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Abstract

Interference is known as a major obstacle for the spectral efficiency increase

promised by multiple-antenna techniques in cellular wireless communications.

Recently, it has been shown that multi-cell coordination can mitigate interfer-

ence and improve system performance dramatically. Hence, we concentrate

on the downlink of multi-cell multiple-antenna (at both ends) wireless

networks also known as network multiple-input multiple-output (MIMO) or

coordinated multi-point (CoMP) transmission/reception systems. In multi-cell

coordination, antennas from multiple base stations form a large MIMO system.

Consequently, coordination comes with high signal processing overhead. In

this dissertation we focus on reduced-complexity transmission and reception

strategies in partially coordinated multi-cell systems, where the user data are

partially shared between base stations. We first model partial coordination

using MIMO interference channel with generalized linear constraints. Then,

we investigate linear transmission strategies using this channel model. The

contributions of this dissertation fall into the following categories of techniques:

(i) Block diagonalization (multiple-antenna multi-user zero-forcing) transmit

precoding under individual power constraints. (ii) Minimum mean square

error (MMSE) linear precoding and equalization design; (iii) Worst-case

robust precoding and equalization, where we consider imperfect channel

state information available at the transmitter and receiver. Furthermore, our

simulation setup accounts for realistic cellular parameters in evaluating the

performance in multi-cell networks.
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Chapter 1

Introduction

Mobile communications have received significant attention worldwide in the

past few years due to introduction of user-friendly devices, which are capable

of providing high-speed data access. The number of mobile phone users has

exceeded 5.9 billion and currently these users demand cheap internet access

as fast as their wired lines. This introduces increasing pressure on the mobile

operators to provide the users with very high bit rates at high quality of

service (which includes fairness), while dramatically reducing cost per bit/sec

transmitted.

1.1 Motivation

Wireless Communication involves two fundamental challenges. First is related

to the properties of the mobile radio channel that introduces small-scale

multipath fading, distance-dependant path loss, and large-scale shadow fading

caused by obstacles in the propagation path. Diversity techniques help

combat fading in the wireless channel, and include time, frequency, and

antenna diversity (also known as space diversity). Diversity makes possible

reception of independently faded replicas of the same transmitted radio signal

through multiple propagation paths (dimensions) and with suitable combining

decreases the probability of failure in transmission. Deployment of multiple

antennas at the transmitters and/or the receivers also referred to as multiple-

input multiple-output (MIMO) provides even more potentials. In addition to

diversity, MIMO systems achieve spatial multiplexing (SM), which leads to

1



a linear capacity gain of the system (or degrees of freedom). In this case,

the capacity of wireless system will be increased linearly with the minimum

number of transmit and receive antennas when SM is employed [1, 2].

The second challenge in wireless communications (and especially in cellular

systems) is the existence of interference when multiple users share a wireless

channel to communicate. In the downlink of cellular systems, the interference

may be from different signals transmitted from a transmission point (base

station (BS)) to multiple users within a cell (i.e. intra-cell interference) or

it can be from signals transmitted from the neighboring BSs intended for its

own users (i.e. inter-cell interference). The potential capacity gains of MIMO

techniques in point-to-point [1, 2] and single-cell multiuser [3] systems are

significant, but in cellular environments the gains are severely degraded due

to intra- and inter-cell interference [4,5]. Traditionally, this problem has been

handled by assigning separate orthogonal radio resources (e.g. time, frequency,

code) to adjacent cells/users. Hence, the communication of each cell/user takes

place in a separate channel than the other cells/users. This is at a price of

decreasing the spectral efficiency of the system1. For example, full frequency

reuse is used in code division multiple access (CDMA) systems, where different

users’ transmissions are separated by spreading codes rather than frequency.

Due to full frequency reuse, CDMA systems have to manage the interference

more efficiently. Hence, the main challenge is to handle interference while

keeping the spectral efficiency high.

In cellular environments, the interference is more severe for the cell-edge

users. These users receive degraded signals from their associated BS, but also

receive significant amount of interference from the neighboring BSs. A very

promising technique of mitigating inter-cell interference involves coordination

(or cooperation) among BSs. The first attempts in this direction were based

on the concept of soft handoff or macro-diversity. With soft handoff a mobile

user at a cell boundary may receive its signal from more than one BS and

perform maximal ratio combining (MRC) of several replicas of its signal.

1Spectral efficiency is the net information rate that can be transmitted within a specific
bandwidth and it is measured in bit/s/Hz.
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In the uplink a selection combining (SC) of user signals received by several

BSs may occur under the control of the mobile switching center. More

recently, the inter-cell interference management techniques evolved to include

coordination of transmission from several BSs using high-capacity backhaul

links. This is usually referred to as network MIMO, or coordinated multi-

point (CoMP) transmission/reception, or multi-cell coordination (see [6] and

references therein).

Multicell coordination is an efficient technique to improve the cell-

edge and average data rates, so that it increases spectral efficiency (and

high capacity backhaul link

CPS

Central Processing Site

(a) Conventiontal cellular system

(b) Coordinated multi-cell system

Figure 1.1: (a) Conventional cellular system: The BSs are not coordinated.
Each BS intends to transmit to the users within its cell area. (b) Coordinated
multi-cell system: Neighboring BSs are connected via a high capacity back-haul
link to a central processing site, which manages the signaling of the system.
Green arrows represent signals with intended message for the user (useful
signals), while interference signals are in red.

3



capacity) especially for the dense networks such as in urban areas. Backhaul

links between the BSs enable this cooperation. Recently developed wireless

communication standards like long-term evolution (LTE) and LTE-Advanced

require high-capacity backhaul (fibre or microwave) links and often the cost of

the backhaul links increases less than linearly with the backhaul capacity. The

backhaul links may be connected to a central processing site, which is able to

jointly design downlink transmission using the channel information obtained

via feedback and exchanged through the backhaul links.

Simply speaking, cellular downlink communication infrastructure consists

of BS transmitters and mobile station (MS) receivers. The transmitters are

typically static and lower in number, while the receivers are mobile and much

larger in number. Hence, the transmitters can be connected and coordinated.

This brings significant potential to maximize the net throughput of the system,

while keeping the processing burden at the transmitter side.

Due to infeasibility of coordination between all BSs in the network,

clustering in network MIMO has been proposed in [7–9]. In the clustered

network MIMO, the neighboring cells are grouped together into clusters. Each

cluster contains a number of cells. The BSs within each cluster are coordinated

together in transmission to the users assigned to the cluster. The clustering

als dealing with the inter-cluster interference and if it is treated as noise, each

cluster can be modeled separately. Unless otherwise stated, we concentrate on

a cluster of coordinated BSs in this dissertation.

1.2 Network MIMO

(Multinode Cooperative InterferenceMan-

agement)

Network MIMO is a network of multiple nodes (transmission points) each

equipped with multiple antennas, which transmit to a number of multiple-

antenna users. The transmission points are connected to each other and

through this connection they can (i) share user data, (ii) exchange channel

state information (CSI), and (iii) jointly process/optimize their transmission.

4



Hence, network MIMO can be categorized based on the level of coordination

through this backhaul link.

If we consider full user data sharing and CSI exchange between the BSs, a

well-known MIMO broadcast channel (BC) model emerges (fully cooperative

transmitters broadcast to non-cooperative users). Therefore, most of the

traditional multiuser MIMO transmission strategies can be extended in a

straightforward fashion [5]. If we highlight particular characteristics of multi-

cell systems, then these extensions can be nontrivial and novel. Nevertheless,

the major difference between the multi-cell cooperation and a single-cell system

lies in the type and amount of information exchanged via backhaul links. This

defines the challenges in multi-cell coordination and vast research opportunities

in the area. The coordination techniques can be classified as interference

coordination, MIMO coordination, multi-cell cooperation with partial data

sharing, and finally multi-cell cooperation with partial data sharing and partial

CSI exchange (partial cooperation)2. Partial cooperation in multi-cell systems

will be the main focus of this dissertation. We will review these coordination

techniques in the following sections.

1.2.1 Interference Coordination

When the BSs are only aware of perfect CSI but they do not share their

user data, multi-cell coordination is in a form of interference coordination to

mitigate the interference in the system. The information theoretical channel

model for this scenario is interference channel [12], in which cooperating

transmitters transmit to their own users. This is illustrated in Figure 1.2.

In this figure, the BS1 knows the message of the user MS1 and therefore

the transmitted signal contains useful message, while the BS1 is not aware

of messages of the users outside its cell area (i.e. MS2 and MS3). Hence, its

transmitted signal contains interference only (depicted by a red line). However,

the exchange of CSI between the BSs enables management of interference to

improve the overall performance.

Several transmission and reception strategies have been discussed in the

2Different categories of multi-cell coordination is reviewed in [10, 11]
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u₃

u₁
u₂

MS₃

BS₂

BS₁

(b)

(a)

BS₁

BSK

BS₂

MSK

MS₁

MS₂

MS₁
MS₂

BS₃

CPS

Figure 1.2: (a) Interference coordination where each BS delivers message
to the users within its cell area. (b) Interference channel model with
K transmitter/receiver pairs. Green arrows represent useful signal, while
interference signals are in red.
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literature for interference channels. In the following section, we review these

techniques briefly.

Power Allocation

A simple method of interference coordination involves joint power allocation

across multiple BSs. Power allocation and scheduling in multi-cell systems has

been investigated in [13–16]. Power control in the multiuser scenario, where

the spectrum is commonly shared, is a topic of intensive research in signal

processing (see [17] and its references). The power control problem is a non-

convex problem and therefore the proposed (implementable) algorithms may

be unable to converge globally and may converge to a poor spectrum allocation

solution. In [18], it has been discussed that finding the global optimal solution

for the power control problem is computationally intractable.

Viewing the power control problem as a non-cooperative game can lead to a

competitive optimal solution [19–21]. Using this approach, a pricing algorithm

is developed in [22, 23] where each user introduces a price paid by the other

users as a form of interference. The total profit can be defined as the sum rate

of the system. This method has been applied to multi-cell networks in [24].

Coordinated Beamforming

When the BSs are equipped with multiple antennas, the power control problem

must design the transmitting beams from each antenna. This is commonly

called transmit beamforming. In the multi-cell scenario, the beamforming

optimization can be performed jointly for coordinated BSs and is often referred

to as coordinated beamforming [25–28].

Similar to the power control problem, the coordinated beamforming

optimization problem is also non-convex. The problem of multi-cell transmit

downlink beamforming was first considered in a classic work by Rashid-

Farrokhi et al. [29], where the BSs employ multiple antennas and the users

are single-antenna. The transmit beamforming optimization is formulated as

the minimization of total transmit power while the signal to interference

plus noise ratio (SINR) at each link satisfies a minimum target. Rashidi-
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Farrokhi et al. proposed an iterative algorithm to achieve the optimal solution

for this problem. This algorithm is based on establishing a virtual uplink

network with transmitters and receivers reversed and the uplink channels

equal to the Hermitian transpose of the downlink channels, but with the

same achievable SINR target sets. The algorithm finds the optimal uplink

receivers, which turned out to be minimum mean squared error (MMSE)

receivers. These virtual uplink MMSE receivers define the transmitters for

the downlink system. Next, the virtual uplink powers and correspondingly the

downlink powers are updated. The algorithm iterates until convergence. Later,

it was shown that this downlink-uplink duality concept may be unified under

a Lagrangian duality in optimization theory [30]. Note that the formulation

of the transmit beamforming problem as a minimization of the total power

constraint enables global optimization of this problem. With this formulation,

the SINR constraints can be transformed into a second-order-cone constraint

[31] and therefore the problem can be solved via convex optimization3.

Although the downlink-uplink duality can be extended to the systems with

multiple-antenna users [32], the iterative transmit/receive beamforming and

power update will not converge to the global optimal solution and only local

optimal solution is guaranteed so far. This is due to the non-convex nature of

joint transmit/receive beamforming optimization problem.

A competitive (noncooperative) approach based on game theory has been

identified in [33] and further studied in [34, 35], where each link is a player

competing against others by its power allocation (transmission strategy)

in order to maximize its objective function (e.g. data rate). Although this

noncooperative approach is not optimal, it achieves improvement over the

distributed multi-cell networks. [36, 37] have shown that a linear combination

of the altruistic approach (zero-forcing (ZF) transmit beamforming strategy)

and the selfish approach (Nash equilibrium) achieves a Pareto-optimal rate

region.

3A brief introduction to the convex optimization theory is given in Appendix A
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Successive Encoding

It is known that the capacity achieving transmission strategy in MIMO BC

are based on a successive encoding, or so-called dirty paper coding (DPC)

technique where the transmitter detects interference and subtracts it in the

encoding process [38–40]. This is in contrast to the beamforming strategy

where the interference is treated as noise (This is a result of averaging the

interference and the use of law of large numbers). In information theory, the

multi-cell scenario can be modeled as an interference channel.

In spite of intensive research on this subject over the past three decades,

the capacity region of interference channels is still unknown (even for a small

number of users). The largest known achievable rate region for the two-user

case was obtained by Han and Kobayashi [41], who proposed common-private

message splitting scheme. In this scheme, users’ messages are divided into

two parts: private message which is decoded by the intended receiver and

common message, which is decoded by both receivers and it is intended for

interference mitigation. Note that the beamforming strategies discussed so far

only included private message. Recently, it has been shown that with this

strategy and adjusting interference-to-noise-ratio (INR, which is the ratio of

private message power at the opposite receiver to the noise power) larger or

equal to one, one can approach within one bit (bits/sec/Hz) the interference

channel capacity region [42]. This has been shown for only two-user single-

antenna case. The extension of the common-private message splitting strategy

to the multi-cell scenario is discussed in [43], where a numerical algorithm

is proposed for out-of-cell user selection for common message decoding, rate

splitting method and optimal beamforming to improve the overall network

performance.

Interference Alignment

Recently, it has been shown that in the interference channel with more than two

users maximizing the overlap between interference signal subspaces (aligning

the interference signals) maximizes the size of their null spaces, and this
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Figure 1.3: (a) MIMO coordination: Each user receives its signal from all the
BSs within the cluster. (b) MIMO broadcast channel where transmitters are
cooperating in transmission to non-cooperating receivers.

facilitates transmission in more interference-free dimensions, also known as

degrees of freedom or multiplexing gains [44, 45]. This concept is known as

interference alignment. These results have spurred an intensive research in this

topic. However, without channel extensions, the computational complexity of

numerically obtaining interference alignment is NP-hard [46].

1.2.2 MIMO Coordination

When the BSs are connected through high capacity backhaul network without

any delay, then the BSs can share not only the channel state information but

full user messages of the associated users. Availability of user messages at all

BSs can improve the performance significantly over interference coordination.

In this case, we have a large number of transmitting antennas coordinated in

transmission to all the associated users and hence it is often referred to as

MIMO coordination. MIMO coordination is illustrated in Figure 1.3.
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The multi-cell downlink channel with full data sharing can be modeled as a

MIMO BC with a single multiple-antenna transmitter and multiple receivers.

Indeed, the number of transmit antennas are the total number of transmit

antennas across the BSs within the cluster. To put it simply, this imitation of

the giant antenna array produces the main gain in multi-cell scenario of this

type.

The capacity region of a MIMO BC with sum power constraint has been

previously discussed in [39,47,48]. The sum capacity of a Gaussian vector BC

under per-antenna power constraint is the saddle-point of a minimax problem,

where the maximization is over the set of transmit covariance matrices

satisfying the power constraints and minimization is over the set of diagonal

noise covariances [30, 49]. The dual minimax problem is convex-concave

and consequently the original downlink optimization problem can be solved

globally in the dual domain. By generalizing this result, we can transform the

per-antenna transmitter optimization into an equivalent minimax optimization

problem. An efficient algorithm has been proposed in [30] using Newton’s

method [50]. Particularly, [51, 52] use the simplistic Wyner channel model

for the cellular system in these capacity results to show the benefits of MIMO

coordination.

The capacity achieving strategy in MIMO BC is known to be the dirty

paper coding (DPC) technique [53]. DPC is a non-linear technique based

on pre-subtraction of interference at the transmitter [38, 39]. This requires

the transmitted signals to be a result of successive encoding of information

intended for the different users. Given an ordering of the users, π, at the

time of encoding information for user π(j), signals of users π(i < j) are

known and can be taken into account in the encoding process to generate the

signal for user π(j). This means that the transmitter requires full non-causal

knowledge of interfering signals for each user. Thus, perfect dirty paper coding

implementation is infeasible. Moreover, finding the optimal ordering of users

for successive encoding is a non-convex optimization problem. Furthermore,

successive encoding to completely suppress interference requires adequate

codes. The existence of such codes was proved in [40] and was extended
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later [54]. However, these proofs use random codes that lack algebraic structure

and detectors, and hence are very difficult to implement. Moreover, in the

multi-cell scenario the burden of signal processing required for these schemes

is even larger. Consequently, we are interested in reduced-complexity linear

precoding schemes in this dissertation.

1.2.3 Partial Cooperation

When user messages are only available for a subset of all BSs in the

cluster, then data sharing is partial. This method reduces the amount of

information exchanged between the BSs. Note that full data sharing in

multicell coordination requires all the data traffic routed to and from the

central processing site which requires expensive infrastructure (and may not

be available). Each user can receive the desired signal from the closest BSs and

not necessarily all the BSs of the cluster to which it belongs. Furthermore, this

enables studying distributed multi-cell coordination where the CSI is available

partially. To obtain CSI, each BS transmits a training sequence. The size of

the training sequence grows with the size of channel gains to be estimated.

For multi-cell coordinated system with full cooperation, this size is prohibitive

and limits the resources for the data transmission. Moreover, the estimation

of the channel from the pilot sequence is usable within time coherence of

the channel and it will be outdated after this time. We consider a multi-cell

coordination with partial cooperation. In this case, each BS is aware of a subset

of user messages and each user receives a signal from a subset of BSs within

the cluster (partial data sharing). Therefore, the question is how to design

a scheduling algorithm to benefit from gains of multi-cell coordination yet

limit the data sharing. This problem has been addressed recently in [55, 56].

Furthermore, the CSI may also shared partially. We refer to this type of

multicell coordination as partial cooperation, which is illustrated in Figure 1.4.

The channel model to study this type of coordination will be discussed in the

next chapter. Particularly, this dissertation addresses this type of coordination.
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Figure 1.4: Partial cooperation where the user data is shared partially. This
may also include partial exchange of CSI. Each BS knows a subset of user
messages in the cluster.

1.3 Linear Precoding Schemes

Multicell coordination requires simple to implement and robust transmission

strategies. Hence, in this dissertation we concentrate on linear precoding

and equalization. A simple to implement linear precoding strategy involves

complete cancelation of unwanted (intra-cluster) interference, which is referred

to as zero-forcing transmit precoding technique [8, 28, 57–63]. For multiple-

antenna users this must be in a form of block diagonalization (BD) technique

[64]. The key idea of BD is linear precoding of data in such a way

that transmission for each user lies within the null space of other users’

transmissions. Therefore, the interference to other users is eliminated. Multi-

cell BD has been employed explicitly for network MIMO coordinated systems

in [8, 65–67]. However, they use specified structure for the BD (diagonal

structure) which is designed for the sum power constraint. Although there were

attempts in these papers to optimize the precoders to satisfy per-base-station

and per-antenna power constraints, this structure of the precoders is no longer

optimal for such power constraints and must be revised [65, 68, 69]. In [60],

the ZF matrix is confined to the pseudo-inverse of the channel for the single

receive antenna users with per-antenna power constraints. The sub-optimality

of pseudo-inverse ZF beamforming subject to per-antenna power constraints

was first shown in [65]. [68] presented the optimal precoder’s structure using
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the concept of generalized inverses, which lead to a non-convex optimization

problem and its relaxed form required semi-definite programming (SDP) [70].

This was investigated only for single-antenna mobile users. [69] also used the

generalized inverses for the single-antenna mobile users, but with multistage

optimization algorithms.

Further improvement can be achieved by minimizing the mean square error

(MMSE) between the estimate and the transmitted data. This is referred to

as MMSE transceivers [46, 56, 71–74].

1.4 Implementation Challenges

Although theoretical perspective of multi-cell cooperative systems has been

extensively researched in the recent years, the results of these efforts are

all highly dependent to ideal assumptions such as high-capacity delay-free

backhaul links and perfect channel knowledge (implying perfect channel

estimation). In this section, we review some of the main challenges in practice.

This dissertation is an effort to solve some of these challenges and build a

foundation to study them.

1.4.1 Complexity

The complexity of finding the optimal precoding schemes increases with the

number of users (or cells) participating in the cooperation (for example it

has cubic order with the number of users [28, 69, 75]). Hence, investigating

low complexity signal processing and coding techniques that approach ideal

cooperative gains is of great interest. Most of the precoding and equalization

designs contain sophisticated algorithms based on optimization toolboxes such

as semidefinite programming (SDP) [70]. SDP-based algorithms are complex4

and they do not give a closed-form structure for the solutions. Due to the

non-convexity nature of the problem, a problem relaxation requires to apply

convex optimization toolboxes or methods and consequently many of these

algorithms reach a poor suboptimal solution. Furthermore, in practical systems

4The complexity of a SDP with n variables is O(n6) [70].
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full data sharing and CSI may not be available and therefore efficient precoding

techniques only relying on local CSI and local user data are also of research

interest.

1.4.2 Synchronization

Downlink multi-cell cooperation requires tight symbol and carrier synchroniza-

tion between local BS oscillators. For outdoor BSs, global positioning signal

(GPS) signal can be used for synchronization [76]. For the indoor BSs, the

timing signal is sent from an outdoor GPS receiver. The BS carrier frequency

offset estimation can be formed at the mobile users and then be fed back to

the coordinated BSs [77]. This can also be done with remote radio heads for

co-located BSs.

1.4.3 Channel estimation

Coherent transmission and reception improves the performance significantly

when the CSI is available. Therefore, system needs to allocate resources for

pilot signals to estimate the channel. It is shown in [78] that the number

of antennas participating in the joint coordination of network MIMO is not

only limited by the complexity and limited backhaul link capacity but by

the time and frequency variability of the fading channel. Therefore, there

is a tradeoff between increasing the multi-cell network size, CSI estimation

error, spectral resources allocated to training and the system performance.

In frequency selective channels the channel needs to be estimated within its

coherence time. The optimal channel training length is also studied in [79].

Note that in general the channel estimation is a multiuser MIMO challenge,

but in multi-cell cooperative networks it is more complicated due to the size

and the latency of estimation signals across the BSs.

1.5 Contributions

The contributions of this dissertation can be listed as below:
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(i) We consider a more sophisticated approach to CoMP involving par-

tial data sharing between the BSs. We also consider realistic per-

antenna/per-BS power constraints and multiple antennas are deployed at

both the BS and mobile user terminals. A novel model has been proposed

to study CoMP, which is the MIMO interference channel with generalized

power constraints. This model facilitates dynamic and distributed level

of cooperation within the cellular network.

(ii) Using this channel model, we focus on the linear processing schemes

since they are easier to implement and more robust in the system. We

begin with the ZF transmit precoding scheme. This scheme emerges as

block diagonalization precoding technique when the users are employed

with multiple antennas. We find the optimal block diagonalization pre-

coders under per-antenna/per-BS power constraints. Our optimization

is performed over the entire null space of other users’ transmission

and hence it is optimal. We obtain the optimal structure for the

precoders and subsequently propose a simple iterative algorithm to find

the precoders. Since ZF transmit precoding can serve limited number

of users simultaneously, therefore a user selection algorithm is required

prior to transmission. We also extend a semi-orthogonal user selection

algorithm to the case where users are equipped with multiple antennas.

This algorithm is less complex than greedy user selection algorithms due

to reducing the size of search domain at each step to the users which

have semi(almost)-orthogonal channel matrices to the users that have

been already selected [80].

(iii) Next, we include equalization into our design problem and optimize

the precoders and equalizers jointly. We first review (and extend)

the previous techniques to maximize the sum rate. Then, we address

minimization of weighted sum of mean square errors of the estimated

data symbols and propose two novel algorithms to design the precoders

and equalizers. Compared to the previous techniques, these two are less

complex and outperform earlier algorithms.
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(iv) In the next stage, we consider imperfect CSI available at the BSs

and address the robust design of transceivers. First, we consider that

the channel estimation error is bounded and design worst-case robust

transceiver, which guarantees a performance within the uncertainty

region of the channel matrices. Next, we consider the case where the

channel estimation error is a random matrix with specific statistical

parameters and design statistically robust transceivers.

Throughout this dissertation, we have verified our algorithms within

a realistic cellular model considering the channel parameters such as

distance-dependent path loss, Rayleigh fading and log-normal shadow-

ing. We drop the users randomly in the network and account for the

incoming interference from the neighboring (non-coordinated) BSs.
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Chapter 2

System Model and Preliminaries

In this chapter, we illustrate the system model which is used to study multicell

coordinated systems in this dissertation. First, we discuss the arrangement

of the cellular environment and the channel modelling. In CoMP, our main

emphasis is on the multicell systems with partial cooperation. Therefore,

we consider a partial cooperative channel model, which is called MIMO

interference channel with generalized constraints (MIMO-IFC-GC). Using

this model, we formulate the problem that we will address throughout this

dissertation, which is (weighted) sum-rate maximization in MIMO-IFC-GC

over linear precoders and equalizer. This problem is in general a non-convex

problem where the globally optimal solutions are not available through

algorithms with reasonable complexity. An efficient concept in the design of

precoders and equalizers in multiuser systems is uplink-downlink duality, which

is extended to our channel model (MIMO-IFC-GC) in Section 2.4.

2.1 Channel Model and Configurations

We consider a cellular wireless network, where the users are distributed

over the cells. We assume that each cell is served by one BS. A number

of neighboring BSs are grouped together to build a so-called cluster. This

grouping can be determined in the design or can be performed using one

of scheduling algorithms in literature [81] that will not be discussed in this

dissertation.Within each cluster, a form of multicell coordination can be used

(e.g. interference/MIMO/partial coordination). Nevertheless, there is no inter-

18



cluster cooperation assumed in the network and the cluster-edge users suffer

from inter-cluster interference (similar to inter-cell interference in a system

without CoMP). We consider multiple-antennas at both BSs and the users.

Our channel model consists of realistic cellular model. This means that the

channel gains between each transmit antenna at the BS and each receive

antenna at the user consists of three components: distance-dependent path

loss, Rayleigh fading, and log-normal shadow fading.

A wireless channel is characterized due to the variation of the signal

strength in time and frequency also known as fading. The signal attenuates

with the distance from the source, which is referred to path loss. Thus, the

attenuation is proportional with d−β with d denotes the distance and β

represents the path-loss exponent holding values between 2 and 4 (2 for free

space and 4 for the reflection from ground plan, typically between 3 and 4 in

urban areas). Another large-scale fading effect comes from shadowing by large

objects such as buildings and hills. This phenomenon is called shadowing and

it is observed that it follows the log-normal distribution. This can be modelled

as ρ = 10ρdBm/10 where ρdBm follows a complex Gaussian distribution with zero

mean and standard deviation of σρ (i.e. ρdBm ∼ CN (0, σ2
ρ)). Typical value of

the shadowing standard deviation is σρ = 8 dB [82].

Multiple paths between the transmitter and receiver cause constructive

and destructive signals which occurs in scale of the carrier wavelength. This

is dependent to the Doppler effect and delay spread. This effect is frequency

dependent. A simple model for the variation of the channel gains (in specific

frequency and delay time) is based on the existence a large number of

statistically independent reflected and scattered path with random amplitude.

This results in variation of the channel gain following a circular symmetric

Gaussian distribution (i.e. α ∼ CN (0, σ2
h)). The magnitude of the channel gain

is exponentially distributed. This model is called Rayleigh fading1. Combining

these effects, the channel gain can be modelled as

h = α
√
ρd−β (2.1)

1This will change when there is a line-of-sight path. In this case the magnitude of the
channel gain follows Rician distribution [82].
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Note that this is the channel model that we use in our numerical results and

we often refer to it as realistic model since it accounts for all the variation of

the channel gain in a cellular scenario.

In the case of a MIMO channel the channel gains between each transmit

antenna and each receive antenna follow the same model. Thus, a MIMO

channel with nt transmit antenna and nr receive antenna can be modelled as

a channel matrix H ∈ Cnt×nr such that each entry represents the channel gain

between a transmit antenna and a receive antenna and it follows (2.1).

2.2 Downlink Transmission

In this dissertation, we focus on the downlink transmission and specifically on

linear processing at the BSs and mobile users. In this section, we will detail

the system model. Consider the MIMO downlink system illustrated in Fig.2.1

with M BSs (BSs) forming a setM, and K users forming a set K. The setM
forms a cluster which is assumed to have some form of coordination in between.

Each BS is equipped with nt transmit antennas and each mobile user employs

nr receive antennas. The mth BS is provided with the messages of its assigned

users set Km ⊆ K. In other words, the kth user receives its message from a

subset of Mk BSs Mk ⊆ M. Notice that, if Km contains one user for each

transmitter m and Mk = 1, then the model at hand reduces to a standard

MIMO interference channel. Moreover, when all transmitters cooperate in

transmitting to all the users, i.e., Km = K for all m ∈ M or equivalently

Mk = M , then we have a MIMO broadcast channel (BC). We now detail the

signal model for the channel at hand, which is referred to asMIMO interference

channel with partial message sharing. Define as uk = [uk,1 . . . uk,dk ]
T ∈ Cdk

the dk × 1 complex vector representing the dk ≤ min(Mknt, nr) independent

information streams intended for user k. We assume that uk ∼ CN (0, I), where

we assumed that the channel gains are normalized correspondingly. The data

streams uk are known to all the BS in the setMk. In particular, if m ∈ Mk,

the mth BS precodes vector uk via a matrix Fk,m ∈ Cnt×dk , so that the signal
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Figure 2.1: A downlink model with partial BS cooperation or equivalently
partial message knowledge.

x̃m ∈ Cnt sent by the mth BS can be expressed as

x̃m =
∑

k∈Km

Fk,muk. (2.2)

Imposing a per-BS power constraint, the following constraint must be then

satisfied

E
[
||x̃m||2

]
= tr

{
E
[
x̃mx̃

H

m

]}
(2.3)

=
∑

k∈Km

tr
{
Fk,mF

H

k,m

}
≤ Pm, m = 1, . . . ,M,

where Pm is the power constraint of the mth BS. When per-antenna power

constraints are enforced, the constraints can be seen as

[
E
[
||x̃m||2

]]
i,i

=

[
∑

k∈Km

tr
{
Fk,mF

H

k,m

}
]

i,i

≤ Pm,i, (2.4)

m = 1, . . . ,M, i = 1, . . . , nt

where Pm,i is the power budget of the ith-antenna of the mth BS. The signal

received at the kth user can be written as

yk =
M∑

m=1

H̃k,mx̃m + ñk (2.5)

=
∑

m∈Mk

H̃k,mBk,muk +
∑

l 6=k

∑

j∈Ml

H̃k,jBl,jul + ñk, (2.6)
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where H̃k,m ∈ Cnr×nt is the channel matrix between the mth BS and kth user

and nk is additive complex Gaussian noise ñk ∼ CN (0, I). In case the noise is

not uncorrelated across the antennas, each user can always whiten it as a linear

pre-processing step. Therefore, a spatially uncorrelated noise can be assumed

without loss of generality. The availability of channel state information at all

nodes will be discussed in each of next chapters independently. In (2.6), we

have distinguished between the first term, which represents useful signal, the

second term, which accounts for interference, and the noise.

2.2.1 Equivalence with MIMO-IFC-GC

We now show that the MIMO interference channel with partial message sharing

and per-BS power constraints described above is equivalent to a specific MIMO

interference channel with individual message knowledge and generalized linear

constraints, which we refer to as MIMO-IFC-GC.

Definition 2.1. (MIMO-IFC-GC ) The MIMO-IFC-GC consists of K trans-

mitters and K receiver, where the kth transmitter has mt,k antennas and the

kth receiver has mr,k antennas. The received signal at the kth receiver is

yk = Hk,kxk +
∑

l 6=k

Hk,lxl + nk, (2.7)

where nk ∼ CN (0, I), the inputs are xk ∈ Cmt,k and the channel matrix

between the lth transmitter and the kth receiver is Hk,l ∈ Cmr,k×mt,k . The

data vector intended for user k is uk ∈ Cdk with dk ≤ min(mt,k, mr,k) and

uk ∼ CN (0, I). The precoding matrix for user k is defined as Fk ∈ Cmt,k×dk so

that xk = Fkuk. The inputs xk have to satisfy M generalized linear constraints

K∑

k=1

tr
{
Φk,nE

[
xkx

H

k

]}
=

K∑

k=1

tr
{
Φk,mBkB

H

k

}
≤ pn, (2.8)

for given weight matrices Φk,n ∈ Cmt,k×mt,k and n = 1, . . . , N. The weight

matrices are such that matrices
∑N

n=1Φk,n are positive definite for all k =

1, . . . , K.

We remark that the positive definiteness of matrices
∑N

n=1Φk,n guarantees

that the system is not allowed to transmit infinite power in any direction [75].
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Figure 2.2: (a) A downlink model with partial BS cooperation or equivalently
partial message knowledge, (b) The equivalent MIMO interference channel
with generalized linear power constraints.
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Lemma 2.1. Let (l)k be the lth BS in subset Mk of BSs that know user k’s

message. The MIMO interference channel with partial message sharing (and

per-transmitter power constraints) is equivalent to a MIMO-IFC-GC. This

equivalent MIMO-IFC-GC is defined with mt,k = Mknt, mr,k = nr, channel

matrices

Hk,l =
[
H̃k,(1)l · · · H̃k,(Ml)l

]
, (2.9)

beamforming matrices

Fk =
[
FT

k,(1)k
· · ·FT

k,(Mk)k

]T
(2.10)

and weight matrices Φk,n and weight matrices Φk,n corresponding to the

• nth per-BS power constraints (N = Mnt), have to be all zero except that

its lth nt × nt submatrix on the main diagonal is Int
, if m = (l)k:

Φk,m =




0nt
0 · · · 0

0
. . .

. . .
...

...
. . . Int

0
0 · · · 0 0




Mnt×Mnt

, (2.11)

Notice that if k /∈ Kn then Φk,n = 0.

• nth per-antenna power constraint (N = Mnt), have to be all zero except

a one in the main diagonal referring to the nth antenna:

Φk,m =




0 0 · · · 0

0
. . .

. . .
...

...
. . . 1 0

0 · · · 0 0




Mnt×Mnt

, (2.12)

• sum power constraint (N = 1), have to be equal to the identity matrix:

Φk,m = IMnt
.

We emphasize that the definition of MIMO-IFC-GC and this equivalence rely

on the assumption of linear processing at the transmitters.

Proof. The proof follows by inspection. Notice that matrices
∑M

m=1 Φk,m are

positive definite by construction. In the common power condition scenarios

(mentioned above) this summation is equal to an identity matrix which is

positive definite.
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Given the generality of the MIMO-IFC-GC, which includes the scenario

of interest of MIMO interference channel with partial message sharing as per

the Lemma above, in the design of precoders and equalizers we focus on the

MIMO-IFC-GC as defined above and return to the cellular application when

we need to present numerical results.

In this dissertation, we also include the linear processing at the receivers.

Therefore, the kth receiver estimates the intended vector uk using the receive

processing (or equalization) matrix Gk ∈ Cmr,k×dk as

ûk = Gkyk. (2.13)

The most common performance measures, such as weighted sum-rate or

bit error rate, can be derived from the estimation error covariance matrix for

each user k,

Ek = E

[
(ûk − uk) (ûk − uk)

H

]
, (2.14)

which is referred to asMean Square Error (MSE)-matrix (see [83] for a review).

The name comes from the fact that that the jth term on the main diagonal

of Ek is the MSE

MSEk,j = E[ |ûk,j − uk,j|2] (2.15)

on the estimation of the kth user’s jth data stream uk,j. Using the definition

of MIMO-IFC-GC, it is easy to see that the MSE-matrix can be written as a

function of the equalization matrix Gk and all the transmit matrices {Fk}Kk=1

as

Ek =GkHkFkF
H

kH
H

k,kG
H

k −GkHk,kFk

− FH

kH
H

k,kG
H

k +GkΩkG
H

k + Ik. (2.16)

where Ωk is the covariance matrix that accounts for noise and interference at

user k

Ωk = I+
∑

l 6=k

Hk,lFlF
H

l H
H

k,l. (2.17)

2.2.2 Capacity Region

The capacity region of a MIMO BC with sum power constraint has been

previously discussed in [39, 47, 48]. In this model, the transmitters know all
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the users’ messages and therefore in theory there is only one multiple-antenna

transmitter. In this case, mt,k = Mnt. The sum capacity of a Gaussian vector

broadcast channel under per-antenna power constraint is the saddle-point of

a minimax problem [48]

C = max
Cx�0

min
Cn�0

log
|HCxH

H +Cn|
|Cn|

subject to [Cx]i,i ≤ pi, for i = 1, . . . , N

C(i)
n

= σ2Inr
(2.18)

whereCn is the noise covariance matrix of n in (2.7) such that nT = [nT

1 · · ·nT

K ],

and C
(i)
n refers to the ith block-diagonal term of Cn. The maximization is over

all transmit covariance matrices Cx and the minimization is over all off-block

diagonal terms of the noise covariance matrix Cn. This is due to the fact that

the capacity of MIMO BC equals the Sato bound, which is the capacity of a

cooperative system with the worst case noise Cn [84]. The sum capacity of a

MIMO BC with individual per-antenna transmit power constraints p1, . . . , pNt

is the same as the sum capacity of a dual MIMO MAC with a sum power

constraint
∑Nt

i=1 pi and with an uncertain noise Ĉn [30,49,85]. The Lagrangian

dual of the minimax problem (2.18) can be stated as [30, 49]

max
Ĉx

min
Ĉn

log
|HHĈxH+ Ĉn|

|Ĉn|
subject to tr(Ĉx) ≤ tr(P)

tr(ĈnP) ≤ tr(C)

Ĉn is diagonal, Ĉn � 0, Ĉx � 0 (2.19)

where P = diag(p1, . . . , pNt
) is a diagonal matrix of individual maximum

transmit powers, tr(·) denotes the trace of a matrix, and that � in the

matrix inequalities means Ĉn and Ĉx are positive semi-definite matrices. Thus,

the Lagrangian dual corresponds to a MAC with linearly constrained noise.

This duality result has been generalized to the entire capacity region [30].

The dual minimax problem is convex-concave and thus the original downlink

optimization problem can be much more efficiently solved in the dual domain.

An efficient algorithm using Newton’s method [50] is used in [85] and [30] to
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solve the dual minimax problem; it finds an efficient search direction for the

simultaneous maximization and minimization. This capacity result is used to

characterize the sum capacity of the multi-base coordinated network and thus

constitutes the performance limit for the proposed transmission schemes.

2.3 Problem Formulation

Generally, we are interested in the (weighted) sum-rate maximization of the

system under the specified (individual) power constraints. The optimization

variables of this problem are linear precoders and equalizers of the users. The

achievable rate of user k is given by [2]

Rk = log
∣∣I+Hk,kFkF

H

kH
H

k,kΩ
−1
k

∣∣ (2.20)

where the interference between users data streams are simply considered as

noise. Consequently, the weighted sum-rate maximization problem can be

translated as an optimization problem

maximize
Fk,∀k

K∑
k=1

µkRk

subject to Fk ∈ F , ∀k
, (2.21)

where F is the set of precoding matrices which satisfy specified power

constraints. The weights µk ≥ 0 are user rate priorities defined based on the

scheduling algorithm (a higher level protocol) and will be explained later.

As discussed in the previous section, the constraints of problem (2.21) are

generally defined in a linear format (affine conditions). It can be simply verified

that the objective function of problem (2.21) is non-convex. Even for a single-

user case where the interference plus noise covariance matrix is an identity

matrix, it is non-convex. When the users are equipped with a single antenna

only, there is a particular formulation of the problem above that enjoys efficient

and global optimal solution. This formulation is the minimization of the

transmit power across the BSs subject to SINR constraints. This formulation

fits applications where the system has fixed quality of service constraints (for
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feasible values of γks). The formulation is given by

minimize
fk,∀k

K∑
k=1

‖fk‖2

subject to
|hk,kfk|2

1+
∑

l 6=k|hk,lfl|2 ≥ γk, ∀k
, (2.22)

Nevertheless, we require the schemes where the BSs can find an optimal

solution jointly without excessive exchange of channel state information.

Therefore, downlink-uplink duality is a useful concept in this direction. The

problem of multi-cell transmit downlink beamforming was first considered

in a classic work by Rashid-Farrokhi et al [29], where the BSs employ

multiple antennas and the users are single-antenna. The transmit beamforming

optimization is formulated as the minimization of total transmit power while

the SINR at each link satisfies a minimum target. Rashidi-Farrokhi et al

proposed an iterative algorithm to achieve the optimal solution for this

problem. This algorithm is based on establishing a virtual uplink network

with transmitters and receivers reversed and the uplink channels equal to the

Hermitian transpose of the downlink channels, but with the same achievable

SINR sets. The algorithm finds the optimal uplink receivers, which are indeed

minimum mean squared error (MMSE) receivers. These virtual uplink MMSE

receivers give the transmitters for the downlink system. Next, the virtual

uplink powers and correspondingly the downlink powers are updated. The

algorithm iterates until convergence. Later, it is shown that the downlink-

uplink duality may be unified under a Lagrangian duality in optimization

[30]. Note that the formulation of the transmit beamforming problem as a

minimization of the total power constraint enables global optimization of this

problem. With this formulation, the SINR constraints can be transformed

into a second-order-cone constraint [31] and therefore solving the problem via

convex optimization. Although the downlink-uplink duality can be extended

to the systems with multiple-antenna users [32], the iterative transmit/receive

beamformer and the power will not converge to the global optimal solution

and only local optimal solution is guaranteed so far. This is due to the non-

convexity nature of joint transmit/receive beamforming optimization problem.

In the following section, we have extended the uplink-downlink duality to the
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MIMO interference channel with single linear power constraint.

2.4 Uplink-Downlink Duality

The concept of SINR duality has been discussed in the literature between

the MIMO BC and multiple access channel under the sum power constraints

[86–88] and under linear power constraints [49, 89]. The SINR duality has

been discussed for the interference networks under single sum power constraint

in [71] but its extension to a linear constraint requires invertibility on the

weight matrices. In this section, we generalize the SINR duality results in [89]

to MIMO-IFC-GC with a user-weighted linear power constraints given by

K∑

k=1

tr
{
ΦkFkF

H

k

}
≤ P (2.23)

and then we use this result for the case of multiple linear constraints. Since

this extension does not require the inversion of weight matrices, it can be used

for any linear power constraints including per-BS power constraints where the

weight matrices can be non-singular .

Definition 2.2. The dual of a MIMO-IFC-GC with the power constraint

(2.23) is an interference channel with channel matrices equal to the conjugate

transposed channel matrices of the MIMO-IFC-GC, i.e. the channel matrix of

the dual MIMO-IFC-GC from the kth user to the lth transmitter is HH

k,l, and

the kth user noise covariance matrix is Φk. The dual MIMO-IFC-GC contains

g̃k,j as a normalized transmit beamforming vector for the jth data substream

for the user k and f̃k,j as a normalized receive processing vector at the kth

transmitter for the jth data substream.

The corresponding dual power constraint is also given as

K∑

k=1

tr{GkG
H

k } ≤ P (2.24)

where Σ̂k = GkG
H

k is the transmit covariance matrix for the kth user at the

dual MIMO-IFC-GC. Figure 2.2 summarizes the duality results. The power
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Figure 2.3: Duality for the MIMO-IFC-GC model.

allocated to the jth data substream of the kth user is pk,j and consequently

the power vector is defined as

p = [p1,1, . . . , p1,d1, . . . , pK,1, . . . , pK,dK ]
T . (2.25)

The power allocated to the jth data substream of the kth user of the dual

MIMO-IFC-GC model is qk,j and thus the dual power vector is denoted as

q = [q1,1, . . . , q1,d1 , . . . , qK,1, . . . , qK,dK ]
T . (2.26)

The immediate extension of the results in [89] to the interference network

with the user-weighted linear power constraint (2.23) is as follows:

Lemma 2.2. (SINR Duality) If a set of SINRs γ is achieved by the

linear processing strategy
(
{f̃}, {g̃},p

)
in MIMO-IFC-GC under the power

constraint (2.23), then γ is also achievable in the corresponding dual MIMO-

IFC-GC with the linear beamforming strategy
(
{g̃}, {f̃},q

)
under the sum

power constraint (2.24). The reverse is also true.

Proof. Assuming linear processing at the transmitters and the receivers, the

SINR of the jth data substream at the kth user can be written as

SINRk,j =
pk,j|g̃H

k,jHk,kf̃k,j|2

1 +
∑

(l,i)6=(k,j)pl,i|g̃H

k,jHk,lf̃l,i|2
. (2.27)
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The achievable rate of user k can be defined immediately as

Rk =

dk∑

j=1

log (1 + SINRk,j) . (2.28)

Following definition of the dual MIMO-IFC-GC, its corresponding SINR for

the jth data substream of the kth user can be expressed as

ŜINRk,j =
qk,j |̃fk,jHH

k,kg̃k,j|2

f̃Hk,j

(∑
(l,i)6=(k,j) ql,iH

H

l,kg̃l,ig̃H

l,iHl,k +Φk

)
f̃k,j

(2.29)

We introduce the cross-talk matrix Ψ ∈ R
∑

k dk×
∑

k dk
+ between different data

substreams of the users in the system [87]. We denote the (
∑k−1

n=1+j,
∑l−1

m=1+i)th

element ofΨ asΨl,i
k,j which represents the interference power from the lth user’s

ith data substream to the kth user’s jth data substream and is given by

Ψl,i
k,j =





∣∣∣g̃H

k,jHk,lf̃l,i

∣∣∣
2

(l, i) 6= (k, j)

0 otherwise.
(2.30)

Further we introduce a diagonal matrixD ∈ R
∑

k dk×
∑

k dk
+ with the (

∑k−1
n=1+j)th

diagonal element denoted by Dk,j and is defined as

Dk,j =
γk,j

|g̃H

k,jHk,k f̃k,j|2
. (2.31)

Let the noise power vector defined as

η = [η1,1, . . . , η1,d1 , . . . , ηK,1, . . . , ηK,dK ]
T (2.32)

where ηk,j = f̃Hk,jΦk f̃k,j. Note that the ŜINRk,j can be rewritten as [71]

ŜINRk,j =
qk,j |̃fk,jHH

k,kg̃k,j|2∑
(l,i) q(l,i)Ψ

k,j
l,i + ηk,j

. (2.33)

Setting ŜINRk,j = γk,j and using (2.33) and (2.31), we can obtain

qk,j
ΨT

k,jq+ ηk,j
= Dk,j (2.34)

where ΦT

k,j is the corresponding (k, j)th row of ΨT. By simplifying this

equation, we can obtain a vector equation

q = D
(
ΨTq+ η

)
. (2.35)
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Hence, the power allocation q at the dual MIMO-IFC-GC is given by

q =
(
D−1 −ΨT

)−1
η. (2.36)

Since D−1−ΨT is a Stieltjes matrix which is a real symmetric positive definite

matrix with non-positive off-diagonal entries, it is invertible to a nonsingular

symmetric matrix with nonnegative entries [90]. Hence, the dual power vector

has non-negative elements (i.e. q � 0). The power constraint (2.23) can be

simplified as

K∑

k=1

tr {ΦkΣk} =
K∑

k=1

dk∑

j=1

pk,j tr
{
f̃Hk,jΦk f̃k,j

}

=

K∑

k=1

dk∑

j=1

pk,jηk,j ≤ P (2.37)

Correspondingly, to obtain same set of SINRs as dual MIMO-IFC-GC, the

power allocation at the MIMO-IFC-GC is given by [87]

p =
(
D−1 −Ψ

)−1
1 (2.38)

where 1 is a vector with entries equal to 1. The power constraint at the MIMO-

IFC-GC can be written as

pTη = 1T
(
D−1 −ΨT

)−1
η = 1Tq =

K∑

k=1

dk∑

j=1

qk,j ≤ P (2.39)

where the equalities holds due to (2.38) and (2.36). Thus, the power constraints

at the MIMO-IFC-GC and its dual are equivalent.

The MSE duality between MIMO BC and MIMO multiple access channel

(MAC) with sum power constraint is shown in [91]. The MSE duality relies on

the SINR duality established in the previous section. In this section, this has

been extended to the interference network with partial user message knowledge

and under a single user-weighted linear power constraint.

Consider the MIMO-IFC-GC discussed in Section 2.2 with the power

constrain given by (2.23). The estimated jth data symbol of the kth user
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can be obtained from (2.13) as

ûk,j =βk,jg̃
H

k,jHk,kf̃k,juk,j

+
∑

(l,i)6=(k,j)

βk,jp
− 1

2
k,j g̃

H

k,jHk,lp
1
2
l,if̃l,iul,i + βk,jp

1
2
k,jg̃

H

k,jzk,j (2.40)

where βk,j is the normalizing parameter for the estimation of jth data

substream of the kth user. The MSE for the jth data substream of the kth

user at the MIMO-IFC-GC can be expressed as

MSEk,j =E
[
|ûk,j − uk,j|2

]

=β2
k,jp

−1
k,jg̃

H

k,j


∑

(l,i)

Hk,lpl,if̃l,if̃
H

l,iH
H

k,l


 g̃k,j

− 2βk,jR{g̃H

k,jHk,k f̃k,j}+ β2
k,jp

−1
k,jσ

2
k,j + 1 (2.41)

Correspondingly, the MSE for the jth data substram of the kth user in the

dual MIMO-IFC-GC MSE can be written as

M̂SEk,j =β2
k,jq

−1
k,j f̃

H

k,j


∑

(l,i)

HH

k,lql,ig̃l,ig
H

l,iHk,l


 f̃k,j

− 2βk,jR{f̃Hk,jHH

k,kg̃k,j}+ β2
k,jq

−1
k,jηk,j + 1 (2.42)

Lemma 2.3. (MSE Duality) For any MSE values achieved at the MIMO-IFC-

GC with linear beamforming strategy
(
{f̃}, {g̃},p

)
and under power constraint

(2.23), the same MSE values can be achieved by linear beamforming strategy(
{g̃}, {f̃},q

)
at its dual MIMO-IFC-GC under the power constraint (2.24).

Proof. From Theorem 1, the same set of SINRs can be achieved by both the

MIMO-IFC-GC system and its dual system. The achieved SINR for the jth

data substream of the kth user is denoted by γk,j. Hence, using SINRk,j = γk,j

and ŜINRk,j = γk,j, it can be easily verified that

MSEk,j =M̂SEk,j =
β2
k,j

Dk,j
+ β2

k,j

∣∣∣g̃H

k,jHk,k f̃k,j

∣∣∣
2

− 2βk,jR{f̃Hk,jHH

k,kg̃k,j} (2.43)

Hence, the same feasible MSE values are achieved at both links.

Corollary 2.1. The power allocation required at the dual MIMO-IFC-GC

to achieve the same MSE values obtained at the MIMO-IFC-GC is given by

(2.36).
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Although, we can obtain the duality for the interference channel with single

linear power constraint, it is not valid for the case of multiple linear power

constraints (To the best of our knowledge such duality concept does not exist).

Therefore, to solve the joint linear precoding and equalization problem we must

use another approach. In the following chapters we will discuss and propose

efficient algorithm to find the solution to this problem. Note that due to the

non-convex nature of the problem, only suboptimal solutions are available with

reasonable complexity and strong performance.

2.5 Conclusions

In this chapter, we presented the channel model and cellular configuration

first. Then, we proposed a model to study a CoMP system with partial

cooperation, which is MIMO interference channel with generalized constraints.

Then, we discussed the problem considered in this paper, which is (weighted)

sum-rate maximization. This problem is in general non-convex. A common

tool to study multiuser MIMO systems is the concept of uplink-downlink

duality, where we extended it to the MIMO interference channel with single

linear power constraint. However, based on our knowledge, this duality is not

available for the MIMO-IFC with multiple linear power constraints. Therefore,

this motivates finding suboptimal solutions for our problem with reasonable

complexity and strong performance.
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Chapter 3

Multi-cell Block Diagonalization

3.1 Motivation

As discussed in the previous chapters, the CoMP transmission/reception

approach increases the number of transmit antennas used in transmission

to each user and hence the capacity increases dramatically compared to

conventional MIMO networks without coordination [51, 59, 92]. Moreover,

inter-cell scheduled transmission benefits from the increasedmultiuser diversity

gain [93]. Multiuser diversity comes from the fact that in a large wireless

network where users are faded independently, it is highly probable that

there exist a user with good channel condition at any time. The capacity

region of network MIMO coordination as a MIMO BC has been previously

established under sum power constraint [39,47,48,53,84] using uplink-downlink

duality and under more realistic per-antenna/per-BS power constraints in

[30, 49] using Lagrangian duality framework in convex optimization [50]

to explore the capacity region. It is known that the capacity region is

achievable with dirty paper coding (DPC). However, DPC is too complex

for practical implementations. Consequently, due to their simplicity, linear

precoding schemes such as multiuser zero-forcing (ZF) or block diagonalization

(BD) are considered [64, 94].

In this chapter, we focus on the multi-cell multiuser ZF or multicell BD.

Multicell BD is an extension of transmit zero-forcing technique in multi-

antenna scenario (at both terminals). Moreover, we are particularly interested

in per-antenna/per-BS power constraints (multiple linear power constraints)
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and multiple antennas at the mobile terminals.

3.2 Introduction

The key idea of BD (multiuser ZF) is linear precoding of data in such a

way that transmission for each user lies within the null space of other users’

transmissions. Therefore, the interference to other users is eliminated. Multi-

cell BD has been employed explicitly for network MIMO coordinated systems

in [8, 65–67] with the diagonal structure of the precoders and the sum power

constraint [64]. Although there were attempts in these works to optimize the

precoders to satisfy per-base-station and per-antenna power constraints, this

structure of the precoders is no longer optimal for such power constraints and

must be revised [65, 68, 69]1. In [60], the ZF matrix is confined to the pseudo-

inverse of the channel for the single receive antenna users with per-antenna

power constraints. The sub-optimality of pseudo-inverse ZF beamforming

subject to per-antenna power constraints was first shown in [65]. [68] presented

the optimal precoders’ structure using the concept of generalized inverses

which lead to a non-convex optimization problem and the relaxed form requires

semi-definite programming (SDP) [70]. This is investigated only for single-

antenna mobile users. [69] also uses the generalized inverses for the single-

antenna mobile users, but using a multistage optimization algorithms.

In this chapter, we aim to maximize the throughput of CoMP with partial

cooperation (MIMO-IFC-GC) employing multiple antennas both at the BSs

and the mobile users through optimization of precoders. Optimal form of BD

is introduced by extending the search domain of precoding matrices to the

entire null space of other users’ transmissions [62]. Following this idea [95] has

optimized the precoders by defining the problem with respect to the transmit

covariance matrices. The throughput maximization problem in general is a

non-convex problem. Therefore, [95] consider the transmit covariance matrix

optimization problem and relax the rank constraint. Consequently, the problem

1We have discussed the optimality of BD using so-called water-filling algorithm under
sum power constraint in Appendix B.
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is simplified to a convex form and can be solved using SDP for example [68,

69, 95].

We have given a solution to this problem in [63], where the dual of

throughput maximization problem is utilized to obtain a simple iterative

gradient descent method [50] to find the optimal linear precoding matrices

efficiently and globally. A more general approach is given in this chapter

as we consider any number of data streams transmitted by each user and

the optimization is performed over the precoding matrices rather than the

transmit covariance matrices. Our approach is specifically adopted for our

partial cooperative system (MIMO-IFC-GC).

The remainder of this chapter is organized as follows. In Section 3.3 the

multi-cell BD scheme is studied and its comparison with the conventional BD

is presented, which motivates research on optimal multi-cell BD under per-

antenna power constraints. The optimal multi-cell BD scheme is proposed in

Section 3.3.2. Comprehensive numerical results are presented in Section 3.5

following the discussion of the simulation setup in Section 3.4. Conclusions are

given in Section 3.6.

3.3 Multi-cell Multiuser ZF

In this chapter, we follow the system model introduced in Chapter 2. Therefore,

the received signal at the kth mobile user can be expressed as

yk = Hk,kFkuk +
∑

l 6=k

Hk,lFℓul + nk, (3.1)

where nk ∼ CN (0, I) is the normalized AWGN, the data vectors are uk ∈ Cdk

and the channel matrices are denoted by Hk,l ∈ Cmr,k×mt,l. Fk ∈ Cmt,k×dk

denotes the precoding matrix.

To remove the intra-cluster interference, a linear zero-forcing technique will

be employed in this chapter. When multiple antennas are employed at both

terminals (BSs and mobile users) the multiuser zero-forcing is in the form of

a technique called block diagonalization [64] rather than channel inversion.

Assuming the downlink transmission setup described in Chapter 2, each user’s
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data uk is precoded with the matrix Fk, such that

Hk,lFl = 0 for all l 6= k and 1 ≤ k, l ≤ K. (3.2)

Hence the received signal for user k can be simplified to

yk = Hk,kFkuk + nk. (3.3)

Let H̃k = [HT

1,k · · ·HT

k−1,kH
T

k+1,k · · ·HT

K,k]
T. Zero-interference constraint in

(3.2) forces Fk to lie in the null space of H̃k which requires a dimension

condition mt,k ≥ dk +
∑

l 6=k mr,l to be satisfied. This directly comes from

the definition of null space in linear algebra [96]. We refer to this condition

as ZF feasibility condition. Now, consider a multicell MIMO BC model where

each BS in the cluster transmits to all the users within the cluster. Each of

M BSs in the cluster is equipped with nt transmit antennas and each user

employs nr antennas. The BSs transmit dk = nr data streams to each user.

Consequently, the ZF feasibility condition will be simplified as Mnt ≥ Knr.

Hence, the maximum number of users that can be served in a time slot is

K = ⌊Mnt

nr
⌋. In our analysis, we focus on the number of K users where

the ZF transmit precoding is feasible (following the ZF feasibility condition).

These users are selected through a scheduling algorithm and assigned to one

orthogonal dimension. The remaining unserved users are referred to other

orthogonal dimensions or will be scheduled in other time slots. Assume that

H̃k is a full rank matrix rank(H̃k) =
∑

l 6=k mr,l, which holds with probability

one due to the randomness of entries of channel matrices. We perform singular

value decomposition (SVD)

H̃k = UkΛk [ΥkVk]
H (3.4)

where Υk holds the first
∑

l 6=k mr,l right singular vectors corresponding to non-

zero singular values, and Vk ∈ Cmt,k×(mt,k−
∑

l 6=k mr,l) contains the last m̃r,k =

mt,k −
∑

l 6=k mr,l right singular vectors corresponding to zero singular values

of H̃k. The orthonormality of Vk means that VH

kVk = Im̃r,k
. The columns of

Vk form a basis set in the null space of H̃k, and hence Fk can be any linear

combination of the columns of Vk, i.e.

Fk = VkF̆k, k = 1, . . . , K (3.5)
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where F̆k ∈ Cm̃r,k×mr,k can be any arbitrary matrix subject to the specified

power constraints [62]. Conventional BD scheme proposed in [64] assumes only

linear combinations of a diagonal form to simplify it to a power allocation

algorithm through water-filling. The conventional BD is optimal only when

sum power constraint is applied [97], and it is not optimal under per-antenna

(or any linear) power constraints [65, 68, 69].

3.3.1 Conventional BD

In conventional BD [64], the sum power constraint is applied to the throughput

maximization problem and further simplified to a water-filling power allocation

algorithm. In this scheme, the linear combination introduced in (3.5) is

confined to have a form given by

F̆CBD

k = ṼkΘ
1
2
k , k = 1, . . . , K (3.6)

where Ṽk ∈ Cm̃r,k×mr,k are the right singular vectors of HkVk corresponding

to its non-zero singular values. Hence, the aggregate precoding matrix of the

conventional scheme, FCBD, is defined as

FCBD =
[
V1Ṽ1 V2Ṽ2 · · · VKṼK

]
Θ

1
2 (3.7)

where Θ = bdiag [Θ1, · · · ,ΘK ] is a diagonal matrix whose elements scale the

power transmitted into each of the columns of FCBD. The sum power constraint

implies that
K∑

k=1

tr
{
VkṼkΘkṼ

H

kV
H

k

}
=

K∑

k=1

tr {Θk} (3.8)

This simplifies the problem to an optimization over the diagonal terms of Θk.

Consequently, this problem can be interpreted as a power allocation problem

and solved by the well-known water-filling algorithm over the diagonal terms

ofΘ [64]. However, this form of BD cannot be extended as an optimal precoder

to the case of per-antenna (or generalized linear) power constraints. Indeed,

the generalized linear power constraints (which have per-antenna and per-BS

power constraints embedded in them) can be written as

K∑

k=1

tr
{
Φk,nVkṼkΘkṼ

H

kV
H

k

}
≤ pn, n = 1, . . . , N (3.9)
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which is a function of all the elements of the matrices Θk rather than the

diagonal terms. Therefore, for the cases other than the case with a single

sum power constraint, the selection of Θks as diagonal matrices reduces

the search domain size of the optimization and hence does not lead to the

optimal solution. In addition, computing Ṽk adds K SVD operations to the

precoding computation procedure (one for each served users). Therefore, the

generalized linear power constraints (including per-antenna power constraints)

do not allow the optimization to be reduced in form of water-filling algorithm.

Previous work on BD with per-antenna (similarly with per-base-station) power

constraints for a case of multiple-receive antennas employs this conventional

BD and optimizes diagonal terms of Θ [8, 65, 66]. Hence, they are not

optimal indeed. The optimal form of BD proposed in this chapter includes

the optimization over the entire null space of other users’ channel matrices

resulting in optimal precoders under generalized linear power constraints which

can accommodate per-antenna or per-BS power constraints. Moreover, we

address the general case where any number of data streams can be sent out

for each user ∀dk ≤ nr.

The numerical results in Fig. 3.1 compare maximized sum rate of a MIMO

BC system with conventional BD [64] and the optimal scheme proposed later in

this chapter. There are 12 transmit antennas at the base station and 2 receive

antennas at each mobile user. M = 1 is considered to specifically show the

difference between the two BD schemes. Note that the conventional BD has a

domain of RMnt

+ while the optimal BD searches over all possible K symmetric

(covariance) matrices and therefore has a larger domain of C
Kmr,k(mr,k−1)/2
++ and

grows when number of users per cell increases. As a consequence, the difference

between these two schemes increases with the number of users per cell. Details

of the simulation setup are given in Section 3.4. In the following section the

optimal BD scheme is introduced and discussed in detail, and the algorithm

to find the precoders is presented.
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Figure 3.1: Comparison of sum rates for conventional BD vs. the proposed
optimal BD for M = 1, mt,k = Mnt = 6, 12, dk = nr = 2 using maximum sum
rate scheduling.

3.3.2 Optimal Multi-Cell BD

The focus of this section is on the design of optimal multi-cell BD precoder

matrices Fk to maximize the throughput while the generalized linear power

constraints are enforced (e.g. per-antenna/per-BS power constraints). In this

scheme, we search over the entire null space of other users channel matrices

(H̃k), i.e. F̆k can be any arbitrary matrix of Cm̃r,k×mr,k subject to the power

constraints.

Following the design of precoders according to (3.5), the received signal for

user k can be expressed as

yk = HkVkF̆kuk + nk. (3.10)
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The rate of kth user is given by

Rk = log
∣∣∣I+HkVkF̆kF̆

H

kV
H

kH
H

k

∣∣∣ (3.11)

= log
∣∣∣I+ F̆H

kV
H

kH
H

kHkVkF̆k

∣∣∣ (3.12)

= log
∣∣∣I+ F̆H

k H̆
H

k H̆
H

k F̆k

∣∣∣ . (3.13)

where we have used log |I+AB| = log |I+BA| and defined H̆k = HkVk to

express the rate for user k. Therefore, sum rate maximization problem can be

expressed as

maximize
F̆k,∀k

K∑
k=1

log
∣∣∣I+ F̆H

k H̆
H

k H̆
H

k F̆k

∣∣∣

subject to
K∑
k=1

tr
{
Φk,nVkF̆kF̆

H

kV
H

k

}
≤ pn, n = 1, . . . , N

(3.14)

where the maximization is over all matrices F̆k ∈ Cm̃r,k×dk . The power con-

straints follow the MIMO-IFC-GC model described in Chapter 2. As discussed

previously, proper selection of the weight matrices Φk,n can accommodate the

sum power, per-antenna, per-BS, or any linear power constraints.

Remark 3.1. Note that replacing S
F̆k

= F̆kF̆
H

k in the rate definition (3.11), the

throughput maximization problem can be reformulated with respect to the

covariance matrices S
F̆k

as

maximize
S
F̆k

,∀k

K∑
k=1

log
∣∣∣I+ H̆kSF̆k

H̆H

k

∣∣∣

subject to
K∑
k=1

tr
{
Φk,nVkSF̆k

VH

k

}
≤ pn, n = 1, . . . , N

S
F̆k
� 0,

rank(S
F̆k
) ≤ dk, k = 1, . . . , K

(3.15)

The rank constraint makes this problem non-convex. However, by relaxing this

constraint then the problem is convex and can be categorized as a semi-definite

program [70]. [95] solves this problem by using this relaxation and finding the

solutions based on the convexity of this optimization problem. We instead

address this optimization problem with respect to the precoders. Hence, we

avoid the rank constraints but the non-convex form still holds due to the non-

convex objective function.

42



Theorem 3.1. If there exist the optimal solution F̃k, k = 1, . . . , K which

together with a Lagrangian multiplier λ̃ that has at least mt,k −
∑

l 6=k mr,k

non-zero components, satisfy the conditions

∇
F̃k
L =0, k = 1, . . . , K (3.16)

K∑

k=1

tr
{
VH

kΦk,nVkF̃kF̃
H

k

}
≤pn, n = 1, . . . , N (3.17)

of the problem (3.14), then the optimal BD precoder must have the following

structure

FBD⋆
k = Vk

[
VH

k

(
N∑

n=1

λ̃nΦk,n

)
Vk

]− 1
2

ŨkΣ̃k, k = 1, . . . , K. (3.18)

where Ũk is an orthonormal matrix containing the eigenvectors of the matrix

Φk(λ̃)
− 1

2 H̆H

k H̆kΦk(λ̃)
− 1

2 with its dk largest eigenvalues given by γk,1 ≥ · · · ≥
γk,dk. Σ̃k is a diagonal matrix with diagonal elements given by σ̃k,i =√[

1− 1

γk,i(λ̃)

]+
, i = 1, . . . , dk, ∀k. We have used simplification Φk(λ̃) =

VH

k

(
N∑

n=1

λ̃nΦk,n

)
Vk and the operator [·]+ = max(·, 0).

Proof. The proof is given in Section 3.A.

Inspired by this theorem, we propose an algorithm to find the optimal BD

precoders. In order to find the optimal Lagrangian multipliers, we minimize the

dual function with respect to λ � 0. This can be performed by sub-gradient

update given by

λ(j)
n = λ(j−1)

n + δ

(
pn −

K∑

k=1

tr
{
Φk,nFkF

H

k

}
)

(3.19)

so as to satisfy the power constraints. Therefore, the resulting algorithm has

two loops; an outer loop which updates the auxiliary variable λ using the sub-

gradient update and the inner loop which finds the optimal BD precoder when

λ is fixed using the structure discussed in the above theorem. The details of

this algorithm are given in Table 3.1
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Table 3.1: BD precoder optimization algorithm

Find the right singular vectors of H̃k, k = 1, . . . , K (i.e. Vk).
Initialize λ � 0
Repeat

Update Φk(λ) = VH

k

(
N∑

n=1

λnΦk,n

)
Vk, ∀k

Find H̆k = HkVk, ∀k
Find the dk largest eigenvalues and corresponding eigenvectors

of the matrix Φk(λ)
− 1

2 H̆H

k H̆kΦk(λ)
− 1

2 (i.e. γk,i ≥ . . . ≥ γk,dk and Uk, ∀k).

Update σk,i =

√[
1− 1

γk,i(λ)

]+
, i = 1, . . . , dk, ∀k.

Establish the optimal BD precoder as

Fk(λ) = VkΦk(λ)
− 1

2UkΣk, k = 1, . . . , K.

Update λn ← λn + δ

(
pn −

K∑
k=1

tr
{
Φk,nFk(λ)Fk(λ)

H
})

Until
∑
n

∣∣∣∣λn

(
pn −

K∑
k=1

tr
{
Φk,nFk(λ)Fk(λ)

H
})∣∣∣∣ ≤ ǫ0

3.4 Simulation Setup

The propagation model between each base station’s transmit antenna and

mobile user’s receive antenna includes three factors: a path loss component

proportional to d−β
kb (where dk,m denotes distance from BS m to the mobile

user k and β = 3.8 is the path loss exponent), and two random components

representing lognormal shadow fading and Rayleigh fading. The channel gain

between transmit antenna t of the base station m and receive antenna r of the

kth user is given by

[Hk,m](r,t) = α
(r,t)
k,m

√

ρk,m

(
dk,m
d0

)−β

Γ (3.20)

where [Hk,m](r,t) is the (r, t) element of the channel matrix Hk,m ∈ Cnr×nt

from the base station m to the mobile user k, α
(r,t)
k,m ∼ CN (0, 1) represents

independent Rayleigh fading, d0 = 1 km is the cell radius, and ρk,m =

10ρ
(dBm)
k,m

/10 is the lognormal shadow fading variable between mth base station

and kth user, where ρ
(dBm)
k,m ∼ CN (0, σρ) and σρ = 8 dB is its standard

deviation. A reference SNR, Γ = 20 dB is a typical value of the interference-

44



free SNR at the cell boundary (as in [59] and [9]).

Our cellular network setup involves clustering. Since global coordination

is not feasible, clustering with cluster sizes of up to M = 7 is considered.

The cellular network layout is shown in Fig. 3.2. A base station is located

at the center of each hexagonal cell. Each base station is equipped with nt

transmit antennas. There are nr receive antennas on each mobile user and

there are K users per cell per subband. All mt,k = Mnt base stations’ transmit

antennas in each cluster are coordinated to transmit to each user. Hence, a

MIMO BC model is evolved. In Fig. 3.2 the clusters of sizes 3 and 7 are

shown. For cluster size 7, one wrap-around layer of clusters is considered to

contribute inter-cluster interference, while for M = 3 two tiers of interfering

cells are accounted for. User locations are generated randomly, uniformly and

independently in each cell. For each drop of users (random realization of the

user distribution), the distance of users from base stations in the network is

computed and path loss, lognormal and Rayleigh fading are included in the

channel gain calculations. To compare the results all the sum rates achieved

through network MIMO coordination are normalized by the size of clusters

M . Base stations causing inter-cluster interference are assumed to transmit at

full power, which is the worst case scenario.

3.4.1 User Selection

As discussed in the previous sections, transmit ZF precoding has limitations

on the number of users that can be served simultaneously. To obtain multiuser

diversity a user selection procedure is applied prior to precoding. Generally,

total number of receive antennas must be less than or equal to the total number

of transmit antennas2. In this chapter, we employ two types of user selection

criteria; maximum sum rate scheduling and proportionally-fair criteria with

the updated weights for the rate of each user as in [98–100]. In the following

discussion, first we briefly review these two scheduling methods. Then, we

review greedy user selection algorithm and propose the extension of a semi-

2Selection of maximum number of users does not achieve maximum throughput
necessarily.
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Figure 3.2: The cellular layout of M = 3 and M = 7 clustered network MIMO
joint processing. The borders of clusters are bold. Green colored cells represent
the analyzed center cluster and the grey cells are causing inter-cell interference.
For M = 7, one tier of interfering clusters is considered, while for M = 3 two
tiers of interfering cells are accounted for.

orthogonal user selection algorithm [101] to the multiple-antenna user case.

Assume that set of all users are denoted as U . In general, the user selection

criteria is to maximize a weighted sum rate of the system as

Û = argmax
Û⊆U

∑

k∈Û

µkRk (3.21)

where µk are selected based on the scheduling procedure and Kmax is the

maximum number of users that can be served simultaneously. The optimal

solution for this maximization problem can be obtained through exhaustive

search. However, the exhaustive search requires searching over all subsets of U
with the size less than or equal Kmax. The complexity of the exhaustive search

is even higher in the multicell network MIMO scenario with large number of

users and transmit antennas. Alternatively, there are other approaches such as

greedy, genetic, and semi-orthogonal user selection algorithms [80,99,101–104].

The greedy user selection algorithm has been investigated in [103] and further

extended in [99, 104]. In this algorithm, in each step a user is selected which

maximizes the increase in the (weighted) sum rate. When adding any user

does not increase the (weighted) sum rate of the system the user selection
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algorithm will be terminated. Most common criterion to select the users is

the weighted sum rate with the weights selected based on proportional fair

schedule or maximized sum rate schedule. In the former, in each scheduling

interval t, greedy algorithm picks the user k̂ which maximizes the increase in

the weighted sum rate
∑

k∈Û∩k̂

µk(t)Rk(t) (3.22)

where µk(t) and Rk(t) are respectively the rate weight and the supported rate

during tth scheduling interval for the kth user. The weights are defined as

µk(t) = 1/R̄k(t) where R̄k(t) is the average throughput that is achieved by

user k up to time t, which is updated as in [105]

R̄k(t + 1) =

(
1− 1

τ

)
R̄k(t) +

1

τ
Rk(t) (3.23)

where Rk(t) is equal to zero when the user k is not scheduled in the tth

time interval. τ is the sliding window width where the throughput of user

k is monitored and the priority weights µk(t) is updated according the

users achieved rate in that interval. In our simulations for proportional fair

scheduling algorithm τ = 10 is considered. The user selection algorithm based

on maximum sum rate criterion is when µk = 1, k = 1, . . . , K are selected.

3.5 Numerical Results

In this section, the performance results (obtained via Monte Carlo simulations)

of the proposed optimal BD scheme in a network MIMO coordinated system

are discussed. The network MIMO coordination exhibits several system

advantages, which are exposed in the following.

3.5.1 Network MIMO Gains

While the universal network MIMO coordination is practically impossible,

clustering is a practical scheme, which also benefits the network MIMO

coordination gains and reduces the amount of feedback required at the base

stations [8, 9]. The size of clusters, M , is a parameter in network MIMO

coordination. M = 1 means no coordination with optimal BD scheme applied.
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Figure 3.3: CDF of sum rate with different cluster sizes M = 1, 3, 7, nt = 4,
nr = 2 and 10 users per cell (network MIMO joint processing).

Fig. 3.3 shows that with increasing cluster size throughput of the system

increases. System throughput is computed using MSR scheduling and averaged

over several channel realizations for a large number of user locations generated

randomly. The normalized throughput for different cluster sizes is compared,

which means that the total throughput in each cluster is divided by the number

of cells in each cluster M . The normalized sum rate has lower variance in larger

clusters, which shows that the performance of the system is less dependent

on the position of users and that network MIMO coordination brings more

stability to the system.

3.5.2 Multiple-Antenna Gains

The inter-cell interference mitigation through coordination of base stations

enables the cellular network to enjoy the great spectral efficiency improvement

associated with employing multiple antennas. Fig. 3.4 shows the linear growth
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Figure 3.4: Sum-rate increase with the number of antennas per base station.
nr = 2.

of the maximum throughput achievable through the proposed optimal multi-

cell BD and the capacity limits of DPC [30]. The number of receive antennas

at each mobile user is fixed to nr = 2 and the number of transmit antennas

nt at each base station is increasing. When the cluster size grows, the slope

of spectral efficiency also increases. The maximum power on each transmit

antenna is normalized such that total power at each base station for different

nt is constant.

3.5.3 Multiuser Diversity

Multi-cell coordination benefits from increased multiuser diversity, since the

number of users scheduled at each time interval is B times of that without

coordination. In Fig. 3.5, the multiuser diversity gain of network MIMO is

shown with up to 10 users per cell. The MSR scheduling is applied for each

drop of users and averaged over several channel realizations.
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Figure 3.5: Sum rate per cell achieved with the proposed optimal BD and the
capacity limits of DPC for cluster sizes M = 1, 3, 7; nt = 4, nr = 2.

3.5.4 Fairness Advantages

One of the main purposes of network MIMO coordination is that the cell-edge

users gain from neighboring base stations signals. In Fig. 3.6, the cumulative

distribution functions (CDFs) of mean rates for users are shown and compared

for M = 1 (i.e. beamforming without coordination) and M = 3, 7 for the

proposed optimal BD scheme. There are 10 users per cell randomly and

uniformly dropped in the network for each simulation. For each drop of

users, the proportionally fair scheduling algorithm is applied over hundreds

of scheduling time intervals using sliding window width τ = 10 time slots

(see [47]). Each user’s rates achieved in all time intervals are averaged to find

the mean rates per user and their CDF for several user locations is plotted. As

shown by the plots, for M = 3 and M = 7 network MIMO coordination nearly

70% and 80% users have mean rate larger than 1 bps/Hz, respectively, while for

the scheme without coordination it is 45% of users. However, fairness among
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Figure 3.6: CDF of the mean rates in the clusters of sizes M = 3, 7 and
comparison with M = 1 (no coordination) using the proposed optimal BD.

users does not seem to be improved when cluster size increases. This is due

to the existence of larger number of cell-edge users when cluster size increases

(the area that cell-edge users are located in the network grows quadratically

with the radius of the cluster).

3.5.5 Convergence

Convergence of the gradient descent method proposed in Section 3.3.2 is

illustrated in Fig. 3.7. The normalized sum rates obtained after each iteration

with respect to the optimal target values versus the number of iterations are

depicted. The convergence behavior of the algorithm for 20 independent and

randomly generated user location sets is shown, and their channel realizations

are tested with the proposed iterative algorithm and the values of sum rate

after each iteration divided by the target value are monitored. Nearly all of

the optimizations converge to the target value within only 10 first iterations
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Figure 3.7: Convergence of the gradient descent method for the proposed
optimal BD for M = 3, nt = 4, nr = 2, and 8 users per cell.

with 1% error.

3.6 Conclusions

In this chapter, a multi-cell coordinated downlink MIMO transmission has

been considered under individual (per-antenna/per-BS) power constraints.

Sub-optimality of the conventional block diagonalization (BD) has been

discussed and it has motivated the search for the optimal BD scheme. The

optimal BD scheme for network MIMO coordinated system under individual

power constraints has been proposed in this chapter. As a result, a simple

iterative algorithm has been proposed to obtain the optimal precoders for

multi-cell BD. The comprehensive simulation results have demonstrated

advantages achieved by using multi-cell coordinated transmission under more

practical individual power constraints.
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3.A Proof of Theorem 3.1

First note that the maximum of the objective function of the problem (3.14)

is attained when I + F̆H

k H̆
H

k H̆
H

k F̆k is diagonal. To prove this, we assume that

the maximum is reached at F̆⋆
k. Then, one can always find a unitary matrix

Πk ∈ Cdk×dk such that the matrix F̄k = F̆⋆
kΠk diagonalizes

I+ F̄H

k H̆
H

k H̆
H

k F̄k = ΠH

k

(
I+ F̆H

k H̆
H

k H̆
H

k F̆k

)
Πk. (3.24)

Nevertheless, the value of the objective function is still fixed due to the unitary

structure of Πks. Moreover, the power constraints are also unchanged due to

the fact that F̄kF̄
H

k = F̆⋆
kF̆

⋆H
k . This proves our claim.

Although, the optimization problem (3.14) is non-convex we can use the

Karush-Kuhn-Tucker (KKT) conditions as the necessary conditions of this

problem. The Lagrangian function of this problem can be formed as

L(F̆k,λ) =−
K∑

k=1

log
∣∣∣I+ F̆H

k H̆
H

k H̆kF̆k

∣∣∣

+
K∑

k=1

tr

{
VH

k

(
N∑

n=1

λnΦk,n

)
VkF̆kF̆

H

k

}
−

N∑

n=1

λnpn (3.25)

Thus, there exist a Lagrange multiplier vector λ̃ = (λ̃1, . . . , λ̃N) such that

together with F̃k, k = 1, . . . , K satisfies the KKT conditions of the problem

(3.14). The zero gradient condition can be expressed as

∇
F̃k
L =− H̆H

k H̆kF̃k

(
I+ F̃H

k H̆
H

k H̆kF̃k

)−1

+VH

k

(
N∑

n=1

λ̃nΦk,n

)
VkF̃k = 0, k = 1, . . . , K (3.26)

Now, we know that I+F̃H

k H̆
H

k H̆kF̃k and consequently F̃H

k H̆
H

k H̆kF̃k are diagonal

matrices. Pre-multiplying (3.26) by F̃H

k , we obtain

F̃H

k H̆
H

k H̆kF̃k

(
I+ F̃H

k H̆
H

k H̆kF̃k

)−1

= F̃H

kV
H

k

(
N∑

n=1

λ̃nΦk,n

)
VkF̃k (3.27)

where has the left-side in a diagonal form. Therefore, the right side of this

equation must be also in a diagonal form. For simplicity, we introduce Φk(λ̃) =
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VH

k

(
N∑

n=1

λ̃nΦk,n

)
Vk. If at least there are m̃r,k non-zero λ̃n, ∀n, then Φk(λ̃) is

a non-singular matrix. This can be easily verified due to the structure of Φk,n.

Consequently, we can write F̃H

kΦk(λ̃)F̃k = Dk where Dk ∈ Cdk×dk diagoanl

matrix. Hence, we can write

Φk(λ̃)
1
2 F̃k = ŨkΣ̃k, k = 1, . . . , K (3.28)

where Ũk ∈ Cmt,k×dk is an orthonormal matrix (i.e. ŨH

k Ũk = I) and Σ̃k is a

dk × dk diagonal matrix with the real diagonal terms σ̃k,i ≥ 0. Therefore, we

can write

F̃k = Φk(λ̃)
− 1

2 ŨkΣ̃k, k = 1, . . . , K (3.29)

Replacing this structure, we have

F̃H

k H̆
H

k H̆kF̃k = Σ̃H

k Ũ
H

kΦk(λ̃)
− 1

2 H̆H

k H̆kΦk(λ̃)
− 1

2 ŨkΣ̃k = Dk (3.30)

and consequently the orthonormal matrix Ũk must contain the eigenvectors

of Φk(λ̃)
− 1

2 H̆H

k H̆kΦk(λ̃)
− 1

2 . Consequently, Dk = Σ̃H

k Γ̃k(λ̃)Σ̃k. Now, plugging

(3.30) into (3.27), we obtain

Σ̃H

k Γ̃k(λ̃)Σ̃k

(
I+ Σ̃H

k Γ̃k(λ̃)Σ̃k

)−1

= Σ̃H

k Σ̃k, k = 1, . . . , K (3.31)

This can be simplified in a scalar form as

γk,i(λ̃) =
(
1 + σ̃2

k,iγk,i(λ̃)
)
. (3.32)

Therefore, the diagonal terms of Σ̃k are given by

σ̃k,i =

√√√√
[
1− 1

γk,i(λ̃)

]+
, k = 1, . . . , K, i = 1, . . . , dk (3.33)

Consequently, structure given by (3.18) evolves for the optimal precoders.
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Chapter 4

MMSE Precoding and
Equalization

In this chapter, we focus on the optimization of linear precoding strategies at

the BSs and equalization at the users for network MIMO with partial coop-

eration. We consider the model introduced in Chapter 2, MIMO Interference

channel with generalized constraints, when individual power constraints at

the BSs are enforced. We also account constraints on the number of streams

per user. Our optimization approach is based on minimization of weighted

sum of mean square error values of the estimated data vector. Therefore, the

proposed algorithms in this chapter can be categorized as MMSE precoding

and equalization.

We focus on the sum-rate maximization (SRM) and on the minimization of

weighted sum-MSE (WSMSE) under per-BS power constraints and constraints

on the number of streams per user. Moreover, although non-linear processing

techniques such as vector precoding [106,107] may generally be useful, we focus

on more practical linear processing techniques. Both the SRM and WSMSE

minimization (WSMMSE) problems are non-convex [50], and thus suboptimal

design strategies of reasonable complexity are called for.

The contributions of this chapter are as follows:

(i) We review the available suboptimal techniques that have been proposed

for the SRM problem [46,56,71] and extend them to the MIMO-IFC-GC

scenario where necessary in Sec. 4.2. Since these techniques are generally

unable to enforce constraints on the number of streams, we also review
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and generalize techniques that are based on the idea of interference

alignment [44] and are able to impose such constraints;

(ii) Then, we propose two novel suboptimal solutions for the WSMMSE

problem in Sec. 4.3 under arbitrary constraints on the number of streams.

It is noted that the WSMMSE problem without such constraints would

be trivial, as it would result in zero MMSE and no stream transmitted.

The proposed solutions are based on a novel insight into the single-user

MMSE problem with multiple linear constraints, which is discussed in

Sec. 4.3.2;

(iii) Finally, extensive numerical simulations are provided in Sec. 4.4 to

compare performance of the proposed schemes in realistic cellular

systems.

In this chapter, we include linear processing at the BSs and at the users.

The system model and preliminaries has been reviewed in 2.2.1.

4.1 Problem Definition and Preliminaries

In this chapter, we consider the optimization of the sum of some specific

functions fk (Ek) of the MSE-matrices Ek of all users k = 1, . . . , K for the

MIMO-IFC-GC. Specifically, we address the following constrained optimiza-

tion problem

minimize
Fk,Gk,∀k

K∑
k=1

fk(Ek)

subject to
K∑
k=1

tr
{
Φk,mFkF

H

k

}
≤ Pm, m = 1, . . . ,M,

(4.1)

where the optimization is over all transmit beamforming matrices Fk and

equalization matrices Gk. Specifically, we focus on the weighted sum-MSE

functions (WSMSE)

fk (Ek) = tr {WkEk} =
dk∑

j=1

wkjMSEkj (4.2)
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with given diagonal weight matrices Wk ∈ Cdk×dk where the main diagonal

of Wk is given by [wk,1, ..., wk,dk ] with non-negative weights wkj ≥ 0. With

cost function (4.2), we refer to the problem (4.1) as the weighted sum-MSE

minimization (WSMMSE ) problem.

Of more direct interest for communications systems is the maximization

of the sum-rate. This is obtained from (4.1) by selecting the sum-rate (SR)

functions

fk(Ek) = log |Ek| . (4.3)

With cost function (4.3), problem (4.1) is referred to as the sum-rate maxi-

mization (SRM) problem. In fact, from information-theoretic considerations,

it can be seen that (4.3) is the maximum achievable rate (in bits per channel

use) for the kth user where the signals of the other users are treated as noise

(see, e.g., [83]).

Remark 4.1. Consider an iterative algorithm where at each iteration a

WSMMSE problem is solved with the weight matrices Wk assumed to be non-

diagonal and selected based on the previous MSE-matrix Ek. This algorithm

can approximate the solution of (4.1) for any general cost function fk(Ek).

This was first pointed out in [108] for the weighted SRM problem in a MIMO

BC, then in [72] for the single-antenna interference channel and a general

utility function, and has been generalized to a MIMO (broadcast) interference

channel in [109] with conventional power constraints. It is not difficult to see

that this result extends also to the MIMO-IFC-GC, which is not subsumed

in the model of [109] due to the generalized linear constraints. We explicitly

state this conclusion below.

Lemma 4.1. [109] For strictly concave utility functions fk(·) for all k, the

global optimal solution of problem (4.1) and the solution of

minimize
Fk,Gk,Wk,∀k

K∑
k=1

{tr {WkEk} − tr {Wkgk(Wk)}
+fk(gk(Wk))}

subject to
K∑
k=1

tr
{
Φk,mFkF

H

k

}
≤ Pm, m = 1, . . . ,M,

(4.4)

where gk(·) is the inverse function of the ∇fk(·), are the same.
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Consequently, in order to find an approximate solution of (4.1), at each

step matrices Wk for k = 1. . . . , K are updated by solving (4.4) with respect

to Wk only (i.e., we keep (Gk,Fk), ∀k unchanged in this step). Then, using

the obtained matrices Wk, for k = 1, . . . , K, the problem (4.4) reduces to

a WSMMSE problem with respect to matrices Gk and Fk for k = 1, . . . , K

(i.e., matrices Wk are kept fixed). This results in the iterative algorithm,

that is discussed in Remark 1 and that leads to a suboptimal solution of

(4.1). In the special case of the SRM problem, we have fk(Ek) = log |Ek| and
gk(Wk) = W−1

k , in which problem (4.4) is then equivalent to the problem

minimize
Fk,Gk,Wk,∀k

K∑
k=1

tr {WkEk} −
K∑
k=1

log |Wk|

subject to
K∑
k=1

tr
{
Φk,mFkF

H

k

}
≤ Pm, m = 1, . . . ,M.

(4.5)

The optimization problem (4.5) can be solved in an iterative fashion, where at

each iteration the weights are selected as W⋆
k = E−1

k and then the WSMMSE

problem is solved with respect to matrices (Gk,Fk) for k = 1, . . . , K.

4.2 Known Techniques

The SRM problem for a number of users K > 1 is non-convex even when

removing the constraints on the number of streams per user. The general

problem in fact remains non-convex and is NP-hard [110]. Therefore, since

finding the global optimal has prohibitive complexity, one needs to resort to

suboptimal solutions with reasonable complexity. In this section, we review

several suboptimal solutions to the SRM problem that have been proposed

in the literature. Since some of these techniques were originally proposed for

a scenario that does not subsume the considered MIMO-IFC-GC, we also

propose the necessary modifications required for application to the MIMO-

IFC-GC. Note that these techniques perform an optimization over the transmit

covariance matrices by relaxing the rank constraint due to the number of users

per streams (see discussion below). Therefore, we also review and modify when

necessary a different class of algorithms that solve problems related to SRM

but are able to enforce constraints on the number of transmitting streams per
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user. The WSMMSE problem does not seem to have been addressed previously

for the MIMO-IFC-GC and will be studied in the next section.

4.2.1 Soft Interference Nulling

A solution to the SRM problem for the MIMO-IFC-GC was proposed in [56].

In this technique the optimization is over all transmit covariance matrices

Σk = FkF
H

k ∈ Cmt,k×mt,k . The constraints on the number of streams would

impose a rank constraint onΣk as rank(Σk) = dk. Here, and in all the following

reviewed techniques below, unless stated otherwise, such rank constraints are

relaxed by assuming that the number of transmitting data streams is equal to

the transmitting antennas to that user, i.e. dk = mt,k. From (4.3) and (4.23),

we can rewrite the (negative) sum-rate as

K∑

k=1

log |Ek| =−
K∑

k=1

log |Ωk +Hk,kΣkH
H

k,k|

+ log |Ωk|, (4.6)

whereΩk is defined in (2.17). Notice that it is often convenient to work with the

covariance matrices instead of the beamforming matrices Fk, since this change

of variables may render the optimization problem convex as, for instance, when

minimizing the first term only in (4.6). It can then be seen that the SRM

problem is, however, non-convex due to the presence of the − log |Ωk| term,

which is indeed a concave function of the matrices Σk.

An approximate solution is then be found in [56] via an iterative scheme,

whereby at each (j + 1)th iteration, given the previous solution Σ
(j)
k the non-

convex term − log |Ωk| is approximated using a first-order Taylor expansion

as

− log |Ωk| ≃ − log |Ω(j)
k |

−
∑

l 6=k

tr

{(
Ω

(j)
k

)−1

Hk,l

(
Σl −Σ

(j)
l

)
HH

k,l

}
, (4.7)

where Ω
(j)
k = I+

∑
l 6=k

Hk,lΣ
(j)
k HH

k,l. Since the resulting problem
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minimize
Σk,k=1,...,K

−
K∑
k=1

log |Ωk +Hk,kΣkHk,k|

+
∑
l 6=k

tr

{(
Ω

(j)
k

)−1

Hk,lΣlH
H

k,l

}

subject to tr {Φk,mΣk} ≤ Pm, m = 1, . . . ,M,

(4.8)

is convex, a solution can be found efficiently. Following the original reference

[56], we refer to this scheme as “soft interference nulling”. We refer to [56] for

further details about the algorithm.

4.2.2 SDP Relaxation

A related approach is taken in [46] for the SRM problem1 for a MIMO-

IFC with regular per-transmitter, rather than generalized, power constraints.

Similarly to the previous technique, the optimization is over the transmit

covariance matrices and under the relaxed rank constraints. In particular, the

authors first approximate the problem by using the approach in [108]. Then,

an iterative solution is proposed by linearizing a non-convex term similar to

soft interference nulling as reviewed above. It turns out that such linearized

problem can be solved using semi-definite programming (SDP). Specifically,

denoting with Ω
(j)
k the matrix (2.17) corresponding to the solution F

(j)
k at the

previous iteration j, i.e., Ω
(j)
k = I+

∑
l 6=k Hk,lF

(j)
l F

(j)H
l HH

k,l, the SDP problem

to be solved to find the solutions F
(j+1)
k for the (j + 1)th iteration is given by

minimize
Yk,Σk,∀k

K∑
k=1

tr {Yk}+
K∑
k=1

tr
{
C

(j)
k Σk

}

subject to
K∑
k=1

tr {Φk,mΣk} ≤ Pm, m = 1, . . . ,M


Hk,kΣkH

H

k,k +Ω
(j)
k

(
W

(j)
k Ω

(j)
k

) 1
2

(
W

(j)
k Ω

(j)
k

) 1
2

Yk


 � 0,

and Σk � 0, k = 1, . . . , K

where

W
(j)
k = I+Hk,kΣ

(j)
k HH

k,kΩ
(j)−1
k , (4.9)

1More generally, the reference studies the weighted SRM problem.
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C
(j)
k =

∑

i 6=k

HH

i,k

(
I+

∑

l

Hi,lΣ
(j)
l HH

i,l

)−1

W
(j)
i ×

HiΣ
(j)
i HH

i

(
I+

∑

l

Hi,lΣ
(j)
l HH

i,l

)−1

Hi,k, (4.10)

and Yk is an auxiliary optimization variable, defined using the Schur

complement as Yk = WkΩ
(j)
k

(
Hk,kΣkH

H

k,k +Ω
(j)
k

)−1

to convert the original

optimization problem to an SDP problem [46]. The derivation requires minor

modifications with respect to [46] and is therefore not detailed. The scheme is

referred to as “SDP relaxation” in the following. We refer to [46] for further

details about the algorithm.

4.2.3 Polite Waterfilling

Reference [75] studied the (weighted) SRM problem for a general model that

includes the MIMO-IFC-GC. We review the approach here for completeness.

Two algorithms are proposed, whose basic idea is to search iteratively for a

solution of the KKT conditions [50] for the (weighted) SRM problem. Notice

that, since the problem is non-convex, being a solution of the KKT conditions

is only necessary (as proved in [75]) but not sufficient to guarantee global

optimality. It is shown in [75] that any solution Σk, k = 1, . . . , K, of the

KKT conditions must have a specific structure that is referred to as “polite

waterfilling”, which is reviewed below for the SRM problem.

Lemma 4.2. [75] For a given set of Lagrange multipliers λ = (µλ1, ..., µλM),

where µ > 0 and λi ≥ 0 for i = 1, ...,M , associated with the M power

constraints in (4.1), define the covariance matrices

Ω̂k =
M∑

m=1

λmΦk,m +
∑

j 6=k

HH

j,kΣ̂jHj,k, (4.11)

with

Σ̂k =
1

µ

(
Ω−1

k −
(
Ωk +Hk,kΣkH

H

k,k

)−1
)
. (4.12)

An optimal solution Σk, k = 1, ..., K, of the SRM problem must have the

“polite waterfilling” form

Σk = Ω̂
− 1

2
k VkPkV

H

k Ω̂
− 1

2
k , (4.13)
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where the columns of Vk are the right singular vectors of the “pre- and post-

whitened channel matrix” Ω
− 1

2
k Hk,kΩ̂

− 1
2

k with (2.17) for k = 1, . . . , K, and Pk

is a diagonal matrix with diagonal elements pk,i. The powers pk,i must satisfy

pk,i =

[
1

µ
− 1

γk,i

]+
, (4.14)

where
√
γk,i is the ith singular value of the whitened matrix Ω

− 1
2

k Hk,kΩ̂
− 1

2
k .

Parameter µ ≥ 0 is selected so as to satisfy the constraint

M∑

m=1

λm

K∑

k=1

tr {Φk,mΣk} ≤
M∑

m=1

λmPm, (4.15)

which implied by the constraints of the original problem (4.1). Moreover,

parameters λi ≥ 0 are to be chosen so as to satisfy each individual constraint

in (4.1).

In order to obtain a solution Σk, k = 1, . . . , K, according to polite water-

filling form as described in Lemma 6, [75] proposes to use the interpretation of

Ω̂k in (4.11) as the interference plus noise covariance matrix and Σ̂k in (4.12)

as the transmit covariance matrix both at the “dual” system2.

Based on this observation, the algorithm proposed in [75] works as follows.

At each jth iteration, first one calculates the covariance matrices Σ
(j)
k in the

original system using the polite waterfilling solution of Lemma 6; then one

calculates the matrices Σ̂
(j)
k using again polite waterfilling in the dual system

as explained above. Finally, at the end of each jth iteration, one updates the

Lagrange multipliers as

λ(j+1)
m = λ(j)

m

K∑
k=1

tr
{
Φk,mΣ

(j)
k

}

Pm

, (4.16)

thus forcing the solution to satisfy the constraints of the SRM problem (4.1).

For details on the algorithm, we refer to [75].

2In the “dual” system the role of transmitters and receivers is switched, i.e., the kth
transmitter in the original system becomes the kth receiver in the “dual” system. The
channel matrix between the kth transmitter and the lth receiver in the dual system is given
by H

H

l,k.
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Remark 4.2. Other notable algorithms designed to solve the SRM problem for

the special case of a MIMO-BC with generalized constraints are [28, 69]. As

explained in [75], these schemes are not easily generalized to the scenario at

hand where the cost function is not convex. As such, they will not be further

studied here.

4.2.4 Leakage Minimization

While the techniques discussed above do not enforce constraints on the number

of stream per users, here we extend a technique previously proposed in [111]

that aims at aligning interference through minimizing the interference leakage

and is able to enforce the desired rank constraints. It is known that this

approach solves the SRM problem for high signal-to-noise-ratio (SNR). In

this algorithm, it is assumed that the power budget is divided equally between

the data streams and the precoding matrix of user k from BS m is given

as Fk,m =
√

Pm

Kmdk
F̄k,m where F̄k,m is a nt × dk matrix of orthonormal

columns (i.e. F̄H

k,mF̄k,m = I). The equalization matrices are also assumed to

have orthonormal columns (i.e. GH

kGk = I). Hence, there is no inter-stream

interference for each user. Total interference leakage at user k is given by

I =
∑

k

tr
{
GH

kQkGk

}
. (4.17)

where Qk =
∑

j 6=k

∑
m∈Mj

Pm

Kmdj
H̃k,mF̄k,mF̄

H

k,mH̃
H
j,m. To minimize the inter-

ference leakage, the equalization matrix Gk for user k can be obtained as

Gk = vdk(Qk) where vdk(A) represents a matrix with columns given by the

eigenvectors corresponding to the dk smallest eigenvalues of A. Now, for fixed

matrices Gk, the cost function (4.17) can be rewritten as

I =
∑

k

∑

m∈Mk

tr
{
F̄H

k,mQ̂k,mF̄k,m

}
(4.18)

where Q̂k,m =
∑

j 6=k,j∈Km

Pm

Kmdk
H̃H

j,mGjG
H

j H̃j,m.
3 Minimizing over the matrices

Fk leads to choosing F̄k,m = vdk(Q̂k,m). The algorithm iterates until conver-

gence. We refer to this scheme as “min leakage” in the following.

3In the original work [111] which is proposed for the interference channels, the algorithm
iteratively exchanges the role of transmitters and receivers to update the precoding and
equalization matrices similarly.
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4.2.5 Max-SINR

Another algorithm called “max-SINR” has been proposed in [111] which

is based on the maximization of SINR, rather than directly the sum-rate.

This algorithm is also able to enforce rank constraints. The max-SINR

algorithm assumes equal power allocated to the data streams and attempts at

maximizing the SINR for each stream by selecting the receive filters. Then, it

exchanges the role of transmitter and receiver to obtain the transmit precoding

matrices which maximizes the max-SINR. This iterates until convergence. A

modification of this algorithm is given in [112] by maximizing the ratio of the

average signal power to the interference plus noise power (SINR-like) term.

However, these techniques are only given for standard MIMO interference

channels and not for MIMO-IFC-GC.

4.3 MSE Minimization

In this section, we propose two suboptimal techniques to solve the WSMMSE

problem. We recall that with the WSMMSE problem enforcing the constraint

on dk is necessary in order to avoid trivial solutions. Performance comparison

among all the considered schemes will be provided in Sec. 4.4 for a multi-cell

system with network MIMO.

4.3.1 MMSE Interference Alignment

A technique referred to as MMSE interference alignment (MMSE-IA) was

presented in [72] for an interference channel with per-transmitter power

constraints and where each receiver is endowed with a single antenna. Here we

extend the approach to to the MIMO-IFC-GC.

The idea is to approximate the solution of the WSMMSE problem by opti-

mizing the precoding matrices Fk followed by the equalization matricesGk and

iterating the procedure. Specifically, initialize Fk arbitrarily. Then, at each iter-

ation j: (i) For each user k, evaluate the equalization matrices using the MMSE

solution (4.23), obtainingG
(j)
k =

(
Hk,kF

(j−1)
k F

(j−1)H
k HH

k,k+Ω
(j−1)
k

)−1

Hk,kF
(j−1)
k ,

where from (2.17) we have Ω
(j−1)
k = I+

∑
l 6=kHk,lF

(j−1)
l F

(j−1)H
l HH

k,l; (ii) Given
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the matrices G
(j)
k , the WSMMSE problem becomes

minimize
Fk, k=1,...,K

K∑
k=1

tr
{
WkE

(j)
k

}

subject to
K∑
k=1

tr
{
Φk,mFkF

H

k

}
≤ Pm, ∀m ∈M

, (4.19)

where E
(j)
k is (2.16) with G

(j)
k in place of Gk. Fixing the equalization matrices

G
(j)
k , ∀k, this problem is convex in Fk and can be solved by enforcing the KKT

conditions. Therefore, matrices F
(j)
k for the jth iteration can be obtained as

follows.

Lemma 4.3. For given equalization matrices G
(j)
k , a solution F

(j)
k , k =

1, ..., K, of the WSMMSE problem is given by

F
(j)
k =

(
K∑

l=1

HH

l,kG
(j)
l WlG

(j)H
l Hl,k +

∑

m

µmΦk,m

)−1

×

HH

k,kG
(j)
k Wk (4.20)

where µm are Lagrangian multipliers satisfying

µm ≥ 0 (4.21)

µm

(
K∑

k=1

tr
{
Φk,mF

(j)
k F

(j)H
k

}
− Pm

)
= 0 (4.22)

and the power constraints
∑K

k=1 tr
{
Φk,mF

(j)
k F

(j)H
k

}
≤ Pm for all m.

Once obtained the matrices F
(j)
k using the results in Lemma 4.3, the

iterative procedure continues with the (j + 1)th iteration. We refer to this

scheme as extended MMSE-IA, or eMMSE-IA.

Remark 4.3. The algorithm proposed above reduces to the one introduced

in [72] in the special case of per-transmitter power constraints and single-

antenna receivers. It is noted that in such case, problem (4.19) can be solved

in a distributed fashion, so that each transmitter k can calculate its matrix

(more precisely vector, given the single antenna at the receivers) independently

from the other transmitters. In the MIMO-IFC-GC, the power constraints

couple the solutions of the different users and thus make a distributed approach

infeasible.
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4.3.2 Diagonalized MMSE

The Single-User Case (K = 1)

The WSMMSE and SRM problems are non-convex and thus global optimiza-

tion is generally prohibitive. In this section, we address the case of a single

user (K = 1). In particular, the SRM problem with K = 1 is non-convex if one

includes constraints on the number of streams d1, but is otherwise convex and

in this special case can be solved efficiently [83]. The global optimal solution

for the single-user problem with multiple linear power constraint (and a rank

constraint) is still unknown [113]. The WSMMSE problem is trivial without

rank constraint, as explained above, and is non-convex. Here we first review a

key result in [83] [114] that shows with K = 1 and a single constraint (M = 1)

the solution of the WSMMSE problem can be, however, found efficiently. We

then discuss that with multiple constraints (M > 1), this is not the case, and

a solution of the WSMMSE problem even with K = 1 must be found through

some complex global optimization strategies. One such technique was recently

proposed in [113] based on a sophisticated gradient approach. At the end of this

section we then propose a computationally and conceptually simpler solution

based on a novel result (Lemma 4.6), that our numerical result have shown to

have excellent performance. This will be then leveraged in Sec. 4.3.2 to propose

a novel solution for the general multiuser case.

To elaborate, consider a scenario where the noise-plus-interference matrix

Ωk (2.17) is fixed and given (i.e., not subject to optimization). Now, we solve

the WSMMSE problem with K = 1 for specified weight matrices W and Φm.

For the rest of this section, we drop the index k = 1 from all quantities for

simplicity of notation. We proceed by solving the problem at hand, first with

respect to G for fixed F, and then with respect to F without loss of optimality.

The first optimization, over G, is easily seen to be a convex problem (without

constraints) whose solution is given by the minimum MSE equalization matrix

G =
(
HFFHHH +Ω

)−1
HF. (4.23)
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Plugging (4.23) in the MSE matrix (2.16). we obtain

E =
(
I+BHHHΩ−1HF

)−1
. (4.24)

We now need to optimize over F the following problem

minimize
F

tr
{
W
(
I+ FHHHΩ−1HF

)−1
}

subject to tr
{
ΦmFF

H
}
≤ Pm, m = 1, . . . ,M

, (4.25)

Consider first the single-constraint problem, i.e., M = 1. The global

optimal solution for single-user WSMMSE problem with M = 1 is given

in [114] [113] and reported below. Recall that, according to Definition 2.1,

matrix Φ1 is positive definite.

Lemma 4.4. [114] The optimal solution of the WSMMSE problem with K = 1

and a single trace constraint (M = 1) is given by

F = Φ
− 1

2
1 UΣ, (4.26)

where U ∈ Cmt×d is the matrix of eigenvectors of matrix Φ
− 1

2
1 HΩ−1HHΦ

− 1
2

1

corresponding to its largest eigenvalues γ1 ≥ . . . ≥ γd and Σ is a diagonal

matrix with the diagonal terms
√
pi defined as

pi =

[√
wi

µγi
− 1

γi

]+
, (4.27)

with µ ≥ 0 being the “waterfilling” level chosen so as to satisfy the single power

constraint tr
{
Φ1FF

H
}
= P1.

Proof. Introducing the “effective” precoding matrix F̄ = Φ
1/2
1 F and “effective”

channel matrix H̄ = HΦ
− 1

2
1 , the problem is equivalent to the one discussed

in [114, Theorem 1].

In the case of multiple constraints the approach used in Lemma 4.4 cannot

be leveraged. Here we propose a simple, but effective, approach, which is based

on the following considerations summarized in the following two lemmas.

Lemma 4.5. The precoding matrix (4.26)-(4.27) for a given fixed µ > 0

minimizes the Lagrangian function

L(F̄;µ) = tr

{
W
(
I+ F̄HΦ

− 1
2

1 HHΩ−1HΦ
− 1

2
1 F̄

)−1
}

+ µ tr
{
F̄F̄H

}
(4.28)
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where F̄ is the effective precoding matrix defined above.

Proof. We first note that (4.28) is the Lagrangian function of the single-

user single-constraint problem solved in Lemma 4.4. Then, we prove (4.28)

by contradiction. Assume that the minimum of the Lagrangian function is

attained where the corresponding E is not diagonal. Then, one can always

find a unitary matrix Q ∈ Cd×d such that the matrix F̄∗ = F̄Q diagonalizes

E since with F̄∗ we have E = QH

(
I+ B̄

H
Φ

− 1
2

1 HHΩ−1HΦ
− 1

2
1 F̄

)−1

Q [114].

The function tr {WE} is Schur concave, and therefore the matrix F∗ does not

decrease the function tr {WE} with respect to F̄, while F̄F̄H = F̄∗F̄∗H. This

implies that the minimum of tr {WE} is reached when the MSE matrix is

diagonalized. Therefore, we can set without loss of generality F̄ = UΣ where

U is defined as in Lemma 4.4 and Σ is diagonal with non-negative elements on

the main diagonal. Substituting this form of F̄ into the Lagrangian function,

we obtain a convex problem in the diagonal elements of Σ, whose solution

can be easily shown to be given by (4.27) for the given µ. This concludes the

proof.

Lemma 4.6. Let p⋆ be the optimal value of the single-user WSMMSE problem

with multiple constraints (K = 1,M ≥ 1). We have

p⋆ ≥ max
λ≥0

inf
F

L(F;λ), (4.29)

where

L(F;λ) = tr
{
W
(
I+ FHHHΩHF

)−1
}

+
M∑

m=1

λm

(
tr
{
ΦmFF

H
}
− Pm

)
(4.30)

is the Lagrangian function of the single-user WSMMSE problem at hand and

λ = (λ1, . . . , λM). Moreover, if there exists an optimal solution F̃ achieving p⋆

that, together with a strictly positive Lagrange multiplier λ̃ > 0, satisfies the

conditions

∇FL = 0, (4.31)

tr
{
ΦmF̃F̃

H

}
= Pm, ∀m (4.32)

then (4.29) holds with equality.
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Proof. The inequality (4.29) follows from weak Lagrangian duality. We now

prove the second part of the statement. Recognizing now that tr {WE} with
(4.24) is a Schur-concave function of the diagonal elements of (4.24)4, it can

be argued that the minimum is attained when E is diagonalized as we did for

Lemma 4. Defining R = HHΩ−1H, we can conclude that FHRF must be also

diagonal in this search domain. Now assume that an optimal solution of the

single-user WSMMSE problem is denoted as F̃. Without loss of generality we

can assume that this solution diagonalizes the MSE matrices. The necessity of

the KKT conditions can be proved as in [75] and in special cases such as the

MIMO interference channel with partial message sharing of Sec. 2.2.1, it also

follows from linear independence constraint qualification conditions [115].

Hence, there exists a Lagrange multiplier vector λ̃ which together with F̃

satisfies the KKT conditions of the WSMMSE problem (4.25) [108] [115]. As it

is stated in the Lemma, we consider the case that λ̃m are also strictly positive

(i.e. λ̃m > 0 for all m). Simplifying the KKT condition (4.31), we have5

∇FL = −RF̃ẼWẼ+

M∑

m=1

λ̃mΦmF̃ = 0 (4.33)

Left-multiplying (4.33) by F̃H gives us

F̃HRF̃ẼWẼ = F̃H

(
∑

m

λ̃mΦm

)
F̃. (4.34)

Since F̃HRF̃ and correspondingly Ẽ are diagonal matrices, F̃H

(∑
m λ̃mΦm

)
F̃

must also be diagonal. For simplicity, we introduceΦ(λ̃) =
∑M

m=1 λ̃mΦm. Since

λ̃m > 0 for every m, therefore Φ(λ̃) is a non-singular matrix. This can be easily

verified due to the structure of Φm. Hence, we can write F̃HΦ(λ̃)F̃ = ∆̃ where

∆̃ ∈ Cd×d is a diagonal matrix. Therefore, we can write

Φ(λ̃)1/2F̃ = ŨΣ̃ (4.35)

4A Schur-concave function f(x) of vector x = (x1, ..., xd) is such that f(x) ≤ f(x′) if

x majorizes x
′, that is, if

∑j

i=1 x[i] ≥
∑j

i=1 x
′

[i] for all j = 1, ..., d, where x[i] (and x′

[i])

represents the vector sorted in decreasing order, i.e., x[1] ≥ ... ≥ x[d] (and x′

[1] ≥ ... ≥ x′

[d]).
5We use differentiation rule ∇X tr

{
GX

H
F
}

= FG and ∇X tr
{
Y

−1
}

=
−Y−1 (∇XY)Y−1. For the complex gradient operator each matrix and its conjugate
transpose are treated as independent variables [116].
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where Ũ ∈ Cmt×d consists of orthonormal columns (i.e. ŨHŨ) and Σ̃ ∈ Cd×d

is a diagonal matrix with the diagonal terms of
√
p̃i. Hence, we can write

F̃ = Φ(λ̃)−1/2ŨΣ̃. (4.36)

Replacing the structure of F̃ given in (4.36), we can write

F̃HRF̃ = Σ̃HŨHΦ(λ̃)−
1
2RΦ(λ̃)−

1
2 ŨΣ̃ = D (4.37)

Thus, we can conclude from the equation above that Ũ must contain the

eigenvectors of Φ(λ̃)−
1
2RΦ(λ̃)−

1
2 .

Now, plugging (4.36) into (4.31) and left-multiply it with Φ− 1
2 , we get

Γ̃Σ̃
(
I+ Γ̃Σ̃2

)−1

W
(
I+ Γ̃Σ̃2

)−1

= Σ̃ (4.38)

where Γ̃(λ̃) = diag[γ1(λ̃) · · ·γd(λ̃)] is a diagonal matrix with the diagonal

terms of the d largest eigenvalues of Φ(λ̃)−
1
2RΦ(λ̃)−

1
2 . Since all the matrices

are diagonal, (4.38) reduces to the scalar equations:

wiγi(λ̃)

(1 + p̃iγi(λ̃))2
= 1 (4.39)

Solving these equations gives us the optimal p̃i given by

p̃i =

[√
wi

γi(λ̃)
− 1

γi(λ̃)

]+
, (4.40)

Thus, for the given Lagrange multiplier λ̃ which together with F̃, satisfying

the KKT conditions of (4.25), F̃ must satisfy (4.36) and (4.40). If all power

constraints are satisfied with equality by this solution, then (4.36) and (4.40)

also solves the single constraint problem

minimize
F

tr
{
W
(
I+ FHHHΩ−1HF

)−1
}

subject to tr
{
Φ(λ̃)FFH

}
≤

M∑
m=1

λ̃mPm,
. (4.41)

The solution of this problem is given in Lemma 3 as

F(λ̃) = Φ(λ̃)−
1
2UΣ (4.42)
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where U consists of d eigenvectors of Φ(λ̃)−
1
2RΦ(λ̃)−

1
2 corresponding to its

largest eigenvalues and Σ is a diagonal matrix with the diagonal elements of
√
pi, which is given by

pk,i =

[√
wi

µγi(λ̃)
− 1

γi(λ̃)

]+
, (4.43)

for a waterfilling value of µ ≥ 0 which satisfies the power constraint

tr
{
Φ(λ̃)F(λ̃)F(λ̃)H

}
≤
∑

m

λ̃mPm. (4.44)

On the other hand, summing up the KKT conditions λ̃m

(
Pm − tr

{
ΦmFF

H
})

=

0 for all m, we obtain that

tr

{(
∑

m

λ̃mΦm

)
F̃F̃H

}
=
∑

m

λ̃mPm (4.45)

If we set µ = 1 and comparing (4.40) and (4.43), we can conclude that

p̃i = pi, ∀i which together with comparison of (4.42) and (4.36) we can

conclude that F(λ̃) = F̃ and the µ = 1 is the optimal Lagrange multiplier

of the single-constraint WSMMSE problem (4.41). Following Lemma 4, this

precoding matrix is also a result of minimization of the Lagrangian function

(4.28) when µ = 1 and Φ1 = Φ(λ̃), which means

p⋆ = inf
F

L(F; λ̃). (4.46)

On the other hand, we have

max
λ≥0

inf
F

L(F;λ) ≥ inf
F

L(F; λ̃) (4.47)

which in concert with (4.29) and (4.46) results in

p⋆ = inf
F

L(F; λ̃) = max
λ≥0

inf
F

L(F;λ), (4.48)

thus concluding the proof.

Lemma 4.6 suggests that to solve the single-user multiple-constraint

problem, under some technical conditions, one can minimize instead the dual

problem on the right-hand side of (4.29). Lemma 4.4 showed that this is always
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possible with a single constraint. The conditions in Lemma 4.6 hold in most

cases where the power constraints for the optimal solution are satisfied with

equality. While this may not be always the case, in practice, e.g., if the power

constraints represent per-BS power constraints, this condition can be shown

to hold [117].

Inspired by Lemma 4.6, here we propose an iterative approach to the

solution of the WSMMSE problem withK = 1 that is based on solving the dual

problem maxλ≥0minF L(F;λ). Specifically, in order to maximize infFL(F;λ)
over λ � 0, in the proposed algorithm, the auxiliary variables λ are updated

at the jth iteration via a subgradient update given by [75]

λ(j)
m = λ(j−1)

m + δ
(
Pm − tr

{
ΦmFF

H
})

, ∀m, (4.49)

so as to attempt to satisfy the power constraints. Having fixed the vector

λ(j), problem minF L(F,λ) reduces to minimizing (4.28) with Φ1 = Φ(λ(j)) =
∑

m λ
(j)
m Φm and µ = 1. This can be done using Lemma 4.4, so that from (4.26)-

(4.27), at the jth iteration, F(j) is obtained as Φ(λ(j))−
1
2U(j)Σ(j) where U(j) is

the matrix of eigenvectors of matrix Φ(λ(j))−
1
2HHHΦ(λ(j))−

1
2 corresponding

to its largest eigenvalues γ1 ≥ . . . ≥ γd and Σ(j) is a diagonal matrix with

the diagonal terms
√
pi =

√[√
wi

γi
− 1

γi

]+
. We now propose an iterative

optimization strategy inspired by the single-user algorithm that we put forth in

Sec. 4.3.2. At the (j+1)th iteration, given the matrices obtained at the previous

iteration, we proceed as follows. The weighted sum-MSE (4.2) with the

definition of MSE-matrices (2.16) is a convex function in each Gk and Fk when

(Fj ,Gj), ∀j 6= k are fixed. Nevertheless, it is not jointly convex in terms of both

(Gk,Fk). Inspired by Lemma 4.6 for the corresponding single-user problem,

we propose a (suboptimal) solution based on the solution of the dual problem

for calculation of (Gk,Fk). To this end, we first obtain Gk as (4.23). Then, we

simplify the Lagrangian function with respect to Fk by removing the terms

independent of Fk. Specifically, by defining Υk =
∑

l 6=k H
H

l,kGlWlG
H

l Hl,k, we
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have that the Lagrangian function at hand is given by

L(Fk;λ) = tr
{
Wk

(
I+ FH

kH
H

k,kΩ
−1
k Hk,kFk

)−1
}

+ tr
{
ΥkFkF

H

k

}

+ tr

{(
∑

m

λmΦk,m

)
FkF

H

k

}
(4.50)

This Lagrangian function for user k is the same as the Lagrangian function

(4.30) of single-user WSMMSE problem when Φ(λ) is replaced with Fk(λ) =

Υk +
∑

λmΦk,m. Matrix Fk(λ) is non-singular and therefore, using the same

argument as in the proof of Lemma 4.6, for a given Lagrange multipliers λ

and given other users’ transmission strategies (Gl,Fl), ∀l 6= k, the optimal

transmit precoding matrix can be obtained as

Fk = Fk(λ)
− 1

2UkΣk, (4.51)

where Uk ∈ Cmt,k×dk is the eigenvectors of Fk(λ)
− 1

2HH

k,kΩ
−1
k Hk,kFk(λ)

− 1
2

corresponding to its largest eigenvalues γk,1 ≥ . . . ≥ γk,dk and Σk is diagonal

matrices with the elements
√
pk,i given by

pk,i =

[√
wk,i

γk,i
− 1

γk,i

]+
, (4.52)

with λ � 0 being the Lagrangian multipliers satisfy the power constraints.

Since this scheme diagonalizes the MSE matrices defined in (2.14), it is referred

to as diagonalized MMSE (DMMSE).

To summarize, the proposed algorithm at each iteration j (i) evaluates

the transmit precoding matrices F
(j)
k given other users’ transmission strategies

(G
(j−1)
l ,F

(j−1)
l ) using (4.51)-(4.52) (ii) updates the equalization matrices using

the MMSE solution (4.23); (iii) updates the λ via a subgradient update

λ(j+1)
m = λ(j)

m + δ

(
Pm −

K∑

k=1

tr
{
Φk,mFkF

H

k

}
)

(4.53)

to satisfy the power constraints.

Remark 4.4. In this chapter, we assume perfect knowledge of channel state

information (CSI). Therefore, each transmitter and receiver has sufficient
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information to calculate the resulting precoders and equalizers by running

the proposed algorithms. Under this assumption, which is common to other

reviewed works such as [56] [46], no exchange of precoder and equalizer vectors

is required between the transmitters and receivers. Nevertheless, in practice,

the CSI may only be available locally, in the sense that transmitter k knows

channel matrices Hl,k, for all l = 1, . . . , K, whereas receiver k is aware of

channel matrices Hk,l, for all l = 1, . . . , K. The proposed DMMSE and the

reviewed PWF [71] [75] algorithms require, beside the local CSI, that the

transmitter k has available also the interference plus noise covariance matrix,

Ωk, and the current equalization matrices Gl for all l = 1, . . . , K in order to

update the precoder for user k. Hence, to enable DMMSE and PWF with local

CSI, exchange of the equalizer matrices is needed between the nodes. Similarly,

the proposed eMMSEIA, and min leakage and Max-SINR algorithms [111],

require the transmitters to know the equalizing matrices Gl for l = 1, . . . , K at

each iteration, in addition to the local CSI. Moreover, each receiver must know

the current precoders Fl for all l = 1, . . . , K. Therefore, the overhead for the

proposed eMMSEIA and the min leakage and Max-SINR algorithms involves

the exchange of equalizer and precoder matrices between the transmitters and

receivers. However, these latter algorithms can also be adapted using the bi-

directional optimization process proposed in [118]. This process involves bi-

directional training followed by data transmission. In the forward direction,

the training sequences are sent using the current precoders. Then, at the user

receivers the equalizers are updated to minimize the least square error cost

function. In the backward training phase, the current equalizers are used to

send the training sequences and the precoders are updated accordingly. Finally,

the SIN [56] and SDP relaxation [46] techniques are applied in a centralized

fashion (rather than by updating the transmitter and receiver for each user

at each iteration), and they require centralized full knowledge of all channel

matrices.

Remark 4.5. Reference [46] addresses the SRM problem for a MIMO-IFC

with regular per-transmitter, rather than generalized, power constraints. The
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problem is addressed by solving an SDP problem at each iteration. Moreover,

the optimization is over the transmit covariance matrices and under the relaxed

rank constraint. This enforces a constraint on the number of transmitted

streams per user. References [71]- [75] study the (weighted) SRM problem

by decomposing the multiuser problem into single-user problems for each

user. Each single-user problem is a standard single-user SRM problem with

an additional interference power constraint. The approach used in [71]- [75]

assumes that the number of transmitted streams is equal to nr. Here, we

address WSMMSE problem and allow for an arbitrary number of streams

(dk ≤ nr).

Remark 4.6. Our algorithms consists of an inner loop, which solves the

WSMMSE problem, and an outer loop, which is the subgradient algorithm

to update λ. The subgradient algorithm in the outer loop is convergent (with

a proper selection of the step sizes [115]) due to the fact that the dual function

infFL(F;λ) is a concave function with respect to λ [50]. The inner loops of

the proposed algorithms in this chapter (i.e. eMMSEIA and DMMSE) are

convergent since the objective function decreases at each iteration. A discussion

of the convergence for a special case of the eMMSEIA algorithm can be found

in [72]. However, the original problem is non-convex and our solutions are only

local minima. Nevertheless, the DMMSE algorithm is shown to converge to a

local minimum with better performance compared to the previously known

schemes in Sec. 4.4.

4.4 Numerical Results

We consider a hexagonal cellular system where each BS is equipped with

nt transmit antennas and each user has nr receive antennas. The users are

located uniformly at random. Two tiers of surrounding cells are considered

as interference for each cluster. We consider the worst-case scenario for the

inter-cluster interference, which will be the condition that interfering BSs

transmit at the full allowed power [8, 9, 63, 119]. We define the cooperation

factor κ as a number of BSs cooperating on transmission to each user. The κ
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BSs are assigned to each user so that the corresponding channel norms (or,

alternatively, the corresponding received SNRs) are the largest.

The propagation channel between each BS’s transmit antennas and mobile

user’s receive antenna is characterized by path loss, shadowing and Rayleigh

fading. The path loss component is proportional to d−β
km, where dkm denotes

distance from base station m to mobile user k and β = 3.8 is the path loss

exponent. The channel from the transmit antenna t of the base station b at

the receive antenna r of the kth user is given by [9]

H
(r,t)
k,b = α

(r,t)
k,b

√

γ0ρk,bA
(
Θ

(t)
k,b

)(dk,b
d0

)−β

(4.54)

where α
(r,t)
k,b ∼ CN (0, 1) represents Rayleigh fading, ρ

(dBm)
k,b is the lognormal

shadow fading between bth BS and kth user with standard deviation of 8 dB,

and d0 = 1 km is the cell radius. γ0 is the interference-free SNR at the cell

boundary. We consider one user randomly located per cell for the numerical

results.

When sectorization is employed, the transmit antennas are equally divided

among the sectors of a cell. Each transmit antenna has a parabolic beam

pattern as a function of the direction of the user from the broadside direction

of the antenna (For more details refer to [9,120]). The antenna gain is a function

of the direction of the user k from the broadside direction of the tth transmit

antenna of the bth base station denoted by Θ
(t)
k,b ∈ [−π, π]; Θ3dB is the half-

power angle and As is the sidelobe gain. The antenna gain is given as [120]

A
(
Θ

(t)
k,b

)
dB

= −min


12

(
Θ

(t)
k,b

Θ3dB

)2

, As


 (4.55)

For the 3,6-sector cells As = 20, 23 dB and Θ3dB = 70π
180

, 35π
180

, respectively [9,

120, 121]. When there is no sectorization we set A = 1.

We first compare different algorithms (for the solution of the SRM problem)

without enforcing rank constraints on SIN, PWF, SDP relaxation and setting

dk = min(mt,k, mr,k) = nr for the eMMSEIA and DMMSE algorithms. To

solve the SRM problem, the weight matrices in the eMMSEIA and DMMSE
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Figure 4.1: Per-cell sum-rate for a MIMO-IFC-GC with M = 3 and κ = 2.

algorithms are updated at each iteration as Wk = E−1
k using the current MSE-

matrix Ek. Fig. 4.1 compares the per-cell sum-rate of the algorithms discussed

in this chapter for a cluster with M = 3 cells and a cooperation factor κ = 2.

The results show that our proposed DMMSE algorithm outperforms other

techniques, while the polite water-filling algorithm (PWF) [71,75] has a similar

performance. Our proposed eMMSEIA scheme converges to a poorer local

optimum value compared to these two schemes. The soft interference nulling

(SIN) [56] and SDP relaxation [46] algorithms, which use the approximation of

the non-convex terms in the objective function, perform worse in this example.

In Fig. 4.2, we evaluate the effect of partial cooperation for the DMMSE,

eMMSEIA, and PWF algorithms in a cluster of size M = 5 where each BS

is equipped with nt = 4 transmit antennas, each user employs nr = 2 receive

antennas, and 2 users are dropped randomly in each cell. Recall that the

cooperation factor κ represents the number of BSs cooperating in transmission

to each user. It can be seen that as κ increases the performance improves with
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Figure 4.2: Per-cell sum-rate for a MIMO-IFC-GC with M = 5 and κ =
1, 2, 3, 5, nt = 4, nr = dk = 2, and 2 users per cell.

diminishing returns as κ grows large. Moreover, the relative performance of

the algorithms confirms the considerations above.

In Fig. 4.3, we compare again the performance of the schemes considered

in Fig. 4.2 but with a stricter requirement on the number of streams, namely

dk = 1. It can be seen that the proposed DMMSE tends to perform better than

PWF, which was not designed to handle rank constraints. We have adopted

the PWF algorithm to support dk < min(mt,k, mr,k) by using a thin SVD of

Ω̂
− 1

2
k HH

k,kΩ
− 1

2
k when computing (4.13).

In Fig. 4.4, we vary the size of the cluster M , showing also the advantages

of coordinating transmission over larger clusters, even when the number of

cooperating BSs κ is fixed. Recall that M represents the set of BSs whose

transmission is coordinated, but only κ BSs cooperate for transmission to a

given user. These κ BSs for each users are selected based on the received signal

strength. The κ BSs which has transmit the strongest signals to the user are

selected. As an example, for a cluster size of M = 7 a cooperation factor of
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Figure 4.3: Per-cell sum rate of the schemes that can support dk <
min(mt,k, mr,k) for dk = 1, nt = 4, nr = 2, M = 3 and κ = 2.

κ = 4 performs almost as well as the full cooperation scenario with κ = 7. This

recommends using κ = 3, 4 BSs in transmission to each user rather than all

M = 7. Moreover, the performance gains with respect to the non-cooperative

case κ = 1 are evident. We also show the performance with a cluster containing

a single cell, i.e., M = 1. This highlights the performance gains attained even

in the absence of message sharing among the BSs (i.e., κ = 1) due to the

coordination of the BSs within the cluster.

Finally, the effect of sectorization is studied in Fig. 4.5 where nt = 6

transmit antennas at each BS are divided equally into S = 1, 3, 6 sectors.

Each cell contains 6 users, each equipped with nr = 2 receive antennas. The

users are randomly located at the distance of 2
3
d0 from its BS. For a given

channel realization the DMMSE algorithm is used to obtain the per-cell sum

rate. The cumulative distribution functions (CDFs) of per-cell sum rates are

computed using large number of channel realizations. The gains of sectorization
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Figure 4.4: Per-cell sum-rate of the proposed DMMSE scheme for cluster sizes
M = 1, 3, 7 versus the cooperation factor, κ, with nt = nr = 2, SNR=20 dB,
and single-user per cell.

and cooperation are compared. For example, the system with coordination of

7 cells and κ = 3 cooperation factor and without sectorization performs better

than the sectorized system with S = 6 and without any coordination between

the BSs.

4.5 Conclusions

In this chapter, we consider a MIMO interference channel with partial

cooperation at the BSs and per-BS power constraints. Focusing on linear

transmission strategies, we have reviewed some of the available techniques

for the maximization of the sum-rate and extended them to the MIMO-

IFC-GC when necessary. Moreover, we have proposed two novel strategies

for minimization of the weighted mean square error on the data estimates.

Specifically, we have proposed an extension of the recently introduced MMSE
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interference alignment strategy and a novel strategy termed diagonalized

MSE-matrix (DMMSE). Our proposed strategies support transmission of

any arbitrary number of data streams per user. Extensive numerical results

show that the DMMSE outperforms most previously proposed techniques and

performs just as well as the best known strategy. Moreover, our results bring

insight into the advantages of partial cooperation and sectorization and the

impact of the size of the cooperating cluster of BSs and sectorization.

Complexity Analysis

We conclude with a brief discussion on the complexity of the algorithms.

Due to the difficulty of complete complexity analysis, especially in terms

of speed of convergence, we present a discussion based on our simulation

experiments. The PWF algorithm converges in almost the same number of
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iterations as the DMMSE algorithm. The complexity per iteration of PWF

and DMMSE is also almost the same as O(κntn
2
r) + O(n3

r) (required for

the thin SVD operation). However, the PWF algorithm contains additional

operations (matrix inversion and SVD) to obtain the precoding matrices

from the calculated transmit covariance matrices.6 Also, the PWF algorithm

includes a water-filling algorithm within its inner loop, which is not required

in the DMMSE algorithm. The eMMSEIA algorithm has lower complexity

per iteration (i.e. O(n3
r)) than the PWF and DMMSE algorithms, since its

complexity is due to a matrix inversion per iteration per user. However,

eMMSEIA converges in a larger number of iterations than DMMSE and PWF.

The complexity per iteration for the SDP relaxation is higher than for the SIN

algorithm (this is because of the extra auxiliary positive semi-definite matrix

variable, Y, introduced in the SDP relaxation algorithm). The SIN algorithm

also converges in a smaller number of iterations than the SDP relaxation

algorithm.

6This can be performed together with finding the MMSE receive matrices.
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Chapter 5

Robust Precoding and
Equalization

In the previous chapters, combining precoding at the transmitter and equal-

ization at the receiver is employed to reduce interference in multicell multiuser

MIMO systems. Particularly, we focused on linear strategies due to their

simplicity and robustness. Although various MIMO linear precoding and

equalization techniques have been proposed [29, 31, 74, 114, 122, 123], they

mainly assume that the channel state information (CSI) is perfectly known at

the transmitter and receiver. In practice, CSI is seldom perfect due to issues

such as inaccurate channel estimation process, quantization of CSI, erroneous

or limited feedback. In the multicell scenario, the amount of CSI grows with the

number of BSs coordinated together. This requires large amount of resources

allocated to the channel training, which competes with the resources to be

used for the data transmission. Moreover, the length of the channel training

sequences are dependent to the coherence time of the channel. One approach

is to design the system based on imperfect cross channel information and more

accurate local CSI. Consequently, CSI is imperfectly known at the transmitters

and the receivers. Inaccurate CSI degrades the performance of the transceivers

drastically. This motivates robust linear design of the transmitters and/or

receivers [124–138].

Imperfect CSI can be modeled statistically (e.g. if originated by channel es-

timation process) or deterministically (e.g. when caused by CSI quantization).

In these models, the actual channel is assumed to belong to an uncertainty
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region. In the stochastic model, this region is studied probabilistically and it is

unbounded. Ideally, the corresponding stochastic robust design optimizes the

averaged performance over the entire uncertainty region (see e.g. [134–137]).

In this chapter, we consider the worst-case deterministic model which assumes

that the actual channels lie within a bounded spherical region centered at its

estimated value. We are specifically interested in the worst-case robust design,

because it assures a particular performance level for any channel realization

staying in the corresponding uncertainty region and also can characterize

instantaneous CSI errors [124–131]. The robust design of linear transceivers

based on stochastic CSI will be addressed in the next chapter.

Conventionally, the optimization problem of the worst-case robust linear

strategies is approached using semi-definite reformulations (SDR). Although

efficient, this approach results in an algorithm with an iterative application

of semi-definite programming (SDP). Besides its complexity, SDR approach

does not provide a specific structure for the transceivers. Attempts to obtain

the structure of the solution for the worst-case robust MMSE precoder

assuming pre-fixed equalizer are presented in [129, 131] for the single-user

case. However, [131] enforces no power constraint on the system. The

result from [129] is further employed in [130] to find the worst-case robust

MMSE transceivers. Nonetheless, the proposed algorithm in [130] is based

on alternative optimization between precoder and equalizer. Moreover, it

involves solving a quintic equation, for which a closed-form solution of the

roots is unknown and it must be solved numerically. Nevertheless, [129–131]

consider the imperfect knowledge of CSI only in single-user scenario, hence

the extension to the multiuser system is not straightforward. An attempt to

consider imperfect knowledge of interference plus noise covariance matrix in

the single-user case was made in [132] to obtain MMSE equalizers. The results

of [132] are only given for the Kullback-Leibler divergence based uncertainty

region1.

Similar to the case with perfect CSI, the robust design problem in the

1We consider norm-based uncertainty region, which is more challenging and widely used
in related work.
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multiuser systems is far more challenging than in the point-to-point scenario.

It is even more difficult in the interference channels due to the absence of

downlink-uplink duality. The recent trend toward multicell coordinated sys-

tems motivates studying the robust transmission strategies in the interference

channels [126,139]. Interference channel model emerges in a multicell downlink

system, where each base station intends to transmit to its associated users,

while the signalling is coordinated across multiple cells. Besides partially

cooperative multicell systems can be also modeled as a MIMO interference

channel with generalized power constraints [74].

In [126], the problem of robust transceiver design is formulated to maximize

the worst-case signal-to-interference-plus-noise-ratio (SINR). First, the SINR

expression is approximated with respect to the uncertainty region and therefore

the SINR is a function of the bound of error (not the error matrix). Then, a

low complexity algorithm is proposed based on alternating optimization of

precoders and equalizers. The precoder optimization is performed by SDP

using a rank constraint relaxation. [139] investigates the worst-case robust

design of precoders in the multicell systems but in single-antenna mobile user

case only.

The main contributions of this chapter can be listed as follows:

(i) Our objective is to minimize weighted sum of mean square errors

(WSMSE) of the estimated symbols. This has been known as a general utility

function, which can approximate any performance metric defined as a function

of the mean square error (MSE) values (e.g. sum rate, MMSE, see [72,108,109]

and the previous chapter for more details).

(ii) The single-user section of this chapter accounts for a wider range of

system parameters all known inaccurately. In addition to CSI, the imperfect

knowledge of interference plus noise covariance matrix, and power shaping

matrix are reflected in our design. We first obtain the least favorable inter-

ference plus noise covariance and power shaping matrices. Substituting these

matrices in the design problem makes it intractable. Hence, we approximate

these matrices and derive an upper bound of the worst-case WSMSE objective

function. Consequently, we approximate the original problem by minimization
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of this upper bound and obtain the exact structures for the precoder

and equalizer matrices. Employing these structures, the joint precoder and

equalizer optimization problem is reduced to a scalar convex problem. Further,

the solution to this problem is shown to be characterized by a depressed quartic

equation, the closed-form expressions for the roots of which are known.

(iii) The results for a single-user case are extended to the multiuser scenario

in a MIMO-IFC-GC2 and using Gauss-Seidel (or Jacobi) algorithm deployed in

noncooperative games [141]. Similarly, the structure for a robust precoder and

equalizer and worst-case estimation errors are obtained. Finally, we propose

a simple iterative algorithm, which is based on our derived structures of the

precoders and equalizers and the worst-case channels. Hence, compared to the

SDP-based alternating algorithms ( [126]) our algorithm performs better while

it avoids iterative application of SDP (hence, it is less complex).

The rest of this chapter is organized as follows. Section 5.1 describes

the system model, the imperfect CSI model, and introduces the WSMSE

minimization problem. We discuss the single-user case in Section 5.2. We first

begin with the design of transceivers in the presence of perfect CSI. Then,

imperfect knowledge of system matrices is analyzed in Section 5.2.2, where the

worst-case error matrices are derived and the robust transceivers are obtained

in Section 5.2.3. In Section 5.3, based on the single-user discussion we propose

the robust transceiver design for the multiuser scenario. The performance of

our algorithms is verified in Section 5.4.

5.1 System Model and Problem Formulation

We consider the downlink of a multiuser MIMO system withK transmitter and

receiver pairs, where each transmitter is equipped with nt antennas and each

receiver employs nr antennas. We keep our model which has been introduced

in Chapter 2 for the multicell scenario with partial cooperation, i.e. MIMO-

IFC-GC. Note that this model can accommodate any type of cooperative

2We have originally addressed the problem in standard MIMO interference channels
in [140]. In this chapter, we have modified it for the model introduced in Chapter 2 for
multicell scenario with partial cooperation.
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system including MIMO BC and MIMO IFC. The kth transmitter broadcasts

independent data streams denoted by the vector uk = [uk,1, . . . , uk,nr
]T,

where uk,j is the jth data symbol corresponding to the kth user such that

E [|uk,j|2] = 1. For the sake of simplicity, we consider the number of data

streams of each user to be equal to the number of receive antennas, i.e. nr
3.

The transmitted vector is a result of linear precoding of the symbol vector, i.e.

xk = Fkuk, using the precoder matrix Fk ∈ Cnt×nr . For more details of the

system model, refer to Section 2.2.1. channel between the lth transmitter and

the kth receiver is characterized by the matrix Hk,l ∈ Cnr×nt . The receiver k

observes the signal

Our objective is to minimize the weighted sum of MSE (WSMSE) values

of the estimated data symbols, which can be summarized in the following

optimization problem:

minimize
Fk,Gk,∀k

K∑
k=1

tr {WkEk}

subject to
K∑
k=1

tr
{
Φk,mFkF

H

k

}
≤ Pm, m = 1, . . . ,M

(5.1)

where the optimization is over all precoders Fk and equalizers Gk ∈ Cnr×nr

with given diagonal weight matrices Wk = diag[wk,1, . . . , wk,nr
] with non-

negative elements wk,j ≥ 0. This problem is called weighted sum of MSE

minimization (WMMSE) problem (see [74, 108, 122] for details). It is shown

that any performance metric characterized by sum of some particular function

of the MSE-matrices Ek, fk (Ek), can be approximated using the problem

(5.1) [72–74, 108, 109, 122]. The approach is that at each iteration, we select

Wk = ∇Ek
fk(Ek)

T at the operating point Ek, then solve the optimization

problem (5.1). The algorithm iterates until the convergence is achieved. For

example, to adopt sum rate maximization one can select Wk = E
−1

k at each

iteration.

The main challenge in our design is to account for imperfect knowledge of

channel matrices Hk,l for all 1 ≤ l, k ≤ K. The inaccurate channel estimations,

Ĥk,l, are assumed to be available at both transmitters and receivers. The

3The number of data streams for user k in the previous chapter could take any value of
dk ≤ nr.
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unknown actual channels must belong to some uncertainty regions around the

estimated value. Here, we consider a class of uncertainty regions, for which

the Frobenius norms of the channel estimation errors are bounded. The actual

channel matrix between the kth receiver and the lth transmitter is a sum of

an estimated value and an error, and therefore the corresponding uncertainty

region can be defined as a ball with a specified radius εHk,l
centered at the

estimated value Ĥk,l

Bk,l =
{
Hk,l : Hk,l = Ĥk,l +∆Hk,l

, ‖∆Hk,l
‖ ≤ εHk,l

}
. (5.2)

The worst-case robust design must guarantee a particular performance level

for any channel matrix staying in the corresponding uncertainty region. Thus,

this problem can be described as

minimize
Fk,Gk,∀k

max
Hk,l∈Bk,l
1≤k,l≤K

K∑
k=1

tr {WkEk}

subject to tr
{
Φk,mFkF

H

k

}
≤ Pk, k = 1, . . . , K.

(5.3)

5.2 Single-user Case

We first address the single-user case (K = 1). The analysis presented in this

section is the basis for that of the multiuser system in Section 5.3. For ease

of exposition, we drop the index k in this section. We also consider that a

power constraint tr
{
ΦFFH

}
≤ P on the linear precoder is enforced and we

refer to the weight matrix Φ in the power constraint as power shaping matrix.

This matrix also characterizes the direction in which the transmitted power

can propagate, while reducing the interference in other directions (e.g., to

other users in a multiuser case). Moreover, we assume that the matrix Φ is

full rank and square of size nt. This is a practical assumption because if Φ

is a rank deficient matrix then one can always transmit infinite power in one

direction (corresponding to a zero eigenvector of Φ) without violating the

power constraint. Please note that when Φ = I, the sum power constraint

emerges. Additionally, we assume that the noise at the receiver is correlated

and its covariance matrix is Ω = E
[
nnH

]
. We note that the consideration of

power shaping matrix Φ and correlation of the noise vector only belongs to the
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single-user case discussed in this section. In the multiuser context, we return

to the original system definition specified in Section 5.1 and the problem (5.3)

with the known per-transmitter power constraints. Hereinafter (in the single-

user scenario), we call the matrices H,Φ, and Ω the system matrices. Unlike

most of the related work in point-to-point MIMO systems, we account for the

inaccurate knowledge of all of these system matrices.

Remark 5.1. The introduction of the matrices Φ and Ω and their correspond-

ing uncertainties are limited to the single-user case. In the multiuser scenario,

we consider per-transmitter power constraints. The system matrices and their

uncertainties are Hk,l and their uncertainties. When the multiuser problem is

mapped to a number of single-user problems, then the introduction of matrices

Φ and Ω serves to find a robust transceiver. In the multiuser problem when

we look at a single user k, matrix H represents the individual user channels for

each user (i.e. Hk,k) and matrices Φ and Ω are defined from the cross channel

matrices (i.e. Hk,l,Hl,k, ∀l 6= k).

5.2.1 Perfect Knowledge of System Matrices

In this section, we state joint precoder and equalizer optimization problem

when the system matrices are perfectly known. This provides a foundation

for the worst-case robust design. Joint MMSE transceiver optimization with

perfect CSI has been investigated in [114,122,123]. Here, we extend the results

given in [114,122] to our system model, which also includes the power shaping

matrix. More detailed discussion of this problem with generalized constraints

is given in [74] and the previous chapter. Here, we also give a shorter proof

with a different approach to a special case of this problem. The transceiver

optimization problem can be posed as an optimization problem

minimize
G,F

tr {WE}
subject to tr

{
ΦFFH

}
≤ P

(5.4)

where E is defined from (2.16).

Lemma 5.1. [74] For any channel matrix H and given the full rank and

square matrices Φ and Ω, the optimum precoding and equalization matrices of
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the problem (5.4) have the following structure

F =Φ− 1
2VΣ, (5.5)

G =ΛUHΩ− 1
2 . (5.6)

where Σ and Λ are diagonal matrices with the diagonal elements σi ≥ 0 and

λi ≥ 0, i = 1, . . . , nr, respectively. U ∈ Cnr×nr and V ∈ Cnt×nr are obtained

by performing the singular value decomposition (SVD) of the following matrix

Ω− 1
2HΦ− 1

2 = U [Γ 0nr×nt−nr
]
[
V V̆

]H
, (5.7)

in which Γ contains its nr nonzero eigenvalues and V̆ ∈ Cnt×(nt−nr) contains

the right singular vectors corresponding to the zero eigenvalues4.

Proof. The proof is given in Section 5.A.

5.2.2 Imperfect Knowledge of System Matrices

Now, we include the imperfect knowledge of system matrices. It is assumed

that the estimates, Ĥ and Ω̂ � 0 and Φ̂ � 0, are available at both ends.

Specifically, the actual value of these matrices can be described as the sum of

the estimation value and the error matrices. Consequently, the corresponding

uncertainty region can be characterized by

B =
{
(H,Ω,Φ) : H = Ĥ+∆H , ‖∆H‖ ≤ εH ,

Ω = Ω̂+∆Ω � 0, ‖∆Ω‖ ≤ εΩ,

Φ = Φ̂+∆Φ � 0, ‖∆Φ‖ ≤ εΦ

}
. (5.8)

The worst-case transceiver design can be expressed as

minimize
F,G

max
(H,Ω,Φ)∈B

tr {WE}
subject to tr

{
ΦFFH

}
≤ P.

(5.9)

Remark 5.2. Our proposed solution for the multiuser scenario is based on

a so-called Jacobi (or Gauss-Seidel) algorithm [141], where at every step of

4The matrix Ω
−

1

2HΦ
−

1

2 with probability one has a rank of nr, due to the random nature
of the channel matrix H and the fact that nr ≤ nt.
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the algorithm we consider a single user (user k) problem while other users’

transmission strategies (∀l 6= k) are fixed. Hence, we optimize the total

performance (e.g. WSMSE) function over the precoder and equalizer of user

k and this iterates until convergence. Each single user problem accounts two

types of interference, one is coming from other users and the other is sent out

to other users by user k. These interference covariance matrices are dependent

on the cross link channel matrices (i.e. Hk,l and Hl,k, ∀l 6= k) rather than the

local channel matrix Hk,k. The two matrices Ω and Φ and their corresponding

uncertainties represent these two types of interference and their uncertainties,

and they are separated from the local channel uncertainty of Hk,k.

Least Favorable Matrices ∆Ω and ∆Φ: We proceed by finding the

worst-case estimation errors for the system matrices. First, we expand the

objective function in terms of the estimated system and error matrices and

simplify the worst-case problem with some calculations as

maximize
∆H ,∆Φ,∆Ω

tr
{
WÊ

}
+ tr

{
GHWG∆Ω

}

+ tr
{
A∆HB∆H

H

}
+ 2Re {tr {C∆H}}

subject to tr
{
Φ̂FFH

}
≤ P − tr

{
∆ΦFF

H
}

‖∆H‖ ≤ εH, ‖∆Ω‖ ≤ εΩ, ‖∆Φ‖ ≤ εΦ

(5.10)

where

Ê =GĤFFHĤHGH −GĤF

− FHĤHGH +GΩ̂GH + I. (5.11)

and

A =GHWG, (5.12)

B =FFH, (5.13)

C =FFHĤHGHWG− FWG (5.14)

The least favorable interference plus noise covariance matrix is a result of

following problem extracted from (5.10)

maximize
‖∆Ω‖≤εΩ

tr
{
GHWG∆Ω

}

subject to Ω̂ +∆Ω � 0.
(5.15)
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First, we relax the positive semi-definite condition in (5.15) by ignoring it 5.

Using Cauchy-Schwartz inequality, we obtain

tr
{
GHWG∆Ω

}
≤ ‖GHWG‖ · ‖∆Ω‖ ≤ εΩ‖GHWG‖ (5.16)

and the upper bound occurs when

∆⋆
Ω = εΩ

GHWG

‖GHWG‖ . (5.17)

Note that since Ω̂ � 0 and ∆⋆
Ω � 0 then Ω̂ +∆⋆

Ω � 0, which means that the

relaxed constraint on problem (5.15) is also satisfied.

Trivially, the worst-case estimation error of the interference direction

matrix, i.e. ∆Φ, happens when the maximum allowed power is minimized.

Consequently, we solve the problem

maximize
‖∆Φ‖≤εΦ

tr
{
∆ΦFF

H
}

subject to Φ̂ +∆Φ � 0
(5.18)

Similarly to the problem (5.15), the worst-case error matrix can be expressed

as

∆⋆
Φ = εΦ

FFH

‖FFH‖ . (5.19)

Again, the positive semi-definite condition will be satisfied by this choice of

∆⋆
Φ.

Substituting these worst-case estimation errors ∆⋆
Φ and ∆⋆

Ω into problem

(5.9) results in the terms εΩ‖GHWG‖ and εΦ‖BBH‖. These exact worst-

case values involves the precoder and equalizer in complicated forms, which

makes the resulting optimization problem intractable. Therefore, we use

approximations of these terms and minimize an upper bound of the worst-

case WSMSE.

Remark 5.3. Our robust transceiver design is in a form of a min-max problem:

minimize
x∈X

max
y∈Y

f(x, y) (5.20)

If we have f(x, y) ≤ g(x, y), ∀x ∈ X, y ∈ Y, then maxy f(x, y) ≤ maxy g(x, y)

and therefore minimizing an upper bound on a function over x will minimize

5Nevertheless, this relaxation will give us a solution, which also satisfies the positive
semi-definite constraint.
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the function over x as well. Although this does not give the globally optimal

solution, it is widely used in design of communication systems (e.g. Q(x) ≤
1
2
exp(−x2/2)).

Aligned with this, we can write inequalities

εΩ‖GHWG‖ ≤εΩ‖W
1
2G‖2 = εΩ tr

{
GHWG

}
(5.21)

εΦ‖FFH‖ ≤εΦ‖F‖2 = εΦ tr
{
FFH

}
. (5.22)

We have used the inequality ‖XY‖ ≤ ‖X‖ · ‖Y‖, which can be proved

utilizing the Cauchy-Schwartz inequality [96]. SubstitutingY = XH and taking

advantage of the fact that the Frobenius norm is invariant under the Hermitian

operation, we get ‖XXH‖ ≤ ‖X‖2. Now, we replace the terms tr
{
GHWG∆Ω

}

and tr
{
FFH∆Φ

}
in the robust transceiver design problem (5.10) with the

upper bounds defined in (5.21) and (5.22) respectively. This is equivalent to

setting

Ω⋆ =Ω̂+ εΩI, (5.23)

Φ⋆ =Φ̂+ εΦI. (5.24)

Least Favorable Channel Error Matrix ∆H: The optimization

problem that can find the worst-case channel estimation error ∆H can be

extracted from (5.10) as

maximize
‖∆H‖≤εH

tr
{
A∆HB∆H

H

}
+ 2Re {tr {C∆H}} . (5.25)

Lemma 5.2. The optimal solution of the optimization problem (5.25) has the

following structure:

∆⋆
H = Ω

1
2 Û∆̄V̂HΦ

1
2 , (5.26)

where Û ∈ Cnr×nr and V̂ ∈ Cnr×nt are defined in the SVD

Ω− 1
2 ĤΦ− 1

2 = Û
[
Γ̂ 0nr×nt−nr

] [
V̂ V̆

]H
, (5.27)

and ∆̄ ∈ Rnr×nr is a diagonal matrix with elements δ̄i ≥ 0.

Proof. The detailed proof can be found in the Section 5.B.
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In order to explain our proposed transceiver optimization algorithm, here

we only summarize the approach and results of this proof. The problem (5.25)

can be categorized as a trust-region subproblem [142, 143]. The matrix-form

restatement of this problem is given in [129]. It has been shown that the

solution to this problem can be found by minimization over an auxiliary

variable ϑ ≥ λmax(A)λmax(B) [142, 143]. The worst-case channel matrices

coincide with a structure of the precoding and equalization matrices given in

(5.5) and (5.6) using the worst-case interference plus noise and power shaping

matrices defined in (5.23) and (5.24). As a result, δ̄i is given by

δ̄i =
wiλiσi(γiλiσi − 1)

ϑ− wiλ2
iσ

2
i

, i = 1, . . . , nr. (5.28)

Note that γi, i = 1, . . . , nr are the diagonal elements of Γ̂ in (5.27) and σi and

λi are diagonal elements of Σ and Λ defined in (5.5-5.6) (It is also shown that

the precoder and equalizer follow structures given in (5.5-5.6)). Recognizing

j = argmaxi (wiλ
2
iσ

2
i ), if ϑ > wjλ

2
jσ

2
j , then ϑ is the root of equation

nr∑

i=1

w2
i λ

2
iσ

2
i (γiλiσi − 1)2

(ϑ− wiλ2
iσ

2
i )

2 = ε̃2H . (5.29)

If ϑ = wjλ
2
jσ

2
j , δ̄j cannot be found from equation (5.28). We define

ρ(ϑ) =
∑

i 6=j

w2
i λ

2
iσ

2
i (γiλiσi − 1)2

(ϑ− wiλ2
iσ

2
i )

2 . (5.30)

Therefore, if ρ(wjλ
2
jσ

2
j ) < ε̃2H , then δ̃j = −

√
ε̃2H − ρ(ϑ). Otherwise, ϑ > wjλ

2
jσ

2
j

and it can be uniquely determined by (5.29).

5.2.3 Robust Transceiver Design

Now, we can use the worst-case system matrices descriptions (5.23), (5.24),

and (5.26)-(5.28) and substitute into the problem (5.9). Note that using the

trust-region subproblems [142,143] the resultant problem of finding worst-case

channel estimation errors∆ becomes a minimization problem over an auxiliary

variable ϑ. This translates the overall problem into a minimization problem

over ϑ,F,G. The following result can be obtained from this discussion:
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Theorem 5.1. The robust precoding and equalization matrices have the

following structure:

F =
(
Φ̂+ εΦI

)− 1
2
V̂Σ (5.31)

G =ΛÛH (Ω+ εΩI)
− 1

2 (5.32)

where

(i) Û ∈ Cnr×nr and V̂ ∈ Cnt×nr are orthonormal matrices defined by the

thin SVD

(
Ω̂ + εΩI

)− 1
2
Ĥ
(
Φ̂+ εΦI

)− 1
2
=ÛΓ̂V̂H (5.33)

where Γ̂ ∈ Cnr×nr is a diagonal matrix with diagonal elements of γi ≥ 0,

(ii) Λ and Σ are diagonal matrices of size nr with the diagonal elements

of λi, i = 1, . . . , nr and σi, i = 1, . . . , nr, respectively and they are obtained by

solving the scalar optimization problem

minimize
λi,σi,ϑ

1≤i≤nr

∑nr

i=1
ϑwi(σiλiγi−1)2

ϑ−wiλ2
iσ

2
i

+
nr∑
i=1

wiλ
2
i + ϑε̃2H

subject to ϑ ≥ wiλ
2
iσ

2
i , i = 1, . . . , nr

nr∑
i=1

σ2
i ≤ P

(5.34)

(iii) The optimum solutions for λi and σi are given by

λi =

√
ri

√
µ

wi
, (5.35)

σi =

√
ri

√
wi

µ
, (5.36)

where ri is a positive real root of the quartic equation

ϕi(r) =
√
µw2

i r
4 − wiϑ(2

√
µ+
√
wiγi)r

2

+ (γ2
i ϑ+ wi)

√
wiϑr + ϑ2 (

√
µ− γi

√
wi) = 0. (5.37)

µ > 0 is the Lagrangian multiplier corresponding to the power constraint,

which satisfies µ (
∑nr

i=1 σ
2
i − P ) = 0 and ϑ > maxi(wiλ

2
iσ

2
i ) satisfies (5.29).

Also, the closed-form solutions for the roots of the quartic equation (5.37) can

be obtained using the Ferrari’s method [144] and can be found in the proof.
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Proof. The proof is given in Section 5.C.

Our proposed robust precoder and equalizer are functions of the auxiliary

variables ϑ and µ. Using dual decomposition concept from [145], we decompose

the problem into subproblems. Hence, we can update the auxiliary variables ϑ

and µ using the subgradient directions [115]. By differentiating the objective

function in problem (5.34) with respect to ϑ, we can obtain the subgradient

direction for ϑ as

∆ϑ =




ε̃2H −

nr∑
i=1

wiλ
2
i σ

2
i (λiσiγi−1)2

(ϑ−wiλ2
i σ

2
i )

2 ϑ > wjλ
2
jσ

2
j

ε̃2H − ρ(ϑ) ϑ = wjλ
2
jσ

2
j

(5.38)

Similarly, by differentiation of the Lagrangian function of (5.34), we can get

the subgradient direction for µ as ∆µ =
∑nr

i=1 σ
2
i − P. The robust transceiver

optimization algorithm is summarized in Table 5.1.

Table 5.1: Worst-Case Robust Transceiver Design Algorithm (Single-user)
Initialize σis and λis and µ > 0, ϑ > maxi (wiλ

2
iσ

2
i ).

Perform thin SVD (5.33) to obtain γis.
Repeat (subgradient loop of ϑ)

Update ϑ← ϑ+ δϑ∆ϑ using (5.38).
Repeat (subgradient loop of µ)
Form the quartic equation (5.37) for i = 1, . . . , nr.
Find its positive real root.
Find σi and λi using (5.35) and (5.36).
Update µ← µ+ δµ∆µ.

Until |∑nr

i=1 σ
2
i − P | ≤ ǫ0

Until satisfaction of (5.29)
Substitute λis and σis into (5.31) and (5.32) and find F and G.

Remark 5.4. The algorithm explained in Table 5.1 contains of two loops. The

inner loop attempts to find the optimal values of λi and σi by solving the

necessary conditions and then update the Lagrangian multiplier µ. We use

a subgradient algorithm to update µ to satisfy the power constraints. The

subgradient algorithm is convergent (with proper selection of the step sizes

[115]) due to the fact that the dual function infλi,σi,∀i L(λi, σi;µ) is a concave

function with respect to µ [50]. The outer loop updates the auxiliary variable

ϑ. If we calculate the second derivative of the objective function of (5.34) with
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respect to ϑ (first derivative is shown in (5.38)), it is positive in the domain

ϑ > wjλjσj and consequently the objective function is convex with respect to

ϑ. Therefore, the subgradient method is also convergent.

Remark 5.5. Special case of the problem (5.9) has been discussed in [130] where

W = I and Ω = I and Φ = I (and perfectly known at both ends). However,

the resulting transceiver design relies on alternating optimization between

precoder and equalizer. It also involves solving a quintic equation for each

of precoder and equalizer optimization, for which a closed-form solution does

not exist and the equation has to be solved numerically. Also, this approach

is not easily extendable to the multiuser scenario.

5.3 Multiuser Case (K > 1)

In this section, we use the results established in the single-user case to solve the

corresponding multiuser problem. We begin with the case of perfect channel

knowledge.

5.3.1 Perfect Channel Knowledge

Consider the WSMSE minimization problem (5.1). This problem is jointly non-

convex in terms of all precoding and equalization matrices Fk and Gk. Hence,

we use an iterative approach to optimize the transceivers for each user by fixing

other users’ transceivers [74]. Since the utility function is minimized at each

optimization step, the iterative approach must be convergent. Substituting

the MSE-matrix given in (2.16) into problem (5.1), we obtain the WSMSE

function, which is a convex quadratic function in terms of each Fk and

Gk. Now, we focus on the transceiver optimization problem for each user

k assuming that other users’ transceivers, i.e. (Gl,Fl), ∀l 6= k are fixed. We

can use the method of Lagrange duality and Karush-Kuhn-Tucker (KKT)

conditions [115] to solve this optimization problem. The Lagrangian function
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can be formed as

L(Gk,Fk,µ) =
K∑

k=1

tr {WkEk}+
K∑

k=1

tr

{(
M∑

m=1

µmΦk,m

)
FkF

H

k

}
−

M∑

m=1

µmPm

(5.39)

The corresponding zero gradient KKT conditions for user k, ∇Fk
L = 0 and

∇Gk
L = 0, can be expanded as

WkGkHk,k =FH

kH
H

k,kG
H

kWkGkHk,k + FH

kΦk(µ)

+
∑

l 6=k

FH

kH
H

l,kG
H

l WlGlHl,k (5.40)

Hk,kFk =Hk,kFkF
H

kH
H

k,kG
H

k +ΩkG
H

k (5.41)

where Φk(µ) =
M∑

m=1

µmΦk,m. Also, for the simplification of further analysis,

we introduce

Ψk =
∑

l 6=k

HH

l,kG
H

l WlGlHl,k (5.42)

which is dependent to other users’ transmission strategies only and it is a full

rank and square matrix with probability one due to the random nature of

channel matrices.

Lemma 5.3. [74] For a given Lagrangian multiplier µk ≥ 0 and fixed other

users’ transmission strategies (Gl,Fl), ∀l 6= k, the optimal transceiver for user

k has the following structure:

Fk =(Φk(µ) +Ψk)
− 1

2 VkΣk (5.43)

Gk =ΛkU
H

kΩ
− 1

2
k (5.44)

Uk ∈ Cnr×nr and Vk ∈ Cnt×nr contain the left and right singular vectors of

the equivalent channel matrix H̃k = (Φk(µ) +Ψk)
− 1

2 Hk,kΩ
− 1

2
k corresponding

to its non-zero eigenvalues.

Proof. Note that the matrices Ωk and Ψk are full rank and square with

probability one. We define the equivalent system matrices for the kth user
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similar to the Lemma 5.1 as

G̃k =GkΩ
1
2
k (5.45)

F̃k =(Φk(µ) +Ψk)
1
2 Fk (5.46)

H̃k =(Φk(µ) +Ψk)
− 1

2 Hk,kΩ
− 1

2
k (5.47)

Substituting these equivalent system matrices into (5.40) and (5.41), we find

the KKT conditions having the same form as in the single-user case (5.74) and

(5.75) (see Section 5.A). The proof follows by Lemma 5.1 instantly.

5.3.2 Imperfect Channel Knowledge

Now, we move to the case of imperfect channel knowledge in the multiuser

system. Assuming fixed (Gl,Fl) , l 6= k, the robust transceiver optimization

problem for user k can be expressed by

minimize
Fk ,Gk

max
(Hk,k ,Ψk,Ωk)∈Bk

tr {WkEk}+ tr
{
ΨkFkF

H

k

}

subject to
∑K

k=1 tr
{
Φk,mFkF

H

k

}
≤ Pm, ∀m

(5.48)

The terms independent of Fk,Gk are removed from the objective function. Bk
denotes the uncertainty region for user k.

Uncertainty regions: We define the uncertainty region for user k as

Bk =
{
(Hk,k,Ωk,Ψk) : ‖∆Hk,k

‖ ≤ εHk,k
,

Ω̂k +∆Ωk
� 0, ‖∆Ωk

‖ ≤ εΩk
,

Ψ̂k +∆Ψk
� 0, ‖∆Ψk

‖ ≤ εΨk
,
}

(5.49)

Thus, we require to estimate the uncertainty radiuses εΩk
and εΨk

. Using the

triangle inequality, we can obtain that

‖Ωk‖2 ≤ ‖Ω̂k‖2 +
∥∥∥∥∥
∑

l 6=k

∆k,lFlF
H

l ∆
H

k,l

∥∥∥∥∥

2

≤ ‖Ω̂k‖2 +
∑

l 6=k

‖FlF
H

l ‖2ε2Hk,l
(5.50)
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and similarly

‖Ψk‖2 ≤ ‖Ψ̂k‖2 +
∥∥∥∥∥
∑

l 6=k

∆H

l,kG
H

l WlGl∆l,k

∥∥∥∥∥

2

≤ ‖Ψ̂k‖2 +
∑

l 6=k

‖GH

l WlGl‖2ε2Hl,k
(5.51)

Therefore, the uncertainty (square) radii can be approximated as

ε2Ωk
=
∑

l 6=k

‖FlF
H

l ‖2ε2Hk,l
(5.52)

ε2Ψk
=
∑

l 6=k

‖GH

l WlGl‖2ε2Hl,k
. (5.53)

Remark 5.6. Note that the uncertainty regions of matrices Ωk and Ψk are

functions of several spherical uncertainty regions of the cross channel matrices.

Hence, these uncertainty regions are not necessarily spherical and will be

intractable for the robust transceiver design purposes. In order to find a

reduced-complexity robust design, we find a spherical upper bound for these

regions to approximate the worst-case scenario. Note that similar to many

cases in the design of communication systems, we minimize an upper bound

of the performance measure (e.g. worst-case WSMSE) to design the robust

transceivers since it is more tractable.

Worst-case System Matrices: Expanding the WSMSE objective func-

tion in (5.48) with respect to the estimated system matrices of user k, (i.e.

Ĥk,k, Ω̂k, Ψ̂k) and the error matrices (i.e. ∆Hk,k
,∆Ωk

,∆Ψk
), we can simplify

its maximization problem as

maximize
(Hk,k ,Ψk,Ωk)∈Bk

tr
{
WkÊk

}
+ tr

{
Ψ̂kFkF

H

k

}

+ tr
{
Ak∆Hk,k

Bk∆
H

Hk,k

}

+2Re
{
tr
{
Ck∆Hk,k

}}

+ tr
{
GH

kWkGk∆Ωk

}
+ tr

{
∆Ψk

FkF
H

k

}

subject to
∑K

k=1 tr
{
Φk,mFkF

H

k

}
≤ Pm, ∀m

(5.54)
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where

Êk =GkĤk,kFkF
H

k Ĥ
H

k,kG
H

k,k −GkĤk,kFk

− FH

k Ĥ
H

k,kG
H

k +GkΩ̂kG
H

k + I. (5.55)

Ak =GH

kWkGk, (5.56)

Bk =FkF
H

k , (5.57)

Ck =FkF
H

k Ĥ
H

k,kG
H

kWkGk − FkWkGk. (5.58)

Note that this optimization problem is similar to the corresponding problem

in the single-user case (5.10). Similarly from the results of Section 5.2, we can

select the worst-case values of

Ω⋆
k =Ω̂k + εΩk

I, (5.59)

Ψ⋆
k =Ψ̂k + εΨk

I. (5.60)

We can also conclude from Lemma 5.2 that the worst-case channel estimation

error must be in a form of

∆⋆
Hk,k

= Ω
1
2
k Ûk∆̃kV̂

H

k (Φk(µ) +Ψk)
1
2 , (5.61)

where Ûk ∈ Cnr×nr and V̂k ∈ Cnr×nt are defined in the SVD

Ω
− 1

2
k Ĥk,k (Φk(µ) +Ψk)

− 1
2 = Ûk

[
Γ̂k 0

] [
V̂k V̆k

]H
(5.62)

and ∆̃k ∈ Rnr×nr is a diagonal matrix with elements δ̄k,i ≥ 0. The values of δ̄k,i

can be obtained through the minimization problem over an auxiliary variable

ϑk as discussed in Section 5.B.

Robust Transceiver Design: We use dual decomposition method [145]

to decompose the problem into subproblems with the Lagrangian variable µ.

For a given µ, we must solve the following problem:

minimize
Fk,Gk

max
Bk

K∑
k=1

tr {WkEk}+
K∑
k=1

tr
{
ΦkFkF

H

k

}
−

M∑
m=1

µmPm (5.63)

with respect to µk. The outer loop master optimization problem updates

µm, m = 1, . . . ,M using subgradient algorithm [115,145]. We can insert (5.59)

and (5.60) into this problem and following Lemma 5.2, the maximization
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problem of (5.48) becomes a minimization problem with respect to ϑk (see

Section 5.B). We know from Section 5.3.1 that for any given estimation error

matrices the optimal precoding and equalization matrices for user k assuming

other user’s transceivers fixed are in a form of (5.43) and (5.44). Note that

since maximization preserves convexity, the overall minimization problem is

still convex with respect to Fk andGk. This problem can be simplified similarly

to the single-user case as

minimize
σk,i,λk,i,ϑk

i=1,...,nr

nr∑

i=1

ϑkwk,i (σk,iλk,iγk,i − 1)2

ϑk − wk,iλ
2
k,iσ

2
k,i

+
nr∑

i=1

wiλ
2
k,i

+
nr∑

i=1

σ2
k,i + ϑkε̃

2
Hk,k

(5.64)

Following the approach for Lemma 5.3, we equate the derivatives of the

Lagrangian function with respect to σk,i and λk,i to zero (i.e. ∂L/∂σk,i =

∂L/∂λk,i = 0). Then, by introducing Xk,i = λk,iσk,i, the result can be combined

together into a single quartic equation (see Section 5.C)

ϕk,i(r) = w2
k,ir

4 − wk,iϑk(2 +
√
wk,iγk,i)r

2

+ (γ2
k,iϑk + wk,i)

√
wk,iϑkr + ϑ2

k

(
1− γk,i

√
wk,i

)
= 0. (5.65)

The closed-form expressions for the roots of this equation can be found

following the Ferrari’s method [144] as discussed in Section 5.C. The values of

λk,i and σk,i are characterized from the real positive root of this equation as

σk,i =
√

rk,i
√
wk,i (5.66)

λk,i =

√
rk,i√
wk,i

(5.67)

Therefore, the algorithm to obtain the worst-case transceivers in the multiuser

system is as detailed in Table 5.2.
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Table 5.2: Worst-Case Robust Transceiver Design Algorithm (Multiuser)
Initialize Fk and Gk for all k and µ = (µ1, . . . , µK) � 0.
Repeat (subgradient loop of µ)
Repeat for any user k
Compute Ωk and Ψk from (2.17) and (5.42)
Calculate εΩk

and εΦk
from (5.52) and (5.53).

Initialize σk,i, λk,i, i = 1, . . . , nr

Perform thin SVD(
Ω̂k + εΩk

I
)− 1

2
Ĥk,k

(
Ψ̂k + µkI+ εΨk

I
)− 1

2
= ÛkΓ̂kV̂

H

k

Γ̂k = diag (γk,1, . . . , γk,nr
)

Repeat (subgradient loop of ϑk)
j = argmaxi

(
wk,iλ

2
k,iσ

2
k,i

)

If ϑk = wk,jλ
2
k,jσ

2
k,j

Calculate ρ(ϑk) =
∑
i 6=j

w2
k,i

λ2
k,i

σ2
k,i

(γk,iλk,iσk,i−1)2

(ϑk−wk,iλ
2
k,i

σ2
k,i)

2

If ρ(ϑk) < ε2Hk,k

δi =
wk,iλk,iσk,i(γk,iλk,iσk,i − 1)

ϑk − wk,iλ
2
k,iσ

2
k,i

i 6= j

δj = −
√

ε2Hk,k
− ρ(ϑk)

End
Else
ϑk ← ϑk + δϑk

∆ϑk

End
Form the quartic equation (5.65) for all i = 1, . . . , nr.
Find the positive real root of this equation, rk,i
(if any, otherwise rk,i = 0)

Set λk,i =
√

rk,i
wk,i

, σk,i =
√

rk,i
√
wk,i.

Until Convergence
Until Convergence
Update µk ← µk + δµk

(
tr
{
FkF

H

k

}
− Pk

)
, ∀k

Until
∑

k µk

(
tr
{
FkF

H

k

}
− Pk

)
≤ ǫ0 .

Substitute Λk and Σk into (5.43)-(5.44) to find Fk and Gk.

5.4 Numerical Results

In this section, the performance of robust transceivers is evaluated numerically.

The robust design guarantees a performance level for any point within the

uncertainty region. Hence, the performance is expressed by the average worst-

case sum of MSE values. These values are averaged over different system
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realizations. Each system realization is a random generation of the elements

of the estimated system matrices (i.e. Ĥ, Ω̂, Φ̂ in single-user case and Ĥk,k in

multiuser scenario), which are i.i.d. Gaussian with zero mean. The uncertainty

region is characterized by a parameter 0 ≤ ε ≤ 1. In our simulations, it is

assumed that
√
ε is the radius of uncertainty region for each of the system

matrices when they are normalized by their Frobenius norms of the estimated

value. The non-robust transceivers assume the estimated system matrices as

the actual system matrices and are discussed in [74]. The worst-case estimation

error matrices are given in Section 5.2.2 and are used in the calculations of the

worst-case sum-MSE or sum-rates.
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Figure 5.1: Comparison of performance of the proposed robust design, the non-
robust design, and the transceiver design when system matrices are perfectly
known (perfect CSI) for nt = nr = 2.

Fig. 5.1 shows the comparison of robust and non-robust design [74] for

different values of ε, i.e. the size of uncertainty regions in the single-user case.

The performance of the transceivers in the presence of perfect knowledge of the

system matrices is also shown as a baseline. Fig. 5.2 explicitly illustrates the
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performance of the robust and non-robust design with respect to the size of the

uncertainty region for a single-user system. As it is expected, the performance

of the robust transceivers deteriorates at a much lower rate with increase of

the size of the uncertainty region ε compared to the non-robust transceivers.
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Figure 5.2: Comparison of performance of different transceiver designs with
respect to the size of uncertainty region ε for nt = nr = 2.

In the multiuser scenario, we have presented the numerical results for

a MIMO interference channel with K = 3 users and nt = nr = 2. The

performance of robust and non-robust designs for the worst-case scenario is

shown in Fig. 5.3 and Fig. 5.4 for different values of ε. The performance with

perfect CSI is also given for comparison. Fig. 5.3 compares the sum-MSE

(across all users data symbol estimates) and Fig. 5.4 presents the sum rate

results. As SNR increases the performance of the system degrades significantly

for higher values of ε, but much less for robust design than for its non-robust

counterpart.

Fig. 5.5 shows the comparison of our proposed algorithm with the

SDR-based algorithm proposed in [126] for interference channels. As it is
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Figure 5.3: Sum-MSE comparison of the proposed robust design, the non-
robust design with ε = 0.01, 0.03, 0.05, and with perfect CSI in K = 3
interference channel. nt = nr = 2.

evident, our algorithm outperforms the previous robust design in interference

channels. This improvement is a result of employing the Gauss-Seidel algorithm

controlling the interference sent out by each user, deriving the structure of the

precoders, equalizers, and the worst-case channel matrices. We also use a sub-

gradient algorithm to satisfy the per-BS power constraints, while in [126] an

iterative scaling of the precoding vectors are deployed to satisfy the power. Sub-

gradient algorithm is a convergent algorithm and standard in the optimization

problems [145]. Moreover, [126] also applies SDP at each iteration of their

algorithm, which compared to our iterative algorithm is more complex. It is

known that the complexity6 of SDP grows as O(n6), where n is the number

of variables in the optimization problem [70]. Therefore, the complexity per

iteration of SDP-based algorithms isO((Knt)
6). Each iteration of our proposed

6The complexity refers to the time complexity. Time complexity of an algorithm is its
running time as a function of the length of the input string. It is described asymptotically
by O(n) when the input size, i.e. n, goes to infinity.
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Figure 5.4: Sum rate comparison of the proposed robust design, the non-robust
design with ε = 0.01, 0.05, and with perfect CSI in K = 3 interference channel.
nt = nr = 2.

algorithm contains matrix operations (inverse and SVD operations), which

grows as O(n3) with n as size of the matrix. Hence, the complexity order per

iteration of our algorithm is O(n3
t ) +O(n3

r).

5.5 Conclusions

We have considered the worst-case robust design of linear precoders and

equalizers in MIMO interference channels. We have addressed the problem

for the single-user systems first, where the channel matrix, interference plus

noise covariance matrix, and power shaping matrix (system matrices) are all

imperfectly known to the transmitter and receiver. Using this approach, we

have then analyzed the multiuser scenario. We approximate the uncertainty

regions to obtain the simplified structures of the precoders and equalizers,

which also involves finding the worst-case system matrices. The resulting
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Figure 5.5: Sum rate comparison of the proposed robust design with the semi-
definite relaxation based algorithm, with εHk,l

= 0.1, ∀k, l inK = 3 interference
channel. nt = nr = 2.

problem has been reduced to a scalar convex form. The solution to this

optimization problem can be expressed in a form of depressed quartic equation,

the closed-form expressions for roots of which are known. Finally, we have

proposed an iterative algorithm to obtain a robust transceivers, which is less

complex compared to SDP-based alternating optimizations.

5.A Proof of Lemma 5.1

We first define the equivalent channel matrix H̃, equivalent precoding matrix

F̃ and equivalent equalization matrix G̃ expressed as

H̃ =Ω− 1
2HΦ− 1

2 (5.68)

G̃ =GΩ
1
2 (5.69)

F̃ =Φ
1
2F (5.70)
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Since the matricesΦ andΩ are square and full rank matrices, we can substitute

G̃, F̃ and H̃ into the problem (5.4) and obtain an equivalent problem

minimize
F̃,G̃

tr
{
WẼ

}

subject to tr
{
F̃F̃H

}
≤ P

(5.71)

where the equivalent MSE-matrix Ẽ in the equivalent system is defined as

Ẽ =G̃H̃F̃F̃HH̃HG̃H − G̃H̃F̃

− F̃HH̃HG̃H + G̃G̃H + I. (5.72)

Plugging this into the problem (5.71) we find that the objective function is a

convex quadratic function in each of F̃ and G̃. Nevertheless, it is not jointly

convex. Hence, the KKT conditions [115] are only necessary for optimality,

which means that the optimal solution must satisfy them. We first establish

the Lagrangian function

L(µ, F̃, G̃) = tr
{
WẼ

}
+ µ

(
tr
{
F̃F̃H

}
− P

)
(5.73)

where µ ≥ 0 is the Lagrangian multiplier. Next, the KKT conditions can be

listed below7:

∇
F̃
L = F̃HH̃HG̃HWG̃H̃−WG̃H̃+ µF̃H =0, (5.74)

∇
G̃
L = H̃F̃F̃HH̃HG̃H − H̃F̃+ G̃H =0, (5.75)

tr
{
F̃F̃H

}
≤P, (5.76)

µ
(
tr
{
F̃F̃H

}
− P

)
=0. (5.77)

Scrutinizing the KKT conditions (5.74) and (5.75), we notice that the

precoding matrix F̃ is always pre-multiplied by the channel matrix H̃ and

the equalization matrix G̃ is always post-multiplied by the channel matrix

H̃. Since U contains the left singular vectors of H̃ and V contains the right

singular vectors of the channel matrix, both create the basis for the range

7We use differentiation rules ∇X tr {GXF} = FG and ∇X tr
{
Y

−1
}

=
−Y−1 (∇XY)Y−1. For the complex gradient operator each matrix and its conjugate
transpose are treated as independent variables [116].
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space of H̃. We first employ the most general form for the matrices F̃ and G̃

and decompose them into the range space and null space of H̃:

F̃ =VΣ+ V̆Σ̃ = F‖ + F⊥, (5.78)

G̃ =ΛVHH̃H + Λ̆V̆HH̃H = G‖ +G⊥, (5.79)

where F‖ and G‖ are each in the range space of H̃, and F⊥ and G⊥ are each

in its null space; Σ̆ ∈ C(nt−nr)×nr and Λ̆ ∈ Cnr×(nt−nr) are arbitrary matrices.

We have

FH

⊥F‖ = 0, FH

‖F⊥ = 0, H̃F⊥ = 0, (5.80)

GH

⊥G‖ = 0, GH

‖G⊥ = 0, G⊥H̃ = 0. (5.81)

Post-multiplying (5.74) by F⊥ and using (5.80), we obtain

F̃HF⊥ = 0 ⇒ FH

⊥F⊥ = 0 ⇒ F⊥ = 0. (5.82)

Pre-multiplying (5.75) by G⊥ and using (5.81), we get

G⊥G̃
H = 0 ⇒ G⊥G

H

⊥ = 0 ⇒ G⊥ = 0. (5.83)

Consequently, we have F̃ = VΣ and G̃ = ΛVHH̃H = ΛΓUH. Now, we need

to prove that Σ and Λ must be diagonal matrices. From (5.75), we can obtain

the receiver structure as

G̃ = F̃HH̃H

(
I+ H̃F̃F̃HH̃H

)−1

(5.84)

which is the known MMSE receiver (e.g. see [114]). Substituting this into

(5.72), we obtain the equivalent MSE-matrix as

Ẽ =
(
I+ F̃HH̃HH̃F̃

)−1

(5.85)

We first prove that the minimum of the Lagrangian function is reached where

the corresponding Ẽ is diagonal. Assume that the minimum of the Lagrangian

function is reached at where the corresponding Ẽ is not diagonal. Then, one

can always find a unitary matrix Q ∈ Cnr×nr such that the matrix F = F̃Q

diagonalizes Ẽ since with F we have Ẽ = QH

(
I+ F̃HH̃HH̃F̃

)−1

Q [114]. The
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function tr
{
WẼ

}
is Schur concave, and therefore the matrix F does not

decrease the function with respect to F̃, while FF
H

= F̃F̃H is subject to the

constraint of (5.71). Now, if we substitute the equivalent MSE-matrix (5.85)

into the Lagrangian function (5.73) and rewrite the first gradient condition in

(5.74), we have

∇
F̃
L = −ẼWẼF̃HH̃HH̃+ µF̃H = 0 (5.86)

Right-multiplying (5.86) by F̃ gives us

ẼWẼF̃HH̃HH̃F̃ = µF̃HF̃ (5.87)

Since Ẽ, and consequently F̃HH̃HH̃F̃ are diagonal, the right side of the

above equation must be diagonal as well. This is equivalent to ΣHΣ being

diagonal, which results in Σ being also diagonal. Now, Replacing this structure

of F̃ results that the matrix Λ is also diagonal. Now, from (5.84) we have

G̃ = ΛΓUH = ΣHΓUHU
(
I+ ΓΣΣHΓ

)−1
UH (5.88)

By post-multiplying the above equation byU and using the fact thatUHU = I,

we have Λ = ΣH
(
I+ ΓΣΣHΓ

)−1
. This immediately results in diagonality of

Λ.

5.B Proof of Lemma 5.2

First we introduce a lemma:

Lemma 5.4 (The trust-region subproblem [142,143,146]). Let q(x) = xHQx−
2Re

{
pHx

}
where Q ∈ Cn×n is a Hermitian matrix and x,p ∈ Cn. The trust

region subproblem is defined as the quadratic minimization problem:

minimize q(x)

subject to xHx = r2
(5.89)

where r > 0. Then, (i) x is a global minimum if and only if there exists ϑ such

that

(Q+ ϑI)x =p, (5.90)

Q+ ϑI �0, (5.91)

xHx =r2, (5.92)
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and (ii) strong duality holds for the trust-region subproblem and its dual

problem with zero duality gap is

maximize
ϑ

h(ϑ)

subject to Q+ ϑI � 0
(5.93)

where h(ϑ) = −ϑr2−pH (Q + ϑI)† p and † denotes the Moore-Penrose pseudo-

inverse.

The matrix-form of this lemma is restated in [129] and it is useful for our

proof.

Corollary 5.1. [129] The optimal solution of problem (5.25) must satisfy the

sufficient and necessary conditions

A∆HB+CH − ϑ∆H =0, (5.94)

ϑ ≥λmax(A)λmax(B), (5.95)

tr
{
∆H

H∆H

}
=ε2H . (5.96)

for some auxiliary variable ϑ.

Consider the optimization problem (5.25). Since the objective function is

convex, its maximum is acquired at the boundary tr{∆H

H∆H} = ε2H . Therefore,

we can replace the inequality constraint in problem (5.25) by an equality. Now,

keeping these facts in mind, we proceed the proof of Lemma 5.2.

For any matrix ∆H , the optimal forms of the precoding and equalization

matrices are given as in Lemma 5.1, which is dependent on the orthonormal

matrices U and V obtained from the following SVD

Ω− 1
2HΦ− 1

2 =Ω− 1
2

(
Ĥ+∆H

)
Φ− 1

2 (5.97)

=UΓVH (5.98)

Now Lemma 5.1 clearly states that the optimal precoding and equalization

matrices must be in a form of

F =Φ− 1
2VΣ, (5.99)

G =ΛUHΩ− 1
2 . (5.100)
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In order to prove the Lemma, first we need to prove that U = Û and V = V̂.

Substituting these structures of the precoder and the equalizer into (5.101)

and (5.102), we have

A =Ω− 1
2UΛHWΛUHΩ− 1

2 , (5.101)

B =Φ− 1
2VΣΣHVHΦ− 1

2 , (5.102)

C =Φ− 1
2VΣΣHVHĤHUΛWΛHUHΩ− 1

2

−Φ− 1
2VΣWΛUHΩ− 1

2

=Φ− 1
2VΣ2ΓΛ2WUHΩ− 1

2 −Φ− 1
2VΣWΛUHΩ− 1

2 , (5.103)

Now, we substitute these into (5.94) then pre-multiply the equation by Φ
1
2

and post-multiply it by Ω
1
2 and substituting ∆̃H = Ω− 1

2∆HΦ
− 1

2 , we have

UΛ2WUH∆̃HVΣ2VH +UWΛ2ΓΣ2VH

−UΛWΣVH − ϑ∆̃H = 0 (5.104)

Reformulating this problem in a vector-form using tensor (Kronecker) prod-

uct8, we obtain

(
VΣ2VH ⊗UΛ2WUH

)
δ̃H

+ (V ⊗U) vec
(
Σ2ΓΛ2 −ΛWΣ

)
− ϑδ̃H = 0 (5.105)

Therefore, δ̃H can be uniquely identified as

δ̃H = (V ⊗U)
[
ϑI−Σ2 ⊗

(
Λ2W

)]−1
(5.106)

× vec(Σ2ΓΛ2W −ΣWΛ) (5.107)

It can be verified simply that

[
ϑI −Σ2 ⊗

(
Λ2W

)]−1
vec(Σ2ΓΛ2W −ΣWΛ) (5.108)

has the structure, which is a vector-form of a diagonal matrix. Hence, we can

conclude that ∆̃H can be described as

∆̃H = U∆̄VH (5.109)

8We use tensor product properties vec(AXB) = (BH ⊗ A)vec(X) and (UXΛXV
H

X) ⊗
(UY ΛY V

H

Y ) = (UX⊗UY )(ΛX⊗ΛY )(V
H

X⊗VH

Y ) whereUXΛXV
H

X andUY ΛY V
H

Y are SVDs
of the matrices X and Y, respectively. We also use the tensor operator rule tr {WXYZ} =
(vec(Z))H

(
W ⊗Y

H
)
vec(XH) and tr

{
X

H
Y
}
= (vec(X))Hvec(Y)
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where ∆̄ must be a diagonal matrix. Since H = Ĥ+∆H , we can immediately

conclude that Û = U and V̂ = V. This is equivalent to the structure of (5.26)

which can be determined from the channel estimate matrix Ĥ. Following this

result, we can find the diagonal elements of ∆̄ as

wiλ
2
iσ

2
i δ̄i + wiλ

2
iσ

2
i γi =wiλiσi + ϑδ̄i, i = 1, . . . , nr (5.110)

ϑ ≥wiλ
2
iσ

2
i , i = 1, . . . , nr (5.111)

nr∑

i=1

δ̄2i =ε̃2H (5.112)

Solving the first equation, we have (5.28) and

plugging it into the third equation, we obtain (5.29). Note that the left

side of the equation above is a decreasing function in the region of ϑ ∈
[maxi(wiλ

2
iσ

2
i ),∞] with the values ranging from +∞ to zero correspondingly.

Therefore, there exists a ϑ ∈ [maxi(wiλ
2
iσ

2
i ),∞) such that the equation (5.29)

is satisfied. The proof follows immediately.

5.C Proof of Theorem 5.1

When we substitute (5.23), (5.24), and (5.26) into the original problem (5.9),

the problem simplifies to a minimization problem with respect to F,G and the

auxiliary variable ϑ (using the dual problem of the trust region subproblems

stated in Lemma 5.3). Now, using Lemma 5.1, the optimal precoding and

equalization matrices must have the structure given in (5.5) and (5.6) for any

values of error matrices. Substituting expressions for F andG and approximate

worst-case system matrices (5.23), (5.24), and (5.26) into (5.9), we can convert

the problem into a scalar optimization problem, which is simplified as (5.34).

Notice that the maximization preserves the convexity, therefore this problem

is a convex optimization problem with respect to each of G and F (but still

jointly non-convex). Consequently, the reduced scalar optimization problem is

convex in terms of each of λis or σis, i = 1, . . . , nr. Fixing ϑ, we can establish

the Lagrangian function and equate its derivatives with respect to λi and σi

to zero. These give us necessary conditions for the optimal values of λi and σi.
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Thus, optimal values of these variables must satisfy the following equations:

−ϑwiσi (σiλiγi − 1) (wiσiλi − ϑγi)

(ϑ− wiλ
2
iσ

2
i )

2 + wiλi =0 (5.113)

−ϑwiλi (σiλiγi − 1) (wiσiλi − ϑγi)

(ϑ− wiλ2
iσ

2
i )

2 + µσi =0 (5.114)

where µ ≥ 0 is a Lagrangian multiplier corresponding to the transmit power

constraint
∑

i σ
2
i ≤ P . Note that unlike related work (e.g. [130]) we jointly

optimize the precoder and equalizer (or σis and λis) rather than in an

alternating manner optimize the precoder and equalizer.

We denote

Zi =
ϑwi (σiλiγi − 1) (wiσiλi − ϑγi)

(ϑ− wiλ2
iσ

2
i )

2 , (5.115)

to simplify (5.113) and (5.114) as

−Ziσi + wiλi = 0, (5.116)

−Ziλi + µσi = 0. (5.117)

We can simply conclude that Zi =
√
µwi if σi, λi > 0, which is equivalent to

the following equation:

ϑwi (σiλiγi − 1) (wiσiλi − ϑγi)

(ϑ− wiλ
2
iσ

2
i )

2 −√µwi = 0 (5.118)

Replacing r = λiσi and simplifying (5.118) results in the quartic equation

(5.37).

Please note that the quartic equation is the highest-order of polynomial

equation, for which the closed-form solutions are available (e.g. Ferrari’s

method) [144]. The solutions to equation ϕi(r) = 0 are given as [144]

ri =

±s

√
ai + 2yi ±t

√
−
(
3ai + 2yi ±s

2bi√
ai+2yi

)

2
(5.119)

where two signs of ±s must match, while the sign of ±t is independent of that.
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The parameters used in the expression can be defined as

ai =−
2ϑ

wi
− γiϑ√

µwi
(5.120)

bi =
γ2
i ϑ

2

wi
√
µwi

+
ϑ√
wiµ

(5.121)

ci =
ϑ2

w2
i

− ϑ2γi
wi
√
µwi

(5.122)

Ui =
3

√√√√−Qi

2
+

√
Q2

i

4
+

(
Pi

3

)3

(5.123)

Pi =−
a2i
12
− ci (5.124)

Qi =−
a3i
108

+
aici
3
− b2i

8
(5.125)

yi =−
5

6
ai + Ui −

Pi

3Ui
(5.126)

From (5.116) and (5.117), the optimal values of λi and σi must be in the form

of (5.35)-(5.36) result. This close-form structure for the optimal values of λi

and σi produce a reduced-complexity algorithm to design the precoder and

equalizer jointly.
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Chapter 6

Summary of Contributions and
Future Work

6.1 Summary of Contributions

In this thesis, we have considered a general form of multi-node cooperation

by studying partial user message sharing between the nodes (base stations).

This scenario is referred to as network MIMO with partial cooperation.

Different power limitations have been enforced in the system with emphasis

on individual power constraints at the base stations (BSs). First, we have

shown that this system is equivalent to a MIMO interference channel with

generalized linear constraints (MIMO-IFC-GC). Then, we have investigated

linear transmission and reception strategies in this channel model. This has

been performed in two scenarios depending on the availability of channel state

information (CSI) at both ends of the system: perfect and imperfect CSI. We

first review the completed work in case of perfect CSI.

6.1.1 Block diagonalization (multiple-antenna user zero-
forcing)

The optimality of the conventional block diagonalization (BD) in multiuser

MIMO systems under the total power constraint has been proven rigorously

[97]. Sub-optimality of the conventional BD technique under individual power

constraints has been shown and it has motivated the search for the optimal

BD scheme. The optimal BD scheme for multi-cell cooperative network under
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per-antenna/per-BS power constraints has been proposed by fixing the search

domain to be any linear combination of the null space of other user’s channels.

We have proposed a simple iterative descent gradient algorithm, which obtains

the optimal precoders for multi-cell BD [62, 63]. Extensive numerical results

in realistic cellular model are given to study different benefits delivered by

employment of cooperation between multiple BSs.

6.1.2 MMSE Linear Precoding and Equalization

In the next step, we consider MMSE precoding and equalization and include

linear processing at the receiver. The problems of maximizing the sum-rate

(SR) and minimizing the weighted sum mean square error (WSMSE) of the

data estimates are non-convex, and suboptimal solutions with reasonable

complexity need to be devised. First the suboptimal techniques that aim at

maximizing the sum-rate for the MIMO-IFC-GC are reviewed from recent

literature and are extended to the MIMO-IFC-GC where necessary. Then,

two novel designs that aim at minimizing the WSMSE are proposed [73, 74].

Specifically, we have proposed an extension of the recently introduced MMSE

interference alignment strategy and a novel strategy termed diagonalized

MSE-matrix (DMMSE). Our proposed strategies support transmission of

any arbitrary number of data streams per user. Extensive numerical results

show that the DMMSE outperforms most previously proposed techniques

and performs just as well as the best known strategy. We have provided

numerical results to compare the performance of the investigated schemes for

realistic cellular systems considering path loss, lognormal shadowing, small-

scale fading and sectorization. With respect to complexity, the extended

MMSE interference alignment technique is less complex than the previously

discussed techniques. Our DMMSE is slightly less complex than the polite

water-filling algorithm, which is known as best algorithm prior to our DMMSE

algorithm proposal.
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6.1.3 Network MIMO User Scheduling

It is shown that allowing the cell clusters to overlap increases the signal-

to-interference-plus-noise-ratio (SINR) dramatically. The general problem of

network-level user scheduling is formulated, where there are no pre-defined

clusters, but the cooperation and data sharing are constrained. A simple

algorithm has been proposed for multi-cell user scheduling and a revised form

of BD has been introduced for it [55].

6.1.4 Semi-orthogonal User Selection Algorithm for

Multiple-antenna Users

In order to employ BD in the multi-cell systems with mobile users equipped

with multiple antennas, we need to extend the user selection algorithm for the

single-antenna case. A semi-orthogonal user selection has been extended to the

multiple-antenna user case [62].

In the second part of this dissertation, we have considered imperfect CSI.

6.1.5 Robust Linear Precoding and Equalization

Joint design of robust linear precoders and equalizers for MIMO-IFC-GC

has been investigated. The inaccurate knowledge of channel state information

(CSI) has been assumed to follow the worst-case deterministic model, where

the actual channel between each transmitter and receiver is guaranteed to fit

within a sphere centered at its estimated value. Our objective is to minimize

weighted sum of mean square errors of the estimated symbols, which is a

general utility function. We have started with the single-user system, where

we account for inaccurate awareness of the interference plus noise covariance

matrix and the power shaping matrix in addition to the imperfect knowledge

of channel matrix. We derive the worst-case values of these system matrices

and transform the joint precoder and equalizer optimization problem into a

scalar convex optimization problem. Further, the solution to this problem is

simplified to a depressed quartic equation, the closed-form expressions for roots

of which are known. Next, we propose an iterative algorithm to obtain the
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worst-case robust transceivers based on the derived structures of precoder and

equalizer. This design approach is further employed in the multiuser scenario

(MIMO-IFC-GC), where it does not require semi-definite reformulation.

6.2 Future Work

Practical issues of implementing multi-cell cooperative systems play the key

role in future works in this research area. Hence, in the following we discuss

a number of these problems and possible direction of work towards their

solutions.

6.2.1 Decentralized solution to the optimization prob-

lems

As it is expected in the research work, we started from ideal assumptions

in the multi-cell scenario, but stepped further with partial cooperation.

Employing fully centralized optimization of downlink transmissions is highly

unlikely in the future multi-cell cooperative systems. Therefore, we need to

propose a scheme to distribute the optimization problem over the network,

so that much of the processing can be done locally with limited exchange

of information between the BSs. The decentralized multi-cell cooperation is

vital for the network-level user scheduling scheme where the signalling is

highly distributed and coupled over the entire network. Our proposed approach

involves decoupling the power constraints in the network to enable local

optimizations and then control the power allocations through an outer loop.

6.2.2 Robust linear strategies

The external factors such as complexity and backhaul capacity are not the only

limitations in multi-cell cooperative systems. Indeed, the amount of spectral

resources allocated for training (CSI estimation) is determined by the time

and frequency variability of the fading channels [78]. Therefore, CSI estimation

error must be accounted for in the design of network MIMO. Hence, we need

to track the robustness of the transmission strategies under the statistical CSI.
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We have considered the worst-case CSI estimation error in this dissertation,

but a future direction may be to consider the errors stochastically distributed.

We will follow the MMSE precoding structure using the weighted sum-MSE

minimization. Robust MMSE precoding was recently studied in [129] for

MIMO systems, which stimulated ideas for further extensions to the multiuser

case.

6.2.3 Multi-cell user scheduling

As it has been mentioned, the multi-cell user scheduling problem [55] is open,

but it is promising. We may start by studying the cellular network analytically.

In order to analyze a realistic cellular model, we can consider that the nodal

arrangement is almost a stationary Poisson point process, where known mobile

(users) and fixed nodes (BSs) are distributed independently within a region.

There are interesting results characterizing the distribution of the Euclidean

distance between the nodes in this more-realistic model given in [147]. Since

this result is available by ordered statistics of the distances, it is more relevant

to the multi-cell user scheduling algorithm proposed in our work rather than

conventional clustering. Further performance analysis can be carried out. This

has been recently studied in [148–150].With this proposed direction, we may

obtain the capacity results of the multi-cell cooperative systems in more-

realistic cellular models than quite simplistic Wyner-type models.

6.2.4 MMSE interference alignment

The optimization of MMSE transceivers can be extended to complete cance-

lation of interference (interference alignment) in a more efficient way than the

current methods. Computational complexity of the closed-form interference

alignment is known to be high (NP-hard) and its performance is poor in low

SNR regime. With the MMSE concepts established we expect to obtain a

simple iterative approach to this problem.
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6.2.5 Synchronization

Multicell downlink cooperation needs tight synchronization with ideally no

carrier frequency offset (CFO) between local oscillators at the base stations.

This synchronization can be achieved by global positioning system (GPS)

receivers. However, there are still challenges for GPS receivers for indoor base

stations. Indoor base stations may benefit from the timing signal sent from

the outdoor GPS receiver using a precise timed network protocol.
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Appendix A

Convex Optimization Theory

This chapter contains some preliminaries of the convex optimization theory

widely used throughout this dissertation.

A.1 Basic Optimization Concepts

Definition A.1 (Convex Set). A set C ∈ Rn is convex if for any two points

x, y ∈ C, the line segment connecting x and y also belongs to C:

θx+ (1− θ)y ∈ C, ∀x, y ∈ C and θ ∈ [0, 1]. (A.1)

Examples of convex sets are balls, ellipsoids, hypercubes, polyhedral sets.

The intersection of any number of convex sets is also convex. However, the

union of two convex sets is typically nonconvex.

Definition A.2 (Convex Cone). A convex cone K is a convex set which is

closed under positive scaling: ∀x ∈ K, α ≥ 0, αx ∈ K.

Examples of convex cones are non-negative orthant Rn
+, second order cone:

SOC(n) = {(t,x) | t ≥ ‖x‖}, and the most common convex cone in this

dissertation, which is positive semidefinite matrix cone:

Sn
+ = {X | X is symmetric and X � 0} . (A.2)

Definition A.3 (Convex functions). A function f(x) : Rn → R is convex if

for any two points x,y ∈ Rn

f (θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀θ ∈ [0, 1]. (A.3)
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If f is continuously differentiable, then the convexity of f is equivalent to

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x,y ∈ Rn. (A.4)

Therefore, when f is convex the first-order Taylor approximation is a global

underestimator of f . If f is twice continuously differentiable, then its convexity

is equivalent to the positive semidefiniteness of its Hessian: ∇2f(x) � 0, ∀x ∈
Rn. For example, a quadratic function xTPx + qTx + r is convex if and only

if P � 0.

The convex functions are closed under summation, positive scaling, and

the pointwise maximum operations.

Definition A.4 (Convex Optimization Problems). Generic optimization

problem can be expressed as

minimize
x∈C

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , r

(A.5)

where f0 is called the objective function (or cost/utility function), {fi}mi=1

and {hj}rj=1 are called the inequality and equality constraint functions,

respectively, and C is called a constraint set. The optimization variable x is

feasible if x ∈ C and it satisfies all the inequality and equality constraints.

A feasible solution x⋆ is globally optimal if f0(x
⋆) ≤ f0(x) for all feasible

x. A feasible point x̃ is locally optimal if there exists some ǫ > 0 such that

f0(x̃) ≤ f0(x) for all feasible x satisfying ‖x− x̃‖ ≤ ǫ.

The optimization problem (A.5) is convex if (i) the functions fi, i =

0, 1, . . . , m are convex; (ii) hj(x) are affine functions (i.e., hj is of the form

aT
j x + bj for some aj ∈ Rn and bj ∈ R); and (iii) C is also convex. If any one

of these conditions is not satisfied, the problem is nonconvex.

Convex optimization problems are the largest subclass of optimization

problems which are efficiently solvable, whereas nonconvex optimization

problems are generally difficult. High quality softwares are available (many

of them free) which can obtain accurate solutions efficiently and reliably.

Therefore, when an engineering problem is formulated in a convex form, the
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problem is considered solved numerically. For a convex optimization problem,

any locally optimal solution is also globally optimal. Moreover, when an

optimization problem is convex, there exist efficient interior-point optimization

algorithms whose worst-case complexity to find an ǫ-optimal solution grows as

a polynomial function of the problem data length and log 1/ǫ.

A.2 Lagrangian Duality

Consider a (not necessarily convex) optimization problem

minimize
x∈C

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , r.

(A.6)

Let p⋆ represent the global minimum value of this problem. Now, we

introduce a dual variable λ ∈ Rm and µ ∈ Rr and establish the Lagrangian

function

L(x,λ,µ) = f0(x) +

m∑

i=1

λifi(x) +

r∑

j=1

µjhj(x). (A.7)

The dual function of this problem is correspondingly defined as

g(λ,µ) = min
x∈C
L(x,λ,µ). (A.8)

The dual function g(λ,µ) is a pointwise minimum of a family of linear

functions with respect to (λ,µ) and therefore it is always concave. (λ,µ)

is dual feasible when λ ≥ 0 and g(λ,µ) is finite. The original problem (A.6)

is also referred to as primal problem and x is called primal vector.

Proposition A.1 (Weak Duality). For any primal feasible vector x and the dual

feasible vector (λ,µ), we have

f0(x) ≥ g(λ,µ). (A.9)

Equivalently, for any dual feasible vector (λ,µ), the dual function g(λ,µ)

is a lower bound of the primal objective function f0(x). Consequently, p
⋆ ≥

g(λ,µ) for all dual feasible variables (λ,µ). Maximizing g(λ,µ) over all dual

126



feasible (λ,µ) gives us the largest lower bound of the optimal value of the

primal problem. Hence, the dual optimization problem is defined as

maximize g(λ,µ)
subject to λ � 0, µ ∈ Rr.

(A.10)

The dual problem (A.10) is always convex regardless of the convexity of the

primal problem. Let d⋆ denote the optimal value of the dual problem (A.10).

Therefore, we have p⋆ ≥ d⋆. The non-negative number p⋆− d⋆ is called duality

gap. We say that strong duality holds for the above problem if the duality

gap is zero, i.e. d⋆ = p⋆. Strong duality holds for most of convex optimization

problems (satisfying Slater’s conditions [50, 115]). Generally, strong duality

holds under a set of conditions known as constraint qualifications (for more

details refer to [115]). Now, we present the local optimality conditions for the

optimization problem (A.6).

Proposition A.2 (Karush-Kuhn-Tucker Conditions). The necessary condition

for x⋆ to be locally optimal solution of (A.6) is that there exists a (λ⋆,µ⋆)

such that the following conditions are all satisfied:

fi(x
⋆) ≤ 0, i = 1, . . . , m (A.11)

hj(x
⋆) = 0, j = 1, . . . , r (A.12)

λ⋆ � 0, (A.13)

λ⋆
i fi(x

⋆) = 0, i = 1, . . . , m (A.14)

and

∇f0(x⋆) +
m∑

i=1

λ⋆
i∇fi(x⋆) +

r∑

j=1

µ⋆
j∇hj(x

⋆) = 0. (A.15)

The conditions (A.11)-(A.15) are referred to as Karush-Kuhn-Tucker (KKT)

conditions for optimality. First two conditions (A.11) and (A.12) are primal

feasibility conditions of x⋆, (A.13) is dual feasibility condition, (A.14) repre-

sents the complementary slackness condition for the primal and dual inequality

constraint pairs: fi(x
⋆) ≤ 0 and λ⋆

i ≥ 0. The last condition is the zero gradient

condition ∇xL(x⋆,λ⋆,µ⋆) = 0.
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A.3 Semidefinite Programming

The downlink beamforming, precoding, and/or resource allocation problems

can be categorized as linear conic programming. In this section, we review this

class of optimization problem.

Definition A.5 (Linear Conic Programming). Consider a primal and dual

optimization problems

minimize tr {CX}
subject to AX = b, X ∈ K (A.16)

and
maximize bTy
subject to A⋆y + S = C, S ∈ K⋆ (A.17)

where A is a linear operator mapping an Euclidean space onto another

Euclidean space, and A⋆ is its adjoint. K and K⋆ denote a closed convex cone

and its dual, respectively. The problems (A.16) and (A.17) are called linear

conic programming.

Some of the special cases of this problem are reviewed as follows:

Definition A.6 (Linear Programming (LP) K = Rn
+). Linear programming

problem is defined as

minimize cTx
subject to Ax = b, x � 0

(A.18)

and its dual is given by

maximize bTy
subject to ATy + s = c, s. � 0.

(A.19)

The optimality condition of the LP is given by

Ax = b, x � 0, ATy + s = c, s ≻ 0, xTs = 0. (A.20)

Definition A.7 (Second-Order Cone Programming (SOCP) K =
∏m

i=1 SOC(ni)).

minimize cTx
subject to ‖Aix + bi‖ ≤ ti, ∀i (A.21)

The SOCP is equivalent to quadratically constrained quadratic program

(QCQP).
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Definition A.8 (Semidefinite Programming (SDP)). The SDP can be ex-

pressed as

minimize tr {CX}
subject to tr {AiX} = bi, i = 1, . . . , m, X � 0

(A.22)

and its dual is
maximize bTy

subject to
m∑
i=1

AT
i yi + S = C, S � 0

(A.23)

The optimality conditions for this problem are given by

tr {AiX} = bi, X � 0 (A.24)
m∑

i=1

AT

i yi + S = C, S � 0, tr {XS} = 0. (A.25)

Linear conic optimization problems can be solved efficiently using interior-

point methods. The worst-case complexity of a general SDP is O(n6.5). If

the constraint have diagonal structure, then its complexity can be reduced to

O(n3.5).

A.4 Gradient and Sub-gradient Algorithms

The gradient and sub-gradient methods are simple algorithms to find the

local optimal solution of an optimization problem with differentiable and non-

differentiable objective functions. They have little requirements of memory

usage and tractable for parallel implementation [115].

Consider a general minimization problem over a convex set defined as

minimize
x

f0(x) (A.26)

subject to x ∈ C. (A.27)

The gradient and sub-gradient projection method produce a set of iteratively

defined feasible points as

x(t+ 1) = [x(t)− α(t)s(t)]C (A.28)

where s(t) is a gradient or sub-gradient of f0 evaluated at the operating

point x(t) for differentiable or non-differentiable function f0, respectively.
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[·]C denotes the projection onto the feasible set C, and α(t) is a positive

step-size. For efficiently small step-size, the distance of the current solution

x(t) and the optimal solution x⋆ decreases. Hence, these algorithms are

convergent. The convergence behavior of the gradient/sub-gradient methods

with respect to different choices of the step-sizes have been investigated

extensively [115,151,152]. A decreasing step-size can be defined as α(t) = 1+a
t+a

,

where a is a fixed non-negative number. For this type of step-size, the algorithm

is guaranteed to converge to the optimal value when the gradient/sub-gradients

are bounded [115]. Constant step-sizes are useful in the distributed algorithms

and the gradient/sub-gradient algorithms are convergent for the bounded

gradient/sub-gradient values [115, 152]. The gradient of an optimization

problem can be defined as ∇L(x,λ), where L(·) is the Lagrangian function of

the problem. s is a sub-gradient of function f0 (not necessarily convex) at x if

f0(y) ≥ f0(x) + sT(y− x), ∀y (A.29)

Sub-gradient gives an affine global underestimator of f0. If f0 is convex, it has

at least one sub-gradient at every point x. If f0 is convex and differentiable,

∇f0(x) is a sub-gradient (and gradient) of f0.

A.5 Gauss-Seidel Algorithms

Consider the following multivariable minimization problem:

minimize
x1,...,xn

f(x1, . . . ,xn)

subject to xi ∈ Ci
(A.30)

over the closed convex sets C1, . . . , Cn. This problem may arise in cooperative

games where multiple players must obtain a strategy xi to minimize a general

utility function of the game.

Definition A.9 (Gauss-Seidel Algorithm [153]). The nonlinear Gauss-Seidel

algorithm contains iterative optimization in a circular fashion with respect to

a single variable vector while the remaining variables are fixed. Hence, each

iteration of this algorithm is defined as

x
(t+1)
i = arg min

xi∈Ci
f
(
x
(t+1)
1 , . . . ,x

(t+1)
i−1 ,xi,x

(t)
i+1, . . . ,x

(t)
n

)
(A.31)
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where t is the outer loop iteration index. For any given t, the step (A.31) is

performed over i = 1, . . . , n. This algorithm is also called block-coordinate

descent algorithm [152].

Definition A.10 (Jacobi Algorithm [153]). The nonlinear Jacobi algorithm

contains iterative optimization in a parallel fashion with respect to a single

variable while the remaining variables are fixed. Therefore, each inner-loop

iteration is defined as

x
(t+1)
i = arg min

xi∈Ci
f
(
x
(t)
1 , . . . ,x

(t)
i−1,xi,x

(t)
i+1, . . . ,x

(t)
n

)
(A.32)

If the function f is continuously differentiable and convex on the set
∏n

i=1 Ci, and the minimization problem with respect to each single variable xi

has a unique solution, then every limit solution of the nonlinear Gauss-Seidel

algorithm minimizes f [152, 153].

A.6 Dual Decomposition

Dual decomposition is a method to decompose the original large optimization

problem into a number of subproblems each solvable in a distributive fashion

[152–154]. As a result of decomposition, the original problem is decomposed

into a two-level structure with a master problem and subproblems. The two

levels will communicate with each other and may require a message passing

procedure which can introduce some overhead in the design.

Consider the following problem which contains coupled constraints:

minimize
x1,...,xn

n∑
i=1

fi(xi)

subject to xi ∈ Ci, ∀i
n∑

i=1

hi(xi) ≤ p.

(A.33)

Note that without the constraint
n∑

i=1

hi(xi) ≤ p the problem was decoupled

and can be solved individually for each single variable xi. Now, we establish

the Lagrangian function and relax the coupling constraints as

minimize
x1,...,xn

n∑
i=1

fi(xi) + λT

(
n∑

i=1

hi(xi)− p

)

subject to xi ∈ Ci, ∀i.
(A.34)
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Now, we can establish subproblems

minimize
xi

fi(xi) + λThi(xi)

subject to xi ∈ Ci
(A.35)

for each i. These subproblems can be solved given the Lagrangian variable

λ. Therefore, these subproblems form the inner-loop stage and an outer-loop

stage updates the Lagrangian variable. The outer-loop problem is also called

the master dual problem and can be defined as

maximize
λ

g(λ) =
n∑

i=1

gi(λ)− λTp

subject to λ ≥ 0
(A.36)

where gi(λ) is the dual function obtained as the minimum value of the problem

(A.35) for a given λ. With this method, the dual problem will be solved and

therefore the solution is only globally optimal for the original problem if strong

duality holds. For differentiable dual functions g(λ) the master problem can be

solved by the gradient method. When it is not differentiable, then sub-gradient

algorithm can be employed. In this case, a sub-gradient of each gi(λ) is known

as

si(λ) = hi(x
⋆
i (λ)) (A.37)

where x⋆
i (λ) is the optimal solution of problem (A.35) with respect to λ.

Consequently, the global sub-gradient is also given by s(λ) =
∑

i si(λ) =
∑

i hi(x
⋆
i (λ))− p.
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