimator in Equation
(A20.4). If m = k, Equation (A20.9) becomes

var (WmF)} = (at)2 2042 N, (A20.10)

which is equal to 2 times the variance of w(n) in the frequency domain, 2(cw)?,

because the transformed noise sequence is still white complex Gaussian with zero
mean, with uncorrelated real and imaginary parts each having a variance of (ow)?.

That is,

var (WmPF)} = 2(ow)} = (a)22042 N. (A20.11)
Therefore, the standard deviation of the noise in the real part of the estimator in
Equation (A20.4) is given by

(Ow) = AtowVN. (A20.12)



Appendix 21 Levenberg-Marquardt method of nonlinear least squares problem
Assume that the model to be fitted is
y = y(x; a) (A21.1)

and the %2 merit function is

N
@ = D [yi-yx;a))2. (A21.2)

i=1

The gradient of the 2 merit function with respect to the parameters a has components

dx*(a)
aak

N ..
-22 [ya-y(xi;a)]g’%ﬁ, for k=1,2,...., M.
i=1 k

(A21.3)

The second partial derivative of 2 with respect to a can be approximated by

(A21.4)

M ~ 2 i [a)’(xi; a) dy(x;; a)
day da; oay oa; |’

i=1
If the current parameters a; are good enough so that the %2 merit function is

sufficiently close to the minimum, then the 2 function may be well approximated by
its second order Taylor series expansion around the point a;:

@ =~ x%a)+qTa-a)+ %{a -a;fH{a- aj), (A21.5)
where H; is the Hessian matrix of %2 evaluated at a = a;, whose k-th row and 1-th
column element is

9%x*(a)
: = | A2l.

Hi = | da e, (A9
and q; is the gradient of %2 evaluated at a = a;, whose k-th element is

ox%(a
[k = ’ 75() . (A21.7)
Ak la=ua

o

-~



If the approximation is a good one, then we know how to jump from the
current trial parameters a; to the minimizing ones a_;, in a single leap as in the

following. We equate to zero the gradient of x;%(a)

Ix¥(a)
aak

q;+Hfa-a) = 0, (A21.8)

which, if H; is nonsingular, has the solution
Amir T 8441 = a;-H;lq;. (A21.9)

On the other hand, Equation (A21.5) might be a poor local approximaticn to the
shape of the function that we are trying to minimize at a;. In that case, we can take a

step down the gradient, as follows:

a,,; = a; -constantx q;, (A21.10)
where the constant is small enough not to exhaust the dcwnhill direction.

Combining Equation (A21.9) with Equation (A21.4), we have

M

2 [Hlda = [k, (A21.11)
j=1

where Saj = [ai,',l]j - [a,]J .
Equation (A21.10) can also be translated to

da; = constant x [q;];. (A21.12)

Marquardt (1963) put forth an elegant method, related to an earlier suggestion
of Levenberg, for varying smoothly between the extremes of the inverse Hessian
method (Equation (A21.11)) and the steepest descent method (Equation (A21.12)) as

follows: the constant in Equation (A21.12) is set to be proportional to the j-diagonal
element of the Hessian matrix evaluated at a = a;

o = X[qu']; (9], (A21.13)
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where A is some non-dimensional factor which has the possibility of being set far
greater than 1 to cut down the step.

If we define a new matrix H'by the following prescription:
[H;1;; = [Hj; (1+ A)
[H;lx = [H;ly , for(j=k). (A21.14)

Then Equations (A21.11) and (A21.13) can be replaced by

M
Y [Hik;%a = [qik. (A21.15)

=1

When A is very large, the matrix H' is forced into being diagonally dominant, so
Equation (A21.15) goes over to be identical to Equation (A21.13). On the other
hand, as A approaches zero, Equation (A21.15) goes over to Equation (A21.11).

Given an initial guess for the set of fitted parameters a, the recommended
Marquardt rezipe is as follows:

1. Compute x3(a) .
2. Pick a modest value for A, say A = 0.001.
3. Solve Equation (A21.15) for 8a and evaluate x2(a + da).

4. If x%(a + da) 2 x2(a), increase A by a factor of 10 (or any other substantial
factor) and go back to step 3.

5. If x2(a + da) <X2(a), decrease A by a factor of 10, update the trial solution a
to a + da, and go back to step 3.

The iteration may be stopped on the first or second occasion that %2 decreases by a
negligible amount.






