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Abstract 

Quantifying tissue magnetic susceptibility provides a non-invasive way to monitor iron and myelin 

abnormalities associated with several neurodegenerative diseases. Quantitative susceptibility 

mapping (QSM) is a post-processing technique that retrieves the susceptibility distribution from 

the phase of T2*-sensitive magnetic resonance (MR) images, providing localized and 

discriminative contrast of the underlying sources. QSM is typically obtained from a three-

dimensional (3D) multi-echo gradient-echo sequence, though it can also be produced from single-

echo sequences such as echo-planar imaging with some sacrifice on resolution and/or quality of 

the resultant map.  

QSM methodology has improved notably over the last decade addressing several technical 

challenges. However, it is still not commonly included in clinical protocols, mostly due to the 

burden of its lengthy acquisition time. Moreover, even focal acquisitions require extended 3D 

coverage beyond the region of interest, that otherwise might be imaged in a few slices. This 

acquisition burden becomes much heavier when exploring higher spatial resolution. Furthermore, 

QSM multisite reproducibility has been studied mainly under the assumption that the parameters 

of the imaging sequence are fixed and replicable, which does not consider possible sequence 

variations typically found in large-scale multisite studies. Using in-vivo and simulated MR data of 

human brain, this thesis investigates the above-mentioned limitations and introduces new 

approaches to further facilitate QSM integration into clinical applications. To minimize the 

acquisition burden, producing QSM from 3D magnetization-prepared rapid gradient-echo 

(MPRAGE) phase data was proposed and possible applications were explored. In addition, a new 

method was introduced to allow QSM from thin slabs aided by a rapid low-resolution scan. 
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Furthermore, QSM multisite reproducibility was investigated in the presence of sequence 

variations. 

The MPRAGE sequence is widely used in clinical studies to segment gray and white matter 

regions. Only MPRAGE magnitude is utilized for segmentation and its phase is abandoned. In 

Chapter 2, producing QSM from the MPRAGE phase was introduced and investigated, and 

possible applications were explored. Despite the limited contrast at 3T and very-short echo time 

(TE), MPRAGE-QSM was found useful for improving segmentation of iron-rich regions and 

roughly quantifying their susceptibility. Thus, producing MPRAGE-QSM adds value to 

volumetric studies at no additional cost. Also, the quality of MPRAGE-QSM can be improved 

notably if extending TE to 4.4 ms at 3T is tolerable. 

Another important application of MPRAGE-QSM is assessing the load of cerebral microbleeds 

(CMBs) without adding an extra sequence (dedicated to QSM) to the imaging protocol. Being 

mainly hemosiderin deposits, CMBs introduce strong contrast on QSM within a few milliseconds 

of echo time. Utilizing MPRAGE-QSM for quantifying microbleeds was explored in Chapter 3 

and the results showed that it is promising at field strength of 3T and above.  

In Chapter 4, a new method is proposed to accelerate QSM data acquisition by allowing QSM 

from thin slabs. To achieve this, a rapid low-resolution scan with wider coverage is used to roughly 

inform the reconstruction algorithm of the expected susceptibility distribution outside the imaged 

slab. Compared to the standard approach, simulation and in-vivo results showed that applying the 

new method improved QSM measurements from as few as 8 slices with aid from low-resolution 

data of at most 4-times larger voxel dimensions, potentially allowing up to 7-fold reduction in 

acquisition time.  
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Studying QSM reproducibility with non-harmonized sequence parameters is an important step 

toward clinical integration as matching sequence specification in each site is not always possible 

due to hardware and/or software limitations. In Chapter 5, QSM and R2* reproducibility were 

studied using 24 subjects who travelled between three sites and were scanned using 3T scanners 

from two vendors. Each site optimized the sequence parameters independently. Cross-site and 

within-site measurements for QSM and R2* were found to be reproducible and highly correlated. 

Certain post-processing choices for QSM helped in reducing cross-site variability, such as 

excluding less reliable regions, matching spatial resolution and echo-timings, and minimizing 

streaking artifacts.  

To conclude, this thesis proposed new methods to minimize the time burden of including QSM in 

clinical protocols by utilizing phase from a common MPRAGE volumetric acquisition to examine 

iron-rich regions and microbleeds, or by speeding up focal QSM acquisitions. In addition, QSM 

multisite reproducibility was examined when the acquisition sequence is not harmonized, and 

insights were provided on reducing the effects of cross-site variations via post-processing 

techniques.  

  



v 
 

Preface 

All control and patient subjects included in this thesis provided informed consent after the internal 

Institutional Review Board approved the study design. For all the published and unpublished 

chapters in this thesis, Dr. Alan Wilman (supervisor) shared unique ideas, helpful discussion, and 

careful editing of the manuscripts. In all cases, first drafts were written by the author. 

The second chapter of this thesis has been published: Naji N, Sun H, and Wilman AH. On the 

value of QSM from MPRAGE for segmenting and quantifying iron-rich deep gray matter. 

Magnetic Resonance in Medicine. 2020; 84(3):1486–1500. All simulations, reconstructions and 

analyses of this work were performed by the author. The manuscript was proofread by Hongfu 

Sun, who helped strengthen the content. 

Some of the results of the third chapter were presented as an abstract: Naji N, Gee M, Jickling GC, 

Camicioli R, and Wilman AH. Quantifying Cerebral Microbleeds using MPRAGE-based QSM. 

ISMRM 28th Annual Meeting & Exhibition, online, 2020: abstract #1760. All simulations, 

reconstructions and analyses of this work were performed by the author. All co-authors contributed 

to abstract edits. 

Some of the results of the fourth chapter were presented as an abstract: Naji N and Wilman AH. 

Towards fast single-slice QSM: Challenges and possible solutions. ISMRM 31st Annual Meeting 

& Exhibition, London, UK, 2022: abstract #3559. The method was invented by the author, who 

performed all simulations, experiment design and reconstructions.  

The fifth chapter has been published: Naji N, Lauzon ML, Seres P, Stolz E, Frayne R, Lebel C, 

Beaulieu C, Wilman AH. Multisite reproducibility of quantitative susceptibility mapping and 

effective transverse relaxation rate in deep gray matter at 3 T using locally optimized sequences in 

24 traveling heads. NMR in Biomedicine. 2022; 35(11):e4788. All reconstructions and analyses 

were conducted by the author. Michel Louis Lauzon provided technical information for GE 

scanners and insightful discussions to improve the manuscript. Other co-authors contributed to 

improving the manuscript.  

All MRI sequences were standard provided by the manufacturers. MPRAGE phase images were 

saved by Peter Šereš, who has also carried out all MRI acquisitions for the volunteer subjects 

included in chapters 2 and 4. In-vivo patients included in Chapter 3 were from research studies of 



vi 
 

Dr. Richard Camicioli and Dr. Eric Smith. In-vivo data of chapters 2 and 5 were part of the Alberta 

300 study of Dr. Christian Beaulieu. For susceptibility mapping, processing codes used in chapters 

2 and 3 were inherited from past graduate student Hongfu Sun. For chapters 4 and 5, mapping 

codes included functions from publicly available toolboxes: MEDI toolbox (6 November 2017 

release) and STI Suite v3. All mapping reconstructions were performed by the author.  

  



vii 
 

Acknowledgements 

 

 

 

My PhD journey could not have been accomplished without the help and support of many people, 

and I would like to thank them all for their invaluable efforts and time. First, words cannot express 

my gratitude to my supervisor, Dr. Alan Wilman, who was always supportive and understanding. 

His guidance and insightful feedback carried me through all the phases of this research work. I 

feel fortunate to have him as my supervisor. 

 

I would like to thank my committee members, Dr. Nicola De Zanche and Dr. Richard Thompson, 

for their valuable feedback and suggestions. I am thankful also to my examiners Dr. Ferdinand 

Schweser, Dr. Christian Beaulieu, and the exam chair Dr. Nikolai Malykhin, who shared scientific 

ideas about my research work and helped me broadening my horizons.  

 

Special thanks are due to Peter Šereš who was an unfailing source of support and technical 

knowledge throughout my studies and MRI experiments. I would also like to thank Dr. Jeff Snyder, 

past and current lab members for their insightful feedback and help with MRI scans. To all my 

friends back home and abroad, I wanted to take a moment to thank you for your continued support 

and encouragement. I am very lucky to have such caring people surrounding me. 

 

Finally, my deepest gratitude and thanks are due to my family: my parents, brothers, sisters and 

wife, for providing me infinite and continuous support, love and care throughout this journey. I 

love you so much! 

  



viii 
 

Table of Contents 

Chapter 1: Introduction ............................................................................................................................. 1 

1.1 MAGNETIC RESONANCE IMAGING (MRI) ........................................................................... 1 

1.1.1 Signal Formation and Acquisition ........................................................................................ 1 

1.1.2 Factors Impacting MR Signal ............................................................................................... 5 

1.2 R2* RELAXATION MAPPING ................................................................................................... 9 

1.3 QUANTITATIVE SUSCEPTIBILITY MAPPING (QSM) ....................................................... 11 

1.3.1 Coil Combination ................................................................................................................ 12 

1.3.2 Mask Generation ................................................................................................................. 13 

1.3.3 Phase Unwrapping .............................................................................................................. 15 

1.3.4 Total Field Estimation ......................................................................................................... 16 

1.3.5 Tissue Field Estimation ....................................................................................................... 18 

1.3.6 Dipole Inversion .................................................................................................................. 22 

1.3.7 Available QSM Toolboxes .................................................................................................. 25 

1.3.8 Technical Challenges .......................................................................................................... 26 

1.3.9 Clinical Applications........................................................................................................... 27 

1.4 THESIS OVERVIEW ................................................................................................................. 28 

Chapter 2: On the value of QSM from MPRAGE for segmenting and quantifying iron-rich deep 

gray matter ................................................................................................................................................ 30 

2.1 Abstract: ...................................................................................................................................... 30 

2.2 INTRODUCTION ...................................................................................................................... 31 

2.3 METHODS ................................................................................................................................. 32 

2.3.1 Simulations of QSM From MPRAGE ................................................................................ 32 

2.3.2 In-vivo Human Brain Experiments ..................................................................................... 34 

2.3.3 QSM Processing .................................................................................................................. 34 

2.3.4 Susceptibility Quantification ............................................................................................... 35 

2.3.5 Segmentation Processing .................................................................................................... 35 

2.3.6 Segmentation Performance Analysis .................................................................................. 36 

2.4 RESULTS ................................................................................................................................... 37 

2.4.1 Inversion Pulse and SNR Effects ........................................................................................ 37 

2.4.2 In-vivo QSMMPRAGE Quality and DGM Contrast ................................................................ 41 

2.4.3 Susceptibility Quantification ............................................................................................... 43 

2.4.4 Segmentation Performance ................................................................................................. 45 



ix 
 

2.5 DISCUSSION ............................................................................................................................. 46 

2.6 CONCLUSION ........................................................................................................................... 51 

2.7 Acknowledgements ..................................................................................................................... 52 

2.8 Appendix ..................................................................................................................................... 52 

2.8.1 Background Field Removal ................................................................................................ 52 

2.8.2 Susceptibility Reconstruction ............................................................................................. 52 

2.8.3 Artifacts in Simulation versus In-vivo ................................................................................ 52 

Chapter 3: Quantifying cerebral microbleeds using MPRAGE-QSM ................................................ 55 

3.1 Abstract: ...................................................................................................................................... 55 

3.2 INTRODUCTION ...................................................................................................................... 56 

3.3 METHODS ................................................................................................................................. 57 

3.3.1 In-vivo Study ...................................................................................................................... 58 

3.3.2 Numerical Simulation Study ............................................................................................... 58 

3.3.3 QSM Processing .................................................................................................................. 61 

3.3.4 Registration and Measurement ............................................................................................ 61 

3.4 RESULTS ................................................................................................................................... 63 

3.4.1 In-vivo Measurements ......................................................................................................... 63 

3.4.2 Numerical Simulations ........................................................................................................ 65 

3.5 DISCUSSION ............................................................................................................................. 75 

3.6 CONCLUSION ........................................................................................................................... 79 

3.7 Acknowledgements ..................................................................................................................... 79 

Chapter 4: Quantitative susceptibility mapping from thin slabs: Challenges and possible solutions

 .................................................................................................................................................................... 80 

4.1 Abstract: ...................................................................................................................................... 80 

4.2 INTRODUCTION ...................................................................................................................... 81 

4.3 THEORY .................................................................................................................................... 82 

4.4 METHODS ................................................................................................................................. 85 

4.4.1 Simulation ........................................................................................................................... 85 

4.4.2 In-vivo Imaging Protocol .................................................................................................... 87 

4.4.3 QSM Reconstruction ........................................................................................................... 88 

4.4.4 Segmentation and Measurement ......................................................................................... 89 

4.5 RESULTS ................................................................................................................................... 89 

4.5.1 Simulation Results .............................................................................................................. 89 

4.5.2 In-vivo Experiments ............................................................................................................ 96 



x 
 

4.6 DISCUSSION ............................................................................................................................. 99 

4.7 CONCLUSION ......................................................................................................................... 103 

4.8 Acknowledgements ................................................................................................................... 103 

Chapter 5: Multisite reproducibility of quantitative susceptibility mapping and effective transverse 

relaxation rate in deep gray matter at 3 T using locally optimized sequences in 24 traveling heads

 .................................................................................................................................................................. 104 

5.1 Abstract: .................................................................................................................................... 104 

5.2 INTRODUCTION .................................................................................................................... 105 

5.3 METHODS ............................................................................................................................... 106 

5.3.1 Subjects and Imaging Setup .............................................................................................. 106 

5.3.2 QSM and R2* Processing .................................................................................................. 107 

5.3.3 Post-processing Options to Minimize Sequence Variations ............................................. 107 

5.3.4 Registration and Measurements ........................................................................................ 111 

5.3.5 Statistical Analysis ............................................................................................................ 111 

5.4 RESULTS ................................................................................................................................. 112 

5.4.1 Post-processing Options .................................................................................................... 113 

5.4.2 Reproducibility Analysis ................................................................................................... 118 

5.5 DISCUSSION ........................................................................................................................... 119 

5.6 Acknowledgements ................................................................................................................... 129 

Chapter 6: Conclusions .......................................................................................................................... 130 

6.1 LIMITATIONS ......................................................................................................................... 131 

6.2 FUTURE DIRECTIONS .......................................................................................................... 133 

Bibliography ............................................................................................................................................ 135 

  



xi 
 

List of Tables 

Table 1.1: Some phase unwrapping algorithms and their features………….…………………...15 

Table 1.2: Commonly used background removal methods and their features……….…….……..21 

Table 2.1: Proton density, T1, T2*, and susceptibility values used in simulations…………….….33 

Table 3.1: Total volume susceptibility [ppm.mm3] of simulated microbleeds……….………….59 

Table 3.2: Root mean square error of estimated microbleed radius using volume and area 

measurements expressed as a percentage of actual radius (%)…………………………………....70  

Table 3.3: Slope and correlation coefficient of estimated mean susceptibility and total 

susceptibility versus measurements on high resolution ground truth at different microbleed 

sizes………………………………………………………………………………………………73  

Table 3.4: Slope and correlation coefficient of estimated microbleed radius and mean 

susceptibility when it is located in cortical versus subcortical regions……………………………74 

Table 4.1: ROI measurements (mean ± SD in ppb) from 8-slice slab of three subjects…………..96 

Table 5.1: MR systems and imaging parameters of all sites………………………………….....109 

Table 5.2: Summary of different processing pipelines tested to minimize sequence-induced 

variations…………………………………………………………………………………….….110 

  



xii 
 

List of Figures 

Figure 1.1: Pulse sequence diagrams are shown for 3D multi-echo gradient echo (MEGE), and 3D 

magnetization-prepared rapid gradient-echo (MPRAGE) …………………………….……..……4 

Figure 1.2: Spectrum of magnetic susceptibility values relevant to biological tissues…….………7 

Figure 1.3: Orientation effects on R2*, tissue phase shift and susceptibility map……………….....9 

Figure 1.4: A demonstration of motion induced artifacts using numerical head phantom….…….10 

Figure 1.5: A flowchart of the standard QSM processing pipeline …………………………….. 13  

Figure 1.6: An illustration of the mask effect on obtained tissue phase shift and susceptibility 

map……………………………………………………………………………………………….14 

Figure 2.1: Sample simulated MPRAGE and GRE data…………………………………………38 

Figure 2.2: Simulated MPRAGE (A) magnitude and (B) phase images illustrating a problematic 

case where different tissues have different phase polarity………………..……………………...39 

Figure 2.3: Simulation results of MPRAGE-based QSM vs. phase contrast-to-noise ratio 

(CNR)…………………………………………………………………………………………….40 

Figure 2.4: A demonstration of the level of underestimation in MPRAGE-QSM measurements 

versus SNR……………………………………………………………………………………….41 

Figure 2.5: Contrast of deep gray matter nuclei on QSMGRE, QSMMPRAGE, and T1w images…….42 

Figure 2.6: Scatter plots comparing mean susceptibility values measured on QSMGRE and 

QSMMPRAGE…………………………………………………………………………………...….44 

Figure 2.7: Axial views of T1w, hybrid, and quantitative susceptibility mapping (QSM) contrasts 

for two subjects……………………………………………………………………………….….45 

Figure 2.8: Comparison between FSL segmentation outputs obtained using three different input 

contrasts………………………………………………………………………………………….48 

Figure 2.9: Globus pallidus segmentation performance measures obtained using the 40-subject 

dataset……………………………………………………………………………………………49 



xiii 
 

Figure 2.10: Reference-free performance analysis of globus pallidus segmentation based on 

volume measurement. ……………………………………………………………………...…….50 

Figure 2.11: Illustration of regularization parameter (λ) effect on reconstructed MPRAGE-based 

QSM……………………………………………………………………………………………...53 

Figure 2.12: Comparison between MPRAGE-based QSM artifacts found in-vivo and 

simulation………………………………………………………………………………………...54 

Figure 3.1: An illustration of simulated microbleeds of different radii and susceptibility levels…62 

Figure 3.2: A demonstration of microbleed visibility on common MRI modalities (T1w, T2w, 

FLAIR, and T2
*w) versus QSM from MEGE and MPRAGE …………….…………….………..64 

Figure 3.3: Sagittal views from three subjects comparing microbleed appearance in MPRAGE-

QSM versus MEGE-QSM………………………………….……………………………….……65 

Figure 3.4: A demonstration of improved MPRAGE-QSM contrast at 3T when the echo time is 

prolonged to 4.44 ms ……………………………………………………………………………..66 

Figure 3.5: Quantitative comparison of MPRAGE-based and MEGE-based microbleed size, mean 

and total susceptibility estimates obtained from in-vivo data………………………………….…67 

Figure 3.6: An illustration of reconstructed susceptibility maps from simulated MPRAGE phase 

data at different field strengths and echo times………………………………………………..….68 

Figure 3.7: Analytically obtained minimum required susceptibility ∆χ for successful detection 

versus CMB radius (in voxels)………………………………………………………………..….69  

Figure 3.8: Correlation plots of microbleed actual versus estimated radii based on volume 

measurements at different simulated susceptibility levels and field strengths………………..….71 

Figure 3.9: Comparison of estimated microbleed mean susceptibility versus values measured on 

the true susceptibility map…………………………………………………………………..……72 

Figure 3.10: Linear regression of microbleed radius, and mean susceptibility estimates in 

simulations with isotropic versus anisotropic voxels………………………………………….….74  



xiv 
 

Figure 4.1: Flowcharts of A) the standard QSM processing pipeline and B) the proposed 

pipeline……………………………………………………………………………………..….…83  

Figure 4.2: Demonstration of dipole inversion ambiguity when slab thickness is too small…....84  

Figure 4.3: An illustration of the brain susceptibility distribution used in simulations…………..87  

Figure 4.4: Comparison of frequency content in tissue field versus background 

field………………………………………………………………………………..……………..90  

Figure 4.5: Demonstration of resolution effect on background removal using subtraction…..….91 

Figure 4.6: QSM simulation results showing one slice from A) the reference full brain coverage, 

and B) the reconstructed from a 2.64-mm slab (8 slices) using standard method……..………....92  

Figure 4.7: Simulation results of 2D susceptibility measurements using different processing 

approaches at different slab widths (i.e., number of slices)……………………..………………...93  

Figure 4.8: Simulation results of susceptibility 2D measurements using the proposed hybrid 

method at different down-sampling factors for the low-res data……………….………...………94  

Figure 4.9: Visualization of the obtained QSM results from simulation at different slab 

widths……………………………………………………………………………………….....…95 

Figure 4.10: In-vivo measurements of QSM obtained using the standard and the proposed methods 

at different slab widths…………………………………………..…………………………....….97 

Figure 4.11: In-vivo QSM images of one subject shown in A) are from the wide-slab coverage 

high-resolution reference and the supporting low-resolution data …………………..……….…..98 

Figure 5.1: Scan-rescan demonstration in one subject of first echo MEGE magnitude, R2*, and 

QSM…………………………………………………………………………………………….113 

Figure 5.2: Voxel-wise maps of average value, ICC, and SDw measures demonstrating post-

processing variability for all the processing pipelines in Table 5.2………………..………...….115 

Figure 5.3: Boxplots of (A) Group average value, (B) ICC, and (C) SDw measures for all ROI 

measurements in QSM and R2*…………………………………………………………………116 



xv 
 

Figure 5.4: A demonstration of scan-rescan differences in two subjects for different susceptibility 

inversion algorithms………………………………………………………………………….…117 

Figure 5.5: Scan-rescan quantitative comparisons using correlation and Bland–Altman plots…121 

Figure 5.6: Demonstration of the effect of three background removal methods on the final 

susceptibility map in one example subject, and voxel-wise group metric maps………………....126 

Figure 5.7: An illustration of the magnitude contrast variation effect on the weighting factors used 

in MEDI susceptibility inversion algorithm………………………………………………….…127 

Figure 5.8: The effect of the magnitude contrast on QSM inversion: Voxel-wise comparisons of 

TVDI and MEDI produced susceptibility maps……………………………………………...….128 

 

 



1 
 

Chapter 1: Introduction 
 

1.1 MAGNETIC RESONANCE IMAGING (MRI) 

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that is capable of creating 

high-resolution three-dimensional (3D) images of human soft tissue with great contrast, providing 

anatomical and/or functional information. A powerful feature of MRI is that its acquisition 

parameters can be tuned to emphasize different tissue properties and add complementary 

information that are useful for diagnosis. Furthermore, these qualitative images can be transformed 

into quantitative maps and used to facilitate tracing and recognizing age- and/or pathology-related 

changes.  

MRI emerged from a physical phenomenon known as nuclear magnetic resonance (NMR), in 

which atoms nuclei excited under an applied external field respond by emitting unique signals 

reflecting their magnetic and chemical environments (1). NMR was first utilized to produce unique 

spectra to identify and explore structures of complex molecules (2), and then applications evolved 

into 2D and 3D spatial imaging through a series of technical advances that received multiple Nobel 

prizes (3). Although MRI can be tuned to different atoms, it mainly relies on signals from hydrogen 

(1H) atoms, exploiting the abundance of water molecules in the human body.  

MRI applications grew rapidly and so the related literature (4–17), and its basics have been 

explained in several textbooks (2,18–20). The aim of this section is to introduce the basic concepts 

touched in this thesis, more specifically: signal formation and acquisition, and the factors affecting 

MR signal.  

1.1.1 Signal Formation and Acquisition 

Creating an MR signal that can be received and resolved into an image in the spatial domain 

undergoes through three preparation steps that will be described briefly in this subsection. But 

first, the source of this signal needs to be explained. Zooming into the nuclear level, both protons 

and neutrons have an intrinsic magnetic moment known as "spin", but each pair of similar type 

have opposite magnetic moment in the nucleus. Therefore, only if at least one of these subatomic 

particles has an odd number, the nucleus will have a net magnetic moment (𝑚 in A∙m2) with a 

random orientation, and this net moment can be modulated to produce a measurable signal (20,21). 



2 
 

In human imaging applications, this signal comes mainly from the hydrogen nuclei in water 

molecules, as each nucleus has only one proton and thus nonzero magnetic moment. 

1.1.1.1 Polarization 

The first step required in producing a meaningful signal that can be detected is exposing the object 

of interest to an external static field (B0 in T), which will exert a torque upon the spins trying to 

align them along its direction. The result of this interaction and conservation of angular momentum 

causes spin precession around B0 direction (conventionally z-axis). The precession frequency (𝑓0 

in Hz, also called Larmor frequency) is proportionally related to the static field strength with a 

nucleus-specific constant called gyromagnetic ratio (𝛾 in Hz/T): 

𝑓0 =  𝛾𝐵0                                                                (1.1) 

For hydrogen, 𝛾 is 42.6 MHz/T. The effect of applying the external field is known as magnetization 

resulting in a non-zero net magnetic moment over a defined spatial coverage (i.e., voxel at 𝑟 

location) along B0 direction referred to as bulk magnetization (𝑀0 in A/m) and estimated as (18): 

𝑀0(𝑟) =
𝛾2 𝒽2 𝐵0 

4 𝐾 𝑇
𝑁 (𝑟)                                                       (1.2) 

where 𝒽 is Planck’s constant (in J∙s), 𝑁 is the spin density (in m-3), 𝐾 is Boltzmann’s constant (in 

J/K), and 𝑇 is the absolute temperature (in K). Thus, 𝑀0 magnitude becomes larger at higher field 

strength, higher spin density, or lower temperature. In human imaging applications, increasing 𝑀0 

is feasible only through using higher 𝐵0, and fortunately spin density is sufficient in most tissues 

due to the abundance of water molecules. 

1.1.1.2 Excitation 

Spin alignment is not sufficient to produce detectable signal; energy is needed to perturb 𝑀0 from 

its equilibrium state along z-axis. Thus, radio frequency (RF) energy at the Larmor frequency is 

applied via coils to excite the spins and rotate 𝑀0 toward the transverse plane. This RF signal 

applied for a brief duration is known as RF pulse and it creates a magnetic field that is called B1. 

The RF pulse shape and duration can be tailored to rotate 𝑀0 by a specified angle (called tip or 

flip angle) (18). After the pulse terminates, magnetization starts the relaxation process toward 

equilibrium and an RF signal is produced that is detectable using an RF coil. However, the RF coil 
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detects signals from all the excited region and a mechanism to encode the spatial locations of the 

signals is needed to separate them after receiving. 

1.1.1.3 Spatial Encoding 

Spatial encoding is achieved using three orthogonal gradient fields (�⃗� = (𝐺𝑥, 𝐺𝑦, , 𝐺𝑧) in T/m) that 

make the frequency of the signals location-dependent: 𝑓(𝑟) = 𝑓0 + 𝛾 �⃗� ∙ 𝑟. The gradient fields are 

applied as pulses whose shape and duration modulate the frequencies of the emitted MR signals 

(2). For simplicity, here we call encoding along z-axis, y-axis and x-axis as slice encoding, 

frequency encoding and phase encoding, respectively. The result of applying these gradient fields 

is that the received signal is spread in the spatial frequency domain (called k-space) and thus can 

be inverted into the spatial domain using Fourier transformation.  

Applied spatial encoding gradients and RF pulses are summarized in a timing diagram known as 

pulse sequence, which describes the shape, width and timing of the applied pulses and the window 

in which the MR signal is collected. Figure 1.1 illustrates two common pulse sequences known as 

multi-echo gradient-echo (MEGE) and magnetization-prepared rapid gradient-echo (MPRAGE), 

which are the main sequences used in this thesis. In MPRAGE, a series of single-echo gradient-

echo acquisitions are collected after an inversion RF pulse to increase the contrast between gray 

and white matter regions.  

1.1.1.4 Signal Detection 

The precession of transverse magnetization generates a changing flux, which induces 

electromotive force in the receiving coils. This received signal can be expressed as (18): 

𝑆(�⃗⃗�) =  𝐶 ∫ 𝑀 (𝑟) 𝑒−𝑖2𝜋 �⃗⃗�∙𝑟 𝑑𝑟                                             (1.3) 

where 𝑆(�⃗⃗�) is the received complex-valued signal at location �⃗⃗� in k-space, 𝐶 is a constant, and 

𝑀(𝑟) is the complex-valued MR signal at location 𝑟 in image space. The magnitude and phase of 

the MR signal are conventionally viewed as separate images, and each of them is affected by 

multiple factors, and thus can be used to probe different tissue properties. Some of these 

contributing factors are discussed in the following subsection. 
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Figure 1.1: Pulse sequence diagrams are shown for A) 3D multi-echo gradient echo (MEGE), and 

B) 3D magnetization-prepared rapid gradient-echo (MPRAGE). In the shown MEGE, four echoes 

are collected using monopolar readouts, and their magnitude signals are weighted by T2* 

relaxation. 𝛼: flip angle, TR: repetition time, TE: echo time, TI: inversion time, TD: delay time. 
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1.1.2 Factors Impacting MR Signal 

Multiple factors can influence the content of the collected MR signal: some of them are intrinsic 

properties of the tissues, while others are related to the hardware used or the positioning of the 

imaged object. Here we review some of the main contributors to the MR signal.  

1.1.2.1 Relaxation 

Relaxation refers to the process in which a produced MR signal is attenuated exponentially with 

time until vanishing. There are two simultaneous relaxation processes that affect MR signal: 1) a 

longitudinal relaxation that the magnetization undergoes to recover to its equilibrium state (M0), 

which is characterized by a time constant known as T1 (in s); and 2) a transverse relaxation that 

happens as the transverse component decays as the magnetization loses its coherence, and it is 

characterized by another time constant called T2. Relaxation rate is the inverse of the relaxation 

time constant (i.e., 𝑅2 = 1/𝑇2 in s-1) and both are used interchangeably to describe and quantify the 

decay in the collected MR signal.   

Both relaxation processes result from spins interacting with each other intra- and inter-molecularly, 

as each spin acts as a magnetic dipole with its own magnetic field, which affects other spins in its 

vicinity. The net effect on the surroundings will vary from spin to spin depending on several 

factors, including the distance and the angle between them, and their relative rates of mobility 

(18,22). Thus, the relaxation processes are dependent on the spin environment and give insights 

about the tissue structure. In dense environments (like solids) where spin motion is restricted and 

slow, individual spin fields fluctuate less frequently and affect the net static field seen by nearby 

spins, causing them to precess at different frequencies, lose their coherence, and thus accelerate 

their transverse relaxation (shorter T2). When spins are more free to move (like in fluids), their 

individual fields fluctuate more rapidly and the change in the net seen static field is reduced and 

thus longer T2 is needed for transverse relaxation. Conversely, the longitudinal relaxation (T1) is 

accelerated by the individual spin fields that are perpendicular to the static field and fluctuating 

near the Larmor frequency, allowing the release of the absorbed RF energy to the lattice of nearby 

molecules.   

Relaxation processes are sensitive also to other factors such as the strength of the static field, the 

presence of inhomogeneities in the static field, and/or the presence of atoms or molecules with 
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unpaired electrons, which change the net field experienced by spins. These factors are discussed 

in more detail in the following two subsections.     

1.1.2.2 Static Field Strength and Homogeneity 

Because Larmor frequency is proportional to the strength of the applied static field (equation 

(1.1)), a change in the field strength affects the longitudinal relaxation. Tissue spectral density 

decreases with frequency, thus at higher B0 fewer perpendicular spin fields would fluctuate at the 

corresponding Larmor frequency, causing the T1 to increase (23). By contrast, the transverse 

relaxation is less affected by the change in field strength, as T2 is influenced the most by slow, 

near-zero-frequency fluctuating dipole fields.   

Inhomogeneities in the applied static field are expected due to quality limitations in the underlying 

magnet hardware, as well as due to local perturbation of the field by interfaces between biological 

tissues (i.e., differences in magnetic susceptibility and/or chemical composition discussed later). 

These imperfections induce additional dephasing between spins and accelerate the transverse 

relaxation, increasing the effective transverse relaxation rate (𝑅2
∗):  

𝑅2
∗ = 𝑅2 + 𝑅2

′                                                          (1.4) 

where 𝑅2
′  characterizes the additional relaxation due to the static field inhomogeneities (19). 

However, since these inhomogeneities do not fluctuate with time, their effect can be reversed using 

refocusing (180°) RF pulses as in spin-echo based sequences.  

In addition to the effects on relaxations, increasing B0 strength improves the signal-to-noise ratio 

(SNR) of the received MR signal (as the magnitude of the net magnetization increases, equation 

(1.2)) and enables exploring higher spatial resolution. Inhomogeneities in the applied field can also 

affect the encoding of the signal and introduce geometrical distortions in the obtained images.  

1.1.2.3 Magnetic Susceptibility: 

Different materials become magnetized differently under a static magnetic field depending on their 

atomic structure. This reaction of materials to the applied external field is characterized and 

quantified by a property known as magnetic susceptibility (𝜒). Several mechanisms are involved 

in the response of a material to the applied B0 field: some of them result in a negative field that 

opposes B0 (called diamagnetism), such as the responses from affected orbital motion of electrons, 

and affected motion of conduction electrons, while others result in a positive field that adds to B0 



7 
 

(called paramagnetism), mainly from unpaired electrons and conduction electrons (24). 

Mathematically, magnetic susceptibility in anisotropic medium can be expressed as: 

𝜒𝑖𝑗 = 𝜇𝑖𝑗
𝑀𝑖

𝐵𝑗
=  𝜇0(1 + 𝜒𝑖𝑗)

𝑀𝑖

𝐵𝑗
                                            (1.5) 

where 𝜇𝑖𝑗 and 𝜇0 is the permeability of a given material and vacuum respectively, and 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧. 

Given that the susceptibility range in human tissues is within 10-5 (i.e., |𝜒| ≪ 1, see Figure 1.2), 

equation (1.5) can be simplified to:  

𝜒𝑖𝑗 = 𝜇0
𝑀𝑖

𝐵𝑗
                                                           (1.6) 

Under isotropic assumption, the induced magnetization due to susceptibility aligns with the static 

field, and equation (1.6) simplifies to: 𝑀 = 𝜒𝐵0 𝜇0⁄  . Susceptibility can change slightly with 

temperature and/or frequency, however these changes are negligible in human MR imaging 

applications (24).  

 

 

 

Figure 1.2: Spectrum of magnetic susceptibility values [in ppm] relevant to biological tissues. The 

upper scale shows absolute values, while the bottom scale shows relative values referenced to 

water. Reported values are from (24,25). NTP: Normal temperature and pressure. 
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Water at body temperature (37º C) has a diamagnetic susceptibility of -9.05 parts per million (ppm) 

and most tissues have 𝜒 close to water due to the high water content. Lipids and bones are also 

diamagnetic but slightly more than water (Figure 1.2). Transitional metals such as copper, 

manganese, cobalt and iron are paramagnetic, but need to be highly concentrated to shift tissue 

susceptibility from water dominance. Out of these, iron is the most abundant and can be found 

concentrated in specific tissues that allows its effect on susceptibility to be measurable. Iron can 

be found mainly in blood as hemoglobin, and in basal ganglia, liver and spleen as ferritin and 

hemosiderin (25). Iron can shift 𝜒 by 1.15 ppm in deoxygenated blood, and by several ppm in 

overloaded tissues. This shift in susceptibility is the main source of contrast in functional MRI (16) 

and susceptibility weighted imaging (SWI) (13). Myelin change can also cause a measurable shift 

in susceptibility, as the relative size of the water compartment within myelin wraps to that in 

interstitial space changes. The levels of iron and myelin change through lifespan (26–28) and with 

disease progression (29–33), and MRI techniques provide an opportunity to measure these changes 

noninvasively. 

1.1.2.4 Orientation 

Molecular movement within some structures is restricted to specific directions such as in white 

matter fiber bundles (i.e., axons). This anisotropy affects the generated MR signal and causes it to 

vary depending on the angle between the fibers and the direction of B0 (Figure 1.3). In white 

matter, both R2* relaxation and susceptibility are sensitive to the head orientation with respect to 

B0 direction (14,34,35).  

1.1.2.5 Motion 

Subject movement during MR signal acquisition translates into inaccurate measurement of signal 

within voxels, as spatial encoding assumes a stationary location for each voxel and when a 

movement occurs the registered signal to a specific voxel might be collected from multiple 

locations (Figure 1.4). This unwanted motion includes eye movement and respiration, and causes 

artifacts in the obtained MR images. Respiration can also affect the background field due to the 

changing air volume in the lungs.  

 

 



9 
 

 

Figure 1.3: Orientation effects: A difference in head tilt of 11º with respect to B0 direction between 

scans introduces noticeable variations in R2*, tissue phase shift, and susceptibility maps. 

 

Advanced techniques can be employed to trace and minimize motion effects, including the use of 

a navigation echo that tracks the motion in the phase of an additional echo dedicated for tracking 

and without the need for external hardware (36), or a camera that captures the movement of a 

marker fixed on the subject (37).  

1.2 R2* RELAXATION MAPPING 

R2* relaxation is one tool to probe iron accumulation in biological tissue. Relying on the iron effect 

on nearby water molecules, iron concentration can be estimated indirectly by quantifying the 

change in R2* relaxation. However, R2* contains a relaxation component from other mechanisms 

(i.e., R2, see equation (1.4)) and thus a change in R2* might not be merely due to iron. Thus, 𝑅2
′  is 

typically sought for better specificity but at the expense of a longer custom data acquisition (38). 
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In addition, R2* fails to differentiate between paramagnetic and diamagnetic source-related 

changes. Also, a change caused by iron on the R2* map can extend beyond its location, causing 

what is known as blooming artifacts. Despite limitations, R2* mapping has demonstrated strong 

correlation with iron in a postmortem validation (39) and high reproducibility (40–42), and has 

been used in several aging (26,28,43–47), longitudinal (48,49) and pathological studies (32,33,49–

51). 

 

 

Figure 1.4: Motion artifacts: A simulation of motion induced artifacts using numerical head 

phantom. The head is tilted forward and then backward by ∆𝜃𝑧,𝑚𝑎𝑥 within each full respiration 

cycle of 3 seconds. The matrix size is 216×216×88 and TR is 40 ms. Without acceleration (i.e., 

parallel acquisition technique [PAT] = 1), the total acquisition time is 12.6 mins.  
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R2* relaxation is modelled as a simple mono-exponential (single pool) decay of the MR 

magnitude:  

𝐴(𝑇𝐸) = 𝐴(0) exp(−𝑇𝐸 ∙ 𝑅2
∗)                                              (1.7) 

With multiple magnitude values acquired at different TE points using MEGE pulse sequence, 

equation (1.7) can be fitted to retrieve the 𝑅2
∗ value at each voxel. This model fits sufficiently well 

most regions in the brain but might deviate in white matter regions due to multi-component 

relaxation that a single pool model cannot fit.  

In the presence of macroscopic field inhomogeneities, magnitude signal might experience 

additional decay and thus has to be pre-corrected for accurate estimation of 𝑅2
∗. The additional 

decay can be expressed as a sinc term for each direction (52): 

𝐴(𝑇𝐸) = 𝐴(0) exp(−𝑇𝐸 ∙ 𝑅2
∗)  ∙ 𝑠𝑖𝑛𝑐 (

∆𝜔0𝑥

2
𝑇𝐸) ∙ 𝑠𝑖𝑛𝑐 (

∆𝜔0𝑦

2
𝑇𝐸) ∙ 𝑠𝑖𝑛𝑐 (

∆𝜔0𝑧

2
𝑇𝐸)        (1.8) 

where ∆𝜔0 is computed using the field map (obtained from the phase of the first two echoes) 

gradient along each direction. These correction terms are typically applied to the magnitude images 

prior to fitting. 

1.3 QUANTITATIVE SUSCEPTIBILITY MAPPING (QSM) 

The effect of magnetic susceptibility is more pronounced on the phase of MR signal than on the 

magnitude part. This improved contrast was exploited in susceptibility weighted imaging (SWI) 

to enhance veins and iron-related contrast. In SWI, the phase is filtered and mapped into a mask 

with values ranging between 0 and 1 and then multiplied by the magnitude counterpart (13). 

However, MR phase captures the dipole effect of the underlying susceptibility sources and thus 

provides non-localized orientation-dependent information. Quantitative susceptibility mapping 

(QSM) aims to recover the underlying susceptibility distribution by solving the inverse relation 

between susceptibility-induced phase shift and susceptibility sources (53–55). Theoretically, QSM 

requires only the phase information, but practically magnitude information is typically used to 

define the volume of interest (VOI), estimate regions of low SNR, and as prior knowledge of edge 

information. QSM is typically obtained from a T2*-weighted multi-echo sequence such as MEGE, 

and can be also obtained from single echo sequences such as SWI and single-shot echo-planar 

imaging (EPI) (56). 
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Compared to R2*, QSM is able to visualize local susceptibility sources and specify which of these 

are paramagnetic or diamagnetic. The forward model that relates the phase shift (∅) to the 

underlying susceptibility (𝜒) can be expressed as (57,58): 

∅(𝑟) = 2𝜋 𝛾 𝐵0 𝑇𝐸 (𝑑(𝑟) ∗  𝜒(𝑟))                                                     (1.9) 

where “∗” refers to the convolution process between the susceptibility source and a unit magnetic 

dipole response (𝑑) expressed as (59): 

𝑑(𝑟) = 𝐹𝑇−1 {
1

3
−

𝑘𝑝
2

�⃗⃗�2
} =   

3 cos2 𝜃−1

4𝜋 ∙|𝑟|3                                               (1.10) 

where 𝐹𝑇 refers to Fourier transform, �⃗⃗� is the coordinate vector in the k-space, 𝑘𝑝 is the projection 

of �⃗⃗� into 𝐵0
⃗⃗⃗⃗⃗, and 𝜃 is the angle with respect to 𝐵0

⃗⃗⃗⃗⃗. The convolution in (1.9) is the reason behind 

the scattered effect on the phase and it highlights the 3D nature of the relation between the 

susceptibility and the resultant phase shift. In other words, solving the inverse relation requires 

extended phase information beyond the region of interest (ROI). Therefore, converting phase shift 

images into susceptibility maps is not a straightforward process and involves more processing 

steps, which are discussed in detail in the following subsections. Figure 1.5 illustrates the main 

processing steps involved in performing QSM.  

1.3.1 Coil Combination  

New MRI systems utilize multi-channel receive coils to maximize coverage and SNR. Images 

from individual coils are then typically combined into a single image of higher SNR. For the 

magnitude part, a standard “root sum of squares (RSS)” provides sufficient quality. However for 

the phase part, care must be taken to avoid unresolvable phase wraps called open‐ended fringelines. 

The choice would depend on the availability of a reference scan or multi-echo data (60). In this 

thesis, adaptive combination (61) was used for Siemens scanner data and sensitivity-based 

combination (Array coil Spatial Sensitivity Encoding Technique [ASSET]) for GE scanners data.  
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Figure 1.5: A flowchart of the standard QSM processing pipeline from the data of individual coils. 

Arrows with dashed lines represent optional data that might be used to improve the mask creation 

process by excluding less reliable voxels.  

 

1.3.2 Mask Generation 

Since QSM is a 3D inverse convolution problem, mask generation plays a crucial role in defining 

the boundaries between internal and external susceptibility sources, defining the phase shift voxels 

involved in the convolution, and removing less reliable voxels of low SNR. Therefore, a small 

error or change in the mask definition would propagate to the final susceptibility map and affect 

much bigger volume (Figure 1.6). A mask is typically generated from the magnitude of the first 

echo in MEGE data, and then refined in an additional step to exclude less reliable regions based 

on magnitude and/or phase information of subsequent echoes (62,63). Alternatively, the magnitude 

of a later echo can be used to form the mask and remove less reliable regions simultaneously. This 

becomes useful also if the data contains multiple protocols of different flip angles and TRs, which 

results in varying and inconsistent magnitude contrast at TE1. Also, a separate mask for each echo 

can be generated, based on magnitude and/or phase information. 
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For brain imaging applications, the mask can be automatically generated using toolboxes such as 

brain extraction tool (BET) of the FSL package (64), or formed by combining white and gray 

matter segmentations obtained using segmentation toolboxes such as the statistical parametric 

mapping (SPM) package (65). Outside the brain, masks are usually formed via thresholding and a 

series of binary morphological operations that vary depending on the ROI. Overall, automated 

mask generation works reliably in healthy subjects, but might require tuning and/or manual 

intervention in the presence of abnormal shape or contrast due to pathological situation (e.g., 

hemorrhage). 

 

Figure 1.6: An illustration of the mask effect on obtained tissue phase shift and susceptibility map. 

Eroding the mask by one voxel would further attenuate the tissue phase near the volume edges but 

cause no observable difference further away from the edges. However, the effect on the final 

susceptibility map is more global and distributed over all the volume, and is not confined near the 

edges.  
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1.3.3 Phase Unwrapping 

When phase information is extracted from the complex MR images, the values are confined in the 

range [-π, +π] creating phase wraps that should be resolved prior to any further processing. To start 

the unwrapping process, one or more reference points (called seed points) are required, which can 

be chosen manually or automatically depending on the used algorithm. Several phase unwrapping 

algorithms exist in the literature, each with its own merits and demerits. Few of these algorithms 

are listed in Table 1.1 for illustration and not as an exclusive list. In terms of accuracy, the 

PRELUDE algorithm (66) is considered as the gold standard despite its slow performance in high-

resolution 3D data when rapid phase changes are present, such as in the late echoes.  

Table 1.1: Some phase unwrapping algorithms and their features. 

Algorithm 

Year  

Concept  Merits  Demerits  Notes  

PRELUDE 

(66) 

2003 

Region partitioning 

and merging. 

Generalizable to 

any number of 

dimensions. 

Very slow when 

rapid phase 

wraps exist. 

Useful when 

time is not 

limited. 

Best path 

 (67) 

2007 

Follows best path 

based on edge 

quality map. 

Fast.  

Does not require a 

mask. 

More prone to 

error if SNR is 

low. 

Fast and robust 

in most setups. 

Laplacian 

(68) 

2008 

Based on Laplacian 

in Fourier space. 

Fast.  

Eliminates some 

background field 

components. 

An approximate 

solution. 

Fails to recover 

strong phase 

jumps.  

For qualitative 

application.  

Last resort when 

others fail. 

Not useful for 

strong sources. 

ROMEO 

(69) 

2021 

Follows best path 

based on spatial and 

temporal phase 

coherence and 

magnitude 

coherence.  

Fast.  

Does not require a 

mask. 

Temporal 

coherence may 

propagate error if 

the linear phase 

evolution is 

violated.   

Fast and robust. 
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A modified version of PRELUDE (called SEGUE) accelerates the processing up to 70 times 

without a noticeable sacrifice in quality (70). More practical algorithms are known as Best Path 

(67) and ROMEO (69), which are both fast and robust in MRI applications. Both algorithms use 

quality maps to decide on the best path to follow for phase unwrapping: the former determines the 

edge quality based on the second derivative of phase, while the latter uses the magnitude coherence 

and the spatial and temporal phase coherence as quality metrics. Another common algorithm 

benefits from Laplacian implementation in Fourier domain to perform fast estimation of the 

unwrapped phase (68). This algorithm fails to recover rapidly changing phase, particularly near 

the edge of the volume, and thus should be considered for qualitative applications where knowing 

the exact phase value is not critical.   

1.3.4 Total Field Estimation 

The term total field refers to the net field induced by the susceptibility distribution within and 

outside the VOI. It is basically composed of a tissue field introduced by biological tissue within 

the VOI and a background field from other sources outside the VOI.  

In single echo data, the total field estimation is a simple scaling for the phase using the field 

strength and the echo time. However, this does not remove phase offset from other sources (i.e., 

coils, eddy current, electrical conductivity, etc.). When multiple echo data is acquired, several 

options are available to combine these phases into a single total field map. One way is fitting the 

multiple echo data linearly or nonlinearly to obtain the total field and eliminate phase offset from 

other sources. However, many coil combination methods already remove the phase offset related 

to coils (60), and phase unwrapping methods such as ROMEO can implicitly handle the remaining 

phase offset (69). Thus, multi-echo phase information can be combined by averaging with or 

without weighting factors and benefits from increased SNR. Here, we briefly review the common 

ways to estimate total field from multi-echo phase data. 
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1.3.4.1 Linear Fitting: 

The relation between the phase at TE (i.e., 𝜙(𝑇𝐸𝑖 , 𝑟)) and the total field (𝑏(𝑟), unitless after 

normalizing by the field strength) can be expressed as (71): 

𝜙(𝑇𝐸𝑖, 𝑟) = 𝑤𝑖(𝑇𝐸𝑖 , 𝑟) ∙  𝑏(𝑟) +  𝜙0(𝑟)                                         (1.11) 

where 𝑤𝑖 is a weighting factor containing the scaling term (i.e., 2𝜋 𝛾 𝐵0 𝑇𝐸𝑖). The weighting factor 

might include also the magnitude information to put more weight on voxels of higher signal. When 

multiple echo data is available, a system of linear equations can be formed using equation (1.11) 

and solved for 𝑏(𝑟) and 𝜙0(𝑟).  

1.3.4.2 Nonlinear Fitting: 

Noisy phase voxels might not be successfully unwrapped and thus introduce errors in the estimated 

total field that propagate into the final susceptibility map. Therefore, a more robust estimation of 

the total field can be done using the complex MR signal before performing phase unwrapping via 

a nonlinear least square fitting (62): 

𝑎𝑟𝑔𝑚𝑖𝑛𝑏(𝑟),𝜙0(𝑟)  ∑ ‖𝑆(𝑇𝐸𝑖, 𝑟) − 𝐴(𝑇𝐸𝑖, 𝑟) ∙ exp[𝑗2𝜋𝛾𝐵0 ∙ 𝑏(𝑟) ∙ 𝑇𝐸𝑖  +  𝑗𝜙0(𝑟)]‖2
2

𝑖       (1.12) 

where 𝑆(𝑇𝐸𝑖 , 𝑟) and 𝐴(𝑇𝐸𝑖 , 𝑟) refer to the complex MR image and the magnitude image at TEi, 

respectively. After solving (1.12), the obtained total field might contain some wraps that need to 

be resolved using one of the phase unwrapping algorithms discussed previously.    

1.3.4.3 Weighted Average: 

Assuming the phase offset is negligible or already removed during the coil combination and phase 

unwrapping steps, the total field map can be obtained by a weighted averaging of the multiple echo 

phase data (72): 

𝑏(𝑟) =
1

2𝜋 𝛾 𝐵0  ∑ 𝐴(𝑇𝐸𝑖, 𝑟) 𝑇𝐸𝑖𝑖
∑ 𝜙(𝑇𝐸𝑖 , 𝑟) ∙ 𝐴(𝑇𝐸𝑖, 𝑟)

𝑖

                             (1.13) 

which effectively uses the SNR (i.e., magnitude) of each echo as a weighting factor. This averaging 

approach benefits from improved SNR proportional to the number of echoes. 
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1.3.4.4 Phase Average: 

In a multisite data where magnitude contrast varies across different protocols involved in the study, 

obtaining the total field map by simple averaging of individual echo phase data might be a better 

approach. Employing non-consistent magnitude contrast in the field estimation could have an 

adverse effect and might introduce additional variability to the final susceptibility maps. The phase 

averaging without the magnitude weighting would still improve SNR but with a slight reduction 

(72): 

  

𝑏(𝑟) =
1

2𝜋 𝛾 𝐵0  ∑ 𝑇𝐸𝑖𝑖
∑ 𝜙(𝑇𝐸𝑖 , 𝑟)

𝑖

                                              (1.14) 

This approach has also been found useful at 7T to minimize coil-introduced bias and was used to 

obtain the final susceptibility map from individually processed channel and echo data (73). 

1.3.5 Tissue Field Estimation 

A critical step in QSM processing pipeline is removing the field contribution from background 

sources outside the VOI. Explained by the convolution model, sources outside the brain (such as 

air) contribute to the total field imaged within the brain (i.e., 𝑏(𝑟) =  𝑏𝑏𝑘𝑔(𝑟) +  𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟)), and 

these “background” contributions (𝑏𝑏𝑘𝑔(𝑟)) should be separated from the “tissue” field 

(𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟)) prior to solving the field-to-source inverse problem. The background field is a 

harmonic field as its sources are not inside the domain. Several background removal methods have 

been developed, and improving this process is still an active research area (74). Most of these 

methods rely on two properties of the harmonic field. The first property is based on the harmonic 

average value theorem, which states that a harmonic function is preserved if convolved with a 

normalized radially symmetric function (75). Mathematically, this property can be expressed as: 

𝑏𝑏𝑘𝑔(𝑟) ∗  𝜓(𝑟) =  𝑏𝑏𝑘𝑔(𝑟)                                                (1.15) 

where 𝜓 is a normalized spherical kernel of specific radius. The other property of the harmonic 

field is that it satisfies the Laplace equation within the VOI, as no sources of this field are located 

within the VOI: 

∇2𝑏𝑏𝑘𝑔(𝑟) = 0     within VOI                                             (1.16) 
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In the remaining of this subsection, we review few of these methods and explain their concepts. 

1.3.5.1 Sophisticated Harmonic Artifact Reduction for Phase Data (SHARP): 

Based on equation (1.15), convolving the total field with a spherical kernel and subtracting the 

result from the total field eliminates the background field component (55): 

𝑏(𝑟) −  𝑏(𝑟) ∗  𝜓(𝑟) =  𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟) −  𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟) ∗  𝜓(𝑟) =  𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟) ∗ (𝛿(𝑟) −  𝜓(𝑟))   (1.17) 

where 𝛿(𝑟) is the Dirac delta function. The tissue field can then be obtained by deconvolving the 

result with (𝛿(𝑟) −  𝜓(𝑟)). An additional step is usually required to mitigate any remnant 

background contributions, in which the final tissue field is regularized using truncated singular 

value decomposition (TSVD). This approach was introduced by Schweser et al. (55), and it is 

called SHARP. This method calculates the tissue field within spherical kernels with limited extent 

and thus is less sensitive the definition of the boundaries between tissue and background sources. 

However, it erodes the VOI by the radius of the used kernel and fails to estimate tissue field 

accurately near the edges of the VOI. The accuracy of this method can be improved if the total 

field map is interpolated into higher spatial resolution to minimize digitization error (74).  

1.3.5.2 Regularization Enabled SHARP (RESHARP): 

Another way to regularize the deconvolution step in SHARP is using Tikhonov regularization and 

formulating the problem as a least square minimization (76): 

𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏𝑡𝑖𝑠𝑠𝑢𝑒 
 ‖𝑀 𝐹𝑇−1𝐶 𝐹𝑇(𝑏(𝑟) − 𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟))‖

2

2
+  𝜆 ‖𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟)‖2

2     (1.18) 

where 𝑀 is a brain binary mask, 𝐹𝑇 and 𝐹𝑇−1 refer to Fourier transform and its inverse, 𝐶 is the 

deconvolution kernel in the Fourier domain (i.e., 𝐶 =  𝐹𝑇[𝛿(𝑟) −  𝜓(𝑟)]), and 𝜆 is a regularization 

parameter. Compared to the TSVD used in the original SHARP method, the Tikhonov 

regularization is much smoother and thus minimizes regularization induced artifacts. However, 

RESHARP like SHARP erodes the final tissue map by the radius of the convolution kernel and 

thus throws away some useful information from the edge of the volume being processed.  

1.3.5.3 Variable radius SHARP (V-SHARP): 

To mitigate the issue of excessive erosion in SHARP, Li et al. introduced the use of spherical 

kernels of variable radius, in which the radius of the used kernel gets smaller towards the edge of 

the brain (77). This proposed method is known as V-SHARP and it minimizes the required erosion 
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at the volume edge to as small as one voxel, as well as allowing the use of larger radius at the 

center of the brain and thus better approximating spherical kernels. The kernel radius in 

SHARP/RESHARP is typically within 3 to 5 mm to limit the amount of eroded cortical voxels, 

while in V-SHARP the maximum radius can be much larger (e.g., 20 mm). This modified version 

replaced the original method (i.e., SHARP) and has been widely used in literature. Note that 

SHARP-based methods do not involve dipole field calculations and thus do not rely on slice 

orientation information (i.e., slice direction with respect to B0). Other SHARP-based methods exist 

in the literature but are not widely adopted, such as E-SHARP that employs Taylor expansion to 

estimate the tissue field in the eroded region (78), and iRSHARP that uses spatially weighted 

Gaussian kernels to better handle regions with high susceptibility variations (79). 

1.3.5.4 Projection onto dipole fields (PDF): 

Another novel way to remove contributions from background sources utilizes the orthogonality 

between tissue and background fields to solve a least square minimization problem and estimate 

the background field (80): 

𝜒𝑏𝑘𝑔(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜒𝑏𝑘𝑔
 ‖𝑤(𝑟){𝑏(𝑟) − 𝑑(𝑟) ∗  𝜒𝑏𝑘𝑔(𝑟)}‖

2

2
                          (1.19) 

where 𝑤(𝑟) is a weighting factor derived from the magnitude information to control the effect of 

the noise. The background field is then estimated as 𝑏𝑏𝑘𝑔(𝑟) = 𝑑(𝑟) ∗  𝜒𝑏𝑘𝑔(𝑟) and subtracted 

from the total field to obtain the tissue field. This approach is known as projection onto dipole 

fields (PDF), and it relies on the brain mask to separate between tissue and background 

susceptibility sources. The PDF also uses slice orientation information to simulate the dipole 

kernel in the correct orientation with respect to B0, and this might not be sufficient in oblique slices 

and could introduce underestimation and some artifacts. One way to overcome this issue is 

reformatting slices into pure axial orientation prior to the background field removal (81). 

Furthermore, the orthogonality assumption employed by the PDF is less accurate near the 

boundaries separating internal and external sources, and thus residual background fields are 

typically found near the edge of the VOI. 

1.3.5.5 Solving Laplacian boundary value (LBV): 

Based on equation (1.16), background field contributions can be removed by solving the Laplace 

equation under the assumption that the tissue field approaches zero at the VOI boundaries (82): 
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∇2𝑏(𝑟) =  ∇2𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟)                𝑏𝑡𝑖𝑠𝑠𝑢𝑒 = 0 𝑎𝑡 𝜕𝑀                            (1.20) 

where 𝜕𝑀 refers to the volume boundaries. This boundary assumption is based on the observation 

that the background field is stronger by an order of magnitude than the tissue field near the volume 

edges. However, this assumption can be violated if a strong susceptibility source exists near the 

volume edges, such as a hemorrhage. This method is known as LBV and it relies on the brain mask 

to define the boundary between tissue and external sources.  

Table 1.2 compares the merits and demerits of the common background removal methods in the 

literature, and it can be observed that all methods struggle with removing background field near 

the volume boundary and thus their accuracy reduces toward the VOI edges (74). In addition, 

recent studies have used artificial intelligence to improve the background removal step (83–85), 

however their performance has not been widely tested by the community. There are also some 

efforts to reconstruct susceptibility directly from the total field and completely avoid the 

background field removal step, which will be discussed later in this section. 

Table 1.2: Commonly used background removal methods and their features. 

Method  Concept  Merits  Demerits  

V-SHARP 

(77) 

Spherical mean 

kernels of limited 

extent. 

Less sensitive to 

boundary definition. 

Insensitive to slice 

orientation.  

Less accurate near volume edges. 

Sensitive to mismatch in spatial 

resolution. 

PDF 

(80) 

Orthogonality based 

separation between 

tissue and external 

fields. 

Insensitive to spatial 

resolution. 

Less accurate near volume edges. 

Sensitive to boundary definition. 

Sensitive to slice orientation and 

might require pre-rotation of total 

field. 

LBV 

(82) 

Solving Laplace 

equation under zero 

tissue field 

assumption at the 

VOI boundary.  

Insensitive to spatial 

resolution. 

Insensitive to slice 

orientation. 

Fast computation.  

Less accurate near volume edges. 

Sensitive to boundary definition. 



22 
 

1.3.6 Dipole Inversion  

The final step in the QSM processing pipeline is inverting the tissue field into a susceptibility map. 

Theoretically, it can be achieved via a deconvolution with magnetic dipole kernel (𝑑), as implied 

from equation (1.9), which can be performed in Fourier domain via division: 

𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (�⃗⃗�) = 𝑑(�⃗⃗�) ∙ 𝜒(�⃗⃗�) = (
1

3
−

𝑘𝑝
2

𝑘2) ∙ 𝜒(�⃗⃗�)                                   (1.21) 

 However, the magnetic dipole kernel has zero values along the surfaces defined by 𝑘𝑝
2 𝑘2⁄ = 1 3⁄ , 

which makes the inverse problem ill-posed and thus requires special handling. Here, we review 

the common approaches to solve the field-to-source problem in QSM and discuss their limitations.  

1.3.6.1 Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS): 

One way to address the ill-posed problem is to collect (at least) two more datasets with two 

different orientations with the aim to fill the zero-valued surfaces by samples collected in different 

orientations (86). The result is a system of three equations that can be solved for 𝜒(�⃗⃗�). This 

approach is known as COSMOS, and although impractical it has been used as the gold standard 

for comparison with other methods relying on only single acquisition.  

1.3.6.2 Truncated k-space Division (TKD): 

Another way to tackle this inverse problem without the need to collect additional data and rotating 

the imaged object twice was suggested by Shmueli et al. In this approach, the dipole kernel is 

truncated to a specific value whenever its value gets smaller than a predefined threshold (𝑡ℎ) (54): 

𝑑(�⃗⃗�) =  {(
1

3
−

𝑘𝑝
2

𝑘2)               , |𝑑(�⃗⃗�)| > 𝑡ℎ  

𝑡ℎ                          , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   (1.22) 

However, choosing the optimal threshold is a tradeoff between the accuracy and the introduced 

streaking artifacts and noise amplification, and thus artifacts are not completely suppressed.  

1.3.6.3 Regularized dipole inversion: 

To better handle the ill-posed inverse problem along with the associated artifacts, several 

regularization schemes were proposed in which the inverse problem is reformulated as a 

minimization problem with fidelity and regularization terms. The most used regularization is based 

on L1 norm total variation (TV), in which the susceptibility solution is assumed to be generally 

smooth with limited sharp edges: 



23 
 

𝜒(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜒 ‖𝑤(𝑟){𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟) − 𝑑(𝑟) ∗ 𝜒(𝑟)}‖2
2 +  𝜆 ‖∇𝜒(𝑟)‖1                        (1.23) 

where 𝑤 is a weighting factor to prioritize voxels with higher SNR, and ∇𝜒 refers to the gradient 

of the susceptibility solution (87,88). This formulation provides better control on the introduced 

streaking artifacts as the regularization term will penalize the non-actual edges introduced by the 

artifacts. Other regularization terms have also been proposed, such as L2 norm (53,89) and total 

generalized variation (TGV) (90). However, a drawback from imposing regularization is the 

smoothness of the produced susceptibility maps. Thus, a tradeoff is typically required between the 

solution smoothness and the acceptable level of remnant streaking artifacts.  

Other algorithms utilize magnitude contrast to identify actual edges and further facilitate the 

regularization process. This family of algorithms is known as morphology-enabled dipole 

inversion (MEDI), and their base formulation can be expressed as: 

𝜒(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜒 𝜆‖𝑊𝑁(𝑟)(e{𝑗 𝑏𝑡𝑖𝑠𝑠𝑢𝑒 (𝑟)}   − e{𝑗 𝑑(𝑟)∗𝜒(𝑟)} )‖
2

2
+  ‖MG(𝑟)∇𝜒(𝑟)‖1       (1.24) 

where MG(𝑟) is a binary mask based on the gradient of the magnitude contrast, which identifies 

edge information and penalizes non-edge regions (62). Note that MEDI uses different dynamic 

weighting (𝑊𝑁(𝑟)) that is updated during the iterations to minimize error propagation. Another 

MEDI-based algorithm uses additional regularization term to force susceptibility value in CSF to 

be zero with the aim to minimize CSF-related artifacts and to establish an internal reference value 

for susceptibility measurements (91). However, edge information on magnitude contrast might not 

be accurate due to T2*-related blooming artifacts and thus relying on T2* magnitude to identify 

edges might not be the best choice.  

Another class of regularized inversion algorithms focuses on minimizing streaking artifacts while 

preserving the fine details in the reconstructed susceptibility map. These algorithms typically 

perform two reconstruction passes in which the first reconstruction pass aims to identify the strong 

susceptibility sources or the unwanted artifacts, and then in the second round the unwanted effects 

are eliminated. The iLSQR algorithm estimates the artifacts in an initial step by solving a 

minimization problem restricted to the ill-conditioned portion of the k-space (where |𝑑(�⃗⃗�)| < 𝑡ℎ), 

and then subtract these artifacts from the total susceptibility obtained using a least square solution 

(92).  
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Another algorithm from the same group is called STAR-QSM, which estimates strong 

susceptibility sources in an initial step using TV-based minimization with strong regularization 

parameter, then calculates their field contribution using forward modelling (i.e., equation (1.9)) 

and subtract it from the tissue field. In a second step, the remaining field is inverted into a 

susceptibility map and then superposed with the susceptibility map produced in the initial step 

(93). A similar concept was introduced by Sun et al. to deal with hemorrhage patients, in which an 

initial QSM reconstruction is performed to detect the hemorrhage based on a threshold, and then 

its contribution to the tissue field is masked out (instead of subtracting contributions estimated by 

forward-modelling) and a second reconstruction is performed and superposed with the hemorrhage 

obtained in the initial step (94). Another algorithm that aims to process strong and weak 

susceptibility sources separately is known as multi-scale dipole inversion (MSDI), which separates 

field contributions of weak and strong sources using spherical mean filters of different radii, 

processes them individually and then superpose the final susceptibility solutions (95). In theory, 

MSDI allows processing the tissue field at several levels and imposing different conditioning and 

masking at each of these levels, thus providing more control on noise propagation and artifacts 

reduction. However, the dependency of this method on kernels of different radii makes it 

vulnerable to additional variability from differences in spatial resolution.  

1.3.6.4 Single step inversion: 

To avoid the shortcomings of background removal methods, several studies suggested obtaining 

the susceptibility map directly from the total field without the need for tissue field estimation as 

an intermediate step. These algorithms aim to solve for the total susceptibility sources, within and 

outside the VOI, although the focus is mainly on the tissue sources. One of these algorithms 

benefits from the Laplacian operator in equation (1.16) to implicitly remove background field 

contributions during the inverse minimization problem (96): 

𝜒(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜒
1

2
‖∇2𝑏(𝑟) − (

1

3
∇2(𝑟) −

𝜕2

𝜕𝑧2)𝜒(𝑟)‖
2

2

+  𝜆 ‖MG(𝑟)∇𝜒(𝑟)‖2
2             (1.25) 

A drawback of using the Laplace operator is that the final solution is eroded by the radius of the 

used Laplace kernel. Another total field inversion algorithm is based on MEDI, and it uses an 

empirical pre-conditioning factor based on R2* information to accelerate the convergence to a 

solution (97). Another study accelerated the convergence by including an additional L2 norm 
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regularization in equation (1.23) to guide the algorithm towards the least square solution (98). 

Despite being available for several years, total field inversion algorithms have not been widely 

adopted by the community.  

1.3.6.5 Deep learning-based inversion: 

Recently, several studies introduced artificial intelligence to solve the field-to-source problem. 

Based on convolutional neural network, an encoder-decoder network is trained to produce a 

susceptibility map either from the tissue field (99–103) or directly from the total field (104,105). 

Deep learning-based inversion features fast reconstruction and competing accuracy. Despite their 

promising potential, the performance of deep learning-based inversion methods came second to 

the analytical iterative methods (106), highlighting the fact that generalizing the accurate outcome 

in deep learning is not a trivial task.  

1.3.7 Available QSM Toolboxes 

Most of the QSM literature is centered around brain and neuroscience applications. In response to 

this demand, several toolboxes were developed for human brain QSM, mostly in the MATLAB 

environment. The most widely used toolbox was developed by Yi Wang research group at Cornell 

University and is known as MEDI toolbox (107). The MATLAB-based toolbox has a GUI, takes 

DICOM files as the input and performs all the necessary processing steps automatically, from 

mask generation and phase unwrapping to background removal and producing the final 

susceptibility map. Another fully automated toolbox is known as STI Suite, and it was developed 

by Chunlei Liu group at the University of California – Berkeley (108). The MATLAB-based 

toolbox also has a GUI and takes the input as DICOM, mat or nifti files. A newer automated 

toolbox is known as QSMBox and it was developed by Julio Acosta-Cabronero. This MATLAB 

toolbox works from the command line and takes the input as nifti files (109). Other toolboxes also 

exist that aim to combine the distinct features of the above toolboxes and other methods under one 

umbrella, such as JHU/KKI QSM Toolbox (110) and SEPIA toolbox (111). 

All these toolboxes work reliably with healthy subjects data, but might require some tuning for the 

regularization parameters if the data SNR changes noticeably due to variation in spatial resolution 

and/or sequence parameters. Moreover, the mask generation might fail or produce sub-optimal 

results on patient data with abnormal atrophy or iron accumulation, leading to the failure of the 

subsequent steps. 
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QSM outside the brain has drawn increasing attention in recent years. However, to the best of our 

knowledge no dedicated toolbox has been made publicly available. Instead, the above-mentioned 

toolboxes are typically modified to work on specific regions outside the brain.  

1.3.8 Technical Challenges 

The ability of magnetic susceptibility to probe sub-voxel structures and activities comes with its 

challenges. A model that fully considers sub-voxel compartments and directional restrictions 

would be difficult to solve, and a typical single acquisition MEGE data might not be a sufficient 

input for the model. The majority of MR-based susceptibility imaging studies facilitated QSM 

based on several simplifications and assumptions, including: 1) measured susceptibility is 

isotropic, 2) not absolute, and 3) represents the average within a voxel. Also, 4) the obtained phase 

shift is assumed to be mainly due to the magnetic susceptibility, and 5) it is linearly related to the 

acquisition echo time. 6) The imaging time is not restricted and thus a dedicated acquisition with 

sufficiently long echo time to accumulate phase contrast is accessible, and 7) the imaged volume 

extends well beyond the ROI in all directions. 8) The same imaging protocol is achievable and 

accessible in any involved imaging center.  

Recently, researchers have put efforts to revisit and probe most of these assumptions. The effects 

of susceptibility anisotropy have been investigated (35), and reconstructing the susceptibility 

tensor has been reported (14). Studies have also investigated separating voxel susceptibility into 

two compartments: paramagnetic and diamagnetic, based on MEGE data solely (112,113) or with 

additional help from R2 data (114). Moreover, methods to remove phase shift from non-

susceptibility components have been proposed (115–117), and the relation between the phase shift 

and echo-timings has been investigated (118). Possible internal susceptibility references have been 

investigated (40,41), and automatically setting the CSF as a reference has been proposed (91).  

This thesis investigates the last three assumptions listed above, which have not been well studied 

in the existing literature. Briefly, we investigate the limitations on short echo-time QSM and 

possible applications in human brain. In addition, we study the difficulties of producing QSM from 

thin slabs without the need for acquiring full brain coverage, and propose an approach to overcome 

these difficulties. Furthermore, we investigate multisite QSM reproducibility when local protocol 

variations are inevitable.  
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1.3.9 Clinical Applications 

Magnetic susceptibility plays an important role in determining material compatibility for the MRI 

environment, both outside and inside the imaging region, such as the instrumentations needed for 

MR-guided surgeries, orthotics and body implants (24), thanks to its influence on MR positional 

accuracy, artifacts, and magnetic force hazards. With the emergence of the QSM technique, the 

unique contrast of susceptibility was found useful in localizing deep gray matter structures for 

deep brain stimulation (DBS) electrode implantation (119,120), and in segmenting structures that 

have otherwise weak contrast on other MRI modalities (121–123).   

More importantly, the evolved understanding of the magnetic susceptibility mechanisms in human 

tissue unleashed the potential of using it as a biomarker in many clinical applications. For instance, 

the ability of the QSM to distinguish between paramagnetic and diamagnetic sources was found 

useful in tumor characterization by differentiating between hemorrhage and calcification found in 

malignant and benign tumors in brain, respectively (120). Furthermore, QSM sensitivity to 

changes in iron and myelin levels has made it attractive to many aging and brain development 

studies (26–28), to trace these changes and detect any early iron deficiency (124–126) or delayed 

myelination (127). Monitoring metallic ion deposits and/or demyelination to assess disease 

progression has become an integral part of various neurological studies, including Alzheimer’s 

disease (128), amyotrophic lateral sclerosis (129), Huntington's disease (30), multiple sclerosis 

(130,131), Parkinson's disease (132,133), and Wilson's disease (134).  

QSM is also a great tool to monitor and assess traumatic brain injury (135,136), distinguishing 

between acute and chronic situations (137–139), and reliably evaluating microbleed burden 

(140,141). Moreover, QSM provides an excellent contrast for deoxygenated blood and thus has 

been used for vasculature imaging (142) and venous oxygen quantification (143,144). 

Although more challenging due to the presence of motion and fat, QSM applications extend 

beyond the brain to assessing iron load in the liver (145–147), quantifying blood oxygenation in 

the heart (148,149), and exploring tissue structure in kidneys (150), bones (151) and cartilage 

(152). 

The above discussed applications are only representative and do not cover the full spectrum. More 

potential applications, limitations and details can be found in (120,153,154). 
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1.4 THESIS OVERVIEW 

Quantitative susceptibility mapping is a powerful tool to probe metallic ions and myelination 

changes at microscopic level. However, its full potential and clinical integration is still hindered 

by some technical issues. One of these obstacles is that standard QSM requires a dedicated data 

acquisition, which can be moderately long (for multi-echo data) and thus puts additional time 

burden on clinical protocols. Successful QSM also requires spatial coverage that extends well 

beyond the ROI, which impedes scanning time reduction via thin slab imaging. Furthermore, the 

reproducibility of QSM in the presence of local sequence variations has not been evaluated, a case 

that would allow aggregating data retrospectively from multiple sites to form datasets of wider 

demographical and/or pathological coverage. 

In this thesis, we investigated these topics and proposed some technical solutions. In Chapter 2, 

the feasibility of producing QSM from the phase of 3D magnetization-prepared rapid gradient-

echo (MPRAGE) was evaluated for the first time. MPRAGE is a standard T1-weighted imaging 

that is typically included in brain protocols for providing tissue structural information. Generating 

a susceptibility map from the MPRAGE phase would avoid the need for additional QSM-related 

acquisition and thus reduce the time burden for incorporating QSM in clinical studies. In this 

chapter, MPRAGE-based QSM was evaluated using numerical simulations and in-vivo 

experiments, and its limitations were explored. Additionally, a possible application for the 

MPRAGE-QSM to improve deep gray matter segmentation was demonstrated. 

In Chapter 3, another application for the MPRAGE-QSM was explored: quantifying cerebral 

microbleeds without the need for a dedicated QSM acquisition. Microbleed susceptibility and size 

were quantified using MPRAGE-QSM in patient data and compared to measurements obtained 

using standard MEGE-based QSM. Additionally, simulations were performed to assess detection 

sensitivity and quantification accuracy at different microbleed sizes, susceptibility strengths, SNR 

levels, echo times and spatial locations.   

In Chapter 4, the difficulties incurred in performing QSM from thin slabs were discussed. 

Furthermore, we proposed a hybrid approach to overcome these difficulties and evaluated its 

performance using synthetic and in-vivo measurements of human brain. 
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Chapter 5 of this thesis studied the reproducibility of susceptibility and R2* mapping in non-

harmonized multisite data that was investigated using 24 traveling heads. Additionally, this chapter 

presents possible post-processing techniques to reduce cross-site sequence-induced variability.  

In Chapter 6, concluding remarks are presented.  
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Chapter 2: On the value of QSM from MPRAGE for segmenting and 

quantifying iron-rich deep gray matter1 

2.1 Abstract: 

Purpose: Quantitative susceptibility mapping (QSM) has been employed for both iron evaluation 

and segmentation of deep gray matter (DGM), but QSM sequences are not typically used in 

standard brain volumetric studies, which use T1-weighted magnetization-prepared rapid gradient 

echo (MPRAGE) with short TE. Here, QSM produced directly from standard MPRAGE phase 

(QSMMPRAGE) is evaluated for segmentation and quantification of highly iron-rich DGM regions.  

Methods: Simulations were used to explore quality and possible limitations. In addition, QSM 

from a standard multi-echo gradient-echo (QSMGRE) was compared to QSMMPRAGE in 40 healthy 

adults at 3T. DGM structures with weak contrast on MPRAGE magnitude were evaluated for 

improving segmentation with QSMMPRAGE, with focus on the iron-rich globus pallidus (GP). 

Furthermore, susceptibility quantification was assessed on six DGM nuclei and compared to 

standard QSMGRE.  

Results: Limited by TE and signal-to-noise ratio, only iron-rich regions like GP and dentate 

nucleus produced adequate contrast on QSMMPRAGE, confining applications to such regions. 

QSMMPRAGE improved GP segmentation with mean Dice scores raised by 9.0%, and mean 

volumetric differences reduced by 9.7%. Simulations suggested that phase contrast-to-noise ratio 

(CNR) should be above 3.0 to attain segmentation improvement. For quantification purposes, 

higher CNR is required, and typical QSMMPRAGE provided comparable estimates to QSMGRE in 

large iron-rich DGM nuclei.  

Conclusion: Despite the short TE of standard MPRAGE, QSMMPRAGE can improve GP 

segmentation over the use of MPRAGE magnitude alone and roughly quantify high-iron regions 

in DGM. Thus, reconstructing QSMMPRAGE can be a useful addition to volumetric studies that 

rarely include standard QSMGRE.  

Keywords: deep gray matter, globus pallidus, MPRAGE, QSM, segmentation 

 
1 A version of this chapter has been published: Naji N, Sun H, Wilman AH. On the value of QSM from MPRAGE for 

segmenting and quantifying iron-rich deep gray matter. Magn Reson Med. 2020;84:1486–1500. 
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2.2 INTRODUCTION 

Deep gray matter (DGM) nuclei are receiving increasing attention in neuroscience studies due to 

their association with various neurological diseases, including multiple sclerosis, Parkinson's 

disease, and Huntington's disease (132,155–162). Quantitative susceptibility mapping (QSM) has 

been used to noninvasively probe metallic ion deposits in these nuclei and trace evolution with age 

and/or pathological condition (27,31,54,130,132,153,161,162). Standard QSM is typically 

produced from the phase of a multi-echo gradient-echo (GRE) sequence. 

In neuroimaging studies, segmentation is a key preprocessing step used to extract specific 

structures from the whole brain volume for dedicated quantitative analysis, such as voxel-based 

morphometry and volumetric measurements (163,164). Segmentation of different brain structures 

is typically performed on T1-weighted (T1w) images obtained using a 3D magnetization-prepared 

rapid gradient-echo (MPRAGE) sequence, relying on the discriminative T1w contrast between 

gray matter, white matter, and cerebrospinal fluid (CSF). However, certain DGM nuclei have weak 

contrast relative to surrounding white matter, which makes their segmentation challenging 

(165,166). Globus pallidus (GP) in particular, becomes less or nonvisible on MPRAGE magnitude 

at higher field (≥ 3T) imaging. Within the basal ganglia, GP has the highest iron concentration and 

plays a crucial role in regulating voluntary movements. However, its segmentation on MPRAGE 

is much poorer than caudate (CD) and putamen (PT). 

QSM studies have been employed for aiding DGM segmentation (27,122,167–175), where 

improvements have been most significant in the iron-rich structures like GP. However, QSM 

sequences are not typically used in standard brain volumetric studies, which typically rely on 

MPRAGE. In this study, we examine the possibility of using MPRAGE phase directly for QSM. 

Although new multi-echo versions of MP2RAGE are capable of providing multiple contrasts 

including both T1 and QSM (176–178), to our knowledge standard MPRAGE used in most 

volumetric studies has not been used for creating QSM. Here, we evaluate the creation of QSM 

directly from standard volumetric MPRAGE data to achieve improved segmentation over 

MPRAGE magnitude and susceptibility quantification of highly iron-rich DGM nuclei. The 

potential value and the limitations of the method are evaluated in simulation and in vivo with 

comparison to standard multi-echo QSM. 
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2.3 METHODS 

Numerical simulations of QSM from MPRAGE were used to study the effects of inversion time 

(TI), echo time (TE), and signal-to-noise ratio (SNR) on QSM results. Anecdotal in-vivo data from 

three subjects determined the quality of MPRAGE-based QSM for various TEs and its potential 

for improving segmentation and quantifying susceptibility of iron-rich DGM nuclei. Finally, an 

in-vivo study of 40 subjects tested QSM from MPRAGE using a standardized protocol with very 

short TE (2.37 ms) and high resolution (0.87 × 0.87 × 0.85 mm3), to determine MPRAGE-QSM 

capability under severe conditions of limited phase contrast-to-noise ratio (CNR). 

2.3.1 Simulations of QSM From MPRAGE 

The MPRAGE sequence for volumetric T1-weighted brain studies differs from a typical QSM 

sequence in two main ways: inversion recovery is used to enhance T1 contrast and only a single 

echo is collected with very short TE. The main consequences for QSM are limited phase CNR and 

possible phase alterations across the lengthy MPRAGE readout. Therefore, simulations were used 

to investigate the effects of the evolving longitudinal magnetization (Mz) polarity across the 

MPRAGE readout and to estimate a minimum requirement for phase CNR to ensure useful 

MPRAGE-QSM. Simulation code can be found at https://github.com/MRItech/mprage.  

A numerical brain phantom from a previous work (179) was modified to match the dimensions 

and resolution of the in-vivo acquired MPRAGE data (40-subject protocol described later). Maps 

for proton density, T1, T2*, and susceptibility were produced using the values reported in literature 

at 3T and listed in Table 2.1 (180–182). The susceptibility-induced tissue magnetic field was 

produced by convolving the susceptibility map with the magnetic dipole kernel and then scaling 

to a phase map at 3T. This phase map and the proton density map were combined to form an 

equilibrium complex-valued Mz map, M0. Mz evolution during MPRAGE acquisition was 

simulated using Bloch equations and applied to M0 in k-space line-by-line along the slice-encoding 

direction (assuming the slice encoding is the inner loop). In similar steps, GRE data were simulated 

with identical acquisition parameters used in vivo. MPRAGE and GRE phases were then processed 

into QSM maps using the same reconstruction pipeline as used for in-vivo data (except skipping 

the background field removal step). Five imaging parameters affect the Mz evolution (and 

consequently the portion of readouts collected with negative Mz): TI (time between inversion pulse 

and k-space center), flip angle, GRE-TR (time between consecutive excitation pulses), delay time 
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(TD) (the portion of sequence-TR between the last readout and the next inversion pulse), and 

spatial resolution. We investigated the size of the resultant negative-Mz readouts for the following 

ranges (TI: 590-1800 ms; flip angle: 1°-25°; TD: 0-2500 ms, isotropic resolution: 0.7-1.0 mm). 

The GRE-TR was kept at its minimum value for all simulations. 

Table 2.1: Proton density, T1, T2*, and susceptibility values used in simulations. 

Tissue Proton Density T1 [ms] T2* [ms] Susceptibility [ppm] 

Caudate nucleus 0.802 1280 54.8 +0.03 

CSF 1.000 4500 2000 0.00 

Globus pallidus 0.744 950 28.8 +0.10 

Gray matter 0.807 1390 58.0 −0.01 

Putamen 0.797 1150 53.6 +0.04 

Substantia nigra 0.750 925 42.0 +0.09 

Thalamus 0.756 1150 76.8 0.00 

White matter 0.679 910 55.0 −0.04 

Others 0.679 910 55.0 −0.04 

 

To study the SNR effect on the quality of reconstructed QSM from MPRAGE phase, a Monte 

Carlo simulation (10 independent repetitions) was done by adding random complex-valued 

Gaussian noise to the MPRAGE data in k-space at different SNR levels. In QSM, a susceptibility 

difference 𝛥𝜒 induces a phase shift of up to 2π⋅γ⋅B0 ⋅1∕3⋅ 𝛥𝜒 ⋅TE, where γ is the gyromagnetic ratio 

(in MHz/T) (183). However, phase noise is inversely related to the magnitude SNR (SNRM) (184). 

Thus, phase CNR can be defined as CNRø =2π⋅γ⋅B0 ⋅1∕3⋅ 𝛥𝜒 ⋅TE ⋅ SNRM and used to define a 

threshold for a useful QSM. For in-vivo SNRM measurement, a DGM region covering GP, PT, and 

thalamus (TH) on three slices was defined on the magnitude image and used to calculate the mean 

intensity, and noise SD was estimated on the image background. In simulated datasets, DGM 

nuclei were segmented from the reconstructed QSM images using Otsu Thresholding (185), and 

the quality of the recovered DGM boundaries was assessed using Dice score and false positive 

Dice measures (explained later). 
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2.3.2 In-vivo Human Brain Experiments 

Brain imaging was done at 3T (Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-

channel head coil. All subjects provided informed consent and studies were approved by the local 

ethics committee. To explore effects of TE variation, three healthy subjects (males; age: 24, 31, 

and 42 years) received MPRAGE at three different echo times (TE/sequence-TR 2.43 ms/1830 

ms, 3.50 ms/2170 ms, and 4.44 ms/2170 ms) and common spatial resolution of 1 mm isotropic. 

Other imaging parameters were field of view 256×256×208 mm3, flip angle 12°, TI 950 ms, 

GRAPPA acceleration 2, and slice partial Fourier 6/8. Because the MPRAGE sequence forced use 

of only the minimum TE, echo time was altered by turning on/off echo asymmetry and/or 

modifying readout bandwidth. 

Forty healthy adult subjects (age, 18-70 years; mean ± SD, 36.8 ± 14.3; 11 males) were studied 

retrospectively for a detailed analysis of segmentation and quantification of QSM with a 

standardized MPRAGE protocol using very short TE and high resolution. Inclusion criteria were 

the availability of both MPRAGE and multi-echo GRE sequences with saved raw phase images. 

MPRAGE parameters included sagittal orientation, 0.87× 0.87×0.85 mm3 resolution, field of view 

250× 250×176.8 mm3, flip angle 8°, TI 900 ms, sequence-TR 1800 ms, TE 2.37 ms, GRAPPA 

acceleration 3, acquired in 3.65 minutes. Multi-echo GRE used axial orientation, 0.94×0.94×1.70 

mm3 resolution, field of view 202.6×240×149.6 mm3, flip angle 13°, TE1 3.82 ms, ΔTE 5.49 ms, 

6 echoes, TR 37 ms, GRAPPA acceleration 2, acquired in 5.5 minutes. 

2.3.3 QSM Processing 

The following steps were performed for both MPRAGE and GRE data, unless otherwise stated. 

Adaptively coil-combined magnitude and phase images were processed using MATLAB R2015b 

(MathWorks, Sherborn, Massachusetts). Phase images were unwrapped using PRELUDE tool of 

the FMRIB Software Library (FSL) package (66). For MPRAGE, the frequency shift related to 

magnetic susceptibility was obtained via phase division by TE. For GRE, the frequency shift was 

obtained from the phases of different echo times by a voxel-wise least-squares regression. QSM 

maps were then produced from the frequency shifts of MPRAGE and GRE through background 

field removal and dipole inversion steps described in the appendix (76). Susceptibility maps 

obtained from MPRAGE and GRE sequences are referred to as QSMMPRAGE and QSMGRE, 

respectively. Bias-field in magnitude images of both sequences was removed using N4ITK tool 
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(186). This bias-corrected brain (skull-stripped) magnitude image is referred to thereafter as the 

magnitude image. GRE magnitude of first echo was rigidly registered to MPRAGE magnitude 

using ANTs software (187). The resulting transformation matrix was then used to transform 

QSMGRE into MPRAGE image space. 

2.3.4 Susceptibility Quantification 

To examine the potential of QSMMPRAGE for susceptibility quantification, we measured mean 

susceptibility of six iron-rich structures GP, CD, PT, TH, dentate nucleus (DN), and substantia 

nigra (SN) on both susceptibility maps obtained from MPRAGE and GRE. FSL segmentation of 

GP, CD, PT, and TH obtained automatically using a hybrid contrast of T1w and QSMGRE 

(explained later) were used for susceptibility measurements on both QSMGRE and QSMMPRAGE. 

Other DGM structures supported by FSL (amygdala, accumbens, and hippocampus) were not 

considered as their susceptibility values/volumes are too low/small to be accurately quantified at 

very short TEs. Segmentation masks were first eroded by two voxels to avoid including 

susceptibility values from surrounding tissues. In addition, susceptibility of DN and SN (not 

supported by FSL) were measured as the average over manually defined regions on three slices 

(using QSMGRE). The mean values of susceptibility in the left and the right hemispheres were 

recorded separately. 

2.3.5 Segmentation Processing 

Incorporating QSM contrast to enhance DGM segmentation can be done in different ways 

(122,168–175). In this work, we used the Feng et al. approach (122) that first merges T1w and 

QSM contrasts into a single hybrid contrast (HC), then segments this HC using FMRIB’s 

Integrated Registration & Segmentation Tool (FIRST) (188). We tested segmentation using three 

different contrast inputs: standard MPRAGE T1w contrast, the proposed contrast (HCMPRAGE) 

made using T1w and QSMMPRAGE, and a third contrast (HCGRE) made using T1w and QSMGRE, 

which was used as a reference to evaluate HCMPRAGE quality. Briefly, HCMPRAGE and HCGRE were 

obtained as follows: 

𝐻𝐶𝑀𝑃𝑅𝐴𝐺𝐸 = 𝑤11 ∙ 𝑇1𝑤 + 𝑤12 ∙ 𝑄𝑆𝑀𝑀𝑃𝑅𝐴𝐺𝐸                              (2.1) 

𝐻𝐶𝐺𝑅𝐸 = 𝑤21 ∙ 𝑇1𝑤 + 𝑤22 ∙ 𝑄𝑆𝑀𝐺𝑅𝐸                                   (2.2) 
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The weighting coefficients were calculated by equalizing the combined hybrid contrast to that of 

the FIRST template in two regions in 10 random subjects then taking the average of the 10 

calculated weighting coefficients. In this way, a global weighting factor was applied to the whole 

image term (T1w or QSM). Two regions are required to solve for the two weighting functions in 

each case. GP and TH were chosen for the high contrast and the large size, respectively. Before 

calculation, the T1w images were first normalized by division to ensure similar mean white matter 

intensity across all subjects (122). Considering Equation (2.1), the aim is producing HCMPRAGE of 

similar contrast to the FIRST template, and thus the latter was set as the left-hand-side of Equation 

(2.1). The two unknowns (𝑤11, 𝑤12) are solved for by manually measuring the mean intensities of 

two structures (GP and TH) on each of the terms (images) in Equation (2.1): the FIRST template, 

T1w and QSMMPRAGE. Similarly, (𝑤21, 𝑤22) were obtained using Equation (2.2) and measurements 

on QSMGRE. Average coefficients were found to be 𝑤11 = 1.38, 𝑤12 = −78.90, 𝑤21 = 1.38, and 

𝑤22 = −75.42. Finally, contrast images were fed into the FIRST tool for segmentation with 

nonlinear (rather than the default linear) registration (122). 

2.3.6 Segmentation Performance Analysis 

Segmentation performance using T1w and HCMPRAGE were compared to using HCGRE as a reference 

and also analyzed using a reference-free approach to remove potential bias when assuming HCGRE 

is the gold standard. Segmentation quality was evaluated quantitatively using four measures, 

namely Dice score, false negative Dice (FND), false positive Dice (FPD), and percentage absolute 

volumetric difference (AVD) (189). Dice score measures the spatial overlap between methods. 

FND assesses the amount of actual structure voxels not segmented (i.e., under segmentation rate), 

whereas FPD measures how segmentation extends outside the actual structure boundaries, 

quantifying over segmentation rate. AVD basically describes the relative difference between the 

volumes of the resultant and the reference segmentations. The ideal score (i.e., perfect match) for 

Dice is 1.0, whereas for the other three measures is 0.0. For visualization purposes, the latter three 

measures (FND, FPD, and AVD) were reported in a complementary form (i.e., FND̅̅ ̅̅ ̅̅ = 1 −  FND) 

such that the ideal score for all the measures becomes 1.0. The scores calculated on the left and 

the right hemispheres were averaged. Statistical significance of the differences in segmentation 

was evaluated using a paired, one-tailed t test (α = 0.05). In addition, reference-free assessment 

was used to rank segmentation methods based on statistical inferences (190,191). Briefly, a 

probabilistic error model is used to relate measurements from different methods to the unknown 
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actual value of interest (here structure volume). Given large number of samples (i.e., 

measurements), the parameters of the error model can be estimated and used to quantify its 

precision. We used a quadratic model to express the relation between true and measured volumes, 

with random multivariate Gaussian error (192). Given the measured volumes of a DGM structure 

from the obtained segmentations, model parameters were estimated by sampling a posterior 

distribution of the unknown true volume, using Markov chain Monte Carlo technique implemented 

in Python (PYMC3 package) (193). The model is then used to predict actual volumes (192). 

Estimated standard deviation of error (𝜎𝑒) was then used to rank the precision of the three 

segmentation methods, in which smaller 𝜎𝑒 implies higher precision. 

2.4 RESULTS 

2.4.1 Inversion Pulse and SNR Effects 

Collecting the first portion of readouts while Mz of some tissues (e.g., CSF) is still negative (i.e., 

below the nulling point) introduces inconsistency between high frequency information on both 

sides of the spectrum and leads to artifacts around the edges of low SNR regions. These artifacts 

were observed around CSF on simulated MPRAGE phase shown in Figure 2.1. However, QSM 

reconstruction was not significantly affected, especially around GP. The phase images of GRE 

(first echo) and MPRAGE obtained at the same TE showed similar content and contrast and 

produced comparable QSMs. The size of the readout portion collected with negative Mz increases 

with shorter TI, smaller flip angle, longer total sequence-TR (longer TD), and lower spatial 

resolution. Simulation results showed that a problematic case could occur if some tissues are 

nulled, or if Mz polarity switching occurs around the center of k-space (i.e., half of the readouts 

are collected with negative Mz) such that this central region is collected above the nulling point 

for some tissues (i.e., white matter) and below the nulling point for others (i.e., gray matter and 

CSF). This case leads to very low SNR and corrupted phase images (Figure 2.2) and occurs if a 

low flip angle (< 8º) is combined with long sequence-TR (3000 ms) and very short TI (~600 ms). 

However, such a case is not desirable as it results in poor magnitude quality. In the literature, the 

commonly used values for flip angle, TI and TR at 3T lie in the range 8-15°, 900-1200 ms, and 

1950-2530 ms, respectively (194,195).  
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Figure 2.1: Sample simulated data: Left and middle columns illustrate the simulated gradient-

echo (GRE) (A-C) and magnetization-prepared rapid gradient echo (MPRAGE) (D-F) data 

(magnitude, phase, and quantitative susceptibility mapping [QSM]) at echo time (TE) = 3.82 ms. 

(G) Ground-truth susceptibility map. (H) Phase difference and (I) QSM difference between GRE 

and MPRAGE. MPRAGE phase has similar contrast to GRE phase, except at very low SNR regions 

(yellow arrows) such as cerebrospinal fluid (CSF). Noticeable artifacts appear around sharp 

edges due to the inconsistency between high frequency components on the left and the right sides 

of k-space, as a consequence of collecting the first 25% of readouts with negatively polarized Mz. 
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Figure 2.2: Simulated magnetization-prepared rapid gradient echo (MPRAGE) (A) magnitude 

and (B) phase images illustrating a problematic case where different tissues have different phase 

polarity. Imaging parameters included inversion time (TI) 650 ms, echo time (TE) 2.37 ms, 

sequence-pulse repetition time (TR) 4000 ms, and flip-angle 4°, such that the center of k-space 

(star) was collected above the nulling point for white matter (WM) and below the nulling point for 

gray matter (GM) and cerebrospinal fluid (CSF), as demonstrated in (C) Mz evolution during 

readouts. As a consequence, the phase of WM (and other tissues of similar T1) has different polarity 

(+) in the phase image (B) than GM and CSF. Contribution of background field was considered 

in this simulation. 

Figure 2.1 also highlights the lower magnitude SNR of MPRAGE data (compared to GRE) due 

to several factors. First, MPRAGE used a shorter GRE-TR and a smaller flip angle. In addition, 

the evolving Mz across readout measurements (compared to steady Mz in GRE) results in lower 

mean MPRAGE intensity. Magnitude SNR is closely related to CNR∅, which in turn affects the 

quality of reconstructed QSM. Figure 2.3A illustrates the quality of QSMMPRAGE reconstructed at 

different SNRM levels. For the same SNRM and TE, different DGM structures produce different 

CNR∅ levels due to the contribution of 𝛥𝜒. When CNR∅ is above 6.2, the error in susceptibility 

quantification falls below 0.01 ppm in most DGM nuclei including GP (Figure 2.3B). However, 

SN would require higher CNR∅ to achieve the same accuracy. The error reflects underestimation 

in QSMMPRAGE measurements, which elevates as SNR decreases (Figure 2.4). Different structures 
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experienced different levels of underestimation, with lower levels being observed in structures of 

higher total susceptibility (i.e., sum of susceptibility over volume). The higher the total 

susceptibility, the more phase contrast will be produced and distinguished from the noise floor 

during (spatially regularized) susceptibility reconstruction.  

 

Figure2. 3: Simulation results of magnetization-prepared rapid gradient echo (MPRAGE)-based 

quantitative susceptibility mapping (QSM) vs phase contrast-to-noise ratio (CNR∅). (A) Zoomed 

QSM windows are given at selected signal-to-noise ratio (SNR) levels to visualize resultant 

contrast and boundaries of deep gray matter (DGM) nuclei. SNRM refers to the mean magnitude 

SNR in DGM region. (B) Error in susceptibility quantification vs CNR∅. Segmentation quality at 

different CNR∅ levels are evaluated using (C) Dice and (D) FPD measures. QSMs in (A) i-iv 

correspond to the first, second, third, and fifth data points in (B-D) plots. 
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In addition, DGM nuclei of more distinctive contrast on QSMMPRAGE resulted in more accurate 

segmentations. GP, SN, and PT achieved > 0.7 score in both Dice and FPD when CNR∅ was above 

3.0 (Figure 2.3C,D). With TE of 2.37 ms, this 3.0 CNR∅ corresponds to approximately 34-60 

magnitude SNR (for GP, SN, and PT), which is accessible with typical MPRAGE parameters. GP 

has the highest contrast and achieved 0.9 score in both Dice and FPD at 3.0 CNR∅, and thus 

QSMMPRAGE is promising at least for GP segmentation if CNR∅ greater than 3.0 is secured. This 

CNR∅ gives practical insight into the required SNRM and TE levels for QSMMPRAGE to be useful 

for GP segmentation. 

 

Figure 2.4: The ratio of MPRAGE-based QSM to ground-truth QSM simulated at different SNR 

levels, demonstrating the level of underestimation in MPRAGE-QSM measurements versus SNR.  

2.4.2 In-vivo QSMMPRAGE Quality and DGM Contrast 

Figure 2.5 shows in-vivo images of one subject including standard QSM (A), and QSM from three 

protocols for MPRAGE (B-D) with increasing TE. On QSMGRE (Figure 2.5A), DGM nuclei have 

strong contrast, especially iron-rich regions such as GP, DN, SN, and red nucleus (RN). On 

QSMMPRAGE however, only GP is adequately observable at the shortest TE of 2.43 ms (Figure 

2.5B), with clear boundaries depicted from neighboring Internal Capsule. As CNR∅ improves 

(through longer TE), other iron-rich nuclei achieve better depiction. DN and SN are well depicted 

in Figure 2.5C at TE = 3.50 ms, whereas RN boundaries need longer TE. In the literature, 

commonly used TEs for MPRAGE at 3T vary between 2.96-4.44 ms (49), where, at least, 

promising GP contrast on QSMMPRAGE is expected. Thus, QSMMPRAGE contrast could be useful for 
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improving GP segmentation. On MPRAGE magnitude, some DGM nuclei such as CD and PT 

have good T1w contrast, whereas others with higher iron concentration such as GP, SN, DN, and 

RN have weak T1w contrast (Figure 2.5E). The hybrid contrast image (Figure 2.5F) produced by 

combining both T1w and QSMMPRAGE contrast for TE of 3.5 ms shows improved contrast of GP, 

SN, and DN while preserving the T1w contrast of other regions. On QSMMPRAGE, artifacts are 

observed near low-SNR regions (CSF, brain edges, and around veins), and these artifacts get 

attenuated as CNR∅ improves. On the hybrid contrast, these artifacts fall mainly in and near the 

low-SNR CSF regions, and thus intensity in these regions deviates from typical values. In 

simulations, artifacts are more pronounced than in vivo (Figure 2.12) as the simulations did not 

exactly match the in-vivo experiments that had GRAPPA/partial Fourier accelerations, elliptical 

filtering, background field, partial volume, etc. 

 

Figure 2.5: Contrast of deep gray matter (DGM) nuclei on (A) QSMGRE, (B-D) QSMMPRAGE, (E) 

T1w and (F) HCMPRAGE. Globus pallidus (GP; green arrow), substantia nigra (SN; red arrow), red 

nucleus (RN; blue arrow), and dentate nucleus (DN; brown arrow) have higher contrast on 

quantitative susceptibility mapping (QSM), as shown in (A-D), and their contrast enhances with 

longer echo time (TE). These nuclei typically have weak contrast on magnetization-prepared rapid 

gradient echo (MPRAGE) magnitude images (E). Hybrid contrast in (F) was produced by 

combining T1w contrast (E) and QSMMPRAGE with TE = 3.50 ms (C). (B) shows that using TE as 

short as 2.43 ms could be sufficient to improve GP segmentation. MPRAGE data has 1-mm 

isotropic resolution. 
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2.4.3 Susceptibility Quantification 

Figure 2.6 illustrates the differences in susceptibility quantification between QSMGRE and 

QSMMPRAGE for six DGM structures. Note that GRE images have lower spatial resolution (~ × 0.5) 

in the B0 direction, which might introduce underestimation in QSMGRE measurements (196). 

However, scatter plots in Figure 2.6A, for the main dataset of 40 subjects, showed consistent 

underestimation of susceptibility using QSMMPRAGE. This underestimation can be attributed to the 

low CNR∅ of this dataset. GRE data have ~4.9 higher CNR∅ (~2 gain from SNRM and ~√ 6 gain 

from multiple echoes) than MPRAGE, and this CNR effect seems to be dominant over the effect 

of the lower resolution in the B0-direction. The mean susceptibility difference over 40 subjects is 

below 0.020 ± 0.014 ppm for all structures except SN (Figure 2.6B). Although SN is an iron-rich 

structure, it has the highest difference mainly due to its small size and lower SNR. 

The other 3-subject dataset at 1-mm isotropic resolution was used to explore possible improvement 

in quantification at higher CNR∅. Figure 2.6C shows a general trend of lower differences with 

longer TEs. The greatest improvement was observed in GP with mean susceptibility difference 

being reduced to below 0.008 ± 0.004 ppm and 0.005 ± 0.005 ppm for TE of 3.50 ms and 4.44 ms, 

respectively. Less improvement was observed in other structures with differences staying around 

0.015 ± 0.009 ppm at TE of 4.44 ms. Furthermore, the unexpected increase in differences of some 

nuclei (CD and TH for instance) at 1-mm resolution compared to 0.87-mm originates from the 

larger statistical sample (i.e., 40 vs 3) and the wider age spectrum (i.e., higher susceptibility/CNR 

at older ages) of the 40-subject dataset.  

Results reflect that within practically achievable SNR, QSMMPRAGE could give reasonable 

estimates for only DGM structures of strong susceptibility and large size. Both simulation and 

experimental results showed a trend of accuracy improvement with higher CNR∅. Although 

simulation results showed that structures like CD, PT, and TH can achieve less than 0.005 ppm 

error with CNR∅ of 2.0, higher error levels were observed in in-vivo measurements. This 

difference could be attributed to the ideal setup assumed in simulations that uses perfect 

segmentation masks and does not require background removal nor accounts for coil sensitivity and 

combination issues. 
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Figure 2.6: (A) Scatter plots comparing mean susceptibility values (ppm) of six deep gray matter 

(DGM) structures measured on QSMGRE and QSMMPRAGE of the 40-subject dataset (spatial 

resolution of 0.87×0.87×0.85 mm3). Linear regression is represented by a solid line described by 

the equation, P value, and Pearson correlation coefficient (r) listed on each plot. Plots in the lower 

row are zoomed in. (B) Mean absolute differences between the measurements in (A). (C) Mean 

absolute differences at longer echo times (TEs) illustrated using the three-subject dataset of 

1.00×1.00×1.00 mm3 resolution. Measurements on the left (L) and the right (R) hemispheres are 

reported separately. 
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2.4.4 Segmentation Performance 

Figure 2.7 illustrates T1w, HC and QSM contrasts of two subjects. Structures like CD and PT 

already have high contrast on T1w and benefit much less from QSM inclusion. On T1w images, 

the SNR is as low as 31, due to the very high resolution (0.64 mm3 voxel volume) and the parallel 

imaging acceleration (GRAPPA = 3) employed in collecting the MPRAGE data. Combined with 

a short TE of 2.37 ms, the low CNR∅ of this data (~ 0.8-2.7) limits the quality of QSMMPRAGE. At 

this SNR level, structures other than GP are far below the required CNR∅ threshold (i.e., > 3.0) 

determined by simulation and thus are not visible on QSMMPRAGE. The susceptibility difference 

between PT and GP is not even enough to sharply depict the boundary between them on 

QSMMPRAGE. However, the less visible and problematic edge on T1w contrast is the edge between 

GP and internal capsule that is sufficiently delineated on QSMMPRAGE. Therefore, despite the 

limited quality, QSMMPRAGE improves GP visibility on HCMPRAGE and permits better segmentation 

for this structure. Thus, in the rest of this section, segmentation performance analysis was focused 

on GP alone. 

 

Figure 2.7: Axial views of T1w, hybrid, and quantitative susceptibility mapping (QSM) contrasts 

for two subjects. Globus pallidus (GP) visibility was improved on HCMPRAGE images, similar to 

HCGRE. QSMMPRAGE helps emphasize the edge between GP and internal capsule (blue arrows), 

even though overall quality of QSMMPRAGE is limited. Artifacts near low signal-to-noise ratio (SNR) 

regions (red arrows) can alter intensity in the corresponding locations on HCMPRAGE. 

Magnetization-prepared rapid gradient echo (MPRAGE) data has 0.87×0.87×0.85 mm3 

resolution and echo time (TE) of 2.37 ms. 
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Figure 2.8 demonstrates GP segmentation outputs of the same two subjects. Compared to only 

using T1w contrast, incorporating QSM contrast improved GP segmentation (green arrows) in both 

subjects. Segmentations obtained by employing QSMMPRAGE are comparable to those obtained 

using QSMGRE. When only magnitude contrast is utilized, GP structures were under-segmented, 

more severely in subject #16, leading to underestimating the actual GP volume. Red arrows 

indicate regions that are less accurately segmented even when QSM contrast was utilized. 

Segmentation improvements are reported quantitatively in Figure 2.9A. With reference to the 

results obtained using HCGRE, utilizing QSMMPRAGE significantly outperformed T1w-based 

segmentation on all measures. Furthermore, deviation in segmentation across all subjects is less 

pronounced with QSMMPRAGE. The lower scores of T1w-based segmentations on both FND and 

AVD indicate under-segmentation of the GP structure and discarding portions of its volume. On 

FPD, both approaches have > 0.9 scores, with a statistical improvement for HCMPRAGE, reflecting 

that both approaches tend to not over-segment GP (i.e., to not include many voxels from other 

neighboring tissues). 

Figure 2.9B illustrates that incorporating QSMMPRAGE contrast improved Dice scores of GP 

segmentation across all subjects. GP volume measurements in Figure 2.9C show that both 

HCMPRAGE and HCGRE give comparable volume estimates (Pearson correlation (r) = 0.95), while 

relying only on magnitude contrast leads to underestimation (r = 0.71). The no-reference analysis 

shown in Figure 2.10 illustrates the similarity between the predicted GP volumes from the 

quadratic probabilistic model and the measured volumes, with both HC segmentation methods 

having substantial improvements over pure T1w contrast. The latter underestimates predicted GP 

volumes, as most of the T1w measurements are below the identity dashed line. 

2.5 DISCUSSION 

We created QSMMPRAGE from standard MPRAGE phase at 3T and explored two possible 

applications: susceptibility quantification and segmentation enhancement for iron-rich DGM 

structures that normally have weak contrast on MPRAGE magnitude. Simulation results revealed 

that the low phase CNR present in MPRAGE confines the applications of QSMMPRAGE to DGM 

nuclei of extremely high iron concentration, such as GP. Segmenting GP based on T1w is 

problematic and previous studies have proposed incorporating QSM contrast from a GRE 

sequence in the segmentation pipeline and demonstrated its effectiveness for GP against using T1w 
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contrast alone (122,167–169). The additional contrast information from QSM can be processed 

independently or alternatively combined with T1w magnitude to produce a single contrast-

improved image. We used the latter approach in this work and demonstrated a significant 

improvement at 3T in GP segmentation over using T1w-only contrast. We showed that comparable 

improvement in GP segmentation can be achieved using QSMMPRAGE without the need for an 

additional GRE acquisition, which is normally not included in most brain exams. Generated QSM 

from MPRAGE phase is intrinsically registered to the MPRAGE magnitude and thus avoids the 

need for registration and associated translation and interpolation errors. Results showed that 

relying only on T1w contrast can lead to misestimation of GP volume. Without enough contrast, 

the segmentation algorithm tends to outline GP boundaries blindly based on the shape and the size 

observed in the training datasets. The reference-free analysis also showed that the T1w-alone 

method has the highest error with a noticeable tendency to underestimate GP volume. 

In addition to being helpful for improving segmentation, QSMMPRAGE contains valuable 

information by itself as a stand-alone technique for quantifying susceptibility of iron-rich 

structures. Our results demonstrated that QSMMPRAGE with typical TE range can estimate mean 

susceptibility of iron-rich DGM nuclei with overall 0.020 ± 0.014 ppm error compared to QSMGRE. 

The low CNR of QSMMPRAGE introduces underestimation in the susceptibility measurements, with 

best results in iron-rich structures of large size, such as GP and DN. Utilizing longer TE improves 

CNR∅ and permits better quantification accuracy. However, longer TE generally decreases 

magnitude SNR and increases T2* weighting. Nevertheless, this limited quality QSMMPRAGE still 

provides a susceptibility quantification opportunity for imaging protocols without a standard QSM 

acquisition. 

This work further investigated the effect of the inversion pulse on the quality of MPRAGE phase 

and QSM. Simulation results revealed limited artifacts around the edges of low SNR regions. 

These artifacts did not significantly disturb QSM reconstruction. In addition, these artifacts can be 

further minimized by estimating the inconsistent portion of k-space with techniques like those 

employed in partial Fourier acquisition (197). Note that the simulation of MPRAGE considered a 

linear ordering of k-space phase encoding. If centric ordering is used for instance, the k-space 

inconsistency will be between the low and the high frequency regions, instead of being confined 

within the high frequency region alone. In this scenario (and others like radial encoding), artifacts 
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and the means to handle them will be different. In 3T experimental data, artifacts were observed 

around CSF, veins and brain volume edges, and the artifacts were less apparent as CNR∅ improved. 

These artifacts and other intensity variations on QSMMPRAGE propagate into HCMPRAGE and thus 

could affect the segmentation of structures other than GP. A simple approach to address this issue 

is segmenting structures that have good contrast based on T1w image alone and using HCMPRAGE 

only to segment structures that normally have weak contrast like GP. 

 

Figure 2.8: Comparison between FSL segmentation outputs obtained using three different input 

contrasts. Axial and coronal views of QSMGRE for two subjects are shown with globus pallidus 

(GP) boundaries (obtained from segmentation) being outlined with yellow color. Segmentations 

shown in left, middle, and right columns are obtained using standard magnetization-prepared 

rapid gradient echo (MPRAGE) T1w contrast, hybrid contrast HCMPRAGE, and hybrid contrast 

HCGRE, respectively. Employing both T1w and quantitative susceptibility mapping (QSM) contrasts 

improved GP segmentation (middle and right columns). Green arrows indicate some regions of 

improved segmentation, and red arrows point to less improved regions. 
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Figure 2.9: (A) Boxplots of globus pallidus (GP) segmentation performance measures obtained 

using the 40-subject dataset. Measures are calculated with reference to HCGRE segmentation. On 

all measures, GP segmentations obtained using HCMPRAGE are more similar to the reference than 

those obtained using T1w contrast, with significantly smaller deviations. Standard deviation (SD) 

and statistical significance (P) values of improvement are listed above boxplots. Squares and 

circles represent means and outliers, respectively. (B) Dice scores and (C) volume measurements 

of GP segmentation for all subjects. Segmentation using T1w contrast (blue line) tends to provide 

smaller volumes. 
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Figure 2.10: Reference-free performance analysis. Measured globus pallidus (GP) volumes from 

studied segmentation methods are plotted against predicted volumes from the quadratic 

probabilistic model. Associated error standard deviation (𝜎𝑒), root-mean-square error (RMSE), 

and Pearson correlation coefficient (r) are given on top of each plot. This analysis demonstrates 

quantitative susceptibility mapping-based hybrid contrast (HC) methods are more precise than 

T1w alone. 

We used simulation also to investigate the effect of CNR∅ on the quality of obtained QSM, with 

the aim to specify a minimum requirement for an acceptable quality. Results showed that 

segmentation accuracy has dependencies on both the size and the susceptibility strength of the 

structure. DGM nuclei with smaller size or/and lower iron concentration will require more CNR∅ 

to achieve adequate segmentation accuracy. Having large size and the highest iron concentration 

within basal ganglia, GP would require CNR∅ of 3.0 for good segmentation. For the experimental 

3T datasets used in the analysis, magnitude SNR around GP was 31.4 and TE was 2.37 ms, making 

the CNR∅ (~2.7) slightly below 3.0. This dataset was obtained using a fast high-resolution 

MPRAGE sequence optimized for imaging the cortical layer (with 0.87×0.87×0.85 mm3 

resolution, GRAPPA = 3, acquired in 3.65 min). Nevertheless, the limited-quality QSM obtained 

from the phase of this low-CNR data contributed significantly to improving GP segmentation, with 

a better performance being expected at higher CNR levels. Note that QSM contrast is sensitive to 

the chosen processing setup (198), and thus numeric values given above can deviate depending on 

the employed processing steps and parameters. 
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New MPRAGE versions have been proposed recently, known as MP2RAGE (199,200), 

MPnRAGE (201), and ME-MP2RAGE (176–178), which use two or more inversion times and 

may collect multiple echoes. For versions such as MP2RAGE, that maintain a single short TE for 

both optimal SNR and T1w contrast, the same methods used here could be applied. When multiple 

echo times are collected including long echo times, a more standard multi-echo QSM 

reconstruction can be performed. This extended multi-echo MP2RAGE version however requires 

longer acquisition time for the increased number of echoes sampled along the T2* decay after each 

RF pulse and is not standard practice in most brain studies that seek a rapid MPRAGE with strong 

T1w contrast without substantial T2* contamination. For example, acquiring 4 echoes after each 

RF pulse would quadruple the TR of each encoding, which would limit the number of readouts 

under the transient conditions of inversion recovery. Furthermore, prolonging encoding TR 

increases the blurring caused by T1-recovery modulation. 

Limitations of this study include demonstrating segmentation improvement using only a single 

iron-rich DGM nucleus, GP. This structure was the focus because it is typically poorly visualized 

and poorly segmented on T1w images and has been shown to have the greatest benefit from a dual 

(T1w+QSMGRE) segmentation approach (168). Furthermore, it has the highest iron concentration 

of the main basal ganglia structures, making it amenable to short echo-time QSM. Although this 

work used one scenario to utilize the inherent contrast in MPRAGE phase, better utilization is 

expected using more sophisticated segmentation algorithms (169). Another limitation is not using 

manual segmentation as a reference standard because our main goal was to compare segmentation 

quality to independent acquisitions of (T1w+QSMGRE) which has previously reported improved 

results (122,168,169). In addition, (T1w+QSMGRE) superiority was assessed using reference-free 

performance ranking. 

2.6 CONCLUSION 

This study explored QSM produced from MPRAGE phase, thus using a common brain imaging 

sequence rather than requiring a specialized QSM acquisition. This QSMMPRAGE improved the 

segmentation of GP that has poor contrast on T1w images. Results showed that both GP 

segmentation and volume quantification were significantly improved when both T1w and 

QSMMPRAGE contrasts from MPRAGE are employed. In addition, QSMMPRAGE provides access, 
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though limited, to explore and quantify susceptibility of iron-rich regions in clinical protocols that 

do not include multi-echo GRE acquisition. 
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2.8 Appendix 

2.8.1 Background Field Removal 

Tissue frequency shift due to tissue-induced field was extracted using RESHARP (Regularization 

Enabled Sophisticated Harmonic Artifact Reduction for Phase) (76). For both MPRAGE and GRE, 

a kernel radius of 3 mm was used. Tikhonov regularization parameter was 1×10-3 for GRE, and 

5×10-4 for MPRAGE data.  

2.8.2 Susceptibility Reconstruction 

Susceptibility maps were reconstructed using the iterative total variation inversion algorithm in 

the spatial domain. Regularization parameter (𝜆) for GRE data was set to 5×10-4. However, 

MPRAGE data has lower SNR and thus higher regularization was required (see Figure 2.11). 

Regularization parameters of 2×10-3 and 6×10-3 were used for the MPRAGE data of resolution 

1.00×1.00×1.00-mm3 and 0.87×0.87×0.85-mm3 respectively. The code files for background field 

removal and susceptibility reconstruction can be found at 

https://github.com/sunhongfu/QSM/tree/master/Siemens_3T.  

2.8.3 Artifacts in Simulation versus In-vivo 

Figure 2.12 shows that the low-SNR artifacts observed in simulations are also found in tissue field 

maps acquired in-vivo. However, these artifacts are less pronounced (smoother) in-vivo mainly 

because simulations did not exactly match the experimental setup, which included further 

processing such as GRAPPA, partial Fourier, elliptical and spatial filtering. Also, the simulation 

phantom has sharp transitions between tissues and did not consider partial volume effects nor 
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background field effects. Moreover, relaxation effects (both T1 and T2*) were applied readout-by-

readout (instead of real-world point-by-point) to simplify simulations (i.e., number of 

FFTs/IFFTs). Nevertheless, the simulations clarify the problematic issues. These low-SNR 

artifacts are further reduced in the final susceptibility map due to the use of spatial regularization 

(see Figure 2.11).  

In addition, the in-vivo tissue field map has artifacts near brain boundaries arising from 

unsuccessful removal of background field. These artifacts can be minimized by proper masking 

and selection of kernel radius during the background field removal step.  

 

 

Figure 2.11: Illustration of regularization parameter (𝜆) effect on reconstructed QSM. 

𝑄𝑆𝑀𝑀𝑃𝑅𝐴𝐺𝐸 has lower SNR/CNR than 𝑄𝑆𝑀𝐺𝑅𝐸  and requires a higher level of regularization. 

Higher 𝜆 values reduced artifacts found in 𝑄𝑆𝑀𝑀𝑃𝑅𝐴𝐺𝐸 around low-SNR regions such CSF and 

veins (orange arrows). MPRAGE data has 1-mm isotropic resolution and TE of 3.50 ms. 
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Figure 2.12: Comparison between artifacts found in-vivo and simulation. tissue field maps of both 

cases show artifacts around low-SNR regions (orange arrows). Additionally, the in-vivo tissue 

field map has artifacts near brain edges (blue arrows) originating from remnant background field. 

In-vivo MPRAGE data has 1-mm isotropic resolution and TE of 3.50 ms.  
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Chapter 3: Quantifying cerebral microbleeds using MPRAGE-QSM1 
 

3.1 Abstract: 

Purpose: T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) is commonly 

included in brain studies for structural imaging using magnitude images; however, its phase images 

can provide an opportunity to assess microbleed burden using QSM. This potential application for 

MPRAGE-based QSM was evaluated using in-vivo and simulated measurements. Possible factors 

affecting image quality were also explored.  

Methods: Detection sensitivity was evaluated against standard multi-echo gradient-echo (MEGE) 

QSM using 3T in-vivo data of 14 subjects with 106 confirmed microbleeds. The two methods were 

compared based on the microbleed size and susceptibility measurements. In addition, simulations 

explored detection sensitivity of MPRAGE-QSM at different representative field strengths, echo 

times, and voxel aspect ratios using microbleeds of different size, susceptibility, and location.  

Results: In-vivo, microbleeds appeared to be smaller (×0.54) and of higher mean susceptibility 

(×1.8) on MPRAGE-QSM than on MEGE-QSM, but total susceptibility estimates were in closer 

agreement (slope:0.97, r2:0.94) and detection sensitivity was comparable. In simulations, QSM at 

1.5T had low contrast-to-noise ratio that obscured the detection of many microbleeds. SNR levels 

at 3T and above resulted in better contrast and increased detection. The detection rates for 

microbleeds of minimum 1-voxel diameter and 0.4 ppm susceptibility were 0.55, 0.80, and 0.88 at 

SNR levels of 1.5T, 3T, and 7T respectively. Size and total susceptibility estimates were more 

consistent than mean susceptibility estimates, which showed size-dependent underestimation. 

Conclusion: MPRAGE-QSM provides an opportunity to detect and quantify the size and 

susceptibility of microbleeds of at least 1-voxel diameter at B0 ≥ 3T with no additional cost, when 

standard T2*-weighted images are not available. The total susceptibility measure is more robust 

against sequence variations and might allow combining data from different protocols.  

Keywords: Microbleed, QSM, MPRAGE, 3T. 

 
1 A portion of this chapter was presented as an abstract in: Naji N, Gee M, Jickling GC, Camicioli R, and Wilman AH. 

Quantifying Cerebral Microbleeds using MPRAGE-based QSM. ISMRM 28th Annual Meeting & Exhibition, online, 

2020: abstract #1760. 
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3.2 INTRODUCTION 

Cerebral microbleeds (CMBs) are chronic, tiny blood leakages associated with several 

neurological diseases including Alzheimer’s disease, cerebral amyloid angiopathy (CAA) and 

vascular dementia (203–205). CMBs prevalence increases with age and can be found in healthy 

elderly populations (206–209). Their shape is typically defined to be round or ovoid with size up 

to 10 mm on T2*-sensitive imaging (204). The CMB distribution in the brain varies from disease 

to disease, with predominance in deep regions in hypertension related diseases and in lobar regions 

in Alzheimer’s disease and CAA (206,210). Therefore, localizing CMBs and quantifying their size 

and iron content can help in characterizing, assessing the severity and monitoring the progression 

of the underlying illness. Furthermore, knowing the CMB burden can help in assessing the safety 

of antithrombotic medications and in therapeutic management (211). 

CMBs are mainly hemosiderin deposits that appear as homogeneous hypointense foci on T2*-

weighted images, owing to their paramagnetic susceptibility property that accelerates spin 

dephasing and reduces the effective transverse relaxation time (T2*). Thus, T2*/susceptibility 

sensitive MRI techniques are used to detect CMBs and quantify their size; using the magnitude of 

gradient recalled echo (GRE) images for instance, or incorporating phase information from 

susceptibility weighted imaging (SWI) to improve contrast and to differentiate between CMBs and 

diamagnetic mimics (212). However, the detection and the size of CMBs on GRE and SWI images 

are affected by several acquisition parameters, including: field strength, echo time, spatial 

resolution and the gap width between slices. As both signal-to-noise ratio (SNR) and susceptibility 

effects enhance with field strength, the detection sensitivity for CMBs increases significantly at 

higher field strengths (212–216). Longer echo times permit more spin dephasing and thus intensify 

the signal loss caused by CMBs on magnitude images; known as the blooming effect. However, 

the dependence of the CMB size on echo time complicates burden assessment and comparison 

between different studies. Furthermore, spatial resolution is directly related to partial volume 

effects and digitization error, consequently the contrast of small CMBs might be missed by 

averaging in relatively large voxels or by large inter-slice gaps. For this reason, 3D GRE imaging 

markedly improves the detection sensitivity compared to 2D, by allowing smaller slice thickness 

(217).  
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In addition to the dependency on acquisition parameters, quantifying CMB size directly on 

magnitude or phase images suffers from overestimation as both provide non-localized information 

caused by magnetic dipole effects. On the other hand, quantitative susceptibility mapping (QSM) 

is another technique derived from the phase of the T2*-weighted images that retrieves the 

underlying susceptibility distribution rather than showing its dipole blooming effects (55,218). 

QSM is typically derived from multi-echo gradient-echo (MEGE) data and has been employed for 

assessing the burden of CMBs, providing higher contrast and improved localization accuracy over 

magnitude-based approaches (140,219,220). Despite increasing interest in QSM, its time-

consuming 3D T2*-based imaging sequence is not nearly as common in brain studies as other MRI 

modalities such as T1-weighted used for structural imaging.    

3D magnetization-prepared rapid gradient-echo (MPRAGE) is a T1-based imaging sequence 

commonly found in brain studies for volumetry and segmentation purposes, benefiting from the 

high contrast between gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) on its 

magnitude image. MPRAGE phase is an integral part of the sequence that is available at no 

additional acquisition time, and it can be converted into a susceptibility map. Recently, it was 

shown that a susceptibility map derived from the phase of the MPRAGE sequence (referred to 

thereafter as MPRAGE-QSM) can provide sufficient contrast for regions of extreme iron 

concentration, such as the globus pallidus (221). Employing MPRAGE phase to quantify 

microbleed load can help in reducing total exam time, as well as allowing microbleed assessment 

in studies that do not already include T2*-sensitive sequences. In particular, the predominance of 

MPRAGE structural imaging in brain studies might open windows for MPRAGE-QSM to further 

microbleed quantification in larger populations undergoing this standard scan. 

We evaluate the potential of MPRAGE-QSM for assessing the burden of CMBs in comparison to 

the standard MEGE-QSM at 3T, and we use simulations to explore limitations and possible effects 

of field strength, echo time, resolution and microbleed location on MPRAGE-QSM results. 

3.3 METHODS 

In-vivo data of subjects with microbleeds were used to evaluate the accuracy of CMB detection 

and quantification using MPRAGE-QSM in comparison to the standard MEGE-QSM. 

Additionally, numerical simulations were used to study the ability of MPRAGE-QSM to detect 
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and quantify CMBs of different sizes and susceptibility levels at different field strengths, echo 

times, voxel aspect ratios, and locations.  

3.3.1 In-vivo Study 

Fourteen subjects (age 53-89 years, mean ± SD: 69 ± 10 years, 5 females) were studied 

retrospectively based on the inclusion criteria of having CMBs (identified by an experienced 

radiologist Dr. Feryal Saad) and the availability of both MEGE and MPRAGE sequences with 

saved raw phase images. Subjects were recruited from prospective research studies which studied 

either aging, vascular dementia, or CAA (222,223). All subjects provided informed consent and 

studies were approved by the local ethics committee. Brain imaging was done at 3T (Prisma, 

Siemens Healthcare, Erlangen, Germany) with a 20- or 64-channel head coil.  

Sagittal MPRAGE images used 0.87×0.87×0.85 mm3 resolution, FOV 250×250×176.8 mm3, flip-

angle 8°, TR 1800 ms, TI 900 ms, TE 2.37 ms, GRAPPA factor 3, and acquired in 3.65 minutes. 

Axial MEGE images were all acquired using TE1 3.82 ms, ∆TE 5.5 ms, 240-mm frequency FOV, 

0.94×0.94 mm2 in-plane resolution and GRAPPA factor of 2. Other MEGE parameters had slight 

variations between two protocols: slice thickness (1.7 vs 2.0 mm), number of slices (88 vs 80), 

number of echoes (6 vs 7), flip angle (13° vs 17°), TR (37 vs 45 ms), phase FOV (202.5 vs 217.5 

mm), and acquisition time (5.50 vs 5.65 minutes). The two sequences (MPRAGE and MEGE) 

were not always acquired in the same session (43% acquired on same week). The median interval 

between the two scans was 17 days (range: same day to 3.4 months).  

To explore the achievable contrast improvement at a longer echo time, one subject (male, 73 years 

old) received one additional MPRAGE with TE 4.44 ms and common spatial resolution of 1 mm 

isotropic acquired in 5.57 minutes. Other imaging parameters were FOV: 256×256×208 mm3, flip 

angle: 12°, TI: 950 ms, TR 2170 ms, GRAPPA acceleration: 2, and slice partial Fourier: 6/8. 

3.3.2 Numerical Simulation Study 

In brain volumetric studies, the MPRAGE sequence collects a single echo at a very short echo 

time, which limits the achievable SNR and phase contrast. In MPRAGE, the shortest possible TE 

is typically used, depending upon factors such as the receiver bandwidth, acquisition matrix and 

fractional echo percentage, as well as RF pulse length, gradient strength and slew rate, with typical 

TE of 3 ms (range: 2.37 to 4.44 ms) (194,195,224,225). To explore the consequences of the 
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resultant limited phase contrast on CMB detectability, numerical simulations were performed 

using a brain phantom with typical sequence parameters.  

A realistic numerical brain phantom was created based on a 0.33-mm isotropic in-vivo 

susceptibility map from a healthy subject (226), which was further interpolated into 0.10 mm 

isotropic spatial resolution. To simulate background field contributions, air regions were added to 

the susceptibility map in the sinuses and outside the skull. Spherical CMBs of different radii (𝑎 in 

mm: 0.15, 0.25, 0.45, 0.85, 1.75, and 3.45) and susceptibility levels (∆𝜒 in ppm: 0.10, 0.20, 0.40, 

0.70, 1.00, 1.50, and 2.00) were added to the susceptibility map in groups of maximum 20 CMBs 

per experiment. The total volume susceptibility for each susceptibility and radius pair (computed 

as 4𝜋𝑎3∆𝜒/3) is given in Table 3.1. The added CMBs were distributed over the whole brain in 

deep and cortical regions, such that each CMB is tested both near and far from the brain edge. The 

susceptibility phantom was then used to simulate a field shift map at different echo times (TE in 

ms: 2.37, 3, 3.5, and 4.44) and field strengths (B0 in T: 1.5, 3, and 7). 

Table 3.1: Total volume susceptibility [ppm.mm3] of simulated microbleeds. 

           𝒂[mm] 

∆χ [ppm] 

0.15 0.25 0.45 0.85 1.75 3.45 

0.10 0.001 0.006 0.038 0.257 2.24 17.2 

0.20 0.003 0.013 0.076 0.514 4.49 34.4 

0.40 0.006 0.026 0.153 1.029 8.98 68.8 

0.70 0.010 0.046 0.267 1.801 15.71 120.4 

1.00 0.014 0.065 0.382 2.572 22.45 172.0 

1.50 0.021 0.098 0.572 3.859 33.67 258.0 

2.00 0.028 0.131 0.763 5.144 44.90 344.0 

 

The resultant data were then down sampled to 0.85 mm isotropic resolution to simulate sub-voxel 

CMBs and partial volume effects. At this spatial resolution, the diameters of the smallest and the 

largest CMBs would be equivalent to 1/3 voxel and 8 voxels, respectively. The down sampled data 

were then used to produce MPRAGE phase and magnitude (Figure 3.1) with the following 

sequence parameters: 8º flip-angle, 208 turbo factor, 208 sagittal slices, 180×249 mm2 FOV and 
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212×294×208 matrix size. The inversion time (TI) and repetition time (TR) were adjusted for 

different field strength based on literature values: TI/TR of 1000/2400 ms at 1.5T, 900/1800 ms at 

3T, 1000/3000 ms at 7T (224,225). To investigate the effect of the voxel shape, two through-plane 

resolutions were tested: 0.85 mm (1:1:1 aspect ratio) and 1.70 mm (1:1:2 aspect ratio). In 

MPRAGE simulation, a proton density map was synthetically constructed using segmentations of 

GM, WM and CSF with the following values: 0.807, 0.679 and 1.0 for GM, WM, and CSF 

respectively. Tissue segmentations were obtained based on the T1w image using the ‘fast’ tool of 

the FSL package (227). The proton density map was used as the initial magnetization and exposed 

to T1 relaxation based on the field strength. T1 values used for different tissues were 

(GM/WM/CSF) 1200/650/4300 ms at 1.5T, 1600/840/4300 ms at 3T, and 1940/1130/4300 ms at 

7T (23,228). The effect of the CMBs on the MPRAGE magnitude was simulated via R2* 

relaxation, which was approximated as 𝑅2
∗  =  127|∆𝜒| + 23 at 3T (26), and scaled linearly to 

other field strengths.     

To include noise effects, each setup was repeated 10 times with complex white noise being added 

to the MPRAGE data in k-space at a specified SNR level. Measured SNR level from in-vivo data 

at 3T was set as a reference and then adjusted in each run based on the field strength and the voxel 

size. QSM was then obtained from the MPRAGE phase using the processing pipeline described in 

Section 3.3.3. 

The magnetic field induced by a sphere of ∆𝜒 susceptibility and 𝑎 radius can be calculated at 

distance 𝑟 from the center of the sphere using the following analytical expression (24): 

∆𝐵𝑠𝑝ℎ𝑒𝑟𝑒(𝑟) =  
1

3
𝐵0 ∆𝜒 (

𝑎

 𝑟
)

3
(3 cos2 𝜃 − 1)               , 𝑟 ≥ 𝑎                     (3.1) 

To estimate lower limits on the susceptibility value of a CMB of a given diameter for successful 

detection, equation (3.1) can be used to calculate the phase shift (∆∅) introduced by a spherical 

susceptibility source along the main field direction (𝜃 = 0°): 

∆∅ = 2𝜋𝛾 𝑇𝐸 ∆𝐵𝑠𝑝ℎ𝑒𝑟𝑒(𝑟) = 2𝜋𝛾 𝑇𝐸
2

3
𝐵0 ∆𝜒 (

𝑎

 𝑟
)

3

          , 𝑟 ≥ 𝑎                   (3.2) 

Additionally, the introduced phase contrast should be sufficiently above the noise level to be 

distinguishable from background noise, which can be quantified using phase contrast-to-noise ratio 

(𝐶𝑁𝑅𝜙). From equation (3.1), a spherical susceptibility source can induce a phase shift of up to 
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2𝜋𝛾 𝑇𝐸
2

3
𝐵0 ∆𝜒 and 2𝜋𝛾 𝑇𝐸

1

3
𝐵0 ∆𝜒 along the directions parallel (𝜃 = 0°) and perpendicular (𝜃 =

90°) to the main field, respectively. The latter can be used in 𝐶𝑁𝑅𝜙 calculation to ensure that 

phase contrast is above the noise level in both directions. Given that phase noise is inversely related 

to the magnitude SNR (SNRM) (184), 𝐶𝑁𝑅𝜙 can be expressed as:  

𝐶𝑁𝑅𝜙 =  2𝜋𝛾 𝑇𝐸
1

3
𝐵0 ∆𝜒 ∙ 𝑆𝑁𝑅𝑀                                               (3.3) 

Simulation results will be used to determine lower bounds for microbleed susceptibility and 𝐶𝑁𝑅𝜙 

that yield successful detection, using equations (3.2-3). Successful detection of a particular CMB 

is defined as detecting it with a rate ≥ 90% (i.e., detected at least 18 times out of the 20 repetitions).  

3.3.3 QSM Processing  

The following processing steps were used for all simulated and in-vivo data (both MEGE and 

MPRAGE) unless otherwise stated. A brain mask was obtained from the magnitude of the first 

echo using brain extraction tool (BET) of the FSL package (64) with 0.4 threshold and 2.0 

smoothness factor. ROMEO was used to resolve aliasing in phase images of both sequences (69), 

which considers both spatial and temporal (if available) phase evolution to unfold phase wraps. 

For the MEGE data, the average phase of the first five echoes was used in the subsequent steps. 

Phase contributions from background field were removed using the variable-radius sophisticated 

harmonic artifact reduction for phase (V-SHARP) data algorithm with a maximum kernel of 12 

mm (55,77), and susceptibility maps were produced using total variation dipole inversion (229) 

with a regularization parameter optimized using the curvature of the L-curve method (230).  

3.3.4 Registration and Measurement 

The in-vivo MEGE-QSM data was transformed into MPRAGE space by rigidly registering the 

magnitude of the MEGE first echo to the MPRAGE magnitude using the advanced normalization 

tools (ANTs) package (187), and then applying the resultant transformation coefficients to the 

MEGE susceptibility map.  

For simulated data, measurements were done automatically using spherical masks representing the 

CMBs. The radius of these masks was expanded to capture any partial volumes and then voxels 

with values lower than 20% of the maximum susceptibility within the mask were excluded. Area 

measurement was done on the slice of the highest susceptibility within the 3D mask.  
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For in-vivo data, each microbleed was manually circumferenced with a spherical mask using ITK-

SNAP software v. 3.4.0 (231), and then the mask was refined using the same susceptibility 

threshold mentioned above. The produced measurement masks were also checked manually and 

adjusted when needed.  

Agreement between measurements was evaluated using linear regression. All processing (except 

brain extraction, registration, and segmentation), simulations, analyses, and plots were performed 

using MATLAB (version R2020a; MathWorks, MA, USA). 

 

Figure 3.1: An illustration of simulated microbleeds of different radii and susceptibility levels 

shown on multiple axial slices of A) susceptibility map, B) MPRAGE phase and C) MPRAGE 

magnitude. MPRAGE was simulated at 3T with TI of 900 ms, TE of 4.44 ms, TR of 1800 ms, and 

0.85 mm isotropic resolution. Green and yellow arrows indicate microbleed locations in cortical 

and subcortical regions, respectively.  



63 
 

3.4 RESULTS 

3.4.1 In-vivo Measurements 

A total of 106 microbleeds were identified across all subjects using the MEGE magnitude of the 

fourth echo and confirmed using the corresponding susceptibility map. All these microbleeds were 

visible on both MEGE- and MPRAGE-based susceptibility maps. Five tiny microbleeds had weak 

contrast on the MEGE-QSM (∆𝜒 ~ 0.03 ppm) and were more visible on the MPRAGE-QSM, while 

another three tiny microbleeds were less visible on the MPRAGE-QSM (∆𝜒 ~ 0.07 - 0.1 ppm) 

compared to the MEGE-QSM. In general, microbleeds had stronger susceptibility value and 

smaller size on the MPRAGE-QSM compared to the MEGE-QSM. 

Figure 3.2 illustrates the appearance of microbleeds on susceptibility maps obtained from the 

MEGE and the MPRAGE phase images versus other MRI techniques typically found in 

neuroimaging protocols. Strong susceptibility sources such as CMBs introduce sufficient phase 

shift to be depicted clearly on QSM. On the susceptibility maps, microbleeds introduced much 

higher contrast difference with respect to their vicinity and thus can be easily detected, particularly 

those of the smallest size that span only few voxels.  

In general, the MPRAGE-QSM has lower contrast when compared to the standard multi-echo 

QSM, and regions of low susceptibility contrast were less visible and missing their sharp edges, 

more notably in subcortical regions. Nevertheless, the microbleeds size and contrast on MPRAGE-

QSM were comparable to the multi-echo QSM and their boundaries were recognizable, as shown 

in Figure 3.3. Figure 3.4 demonstrates that using longer TE (4.44 ms) and slightly lower 

resolution (e.g., 1-mm isotropic) at 3T can improve the SNR and boost the contrast of the 

MPRAGE-QSM remarkably. Quantitatively, microbleeds on MPRAGE-QSM have almost half 

the size (volume slope of 0.54) as on MEGE-QSM, and nearly twice the mean susceptibility (slope 

of 1.8), as shown in Figure 3.5. However, both methods resulted in comparable total susceptibility 

estimates (slope of 0.97), which are also the most correlated measurements (r2 of 0.94). Overall, 

estimating the microbleed size and susceptibility over the whole volume rather than over a cross-

sectional slice resulted in better correlated measurements (e.g., r2 of 0.91 vs 0.71). 
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Figure 3.2: A demonstration of microbleed visibility (60-year-old male) on common MRI 

modalities (T1w, T2w, FLAIR, and T2
*w) versus QSM from MEGE and MPRAGE. Microbleeds are 

more visible on the susceptibility maps with high contrast to surrounding tissue. Despite the short 

TE and low SNR, microbleeds of different sizes are well depicted on the MPRAGE-QSM, which 

required no additional acquisition. Other brain features are better depicted on the standard 

MEGE-QSM. Due to differences in slice thickness, a few microbleeds that appear on the shown 

slice of MEGE-QSM are seen on the adjacent slices on the MPRAGE-QSM. The spatial resolution 

of the MPRAGE is 0.85×0.87×0.87 mm3, of the MEGE is 0.94×0.94×2.0 mm3, and of T2w and 

FLAIR is 0.94×0.94×3.0 mm3. FLAIR: fluid attenuated inversion recovery. 
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3.4.2 Numerical Simulations 

Depending on their size and susceptibility, CMBs introduced different levels of phase shift in the 

MPRAGE phase images, as shown in Figure 3.1. The introduced phase shift depends also on the 

imaging field strength, the echo time, and the spatial resolution of the acquisition. Figure 3.6 

illustrates reconstructed QSM from simulated MPRAGE at different field strengths and echo times 

and compares it to the ground truth susceptibility map. As the field strength and/or echo time 

increases, more CMBs are detected and distinguished from the surrounding tissue. At 1.5T SNR 

levels and with short TE, CNRø in MPRAGE phase is low and reconstructed susceptibility maps 

are noisy. Nevertheless, CMBs with 1.7 mm diameter (i.e., two-voxel width at 0.85 mm resolution) 

and 1.0 ppm susceptibility were observable on these images (by visual inspection, after widening 

the gray scale to distinguish them from noise).  

 

 

Figure 3.3: Sagittal views from three subjects comparing microbleed appearance (indicated by 

red arrows) in MPRAGE-QSM versus MEGE-QSM. MEGE-QSM images were registered and 

transformed into the MPRAGE space. On the MPRAGE-QSM, microbleeds have smaller 

dimensions, more notably in the superior- inferior direction. The brain in each QSM was extracted 

by a mask from the corresponding sequence, causing some shape differences. The time interval 

between the two scans was 1 hour, 23 days, and 103 days for subject #1, #2, and #3, respectively.   
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Figure 3.4: A demonstration of improved MPRAGE-QSM contrast at 3T when the echo time is 

prolonged to 4.44 ms and the spatial resolution is relaxed to 1-mm isotropic. With very short TE 

(2.37 ms), MPRAGE-QSM still have good contrast for strong susceptibility sources, however 

edges are less sharp due to elevated noise level, more notably in the deep regions. Both MPRAGE 

scans were acquired in the same session in 3.65 and 5.57 minutes respectively. The MEGE scan 

was acquired in 5.65 minutes, 34 days earlier. Subject is 73-year-old male.  
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Figure 3.5: Quantitative comparison of MPRAGE-based and MEGE-based microbleed size, mean 

and total susceptibility estimates obtained from in-vivo data at 3T. The top row used volume 

measures, while the bottom row used only a central slice through each microbleed. Microbleeds 

on MPRAGE-QSM are smaller in size and stronger in susceptibility. Total susceptibility 

measurements have the highest correlation coefficient and the closest slope to unity. 

Measurements over microbleed volume were better correlated than measurements over a single 

cross-sectional slice.  

 

3.4.2.1 Microbleed detectability 

No sub-voxel CMB (i.e., diameter of 0.3 and 0.5 mm) was detected in the range of simulated 

susceptibility and SNR levels. Overall in simulated CMBs of one-voxel diameter and above, the 

percentage of detection was 51% at 1.5T, 74% at 3T, and 81% at 7T. With minimum susceptibility 

of 0.4 ppm, the detection percentages rose to 55%, 80%, and 88% at 1.5T, 3T, and 7T respectively.  
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Figure 3.6: An illustration of reconstructed susceptibility maps from simulated MPRAGE phase 

data at different field strengths and echo times. Susceptibility of CMBs varied between 0.4 to 1.5 

ppm as indicated on the right column. More CMBs are observable at higher field strengths and 

longer echo times, however none of the sub-voxel CMBs (diameter of 0.3 to 0.5 mm) were detected. 

The smallest detected CMB in this example has 0.9 mm diameter and 1 ppm susceptibility, and it 

was observable at 7T SNR levels. A wider gray scale was used in 1.5T images to distinguish small 

CMBs from noise.  

 

CMBs were successfully detected (i.e., with rate ≥ 90%) at 1.5T, 3T and 7T SNR levels when total 

volume susceptibility (i.e., 4/3·π·𝑎3∆𝜒 ) reached 2.57, 1.03 and 0.57 ppm·mm3, respectively. 

Using these values and equation (3.2), the susceptibility-introduced phase shift can be estimated 

at any distance from the center of the CMB. It was found that the above-mentioned values for 

successful detection resulted in approximately similar phase shift levels, which reached ~ 0.005 

rad at distance of 5 voxels (i.e., 4.25 mm). Using this observation as a threshold (i.e., 0.005 rad at 

fifth voxel), it is possible to estimate the minimum required ∆𝜒 for each CMB radius that can 

introduce sufficient phase for successful detection. These estimated ∆𝜒 levels are illustrated in 
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Figure 3.7, which shows a nonlinear relation that increases the required ∆𝜒 rapidly as the CMB 

diameter deceases below one voxel. For instance, a CMB of 0.5-mm diameter (i.e., 0.29-voxel 

radius) would be detected at the presented SNR levels of 1.5T, 3T and 7T if its ∆𝜒 is at least 38.7, 

19.4 and 8.3 ppm, respectively. These extreme values indicate that detecting sub-voxel CMBs is 

not feasible at the expected MPRAGE phase contrast. For a CMB of 1.7-mm diameter (one-voxel 

radius), detection would require only ∆𝜒 of 0.99, 0.49, 0.21 ppm at 1.5T, 3T and 7T, respectively. 

Regarding 𝐶𝑁𝑅𝜙, microbleeds were not distinguishable from noise when the 𝐶𝑁𝑅𝜙 dropped 

below 1.5, even if the phase shift requirement was satisfied. Those cases are associated with the 

low SNR at 1.5T, where noise level in the obtained susceptibility map exceeded 100 ppb (SD: 82 

ppb). 

 

Figure 3.7: Analytically obtained minimum required susceptibility ∆𝜒 for successful detection 

versus CMB radius (in voxels). As the CMB radius decreases, the required ∆𝜒 increases 

exponentially. Circles represent susceptibility and radius pairs obtained from simulations. 

3.4.2.2 Microbleed radius estimation 

For microbleed radius estimation, volume-based measurements were slightly better than area-

based measurements (Table 3.2). In general, the error in radius estimation gets smaller as the 

microbleed radius and/or SNR level increases. Actual versus estimated measurements were highly 

correlated (r2 ≥ 0.93), although the slope was slightly below unity (range of 0.85-0.93) mainly due 

to overestimation of small radii (Figure 3.8). In microbleeds with diameter larger than 4 voxels 
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(i.e., radius ≥1.75 mm), the error in estimated radii based on volume measurements was less than 

16% and 11% at 3T and 7T respectively. When area measurements were used, the error in radius 

estimation was less than 21% and 14% at 3T and 7T respectively. However, the error might exceed 

100% in microbleeds of one-voxel diameter at 3T due to size overestimation for such small CMBs. 

  

Table 3.2: Root mean square error of estimated microbleed radius using volume and area 

measurements expressed as a percentage of actual radius (%). Slope and correlation coefficient 

(r2) of estimated versus actual microbleed radii are given in the last two rows.  

 Volume-based 

measurements 

Area-based 

measurements 

Radius 

(mm) 

1.5T 3T 7T 1.5T 3T 7T 

0.45 205.29 105.79 94.62 216.87 130.98 94.74 

0.85 96.99 37.91 49.77 94.84 42.38 57.42 

1.75 27.92 15.66 10.85 35.00 20.42 13.11 

3.45 13.46 5.62 9.79 17.35 6.56 12.21 

Slope 0.87 0.93 0.90 0.85 0.92 0.88 

r2 0.95 0.96 0.96 0.93 0.94 0.95 

 

 

Figure 3.8 illustrates the actual and estimated radii for different detected microbleeds at different 

simulated susceptibility levels and field strengths. The radius was estimated based on microbleed 

volume measurements. Out of all simulated susceptibility levels, estimated CMB radii at Δ𝜒 of 0.1 

ppm (lowest level, gray colored in Figure 3.8) had the worst accuracy and varied widely between 

different repetitions. Other susceptibility levels resulted in good estimation with less than 0.5 mm 

variability between repetitions.  

 



71 
 

 

Figure 3.8: Correlation plots of microbleed actual versus estimated radii [in mm] based on 

volume measurements at different simulated susceptibility levels and field strengths. MPRAGE 

was simulated at TE of 3 ms. The blue solid line represents the linear fit of the measurements, and 

the black dashed line represents the case of exact match (i.e., slope of 1.0 and zero intercept). 

None of the sub-voxel (i.e., radii: 0.15 and 0.25 mm) CMBs was detected. The deviation of slopes 

from unity is mainly due to size overestimation of smaller microbleeds with radius ≤ 1 mm. 

 

3.4.2.3 Susceptibility quantification 

When comparing mean susceptibility measurements of CMBs on MPRAGE-based QSM versus 

the actual values on the simulated high-resolution susceptibility map, a clear systematic 

underestimation was observed that depends on the size of the microbleed: more underestimation 

as the microbleed size gets smaller, as illustrated in Figure 3.9A and Table 3.3. To check if this 

is originating from resolution and partial volume effects, these mean susceptibility values were 

compared to those obtained from a down-sampled version (to the same resolution of 0.85-mm 

isotropic voxels) of the true susceptibility map, which were found to be highly correlated (r2 ≥ 

0.91) and in more agreement (slope of 0.90 to 1.0), as illustrated in Figure 3.9B. In addition, the 

slope deviation from 1.0 between the measurements on the reconstructed and the high-resolution 

ground truth maps was found to be reduced when the total susceptibility within the volume is 

reported instead of the mean susceptibility (Table 3.3), although underestimation is still present.  
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Similar trends were observed also when area measurements were used for calculating the mean 

and the total susceptibility values. Mean susceptibility values were lower than those obtained from 

the high-resolution ground truth, but in agreement with the measurements obtained from the low-

resolution ground truth. Also, total susceptibility measurements were highly correlated with those 

obtained from the high-resolution ground truth. Unlike radius estimation, area-based susceptibility 

estimation resulted in slightly better slopes (than volume-based, e.g., 0.88 vs 0.85) in both mean 

susceptibility and total susceptibility measurements (not shown).  

 

 

Figure 3.9: Comparison of estimated microbleed mean susceptibility versus values measured on 

the true susceptibility map A) at the initial high spatial resolution of 0.10-mm isotropic voxels, and 

B) after down-sampled into 0.85-mm isotropic voxels. Susceptibility measurements in A) show 

size-dependent underestimation, which was reduced notably when the ground truth susceptibility 

was down-sampled into the same resolution (B). Simulation used TE of 4.44 ms and B0 of 3T. 
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Table 3.3: Slope and correlation coefficient (r2) of estimated mean susceptibility and total 

susceptibility versus measurements on high resolution ground truth at different microbleed sizes. 

The underlined slope values illustrate an example of the size-dependent underestimation in the 

mean susceptibility measurements which is less observed in the total susceptibility measurements.  

Radius 

(mm) 

 Mean volume 

susceptibility [ppm] 

Total volume susceptibility  

[ppm·mm3] 

 1.5T 3T 7T 1.5T 3T 7T 

0.45 Slope 0.09 0.02 0.04 0 0.67 0.79 

r2 0 0.09 0.55 0 0.24 0.77 

0.85 Slope 0.32 0.3 0.24 0.46 0.85 0.91 

r2 0.68 0.86 0.92 0.27 0.92 0.98 

1.75 Slope 0.67 0.67 0.61 0.78 0.91 0.79 

r2 0.97 0.99 0.99 0.95 0.99 0.99 

3.45 Slope 0.74 0.78 0.89 0.8 0.88 0.83 

r2 0.97 0.98 0.98 0.96 0.98 0.98 

3.4.2.4 Location effect on estimates 

Each microbleed configuration (i.e., specific size and susceptibility) were simulated at two 

locations: in the cortical region of the brain and in the subcortical region. Table 3.4 summarizes 

the comparisons of microbleed size and susceptibility estimates when it is placed in these two 

regions, which indicates that the location of the microbleed did not have a clear and consistent 

effect on the radius and susceptibility estimates. It shows also that the variation between cortical 

and subcortical estimates gets reduced as the phase CNR improves.  

3.4.2.5 Voxel aspect ratio effect 

Simulated anisotropic voxels with twice the slice thickness resulted in lower estimates for both CMB radius 

(slope of 0.86 to 0.95) and mean susceptibility (slope of 0.88 to 0.95) when compared to isotropic voxels, 

as shown in Figure 3.10. However, measurements were highly correlated for radius estimation when CMB 

susceptibility was ≥ 0.2 ppm, and for susceptibility estimation when CMB radius was at least equal to slice 

thickness (i.e., ~1.75 mm). CMB detection was also impacted when the slice thickness was doubled (not 

shown). In general, reliable detection was achievable only when CMB diameter is at least of the slice 

thickness width, although 85% (i.e., 17 out of 20) of the CMBs that had 0.9-mm diameter and 2.0-ppm 

susceptibility were detected at 7T and 4.44 ms echo time. Predicting the minimum Δ𝜒 needed for 
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successful detection at a given CMB radius was achievable using equation (3.2) and the same 

threshold mentioned earlier but with field measurements 6.3 voxels away.  

Table 3.4: Slope and correlation coefficient (r2) of estimated microbleed radius and mean 

susceptibility when it is located in cortical versus subcortical regions. 

 

TE (ms) 

 Radius [mm] Mean susceptibility [ppm] 

 1.5T 3T 7T 1.5T 3T 7T 

2.37 Slope 1.0 1.0 1.0 0.99 1.0 1.0 

r2 0.94 0.96 0.99 0.9 0.97 0.98 

3 Slope 1.0 1.0 1.0 1.0 1.0 1.0 

r2 0.97 0.98 0.99 0.91 0.98 0.98 

3.5 Slope 1.0 1.0 1.0 1.0 1.1 0.95 

r2 0.94 0.98 0.99 0.93 0.98 0.98 

4.44 Slope 1.0 1.0 1.0 1.1 1.0 0.93 

r2 0.92 0.99 0.99 0.96 0.98 0.98 

 

 

Figure 3.10: Linear regression of microbleed A) radius[mm], and B) mean susceptibility [ppm] 

estimates in simulations with isotropic (0.85×0.85×0.85 mm3) versus anisotropic (0.85×0.85×1.70 

mm3) voxels, at 3T and TE of 2.37 ms. Increasing slice thickness resulted in lower estimates more 

notably at lower susceptibility levels and smaller radii in microbleed radius and susceptibility 

estimation, respectively.  
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3.5 DISCUSSION 

This work studied the feasibility of quantifying the size and susceptibility of cerebral microbleeds 

using a susceptibility map derived from the phase of MPRAGE data, which is typically an integral 

part of neuroimaging protocols. This reduces the burden of acquiring additional T2*-weighted data 

for QSM, and also allows assessment of CMBs via QSM from studies that do not include T2*-

weighted images.  

Comparing in-vivo measurements of MPRAGE- and MEGE-QSM revealed that the two methods 

have comparable CMB detection sensitivity. However, susceptibility contrast in MPRAGE-QSM 

is generally weaker, and only iron-rich regions have adequate contrast. The MPRAGE sequence 

is used mainly for structural imaging with prerequisites of using high spatial resolution and very 

short echo time to preserve fine details and T1-weighted contrast, respectively. Both of these 

requirements reduce the CNR of the MPRAGE phase and thus put a limit on the retrievable 

susceptibility information. Using simulations, a lower limit on the CMB size and susceptibility 

was empirically determined for successful detection at practical SNR levels for the MPRAGE 

phase. The lower limit was defined based on the susceptibility-introduced phase shift five voxels 

away from the microbleed center. This distance for the phase shift measurement was chosen to 

cover the radius of the largest CMB used in the simulation (of 4 voxel radius) and can be adjusted 

as needed. In addition, it was defined based on voxels to keep it general and resolution 

independent. Using the defined lower limit and assuming an upper limit of 2 ppm for the mean 

CMB susceptibility, it can be predicted for instance that the smallest detectable CMB at a common 

1-mm isotropic resolution and a TE of 3 ms is of 0.9 – 1.5 mm diameter, depending on the field 

strength (i.e., 1.5 mm, 1.2 mm and 0.9 mm at 1.5T, 3T and 7T, respectively). Conversely, for an 

average-sized CMB of 3-mm diameter the lowest detectable ∆𝜒 is expected to be 0.05 ppm at 7T 

and 0.11 ppm at 3T. At 1.5T however, it is expected to be 0.3 ppm, limited by the phase contrast-

to-noise ratio threshold. 

Overall, the achievable phase contrast at 1.5T is weak compared to the noise and thus only 

microbleeds of large size and/or strong susceptibility were detectable with MPRAGE-QSM. 

Although applying stronger regularization can reduce the noise level in the susceptibility map, it 

can also lead to a false detection of left-over noise as tiny CMBs. Moreover, high error is expected 

in quantifying detectable CMBs at these low 𝐶𝑁𝑅𝜙 levels. For these reasons, the MPRAGE-based 



76 
 

QSM at 1.5T is not promising with typically used sequence parameters. On the other hand, the 

achievable contrast of the MPRAGE phase at field strength ≥ 3T seems to be adequate for detecting 

CMBs of at least one-voxel diameter. Quantification however is promising for CMBs of at least 

two-voxel diameter and susceptibility above 0.2 ppm. At 1.5T and 3T expected SNR levels, 

increasing TE generally resulted in an improved correlation and less variability due to noise. 

However at 7T, the best correlation coefficients were observed with 3.0-ms echo time, and 

increasing the TE further weakened the correlation between measurements, mainly due to higher 

phase wraps at strong susceptibility levels that are not completely resolved. 

A previous study reported that the optimal echo time for quantifying a CMB of one-voxel diameter 

is 14 ms at 1.5T, 7 ms at 3T, and 3 ms at 7T (212). For 7T, the reported optimal TE of 3 ms is 

within the typical range used in MPRAGE and coincides with our findings. However, the reported 

optimal echo times for 1.5T and 3T are longer than the typical values used in MPRAGE sequence 

imaging, particularly a TE of 14 ms at 1.5T is three times longer than practically allowed values. 

Despite that the allowable TEs in the MPRAGE are 34-63% smaller than the reported optimal TE 

at 3T, we found them useful for CMB detection, although very short TE such as 2.37 ms limited 

the quality of other tissues of lower susceptibility. In-vivo MPRAGE data used in this work had 

lower SNR than the MEGE due to the higher resolution, higher acceleration factor, lower flip-

angle, single-echo measurement, and the T1 recovery during acquisition readouts. Altogether with 

the short echo time (2.37 ms), QSM produced from the MPRAGE phase had weak contrast for 

most structures, other than strong sources like CMBs or highly iron-rich regions (221). In addition, 

deep regions suffered from higher noise levels, being further from receiving coils. However, 

typically used TE in MPRAGE is around 3 ms, and if extending it to 4.4 ms is tolerable, the 

susceptibility contrast can improve notably. The use of 4.4-ms TE was reported in an optimized 

MPRAGE protocol to maximize brain tissue contrast at 3T (194). Furthermore, higher phase CNR 

is expected at 1-mm isotropic resolution, which is commonly used in MPRAGE.  

Simulations also suggested that detecting sub-voxel microbleeds using MPRAGE-based QSM is 

not feasible in the range of allowable echo times. In contrary, a previous work showed using 

simulation that CMBs with diameter as small as 1/4 voxel and susceptibility of 1.5 ppm was 

detectable at 3T and 5-ms echo time (212). Possible reasons for the inability to detect sub-voxel 

microbleeds here includes that the simulations were more realistic with CMBs being placed within 
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tissues and not against a zero-background, and that field contributions from outside brain tissue 

were assumed and thus tissue field estimation was required before susceptibility inversion. 

Furthermore, the simulation included the inversion-recovery modulation effect of the MPRAGE 

sequence on the phase information, which further complicates and lowers the phase SNR 

distribution.  

Microbleed size measurement is typically performed manually over a single slice image by expert 

radiologists, allowing size quantification over thin slabs and requiring less labor than a full volume 

measure. However, we found that measurements over volume (rather than cross-section) resulted 

in more consistent estimations, notably with in-vivo measurements, benefiting from reduced 

digitization error and further noise averaging. The required effort to perform volume 

measurements might be minimized by using automatic or semi-automatic detection techniques 

(232–234) followed by manual adjustment.  

Spatial resolution of the images has a clear impact on the accuracy of both CMB radius and 

susceptibility estimation. Digitization error due to the finite grid imposed by the limited resolution 

impacts the volume/radius quantification, more notably in CMBs with 1 to 2 voxels diameter. 

However, the error (RMSE) drops to below 16% when the CMB diameter reaches 4 voxels. The 

resolution effect is more pronounced in susceptibility estimation where quantification is impacted 

by the partial volume effect, which leads to CMB size-dependent underestimation that exacerbates 

as the diameter gets smaller. Previous studies have reported that mean susceptibility is 

underestimated in QSM of coarser spatial resolution (196,198) due to phase contrast reduction. It 

is also reported that at longer echo times microbleeds appear larger on QSM (140,182) and their 

susceptibility is more underestimated (182,212). Owing to their small size and extreme iron 

concentration, microbleeds can introduce phase shifts larger than π rapidly within spatial and 

temporal scales smaller than the resolution used in the acquisition, and thus these phase jumps 

might not be successfully detected and resolved by the phase unwrapping algorithms (182).  

These factors might explain the observed differences between in-vivo measurements of MPRAGE- 

and MEGE-based susceptibility maps, in which detected microbleeds appeared smaller (0.54 

slope) and of higher mean susceptibility (1.8 slope) on MPRAGE-QSM. Compared to the MEGE, 

voxels in the MPRAGE data are smaller by a factor of 2.3 to 2.7 (depending on the MEGE slice 

thickness), and the used echo time (2.37 ms) is at least three-fold shorter (average TE in the MEGE 
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is 14.8 ms). When measurements were compared between QSM produced from MPRAGE (TE 

2.37 ms) or the first echo of the MEGE (TE of 3.8 ms) in a post-hoc analysis, the MPRAGE-QSM 

slopes were closer to 1 by ~ 19% (volume slope of 0.64 and mean susceptibility slope of 1.4), 

indicating a role for echo-timing in the observed differences between MPRAGE-QSM and MEGE-

QSM. To overcome these spatial and temporal resolution dependencies, it has been suggested to 

quantify microbleed load using total susceptibility (140); a measure that accounts for both CMB 

volume and susceptibility and has demonstrated reduced variation with echo time (140,212). This 

measure is proportionally related to the magnetic dipole moment which can be expressed for a 

spherical source as: 4𝜋𝑎3∆𝜒/3 (𝐵0/𝜇0), with 𝜇0 being the vacuum magnetic permeability (18). 

In other words, the total volume susceptibility is an estimate of the magnetic moment normalized 

by the field strength. We observed that the total susceptibility measurements from MPRAGE-QSM 

and MEGE-QSM were more consistent and correlated, both in simulated and in-vivo 

measurements, and thus looked more attractive for CMB burden quantification. In addition, the 

total susceptibility measure seems to offer an opportunity to retrospectively combine and analyze 

data acquired using different protocols. This conclusion, however, necessitates further rigorous 

evaluation using variety of acquisition protocols that is beyond the scope of this study.  

Cerebral microbleeds are more associated with the cortical region of the brain, where QSM 

measurements might be less reliable due to a degraded background removal performance towards 

the surface of the brain (74) and an expected susceptibility underestimation when tissue field 

information is truncated (196,235). However, we did not observe any consistent effect in CMB 

radius and susceptibility quantification due to its location being closer to the brain surface, most 

probably due to its small size that does not require extended tissue field information for the dipole 

inversion.  

A limitation of this work is that the in-vivo validation of quantifying microbleeds using MPRAGE-

based QSM was limited to a single set of field strength and echo-time combination. However, 

more practical combinations of B0 and TE were explored using simulations, which gave an idea of 

the expected quality and accuracy at different phase SNR levels. Another limitation is that the time 

interval between the MPRAGE and the MEGE scans was long for few subjects, though no 

significant change in microbleeds is expected within a few months (236).  



79 
 

3.6 CONCLUSION 

The MPRAGE sequence is commonly included in brain studies, and its phase can provide 

opportunity to assess microbleed burden. The quality of MPRAGE-QSM is limited by the short 

TE and the low SNR at field strength ≤ 3T, but can still be useful for detecting and quantifying 

microbleeds when a dedicated T2*- sensitive sequence is not performed. In-vivo results showed 

that the MPRAGE-QSM has a comparable detection sensitivity to the MEGE-QSM at 3T, its 

contrast can be improved notably by using echo time in order of 4.4 ms, and that the total 

susceptibility measure is less susceptible to sequence variations.  
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Chapter 4: Quantitative susceptibility mapping from thin slabs: 

Challenges and possible solutions1 
 

4.1 Abstract: 

Susceptibility maps reconstructed from thin slabs may suffer underestimation due to background-

field removal imperfections near slab boundaries and the increased difficulty of solving a 3D-

inversion problem with reduced-support, particularly in the direction of the main magnetic field. 

Reliable QSM reconstruction from thin slabs would enable focal acquisitions in a much-reduced 

scan time.  

This work proposed using additional rapid low-resolution data of extended spatial coverage, that 

serves as prior knowledge, to improve background-field estimation and regularize the inversion-

to-susceptibility process for high resolution, thin slab data. The new method was tested using 

simulated and in-vivo brain data of high resolution (0.33×0.33×0.33 mm3 and 0.54×0.54×0.65 

mm3, respectively), and compared to the standard large volume approach. Simulation results 

showed that the proposed method produced more consistent measurements from slabs of at least 

8 slices. Reducing the mean ROI error to 5% required the supporting data to cover ~ 60 mm in the 

direction of the main field, have at least 2-mm isotropic resolution that is not coarser than the high-

resolution data by more than 4-fold in any direction. Using the proposed method, in-vivo high-

resolution QSM at 3T was obtained from slabs of width as small as 10.4 mm, aided by a lower-

resolution dataset of 24 times coarser voxels.  

Applying the proposed QSM method in imaging applications dealing with regions of limited 

extent, like deep gray nuclei, has the potential of reducing the acquisition time for QSM by a factor 

up to seven, which could make QSM useful for rapid, focal acquisitions at sub-millimeter 

resolution.    

Keywords: QSM, 3T, thin slab, focal acquisition. 

 
1 A portion of this chapter has been presented as an abstract in: Naji N and Wilman AH. Towards fast single-slice 

QSM: Challenges and possible solutions. ISMRM 31st Annual Meeting & Exhibition, London, UK, 2022: abstract 

#3559. 
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4.2 INTRODUCTION 

Quantitative Susceptibility mapping (QSM) is a post-processing technique developed to visualize 

and measure tissue magnetic susceptibility to the applied MR static field, using the phase of T2*-

weighted images  (53–55). QSM retrieves localized information about the underlying susceptibility 

sources and thus provides the opportunity to monitor changes in iron deposits and myelination, 

both of which are associated with several neurodegenerative diseases (15,153,154).  

QSM is typically reconstructed from a whole brain three-dimensional (3D) phase volume acquired 

via a multi-echo gradient-echo (MEGE) sequence. Obtaining QSM from single-echo phase is also 

possible as long as the data is collected using a T2*-sensitive pulse sequence, such as echo planar 

imaging (EPI) and susceptibility-weighted imaging (SWI)(13,56). The necessity of collecting 

large 3D spatial coverage arises mainly from the underlying 3D physical model relating the MR 

phase to the tissue susceptibility via convolution with a magnetic dipole, which is not a voxel-to-

voxel relation. Thus, reconstructing susceptibility accurately requires extended phase information 

in the vicinity of the region of interest (ROI), particularly along the direction of the static field (B0, 

conventionally along z-direction). Previous studies have reported elevated underestimation in 

QSM when the volume of interest (VOI) is reduced, more noticeably in iron-rich regions 

(196,235,237). These studies suggested extending the coverage based on the ROI size to minimize 

susceptibility underestimation. For instance, Elkady et al. suggested a minimum slab width of 

560% the GP physical size for reliable measurement with less than 5% error (235), which is about 

64-mm after post-processing erosion. Karsa et al. further extended the analysis to more ROIs and 

concluded that the minimum required coverage is linearly related to the ROI susceptibility, making 

the necessary coverage between 120% to 580% the ROI size (196). They also reported a significant 

decrease in QSM contrast when the coverage along B0 dropped below 40 mm. In a recent study, 

Zhu et al. showed that their deep learning-based reconstruction minimized the susceptibility 

underestimation and allowed for less than 5% error with as small as 150% coverage (48 mm slab) 

for deep gray matter (DGM) structures (237).  

The requirement of acquiring 3D extended coverage adds a burden on studies focused on a specific 

region that can be covered otherwise using a few slices. Examples could include thin slab imaging 

of the hippocampus, as has been done in diffusion imaging (238), or focused acquisitions of iron-

rich DGM rather than more typical whole brain studies that often only focus on iron-rich DGM 
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(132,239,240). In particular, if high resolution data is required, limiting the coverage to the region-

of-interest can save substantial time that may make the scan time feasible, unlike whole brain 

collection. Furthermore, reduced scan times may limit motion artifacts and increase patient 

comfort. Although collecting a fast large volume for QSM is achievable using advanced parallel 

imaging techniques (241,242) and/or fast pulse sequences (56,90,243), image quality is typically 

compromised. Producing QSM from thin slabs would further accelerate the acquisition, allow 

higher resolution imaging, and potentially accelerate clinical adoption.  

This study proposes and validates improved reconstruction of thin-slab QSM with the aid of 

additional rapid low-resolution data. The challenges incurred in reduced-VOI QSM applications 

are also discussed.  

4.3 THEORY 

QSM reconstruction involves challenges as it consists of multiple processing steps in which the 

performance and accuracy of each step is influenced by those preceding it (Figure 4.1A). In 

addition, three of these processing steps (phase unwrapping, background field removal [BFR] and 

dipole inversion) rely on non-local spatial information to determine the value of each voxel.  

Consequently, an error in one voxel might propagate and affect other surrounding voxels. 

Similarly, voxel omission affects other adjacent voxels and increases the difficulty of solving the 

background removal and the dipole inversion steps.  

Background-field removal methods are known for increasing inaccuracy toward the VOI 

edges (74), and as the VOI shrinks the error in the resultant tissue field elevates substantially and 

propagates to the final susceptibility map. Previous studies have showed that the background 

removal step is an important factor in the underestimation problem of thin-slab QSM (196,237). 

Furthermore, the field-into-susceptibility inversion process aims to solve equation (4.1) for 𝜒: 

𝑓𝑡𝑖𝑠𝑠𝑢𝑒(�⃗⃗�) =  𝑑(�⃗⃗�) ∙ 𝜒(�⃗⃗�)    or    𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟) =  𝑑(𝑟) ∗ 𝜒(𝑟)                           (4.1) 

where 𝑓𝑡𝑖𝑠𝑠𝑢𝑒(�⃗⃗�) is the tissue frequency shift (or tissue field, used interchangeably) induced by the 

susceptibility distribution 𝜒(�⃗⃗�), 𝑑(�⃗⃗�) is the magnetic dipole kernel, and �⃗⃗� and 𝑟 refer to the 

coordinates vector in frequency and spatial domains respectively (57,58). 
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Figure 4.1: Flowcharts of A) the standard QSM processing pipeline and B) the proposed pipeline. 

In the proposed method, the tissue field (𝑓𝑡𝑖𝑠𝑠𝑢𝑒 ) is obtained by subtracting the background field 

(𝑓𝑏𝑘𝑔) estimated from the low-resolution data. Low-resolution tissue field (𝑓𝑡𝑖𝑠𝑠𝑢𝑒) and/or 

susceptibility (�̂�) are also used to regularize the reconstruction of the high-resolution 

susceptibility.  

 

Equation (4.1) represents an ill-conditioned 3D problem due to the existence of zeros in the 

frequency-domain representation of the magnetic dipole kernel, 𝑑(�⃗⃗�), and thus is typically solved 

via minimization approaches in the spatial domain with some help from prior knowledge about 

𝜒(𝑟) (62,89,244). However, truncating the support region of 𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟) further complicates the 

process of finding a global solution for the minimization problem as more than one solution can 

produce the same tissue frequency shift (for instance, see Figure 4.2). Moreover, solving this 

inversion problem yields a zero-mean solution within the VOI, and thus the obtained QSM from 

thin slab would be normalized by a shifted mean value that depends on the slab contents and width. 

The shift in the mean value is typically small in healthy subjects, but it could be significant if the 

imaged thin slab contains lesions of strong susceptibility such as hemorrhage.  
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To overcome the above-mentioned deficiencies associated with the reduced-VOI QSM, we 

propose using a rapid low-resolution acquisition of extended brain coverage to assist the 

background removal and dipole inversion steps, as illustrated in Figure 4.1B. Since the frequency 

shift due to background sources, 𝑓𝑏𝑘𝑔(𝑟), is slowly varying carrying low-frequency contents, we 

hypothesize that it can be estimated from an extra full-coverage acquisition of a lower spatial 

resolution (thereafter referred to as the low-res data). The low-res background frequency shift, 

𝑓𝑏𝑘𝑔(𝑟), then can be subtracted from the high-resolution total frequency shift to yield the required 

𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟). This way, the resultant high-res tissue frequency shift should be more accurate near the 

slab edges despite the narrowed width, as the background contribution is calculated based on an 

extended brain coverage. 

 

Figure 4.2: Demonstration of dipole inversion ambiguity  when slab thickness is too small. Two 

different susceptibility distributions (A and B) can produce similar tissue frequency maps (C and 

D) if the slab thickness is limited to 4 slices. E) Horizontal and F) through-plane profiles from the 

tissue frequency maps illustrating the similarity between (C) and (D). The locations of plotted 

profiles on tissue frequency maps are visualized by solid lines and cross symbols, respectively. 

Profile plots illustrate that both tissue frequency maps have similar in-plane distribution (E), but 

through-plane similarity is confined to 4 slices (dashed-red lines in F). Panel F) shows that wider 

slab thickness would help in distinguishing between (C) and (D) and thus aiding the inversion 

algorithm in recovering the correct susceptibility distribution.  
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In addition, the low-res data can help the dipole inversion process by giving the algorithm some 

prior knowledge of the susceptibility distribution outside the imaged slab. This can be achieved by 

adding another regularization term to the minimization formulation, as expressed in equation (4.2): 

𝜒∗(𝑟) = arg min
𝜒(𝑟)

‖𝑊(𝑟)(𝑑(𝑟) ∗ 𝜒(𝑟)  −  𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟))‖
2

2
+  𝜆1 ‖𝑀𝐺(𝑟)∇𝜒(𝑟)‖1 + 𝜆2 𝑅(𝜒)            (4.2) 

with 𝜆1 and 𝜆2 being regularization parameters, and 𝑊(𝑟) and 𝑀𝐺(𝑟) being weighting coefficients 

computed based on estimated noise and magnitude gradient, respectively. The first two terms in equation 

(4.2) represent a widely used QSM inversion algorithm known as morphology-enabled dipole inversion 

(MEDI), which iteratively finds the susceptibility distribution 𝜒(𝑟) that yields the minimum norms (62). 

The third term, 𝑅(𝜒), can be used to enforce additional knowledge about the solution. We tested two 

possible forms based on the low-res data; the first one uses the low-res tissue frequency shift 𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟), 

while the other one uses the reconstructed low-res susceptibility �̂�(𝑟): 

𝑅1(𝜒) =  ‖𝑀𝑜𝑢𝑡(𝑟) �̂�(𝑟) (𝐿{𝑑(𝑟) ∗ 𝜒(𝑟)} − 𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑟))‖
2

2
                                            (4.3) 

𝑅2(𝜒) =  ‖𝑀𝑜𝑢𝑡(𝑟) �̂�(𝑟) (𝐿{𝜒(𝑟)} − �̂�(𝑟))‖
2

2
                                                    (4.4) 

where 𝐿{∙} is a gaussian low-pass filter that makes the resolution of the solution similar to the supporting 

data, and 𝑀𝑜𝑢𝑡(𝑟) is a mask that contains zeros within the imaged slab and ones otherwise, to force 

the regularization only outside the slab (i.e., consider the added knowledge for the non-imaged 

portion of the brain in the high-res data).  

4.4 METHODS 

Simulations were used to test the proposed approach, explore possible limitations and determine a 

lower bound for the spatial resolution of the additional low-res data. In-vivo data at 3T was then 

used to validate the proposed method in human brain.  

4.4.1 Simulation 

A numerical brain phantom of realistic features was constructed based on an actual high-resolution 

healthy human brain data of 0.33-mm isotropic resolution, 165.8×200 mm2 FOV, and 448 slices 

(226). To facilitate comparison with previous studies, the susceptibility map of the phantom was 

linearly scaled such that the mean susceptibility of globus pallidus (GP) is 0.2 ppm. In addition, 

two lesions of strong susceptibility (each of them extends ~6.5 mm in all three dimensions) were 

added to the susceptibility with mean ± SD susceptibility of 0.8±0.1 ppm and -0.4±0.1 ppm, 
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representing a hemorrhage and a calcification respectively (see Figure 4.3A). To simulate 

background field contributions, skull susceptibility was assumed to be -2.0 ppm and air 

susceptibility (i.e., +9.0 ppm) was added to the sinuses. The resultant susceptibility map was then 

used to produce a total field map via convolution with the magnetic dipole. The total field was 

then scaled to an MR phase at 3T for six different echo times (TE1:4.6 ms, ∆TE: 7.1 ms). This 

phase together with the raw magnitude of the healthy subject were used to simulate a reference 

high-resolution MEGE data (thereafter called the reference high-res).  

In this reference high-res data, the brain is fully covered with 386 slices (127 mm). Additional 

volumes of smaller slab coverage were produced by limiting the number of slices to 180, 90, 44, 

22, 8, 4 and 2, centered on putamen in the DGM. Focusing on the DGM structures, note that 

covering caudate, putamen and GP requires ~90 axial slices (29.7 mm). Thus, the above-mentioned 

slab widths represent a DGM coverage of 428% (386 slices), 200% (180 slices), 100% (90 slices), 

49% (44 slices), 24% (22 slices), 8.8% (8 slices), 4.4% (4 slices) and 2.2% (2 slices), as illustrated 

in Figure 4.3B. The added two lesions are also centered within the DGM region and are fully 

covered with 20 slices; thus the tested slab widths represent a coverage of 1930%, 900%, 450%, 

220%, 110%, 40%, 20%, and 10%, respectively. Another two iron-rich structures of interest, red 

nucleus (RN) and substantia nigra (SN), are located lower in the brain and thus were covered 

separately with the same slab widths mentioned-above and the slab center passing through these 

two structures.  

 The high-res reference (of full brain coverage) was also used to generate the low-res data (required 

for the dual reconstruction approach) by down-sampling in k-space. To determine a lower bound 

for the resolution that can be used, the lower-res data was produced using different combinations 

of down-sampling factors (2, 4, 6 and 8) applied to the three dimensions (x: phase, y: readout, and 

z: slice). Prior to any QSM pipeline processing, low-res data was up-sampled via k-space zero-

padding (ZP) to the original resolution.  
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Figure 4.3: An illustration of the brain susceptibility distribution used in simulations. A) The first 

axial slice used for measurements, which shows iron-rich deep gray matter structures and the two 

added lesions. B) A coronal view demonstrating the location of the measurement slice (solid red 

line) and some of the tested slab widths (indicated by dashed lines). 

4.4.2 In-vivo Imaging Protocol 

Brain images from three healthy adults (males, aged 25 to 34 years) were collected at 3T (Prisma, 

Siemens Healthcare, Erlangen, Germany) with a 64-channel head coil after giving written 

informed consent and under the approval of the local ethics committee. The imaging protocol 

included two sets of axial MEGE, 3D and 2D, with seven echoes and different spatial resolutions. 

The 3D MEGE set had high-resolution of 0.54×0.54 mm2 (matrix of 324×384), 0.65-mm slice 

thickness, and through-plane coverage of 78 mm (120 slices acquired in 16.28 minutes), 19.5 mm 

(30 slices, 4 minutes) and 14.3 mm (22 slices, 3 minutes) centered on putamen. Additional high-

resolution 3D MEGE volumes with smaller coverage were produced from the first data by limiting 

the number of slices to 50, 16, 8, 4 and 2. The second 3D MEGE acquisition had brain coverage 

of 80 mm (40 slices, 1.68 minutes), and its resolution was lowered by a factor of 4:2:3 

(2.18×1.09×2.0 mm3). All 3D acquisitions used FOV of 178×210 mm2, TE/∆TE/TR of 

4.14/6.13/47 ms, and flip angle of 17º.  
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The 2D MEGE set consisted of two high-resolution (0.49×0.49 mm2, 432×512 matrix, 1.0-mm 

slice thickness) small coverage acquisitions (16 mm, 16 slices in 2.8 minutes) centered on putamen 

and RN, and one low-resolution (1.95×0.98 mm2, 108×256 matrix, 2.0-mm slice thickness) 

acquisition of wider through-plane coverage (80 mm, 40 slices in 2 minutes). Additional high-

resolution 2D acquisition of smaller coverage was produced by limiting the number of slices to 8. 

The 2D high-/low-resolution acquisitions used TR of 736/1810 ms, flip angle of 59º/79º, TE of 

4.28 ms, ∆TE of 6.05 ms, and FOV of 211×250 mm2. Other common parameters for all 

acquisitions included: 2 GRAPPA acceleration with 24 reference lines and BW of 270 Hz/pixel.  

4.4.3 QSM Reconstruction 

The following procedures were used to process the data in simulation and in-vivo, unless otherwise 

stated. The proposed approach employed the additional low-res data to improve the reconstruction 

in two steps, as shown in Figure 4.1B (blue blocks and arrows). First, tissue field was estimated 

by subtracting the low-res background field. Residual background field was removed by a second 

order polynomial fitting and the Laplacian boundary value method (82). Then, the low-res tissue 

field or susceptibility was used as prior knowledge to regularize the field-to-source inversion 

process according to equations (4.2-4).  

In-vivo data from individual coils were combined using the scanner built-in adaptive method, and 

prior to any processing for the 3D high-res data, the outer 6 slices were excluded due to aliasing 

and poor SNR at the edge of the imaged slab. Bias in magnitude images was removed using ANTs 

tool (187). Brain mask from magnitude images was obtained using the brain extraction tool (BET) 

from FSL package (64) with active “-Z” option (i.e., small brain coverage in Z direction) and 

threshold ranging between 0.12 -0.5 adjusted based on the data. Phase unwrapping was performed 

using ROMEO (69) with enabled offset correction. To eliminate unreliable voxels and maximize 

coverage near air-tissue interfaces, a brain mask was obtained for each echo time and used to define 

reliable phase regions. The total field was then obtained via magnitude-weighted average of the 

masked phase information (72). The background field was removed using the variable-radius 

sophisticated harmonic artifact reduction for phase (V-SHARP) data algorithm with maximum 20-

mm kernel radius (55,77). Finally, the susceptibility map was reconstructed using a modified 

version (according to equation [4.2]) of the MEDI algorithm (62), with 𝜆1 and 𝜆2 set to 104 and 2000 
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respectively. When the slab width is reduced, the dipole inversion step was tested with and without 

zero-padding to the original full brain coverage. 

4.4.4 Segmentation and Measurement 

Registering the in-vivo low-res data to the high-res was done by forming a sum-of-squares 

magnitude image (produced from all echoes) for each data and then registering them rigidly using 

ANTs tool (187). Obtained transformation matrix was then used to map the files of the low-res 

data to the space of the high-res counterpart.  

Seven deep gray matter ROIs were segmented manually over few slices using ITK-SNAP (231): 

caudate, putamen, thalamus, GP, RN, SN, and internal capsule (IC). For the simulation phantom, 

the masks for the synthetic lesions were produced by thresholding.  

Measurements were performed using 2D ROIs (extracted from the segmentation masks) separately 

on two slices covering all the structures of interest: one slice covering caudate, putamen, thalamus, 

GP, and the two lesions (in the simulation part); and the other slice covering RN and SN. All 

measurements were referenced to the IC mean susceptibility and compared in susceptibility maps 

obtained from different slab widths. 

All processing (except brain extraction, registration, and segmentation), analyses, and plots were 

performed using MATLAB (version R2020a; MathWorks, MA, USA). 

4.5 RESULTS 

4.5.1 Simulation Results 

Figure 4.4 shows the top 98% frequency coefficients of the tissue and background field in the 

healthy brain used for simulation, demonstrating the lower frequency content of the background 

field which spans around 8-time smaller k-space spectrum (compared to tissue field) in the phase 

encoding (𝑘𝑥) and slice encoding (𝑘𝑧) directions. This implies that the background field could be 

estimated at a lower resolution, at least in two encoding directions. The results of estimating the 

background field at different levels of down-sampling are illustrated in Figure 4.5, in which the 

obtained high-res tissue field through low-res background field subtraction is shown at two axial 

locations, along with the difference from the high-res reference. It can be seen that with down-

sampling up to 6 in each direction (i.e., ~ 2-mm isotropic resolution), the tissue field can be 

estimated with minimal difference. With much lower resolution, artifacts and residuals in the 
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resultant tissue field became notable mainly near air-tissue interfaces. When the resolution of the 

high-res reference was assumed 0.66-mm isotropic, the highest down-sampling factor before 

observing notable artifacts was 3 in each direction (results not shown), indicating that estimating 

background field with minimal error requires at least 2-mm resolution.  

 

Figure 4.4: Comparison of frequency content in tissue field (top row) versus background field 

(bottom row). The volumes within the orange boxes (shown in the first column) were transformed 

into frequency domain. Columns two to four show orthogonal views of the corresponding 

frequency domain signals after removing the lowest 2%. Background field has much lower 

frequency content and thus can be estimated with lower spatial resolution. The data had 0.33-mm 

isotropic voxels. 
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Figure 4.5: Demonstration of resolution effect on background removal using subtraction. Tissue 

frequency map obtained by subtracting background frequency estimated from simulated low-

resolution version at different down-sampling factors (phase encoding: frequency encoding: slice 

encoding). Difference images show that background contribution can be removed using a down-

sampled data by a factor up to 6 without introducing significant error. The reference resolution is 

0.33-mm isotropic. 

Recoverable susceptibility distribution details at different levels of spatial resolution are illustrated 

in Figure 4.6(A, C-E). It also shows (in panel B) how the contrast would significantly fade if QSM 

is reconstructed from a thin slab of 2.64-mm width (8 slices) using the standard method. In 

contrast, most of the susceptibility contrast and details were preserved using the proposed method 

with help from additional low-res data. However, artifacts were notable when the resolution of the 

supporting data was six-times lower than the reference. Figure 4.6E demonstrates one possible 

scenario to minimize the artifacts and maximize the saving in acquisition time, in which the 

resolution is lowered the most (×6) in the phase encoding direction, but relaxed (×4) in the slice 

direction, and kept moderately high (×2) in the readout direction, yielding a possible 24-fold 

reduction in acquisition time.  
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Figure 4.6: QSM simulation results showing one slice from A) the reference full brain coverage, 

and B) the reconstructed from a 2.64-mm slab (8 slices) using the standard method. The remaining 

three columns show the reconstructed QSM (bottom row) from the same 2.64-mm slab using the 

proposed hybrid method with aid from a low-res full coverage data (top row) down sampled by a 

factor of C) 4:4:4, D) 6:6:6, and E) 6:2:4 along phase, readout, and slice encoding directions, 

respectively. QSM produced using the standard method lost most of the contrast due to the limited 

phase information in the thin imaged slab. On the other hand, the proposed method perceived most 

of the original contrast, although some artifacts appear as the down-sampling factor exceeds 4. 

Arrows point to some notable artifacts. 

ROI measurements of susceptibility obtained using the standard versus proposed method for 

varying imaged slab width are given in Figure 4.7. Using the standard method, three scenarios 

were tested: the imaged slab is processed i) with and ii) without zero-padding (ZP) to the full brain 

depth, and iii) reducing the slab width after removing background field to exclude its effect. Of 

these three, the least susceptibility underestimation was obtained when slab width reduction was 

performed after the BFR step, highlighting that the BFR process has a significant role in the 
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underestimation problem. In addition, zero-padding in the through-plane direction slightly 

improved the measurements. However, the accuracy dropped in both cases (i.e., with and without 

ZP) in many ROIs as the slab width reduced below 60 mm (~ 180 slices). In contrast, the proposed 

method provided more consistent measurements with slab width as small as 2.64-mm (8 slices), 

with the tissue field-based regularization (i.e., 𝑅1(𝜒)) outperforming the susceptibility-based one. 

Therefore, the standard method with ZP and the proposed method with 𝑅1(𝜒) were used in the rest 

of this work.  

 

Figure 4.7: Simulation results of 2D susceptibility measurements using different processing 

approaches at different slab widths (i.e., number of slices). All measurements are referenced to 

the mean value of internal capsule. The measurement at full brain coverage is indicated using a 

dashed gray line. The low-res data used in the proposed method was produced with a down-

sampling factor of 4:4:4. The proposed method with 𝑅1(𝜒) regularization (red solid line) provided 

the closest measurements to the reference with slab width ≥ 8 slices (i.e., 2.64 mm). Measurements 

of the standard method started deviating from the reference as the slab width drops below 60 mm 

(i.e., 180 slices). The yellow line illustrates the case if the slab width is reduced after the BFR step 

(i.e., neglecting the effect of inaccurate background removal). ZP: zero padding, BFR: background 

frequency shift removal.  
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Figure 4.8 shows the effect of utilizing supporting data at different levels of resolution in the 

proposed method. Using a down-sampled data by 4 in all directions and with slab reduction down 

to 8 slices, the difference in measurements was within 4 ppb in putamen, caudate, thalamus and 

RN, 10 ppb in GP, 12 ppb in the calcification and SN, and 31 ppb in the hemorrhage; all of which 

is within 4% of the ROI mean value, except in SN where the difference represents 5.6% of its 

mean value. When much lower resolution is used, the measurements difference further increased. 

This Figure also shows that resolution reduction in phase encoding introduced less difference in 

measurements compared to reduction in the direction parallel to the main magnetic field, B0. In 

Figure 4.9, the error at different slab widths is visualized in the DGM region for the standard 

method and the proposed method, in which the latter produced more consistent contrast. When the 

high-to-low resolution ratio is 4:4:4, no remarkable difference is observed as the slab width 

decreases until 8 slices. With the low-to-high ratio of 6:2:4 however, the differences became 

notable at a 22-slice width and below.  

 

Figure 4.8: Simulation results of susceptibility 2D measurements using the proposed hybrid 

method at different down-sampling factors (phase:readout:slice) for the low-res data. 

Measurements deviate further from the reference full-coverage values with higher down-sampling 

factor. Resolution reduction in phase-encoding direction caused less error than in through-plane 

(i.e., slice) direction.  
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Figure 4.9: Visualization of the obtained QSM results from simulation at different slab widths 

using the standard method (top), and the proposed method with 4:4:4 (middle) and 6:2:4 (bottom) 

down-sampling factors. For each method, coronal and zoomed-in axial views are shown, as well 

as the difference with respect to the reference full-coverage susceptibility map.   
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4.5.2 In-vivo Experiments 

Similar to simulations, in-vivo measurements presented in Figure 4.10 demonstrate that reducing 

the slab width caused an increased underestimation in the produced QSM using the standard 

method, while the proposed method resulted in a more consistent measurements with around 5% 

error in most ROIs down to 8 slices (Figure 4.10B). Table 4.1 shows that with an 8-slice slab the 

mean difference with respect to the 78-mm width slab stayed within 10 ppb for most 

measurements. Figure 4.10 also shows that measurements obtained with actual thin slab 

acquisitions (indicated by star and tringle markers) are comparable with those obtained from the 

artificially reduced slab post acquisition.  

In Figure 4.11A, example QSM images obtained from in-vivo 78-mm slab are visualized: the 

high-res and the two supporting low-res acquisitions. In panels B and C of the same Figure, QSM 

obtained from in-vivo thin-slab acquisitions (3D and 2D) using the studied methods are illustrated. 

The proposed method better preserved both contrast and fine details from an actual 14.3-mm slab 

(10.4-mm effective width excluding aliased slices) acquisition, as well as 5.2-mm slab (8 slices) 

virtually produced at post-processing stage. However, acquiring such a thin slab at 3T is 

challenging (without compromising scanning time) due to SNR issues.  

Table 4.1: ROI measurements (mean ± SD in ppb) from 8-slice slab of three subjects using the 

proposed method compared to the full slab width measurements of the 3D acquisition (referred to 

as Ref.). Mean differences above 10 ppb are highlighted using bold italic font.  

 GP Putamen Caudate Thalamus RN SN 

S
u

b
je

ct
 

1 Ref.  155.1±21.3 86.9±28.7 85.2±22.2 64.0±30.2 154.8±27.0 181.1±30.5 

Proposed  149.0±24.0 82.1±27.2 79.8±25.7 60.5±28.8 149.8±20.6 156.3±35.7 

2 Ref.  168.2±28.1 95.0±24.7 95.2±20.1 79.5±32.7 167.9±23.9 143.5±30.1 

Proposed  176.8±29.4 104 ±19.4 91.8±22.6 78.7±36.5 178.0±29.9 146.0±28.7 

3 Ref. 193.4±28 75.5±19.5 79.9±21.4 63.1±17.5 191.3±23.8 176.6±28.1 

Proposed  207.8±26.9 87.3±18.7 74.9±23.9 65.4±19.9 197.1±28.9 176.0±27.2 
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Figure 4.10: In-vivo measurements of QSM obtained using the standard and the proposed methods 

at different slab widths. A) Mean susceptibility measurements of one subject referenced to the 

mean value of internal capsule. The measurement at the full width of the imaged slab is indicated 

using a dashed gray line. B) Mean ± SD percentage error (with respect to the full width 

measurements) in three subjects indicates that the proposed method improved the measurements 

notably with ~5% error in most ROIs from slab width as small as 8 slices. ZP: zero-padding.  
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Figure 4.11: In-vivo QSM images of one subject shown in A) are from the wide-slab coverage 

high-resolution reference and the supporting low-resolution data (3D and 2D), B) the acquired 

high-resolution thin-slab of 16 slices (after excluding aliased slices in 3D), and C) 8 slices 

obtained using the standard and the proposed methods. Slabs in C) were produced by reducing 

the number of slices after acquisition.  
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4.6 DISCUSSION 

Imaging thin slabs instead of full brain further reduces scanning time, thus improving the scanner 

efficiency and minimizing motion artifacts. The saved time can also be exploited to explore higher 

resolution (up to hardware/SNR limits) or improve the signal quality. However, accurate 

reconstruction of QSM from restricted spatial coverage is challenging due to deficiencies in the 

background removal and the dipole inversion processes. We proposed using additional rapid low-

res data to overcome those deficiencies and stabilize the reconstruction solution, which enabled 

thin slab QSM acquisition with minimal artifacts in simulated and in-vivo datasets.  

Previous studies reported that limiting the error due to the reduced coverage to 5% in the DGM 

region would require a slab width in the range 44 to 64 mm (196,235,237), depending on the actual 

physical dimension of the ROI, which agrees with the 60-mm width requirement for the standard 

method found in this study. Using the proposed method however, similar accuracy was achievable 

with only an 8-slice slab width (i.e., 2.64-mm slab at 0.33-mm slice thickness and 5.2-mm slab at 

0.65-mm thickness). The achieved reduction in the required coverage represents a remarkable 

improvement over the standard method (e.g., ×11 smaller slab at 0.65-mm slice thickness).  

This improvement was attained with support from additional rapid low-res data that serves two 

purposes: improving the background field removal process and guiding the dipole inversion 

algorithm. Simulation results suggested that accurate estimation of the background field would 

require the spatial resolution of the supporting data to be at least 2-mm isotropic. Below this 

resolution, voxels near air-tissue interfaces accumulate large amounts of phase at long echo times 

that destroys the magnitude signal and renders the signal in these regions unreliable, causing phase 

errors and challenging the unwrapping process. This eventually affects the accuracy of 

reconstructed susceptibility in nearby regions, which was notable both in simulated and in-vivo 

measurements. Moreover, other processing steps in the pipeline become more problematic and 

challenging when the voxel size exceeds 23 mm3, including the brain extraction and the registration 

to the higher-res data.  

Results also suggested the low-to-high resolution ratio should not exceed 4 for acceptable accuracy 

of 5% error in iron-rich regions. Assuming the lower bound mentioned above of 2-mm low-res 

data, this means that the resolution of the high-res data should be at most 0.5-mm in any direction. 

If the high-res data has voxels smaller than this, the resolution of the low-res data has to be 
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improved proportionately. In addition, the low-res data should have extended coverage that is 

sufficient for the standard reconstruction method (i.e., 60-mm for iron-rich DGM).  

To illustrate the potential saving in the acquisition time using the proposed method in light of the 

above discussed requirements, we consider two cases at the lower and upper bounds. For a high-

res data of 1-mm isotropic voxels and a low-res data of 2-mm isotropic voxels; if the standard 

method would take 3.75 minutes to achieve the required accuracy at the middle of the slab 

(imaging a minimum of 60-mm slab), the proposed method would need about 1.44 minutes with 

a potential saving of 60%. If the high-res data has 0.5-mm voxels and the standard method takes 

about 15 minutes, the proposed method with the same low-res data (i.e., 2-mm isotropic) would 

need about 1.94 minutes with a potential saving of 87%. In these calculations, the time reduction 

is based on reducing the number of samples in the phase encoding and the slice encoding 

directions. In practice, time saving through reducing readouts is not encouraged for several 

reasons. First, it is recommended to keep the echo-timings of both the high- and the low-res data 

comparable, as previous studies have suggested matching echo times between different acquisition 

to minimize variations in the obtained tissue frequency shift (42,245). Second, keeping the 

resolution in the readout direction relatively high helps in facilitating the registration of the low-

res to the high-res images. Third, it helps in reducing excessive phase accumulation near air-tissue 

regions and thus enhancing signal reliability in those voxels. Another practical consideration when 

using 3D sequence acquisition is that more than 60-mm coverage is typically required to 

compensate for the aliasing and low SNR at the slab edges. Here, the acquisition time for the high-

res 78-mm slab obtained in-vivo was 16.29 minutes. Using the proposed method, comparable 

accuracy from a 14-mm thin slab (22 slices) required 4.68 minutes (~ ×3.5-fold time reduction). 

Further reduction in acquisition time by imaging only 8 slices (at this high-res) was hindered by 

the resultant low SNR at 3T. Although the proposed method was only tested using MEGE 

acquisition, it might be used with other sequences like EPI as long as sufficient SNR is attainable.  

The concept of using a supporting rapid scan is common in several MRI applications, including 

correcting geometric distortions in echo planar imaging using a field map (246,247), and 

compensating surface coil sensitivity using a pre-scan (248,249). This work aimed to introduce 

the idea of the hybrid (high-res low-res) QSM reconstruction that uses a coarser version of the data 

with extended coverage to overcome the challenges encountered in reduced FOV scenarios. For 
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the background removal step, the low-res data was used to estimate the slowly varying background 

field, which was then subtracted from the high-res data to yield the tissue field information. This 

way, the tissue field information in a thin imaged slab is preserved from the being attenuated by 

standard methods that are inefficient closer to the slab edges (74). In simulations, background 

subtraction was sufficient to obtain the tissue field without further processing. For in-vivo data, 

residual background field was observed after subtraction, which was minimized by a second order 

polynomial fitting and LBV. A possible reason for this difference is that in-vivo phase information 

undergoes more processing steps that might alter the phase and introduce a shift between the low-

res and the high-res images. These additional steps include parallel imaging acceleration, coil 

combination, and phase offset estimation, which might have resolution-dependent processing (e.g., 

filtering). The difference might be reduced if interpolating the low-res images is performed from 

the raw measurements prior to coil combination, however at the cost of increasing the required 

computation and storage capacity.  

For the dipole inversion step, two implementations were tested that utilize the low-res tissue field 

and susceptibility respectively. Using the tissue field distribution for regularization was found to 

produce more consistent measurements at very thin slabs, compared to using the susceptibility 

distribution. The improved performance is mostly because information in the tissue field is less 

processed, whereas the susceptibility information underwent more processing and can be affected 

by more involved parameters. Note that the added regularization term can shift the obtained 

susceptibility distribution from having zero-mean, which can be compensated by referencing the 

susceptibility values to a specific ROI within the brain. In general, obtained susceptibility values 

are relative and thus are typically referenced to facilitate comparison with other studies (40). 

Measurements in this study was referenced to the mean value of the IC, similar to other related 

literature (196,235).  

With the current implementation of the proposed method, it was observed that the accuracy 

decreases as echo-timings get longer, due to the increased phase accumulation in the low-res data 

near air-tissue interfaces discussed above. We tested typical TEs used at 3T of range up to 40 ms 

and found that some phase unwrapping errors can be seen in the later echoes of the low-res images 

near sinuses, which affect the reliability in their vicinity. To eliminate unreliable regions while 

maximizing coverage near sinuses, we masked the phase information at each echo time using the 
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corresponding magnitude mask prior to computing the total field map. Alternatively, one might 

try to estimate the unreliable regions iteratively using forward dipole field modelling (250). In 

general, QSM is sensitive to the definition of the VOI boundaries (i.e., brain mask) and thus an 

inherent variation is expected in the proposed method due to masking differences between the low- 

and high-res volumes. Minimizing the difference between the masks of the two data sets would 

further improve the accuracy and thus investigating better masking approaches is warranted, 

including deep learning-based segmentation (251,252).  

Imaging thin slabs using 3D sequences suffers from aliasing artifacts and low SNR near the edge 

of the slab due to slab-selective profile imperfections (253). Those affected slices are discarded 

and thus the effective slab width becomes smaller, requiring the coverage to be extended further 

beyond the actual required width. The exact amount of slice oversampling would depend on the 

characteristics of the used RF pulse. This issue is avoided when 2D sequence acquisition is used, 

however at the cost of reducing the maximum achievable through-plane resolution (i.e., slice 

thickness). Another limitation for the minimum width of the acquired slab is SNR, which depends 

on the used spatial resolution and the imaging field strength. In 3D acquisitions, thinner slab means 

fewer data points are collected and thus less noise averaging. Although increasing the number of 

signal averages can improve the achievable SNR, it lengthens the acquisition time which for 3D 

sequences can be used instead to acquire more slices and gain the same SNR. Similarly, reducing 

the acquisition time in 2D sequences by collecting fewer slices necessitates reducing the repetition 

time (and flip-angle), which leads to a lower SNR.  

Limitations of this study include the absence of the introduced method validation on in-vivo patient 

data with abnormal iron accumulation. However, the performance in the presence of strong iron 

sources was tested using simulated data with a hemorrhagic lesion, which was accurately 

reconstructed using few slices. Another limitation is that the measurements were mainly focused 

on the iron-rich regions because these are the most affected by reducing the VOI. Also, the study 

focused only on reduced VOI along the dimension parallel to the main magnetic field, which is 

reported to be impacted the most (e.g., accurate estimation of globus pallidus susceptibility 

required spatial coverage that is ×1.3, ×3.3, and ×5.6 the ROI size along left–right, anterior–

posterior, and superior–inferior directions, respectively) (235). However, it is expected that the 

introduced method is generalizable to any dimension as indicated by simulations. Moreover, the 
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method was tested only at a single field strength of 3T, two sequence variations, and a few pairs 

of resolution. Further testing of the new method is warranted to confirm its efficiency.  

4.7 CONCLUSION 

A new method was introduced to improve the accuracy of QSM obtained from thin slabs with aid 

from a lower-resolution acquisition with extended coverage. This could help in reducing the 

acquisition time burden of QSM in applications focusing on imaging specific regions of limited 

extent. The new method was tested using simulated and in-vivo data, in which more consistent 

QSM measurements were achievable in-vivo at 3T with spatial coverage as small as 10.4 mm, 

with aid from a dataset of ×24 coarser resolution.  
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Chapter 5: Multisite reproducibility of quantitative susceptibility mapping 

and effective transverse relaxation rate in deep gray matter at 3 T 

using locally optimized sequences in 24 traveling heads1 

5.1 Abstract:  

Iron concentration in the human brain plays a crucial role in several neurodegenerative diseases 

and can be monitored noninvasively using quantitative susceptibility mapping (QSM) and 

effective transverse relaxation rate (R2*) mapping from multi-echo T2*-weighted images. Large 

population studies enable better understanding of pathologies and can benefit from pooling 

multisite data. However, reproducibility may be compromised between sites and studies using 

different hardware and sequence protocols.  

This work investigates QSM and R2* reproducibility at 3 T using locally optimized sequences 

from three centers and two vendors, and investigates possible reduction of cross-site variability 

through post-processing approaches. Twenty-four healthy subjects traveled between three sites 

and were scanned twice at each site. Scan-rescan measurements from seven deep gray matter 

regions were used for assessing within-site and cross-site reproducibility using intraclass 

correlation coefficient (ICC) and within-subject standard deviation (SDw) measures. In addition, 

multiple QSM and R2* post-processing options were investigated with the aim to minimize cross-

site sequence-related variations, including: mask generation approach, echo-timing selection, 

harmonizing spatial resolution, field map estimation, susceptibility inversion method, and linear 

field correction for magnitude images.  

The same-subject cross-site region of interest measurements for QSM and R2* were highly 

correlated (R2 ≥ 0.94) and reproducible (mean ICC of 0.89 and 0.82 for QSM and R2*, 

respectively). The mean cross-site SDw was 4.16 parts per billion (ppb) for QSM and 1.27 s-1 for 

R2*. For within-site measurements of QSM and R2*, the mean ICC was 0.97 and 0.87 and mean 

SDw was 2.36 ppb and 0.97 s-1, respectively. The precision level is regionally dependent and is 

reduced in the frontal lobe, near brain edges, and in white matter regions. Cross-site QSM 

variability (mean SDw) was reduced up to 46% through post-processing approaches, such as 

 
1 A version of this chapter has been published:  Naji N, Lauzon ML, Seres P, et al. Multisite reproducibility of 

quantitative susceptibility mapping and effective transverse relaxation rate in deep gray matter at 3 T using locally 

optimized sequences in 24 traveling heads. NMR in Biomedicine. 2022; 35(11): e4788.  
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masking out less reliable regions, matching available echo timings and spatial resolution, avoiding 

the use of the non-consistent magnitude contrast between scans in field estimation, and minimizing 

streaking artifacts.  

Keywords: multisite, QSM, R2* mapping, reproducibility, 3 T 

5.2 INTRODUCTION 

The effective transverse relaxation rate (R2*) and quantitative susceptibility mapping (QSM) offer 

non-invasive ways to estimate metallic ion deposits in brain tissue, with additional sensitivities to 

myelin, calcium, and water content. Both are typically calculated from multi-echo gradient echo 

(MEGE) data and are widely used to estimate iron concentrations in known iron-rich regions 

indirectly via its effect on the local magnetic field (15,52,54,254,255). However, R2* lacks the 

ability to differentiate between paramagnetic and diamagnetic sources, and suffers from blooming 

artifacts. On the other hand, QSM overcomes these issues by solving the field-to-source model 

and estimating the bulk susceptibility in each voxel. Susceptibility can also be mapped from single-

echo T2*-sensitive sequences. QSM and R2* have shown strong correlation with postmortem iron 

measurements (39,256–258) and have been used in several iron-related longitudinal (31,48,259), 

lifespan (26–28,260), and pathological studies (128,131,133,261). Many QSM and R2* studies 

have focused on deep gray matter regions, including the basal ganglia and thalamus, as these 

structures play key roles in motor control and sensory perception, whereby iron accumulation in 

these regions has been associated with several neurodegenerative diseases including Alzheimer's 

disease, Huntington's disease, multiple sclerosis, and Parkinson's disease (30,131,158,262). 

 Large population studies to examine wider pathologic and demographic variations can benefit 

from pooling studies from multiple sites. However, this requires methods to be highly reproducible 

and minimally sensitive to hardware and/or sequence differences among sites. Previous studies 

have reported high QSM and R2* repeatability in brain (40,41,263), as well as high reproducibility 

across different sites (two to 10 sites) (41,264–267), vendors (up to three) (41,266), and field 

strengths (1.5, 3, and 7 T) (245,268,269). These studies excluded sequence-related variability by 

using almost the same protocol in all the repeated scans. However, it is also beneficial to be able 

to pool multisite data acquired without the same standardized protocol retrospectively to form 

larger datasets of wider pathological and/or demographical coverage, such as maximizing 

age/demographical coverage in lifespan studies, or increasing the statistical power of specific 
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under-represented cohorts of a disorder, effect, or demographic. Data would then typically contain 

local sequence variations, which influence reconstructed R2* and susceptibility maps 

(196,270,271). Moreover, although previous large-scale multisite studies included up to 10 sites, 

the number of subjects to test reproducibility (traveling heads) was only one or two healthy 

subjects (265–267). The largest previous study with respect to the number of traveling heads 

included 10 subjects scanned in five sites at 7 T (41).  

This study aimed to 1) assess QSM and R2* reproducibility in 24 traveling heads at three sites (all 

at 3 T) with two vendors (and three scanner models) using locally optimized non-harmonized data 

from the same 24 subjects collected using three independently optimized sequences, and 2) 

investigate possible reduction of cross-site variability induced by sequence variations through 

post-processing approaches. 

5.3 METHODS 

5.3.1 Subjects and Imaging Setup 

Twenty-four healthy subjects (11 males and 13 females, aged 20 to 49 years) were imaged at three 

sites (Table 5.1) at 3 T under the approval of the local ethics committee. Each subject gave written 

informed consent prior to imaging and was imaged twice at each site in different sessions (leaving 

the scanner in between). The mean interval between within-site sessions was 8.5 days (79% of 

sessions occurred within 48 h, with three sessions experiencing longer delays between 2.4 to 3.6 

months), and all six sessions were completed within 18 to 110 days. Imaging protocols were 

optimized independently by each site and included a whole brain 3D MEGE with at least six echoes 

for R2* and QSM measurements (Table 5.1). While the acquisitions were similar, there were 

substantial differences in echo and repetition times (TE and TR, respectively), flip angle, spatial 

resolution, slice orientation, and parallel imaging approach between sites based on local 

optimization. Each study also included a 3D inversion recovery T1-weighted imaging sequence for 

registration and tissue segmentation purposes. To minimize variability from segmentation, only 

the 3D T1-weighted acquisition from the first scan of Site 3 was used with the following 

parameters: 250×250 mm2 FOV, 208 sagittal slices, 0.87×0.87×0.85 mm3 voxel size, 8º flip angle, 

and TI/TE/TR of 900/2.37/1800 ms acquired in 3 min 39 s. After a manual quality check of the 

MEGE data, three subjects were found to have motion artifact in one or more examinations, 

leading to exclusion of those scans. Additionally, one subject did not complete their protocol at 
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Site 1. Therefore, analyzed data included full data (two scans at each of three sites) in 20 subjects 

and at least one scan from two sites in the remaining four subjects (subject #3: five scans, subject 

#9: three scans, subject #13: three scans, subject #14: three scans), giving a total of 134 scans. 

5.3.2 QSM and R2* Processing 

For QSM, 3D MEGE phase images were processed with standard methods for coil combination, 

phase unwrapping, and background field removal. Other processing steps were tested with 

multiple options to reduce sequence variations, as described in the following section. Coil 

combination for complex data was performed using the default method in each system: Siemens 

used an adaptive approach (61), while GE scanners used a sensitivity-based combination (Array 

coil Spatial Sensitivity Encoding Technique [ASSET], GE Medical Systems). Phase images were 

unwrapped using a best path approach (67). A tissue field map was extracted using a variable-

radius sophisticated harmonic artifact reduction for phase (V-SHARP) data algorithm with a 

maximum kernel of 12 mm (77). For R2* map reconstruction, a voxel-wise mono-exponential 

fitting for the magnitude images was performed using the autoregression on linear operation 

(ARLO) method (272). 

5.3.3 Post-processing Options to Minimize Sequence Variations 

To minimize the effect of sequence variations on the quantitative maps, multiple post-processing 

options were tested, including: 

a. Volume of interest (VOI) mask: VOI mask extraction was tested using the MEGE magnitude 

of (i) the first TE and (ii) the longest comparable TE between protocols (TE ~ 26 ms), via FMRIB 

Software Library (FSL) (v. 5.0.8)’s brain extraction tool (64) with 0.4 threshold and 2.0 

smoothness factor.  

b. TE selection: Because the imaging protocols utilized different ranges of echo times, two TE 

selection scenarios were examined: processing data from (i) all the echo times, and (ii) only from 

the five comparable TEs found in the three protocols (TE times underlined in Table 5.1).  

c. Total field map: Three common approaches (based on three publicly available QSM toolboxes: 

STI Suite v. 3.0 (108), QSM reconstruction (229), and the morphology-enabled dipole inversion 

[MEDI] Toolbox [6 November 2017 release] (107)) were tested for computing the total field map 
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from MEGE phase images, namely (i) taking the average over selected TEs (108), (ii) doing a 

magnitude-weighted average (229), and (iii) via complex signal nonlinear fitting (62,107).  

d. Input field map resolution: The process of background field removal using V-SHARP 

involves computing a moving average using approximated sphere-shaped kernels of radii as small 

as 1 mm. This causes digitization error and might introduce variability when resolution is not 

consistent in all exams. To test the effect of matching spatial resolution before extracting the tissue 

field map, the background field was removed using (i) the raw resolution, and (ii) after 

interpolation to the highest reconstructed resolution (Site 2, isotropic 1 mm3 voxels).  

e. Field-to-source inversion: Three inversion algorithms were tested to produce the final 

susceptibility map: (i) the iterative least square method (iLSQR), which does not rely on magnitude 

information and minimizes streaking artifacts (92,108); (ii) total variation dipole inversion 

(TVDI), which solves a magnitude-weighted linear model with total variation regularization 

(56,229); and (iii) MEDI, which solves the magnitude-weighted nonlinear model and also uses 

magnitude contrast for regularization (62,107). The regularization parameters were set to 5×10-4 

and 2500 (average optimized values over a subset of the data using the curvature of the L-curve 

method (230)) in the TVDI and MEDI algorithms, respectively. Other parameters used the default 

values given in the official code packages (107,108,229).  

f. Linear field correction for R2*: R2* maps were fitted (i) with and (ii) without applying a linear 

field correction to MEGE magnitudes (52). The linear field correction was achieved as follows: a 

field map was estimated from the difference of the first two echoes phase information. Then MEGE 

magnitudes were corrected through division by 𝑠𝑖𝑛𝑐(∆𝜔0𝑥/2𝑡) ∙ 𝑠𝑖𝑛𝑐(∆𝜔0𝑦/2𝑡) ∙ 𝑠𝑖𝑛𝑐(∆𝜔0𝑧/

2𝑡) (52), where 𝑡 refers to echo time, and ∆𝜔0𝑥, ∆𝜔0𝑦 and ∆𝜔0𝑧 are computed using the field map 

gradient along x, y and z, respectively. 

Multiple combinations of the above-mentioned options were evaluated. For demonstration 

purposes, we present eight processing pipelines (combinations of processing steps) for QSM (Sx1 

to Sx8) and three for R2* (Rx1 to Rx3), in which only one processing step was changed in each 

pipeline. The summary of these pipelines and their labels used thereafter are listed in Table 5.2. 
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Table 5.1: MR systems and imaging parameters of all sites. 

 Site 1  Site 2 Site 3 

Site Name  Alberta Children's 

Hospital 

Foothills Medical 

Centre 

Peter S. Allen MR 

Research Centre 

Location Calgary, AB, Canada Calgary, AB, Canada Edmonton, AB, Canada 

Vendor  GE Healthcare GE Healthcare Siemens 

Scanner model Discovery MR750w Discovery MR750 Prisma 

Software version DV25 DV25 Syngo VE11C 

Field strength (T) 3.001 3.002 2.895 

Head coil 32 channels 16 channels 64 channels 

FOV (mm3) 192×240×174.8 204.8×256×148 202.5×240×149.6 

Slice orientation Axial  Axial  Axial oblique 

Acquired voxel size 

(mm3) 

0.94×0.94×1.90 1.33×1.33×2.00 1.14×0.94×1.70 

Reconstructed voxel 

size (mm3) 

0.94×0.94×1.90 1.00×1.00×1.00 0.94×0.94×1.70 

Acquired matrix 

size 

204×256×92 154×192×74 177×256×88 

Flip angle (deg) 10 20 13 

TR (ms) 56.8 29.5 37 

TEs (ms)a 4.5, 9.8, 15.1, 20.4, 

25.7, 31.0, 36.3, 

41.6, 46.9, 52.2 

3.0, 6.3, 9.6, 13.0, 

16.3, 19.6, 23.0, 26.3 

3.8, 9.3, 14.8, 20.3, 

25.8, 31.3 

Readout mode monopolar monopolar monopolar 

Acceleration factor 2.5 (ASSET) 1 (ASSET) 2 (GRAPPA) 

Slice partial Fourier 0.7 0.7 1 

Flow compensation On On Off 

Scan time (min:sec) 5:14 4:10 5:30 

a Comparable echo times (min TE, and approximately ~10 ms, ~15 ms, ~20 ms and ~26 ms) are underlined. 
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Table 5.2: Summary of different processing pipelines tested to minimize sequence-induced 

variations. Change in each setup is highlighted in bold text. 

 Setup Mask TEs 

Selection 

Field 

Mapping 

Field Map 

Resolution 

Susceptibility 

Inversion 

Linear 

Field 

Correction 

Q
S

M
 

Sx1 Last comparable 

TE 

Comparable 

TEs 

Average  Matched  iLSQR N/A 

Sx2 First TE Comparable 

TEs 

Average Matched  iLSQR N/A 

Sx3 Last comparable 

TE 

All TEs Average Matched  iLSQR N/A 

Sx4 Last comparable 

TE 

Comparable 

TEs 

Magnitude 

weighted 

average 

Matched  iLSQR N/A 

Sx5 Last comparable 

TE 

Comparable 

TEs 

a Nonlinear 

fitting 

Matched  iLSQR N/A 

Sx6 Last comparable 

TE 

Comparable 

TEs 

Average Raw  iLSQR N/A 

Sx7 Last comparable 

TE 

Comparable 

TEs 

Average Matched  TVDI N/A 

Sx8 Last comparable 

TE 

Comparable 

TEs 

Average Matched  MEDI N/A 

R
2
*

 

Rx1 Last comparable 

TE 

All TEs N/A N/A N/A On 

 

Rx2 Last comparable 

TE 

All TEs N/A N/A N/A Off 

Rx3 Last comparable 

TE 

Comparable 

TEs 

N/A N/A N/A Off  

a Nonlinear fitting of total field in Site 2 data was done using 8 echoes (i.e., up to the last comparable TE) to avoid 

uneven echo spacing. 
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5.3.4 Registration and Measurements 

The performance measures of the different processing pipelines were compared voxel-wise and 

region of interest (ROI)-wise. Seven deep gray matter ROIs were delineated for measurement and 

comparison with previous studies: caudate, putamen, thalamus, globus pallidus (GP), substantia 

nigra (SN), red nucleus (RN), and dentate nucleus (DN). Four of these (caudate, putamen, 

thalamus, and GP) were automatically segmented using the VolBrain online tool (273) from T1-

weighted images, after which the obtained segmentation masks were eroded by one voxel to 

minimize inclusion of nearby tissues. The other three structures (SN, RN, and DN) are not 

supported by VolBrain and were manually segmented (by N.N. and were verified by two additional 

MRI scientists: A.W. and P.S.) on all slices using ITK-SNAP software (v. 3.4.0) (231). 

Transformation matrices into the measurement (i.e., segmentation) space were obtained by rigidly 

registering the first echo MEGE magnitude (i.e., at TE1) of each scan to the T1-weighted volume 

of the reference scan (i.e., first scan of Site 3), using the advanced normalization tools (ANTs) 

package (187). These matrices were then used to linearly map quantitative susceptibility and R2* 

images into the measurement space. Measurements of structure mean value were recorded by 

pooling over both hemispheres. For QSM, all values were referenced to the brain average, which 

has been reported among the best options and/or used in the recent literature involving healthy 

subjects, including scan-rescan studies (40,41) and lifespan studies (27,28). For voxel-wise 

analysis, the T1-weighted volumes were nonlinearly registered into the FSL MNI152 T1-weighted 

average structural template using the “fsl_anat” tool of the FSL package (227). The transformation 

warp fields obtained were then used to map QSM and R2* images from the measurement space 

into the MNI152 template space. 

5.3.5 Statistical Analysis 

Scan-rescan reproducibility (within-site and cross-site separately) was statistically assessed using 

the intraclass correlation coefficient (ICC) as a relative reliability index, and the within-subject 

standard deviation (SDw) as a measure of absolute variability. The ICC estimates the ratio of 

between-subject variance (SDb2) to the total variance (i.e., ICC ~ SDb2 /[SDb2 + SDw2 ]), which 

was calculated based on a single-rating, absolute agreement, two-way mixed-effects model (274). 

Within-site ICC/SDw values were calculated in each site separately and the average of the three 

sites was reported. Similarly, cross-site values were calculated in Scan 1 and 2 separately and the 

average of the two scans was reported. Additionally, the group average value was calculated by 
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averaging the values of all scans and subjects to detect any global shift in susceptibility and R2* 

contrast due to post-processing steps. Statistical significance among different processing setups 

was tested using one-way analysis of variance (ANOVA; with the significance level set at 0.05), 

followed by multiple comparisons using Tukey's test. 

Within-site and cross-site measurements were statistically analyzed using a linear mixed effects 

model (LME) (275) in order to use all data, including those from incomplete datasets. The tissues 

(i.e., ROIs) and the subjects acted as random effects, while the fixed effect was the repeated scan 

and the scanner site in the within-site model and the cross-site model, respectively. Pair-wise 

comparisons between different scans were statistically analyzed using Student's paired t-test for 

means (two-sided with the significance level set at 0.05 and zero difference null hypothesis), and 

visualized using correlation and Bland–Altman plots (276). In correlation and Bland–Altman plots, 

all possible combinations of cross-site scans were included (i.e., four points per subject between 

any two sites).  

All processing (except brain extraction, registration, and segmentation), analyses, and plots were 

performed using MATLAB (version R2020a; MathWorks, MA, USA). QSM and R2* processing 

code files are publicly available via the links in the cited references. The processed maps, 

measurements, and analysis scripts of this study are available from the corresponding author upon 

request. Participant MRI images are not publicly available due to ethical considerations. 

5.4 RESULTS 

Figure 5.1 demonstrates sample scan-rescan images of one subject at the level of the deep gray 

matter nuclei. The contrast of MEGE magnitude varies widely between different sites as a 

consequence of differences in flip angles and repetition times. This was also observed in analytical 

calculations (not shown) using nominal values for proton density and T2* (i.e., gray matter > white 

matter, gray matter < white matter, and gray matter ~ white matter in Site 1, 2, and 3, respectively). 

Quantitative maps however are more consistent, showing few differences near regions of high 

susceptibility gradient, such as veins and air–tissue interfaces. 
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Figure 5.1: Scan-rescan demonstration of one slice (at the level of deep gray matter nuclei) in one 

subject of first echo MEGE magnitude (which shows different T1 weightings due to variation in 

acquisition parameters), effective transverse relaxation rate (R2*), and quantitative susceptibility 

mapping (QSM). Small differences between quantitative maps are noticeable around strong 

susceptibility gradient regions (arrows) such as near veins and air–tissue interfaces. R2* and 

susceptibility maps were obtained using the Rx1 and Sx1 processing pipelines (see Table 5.2), 

respectively. MEGE, multi-echo gradient echo. 

5.4.1 Post-processing Options 

A demonstration of postprocessing-related within-site and cross-site variability is shown in Figure 

5.2 with voxel-wise metric maps. In general, the lowest reliability in QSM was observed in the 

frontal lobe and the cortical regions. In R2*, white matter regions have the lowest reliability. 

Overall, the highest variability was observed near high susceptibility gradients (e.g., veins) and 

near the edges of the brain. For QSM, setup Sx1 showed the lowest overall variability. Generating 

the brain mask using the magnitude of the first TE (i.e., setup Sx2) induced variability in the frontal 

lobe and in regions near the sinus–tissue interface. Similarly, processing data of all TEs without 

matching (i.e., setup Sx3) and including magnitude contrast in the field estimation step (i.e., setups 
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Sx4 and Sx5) elevated the level of variability in the regions where the TE/magnitude information 

differ. Moreover, matching spatial resolution before removing background field (setup Sx1 vs. 

Sx6) further reduced overall variability (-8% in mean SDw). Reconstructed QSM images using 

the iLSQR have higher reliability and lower variability when compared with TVDI (Sx7) and 

MEDI (Sx8) based reconstructions, with differences more pronounced in cortical regions. In the 

case of R2*, processing all TEs without matching (setups Rx1 and Rx2 vs. Rx3) appears to slightly 

reduce variability in the frontal lobe but increases variability in white matter regions. Furthermore, 

applying linear field correction before fitting (setup Rx1 vs. Rx2) slightly reduced sinus artifacts 

in the frontal lobe (not shown) but introduced variability in cortical regions. 

ROI-wise comparisons of different post-processing setups are shown in Figure 5.3. In QSM, maps 

produced using Sx2 had lower average values (Figure 5.3A). Other processing setups resulted in 

comparable measurements in most ROIs, although GP average value was lower (~ -9%) in QSM 

reconstructed using the iLSQR (i.e., Sx1 to Sx6) compared with TVDI and MEDI methods (i.e., 

Sx7 and Sx8). The iLSQR, however, was better at reducing scan-rescan differences and artifacts, 

notably when head orientation (with respect to B0) varied between scans (Figure 5.4). For R2* 

measurements, all processing setups produced comparable average values in all ROIs (Figure 

5.3A), although Rx1 measurements were slightly lower (0.2% to 2%). For reproducibility 

measures (Figure 5.3B,C), higher reliability (and less variability) was observed in within-site 

measurements compared with cross-site in both QSM and R2*, regardless of the processing setup. 

The lowest ICC values were found in thalamus, and the highest cross-site variability was observed 

in SN and DN for QSM and R2* values, respectively. For QSM, better overall performance was 

achieved using setup Sx1 with ICC for within-site/cross-site ≥ 0.90/0.58 (0.97/0.90 excluding the 

thalamus) and SDw below 3.79/7.14 parts per billion (ppb). Improvement in SDw values using 

Sx1 was statistically significant compared with most other processing setups. Therefore, 

susceptibility maps obtained using setup Sx1 were used in the remaining analyses. For R2*, 

processing all TEs (setups Rx1 and Rx2) improved thalamus reliability (+13% in ICC). In addition, 

applying a linear field correction prior to fitting (setup Rx1 vs. Rx2) slightly improved cross-site 

caudate and putamen measures (+7% and +2% in ICC, respectively), but increased cross-site SDw 

in DN, SN, and RN (~ +3% to +6%). However, these changes in SDw values were not statistically 

significant. For simplicity, the R2* maps obtained using setup Rx1 were used throughout. 
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Figure 5.2: Voxel-wise maps of average value, intraclass correlation coefficient (ICC), and 

within-subject SD (SDw) measures (obtained by nonlinearly registering QSM and R2* images of 

all subjects to the same T1-weighted average structural template) demonstrating post-processing 

variability for all the processing pipelines in Table 5.2. Arrows indicate some regions of increased 

variability. Overall, the highest and the lowest cross-site reliability was observed in the iron-rich 

regions, and in the frontal lobe and cortical layer, respectively. Higher variability was observed 

in the regions of high susceptibility gradient, such as around veins and air–tissue interfaces. When 

TEs were not matched, higher cross-site variability was observed in white matter regions in both 

QSM and R2* (setup Sx3 in QSM, and setups Rx1 and Rx2 in R2*). Using magnitude contrast in 

QSM processing introduced variability mostly in regions where magnitude information varied 

(setups Sx4 and Sx5). In R2*, the lowest cross-site reliability was observed in the white matter and 

the frontal lobe. Minimal differences were observed when linear field correction was applied in 

R2* processing (Rx1 vs. Rx2). Fitting R2* over all TEs without matching reduced the variability in 

the frontal lobe (Rx1 and Rx2 vs. Rx3). 
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Figure 5.3: Boxplots of (A) Group average value, (B) ICC, and (C) SDw measures for all ROI 

measurements in QSM and R2*. Values of each ROI are shown with squares. Median values and 

outliers are indicated by black dots within white circles and by black asterisks, respectively. 

Average QSM values are comparable in most processing setups (except Sx2). When the iLSQR 

reconstruction was used (i.e., Sx1 to Sx6), lower susceptibility values were obtained in GP, 

compared with TVDI and MEDI reconstruction algorithms. In R2*, Rx1 measurements have 

slightly lower average values. Higher ICC and lower SDw indicate better reproducibility. For 

QSM, setup Sx1 demonstrated the best overall performance. For R2*, minimal difference was 

observed between different processing pipelines, although setups Rx1 and Rx2 improved the 

reproducibility of measurements in the thalamus. 
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Figure 5.4: A demonstration of scan-rescan differences in two subjects for different susceptibility 

inversion algorithms. Images show sagittal slices passing through the left globus pallidus (GP) 

and dentate nucleus (DN). The first row illustrates the variation in head orientation between scans. 

The brain in the MEGE first magnitude of Scan 1 (reference) is outlined by a solid red line, while 

in the second scan, within-site and cross-site are outlined using green and blue colored lines, 

respectively. Δθz refers to the angular difference between head orientations with respect to the B0 

direction. In the first and fourth columns, QSM of the reference scan is shown. The within-

site/cross-site susceptibility differences are shown in the second/third and fifth/sixth columns, for 

subject 1 and 2, respectively. Noticeable artifacts can be seen in the difference maps when head 

orientation changed between scans. As evident by visual inspection, these artifacts are less severe 

in the QSM maps reconstructed by the iLSQR algorithm (i.e., Sx1). 

 

 



118 
 

5.4.2 Reproducibility Analysis 

The LME model of the within-site measurements uses Scan 1 as a reference (intercept) and 

estimates whether changing the scan (to Scan 2) would cause a significant change in the model 

prediction. Using the model residuals, four outlier measurements (of SN) in QSM and one (of DN) 

in R2* were identified and excluded in the remaining analyses. The results of the model showed 

that the effect of changing the scan is not statistically significant (p > 0.05). The same observations 

were found in a post-hoc analysis using Student's paired t-test for means (Scan 2 – Scan 1) when 

the data from all sites were combined, in which no statistically significant difference was found 

between repeated scans. Furthermore, no significant difference was found between repeated 

measurements of any individual ROI in any individual site except in a few cases: QSM of RN in 

Site 2 (p = 0.04, mean difference [CI] = -1.89 [-3.78, -0.01] ppb) and caudate in Site 3 (p < 0.01, 

mean difference [CI] = 1.42 [0.75, 2.09] ppb), and R2* of DN in Site 1 (p = 0.048, mean difference 

[CI] = 1.09 [0.01, 2.17] s-1 ). 

For the cross-site case, the model uses Site 1 as a reference (i.e., intercept) and estimates whether 

changing the site (to Site 2 or 3) would change the model prediction. Results showed that changing 

the site has a statistically significant effect (p << 0.05), and the estimated change is within 7% and 

3% for QSM and R2*, respectively. 

Figure 5 visualizes the correlations (Figure 5.5A) and the differences (Figure 5.5B) between the 

scan-rescan measurements for both QSM and R2*. Correlation plots demonstrated high 

correlations between all setups: within-site, cross-site, and cross-vendor, for both QSM and R2*, 

with R2 ≥ 0.94. Slopes are within 4% and 8% from 1.0 (with standard error ≤ 0.01) in QSM and 

R2*, respectively. In QSM, the highest slope deviation (4%) is associated with Site 1, 

demonstrating that QSM measurements are slightly lower in Site 1 when compared with Site 2. In 

R2*, however, the highest slope deviation (8%) is found between different vendors, reflecting that 

R2* measurements in Site 3 are slightly lower compared with other sites. The scan-rescan 

differences are emphasized in the Bland–Altman plots of Figure 5.5. The absolute bias between 

any two scans was within 4.1 ppb and 0.94 s-1 in QSM and R2*, respectively. The SD of scan-

rescan differences was within 5.3 ppb and 1.7 s-1 in QSM and R2*, respectively. Overall, within-

site biases and differences were smaller than for cross-site measurements. The distribution of 

within-site scan-rescan differences is almost symmetric around the mean in all structures, for both 
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QSM and R2*. However, in cross-site measurements, some structures exhibit different patterns. In 

QSM for instance, distribution asymmetries were observed in the Site 1-related measurements. GP 

and DN measurements for instance deviate downward from the mean difference, reflecting that 

Site 1 measurements of GP and DN values were lower when compared with other sites. In the R2* 

case, larger values, such as those observed in GP and SN, deviate further upward from the mean 

difference in Site 3-related measurements; this shows that deviation in Site 3 measurements is 

more pronounced in regions of higher magnitude. Furthermore, higher cross-site variability was 

observed in small structures such as SN and RN. 

The key findings of the reproducibility analysis in this work can be summarized as follows: within-

site QSM ROI measurements were correlated with R2 of 0.99 and slope of 1.00, and were 

repeatable with a mean ICC of 0.97 and mean SDw of 2.36 ppb. For R2* measurements, R2 was 

0.95, slope was 0.99, with mean ICC of 0.87 and mean SDw of 0.97 s-1. On the other hand, cross-

site QSM measurements were correlated with R2 ≥ 0.98 and mean slope of 0.99 (0.96 to 1.02), and 

reproducible with a mean ICC of 0.89 and mean SDw of 4.16 ppb. R2* measurements were 

correlated with an R2 of 0.94 and mean slope of 1.02 (0.93 to 1.08), and reproducible with a mean 

ICC of 0.82 and mean SDw of 1.27 s-1. No significant bias was found between within-site 

measurements. For cross-site variability, the absolute bias was ≤ 4.1 ppb and ≤ 0.94 s-1 for QSM 

and R2*, respectively. These results were achieved using the Sx1 and Rx1 processing pipelines for 

susceptibility and R2* mapping, respectively. 

5.5 DISCUSSION 

The reproducibility of QSM and R2* in the subcortical brain regions was assessed in a multisite 

dataset acquired at 3 T with non-harmonized MEGE sequences optimized separately by each site. 

This represents a realistic scenario for retrospective combination of multicenter data enabling 

larger datasets of wider pathological and/or demographical coverage. To the best of our 

knowledge, this is the first work that presents reproducibility analysis for QSM and R2* data 

collected using non-harmonized protocols, and in a large number of traveling heads (N = 24). 

Previous multisite reproducibility studies focused on harmonized acquisition protocols and 

reported promising results at 3 and 7 T, for QSM and R2* (41,264–266,277). Different studies 

used different statistical measures to assess reproducibility, with SDw and SD of differences (SDd) 

being the most common measures. At 3 T for these harmonized studies, the reported average QSM 
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cross-site SDw, (absolute) bias and SDd were in the ranges of 7.7 to 13.9, 1.22 to 4.5, and 7.3 to 

10.4 ppb, respectively (264,266,277). The average reported regression slope and R2 were in the 

ranges of 0.96 to 1.02 and 0.92 to 0.98, respectively. The differences among the reported values 

can be attributed to the variations in hardware, processing, and/or statistical sampling power. 

Although our data include additional variability from protocol differences, our cross-site QSM 

reproducibility results were in agreement with literature values from harmonized studies (mean 

SDw: 4.16 ppb, absolute bias ≤ 4.1 ppb, SDd < 5.3 ppb, slope: 0.99 ± 0.03, R2: 0.99) (264,266,277). 

Cross-site R2* reproducibility at 3 T was reported previously to be below 8% coefficient of 

variation (265), which agrees with our results of 6.2%. Furthermore, our within-site repeatability 

measures for QSM and R2* agree with the 3-T literature values reported (R2: 0.93 to 0.99, slope: 

0.94 to 1.01, absolute bias: 0.2 to 3.0 ppb, mean ICC: 0.91 to 0.95, mean SDw: 3.2 to 4.96 ppb 

(40,268,269,277) and mean ICC: 0.72 to 0.92, mean SDw: 0.84 to 1.58 s-1 (40,263), respectively). 

Cross-site values reported in our study are also comparable with those reported in a recent 7-T 

study where SDw values were reported to be within 5 ppb and 1.5 s-1 for QSM and R2*, 

respectively (41).  

In addition to thermal noise, several other sources are involved in the variation between repeated 

measurements of QSM and R2*, namely those that are related to either magnetic field differences 

(strength and homogeneity), subject-specific differences (positioning, head tilt, and motion) or 

sequence differences. Dealing first with magnetic field differences, a striking difference between 

R2* and QSM is the strong dependence of R2* on field strength, which typically increases linearly 

with B0. Despite all three systems in our study being nominally 3 T, there were small field strength 

differences (3.6% absolute variation) between scanners, which could partially explain the 

differences in R2* cross-vendor regression slopes. In a post-hoc analysis, normalizing R2* maps 

into exactly 3.0 T slightly improved the regression slopes of Site 3-related measurements (e.g., 

1.04 slope instead of 1.08 vs. Site 2). In QSM, however, the effect of B0 differences is canceled 

during the phase-to-field scaling step. A second variation source related to the main field is the 

field inhomogeneity, which is affected by the shimming process used by each system. 

Furthermore, field homogeneity is sensitive to magnetic susceptibility and gets distorted to some 

degree in regions of high susceptibility gradients such as air–tissue and vein–tissue interfaces. 

Differences in the shimming quality between scans translate into geometrical distortions in regions 

of high susceptibility gradients affecting both QSM and R2*. We observed higher variability in 
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these regions. Rua et al. recently reported that registering repeated scans nonlinearly, rather than 

rigidly, reduced variation in these regions (reduced median cross-site SDw in R2* from 0.86 to 

0.66 s-1, at 7 T) (41). 

 

Figure 5.5: Scan-rescan quantitative comparisons using region of interest measurements. (A) 

Correlation plots show that both quantitative techniques have strong correlation between repeated 

measurements with slope 1.00 ± 0.05 and R2 ≥ 0.94. (B) Bland–Altman plots compare the scan-

rescan difference to the mean of both scans. The standard deviation of differences (SDd) was within 

5.3 ppb and 1.7 s-1 for QSM and R2*, respectively. The solid and dashed horizontal lines indicate 

the mean difference and the limits of agreement (LOA), respectively. DN, dentate nucleus; GP, 

globus pallidus; RMSE, root mean square error; RN, red nucleus; SEp, estimated standard error 

of the slope; SN, substantia nigra. 
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With regards to subject-specific variations, differences in head orientation between repeated scans 

can add variation in several ways. The angle between the B0 direction and white matter tracts 

affects estimation of both QSM and R2* in white matter regions due to fiber anisotropy (14,34,35). 

Rua et al. have shown recently that scan-rescan variability can be reduced by correcting QSM 

values using head angle information (41). Moreover, scan-rescan differences in head orientation 

can introduce variability in QSM due to inherited post-processing deficiencies that results in angle-

dependent streaking artifacts. If not properly minimized, these artifacts contaminate nearby tissues 

and may produce variation between repeated scans. In addition, QSM reconstruction requires 

removing contributions from background fields, a process known as being increasingly prone to 

error towards brain edges (74). Combined with the geometrical distortion near air–tissue 

interfaces, the background field-removal process deficiency can cause angle-dependent 

inconsistencies between repeated scans. In this work, QSM measurements from Site 1 were found 

to be slightly lower (slope: 0.96 to 0.98) compared with other sites. A post-hoc analysis of head 

orientation revealed that the heads were generally more forward-tilted at Site 1, with a mean 

inclination angle difference of 7.4º (range: -3.3º to 19.9º, p < 0.001). Therefore, the lower QSM 

measurements in Site 1 could be originating from head orientation differences. Another subject-

related source of variation is motion during image acquisition, which translates into inaccurate 

measurements of voxel signal. Choi et al. showed that correcting respiratory motion-related effects 

(using a navigator echo) improved repeatability at 3 T by up to 12% and 23% in QSM and R2*, 

respectively (36). 

Imaging sequence parameters can be tuned to minimize the variability from the above-discussed 

sources, although a tradeoff is usually required, but it can also add to the variability if not applied 

consistently in all repeated scans. For instance, long echo times help improve phase contrast, but 

could magnify distortions in high susceptibility gradient regions. Increasing spatial resolution 

improves accuracy and minimizes both geometrical distortions and partial volume effects, but it 

sacrifices signal-to-noise ratio (SNR) and makes images more prone to motion artifacts due to 

prolonging acquisition time. Flip angles and repetition times also modulate contrast and SNR. 

Acceleration techniques reduce scanning time at the cost of lowering SNR and altering k-space 

content. Flow compensation and gradient-warp correction techniques minimize flow-related and 

gradient nonlinearity artifacts, respectively. However, these techniques could be a source of 

variability if not applied in all repeated scans (271,278). Furthermore, differences between vendor 
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implementations of hardware and sequences are additional possible sources of scan-rescan 

variation; here we aimed to quantify the collective effect of sequence variations on the 

reproducibility of susceptibility and R2* maps. By comparing our results with previous harmonized 

cross-site reproducibility studies, the contribution of sequence variations to the total cross-site 

variability seems secondary compared with magnetic field and subject-related contributions, if 

managed properly during post-processing steps. However, in quantifying small structures (such as 

SN and RN), resolution and slice orientation can cause substantial variability due to irreversible 

partial volume effects. Differences in slice orientation can also affect other regions if not properly 

handled during QSM post-processing, as some background removal and susceptibility inversion 

methods have been shown to be sensitive to variation in slice orientation, and thus pre-aligning 

slices might be required (81). The methods applied in this study (i.e., V-SHARP background 

removal and iterative total variation-based inversions) are not susceptible to variation in slice 

orientation. 

The above-discussed variability sources imply that QSM and R2* reproducibility has some 

regional dependency. Higher variability is expected in small structures (e.g., RN and SN) and 

regions near brain edge and air cavities (e.g., RN, SN, and DN). Furthermore, the reliability of 

measurements is reduced in regions where changes observed with age and/or pathology are not 

larger than scan-rescan variability by an order of magnitude, such as in the thalamus, where the 

between-subject change was not large enough compared with SDw, leading to a good reliability 

rather than excellent as in other ROIs. 

We investigated and identified some possible post-processing steps that can improve cross-site 

reproducibility whenever sequence variations are inevitable. Excluding unreliable field regions in 

QSM using a mask produced from the MEGE magnitude of the last comparable TE reduced 

variability. This also reduced mask variations between scans of different flip angles/TRs without 

the need for tuning mask extraction parameters for each protocol. Alternatively, more advanced 

techniques can be applied to exclude unreliable regions in each echo by utilizing both magnitude 

and phase information in the masking process and performing two-pass susceptibility inversion 

(63). In addition, restricting QSM reconstruction to comparable echo times found in all scans 

reduced variability further (mean SDw reduced from 4.83 to 4.16 ppb), which is consistent with 

findings in previous work (245). This ensures similar field content within the VOI, including 
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regions of high susceptibility gradients. Note that reducing variability between scans acquired at 

different field strengths would require careful selection of echo times considering the ratio between 

the different field strengths (245). Furthermore, background field estimation was performed after 

matching spatial resolution to minimize digitization error incurred during spherical mean value 

calculations. Note that there are other background removal methods that do not involve kernel-

based spherical mean calculations (80,82), and thus matching resolution might not be required. 

However, the V-SHARP method was used here for being slice-orientation independent and 

producing susceptibility maps with fewer artifacts at minimal VOI erosion (Figure 5.6), as it 

estimates the tissue field in each voxel based on kernels of limited coverage, and relies on neither 

the definition of the boundaries between local and background sources nor slice orientation 

information. Matching spatial resolution can also be applied to the raw complex signal prior to any 

processing, however, at the cost of increasing the required computation time and capacity (i.e., all 

processing steps must be performed at higher spatial resolution) (279). Moreover, no magnitude-

based weighting was used in field estimation, as MEGE magnitude varied widely between 

different sites and contrast variation could propagate into the final susceptibility map. Note that 

employing magnitude information in the field-to-source inversion step is helpful if the contrast is 

consistent between different scans, as previous studies have illustrated (106,244). To understand 

the effect of the varying magnitude contrast on the susceptibility inversion step, a post-hoc analysis 

was performed, in which TVDI and MEDI algorithms were tested with and without employing 

magnitude information (Figures 5.7 and 5.8). For TVDI, no clear change in reproducibility was 

observed when magnitude usage was avoided. For MEDI, not using magnitude in the 

regularization term reduced variability without a clear improvement in reliability. However, not 

employing a noise map (estimated from magnitude) in the fidelity term further increased the 

variability. Therefore, using the varying magnitude contrast as a weighting factor in the inversion 

step did not have a clear negative impact on the reproducibility, mostly due to the ability of the 

weighting mechanism used in these algorithms to absorb the variability in the magnitude contrast. 

On the other hand, the improved performance of the iLSQR algorithm seems to be mainly 

benefiting from minimizing streaking artifacts in the reconstructed susceptibility maps (92). 

However, we observed that this algorithm produced lower susceptibility levels in GP (compared 

with other reconstruction methods), which coincides with a previous study that reported lower 

estimation of venous susceptibility using the iLSQR (280). This may originate from the concept 
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the iLSQR employs to suppress streaking artifacts that involves estimating and subtracting the 

artifacts from an initial susceptibility map, which may alter the contrast of strong susceptibility 

sources (92). Thus, the iLSQR might not be the best choice for applications that involve estimating 

strong susceptibility sources, and other methods could be considered. 

Applying the above-mentioned steps improved mean ICC by 17% and reduced mean SDw by 46%. 

Regarding R2* mapping, fitting data from all TEs improved the reproducibility of thalamus 

measurements; however, increased variability was visually observed in white matter regions. This 

difference in white matter contrast between sites can be attributed to the head orientation variation 

and fiber anisotropy discussed above, which are emphasized further when echo timings are not 

matched. Unlike QSM, including all echoes was beneficial for R2* mapping, mainly due to the 

simpler 1D (exponential decay) model being solved that does not rely on spatial information. By 

contrast, QSM solves a 3D convolution model whose support is sensitive to multiple TE-dependent 

steps including mask generation, phase unwrapping, and field estimation. In addition, linear field 

correction for MEGE magnitude before R2* fitting slightly improved reproducibility measures of 

caudate and putamen, but adversely affected other iron-rich regions such as SN, RN, and DN. This 

could be attributed to the correction method that relies on the phase information to suppress regions 

of extreme susceptibility, which may invariably affect iron-rich structures as well. Therefore, 

selecting TEs and applying field correction in R2* mapping could be tailored based on the 

application and the ROIs. 

 The limitations of this work include the lack of sequence harmonized data, which could facilitate 

distinguishing sequence-related variability from hardware/subject variability. However, 

comparisons with previous harmonized studies have helped in drawing some insights in this 

regard. Another limitation is that the presented data were collected from a single field strength and 

a limited number of sites and vendors, so this does not fully represent the widest spectrum of 

variations encountered in multisite studies. Nevertheless, the observed high reproducibility results 

are promising and should encourage further expansion of similar studies. Another limitation is that 

measurements are focused on deep gray matter nuclei. These iron-rich regions have a crucial role 

in cognitive and motor functions and focusing on them facilitates comparison with many previous 

studies of these regions. However, the voxel-wise analysis gives a general idea of the 

reproducibility in the regions outside deep gray matter.  
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In conclusion, we investigated the reproducibility of quantitative susceptibility and R2* maps at 

3T in the presence of local sequence variations across multiple sites and vendors in deep gray 

matter. Both techniques demonstrated high reproducibility in within-site and cross-site 

measurements. QSM variability originating from site and sequence differences can be minimized 

through post-processing steps, including exclusion of unreliable regions, not relying on magnitude 

contrast in field estimation if significantly varying between scans, matching echo timings and 

spatial resolution, and minimizing streaking artifacts. 

 

 

Figure 5.6: Demonstration of the effect of three background removal methods on the final 

susceptibility map in A) one example subject, and B) voxel-wise group metric maps. Overall, the 

V-SHARP method produced less edge artifacts, higher ICC values and lower SDw values. Group 

maps were produced by nonlinearly registering all scans into MNI152 1-mm T1w template. The 

inputs of the PDF and the LBV methods were eroded by one voxel to produce tissue fields of the 

same VOI as V-SHARP. Oblique slices were processed in their native orientation without rotation. 
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Figure 5.7: An illustration of the magnitude contrast variation effect on the weighting factors used 

in MEDI susceptibility inversion algorithm. The inverse noise map is used as a weighting factor 

in the fidelity term of MEDI formulation, while magnitude gradients (Gx, Gy and Gz) are used in 

the regularization term as prior knowledge of edge information. 
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Figure 5.8: The effect of the magnitude contrast on QSM inversion: Voxel-wise comparisons 

(average value, ICC and SDw) of TVDI and MEDI produced susceptibility maps. Sx7: TVDI with 

magnitude weighting, Sx7a: TVDI without magnitude weighting, Sx8: conventional MEDI with 

inverse noise map weighting and magnitude gradients regularization, Sx8a: MEDI without inverse 

noise map weighting, Sx8b: MEDI without magnitude gradients regularization, Sx8c: MEDI 

without inverse noise map weighting and without magnitude gradients regularization. In TVDI, 

magnitude weighting slightly reduced variability without clear improvement in reliability. In 

MEDI, keeping the inverse noise map weighting but switching off magnitude gradients information 

(Sx8b) reduced variability noticeably in cortical regions. However, no improvement in reliability 

is evident. Green and red arrows refer to regions of gain and loss in reliability (compared to 

Sx7/Sx8), respectively.  
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Chapter 6: Conclusions 
 

In its core, this thesis aimed at reducing the technical challenges of adopting QSM in brain clinical 

studies by developing technical methods to minimize the acquisition burden of QSM 

measurements, as well as its inter-site and inter-sequence variability.  

Obtaining high-resolution QSM is relatively slow, typically adding six minutes or more (whole 

brain at 1-mm isotropic) to the total acquisition time when included in imaging protocols. Several 

acceleration techniques exist with a trade-off in image quality. The complete acquisition cost can 

be avoided when QSM is obtained from the phase of a sequence that already exists in the imaging 

protocol such as the MPRAGE sequence, which is widely included for tissue segmentation and 

volumetric purposes. In Chapter 2, producing QSM from the phase of the MPRAGE sequence was 

proposed and tested using simulations and measurements on healthy subjects. Imposed by the short 

echo time typically used in the sequence, the susceptibility contrast driven from the MPRAGE 

phase was sufficient only in iron-rich regions, restricting the applications to such regions. One 

feasible application that was validated in-vivo is improving the segmentation of the globus pallidus 

using the phase of MPRAGE sequence itself without additional acquisition cost, even though 

normally it has weak contrast on the MPRAGE magnitude. In addition, QSM derived from the 

MPRAGE phase can be used to roughly quantify iron-rich regions (221).  

Furthermore, MPRAGE-based QSM has the potential to be used for examining microbleed load 

in brain, as these blood leakages contain high concentration of iron which produces strong 

susceptibility contrast with only a few milliseconds of echo time. In Chapter 3, we validated this 

application using in-vivo 3T measurements and compared the performance with QSM obtained 

from a standard multi-echo sequence. The detection sensitivity was comparable in both methods, 

although microbleeds had smaller size and stronger susceptibility on the MPRAGE-QSM, 

benefiting from the higher-resolution and the shorter echo time. Simulations were also used to 

explore possible limitations, in which using the MPRAGE-QSM for detecting microbleeds as 

small as one-voxel was promising at the SNR levels of 3T and above. The limited quality of 

MPRAGE-QSM at 3T can be boosted remarkably by extending the echo time to 4.4 ms at 

commonly used spatial resolution of 1 mm isotropic.  
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Another aspect of minimizing the acquisition burden of QSM data is reducing the imaged volume 

beyond the ROI. This however is challenged by the non-local relation between the susceptibility 

distribution and the MR phase, requiring extended coverage for accurate reconstruction. In Chapter 

4, we proposed a hybrid model to overcome this issue, in which a rapid lower-resolution version 

with extended coverage is used as prior knowledge to assist the reconstruction process. The 

feasibility of the new method was tested using simulations and human brain experiments at 3T, 

which showed the potential of the introduced method to produce more accurate measurements than 

the standard method from thin slabs of 8 slices, promoting up to seven-fold reduction in the 

imaging time for small ROI-focused applications.  

The final pillar of this thesis is rooted in investigating the reproducibility of QSM and R2* when 

there are inter-site variations in the imaging sequence parameters, and exploring post-processing 

techniques to minimize the effects of these variations. This aspect has been often overlooked under 

the assumption that matching the sequence parameters is achievable. However, this assumption 

restricts tailoring the sequence for local needs and aggregating data from wide geographical 

coverage for large studies. The study in Chapter 5 included 24 healthy subjects who travelled 

between three 3T sites from two vendors. Cross-site QSM (and R2
*) measurements were highly 

correlated and reproducible despite the variations in sequence parameters. Matching echo times 

and spatial resolution, minimizing less reliable regions and streaking artifacts, and avoiding the 

use of magnitude in field estimation helped in improving cross-site QSM reproducibility (42).  

6.1 LIMITATIONS 

As detailed in Section 1.3.8, the current implementations of QSM use several assumptions to 

simplify a rather difficult to solve complex model that noninvasively probes sub-voxel 

interactions. Thus, the full potential of QSM has yet to be achieved and several shortcomings are 

still present to be addressed. At the top of these is that producing QSM involves multiple cascading 

steps and each of them has many different approaches with multiple user-defined parameters, 

along with the absence of an optimal or consensus processing pipeline. Inherited from phase 

imaging, QSM accuracy is sensitive to magnitude SNR, as well as several phase preprocessing 

steps, including combining signals for different coils and echo times (60,62,182), defining reliable 

phase regions (63,64), and unfolding phase wraps (60,66–70). Furthermore, extracting tissue-
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induced phase (74) and inverting it into a susceptibility distribution (237) are complex 

mathematical problems in which existing methods to solve them require compromising accuracy 

(106,244). In addition, the relative nature of QSM measurements necessitates normalizing them 

by an internal reference, which is still an open question. Several regions have been used as a 

reference point for brain QSM, including whole brain (28,41,42), CSF(91), internal capsule 

(56,196,235), other white matter regions (27,281,282), and cortical gray matter (40); each seems 

to work for specific applications, but the best is still a topic of debate. Moreover, several 

acquisition parameters can influence the QSM output, particularly echo-timings (182,245), spatial 

resolution (196,198), and spatial coverage (196,235). Altogether, this variety of processing options 

makes comparing QSM results from different studies of different setups challenging and limits its 

quantitative utility. Nevertheless, QSM has been utilized in many pathological studies and has 

provided insightful information about the underlying disease and its progression (120,153). In 

addition to the quantitative value, it has been found useful in other applications such as improving 

localization of structures (119) and lesions (140,261), and improving their segmentation (167,221).  

In addition to the limitations of the QSM technique itself, there are some limitations to the applied 

methods and the performed experiments in this thesis. Overall, the in-vivo data was limited to one 

field strength (i.e., 3T), and sometimes one set of echo time(s) and/or spatial resolution, which 

might limit the generality of the conclusions, especially for the reproducibility study. However, 

simulations were used where appropriate to explore the expected quality and accuracy at other 

field strengths, echo-timings and resolution, such as in the MPRAGE-based microbleeds 

quantification and the thin-slab QSM studies. In the MPRAGE-based QSM study, the utility of 

using QSM for improving segmentation was demonstrated in only one iron-rich structure of the 

basal ganglia (globus pallidus), because it is typically poorly segmented based on the contrast of 

the MPRAGE magnitude alone. Also, the segmentation performance was not compared to a 

manually obtained reference, but rather to a hybrid method that uses a combination of the T1w 

magnitude and the standard MEGE-QSM, as the goal was to show that a similar improved 

performance is achievable using QSM derived from the MPRAGE sequence itself without the need 

for the extra MEGE acquisition. In the thin-slab QSM study, the method was tested only on in-

vivo data of healthy subjects, and thus it is yet to be validated in patients. However, the 

performance in the presence of strong susceptibility sources was evaluated using simulated lesions. 

Another limitation is that the in-vivo data was obtained using one set of echo timings and two 
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resolution sets, and thus further testing is still needed. In the reproducibility study, there were no 

inter-site measurements obtained using a sequence with matched parameters. If available, it could 

have helped differentiate the variability introduced by sequence variations from the variability 

caused by changes in hardware or subject positioning. However, the obtained results were 

compared to previous studies that used matched sequences, which was useful in drawing some 

insights in this regard. 

6.2 FUTURE DIRECTIONS 

Given the complexity of the physical model relating the MR phase to the tissue susceptibility, there 

is room for improvement in each block of the QSM processing pipeline, more importantly in the 

steps of extracting the tissue-related field and mapping this field information into a susceptibility 

distribution. For instance, existing tissue field estimation methods perform less accurately near the 

boundaries of the imaged volume (74), which limits the reliability of the QSM measurements in 

the cortical layer of the brain. Also, most dipole inversion algorithms make trade-offs between 

suppressing artifacts and retaining fine details.  

Focusing on the technical methods introduced in this thesis, the current implementations of both 

the MPRAGE- and the thin-slab QSM aimed generally to prove the concept and demonstrate the 

benefits. The processing pipelines need further optimization to be robust against variations in the 

acquired data, notably in magnitude contrast, echo-timings and resolution. For example, brain 

extraction is currently achieved using the BET toolbox of the FSL package (64), which generally 

works well with healthy subject images of sufficient contrast and resolution. However, the 

performance decreases at lower resolution and/or SNR, and in the presence of structural 

abnormality. Possible alternatives include incorporating deep learning techniques to bypass the 

brain extraction step and accelerate the reconstruction time (283). Furthermore, the scan-rescan 

reliability of both introduced methods should be evaluated within and across sites.  

For the reduced-FOV QSM, one implementation was introduced which utilizes the low-resolution 

data to regularize the minimization formula by informing the algorithm of the expected 

susceptibility distribution outside the imaged slab. Better utilization of this information might 

improve the performance further, potentially allowing accurate QSM reconstruction from a single 

slice. Currently, estimating the tissue field via subtraction permits dipole inversion from single 

slice acquisition, as no erosion is involved in the process. However, the dipole inversion step fails 
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to converge to the right solution, possibly by stopping earlier at a local minimum. This issue 

requires further investigation to understand the cause of the failure. 

Another future direction for this study is exploring the idea of utilizing the phase of already existing 

sequences in the imaging protocol to serve the purpose of the low-resolution data. This way, the 

additional cost of acquiring the low-resolution version can be avoided. Possible candidates include 

the phase of the B0 field mapping and the MPRAGE sequences. The other option is minimizing 

the acquisition cost of the low-resolution by using a fast sequence such as EPI, which can provide 

a full brain coverage acquisition of isotropic 2-mm voxels within 10 seconds (56).  

Thin-slab QSM has potential applications outside the brain, where shortening the acquisition time 

is critical to minimize respiratory-induced motion artifacts. Examples include QSM of liver 

(146,147,284) and kidney (150), where data acquisition is performed during a breath-hold of 15 to 

33 seconds, which limits the achievable spatial resolution. Moreover, holding breath for such a 

long period might not be feasible for patients or elderly participants. Obtaining QSM from fewer 

slices could allow exploring higher resolution, or further reducing the required time for imaging. 

Another potential application, yet more challenging, is cardiac QSM to measure blood oxygen 

saturation, which includes additional complexity from cardiac motion. Data then would be 

typically acquired using a 2D multi-slice MEGE sequence with breath-hold and cardiac 

synchronization using electrocardiographic gating (149), or a 3D MEGE with free breathing and 

diaphragmatic navigator gating (148). Both acquisition techniques would normally take five 

minutes with a through-plane resolution of 5-mm. The 2D multi-slice acquisition is prone to slice 

mis-registration, as slices are acquired over several breath-holds which might not lead to consistent 

slice positioning. Such misalignment of the slices distorts the continuity of the tissue field and 

causes strong artifacts. This is avoided in the 3D sequence by automatically tracking the diaphragm 

motion and triggering the acquisition window at more consistent positions. Thin-slab imaging 

could potentially provide the opportunity to improve the resolution of cardiac QSM within 

reasonable acquisition time.  

In conclusion, future work could focus on improving the robustness of the introduced techniques 

as well as exploring more potential applications, both of which contribute to enhancing the utility 

of QSM.  
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