
Mining StackOverflow to Filter out Off-topic IRC

Discussion

Shaiful Alam Chowdhury, Abram Hindle

Department of Computing Science

University of Alberta, Edmonton, Canada

Email: {shaiful, abram.hindle}@ualberta.ca

Abstract—Internet Relay Chat (IRC) is a commonly used
tool by OpenSource developers. Developers use IRC channels
to discuss programming related problems, but much of the
discussion is irrelevant and off-topic. Essentially if we treat IRC
discussions like email messages, and apply spam filtering, we can
try to filter out the spam (the off-topic discussions) from the ham
(the programming discussions). Yet we need labelled data that
unfortunately takes time to curate.

To avoid costly curration in order to filter out off-topic
discussions, we need positive and negative data-sources. On-
line discussion forums, such as StackOverflow, are very effective
for solving programming problems. By engaging in open-data,
StackOverflow data becomes a powerful source of labelled text
regarding programming. This work shows that we can train
classifiers using StackOverflow posts as positive examples of
on-topic programming discussion. YouTube video comments,
notorious for their lack of quality, serve as training set of off-
topic discussion. By exploiting these datasets, accurate classifiers
can be built, tested and evaluated that require very little effort
for end-users to deploy and exploit.

I. INTRODUCTION

The emergence of social networks and other web-based

communication systems have made on-line discussion groups

and forums a reality. Programmers use a variety of discussion

platforms with different ranges of time constraints combined

with synchronous and asynchronous behaviour. StackOverflow

(SO) is an example of asynchronous long lived discussion

medium: questions and answers are created at different times

and the discussion is archived. Internet Relay Chat (IRC) is

synchronous and short-lived. Only those in the chat channel, at

the time, see the discussion and the discussion occurs mostly

at the same time.

IRC is a valuable resource for programmers because it can

enable developers to interact in near-real-time with other de-

velopers. One can contact a project’s developers and seek clar-

ification and help. Immediate help available from OpenSource

experts makes IRC quite attractive to programmers [9].1

As such there are many general-purpose programming IRC

channels such as #python, #java, and #haskell. The success

of IRC programming channels is so pervasive that even

the official Python documentation site recommends Python

programmers to use different IRC Python channels.2

1Fizer Khan, Every Programmer should use IRC,
http://www.fizerkhan.com/blog/posts/Every-Programmer-should-use-IRC.html
last accessed: 22-Feb-2015

2https://www.python.org/community/irc/ last accessed: 22-Feb-2015

IRC channels are built around channel names, the commu-

nities, and the topics of the channels. Sometimes users, in

their own sense of community, post public off-topic messages

to the IRC channels. This can hinder the effectiveness and

popularity of a particular channel.3 Since active administration

of a channel takes human effort, the idea of an off-topic

filter came up: what if we could improve programming IRC

channels for the users by simply highlighting those messages

that were on-topic.

Our contribution is leveraging StackOverflow data to pro-

duce a filter that can hide off-topic discussions in IRC chan-

nels and similar instant messaging and channel-based chat

products. We have implemented machine learning techniques

to filter out off-topic discussions from on-line programming

communities, using the Python IRC channel as a test case.

The problem with using a classifier to filter out IRC off-

topic discussion is the absence of labelled IRC data.

Making labels from manual annotation of IRC discussions is

not a feasible approach; a very large number of labelled exam-

ples are necessary for building an accurate text classification

model [8]. This led us to design our training phase by exploit-

ing on-line community discussions from other sources rather

than IRC. We used Python related questions/answers from

StackOverflow as our positive examples (i.e., programming

discussions), and YouTube video comments as our negative

examples (i.e., off-topic discussions).

The contributions of this paper are two fold: 1) We

show successful machine learning approaches for filtering

out Python IRC off-topic discussions along with a prototype

implementation of our proposed model; 2) We show that

similar data from different sources can be used for text

classification, which is helpful in case of scarcity of labelled

training examples.

II. RELATED WORK

Text classification has been considered as one of the clas-

sical information retrieval problems. By combining labelled

examples with classification algorithms such as Neural Net-

works, Support Vector Machines (SVM), and Naive-Bayes, ac-

curate classifiers of unseen examples have been produced [1].

Labelled text data is sometimes very scarce, thus methods

to work with partially labelled data have been proposed [8].

3 https://news.ycombinator.com/item?id=5587268 last accessed: 22-Feb-
2015

http://www.fizerkhan.com/blog/posts/Every-Programmer-should-use-IRC.html
https://www.python.org/community/irc/
https://news.ycombinator.com/item?id=5587268

In cases, where labels for both classes are missing, or very

limited, semi-supervised or unsupervised learning algorithms,

such as clustering, have been used [1]. Shahib et al. [9]

were the first to investigate mining IRC logs and IRC log

abstraction techniques. Squire et al. [10] studied profanities in

OpenSource related IRC channels by text filtering. Classifying

IRC data is, however, even more difficult as large amount of

data is not publicly available and many of the messages are

short; it can be impractical and privacy invasive to collect

a large number of examples—thus leading us to follow an

unconventional machine learning approach: using data from

different sources for training.

III. METHODOLOGY

Our proposed system consists of five different phases: 1)

Retrieve SO questions/answers tagged with Python (positive

examples); 2) Retrieve YouTube video comments (negative

examples); 3) Train and cross validate the models; 4) Test

model performance; 5) Employ trained model on IRC chat.

A. Data Collection

StackOverflow (SO) (http://stackoverflow.com), with more

than three million registered users, is perhaps the most popular

programming Q&A site. We collected 200,000 questions and

answers on Python randomly from SO [12][11], and used them

as positive examples for training; the associated tags of a post

(e.g., html) were removed and the combined text and code

parts were used. StackOverflow questions and answers are

moderated and thus some semblance of quality is enforced;

the same might not be true for user comments as they do

not generate reputation. On the contrary, we considered video

comments on YouTube (http://youtube.com)—the most popular

user-generated video site—as a source of learning off-topic

discussions. We have selected only News & Politics, Sports,

Games, Movies, Music, Entertainment and Comedy videos

for data collection, as our personal judgment suggests that

these are the most common off-topic topics of discussion in

IRC programming channels. We collected 200,000 comments

from approximately 800 popular YouTube videos using Python

YouTube API.4 Finally, using a small number of publicly

available discussions in IRC python channel,5 we manually

annotated two different datasets: 1) Gold Cross Set with 50

positive and 50 negative examples for cross validation phase

and 2) Gold Test Set with 150 positive and 150 negative

examples for testing the accuracies of our models.

B. Data Pre-processing

We processed all the collected texts using Python NLTK [2].

In order to represent each post as a bag of words, we

used WordPunctTokenizer to separate words by whitespace

and punctuation, and SnowballStemmer to transform inflected

words to their root forms. English stop words were removed

to reduce the feature space size. We retrieved a total of

1,414,765 words with 76,512 unique words from 200,000

4 https://developers.google.com/youtube/1.0/developers guide python
5http://www.irclog.org/freenode/python.html last accessed: 23-Feb-2015

YouTube comments and a total of 15,028,825 words with

250,179 unique words from 200,000 SO Python posts. Fi-

nally, Each message from IRC, StackOverflow, and YouTube

was converted to a feature vector—a vector representing the

number of occurrences of every words in a text. The best

performance was achieved when bags of words were formed

by using both text and code from SO.

C. Classification Algorithms

In this paper, we compare the performance of two classifi-

cation algorithms in classifying IRC data: Multinomial Naive-

Bayes classifier (MNB)—a simple generative classifier widely

used for text classification; and Support Vector Machines

(SVM)—a powerful discriminative classifier with the ability

to generalize in the presence of large number of features.

1) Multinomial NaiveBayes: The MNB classifier models a

document as a bag of un-ordered words. We represent our

objective function in MNB as follows: The predicted class of

a document (positive or negative) is obtained from equation

1; P (ci) is the prior probability of class i. P (w|ci) is the

probability of the word w given the document class is ci,
as presented in equation 2 with Laplace smoothing to deal

with unseen words in test dataset—|V | is the number of

unique words after combining both the positive and negative

documents; N ci is the total number of words in class ci;
and nci

w is the frequency of the word w in class ci. The

Laplace smoothing can lead to an inaccurate estimation when

the numbers of words differ significantly between the two

classes. For example, a word with the same relative frequency

in both classes should have no discriminative power, but this

is no longer true after applying Laplace smoothing. This is

why a normalized count of words is used (equation 3)—thus

ensuring no distortion to a word’s discriminative power, which

holds for any given value of α [4].

C = argmax
ci∈{+,−}

{logP (ci) +
∑

w∈doc

logP (w|ci)} (1)

P (w|ci) =
1 + nci

w

|V |+N ci
(2)

nrciw = α ∗
nci
w

N ci
(3)

Another important aspect of text classification is feature

selection—identifying only the words with significant discrim-

inative abilities in order to avoid over-fitting [5]. One of the

commonly used techniques to select important words is to

calculate the gini-index [1], as presented in equation 4; pc(w)
is the probability of a class c document given the document

contains the word w; Pc is the prior probability of class c and
K is the number of classes. A word with a gini-index 1/K
indicates that the word has no discriminative power, whereas a

gini-index 1 implies full discriminative power. For simplicity

we used our own Python implementation of MNB.

G(w) =
K∑

c=1

(
pc(w)/Pc∑K

i=1
pi(w)/Pi

)2 (4)

http://stackoverflow.com
http://youtube.com
https://developers.google.com/youtube/1.0/developers_guide_python
http://www.irclog.org/freenode/python.html

2) Support Vector Machines: The Soft-margin cost sensi-

tive SVM has the primal [3]:

argmax
w,b,ξ

1

2
w

T
w + 1{yi = 1}C+

∑
ξi + 1{yi 6= 1}C−

∑
ξi

(5)

st : yi(w
T
x+ b) ≥ 1− ξi (6)

Here w is the weight vector; x is the feature vector; 1(.) is an

indicator function which returns either 0 or 1; C+ (C−) is the

cost for misclassifying a positive (negative) example; and ξi
is a slack variable through which misclassification is allowed

to deal with noisy data. Such a formulation of SVM is helpful

when making mistakes for one class is more expensive than

other. Finally, SVMlight was used for our experimentation [6].

IV. EXPERIMENTS AND RESULT ANALYSIS

In this section, we attempt to show the effectiveness and

weaknesses of different machine learning treatments of off-

topic discussion filtering.

a) Parameter tuning: The trained models (using SO

posts and YouTube comments) for MNB and SVM were

validated using the Gold Cross Set data (not the test data).

We adjusted the model parameters based on the following

observations: 1) The Snowball stemming algorithm performs

better than the Porter stemming for both MNB and SVM; 2)

For MNB, selecting the most important features using gini-

index works better when words with less than three occur-

rences are deleted; 3) In case of SVM, vector representation

with term-frequency outperforms the binary representation; 4)

Classification accuracy of SVM improves dramatically if the

intercept parameter (b) in equation 6 is set to zero; and 5)

Simple linear kernel offers much better performance than non-

linear kernel for IRC filtering—complementing earlier findings

in text classification [13].

b) Accuracy: We used the Gold Test Set to evaluate

the performance of both MNB and SVM. Table I shows the

classification accuracies of MNB (using all the parsed words

in training) and SVM (using all the words and equal penalty

for false positive and false negative, i.e., C+ = C− in equation

5). The results are interesting and offer different avenues of

improvements—although the F-scores are very similar, the two

algorithms outperform each other significantly when precision

and recall are considered separately. For example, when SVM

predicts a message as positive, the chance is very high that

the prediction was correct (i.e., SVM offers high precision).

Unfortunately, SVM also misclassifies a significant number of

positive examples (i.e., low recall), which can be unacceptable

for lots of IRC users. Conversely, MNB offers better reliability

by detecting almost 97% positive examples correctly, although

the noise reduction is much lower than SVM.

c) Precision-recall trade-offs: A system which enables

the filtering out of off-topic messages is encouraging and can

be adopted immediately. We believe that, for a context like

IRC, a method with 100% recall and 80% precision is more

desirable than a method with 90% recall and 90% precision—

it is unacceptable to classify a programming discussion as

TABLE I
PERFORMANCE OF CLASSIFIERS ON Gold Test Set (IRC MESSAGES)

Precision Recall F-score

NaiveBayes 80.5% 96.9% 87.9%
SVM 91.7% 84% 87.6%

off-topic, in contrast to labelling an off-topic message as a

programming message. To achieve that goal, we try different

modeling approaches—selecting only the important words as

features for MNB, and imposing higher penalty for false

negative than false positive in SVM. Figure 1(a) shows the

impact of increasing the number of words on MNB’s precision

and recall; gini-index was used as the ranking parameter for

selecting the most important words. The prediction accuracy

of MNB is very poor if the number of words is less than

50,000. Yet the recall is better (very close to 100%) with

the top 50,000 words than with the top 60,000. Thus we

recommend MNB with 50,000 most important words for IRC

as it avoids missing any programming discussions with 65%

off-topic message reduction. Interestingly, the performance of

SVM was significantly worse for any selected number of

words compared to using all words. This could be because

of SVM’s capability of overcoming the over-fitting problem

by separating positive and negative examples with the largest

possible margin—consequently, increasing the number of fea-

tures offer better accuracy as redundant features, if there is

any, are excluded automatically.

We also experimented with cost sensitive SVM to make the

trade-off between precision and recall. Figure 1(b) starts with

equal cost for both false negative and false positive, showing

much higher precision than recall for such a configuration.

Not surprisingly, an improvement in recall with a degradation

in precision is observed as the penalty for false negatives

is increased. The recall and precision become 89.4% and

87.4% respectively when the cost of false negative is 160

times more than the cost of false positive; and after that

increasing the sensitivity does not change the result as no

more false negative occurs in the training data. Although this

is an improvement, in terms of reliability, over the previous

cost insensitive methodology, the recall of SVM is still much

worse than the recall of MNB with 50,000 words.

d) Discussion: Our initial experiments suggest that fil-

tering off-topic discussion out from programming discussions,

such as from the IRC python channel, is possible with ac-

ceptable accuracy. Our work can be extended substantially

by experimenting with more IRC data—the IRC discussions

we used for testing can be biased although we have tried to

select IRC messages from different aspects of programming.

Moreover, the size of the test set can be increased by selecting

and labelling more messages through manual inspections.

Figure 2 shows the prototype implementation (using MNB

with 50,000 selected words) for filtering actual IRC messages.

Positively predicted messages by MNB are coloured black in

contrast to gray for negatively predicted messages. This type

10000 20000 30000 40000 50000 60000
of words

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
Precision
Recall

(a) Multinomial Naive Bayes

100 101 102 103

Cost of false negative

84

85

86

87

88

89

90

91

92

Pe
rc

en
ta

ge

Precision
Recall

(b) Cost sensitive Support Vector Machine

Fig. 1. Trade-offs between Precision and Recall: Vocabulary Size of Multinomial Naive Bayes, and False Negative cost of a Support Vector Machine.

of system would be very helpful for IRC users to get through

quickly on programming related messages. Another important

aspects of adopting such a system is that inappropriately

written programming messages (especially when the message

is very short) are sometimes misclassfied, thus incentivizing

the users to write more formally. For example, the second

last message in Figure 2 should have been coloured black

instead of gray, as BeautifulSoup is a Python package for

parsing HTML documents; and in our models BeautifulSoup

has a very high discriminative power when written without

an intermediate space. Interestingly, the second last message

in our figure is predicted as on-topic if we remove the space

(shown in the last message)—motivating the users to write

more precise posts.

<anonymous> yes, i have a class element that has .parent

<anonymous> Stick some debug info the "if self.parent:" block, at line 12.

<anonymous> so I guess it's not the canadians fault

<anonymous> I was a philosophy "major" (we don't use that term here)

 so I'm pretty useless to anyone.

<anonymous> o = element.getOrigin(); debLog("final origin: %s" %

 (o))

<anonymous> country and perhaps major city are the best you can

 hope for

<anonymous> e.g. get it to print the output of c.getOrigin(...) in the

 block there

<anonymous> use beautiful soup

<anonymous> use beautifulsoup

Fig. 2. Example of how the off-topic filter could be used on IRC: black text
indicates relevant, grayed out text indicates off-topic.

V. CONCLUSION

We evaluated the performance of two machine learning

algorithms to detect off-topic discussions in programming

related IRC channels. These classifiers could be used to high-

light on-topic messages for an IRC user. This methodology

is accessible to users because the training sets require no

annotation on their part: StackOverflow posts and YouTube

video comments for classifying IRC messages can be curated

and shared to enable building topic-specific classifiers, without

manual annotation. We have shown that StackOverflow acts as

a corpus of software specific texts that can be used by end-

users to avoid manual annotation. Future work is to evaluate

this tool with users on different contexts and channels.

ACKNOWLEDGMENT

Shaiful Chowdhury is supported by the Alberta Innovates -

Technology Futures (AITF) to pursue his PhD research.

REFERENCES

[1] C. C. Aggarwal and C. Zhai. A survey of text classification algorithms.
In Mining Text Data, pages 163–222. Springer, 2012.

[2] S. Bird. Nltk: The natural language toolkit. In COLING-ACL, pages
69–72, Sydney, Australia, Jul. 2006.

[3] P. Cao, D. Zhao, and O. Zaiane. An optimized cost-sensitive svm for
imbalanced data learning. In Advances in Knowledge Discovery and

Data Mining, volume 7819, pages 280–292. Springer, 2013.

[4] E. Frank and R. R. Bouckaert. Naive bayes for text classification with
unbalanced classes. In PKDD, pages 503–510, Berlin, Germany, Sep.
2006.

[5] K. Javed, S. Maruf, and H. A. Babri. A two-stage markov blanket based
feature selection algorithm for text classification. Neurocomputing, 2015.

[6] T. Joachims. Making large-scale SVM learning practical. In Advances in

Kernel Methods - Support Vector Learning, chapter 11, pages 169–184.
MIT Press, Cambridge, MA, 1999.

[7] C. A. Lampe, E. Johnston, and P. Resnick. Follow the reader: Filtering
comments on slashdot. In CHI, pages 1253–1262, San Jose, California,
USA, April 2007.

[8] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers
using positive and unlabeled examples. In ICDM, pages 179–186,
Melbourne, USA, Nov. 2003.

[9] E. Shihab, Z. M. Jiang, and A. Hassan. On the use of internet relay
chat (irc) meetings by developers of the gnome gtk+ project. In MSR,
pages 107–110, Vancouver, Canada, May 2009.

[10] M. Squire and G. Rebecca. FLOSS as a source for profanity and insults:
Collecting the data. 2015.

[11] StackExchange. http://data.stackexchange.com/stackoverflow/queries
last accessed: 28-mar-2015.

[12] A. T. T. Ying. Mining challenge 2015: Comparing and combining
different information sources on the stack overflow data set. In MSR

2015, page to appear, 2015.

[13] W. Zhang, X. Tang, and T. Yoshida. Tesc: An approach to text clas-
sification using semi-supervised clustering. Knowledge-Based Systems,
75(0):152 – 160, 2015.

