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ABSTRACT

LAIR is a system that incrcmcntalfy learns conjunctive concept descriptions from
positive and negative examples.. Thcsc.cénccpt dcscﬁptions are used to create and extend a
domain theory that is applied, by means of constructive induction, to future le ‘ing tasks.
Important issues for constructive induction are when to do it and how to control it. .LAIR
demonstrates how constructive induction can be controlled by (1) rcduéing it to simpler
6pcrations, (2) constraining the simpler operations to preserve relative correctness, (3)
doing deductive inference on an as-needed basis to meet spcciﬁc information requirements
of learning sub-tasks, and (4) constraining the search Spacé by subtask-dependent
cons;raints. In‘ additio_n, LAER’s' rules are rclaﬁVcchomplctc, in the sense that a correct,
usable concept description can be derived, if one exists, without back&acking or
maintéining multiple concept descriptions. LAIR also shows how si;nilarity-bascd learning
techniques can be used to acquire ar@ extend domain theories for explanation-based
learning systems, and how goal concepts for these systems can be inferred by example

rather than explicitly given to the system.
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Chapter 1

Introduction

ll Overview

Learning is a feature of human intelligence that is fundamental to inteltligent
behaviour. The ability of humans to leamn allows discovery 6( new concepts, improvement
in performance, and the transfer of ideas and expertise from one human to another. A
common definition of lcafning is the following: learning is any process by which a pe‘rson
or system improves his or her performance on a task or similar tasks. This definition is
general enough to cover the many types of learning that people seem to do: leaming by
being told, learning by doing, learning from examples, learning by analogy, and so on.
For researchers interested in understanding human learning or researchers interested in
providing machines with learning capabilities, the issue is‘ the same: what are the
mechanisms and processes that support what we would characterize as “learning” under

our definition? R

This work concerns learning from examples. Learning from examples has had a long -~
history of research in both cogniﬁvc psychology and artificial in\tclligcncc. Leaming from
examples is a special case of inductive learning where kthc learner must iqaucc a general
concept description from a set of examples. Typically, learning mechanisms examine only
those features that are explicitly represented in the cxaniplc set. This research concerns the
role of prim‘J knowledge and deduction in going beyond the very specific concept
information that a series of examples providés for the leamer. In particular, I present a
framework for viewing the inductive proécss of Icarnipg from examples as combination of
dcducn’vé inference and constrained, lcaming-spcciﬁé inductive inference. Deduction
becomes important when the positive examples have no apparent commonalities, or the
negative examples have no apparent dissimilarities §Q the positive examples. In these cases,

the learner must consider what is known about the features that comprise the examples and

| ~



. 2

try to deduce some commonalities or dissimilarities. 1 have designed and implemented a
system called LAIR (Leaming And Inductive Reasoning) that illustrates this framework and
how the deductive and leaming-specific inductive processes can be guided by the
constraints inherent in the leaming task.

The remainder of this introduction is organized as follows. First, a brief bcrspcctivc
on machine leaming is presented. Next, I consider learning by example in more detail, first
reviewing the major research efforts in this area, and then focusing on recent concermn with

the role of knowledge.
~ 1.2. Historical l’empective on Machine Leaming

1.2.1. Parameter Adjustment

One of the carliest methods of learning studied in artificial intelligence ts Jgarrii\rxg by

. . "v
parameter adjustmen- Two classes of systems used learning by parameter adjustment: -

neural modelling systems and decision-theoretic systems. "Ihc neural modelling systems,
also called sclf—orgmiﬁng systems, modified themselves to adapt to their environments
(Yovits, Jacobi, & Goldstein, 1962; Barr & Feigenbaum, 1982). The best-known neural
modelling system, perceptrons (Rosenblatt, 1957), met with some limited success.
However, Minsky and Papert’s (1969) analysis of the theoretical limitations on the learning
capabllmcs of perceptrons lead to a decline of interestin this approach among artificial
1ntc111gcncc researchers. Work has contmucd along these lines in the areas of linear
systems theory, pattern recognition, and control theory. Recently, connectionist

researchers have redefined and extended some of the neural modelling approaches.

_ The decision-theoretic approach was closely related to and sometimes overlapped the
neural modelling approach. In t!;é decision-theoretic app;mch’ a system acquired an'
arithmetic discriminant function (e.g., a polynomial) from a set of training cxamplcs

prtscntcd to the system by a user or froma crmc (a system module that extracted pesitive

and negative examples f;om traces of the system’s pﬁrformancc on a task). Along with

-



. 3
theoretical work (Nilsson, 1965), applied systems were developed in areas such as game-
playing (Samuels, 1958) and patter recogrition (Uhr & -\fos'sleﬁ 1963).

S&muel’s checkers player was one system that reméins noteworthy for its early
:-'succ'css as a leamning system, so I will discuss his system in further dcgéil. Samuel’s
checkers playc'r incorporated several mcasurémcnts of features of the domain into a single "
summary statistic, usmg a static cvaluanon function

81, - fn) ayfy + .. + anfy

where f; was the value of the ith feature, and a; was the weight attached to that feature.

hY

This function was used in an alp'ha-bltét.:i?scarch procedure to estimate the value' of a
position. - B ,

Samuel’s program adjusted the coefﬁcients toAmak.c thc"\}alue of thckstatic evaluation
function g more clo’scly approximate the values backed-up b)f the alpha-beta procedure, on,
thé assu,mpiion thai backed-up Valuc§ wcr'eﬂmore accurate. 'Fhis can be viewed as one of -
the earliest cx_émples of tﬁc use of a critic to aufomaﬁéally cxtréct positive examples from a
performance trace: positive examples c;orrcspondcd t’b back‘cd-u‘p values. Samuel also used
principles of sclf-'organizihg systéms to determine the value of the static cvaluatic;n function
by playing twoﬂ%ﬁmé aga}nét one anéthcr, one version uSing the old static evaluation
function, and the ot;u:r using \thc modified evaluation function. If the new veﬁion won, the -
. old static evaluation functioﬁ was rcplaced by the new one. In addition, Samuel used
perturbation methods to get off local maxima by dropping or rcpléc’ing features. ‘

Despite the lirni;ati»ons of parameter-adjustment approaches, they illustrate ceﬁain '
" themes likc “strcnéth of association” and “rewarding useful features” that have pervaded
theories of human cogmnon These ideas are still prominent in many current'models of
| hu‘man and machine learmng, 1ncludmg connectionist approaches (Feldr?an 1984, Hmton -
, Scjnowskx & Ackley, 1984) In most of these models, feature pattcms' accun}ulate‘,
strdngth on one or both of these measures: how frequcnﬂy they occur in association with

the concept; and how-useful they have been in idéntifying the concept (Hinton &
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Anderson, 1983; Anderson, 1983; Langley, 1986). The strength of stored patterns then
serves as a characteristic that can be considered when iherc a:;e several competing patterns
that the system can use to classnfy an input pattern, | How‘cvcr strength cannot represent
why a feature pattern was assoc:a{cd with the concept, or why a feature pattern was useful
in identifying the concept. Therefore, rcccnt systems usually augment strength with
" additional knowledge. For example, Langlcy, Klahr and others recognize the i importance
of a history trace thét records past dccnsnons and information aboqt the contexts in which

those decisions were madc

The problemév with strength as knq.vi;’lcdgc about past performance occur in g’énc‘ral
parameter adjustment systems. Usin‘g"";)aramctcrs, it is difficult to express relationships
between objects, properties of objcéts, and contingent relationships or. properties, all of
~which are standard in mdst knowledge rcprcscr;tation scﬁcmcs Furnhcr learning by
' parameter adjustmcnt is essentially a hill-climbing strategy, and like other hill- chmbmg

strategies, may get stuck on/ local maxima. However, parameters can be combined with
more exprcssxvc know/lcdgc representation schemes, and parameter adjustmeént can be
combined with morc'//péwcrful lcaming tcchniq‘ucé Simple lcafning by parameter
adjustment rcmams useful as an auxiliary or dcfault technique that can often be used to

/

advantagc wh%m more sophisticated techniques may be too difficult to implement. f\ _

[1.2.2. Concépt Learning

In the early sixties, systems that learned symbolic concept descriptions from examples
were developed. Hunt (1966) formulated the conjunctive and dis junctive concept learning
tasks within a predicate logic framework, and successfully modelled human concept
leam‘i—ng in'situations where the examples were describable by features, or binary predicatcs

stating the valuc of some dimension of an object. Later programs used more expressive

Al

lAnclcrson ] ACI‘ theory and models I..anglcy has built using PRISM use complcx
 resolution schemes for ‘choosing among competing pattemns, in which strength is only one
componcnt. '
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N .
languages, such as Winston’s program ARCH (1975) that uséd a semantic network
representation, Hayes-Roth's SPROUTER (Hayes-Roth & McDermott 1976; Hayes-
Roth, 1977 Hayes-Roth & McDermott, 1978) that used a case framc representation, and
systems usmg predicate-logic representations such as Vere’s systems (1975, 1977, 1978, |
1980), Mitchell’s version-space approach (1977) z'md Michalski's AQVAL (1973, 1978).

About this time, systems using knowledge-intensive approaches began to appear.

1.23. Knowledge-lntens:ve Leammg

Concurrcnt w1th the development of concept learning systems that mampulatcd
symbolxc reprcscntatxons of concepts and cxamplcs, rescarchcrs in knowledge- based
systems (morc commonly known as “expert” systems) began to explore the use of
automated mcthods of knowledgc acquxsmon to create the required knowlcdgc bases.
Thcsc systcms wcrc charactenzcd by domain-specific, knowledge-intensive learning
tcchmqucs such as those used in the META- DENDRAL program (Buchanan, 1978).

META- DENDRAL encoded largc amounts of knowledge about chemical structures to leam
| rules for c‘xplaining mass spcctromctry data. These rules were used in the DENDRAL
program, one of the éarly successes in knochdgc-bascd systems. A difficulty with these
types of leaming systems is that little effort was expended on explicating the theory behind
the learning pmcedures, that few of the wchmqucs developed were transfcrablc)to other
 domains (Michalski et a1, 1986) |

~ Although the task-specific systems made little direct contribution to learning theory,
the suc;:css of the knosvledge-imcnsivc approach led to awareness that “in order to acquire -
new knowledge, it is necessary to already have a gmat deal of knowledge” (Carbonell et
al., 1983). In recent years, general purpose, theoretically justified knowledge-intensive
learning systems were developed (Michalski, 1983), along with systems -bascd' on new
learning paradigms such as fbpcrationalization (Mostow, 1983), learning by -diScovgry
(Lenat, 1977# 1983a; 1983b), conceptual clustering (Michalski & Stepp, 1983; Stepp &
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Michalski, 1986), and learning by analogy (Carbonell, 1983, 1986). Systems were also
characterized by ha\}ing greater control over the learning process: - newer systems used

techniques such as asking questions of the user (Sammut & Banerji, 1986), and generating

new learning tasks (Lenat, 1977; 1983a; 1983b). -

" ~The use of knowledge in learning from examples has emerged as a major research

h

issue. The next section discusses some important distinctions in the learning from
o ,

‘examples paradigm and the need to include mechanisms for using prior knowledge to

achieve more flexible and robust learning.

1.3. Learning from Examples |
) The abilit'y of people to learn complex cj,“onccpts from experience with cxarﬁplcs is
ubiquitous. ’Supposc we wanted to teach a person the concept “chair” by example. We
could provide a positive example like “has four legs, has a seat, has iwo arms, found.in
living rooms.” Another example might be “has four legs, has a seat, has no arms, found in
office.” From this, the person might infer that a “chair” is something that has four legs and
a‘seat; where it is found or the number of arms does not matter." In other words, some
fcaturg(occur in both examples; the ones that vary might not be critical to the description.
Cénv ly, we could provide the learner with a negative example like “has four legs,
found’in living rooms, barks loudly.” From this, the learner might i.nfcr‘ that a “chair” is
something that has four legs, has a seat, and does not bark loudly. Features that occur in
négative cxampigs are plausible negative t;ean_ires of the description.
The above example included a number of assumptiohs about the learner and the
Tearning task: it was assumed that both positive and negative examples were presented, and
that a concept description can include negative features. Further, examples and concept

descriptions were assumed to be representable as sets of features. These are only a few of

many assumptions that might be made in a leamning task.
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The next sections will discuss a number of important distinctions between systems'
that learn by example, many of which are presented in (Carbonell, Michalski & Mitchell,
1983; Dicttcrich_& Michalski, 1983; Michalski, 1983; Michalski, 1986):

1. What kinds of examples are recognized by the system?
. What is the source of me"c'Xahxplcs? ¢
. What is the representation language?
. What kinds of knowledge are represented by the system?
. What‘ is the desired concept d&scn’pu'on?‘
. Is leaming incremental?
. When can new knowledge be inferred?

. What are the mechanisms for creating and modifying concept descriptions?

O 00 3N A A W N

. How do the examples delimit the concept description space?
These distinctions are important because they determine the kinds of learning tasks for

which a learning system.is useful, and the power and flexibility of the system.

1.3.1. Kinds of Examples

Researchers have distinguished many kinds of examples: positive examples, negative
examples, and prototypical examples, to name a few. Learning systems typically recognize
only positive and negative examples. Most leamning systems can be classified into two
catégorics: thc'isc that fccognize only positive examples, and those tha_t recognize both
positive and negative éxamplcs. Systems that use only positive examples require

. cdnstraints on learning to\aVOid over-generalization, because the system will nogbe able to

dcu':rmine from only positive examples whether its concept deseription is too.general. For
example, Berwick (1983) identifies the “Subset Principle,” a strategy of “timid
acquisition,” as a useful constraint that avoids ovcr-gcncralizationf |

If possible guesses can be arranged in a subset relationship, then the learner

should make the smallest possible guess about what it should learn consistent
with the evidence it has seen so far.



A guess G is a subset of a guess H if cvefythixig it dcscribcs is also described by 4. Many.
other constraints on learning from positive-only c:gamplés have been identified, e.g., by
Angluin (1978) in learning recursive languages.

Systems that recognize both positive and negative examples can use the information in
the negative examples to a\{oid_ over-generalization. Typically, the negative examples are
used to constrain the generalization process (Michalski, 1983) or to force spccializatlion of
the concept dcscri;?tion (Winston, 1975; Mitchell, 1977: Langley, 1986). Since the
methods such as the “Subset Principle” can also be used in sys}ems that recognize both

positive and negative examples, most recent systems recognize both positive and negative

examples.

- L.3.2. Source of Examples

Tw'(v)ﬂfr’.r;f)brtant questions about the source of cxamples are “What is the source of
examples?” and “Is the sourcé t{clpful?" A,sa‘lrcc can be external, siich as a teacher or the
environment, or internal, i.e. the leamer itself. An teacher presents positive examples (and
possibly negativc’exarpplcs) of the concept to the learner. A helpful teacher tries to infer
the state of knowlcdgit of the system in order to provide examples that help the system
induce the correct concept déscription as quickly as. ?oési‘b_le;‘Af"rion‘-h“é‘lpful teacher

. - t,x > .."‘O ..:
generates essentially random examples. ooty

The second source of examples is the environment. ‘Typically, the system observes

some data gathe byh’monitoring equiypmcnrt or observes experimental results. Note that
we can consider t}/c “monitoring equipment” or “‘experimental module” to be a teacher that
supplies example¢s to the rest of the system, and that this teacher is n@n'-‘h,‘clpful because it
lacks control OV/ér the environment and knowledge about the target concépL

A third s(i)urcc of examples is the learner. Typically, the learner creates examples

based on its Zurrem knowledge state, presents it to a teacher, and asks the teacher whether

_ . :
the example is an instance or a non-instance of the concept. This is advantageous because

v
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. . ( . . . '
the learner knows its own knowledge state, whereas a teacher can only make plausible
. - \A\\_ : .
conjectures about the knowlcd&_‘statc of the learner. The disadvantages are that the learer
Ras less knowledge of the conccptnt‘-f:an the teacher, so the sequence of examples presented

may not be the best one for learning the concept.

1.3.3. Representation Language

The representation language determines to a large extent the knowledge that:can be
represented by the system. Typical representation languages are the predicate calculus,
production rules, semantic networks, hierarchical descriptions, frames, fcaturg-valucs, and
scripts. Most of these languages are subsumed in expressive powér by thé first-order
predicate calculus (Schubcrt, 1976) but anc.advantagcous because knowledge may be easier
to organize, represent, or use. For cxamplc; bmost feature-value representations can be

viewed as a subset of first-order predicate calculus consisting of binary predicates

-

“

(features), constants (values), and “A” (conjunction), but can be represented easily as
vectors or tabics. Feature-value representations cannot easily represent structural
relationships bctwéen two objects such as “a door-knob is part of a door,” which can be
casily represented in semantic networks (e.g. by using NODE-1 to dcnotg “door-knob,”
NODE-2 to dcndtc “door,” and LINK-1 to denote “part-of™), or in first-order predicate
calculus (e.g., “Part-of(door-knob, door)”). Therefore, I will consider only extended
fcatm-vﬂuc representations that are isomorphic to the predicate calculus, referring to a
predicate as a feature, predicate arguments as dimensions, and constants as values.
Regardless of the representation formalisms used, a system cannot learn anything it
cannot, in principle, describe. Thus, thc'rcprcscntan'on language circumscribes the kinds

of concepts the system can leam.

1.3.4° Kinds of Knowledge .
Concept learning requires many kinds of knowledge: knowledge about the world,

:knowlcdgc about examples, and knowledge about concept descriptions. There is an
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important distinction between a representation language and knowledge: a representation
language must have an interpretation in order to represent knowledge. Learning by
example is one way in which the knowledge of the system can be extended: a teacher can
establish a correspondence between objects and relations known to the system, in the form.
of examples, and expressions in the language, in the form of concc;)t names. Some
researchers consider only those cx;;rcssions that have an interpretation to be “in the

representation language” and refer to the above process as “introducing new terms” (Barr &

Feigenbaum, 1982) or “extending the representation language” (Mitchell et al., 1983).

Knowledge about examples comprises the example description and the role of
examples in learning. A system uses example descriptions and world knowledge, typically
réfau’onships between example features and other features, to infer further features of an
example. A system uses knowledge about the role of c‘xamplvc“‘s imlcqx;ping, -and knowledge
about concept descriptions, to decide what is relevant and how concept dﬁsc“ﬁptiqpsshould

be changed in response to a positive or negative example.

1.3.5 Desired Concept Descriptions

A concept can be described in many ways. Learning systems usually incorporate
some means of distinguishing between desirable concept descriptions and undesirable
ones. The most common criteria for a desirable concept description is that it be correct.
However, correctness may be relative to the goals of the learning task. Michalski has
identified several types of learning tasks associated with various types of concept
dcscn'ptibns, and their corresponding correctness critena.

“The first type of concept description is a characteristic description. A characteristi¢
* description is constrained to describe all the presented positive instances of the c'cTnccpt, and
none of the presented negative instances of the concept. Thus, if D is a characteristic
dcscriptioh of y, then “x is an instance of concept y” is loéically equivalent to “x is

e

described by description D.”
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The second type of concept description is a discriminant description. A discriminant
description is constrained to dcscnbc all the instances of the concept, and no instance that is
an instance of some fixed set of olthcr classes of objects. This is a weaker form of
description than a characteristic dcscriptiojn. because a discriminant description may
describe a non-instance of the concept that is not an instance of any of the other classes of
objects, whereas gcharactéristic description may not.

The third type of description is a raxonomic description. A taxonomic description is a
description of a class of objects that subdivides the ciass into subclasses. Thus, it is
possible to infer from the Way an instahcc satisfies a taxonomic description additional

information: to what subclass does it belong.

In addition to the above constraints on a concept description, there may exist syntactic
constraints on a concept description. For example, if the representation language is first-
order predicate calculus, concept descriptions may be constrained to be conjunctive rather
than disjunctive. A conjunctive description uses only the connccfivcs “~" (for atomic
negation) or “A” (conjunction). A disjunctive description may also use the connective “v"
(disjunction). Thus, disjunctive descriptions can describe concepts that conjunctive
descriptions cahnot, but are generally more difficult to" learn.

Criteria for desirability may also invoive considerations of how the concept
description is t5 be used. Some kinds of concept descriptions may be more efficient to use
in a given system than others (Mitchell, 1986). Concept descriptions that are to be used by

humans x:nust be comprehensible.

1.3.6. Incremental vs. Non-Incremental Learning

In incremental learning, the learner creates or modifies concept descriptions as each
example is encountered. This contrasts with non-incremental learning, in which-the leamer
creates or modifies concept descriptions after all the examples are presented. Incremental

learning is important for several reasons. First, non-incremental systems have trouble
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coping with larg¢< sets of examples because of the need to store all the mformatxon about

each example. é\econd it is not clear that any learner (human or machine) will be
1

1.3.7. When Can New Knowledge be Inferred?

Learning systems that represent knowledge about the world typically acquire this
knowledge before the learning task. I define prior knowledge as knowledge about the
world that the learner brings to the learning task. A leaming system may also infer new
knowledge from prior knowledge and knowledge apout examples. The qucst.ion of when
this knowledge is inferred is important. A system that infcrs new knowledge about an
example only immediately after the example is presented must ensure that all the needed
knowledge is inferred. If a system is unable to predict accurately what knowledge will b;
needed, then the system may have to infer a great deal of knowiedgc that will not be useful.
A system that can infer knowledge about an example at any time need only infer enough

knowledge to meet the current requirements of the learning task.

1.3.8. Mechanisms for Creating and Modifying Concept Descriptions

The mechanisms that create and modify concept descriptions are critical to learning
-

’

An incremental

»

learning system must know how to create (or induce) a concept description froprone

from examples, because they are essentially the “learning mechanisms.’
example, and how to modify that description as additional examples are presentéd. A non-
incremental learning system must know how to induce a concept description asetof

examples. Both stratcgiés can be modelled as an heuristic search of the space of possible

concept descriptions (Mitchell, 1982; Mjchal~ski, 1983), where the leaming mechanisms are
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description transformation rules that move between different alternative descirptions of the
concept in the search space. There are essentially two classes of description transformation
rules: generalization rules that transform a description into a more general description, and

specialization rules that transform a description into a more specific description.

1.3.9. How do Examples Delimit the Concept Description?

The way in which examples delimit the concept description is critical to understanding
the role that prior knowledge plays in learning. This is an importan®distinction for
undcrstanding the thrust of this research. For example, consider a learning system using a
feature-value representation with conjunction, disjunction, complex values, that leamns only
from positive examples. Many systﬁms presuppose tha't all the relevant dimensions are
already present somewhere in the features that comprise the example. The learner must just
identify which ones are the relevant ones. However, one can argue that the hard part of
learning is figuring out what is porentially relevant. Furthermore, the features in the
cxamples may not really reflect what the concept is. We can consider three different cases: -

1. All the relevant features and values are presented. The léamcr must find the right
pattern that corresponds to the desired concept description.
2. All the relevant features are there, but not the relevant values.

3. Neither the relevant features nor values are explicitly in the examples.

E

I will clarify these differences by presenting three examples corresponding to each of |
these cases. In the first case, the system is a non-incremental lcamtr,_ the problem is to find
a characteristic description, only positive examples are presented, and all the relevant
features and val;xcs are presented. For cxamplc,Athc features might be “Size,” “Color,”
“Locomotion,” and “Habitat,” which can have values "‘\sfnall, medium, or large,” “red,

pink, or brown,” “flies or runs,” and “Florida, tree, or Australia,” respectively.
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A

Ecaturc Yalues

Size small, medium, large
Color red, pink, brown
Locomotion flies, runs A
Habitat Florida, tree, Australia

The system might be provided with the following positive examples of “Bird"":

[Size(x) = small] [Color(x) <red] [Locomotion(x) = flies] [Habitat(x) = tree]
= Bird(x) , '

[Size(x) = large] [Color(x) = pink] [Locomotion(x) = runs) [Habitat(x) = Florida]
= Bird(x)

[Size(x) = medium,] [Color(x) = brown] [Locomotion(x) = flies) Habitat(x) = tree]
= Bird(x)

[Size(x) = large] [Color(x) = brown|] [Loco'ﬁxotion(x) = runs] [Habitat(x) = Australia]
= Bird(x) :

From these examples, the system might induce the following descriptions of “Bird”:

[Size(x) = small] [Color(x) = red] [Locomotion(x) = flies] [Habitat(x) = tree] v
[Size(x) = large] [Color(x) = pink] {[Locomotion(x) = runs} '[Habitat(x) = Flonda] v

[ngé(x) = medium,] [Color(x) = brown] [Locomotion(x) = flies] Habitat(x) = tree] v
[Size(x) = large] [Color(x) = brown] [Locomotion(x) = runs] (Habitat(x) = Australia]
= Bird(x)]

[Size(x) = small, medium, large] [Color(x) = red, pink, brown] {Locomotion(x) =
flies, runs] [Habitat(x) = tree, Florida, Aust: . 1a}] = Bird(x)

(Size(x) = small, large] [Locomotion(x) = flies] [Habitat(x) = tree)] v
[Size(x) = large] [Locomotion(x) = runs)] => Bird(x)

These are only a few of many possible descriptions the system could have induced.
The first description simply corresponds to the disjunction of each of the positive
examples, and therefore describes no non-instance of “Bird.” However, it is also the
longest description, and cénnot describe any instance of “Bird” that has not already been
presented. This is the most conservative description of the concept: it will make no
incorrect predictions, but cannot help in classifying any new instance. The second
description generalizes the value of each feature to the complex value denoting the set of all
values of the feature across all the examples. Note that if the values listed in the tablc are

the only values of these features, then anything with features “Size,” “Locomotion,”
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“Color,” and “Habitat” will be classified as an instance of Bird. This is the least
conservative description of the concept: it will classify many new examples as instances of
“Bird,” but it is likely to make many incorrect predictions. Thcb third description is
intermediate between the first two: it can p/rsdict many new instances of “Bird,” but not so

[

many that most of them are unlikely to be correct.

To derive any of these descriptions, the learning mechanisms detect syntactic
commonalities across patterns. If the desired concept description is some combination of
these particular features and values, then this kind of approach is sufficient. However, the
learning task requires more inference on the part of the learner if some aspect of the concept
dcscripéon is not explicitly represented in the example descriptions. Consider a case where
all the relevant features are there, but not all the relevant values. A system is attempting to
form a concept that will discriminate “Groupl” objects from “Group2” objects, and is
given these examples:

[Shape(x) = Triangle] = Group!l(x)

[Shape(x) = Circle] = Group2(x)

[Shape(x) = Square] => Groupl(x)

[Shape(x) = Oval] = Group2(x)

(Shape(x) = Rectangle] = Groupl(x)
(Shape(x) = Ellipse] = Group2(x)

In a very simple case like this, a “Groupl” congcpt might amount to

[Shape(x) # Circle, Oval, Ellipse] [Shape(x) = Triangle, Square, Rectangle]
= Group1(x)

and a “Group2” concept might amount to

[Shape(x) # Triangle, Square, Rectangle] [Shape(x) = Circle, Oval, Ellipse)
=> Group2(x)

Notice these concept descriptions would not be able to deal effectively with a

ducstion like “Is a trapazoid in Group 1 or Group 27" If the system knew that rectangles,

squares, and triangles are polygons, and that circles, ovals, and ellipses are round,
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polygon

4-sided round

— ako ako ako ako

rectangle square oval circle

Figure 1.1 Type Hierarchy of Shapes (ako = a kind of)
then [Shape(x) = Polygon] could be inferred to be common to al the Groupl examples, ‘
and [Shape(x) = Round] could be inferred to be common to all the Group2 examples. Note
that the values “Polygon” and “Round” for the feature “Shape” are not in any of ihc
examples. To introduce a new value into a concept description, the system needs to have
prior knowledge and methods of inferring further knowledge from the examples.

We can give the learning system a still more demanding task in which the relevant
features (and hence the relevant values) do not appear in any of the cxamplcg. This does
not ncccssérily happen out of malicious intent on the part of the teacher. Rather, the teacher
(or environment) providing examples may assume that the learner is noticing the “right”
aspects of the example. For example, suppose we wanted to teach a robot a description of
a chair. We could take the robot to the living room, sit it down in a recliner and tell it “This
is a chair.” The robot might internalize the following description:

Found-in(Place, Obj) A Living-Room(Place) A‘Madc-of(Obj, Material)

'~ Comfortable(Obj) A Fabric(Material) = Thair(Obj)

The next ime we were at school we could take the robot to the auditorium, point to a
chair, and say “That is also a chair.” The r;bot might look at it and internalize the following
description:

Found-in(Place, Obj) A Auditorium(Place) A Made-of(Obj, Material)
A ~Comfortable(Obj) A Metal(Material) A Has(Obj, Legs) = Chair(Obj)
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At this point, we might feel we have provided fine examples of “chair.” Unknown to
" us, and unfortunately for the robot, the features that it has noticed have no appatent
commonalities or relation to'the concept we arc artempting to teach. This becomes clear
when we point to a lawn chair, ask if it is a chair, and the robot (observing that it is made
of plastic, has legs, is found near the pool, is covered with snowl‘andv its comifort is
unknown) says “No.” Disappointed, we trade this robot in for an advanced model that
fortuitously has following knowledge:
Living-Room(x) = People-Gathering-Place(x) |
* Auditiorium(x) = People-Gathering-Place(x) -7k
Pool(x) = People-Gathering-Place(x)
Found-in(x, y) A Comfortable(x) A People- Gath@nng -Place(y) =» Sit-On(People, x)
- Has(x, Legs) => Function(Support, Something, x)
Found-In(x, y) A Function(Support, Something, x) A
Peaple-Gathering-Place(x) = Sit-On(People, x)
Sit-On(x, y) => Function(Support, x, y)

Made-of(x, y) A Fabric(y) = Comfortable(x)

Made-of(x, y) A Metal(y) = Uncomfortable(x)

Giving this robot the same experience, we are pleased when it identifiés the lawn
chair as a chair and, upon inquiry,- reports this:

"A chair‘is an object whose funcnon is'to support people and is found in places
where people tend to gather” R

This robot illustrates constructive indut:tion:» introducing new features into a concept
' description that are not present in any of the e;(amples (Michalski 1983). This can be done
by usmg prxor knowledge about the features in the examples to mfer new features from
those already present. This essentially means altering the knowledge representauon space.
and it is important for several reasons. First, many concept learning problems cannot be
solved without a change of representation. In the “Chair” example, an important relevant
feature is “Function,” so the knowledge' representation space has to be changed to include
that feature. ‘Second, constructive induction eases the reaching task. Rather than requii:ing

the teacher to present all relevant and potentially relevant features of an example, the teacher

t
4
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Chaptef 2

Related Research

PETIES

Learning by example has received a good deal of attention. This section reviews four
systems that have most directly set the stage for this work: Winston’s ARCH, Mitchell's
LEX, Sammut and Banerji’s MARVIN, and Michalski’s INDUCE.

~
\,

2.1. ARCH . | -

N . . \ Al
Winston's seminal ARCH program (Winston, 1975) learned structural descriptions of

concepts from examples. Structural descriptions rebresent structural relations between
objects, such as “x is a part-of y.” ARCH represented example descriptions, concept
descriptions, and assertions about description elements in a semantic network. Examples
consisted of a description of a concept and a cl{a.s'siﬁcation (positive or negative).

ARCH initialized its concept description to thé description of the first po[sitive
exémplc. Subsequent examples were used to generalize the description or to form
constraints on the description. First; ARCH determined a mappiné between the description
of the new example and the concept description. Next, ARCH determined 'alnd ranked the
differences between the concept description and the example description. If the example
was positive, then ARCH tried to replace the difference in the concept description By a
generalization of the differences. These generalizations were determined gy rules that
inéorporatcd kno;wlcdgc about the type of relationship being gc/neralizcd and the way in
which it could be generalized. Some of these generalization rules were:

climb-tree heurisﬁ'c: This heuristic was applied when thg example and concept differed

along an “a-kind-of” (AKO) dimcrision in a type hierarchy. 'I'h’é closest common

parent of the AKO difference in the example and in the concept was chosen as the
. generalization. For.cxamplc, if one example include Object A that was a-kind-of

Square, and the concept description specified that Object A that was a-kind-of Oval,

19
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and the type hierarchy was the one shown below, then the a-kind-of dimension of A
would be generalized to Polygon i(n the concept description, because Polygon is the
closgst common parent of Square and Oval.
RN {

|

/
- / polygon

4-sided round

ako - ako ako ako

rectangle square - oval circle

Figure 2.1 Type Hierarchy ior ARCH
close-interval heuristic: This heuristic was applied when tlieuciamplc and concept
differed along a linear dimension, such as location. The smallest interval including
the interval or point corresponding to the differences in the example and concept was
chosen as the generalization. For example, if Object A in the concept dcs<':ription was
located at point (3, 4), and object A in the example was located at point (3.5, 5), then
- the location of A in the conc;épt description would be gcncrali;cd to ([3, 3.5], (4, 5)),
which can be interpreted as “object A has x-coordinate in the interval (3, 3.5} and y- .
coordinate in the interval [4, 5].”

If a generalization was not found for a difference, then the difference was simply

s

dropped from the concept description.

ARCH also included heuristics for specializing a description when a negative example
was encountered. The differences were ranked, and the most >important difference
(possibly according to some evaluation function) was chosen. A difference could be either
a fééturc of the example that was not present in the concept description, or a feature of the
concept description that was not present in the example. For the first case, the “forbid”

heuristic was used to assert that the feature was unacceptable in an instance of the concept,
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and for the second éasc, the “require” heuristic was used to assert.that the feature was
‘requircd in a.n instance of the concept. ARCH kept track of thcéc forbidden and required
features. |

An important conceptual contribution of ARCH was the idea of “near-misses” to
avoid the need to rank differences in the spcclalufnon step. A near-miss was an example
that dxffcrcd from the concept description on only one feature, so there could be no
ambiguity about what was the most important aspect of the current example. A second
important function of near-misses was to eliminate ambiguity during the matching process.
Since near-misses were very close to the correct concept description, there was usually a
candidate match that was clearly best. This avoided the probicm of multiple subgraph
isomorphisms, that is, the problem that arises when thé training example matches the
<’:onccpt description in more than one way (Dietterich & Michalski, 1983). Winston’s

‘program was also notable for taking advéntagc of discourse conventions in student-teacher

interactions, called felicity condz’tio)u (see also VanLehn, 1983). For example, if a teacher
knew of ARCH’s reliance on near-misses, the teacher would present only this kind of
negative example. The assumption of a helpful teacher that knows the learner’s knowledge
state has been used in many later concept lcamin_é systems. As observed in our earlier
example of teaching a robot the concept of cﬁalr the presentation and selection of
éxamplcs mgy not be optimal or influenced by tfx'cilcame’r’s kno(avledgc state.

ARCH efficiently learned conjunctive concepts frorﬁ examples. ARCH represented
prior knowledge in the form of iype hierarchies, and used the climb-tree heuristic on this
prior knowledge to introduce values into the concept description that were not in any of the
examples presented. ARCH also addressed the problem of matching concept descriptions
against examples, implementing a matcher that was able to find the correct match between
the concept description and examples presented by a helpful teacher. Howcvcr, ARCH did
not represent any other kinds of prior knowledge, including relationships between different

featums, so ARCH could not doy ctmstrﬁctivé induction. In addition, ARCH addressed the

—
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important problem of finding a match between a concept description and a training

example.

2.2. LEX )

LEX is a program that lcams heuristic problem-solving strategies in the domain of
symbolic integration (Mitchell, Utgoff & Banerji, 1983). Below are some methods, or \ N
operators, that are used in LEX:

OPl  [r*f(x)dx =>r/f(x)dx

oP2 Judv=uv-fvdu

OP3 1 * f(x) = f(x)

OP4 ffl(x)+f‘2(x)dx=> ffl(x)dx+JQ(x) dx

OPS [ sin(x) dx => —cos(x) + C '

OP6 fcos(x) dx = -sin(x) + C

OoP7 fx"rdx:a[x"r(r+a)]/(r+ 1')+C
Edch of these operators has a condition specifying when it can be used. LEX learns when
an operator should be used, e.g., a context in which it will be a good idea to use each
operator. So one concept to be learned is “when it's best to apply OP1”; another concept is
“when it’s best to apply OP2.” LEX calls these heuristics. The examples from which
these heuristics are learned are solution paths in which the operators occurred. If an
operator was used in a “good” solution path (dctcrmincd by an evaluation function), then
LEX uses the instantiated preconditions of :hc operator as a positive example of the
- heuristic. These conditions are expressed in a language based on a grammar for algebraic
expressions containing indefinite integrals. The grammar is shown in the following
diagram, with terminal nodes of the hierarchy corresponding to terminal symbols of the

language, and rewrite rules expressed as edges between a higher level node and a lower

level node.
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expr
r (op expr expr) (farg) (FF (£ arg))

I A pim  {combff) [ Der.u Vv w x y

. ﬂ nom  (+ monom poly)
sin cos tan In exp i r (*idk) (*rid) r("idk))

Figure 2.2 LEX Grammar

i3

: LE.X consists of four modules: a problem generator, ab‘problem solver, a cn'tic,' and a
generalizer. The problem generator determines what a uscful.practice problem would be.
The problem solver uses available heuristics to solve the problem. The critic analyzcs the
search steps pcfformcd'in obtaining a solution, and extracts positive and negative examples
of a good application of an heuristic from the solution. The generalizer uses these‘
examples to propose and refine new domain-specific heuristics to improve performance on
subsequent pi-oblcms.

The irgportant aspect of LEX s its use of version spaces, a method of compactly
rcprcscntiné all alternative plausible descriptions of a concept. LEX maintains sets'S and G.
that delimit the most specific and ‘mo,st general descriptions of an heuristic. For example,
the following might‘bc given to LEX’s generalizer as a positive example of when OP2 was
successfully applied: |

[3x coS(x) dx -> Appiy OP2 with u = 3x and dv = cos(x) dx

LEX will initialize the \;crgion space for this heuristic to

- S [ 3x cos(x) dx -> Apply OP2 with u = 3x and dv = cos(x) dx
. G: ffl(x) f2(x) dx -> Apply OP2 with u = f1(x) and dv = f2(x) dx
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Note the most specific description of the heuristic is the actual example itself. The
most general dcséription is prior knowledge, describing all situations in which it is possible
to apply the operator. S always contains exactly one element, but G may contain arbitrarily
many elements. The sets S and G determine an upper and lower boundary on the possible
versions of the heuristic: the operator is assumed to apply in any sitgation that is more
specific than some element of G and more general than the element in S. For the above
example, u can take any value that is a successor of f1(x) and an ancestor of 3x in the
language hierarchy, and dv can take any value that is a successor of f2(x) and an ancestor
of cos(x) in the language hierarchy, since all of these heuristics are within the area bounded
by S-and G in the version spa“ce. |

S: | 3xcos(x)dx = Apply OP2

/ N\

| kxcos(x)dx = Apply OP2 [ 3xuig(x)dx = Apply OP2

/NN

| mxcos(x)dx = Apply OP2 | kxtrig (x)dx = Apply OP2

SN N

S NS

[ poly (x)f(x)dx = Apply OP2 ’ | f(x)wmansc (x)dx = Apply OP2

G: | fix)yf2(x)dx = Apply OP2

Figure 2.3 Version Space

As the figure shows, S and G are compact ways of representing a space in which the
true concept déscription lies. The idef is to use examples to shrink this space by moving S
and G closer to each other until (if LEX is lucky), the space has only description in it.

‘Positive cxarriplcs cause S to become more generalized, and negative examples cause G to

become more specialized. Suppose s is the element of §, and s,,,, is the binding of term in

s. Then S is generalized by gcncraliiing cach s, to the nearest common ancestor of the
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previous value of s, and the binding of ferm in the positive example. Negative examples
cause G to be specialized as follows: each element of G that is more general than the
negative example is specialized in all possible ways that make it rule out the negative

example. Each way of specializing a g corresponds to specialization of a different term of

g, and is done as follows: suppose g,,,n is more general than the binding of term in the
negative example. Then one way of specializing g consists of replacing g,,,m by the

highest node in the language hierarchy that is not an ancestor of the binding of rerm in the

negative example, and is a successor of g,.,,,. For example, recall that OP2 is
opP2 fudv=>uv-fvdu

and suppose S and G for its version space are:

S: [3x cos(x) dx -> Apply OP2 With u= 35( and dv = cos(x) dx
G: [f1(x) f2(x) dx -> Apply OP2 with u = f1(x) and dv = f2(x) dx

N_cit, suppose LEX is presented with the following positive training instance:

f 3x sin(x) dx -> Apply OP2 with u = 3x and dv = sin(x) dx

G has only one element (call it g), and g is more general than this training instance.
Therefore, LEX specializes G by replacing g with two specializations of g, om;, with 2 more
-spcciﬁc binding for u, and the other with a more s_pccific binding for dv. As Figure 2.2.
s.hows, the highest node in the language hierarchy that is not an ancestor 01; ;x and is a
successor of f1(x) is poly(x), so LElX adds the specialization

[ poly(x) f2(x) dx -> Apply OP2 with u = poly(x) and dv = f2(x) dx

The highest node in the language hierarchy that is not an ancestor of 3x dx gnd is a
successor of f2(x) dx is transc(x) dx, so LEX adds the specialization |

J £1(x) transc(x) dx -> Apply OP2 with u - f1(x) and dv = transc(x) dx

ThcnchandGarc )

S: f3x trig(x) dx -> Apply OP2 withu Z3X and dv = trig(x) dx
G: Ipoly(x) f2(x) dx -> Apply OP2 with u = poly(x) and dv = f2(x) dx
§ £1(x) transc(x) dx -> Apply OP2 with u = f1(x) and dv = transc(x) dx



26

The method of generalization described above is essentially the same as the climb-tree
heuristic of Winston. A limitation of LEX is that this is the only way concepts can be
generalized. Thus, LEX cannot find gcncrﬁlizations that do not have explicit
representations as nodes in the type hierarchy. For example, “sin or cos” is a concept that
is more general than “sin” and “cos,” but if the immediate parent of “sin” and “‘cos” in the
type hicrarc.hy is “trig,” then the system will generalize to “trig.” Mitchell is aware of this.
problem and regards it as a fundamental problem of his system (Mitchéll, Utgoff &
Banerji, 19083). Another limitation of LEX is that prior knowledge can only be
represented in single hierarchies. If we view each hierarchy as representing some “aspect”
of the mathematical terms known to LEX, then LEX can only represent one aspect of each
term. Finally, note that there are many ways of specializing G, so G could be as large as
the number of terms raised to the number of negative examples. For example, if we had an
operator with ten terms, then G might contain ten thousand elements after four negative
examples. In practice, (7 does not become so large, because the presentation of positive

examples will “ruie out” members of G.

An interesting aspect of LEX’s domain of integration is that there is no matching
problem.” In order to apply an operator to a formula, LEX must determine a binding of
variables in the operator to terms in the formula. LEX is also able to learn disjunctive
concepts by creating a nAcw‘hcuristic to cover examples that are not covered by any of its

previous heuristics. Subsequently,

This new heuristic will be updated by all subsequent negative instances
associated with operator O, and by any subsequent positive instances associated
with operator O and to which at least’'some member of its version space applies
(Mitchell, Utgoff & Banerji, 1983).
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However, Bundy ¢t al. note that

The new shell (heuristic) gets preferential treatment when it comes to allocating
the new positive instances between the shells, whereas the old shell gets
preferential treatment when it comes to allocating the old positive instances.
There is no reason at all to assume that this is the correct division of the positive
instances ... the ad hoc nature of the division of the positive examples makes it
very unlikely that LEX will learn the correct disjunctive rule (Bundy, Silver &
Plummer, 1985).

Despite the shortcomings of version spaces, version spaces remains noteworthy for
its contribution to understanding how constraints on a description space can represent a

concept, and how such constraints can be learned from positive and negative examples.

2.3. MARVIN

MARVIN is a program that learns concept descriptions by using prior knowledge and
by askng questions (Sammut & Banerji, 1986). Concepts are represented as sets of Horn
clauses, which are expressions in the first-order predicate calculls having form

 P(X)  QX) & R(X) & S(X) -

An object X is identified as an instanice of the concept P if the predicates Q, R, and S
are true of X.

Since the predicate P(X) can occur in the right hand sides of other concept recognition
rules, these rules can be used as prior knowledge to learn later concepts. MARVIN can
recognize instances of concepts through a PROLOG theorem prover that essentially tries to
prove the concept predicate, P(X), from an example description, which i§ a set of

propositions.

Sammut and Banerji sometimes treat sets of propositions as descriptions. The -

description can be viewed as a predicate that denotes all instances in wgg‘ch the description
formula is true. Sammut and Banerji define an elaborarion of a set of propositions S under
a set of rules R as the set including all propositions from S and one other proposition
derived (by the PROLOG theorem prover) by a rule in R from S. The set All-Elaborations

is the set of all propositons derivable from S by R.
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MARVIN has two rules for transforming descriptions. The first is a replacement
operation, where the antecedents of an instantiated rule are deleted from the description,
and the consequents of an instantiated rule are added to the description. This is essentially
the same as Michalski’s rule of constructive generalization (Michalski, 1983). However,
they also define a specialization rule that does multiple replacements in parallel. In other
words, two replacement operations can be applied even though the first replacement would
delete propositions that would be required for the second mplaccmc;\t to take place. This is
important because it allows several features of an example to be inferred from a single

feature of an example.
AN
MARVIN also is able to generate examples and ask the teacher for a classification

(positive or negative) of the example. These examples are descriptions called rrials, and are

- denoted Tg, Ty, ... T,,. These trials are generated by application of different replacement or
specialization operations on the initial trial Ty, MARVIN tries to find a trial that is more
general than previous trials but is still consistenr with the targer T', or desired concept
description. Since MARVIN does not know the target, the teacher's classification is used
to determine if the trial is consistent with the target. Consistency is defined as follows:
Tral T is consistens with the target T if any object that satisfies T also satisfies T".
Sammut and Banerji do not test the consistency of a trial T by asking questions about

each object that satisfies T but by asking questions about crucial objects. A crucial object is

~ defined as an object that satisfies T;, | but negates each element of
All-Elaborations(T;) — All-Elaborations(T;.;)
where T;_; is a generalization of T;. This is useful since the number of crucial objects is

less than the total number of objects, and if a crucial object is an instance of the target

concept, then trial T; is consistent.
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MARVIN constructs crucial objects for a trial T;, | as follows:
To construct an example fuahﬂT,+1: |

1. To construct an example from P & Q: Construct P, Construct Q.
2. To construct an example from an atomic predicate P when there is a set of
clauses |

{P « B;} in memory:
a.  Selecta B; such that

B; M (All-Elaborations(T;) ~ All-Elaborations(T;, ;)) = NIL
b.  Construct an example using the selected B;.
3. To construct an example from an atomic predicate P when there is no clause

P « By, add P to the set of predicates representing the example.

There are number of points that can bc made aboué MARVIN'’s approach to concept
learning. First, MARVIN is essentially model-driven: only one example is input to the
systcm,'aftcr which examples are created by MARVIN according to its model of prior
knowledge, the set of Hom-clauses that make up its databgse. This means that all of the
information that canvappcar in the concept must be implicit in the first example, because
MARVIN has no means to accept further information from the teacher other than example
classifications. While ‘MARVIN is able to-take an active role in leamning concepts. the
teacher is relegated to a passive role in teaching MARVIN. Further, this prevents the
addition of negated pfcdicatcs to the concept description, because any trial is a
generalization of the initial trial. In Winston's terminology, “forbidden” features cannot be
added to a concept description because no negative examples are presented. Since negated
predicates or “forbidden” features are an important aspect of most concept descriptions, this
limits the expressive power of the concept descriptions that MARVIN can learn.

Second, MARVIN requires All-Elaborations to be computed at each tnal. This is
essentially equivalent to considering the entire knowledge base, and it can be an expensive
process if there are a large number of Hom-clauses that are relevant to the example.
Further, this step means that MARVIN’s concept leaming problem could have been solved
by treating the elaborated example descriptions as the examples, and using-lcam\.ing

methods that do not use constructive induction.

Id
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Third, a large number of crucial objects could be generated for any one trial. Note

1

that in step 2a. of the algorithm for constructing an example for a trial, that there are many

choices for B;. Since the algorithm is recursive, this means that there could be an

exponential number of possible crucial objects.

Fourth, MARVIN's replacement and specialization rules require the deletion of the
information that they use. This r;:dicts the kind of descriptions that MARVIN can leam,
as shown in the following cxample. Suppose MARVIN knew that “something with four
legs and a top is a table,” and was trying to learn the concept “a table with a steel leg” from
the example “something with four legs and a top, where one of the legs is made of steel":

MARVIN’s Knowledge:

Table(X) & Leg(X, Y1) & Leg(X, Y1) & Leg(X, Y2) & Leg(X, Y3)
& Leg(X, Y4) & Top(X) )

[ninal Example:
Leg(A, Bl) & Leg(A, B2) & Leg(A, B3) & Leg(A, B4) & Steel(B4)
& Top(A)

Desired Concept Description:
Table-With-Steel-Leg(X) ¢« Table(X) & Leg(X, Y1) & Steel(Y1)

MARVIN'’s best attempt: .
Table-With-Steel-Leg(X) « Table(X) & Steel(Y1)

MARVIN is unable to learn the desired concept because use of the “Table” knowledge

in a replacement operation eliminates the knowledge about which leg is steel.

-—

Fifth, MARVIN does not need to deal with the problem of matching examples to
concept descriptions. Since MARVIN generates all but the first chrr{pIE"mat ré presented,
MARVIN l‘énows how objects in the examples correspond to objects in the concept
_ w.descx'iptiér/!. Since matching is a difficult problem for systems that learn from examples
brescntcd by a teacher, this is an important advantage of leamning byrasking questions.

In summary, despite MARVIN's weaknesses, it makes a number of important
contributions to machine lcéming. First, it demonstrates a program w'hosc langiagc grc;ws

L .
in descriptive power as it learns new concepts. Second, it can use those concepts as pnor
r
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knowledge in lc"éming new concepts. Third, it shows how a system can leam by asking
qucsnons of the teacher, and how this method avoids the matching problcm Fmally, it

lmplcmcnts these ideas i in a program that can learn many useful concepts in a vancty of

. domams.

2.4, INDUCE

INDUCE is a general purpose learning program developed by Michalski, Larson,
A Chilaus}cy, and Stepp (Larson & Michalski, 1977; Michalski & Larson, 1978; Michalski &
Chilausky, 1980; Michalski, 1933; Michalski & Stepp, 19’8;5)._ INDUCE has been used in”
systems to classify soy-bean diseases and to learn hierarchies for classifying Spanish folk
- songs. INDUCE can be tailored for a spccxﬁc domain by incorporating large amounts of

()

domain-specific rules and knqwlcdgc within its representation scheme. Michalski
. approaches concept formation as an heuristic beam search through the spaci of concept
descﬁptions for ﬁ'sc‘tﬁof dcscﬁptions that correctly classify the examples. Michalski uses
forward inference on example descriptions to generate descriptors that are not present.in
_.any of theAcxam‘p'l’cs presented to the system, and has coined the term “constructive
generalization” to’.dcscribc this proccs? ‘ | ‘ _
.INDUC.E uses an annotated predicate calculus (APC) as ahrc/sentation language,

assertions about predicates. . Some of the second-order information is implicitly represented

- which comprises first-order predicate calculus, type c&ohstraints and lst(ebnd-order
| by the use of specialized operators and connectives. For example, the connective “::>
represents the implication linking a concept description with a concept name (e.g., wihgs &
flys & sings ::> bird). The second-order information mcreases thc efficiency of the
induction process and the quality of the inductive assertions. NG
Unlike ﬁmt-ordcr predicate logic, APC includes relarional selectors. A relauonal

sclcctor is a specxal kind of ternary predicate where the second argument is one of {=, <, %,

A
2, >}, and the third argument can be a complex expression such as “rcd v blue.” The
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syntax is somewhat different frgm standard first-order predicate logic syntax, and is bc\s\t\, i
‘explained by example. To represent “the color of object-1 is red or blue,” one can write

[Color(object-1) = red v blue]

This is advantageous because INDUCE does not treat the ar'g'ﬁ;r\cnts such as “=" and

“red v blue” as primitive, but can also reason about them and their relationships to other

- expressions.

Michalski uses rules of generalizarion and specialization to generate concept

descriptions-from examples. Sp -«i

S ization rules map a concept description D to a concept

description D' that denotes a subset of the denotations of D. Generalization rules map a

concept description D to a concept descripition D' that denotes a superset of the denotations

of D.

¢

Michalski also distinguishes between selective generalization and constructive

generalization. A constructive generalization rule corresponds to what I term constructive

. . oy ‘ L . o AL ,,.,5,7'4
‘induction: it introduces descriptors info the concept description that are not present if:any of

the examples presented to the learner. Selective generalization essentially creates a more
general concept description by manipulating the descriptors that are present in the exzimplc.
In the following examples, CTX stands for some arbitrary expression. One of Michalski’s |
selective generalization rules is thc dropping con&;zion rule; The symbol for “‘generalizes
to” in Wchalski’s notation is |<: .‘
CTX &S :> K |< CTX > K

For example, “[location = living-room] & [function = sitting] ::> chair” can be generalized
to “[function = sitting] ::> chair.” In Michalski’s framework, climbing generalization tree
is an‘example of selective gengralization: |

i
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CTX&[L=a)] > K

'C‘i'x‘& [L=b] > K
| < . CIX&[L=s] > K
CTX&[L=i] => K
In the abovc bcxa'rnpiic, L is a structured descriptor. L represents some dimension of
values that form a hierarchy; a, b7 , 1, and s can be mapped to some node ‘in the
hierarchy. The node corresponding to s is the lowest parent node whose descendants

include nodes a, b, ... and i, in the hierarchy corresponding to L. For example, L might be

a hierarchy of shapes, a might be a réctanglé, b might be a square, ¢ might be a tria'ngle.'

and s might be a polygon:
- -
polygon '
is-a is-aTi Ng-a
rectangle square triangle

Figure 2.4. Type Hierarchy for Generalization

- “Michalski’s constructive generalization rule is:

CTX&F, > K - ,

< CIX& F; > K
Fl = FZ .

e

; For example, “[has-seat(obj-l)‘] 2>« chair and [has-seat(obj-1)] = [function =

e

siting]” can be generalized to “[function = sitting] ::> chair.”
There is a subtle difference between climbing the generalization tree which Michalski ﬂ
classifies as- sclcctch generalization, and constructive generalization. In climbing the
generalization tree, the dcscriptor or feature, shape, does not change, but rather is given a
new value “In constructive generalization, an entirely new descriptor, “function,” is
mtroduced into thc concept dcscnpuon This rclatcs to our earlier classification of learning

‘/

&
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situations according to whether the relevant feature, the relevant values, or possibly neither

were present in the examples.

A limitation of Michalski's constructive generalization rule is that it is not complete.

- This is shown by the following example:

Initial Inductive Assertion : ‘ _ -

Found-in(Obj-l, Place-1) & Living-Room(Place-1) ::>- Chair(Obj-l)
’ .

Prior Knowlcdgc
Found-in(y, x) & Living-Room(x) = Comfortable(x)
Living-Room(x) => People-gathering-place(x)
People éathcrmg place(x) & Found-in(x, y) & Comfortable(y)

it-on(People, y) & Function(y, Support, People)

Inductive Assertions Generated by Constructive Induction: A,
Comfortable(Obj-1) ::> Chair(Obj-1)
Found-in(Obj-1, Place- 1) & People-gathering-place(Place-1)
> Chalr(Ob] 1)

The following inductive assertion cannot be generated by the constructive generalization

rule:

£ 4

" Fougnds n(Obj-1, Place-1) & People-Gathering-place(Place-1) &
-on(People, Obj-1) & Function(Obj-1, Support, People)
' " > Chair(Obj-1)

However, if we have a complete set of deductive rules of inference, we can infer

logical consequences of the prior knowledge from which the constructive generalization

- rule will generate a somewhat better inductive assertion. For example, the prior knowledge

from the previous example has as logical consequence:
Found-in( Fy x) & Living-Room(x)
ound-in(y, x) & People- gathenng placc(x)
& Sit-on(People, y) & Function(y, Su_ppq_m, People)

Using the above prior knowledge, the previous initial inductive assertion, and the

constructive generalization rule, we can generate the inductive assertion:

People-Gathering-place(Place-1) & Sxt-on(Pcoplc Obj-1) &
Function(Obj-1, Support, Pcoplc) > Chair(Obj-1)

This is almost the desired inductive assertion, but note that there is no means of keeping

Found-in(Obj-1, Place-1) in the inductive assertion, dcspitc the fact that this informagion

L4
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might be very desirable to the user. Further, if important facts were lost by application of
constructive gcncralizan'on before deduction was applied, the system would not be able to
~ generate even this non-optimal assertion. An important point is the folloW'mé: Michalski
does not discuss in detail whcther’cor;sn'uctivc induction is controlled or simply applicd

cxhaustivcly to generate all possible descriptions.

2.5. Summary

These systems illustrate how systems can learn concepts from cxamplcskand by
asking qucsﬁor:s. ARCH demonstrates how knowledge in an example can be incorporated
into a concept description as “forbidden” and “required” fcafurcs, and how prior
knowledge can be used to introduce new values into a concept description. LEX shows
how a concept description can be represented as version space, and how the version space
can constrain the learning process. MARVIN demonstrates how prrior knowledge of the
form of implicétion statcmcntS can be used to introduce new values and new features into a
concept description, and how learned concepts can be used as prior knowledge on future
learning tasks. Michalski presents a general framework and methodology for leamning from

“examples, and defines the notion of constructive induction that is central to this research.

Of the four systems described, only MARVIN and INDUCE do constructive
induction. The construcn'vé induction mechanisms of MARVIN and INDUCE are not
complete; they cannot generate concept descriptions that intuitively follow from the prior
knowledge and presented examples. Further, both systems use constructive induction

without considering specific goals of the learning task. Rather, constructive induction is

used as an unconstrained generator of descriptions that are later evaluated by the system.



Chapter 3

Approach

3.1. Scope and Assumﬁtions

The mam goal‘of this research is to explore a means by which constructive induction
could be guided and controlled during learning. As noted earlier, this is-an open issue for- -
“knowledge-intensive” learning and this work makes some preliminary §tcps towards
understanding this issue in a carefully circumscribed learning context. This section
presents the simplifying assumptions made for this work and describes where LAIR falls

along the dimensions analyzed in section ’l'.3_. The implicationé of these assumptions are

then discussed in more detail.

LAIR learns conjunctive concept dcécriptions from both positive and negative
examples. -Furthermore, LAIRlearns incrementally. The most important implication of
incremental learning is that not all the positive and negative examples are available for
inspection. For LAIR, this also translates into a limited memory for previously-seen
éxamplcs. LAIR’s goal is to learn a concept descripiion that can be used to corrcctl);
classify the presented positive and negative examples. LAIR includes both gcncraﬁzation
and specialization rules for transforming concept descriptions, which enable it to do
constructive induction. I; infers new. knowledge on an as-needed basis to meet the
information requirements of the learning process. LAIR is provided with the object and
paﬁ correspondences among the examples. Each object or part in one example concspoﬁds
to no more than one object or part in another example. LAIR learns from examples of high
integriry. High integrity examples are uhambiguous and thus provide reliable Fuidancc for
learning (Barr & Feigenbaum, 1982). LAMR uses a subset of the ﬁrst-ordcr prcdic’atc
calculus as a representation language. This subset includes lambda abstru. 111 but does not

include universal quantification or disjunction. LAIR uses prior know lcdge about the

36
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domain in the form of production rules and frames, and extcn\s}s its knowledge through the

learning process.

The above assumptions restrict the both kinds of sitgagons in which LAIR can learn,
and simplify LAIR's learning task. First, because object and\*)art correspondences are
provided, LAIR does not need to match objects and parts between the concept description
and the examples. This contrasts with one of the main accomplishments of Winston's
ARCH program.

LAIR’s restricted description language makes the learning task césicr, at the expense
of restricting the kinds of concepts LAIR can learn. For example, since LAIR does not
include disjunction, LAIR cannot directly learn that an object is liftable if it is “seen to be
liftedror it is light and graspable.” To learn this kind of disjunctive concept, LAIR would
have to learn each disjunct as a separate, conjunctive concept. LAIR also cannot directly
learn the description of “tallest” defined as “taller than every other object.”” However,
LAIR can learn an equivalent description of “tallest” by first learning the concept “not-
tallest” defined as “‘something else is taller.” Thus, the restricted’language requires that
LAIR sométimcs learn intermediate concepts before learning the desired concept.

LAIR'’s goal is to recognize and classify patterns (examples) as being members of a
concept. Specifically, LAIR tries to learn a concept description that it can prove true of
each of the positive examples, and none of the negative examples, using the description of
the examples and its prior knowledge as axioms. Thus, Any two descriptions that classify |
examples the same way are equivalent to LAIR: their form or content does not matter.
Th;:fc could be many features true of all the positive examples and none of the negative
examples, but not all of this information may be useful to LAIR for classifying objects.
For cx%xplc, if the feature “can be used to write” were not inferrable of all of the positive
examples of “pen,” then this feature would be dropped from the concept description, since
it could not be used in the classification task. Note that “can be used to write” could be true

of all the positive ciamplcs. but some deficiency in LAIR's knowledge about the world
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makes it unable to infer this feature for all of the positivckcxamplcs. This issue is outside
LAIR’s scopct For LAIR, a description is important for what it can do for classification.

LAIR’s classification goal also has implications for the order in which concepts must-
be learned. LAIR tries to infer features of a concept description using its prior knowledge.
If the prior knowlpdgc is incomplete in a way that prevents an important feature frdm being
inferred, then LAIR might not be able to learn a correct concept description. Clearly, if
LAIR is missing a concept that is critical to‘thc subsequent learning of a new concept, then
it may not be able to leamn that subsequent concept. In addition, negative features could be
incorrectly added to the concept description if LAIR lacked the knowledge to prove the
features true of some example. While LAIR does not require that presentation of examples
be ordered, LAIR does rcquire that learning of concepts be partially orc’icrcd. This is the
same point made earlier about the completeness of the knowledge base: a newly-learned

. concept becomes (possibly essential) “prior knowledge” for the next learning task. In
general, this is an important theme that déminatcs much of machine leaming today—what
you can learn depends in part on what you already know. The issue is how that knowledge
can be effectively applied to the learning task.

LAIR learns from examples of high integrity. Example integrity is determined by
three factors: error, order of presentation, and presence Q; irrelevant information. Two
kinds of error can occur: measurement error and classification error. Measurement error
occurs when the description of an example is incorrect, e.g., if a 2.5" cylindrical object is
incorrectly observed to be a 2.3" cylindrical object. Classification error occurs when a
po: tive example is presented to the system as a negative example—a false‘negau've
example—or a negative c;(‘amplc is presented to the system as a positive example—a false
positive example. LAIR assumes that exampies are free of error. In systems that classify
their own examples by means of a critic modtule, it may be difficult to guarantee this. For
example, LEX uses a critic to create examples from solution traces. LEX’s critic is not

infallible, so some negative examples may be presented as positive examples.
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The second factor affecting example integrity is order of presentation. Depending on
the leamning algorithm, different sequences of example presentation may result in slower
learning or even failure to learn. LAIR learns faster for some orders of presentation, but it
is stll able to learn comctly‘ tlf)r any order of prcsc'ntation. given that enough examples are
presented. |

The third factor affecting example integrity is presence of irrelevant information. For
example, LAIR might be presented with the example Qf a suitcase as an instance of the
concept “liftable.” The description of the suitcase might include irrelevant information,
such as its color, its manufacturer, and its style. LAIR can lcaﬁ from c;amples that
contain irrelevant information. | -

Incremental learning has implications for extending LAIR to find its own |
correspondences between example objects and parts. Given only a limited numbcr’of
examples, it may be impossible to determine .Lhc correct correspondence between objects .
and parts. For example, LAIR might be presented “three people sitﬁng on a bench; f;'omi .
left to right, a poet, a violinist, and a novelist.” The second example might be “three people |
sitting on a bench; from left to right, a novelist, an oil-worker, and a doctor.” If LAIR was
trying to learn the concept “three people sitting on a bench; from le»ft to right, a writer, a
person, and another pc;son," then the poet in the first example should be matched witlrthe
novelist in the second cxamplé. On the other hand, if LAIR was tfying to learn th,mcpt

““a novelist sitting on a bench” then the novelist in the first example should be matched with

the novelist in the second example. Clearly, the correct match depends on what concept is

being leamned. .

LAIR'’s incremental learning interacts with its strategy of doing inference on an as-
ncedéd basis. This interaction may require that examples be presented more than once, or
th“at additional examples be presented that are similar to previous examples. For example,
z.AIR does irifcrcnce on an as-needed basis, but it may not know precisely what is needed

L=

when an example is presented. This can adversely affect learning in two ways. First,
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'LAIR may specialize a concept description with a predicate that cannot be proven true of
some past positive example that has been forgogten. LAIR cannot detect this error unless
that old pbsitiile example is presented again or unless that predicate is unprovable for some
new positive case as well. Second. LAIR may not draw all the needed inferences from a
negative example because its current concept description may be specific enough to rule out
the previously-seen negative example. Later, after that example is forgotten, the concept
description may be generalized in response to a positive example. This can result in the
concept description being too general to rule out the negative example. LAIR cannot detect

this error unless that negative example, or one similar to it, is encountered again.

LAIR’s assumptions and design have implications for backtracking in learning
systems. A backtracking system' backgacks to previous descriptions and reconsiders the
examples that it has seen since the previous description was formed. LAIR has been
designed to be an incremental learner with a limited memory for previously seen examples,
and is not designed to support backtracking. Backtracking can be used to solveithe "
. problem of choosing an incorrect rﬁatch, and to eliminate the requirement that examples be
presented again, or further examples be presented that a}c similar to previously-seen
examples. However, in most simple backtracking schemes, much of the information and
work done since the backtracking point is discarded and must be repeated from the fiext -
backtracking point. F\irthcr, it is often difficult to extend simple backtracking schemes to
intclligcnt backtracking schemes that can avoid this redundant work. LAIR’s underlying
assumption is that it is easier to extend its design to han:ilc matching than it is to extend a
simple backtracking approach to one that avoids this redundant work.

LAIR'’s present design allows it to learn only one concept at a time. Later sections on
design and implementation present more detail on the kind of bookkeeping LAIR does
during learning. The basic-idea is that LAIR puts various markers on predicates in its

knowlcdéc base while it is~learning. After LAIR has learned the correct concept

description, the teacher may ask LAIR to add the learned concept to the knowledge base. If
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this is not requested, then LAIR will clear out all the markers when it is asked to learn a
new concept. Thus, LAIR cannot learn multiple concepts simultaneously even when they
do not build on one another. However, if concepts were independent, LAIR could be
extended to leam multiple concepts, by tagging the markers with the name of the concept to
which they correspond.

LAIR also assumes that only a finite number of new features can be introduced in the
examples and that only a finite number of features are inferrable from the examples. This
requirement is necessary for LAIR’s concept description to converge to correctness, and is

discussed further in section 3.8.

3.2. Overview

The general framework and approach taken in LAIR can be summarized as follows.
First, climbing the generalization tree (which introduces new values for already-seen
dcscriptofs) and constructive generalization (whiéh.introduccs new descriptors) are both
regarded as cases of constructive inducrz;on." Second, constructive induction is achieved via
inference and deduction. Third, constraints that ;c inherent in the learning task are used to
limit the knowledge retrieval and deduction, “gn important result of the second and third
points is that LAIR has no constructive inducdon rule among its concept transformation
rules. The constructive induction rule is derived from inference rules and concept revision
rules that use description constraints. This f'ébi)!?\()éCh _also uses an “information
conservation” principle when generalizing a conccpt\ ngﬁpdon. Information conservation
attempts to retain knowledge about a dcscrfptor that will bc dro;}pcd from an incorrect
concept description by éhecking to see whether some inference derivable from that
descriptor may be relevant to the correct concept description. Finally, I have a relaxed
definition of a “correct” concept description. In LAIR, a transformation of a concept
description might make the concept description incorrect with respect to previously-seen

(but forgotten) examples, but it is guaranteed to converge on the correct description with
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cnough examples. Descriptions are always correct with respect to previously-seen and

remembered examples.

3.3. The Knowledge Representation

The knowledge used by LAIR can be represented in a subset of first-order predicate
calculus. Rules are used to represent prior knowledge, lambda expressions are used to
represent concept descriptions, and propositions are used to represent example

-

descriptions.

3.3.1. Descriptions

Descriptions are used to describe concepts and examples. A description is of the form

l}ﬁ[PII(x) AAPILL(X) AP (X) A LA APy (X))

where each Py(x) is of form P(¢), ... ,t;) where P" is an n-adic predicate symbol
chosen from some fixed, finite set of such symbols, one of thc':,- is x, and the other ¢ are
constants or skolem functions of x. I will informal‘ly refer to the unnegated P,; as

Requireds (REQs) and the negated P;; as NOTS.

L -amples are denoted by constants, e.g. Ex-1. These constants are interpreted as
“situations” rather than any particular object in the example. Examples are described by
applying a description to the constant, e.g.

Ax[Pos(Arch, x) A Block(f(x), x) A Block(g(x), x) A Ontop(f(x), g(x), x)](Ex-1)

meaning

“Ex-1 is a positive example of the concept Arch; in Ex-1, there are two blocks,
one of which is on top of the other.”

Equivaicntly, this can be written

Pos(Arch, Ex-1) A Block(f(Ex-1), Ex-1) A Block(g(Ex-1), Ex-1) A
Ontop(f(Ex-1), g(Ex-1), Ex-1)

s
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One of the predicates in each example description must be Pos(Concept, x). This
predicate means “x is a positive example of Concept.” If the example is positive,
Pos(Concept, x) occurs as a REQ, i.c. in the form Pos(Concepr, x). If the example is
negative, it occurs ~as a NOT, i.e. in the form -wPos(Con_;epr, x). Pos(Concept, x) is not
allowed in concept dcscriptions. because it can be used to form a cbrrect, but trivial,
definition of the concept. Example descriptions are assumned to be complete with respect to
the fixed set of predicates from which descriptions are cénstructcd and the knowlcdgé base.
This will be discussed further in section 3.4., but for example descriptions the important
point is that NOTs are not represented explicitly: they are simply omitted from the

description.

3.3.2. The Knowledge Base

LAIR has a knowledge base that constitutes the prior knowledge it has before the
beginning of the leaming task. This knowledge is what LAIR accesses during constructive
induction. Prior knowledge is represented in the form of implications. These are
constrained to contain a single unnegated consequent, and one or more negated ovr
unnegated antecedents, where antetedents and consequents may contain constants,
universally quantified variables, or skolem functions. For example,

VexampleVboy[Boy(boy, example) A Tall(boy, example) A Handsome(boy,

example) A —Gauche(boy, example) A Has(boy, eyes(boy), example) A

Eyes(eyes(boy), example) A Blue(eyes(boy), example) = Likes(Susan, boy,
example)]

1"

ha;‘{ﬁnnegatcd antecedents “Tall(boy, example), “Has(Boy, eyes(boy), example),”
“Blue(eyes(boy), example),” and “Handsome(boy, cxgmplc)," negated antecedent
“—~Gauche(boy, example),” and consequent “Likes(Susan, boy, example),” where
“example” and ;‘boy" are universally quantified variables, “Susan” is a constant, and
“eyes(boy)” is a skolcm.function of “boy.” Note that every predicate must have a variable

corresponding to examples, in this case, example. The use of the variable example to

denote an example rather than the constant “Susan” is motivated by the potential need to use

N
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“Susan” in several examples. For example, “Susan” might occur in both a positive and

negative example of the concept “a girl who is with her lover,” if in the first example she’ls

with her lover and in the second example she is not with her lovcr The general fo#fn or

rules is therefore v :
VexampleVy ... Vy,[P; (example) A ... A P;,(example) A =P (example) A ... A
—FPm(example) = Q(example)]

where each Pi](cxamplc) and Q(example) is of form P™(ty, ... .1,) where P%is an n-adic

predicate symbol, one of the 1; is example, and the other f; are one of y| ... yyor are

constants or skolem functions of example or y; ... y,. | wnll informally refer to these

implications as rules. Concepts that LAIR learns are translated into this form,
¢

corresponding to Description = Concept, and can be added to the knowledge base. They

are then treated as prior knowledge for later leaming tasks. Q

E

3.4. Deductive Inference

LAIR uses deductive inference to determine whether “constraints” are satisfied, to
classify examples, and to extend example descriptions. LAIR uses the OPS4 (Forgy,
1979) production system and a proof task module to do these tasks. Recall that rules are of

the following form:

VxVy . VyalPrp(x) A AP () A =Py (X) A oA Py n(x) = Q(x))]

The predicates P;{x) (containing free variables corresponding to the universally
quantfied example, y| ... y,) can be instantiated as follows. Let o = §t)/vy, ta/vs, . .
ta/Vn}. The pair t;/v; means that term t; is substituted for variable v; throughout. Each
occurrence of a variable must have the same term substituted for it, and no variable can be
replaced by a term containing that same variable. Let P(x)o denote the result of substituting
those constants for those variables in a predicate P(x). For example,

P(y]y f(yZ)’ x){A/)’l, B/yzt EX'I/X,} = P(Av f(B)r EX‘l)

<
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If P(x) has the form of a REQ, and,
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LAIR has the following rules of inference. Suppose Ex is the example, KB is a set

of rulcs, and Ex-Description = Ax[P;(x) A LA Pra(x) A=Pj(x) A .. A =Pop(x)] is

i
KB A Ex- Descrtpnon(Ex) P, j(Z‘x)

KB A Ex- D_escnpnon(Ex) - ﬂPZJ(Ex)
If KB.A Ex-Description(Ex)dl— P(Ex) and

KB A Ex-Description(Fx) b~ O(Fx) then

KB A Ex-Descriprion(Ex) g P(Ex) A Q(EX)
where P(Ex) =P(x{ Ex/x}, Q(F,x) Q(x ¥Ex/x}, where P(x) and Q(x) have the form
ofa REQ, a NO’I‘ or a description.

If for some rule in KB

VxVy1 o VYplPri(xX)A . A Ppp(X) A 2P p(X) A oo A Pop(X) = Q(x)]

and some substitution ¢, for cach unnegated antecedent

+ KB A Ex-Description(Ex) FP;{x)o C . : Vo |

and for each negated antecedent -
KB A Ex-Description(Ex) }"ﬂpzj(;)o : ; . ERRIE N

then \ , ' "é,: AT

KB A Ex-Description(Ex) FQ(x)o

KB A Ex-Description(Ex) ¥ P(Ex)
KB A ExDescnpnon(Ex) b ~P(Ex) e : < o
This rule is based on the assumption menuoned in sccﬁon 3.3.1. that the example
descriptions are complete with respect tofthc ﬁxed set of predicates from which
dcscnpnons ar&z:onstructcd and the knowlcdge basc Thc cxamplc descriptions are
assumef'to be consistent, so NOTs in cxamplc dcscnpnons can be omitted, since they

4
‘

can be derived by this rule.

“"? o
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LAIR can use these rules exrend example dcscné)nons Extending an example

dcscnpnon is defined as adding new predicates as REQs or NOTs to the example

description. For example, if

Ex-Description = kx[Pos(Stable, x) A Bottom(f(x), g(x), x) A No-Bumps(g(x), x)]
KB = {Vx,y[No-Bumps(y, x) = Flat(y, x)]}

Q(Ex) = AxFlat(g(x), x)}(Ex-3)
Ex =Ex-3

then KB A Ex-Description(Ex) + Q(Ex), so

lx[Pos(Stablc, x) A Bottorr;(f(x), g(x), x) A No-Bumps(g(x), x)
A Flat(g(x), x\)J(Ex-3) , '

is an extended description of Ex-3.

LAIR uses concept descriptions to classxfy examples as follows. Supposc Disa
descnpuon of Concept, Ex is an examplc to bc classified, Ex- Descrzpnon(Ex) is the
description of Ex, and KB is the knowlcdge base. If

KB A Ex-Description(Ex) - D(Ex) “
then LAIR assumes that according to D, Ex is a positive instance, otherwise that Ex is a

negative instance. o \

3.5. Correctness of Concept Descriptions

A concept description D of~Concept is defined to be correct iff it can be used to
correct'ly classify the positive and negative examples of the Con;cbt with respect to the
knowledge base. Notice that the samc‘dcscription may be correct or incorrect déﬁending on
the contents of the 'know-ledgc base: if LAIR is lacking some piece of vital information, it
may not be al;lc to use thé description to correctly classify the examples. More formally, D
is correct iff for every positive example Ex of the concept,

KB A Ex-Descnpnon(Ex) FD(Ex) ‘ , ’ \
and for every negative cxammc Ex of the conccpw " a

KB A Ex-Descnpnor_;@r)V D(Ex) ":4,.7" ‘ P
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where Ex-Descriprion(Ex) is the description of Ex, and KB is the knowledge base. Almost
by definition, however, an incremental learner has not seen all the posit'i;rc examples of a
concept. Further, an incrementaldearner may not remember 'all previously-seen examples,
~_—or may be lacking some important piece of khowlcdgc necessary to determine correctness.
Therefore, relative correctness is defined as follows. A description D is relatively correct at
time ¢ iff for every remembered positive cxampl.c Ex of the concept,
KB A Ex-Description(Ex) - D(EX)
and for every remembered negadvé example Ex of the concept,
KB A Ex-Description(Ex) ¥ D(Ex)

where Ex-Description(Ex) is the.description of Ex, and KB is the knowledge base. LAIR

remembers only one past positive example and the current example, but this definition
vy

holds true for any set of remembered examples. s

3.6. Constraints on the Concept Description

LAIR keeps track of whether a predicate is provable for s " ; e xampre and

whcthcr it is unprovable for some Rosmve example.” These form 1"‘ ,cénstramts on

the concept dcscnpnon and on the concept revision rules. The important properties of
constraints are described below:

Drop(P, t) — LAIR has inferred at or prior to time ¢ that P is falsc of some positive
example, and has stored this information with the Brcdlcatc in the knowledge
‘base. Informally, P is “dropped.” Note that if Drop(P, ), then for some

. positive example Ex of the concept,

KB A Ex-Description(Ex) F —P(Ex)
Some(P 1) — LAIR has inferred at or prior to time ¢ that P is true of some positive
example, and has stored this information with the predicate in the knowledge

base. Note that if Some(P, 1), then for some positive cxamplc Ex of the
concept,

KB.Aa;Ex-Description(Ex) F P(Ex)
constraint on thc concept dcscnpuon is that it cannot include a predicate P thatis

dropped ‘Otherwise, thc concept description would be incorrect. Thix vun be provcd as
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follows. Suppose DrOp(PV,'—t). Then by the Drop axiom, for some positive example Ex,
KB A Ex-Description(Ex)  —P(Ex). S:xpposc the concept description, D, includes P.
Then D is of form Ax[P;(x) A ... A Py (x) A P(x)). Clearly KB A Ex-Description(Ex) b

- D(Ex), so by definition, D is incorrect.

An analogous constraint on the concept description is that it cannot contain the
negation of a predicate that has been found to be true of any positive cxamplc‘ ie., a

predicate P for which Some(P, ¢) is true. The proof is similar.

3.7. Inductive Inference
LAIR uses the following Hconccpt revision rules, described in terms of:

constraint—conditions that must be true for the rule to be used.

—

initial-description—initial de ription;of the concept.

transformation—either “sp ‘
revised-description—revised description of the concept
postconditions—conditions assumed to hold after the rule is used.

In’ the fgllgwing rules, “Curr(Concept, Ex, )" denotes “Ex is the current example of
Concept at time 1,” and “Past(Concept, Ex)” dendtes “Ex is the past, positive example of
Concept rcniémbcred by LAIR.” The first prcsénted example is assumed to be positive,
and becomes the past example. Note that the D’s that are concept descriptions, and the P's,
and Q's that are added or dropped from concept descriptions, are assumed not to have the
variable x occurring in them. If-then renditions of these rules are inéludcd for readability.

i+

 The add-REQ rule—adds an unnegated prcﬁie'{tc (a “REQuired”) to the concept
description
constraint: -Drop(P, 1) A ’
Curr(Concept, Curr, t) A Past(Concept, Past, 1) A .
([KB A Curr-Description(Curr) b P(Curr))
v —Pos(Concept, Curr)] A
(KB A Past-Description(Past) b P(Past)]



initial-description: D
transformation: specializes to
revised-description:  Ax[D(x) A P(x)]
postconditions: Some(P,r)
If a predicate has never been Drop’d from the concept description

& it can be proven true of all the remembered positive examples
Then  add the predicate to the concept descriptipn
and remember it is true of Some positive example

+ The add-NOT rule—adds a negated p}rcdivcatc (a “NOT”) to the concept description.

constraint: ‘ |
Cur¥(Concept, Curr, 1) A Past(Concept, Past, t) A -
(KB A Curr-Description(Curr) - P(Curr)] A
Neg(Concept, Curr) A

o - [KB A Past-Description(Past) & —P(Pasr)] '

initial-description: D

transformation: specializes to \

revised-description: AX[D(x) A ~P(x)]

If a prcdicatc'has not been proved of Some positive examples

!

-Some(P, 1) A

& it can be proven true of the current negative example
& it cannot be proven true of the remembered past positive example

S

:Then  add itssnegation to the concept description

eI

+ The drop-REQ rule—drops a REQ from the concept description.

Curr(Concept, Curr’, t) A Past(Concept, Past, 1) A

constraint: :
[(KB A Curr-Description(Curr) = —P(Curr))
A Pos(Concept, Curr)} v

‘ (KB A Past-Description(Past) & —P(Past)]
initial-description: Ax[D(x) A P(x)] '
transformation: generalizes to

sed-descrinti D |
postconditions: Drop(?, 1)

If a predicate in the concept description cannot be proven true of ‘th_c :

remembered positive examples
Then  drop it from the concth description

& remember it has been

rop’d

« The drop-NOT rule—drops a NOT from the concept description.

49
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constraint: Curr(Concept, Cur}', t) A Past(Concept, Past, A
([KB A Curr-Description(Curr) & (Curr))
A Pos(Concept, Curr)] v
(KB A Past-Description(Past) - P(Past)]

initial-description: Ax[D(x) A =P(x)] ~ L P
tansformation: generalizes to
revised-description: D \
postconditions: Some(P, 1) )

If a negated predicate P in the'concept description can be proven true of

any remembered positive example
Then drop — from the concept description

; & remember P is true of Some positive example

Notice LAIR does not have a constructive induction rule! This rule would be written

in our framework as follows:

« The constructive induction rule—applies domain knowledge to generalize a concept

description.

constraint: Vx[P(x) = Q(x)]

initial-description: AX[P(x) A ... A Pu(x) A P(x)]

transformation: generalizes to

revised-description AX[Pi(x) A ... A Pu(x) A Q(X)]
If the concept description includes a predicate P

& the knowledge base contains a rule P implies Q
Then  drop P from the concept description
& add Q to the concept description
The concept revision rules given earlier are essentially equivalent to the constructive

induction rule. Their relationship will be discussed further in section 3.9.

3.8. Relative Completeness, Preservatior; of Relative Correctness, and Convergence
Three important propcﬁics of these rules as implemented in LAIR are “relative
completeness,” “preservation of relative correctness,” and “convergence.” Inguitively,
these mean that the rules do not make the description incorrect with respect to the
remembered examples, thz;t the rules can always find a correct description if it is possible,

and that the concept description eventually becomes correct. This section defines thgsc
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properties formally, and proves, given certain important assumptions, that they are true of

LAIR.

A description revision rule R preserves relative correctne;vs iff given description D, if
D is relatively correct then R revises D to a dcscﬁpdon D’ that is also relatively correct. __
The add-REQ rule can be shown to preserve relative correctness as follows. Sﬁppose
D is a description that is relatively correct at time ¢, Past is the past example, Curr is the
current positive example, and the add-REQ rule revises D to D’ = Ax[D(x) A P(x)]. Since

D is relatively correct at time ¢, -3 {
\

KB A Past-Description(Past) - D(Past) and
KB A Curr-Description(C urrki;D(Curr)
Since add-REQ was applied at time ¢, itsvconstra.im must be true, so

KB A Past-Description(Past) - P(Past) and

KB A Curr-Description(Curr) b= P(Curr)

Therefore,

KB A Past-Description(Past) - D(Past) A P(Past) and

KB A Curr-Description(Curr) = D(Curr) A P{(Curr) _

Since LAIR remembers only Past and Curr, for every seen and remembered positive
example of thl: concept,

KB A Ex-Description(Ex) - D(Ex) A P(Ex)

Therefore, D’ is relatively correct at time 1.

The proof of preservation of relative correctness for the add-NOT rule is similar. The
drop-REQ and drop-NOT rules trivially preserve correctness because they are constrained
to apply in situations where the initiai description is incorrect. (‘

Drﬁp rules have another important property: they never drop a predicate that is in a
correct concept description. This can be proven as follows. Suppose D = Ax[Pp(x) A ...

A P,,,(x) A =P5(X) A ... A=Py,(x)] is a correct concept description. If Pjjcould be
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drop-REQ’d, then at some time ¢, its constraint Drop(P,;, 1) would be true. Therefore, for
some positivc example Ex, KB A Ex-Descripti(;(:(Ex) b —P(Ex). Therefore KB A Ex-
Description(Ex) ¥ D(Ex), so D is incorrect, a contradiction. Therefore, P, j could not be

dropped. The proof that the P; cannot be drop-NOT'd is similar.

Completeness is defined relative to LAIR's ability to use the concept descriptionto
classify examples. Suppose there exists a correct description that be proven true of all the
positive examples and falsc. of all the f\cgativc examples. Then a set of concch

« ‘ .
rules is relatively complete iff a correct description D’ can be derived from every
intermediate description D derivable from any set of positive and negative examples, using
the rules. Note correctness is ah equivalence relation o?cr concept dcscriptiohs, and that
LAIR is not necessarily able to find any particular correct description, but only some
correct description given 6nc exists. Further, relative compietcness does not mean that
LAIR will find a correct soncept description, but rather lhét LAIR could find a correct
description from any point in the learning process given the required examples are
presented.

| Relative completeness will be proven as follows. First, I will prove a correct concept
description can be derived from the null description using the concept revision rules and the
deductive rules. Second, the first result will be used as the basis case to prove a correct
concept description is derivable from any intermediate description. LAIR is assumed to
have a helpful teacher who presents the required examples.

Suppose D’ is a description that is correct, and D’ can be used to correctly classify
instances of a concept. Then D’ is of form

AX[PIUX) A oo AP (X)A =P (X)) A LA =P (X))

and for every positive example Ex of Co)icepr,

KB A Ex-Description(Ex) = D'(Ex)
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where Ex-Description(Ex) is the description of Ex presented to the system. Therefore, for

every P (x) and every positive example Ex,

" KB A Ex-Description(Ex) + P, {Ex)
Recall LAIR remembers a past positive example Pasr and a current example Curr. The
helpful teacher is requested for a positive example, so that Curr is positive. Then by the
above,

Curr(Concept, Curr, t) A Past(Concept, Past, 1) A
Fos(CJncepr, Curr) A (KB A Curr-Description(Curr) & P 1j (Curn)] A
KB A Past-Description(Past) b= P j(Past)

Also, since D’ is correct, Drop(PIj,t) cannot be true for any time t. Thus the constraint of
add-REQ is satisfied, and P ; can‘bc added to the concept description. This process can be
repeated for each P; to add themall to the concept description.

[ will now show that each of the P,(x) can be added to the concept description. Each
of the P(x) is assumed to be necessary to rule out some negative example. Otherwise,
they could be dropped from the concept description without losing correctness. Theréfore.
for some negative example Ex,

KB A Ex-Description(Ex) + sz (Ex)

[f Ex is made the current example, then

Curr(Concept, Ex, 1) A Neg(Concept, Ex) A [KB A Curr-Description(Ex) & P; j (Ex)]
Also, since D’ is correct, Py; cannot be provable of any positive example, so if Past is the
past example, then

Past(Concept, Past, 1) n—Some(P, 1) A [KB A Past-Description(Past) |- ~P(Past)]
Thus the constraint of add-NOT is satisfied, and —~P3; can be added to the concept

description. This process can be repeated for each P;; to add them all to the concept

description as NOTs.



54
Therefore, a correct concept description D’ can be derived by some sequénce of
concept revision rules starting from scratch—the null description. [ will now show that D’

(or another correct concept description) can be derived from any intermediate concept

description D ,, by induction on number k of applications of concept revision rules to derive
the intermediate description, D, frc:m the null description. By the previous result, the
basis case is true, where n = 0. Assume if D, has been derived by n applications of
concept revision rules then D’ can be derived from D,,. I will show that D’ can be derived
from any description D, ,; derivéd in n + I applications of concept revision rules. Clearly,
D, +'1 can be derived in one step from some description D,, that is derived in n steps. There
are four rules that can apply to D, todenive D, ;: add-REQ, add-NOT, drop-REQ, or
drop-NOT. Suppose D, ; is derived by add-REQ from D,,s0D,,; = Xx[D(x) A P(x)].
If PisinD’, theun P does not need to be added later, so the step in tﬁc derivation of D’ from
D,, where P was added can be on}ittcd. If Pis notin D’and P can be dropped then D’ can .
be derived from D, ; by the sarﬂc sequence used to derive D’ from D, with this extra step.
If P cannot be dropped, then the coﬁstraint of drop-REQ must be false, so

Past(Concept, Past, t) A [KB A Past-Description(Past) & P(Past))
must be true, and for every positive example that could become the current positive
examplc; Le. cv;:ry positive example Ex of the concept,

KB A Ex-Description(Ex) = P(Ex)
If the same derivation of D’ from D, is applied to D, , the final concept description is D’
with one cxtrél predicate, P:

Ax[D'(x) A P(x)]
This concept description can also be shoWﬁ correct as follows. Since D' is correct, for
every positive example Ex

KB A Ex-Description(Ex) - D(Ex)

and for every negative example Ex,
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KB A Ex-Description(Ex) ¥ D(Ex)

Therefore, for every positive example Ex
KB A Ex-Description(Ex) & D(Ex) A P(Ex)
and for every negative example Ex,
- KB A Ex-Description(Ex) ¥ [D(Ex) A P(Ex)]
so this concept description is also correct. 4 similar argument shows that application of
add-NOT transforms D, into a D, , } from which D" or another correct concept description
can be derived.
I will now show that if D, ; is derived from D,, by applying drop-REQ or drop-NOT
then a correct concept description can be derived from D, ; . Assume that D,,;I is derived
from D,,.by applying drop-REQ. Then the constraint of drop-REQ must be true:
Curr(Concept, Curr, 1) A Past(Concept, Past, t) A
([{KB A Curr-Description(Curr) = —P(Curr)] A Pos(Concept, Curr)) v
(KB A Past-Description(Past) b= —P(Past)}]

Therefore, for some positive example,

KB A Ex-Description(Ex) - —P(Ex)

But then P cannot be in D', or D’ would not bC-COIT;!Ct. 'I’her;forc, PisnotinD’ soD’
can be derived from D, ; by applying the same sequence of concept revisions that was
applied to D,,. A similar argument shows that application of drop-NOT transforms D,, into
a D,,‘ ] from which Dor another correct concept description can be derived. Therefore, by

the induction theorem, D’ or another correct concept description can be derived from any
intermediate description D, for all n. The fnost important consequence is that the system
does not need to Backtrack to a previous point in the learning process, since it can derive a
correct concept description from any intermediate description. Of course, LAIR mught have
to be presented with an example it has already seen (or absimilar example), but it will not

have to discard the work it has done since last seeing that example.
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LAIR’s concept description converges to correctness under a number of assumptions.
First, the number, m, of inferrable features and new features are introduced in examples,
is assumed to be finite. This implies that the number of examples is finite, since only a
finite number of examples can be created from a finite number of features in our

representation. Second, the examples are assumed to be presented in the following way.

Suppose the examples are Ex; ... Ex,. The teacher presents each of examples Ex ... Ex,

once. If no change occurred in the concept description, then the teacher stops, otherwise
repeats this process. The order of presentation can be changed between iterations, as long
as each example is presented once, and the {\umbcr of times an example is presented could
be greater tha « . provided it is less than some fixed bound & If no change in the

concept desc: , «ion occurs for one of these iterations, then the concept description is
-

S

correct. LAIR’s leamning procedures (¢ later) restore relative correctness of the
concept description after each example is prgﬁs‘?mad Therefore, if no change occurs in the
concept description for some iteration, then the concept description is correct. Since a
dropped feature cannot be added to a concept description, there are only 4m changes that
can be made to the concept description. If the concept description was not correct, then at

least one change must have been made during each iteration. Therefore, after 4m iterations,

the concept description will be correct.

The assumption that only a finite number of new features is introduced in the

examples is required for the following reason. Suppose that we l}ad an infinite number of

features, and some infinite subset, Fy, F5, ..., was inferrable of the remembered, positive
examples. If the i-th positive example were F{ A Fo A ...A =F;.; A Fj, then LAIR's

concept description would never converge, since it would drop Fj.; and add F; for each

example.
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3.9. Derivation of Constructive Induction

The deductive rules and rélaxc,d concept revision rules derive the constructive
induction rule, providing the initial description is relatively correct. Since LAIR's rules
preserve relatively correctness, each intermediate concept description is true of the past
positive example. The add-REQ rule is relaxed by removing the Drop constraint, and the
drop-REQ rule is relaxed by rcm.oving all 'its constraints.

Assume ‘Xxl[PI(x) A ... APp(x) A P(x)] is the initial descniption and the constraint of
the constructive induction rule is a rule in the knowledge base: Vx[P(x) = Q(x)]. Then by
relative ébrrfctncss, if Past is the past example, then

KB A Past-Description(Past) = Ax[P(x) A ... A Pn(x) A P(x))(Past)

Thcrcforc' KB A Past-Description(Past) b P(Past), and so Past-Description can be

extended to Past'Descrxpnon AP. Smcc Vx[P(x) = Q(x)} is in KB,

KB A Past- Descnpnon(Pa.s‘r) A P(Pas:) o Q(Pgst)
5 g ,

conccpt rc\n
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not seem like a serious shortcoming. In contrast, the undecomposed constructive induction

rule is not relatively complete, as shown by the examples in sections 2.3 and 2.4.

3.10. Summary

This section has outlined the general approach and framework taken in LAIR. LAIR
learns concept descriptions in a conjunctive description language. For incremental learning
systems, concept descriptions can be characterized by rélativc correctness with respect to
the remembered examples and the time at which the description is formed. Constructive
induction is based on inference and deduction; it is controlled by constraints that limit the
knowledge retrieval and deduction. LAIR has no “constructive induction” rule among its
concept transformation rules; constructive induction 1s derived from inference rules and

concept revision rules that use description constrgj

ts. LAIR's rules ar€ relatively
complete, so LAIR can always find a correct, usab 1 "\‘i)lc (if one exists). LAIR's
design as-an incremental concept learner with finite memory for previous examples
precludes backtracking or maintaining multiple concept descriptions. In LAIR, a
transformation of a concept description might make the concept description incorrect with
respect to previously-seen (but forgotten) examples, but it is guaranteed to converge on the

correct description with enough examples. Descriptions are always correct with respect to

previously-seen and remembered examples.

LAIR makes a number of simplifying assumptions that limit the situations to which it
is applicable. Object correspondences are pr\ovidcd for it. This a’yoids many of the
problems that typically call for solved by backtracking techniques. Thuss if LAIR were
extended to do matching, it might have to backtrack because it chose an ingorrect match,
even if it wouid not have to hacktrack because it chose the wrong conccp_t'rcvis/iori rule.
Second, LAIR may have to see examples (or similar examples) more than once io correct

an incorrect specialization decision, or to correct a failure to specialize. However, LAIR

does not backtrack through all the changes it has made to the concept description (in the
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sense of undoing thgm) since last secing that example. This. feature is d ‘to LAIR's
| concept trahsfon’nation rules plus the assumptions made about (a) the integrity of the
examples (positive caScS are never presented as negative ones, or vice versa); and (b) the

fact that only a finite number of new features are being introduced in the examples.

-



Chapter 4

&
LAIR’s Knowledge Base

4.1. "t#roduction
"LAIR’s knowledge base consists of frames that represent knowledge about examples,
concept descriptions, constraints on concept descriptions, and prior or learned knowledge

about the domain. LAIR uses a production system to do deductive inference and to

perform the various learning tasks.

LAIR’s hybrid knowledge representation scheme is rr'xo‘tivatcd by ghe importance of
matching the rcprcsemation scheme with the processes that will use nt’hc knowledge.
Several kinds of knowledge are compatible with frame-béscd representations: knowledge
about predicates such as constraints, instantiations, related predicatcs, related implications,
and concept descriptions; prior knowlcdge in the form of implication statements; meta-
knowledge about prior knowledgc-sucth as whether it has been activated for inference.
S.toring, modifying, and feuicving}iﬁf,bnnation irc easily handled ‘ithin a frame-based
representation. On the other hand, much of the knowledge about tasks pert:ormcd in
learning are best represented as IF-THEN rules: actions to be taken to classify examples, to- -
;evise concépt descriptions, and to pn;{‘/e propositions. Production system languages offer

" useful control structures for organizing tasks. Som-c languages like OPS4 provide pattern
matching algorithms that can be exploited for a task like this. - .

4

Frames repr%gnt information in the following form (Winston & Horn, 1981 ).

o

(frame
(SlOtl (facct“ (va.lucl 1 1)

(value, ;)

(faicctlp. . )

sloty )

K]
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| & Frames in our system are c'sscntially record structures with composite slot-facet
ﬁclds Values can be cither primitive values or other frames. The importaht idea is that all
of the information about a frarﬁc can be quickly accessed, including related frames, if they
are stored as values on a framc.b.

Production systems consist of three basic components: a set of [F-THEN rules, a data
base often called working memory (WM), and an interpreter for the rules (Davis & King,
1977). An'TF-THEN rule consists of a condition and an action; working memory, consists
of a set of symbol strings. The interpreter matches the conditions of the rules against the
data base according to éomc‘prc‘spccified scheme, and executes the actions of some subset

A ¥

of the ryles that have matched. Often, the IF-THEN rules correspo“r‘;g implication _ '
statements, working memory consists of some set of explicitly true proi)osiﬁgrlg,and the |
interpreter asserts the coﬁscquént of the [F-THEN rules if the antecedent is satisfied by
working memory. In this way the invocation of rules can Ex: viewed as a chained sequence

of modus ponens actions. The production system, written in OPS4 (Forgy, 1979), guides
*

the system between its various tasks, and does deductive retrieval of information.”

3

Prior Production .
Knowledge [ Sysiem | Workihg Memory

; Base : . ; ,
C)}KD .}@—{ Frame Memory dynamically created

Qu

Figﬁre 4.1 System Architecture

Figure 4.1 presents a schematic view of how knov\{lcdgc is rcpresented.i'n the
diil’,ff‘erent formalisms and.how they intc;'act : Frames serve as a long u:n; memory in which
prior knowledge and meta-knowledge about the system can be represented. Frames can be
dynamically éreat_ed as a function of lcarning‘ in @ domain; frames representing learned

concepts may be moved permanently to long term memory. The production rules can

_ create, modify, and delete frames by means of actions that are performed when a rule fires.

¢ ¢
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Actions can invoke quite specialized methods for searching spaces of generalizations,
updating constraints, creating predicate frames, and deriving instances of a prcdiéatc.-

Derivation of predicate instances, in turn, involves the creation of rules from knowledge

T

~ stored on frames, and activating these rules on working memory. : i

4.2. Working Memory

Working memory jﬁj‘j"“ of propositions that represents ;:ithcr control information
about the task or descriptive inflormation about an example. The control information is
used to communicate infonmition between various tasks, and to do standard programming
operations such as sequencing, iteration, and conditionals. Example descriptions, which
are conjunctions of propositions, are' represented in working memory as sets of
propositions each of which is assumed to be true. The syntax of propositions in working

membr,y is different from the standard logical syntax: the form is

(example (Predicate-name arg; arg; ... arg,))

o

where example is a constant symbol denoting an example, Predicate-name is a

prcdiéatc symbol denoting an n+ 1 predicate, and arg arg; ... arg, example are arguments
of the iJrcdicatc. For example, the proposition

Loves(John, Mary, examplel) =~ I e

(meaning “John loves Mary is true of ‘c‘xa‘mpl'cyl") would be represented in working

memory as
(examplel (Loves John Mary))

_The conjunctive déscription

B . Loves(John, Mary, examplel)‘/\ Tali(John, examplel)

b7

would be represented in working memory as

(examplel (Loves John Mary)), (examplel (Tall John))



s
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This representation is motivated by the need to easily collect all of the propositions true of a
particular example, and to easily distinguish dcsc_riptive information from control
information. |
Control information, such as “the current task is unification,” is represented as a
working memory proposition (task-is-classification). The system is abl; to distinguish
between this kind of information and the descriptive information described previously on
the basis of syntactic differences. However, control information can sometimes involve
descriptive information, spc’h as “the current subtask is to conserve the information in the
predicate AxLoves(John, Mary, x),” which is represented as the proposition (unify subtask

i

(Loves John Mary)).

P

4.3. Frame Memory
The two main kinds of frames are frames representing predicates and frames

representing rules.

4.3.1. Frames Representing Predicates

| Knowlcdgc is organizod aroun&grcdicétcs over examples. Frames corresponding to
these entities are created during lc;mlr%g as instantiations of more general predicate frames
stored in the prior knowledge base. There are two typet.of predicate frames: most-
| gener:al-predicate frames and less-general-predicate frames. A most-gcncral-pmdica{tc
frame corresponds to a predicate expression that has more than one argument, c.g.
Kx,y,z[bédy(x, y, 2)]. A less-general-predicate frame corresponds to a predfcate
expression that has only one argument, e.g. Az[body(a(z), b(a(z)), z)]. Since less-general-
predicates arcAthc “building blocks” of concept- descriptions, constraints on concept

descriptions are stored on these frames. The most important slots on a less-general-
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DEFN (dcfmmon) e
Lambda expression defining the pmdxcatc, c.g., kz[body(a(z‘)! b(a(z)), z)).
MOST-GEN-PRED (most general predicate) Wos

The frame representing the most general prcdlcato ‘éorrcspondmg the
predicate. The most general predicate is obtained by replacing all cons‘(z;g; and
skolem functions in a predicate definition by variables; for examplg, ta most

general predicate of Az[body(a(z), b(a(2)), 2)] is Ax,y,z[body(x, y, z)}.

PROPOSITIONS
Propositions that are instances of the predicate.

SOME
T iff the prcd'CatE: is true of some positive example.

REQ
T iff the predicate is an unnegated predicate in the concept descniption.

NOT -
T iff the predicate is a negated predicate in the concept description.

DROPPED
T iff the prcdlcatc is not derivable for some positive example.

REQ SPACE
T iff the predicate has been consxdcrcd as a possible REQ in a concept
- description during the current subtask.

NOT-SPACE

T iff the predicate has been considered as a possible NOT in a condept
description during the current subtask.

-

‘A typical less-general-predicate frame might be:

Body-001 ‘ .
DEFN Ax[body(a(x), b(a(x)), x)]
PROPOSITIONS  body(a(Ex-1), b(a(Ex-1)), Ex-1), .
A bOdY(a(Ex'z)v b(a(EX‘Z)), EX'2)
T

REQ

SOME . T

NOT - NIL
DROPPED NIL H
MOST-GEN-PRED Body-000
REQ-SPACE &&“’
NOT-SPACE .

The second kind of predicate frame, the most-general-predicate frame, is used to

orgamze knowledge about rclauonshlps between predicates and rules. Lcssj-gcncral—

rit mfercncc rules from most- gcncral prcdxcatcs “Most-general-
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predicates can inherit propositions from less-general-predicates. The most important slots

of a most-general-predicate frame are:

DEFN (deﬁnit.ion)
Lambda expression defining the predicate; e.g., Ax,y,z[body(x, y, z)].

LESS-GEN-PREDS (less general predicates)
Inverse of the MOST-GEN-PRED slot on less-general-predicate frames.

CONSEQUENT-OF '
Rules in which the predicate, or one of its less general predicates, is a
consequent.

ANTECEDENT-OF ‘
Rules in which the predicate, or one of its less general predicates, is an
unnegated antecedent.

NEG-ANTECEDENT-OF
Rules in which the predicate, or one of its less general predicates, is a negated
antecedent. )

A typical most-general-predicate frame might be: L=

Body-000
DEFN Ax,y,z[body(x, y, z)]
LESS-GEN-PREDS  Body-001 -
CONSEQUENT-OF NIL .
ANTECEDENT-OF *  hot-0094, open- vesscl 0100 .
NEG-ANTECEDENT-OF NIL

4;3.2.‘Rﬁle Frames

. In the above frame, hot-0094 and opcn-vcsécl-OlOO refer to rule frames. Rule frames
represent knowledge corresponding to logical implications. The most important slots on a
rulc" frame are:

CONSEQUENTS G
Consequents of the 1mphcat10n ’ ‘

ANTECEDENTS
Unnegated antecedcnts of the unphcauon,_

NEG-ANTECEDENTS
Negated antecedents, of §
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A typical rule frame might be:
~ graspable-0104
: CONSEQUENTS graspable(y, z)
ANTECEDENTS cyl(y, z), small(y, z), light(y, z),

body(x, y, z)
NEG-ANTECEDENTS hot(y, z)

This rule corresponds to the implication statement
V.x,y,zlcyl(y, z) A small(y, z) A light(y, z) A body(x, y, z) A —hot(y, 2)

=> graspable(x, z)]

“If something is light with a small, cylindrical body that is not hot, then it's
graspable.” :

4.4 Summary

LAIR's knowledge base is a hybrid scheme that consists of frames, working memory
elements, and productions. Knowledge migrates to the production system as needed;
learned knowledge is stored in the frame base. The hybrid approach is motivated by the

need to match the knowledge to be represented with the processes that use the knowledge.
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Chapter §
How LAIR Learns

Design

LAIR consists of the following task modules:

Accept
Example Task

Classificaton

A_/ T
"7 | Unification Proaf Task Differencing
Task Task

_Figure 5.1. The System Modules '

Accept Example Task — Clears out the previous exarﬁple from memory and
accepts the description of the next example from the teacher. This involves updaﬁng
working memory and frame memory with the examplé description, and adding
features of the example to the concept description if they do not violate relaxed

constraints on the add-REQ or add-NOT rules.

Classification Task — De;&fmmcs the relative correctness of the concept
description with respect to the rcmcmbcrcd examples (the past positive example and.
the currcnt example) by calling the Proof Task to prove the description true of the
examples. If the description is not relatively correct, then this task tries to identify the
causes of failqsgé‘fglf the current example is positive, the description is generalized to
restore relativ pﬁ;n‘cctncss by dropping REQ’s, then the Unification Task is called to

conserve thc?lost information. If the current example is negative, the Differencing

Task i 1s callcd to restore rclauvc correctness.

5 ¥

Unification Task — Specializes the: concept dcscnptmn to conserve information

—

lost during the Classification Task byadd-REQ’ing new features that can be proven

67
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of all the remembered, positive examples. This involves inference, which is handled ~

by the Proof Task.

4. Differencing Task — Specializes the concept description when it incorrectly classifies
a negative example as a positive case, to restore relative correctness. This involves
add-REQ'ing or add-NOT’ing new features that correctly rule out the current negative

example as a positive instance of the concept.

5. Proof Task — This task tries to prove a predicate true of the cximplcs remembered

by the system. It is used by the Classification Task, Unification Task, and

Differencing Task.

5.2. Learning the Concept of a Cup

To describe how LAIR learns, we will explain learning a conccpt' description for
“cup.”! Assume LAIR has just learned a number of rules relating to the conce‘pts “hot,”
“stable,” “open-vessel,” “graspable,” and “liftable.” LAIR remembers only one previous
example, which must be positive,-plus the current example. Initially, the concept
description is Aex[], interpreted as “anything.”

The Accept Example Task attempts to add information from the examples to the
concept description that do not violate the constraints on the description. The first example

is “cha-cup +,” so LAIR forms the following description of the past positive example:

Pos(cup, Ex-1) A bottom(a(Ex-1), c(a(Ex-1)), Ex-1)  flat(c(a(Ex-1)), Ex-1) A
concavity(a(Ex-1), e(a(Ex-1)),Ex-1) A cylinder(b(a(Ex-1)), Ex-1) A small(b(a(Ex-
1)), Ex-1) A body(a(Ex-1), b(a(Ex-1)), Ex-1) A was-lifted(a(Ex-1), Ex-1) A
upwards(e(a(Ex-1)), Ex-1)

“A positive example of a cup is something with a flat bottom, an upwards-pointing
-~ concavity, a small, cylindrical body, that was lifted.”

IThis learning task is inspired by the ANALOGY program (Winston, Binford, Katz &
Lowry, 1983) that learns the physical description of a cup from a functional definition,
examples, and precedents.
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Since initially there are no constraints on the concept description, all of the features |
can be added to the concept description.
Acx[bottom(a(cx){ c(a(ex)), ex) A flat(c(a(ex)), ex) A concavity(e(a(ex)), ex) A

cylinder(b(a(ex)), €x) A small(b(a(ex)), ex) A body(a(ex), b(a(ex)), ex) A was-
lifted(a(ex), ex) A upwards(e(a(ex)), ex)]

*

The setond example, “typical-cup +,” is accepted, resulting in the following

description of the current example:

Pos(cup, Ex-2) A bottom(a(Ex-2), c(a(Ex-2)), Ex-2) A flat(c(a(EX-2)), Ex-2) A
concavity(e(a(Ex-2)), Ex-2) A cylinder(b(a(Ex-2)), Ex-2) A small(b(a(Ex-2)), Ex-2)
A body(a(Ex-2), b(a(Ex-2)), Ex-2) A upwards(e(a(Ex-2)), Ex-2) A handle(a(Ex-2),
Ex-2) A light(a(Ex-2), Ex-2)

“A positive example of a cup is something with a flat bottom, an upwards-pointing
concavity, a small, cylindrical body, that is light and has a handle.”

The Accept Example Task revises the concept description to include the features
handle(a(ex), ex) and light(a(ex), ex). Note that these features are added although they are
not true of all of the remembere® positive cxamplc-s. The Accept Example Task does not
check this constraint, because it will be checked by the Classification Task. Since all of the
features in the concept description must be checked for relative correctness, it is simpler to
check this constraint during classification.

The Classiﬁéation Task now determines relative correctness by trying to prove the
concept description true of the remembered positive examples. Thg’Classification Task
finds that the concept description is not relatively correct, and restores relative correctness
by dropping was-lifted(a(ex), ex), handvlc(a(cx), ex), and light(a(ex), ex). Although the
concept description is relatively correct, in sorﬁc sense information has been “lost.”

The Unification Task attcmpts’to conserve the lost information by speciatizing the
revised conécpt dcscriptibn with infcmncés it can make from the dropped REQ’s.
Essentially, this mc,ans' “Does this descriptor, which I've decided to drop, imply something
else that is provable of both the current example and the past positive example(s)?”

Information conservation is important in LAIR for several reasons. First, when the current
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example is positive, then LAIR is essentially learning from positive-only examples.
Systems that learn from positive-only examples mf@t have methods to avoid over-
generalization. Information conservation avoids over-generalization by compensating for
the loss of information in generalization by a specialization step. Further, specialization is
focused onlyson descriptors that can be inferred from fhe dropped REQ's.

The Unification Task searches for inferrable descriptors by looking at rule-
generalizanions of the dropped REQ's. A predicate P is a rule-generalization of a predicate
Q if (1) Q has a MOST-GEN-PRED that is ANTECEDENT-OF a rule that has P as a
CONSEQUENT, or (2) P is a rule-generalization of another predicate that is a rule-

generalization of Q. The relationship between P and Q, for case (1), .is shown in figure

5.2.
most-gen-pred ameceden! consequent
ako ,
/

|
less-gen-pred most-gen-pred most-gen-pred

(
Figure 5.2. Rule Generalizations

The Unification Task creates a subtask for each:drOppcd REQ by initializing a “REQ;,)
boundary” to the = spped REQ. Each subtask is an heuristic search of the space ot‘:
descriptors to find a less general predicate of a rule-generalization of the dropped REQ that
can be add-REQ’d to the concept description. The subtask chooses a REQ-boundary
element P and tries to add-REQ it to the concept descripsion. This involves infere;ncc: P;
must be proven true of Pastand Curr because they are both positive, remembered
examples. If a less general predicate of P can be add-REQ’d, then the subtask terminates
successfully. Otherwise, P is deleted from the REQ-boundary and P’s rule-generalizations
are addtcito the REQ boundary if P (or a less gcncral predicate than P) sansfxcs the

following constraint:
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ch[Rcmcmbcred(cx: A Pos(éongzepr, c;()“’}\ P(ex) A -REQ(P, 1]

“P is true of a remembered, positivé example of the concept, and is not currently a
REQ.”

If the REQ-boundary is empty, then the subtask terminates unsuccessfully, otherwise a
‘new REQ-boundary ;lcmcnt is chosen and the process rtpcat;:d. s

For the “typical-cup +” example, the first REQ-boundary 1s initialized to {was-

, lifted(a(ex), ex)}. Since was-lifted(a(ex), px) was dropped, it cannot be add-REQ'd, and

is removed from the REQ-boundary. However, was-lifted(a(ex), ex) has a rule-

generalization, liftable(y, ex), derived from a rule leamed earlier:

If  an object was lifted
Then that object is liftable

Since was-lifted(y, ex) satisfies the REQ-boundary constraint, its rule-generalization
can be added to the REQ-boundary, yielding {liftable(y, ex)}. LAIR calls the Proof T‘;isk
to try and prove instances of liftable(y, ex). The proposition liftablc(a(Ex;l), Ex- 1) is(
proven by psing the above infcrchcc rule, and liftable(a(Ex-2), Ex-2) is proven by

accessing, and activating, a number of inference rules that were learned earlier:

If  something is.graspablc
& it’s light
Then it’s liftable

If  something has a handle
Then it’s graspable

Therefore, the add-REQ rule adds liftable(a(ex), ex) to the concept description. The }ﬁ
Unification Task continues by cfcating REQ-boundaries for handle(a(ex), ex) and,.(:
light(a(ex), ex), but no information can be conserved for these cases. The resulting,
relatively correct concept description is:

Aex[liftable(a(ex), ex) A bottom(a(ex), c(a(ex)), ex) A flat(c(a(ex)), ex) A

concavity(a(ex), e(a(ex)), ex) A cylinder(b(a(ex)), ex) A small(b(a(ex)), ex) A
e body(a(ex), b(a(ex)), ex) A upwards(e(a(ex)), ex)]
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-

LAIR requires one more example, “balanced-cup +,” that results in the following

description of the current exagple:

Pos(cup, Ex-3) A balanced(a(Ex-3), Ex-3) A contents(a(Ex-3), d(a(Ex-3)), Ex-3) o
handle(a(Ex-3), Ex-3) A light(a(Ex-3), Ex-3)

“A positive example of a cup is something that is balanced, contains something, has a
handle, and is light.”

LAIR accepts this example, revises the concept description, and conserves

information as for the “typical-cup +" example, resulting in the desired concept description:

Aex[liftable(a(ex), ex) A 'stablc(a(cx), ex) A open-vessel(a(ex), ex) A body(a(ex),
b(a(ex)), ex)] g

“Something that is liftable, stable, an open-vessel, and hasa body.”

There are a number of things to hote about leaming on the “balanced-cup +" example.

~ First, the chmplc differed from the concept description in a number of different ways, i

Therefore, LAIR was able to drop more irrelevant featuges and add more reley
Using i‘.nformation conservation, LAIR learns faster when positive gfamples show the
typical variance in the concept, i.e., when “far’:im"‘ are presented/ Second, the predicate
body(a(ex), b(a(ex)), ex) is not eliminated from the concept gescription. Although this
predicate is not necessary for relative correctness, LAIR’s alzis just to find a correct
description. Demanding “‘minimally” correct descriptions is feyond its scope.

How does LAIR learn concept descriptions inéludi negated predicates”? Negated
predicates in a concept description are essentially featurfs of negative examples ghat are
useful in ruling out those negative éxamplcs as ins ﬁ@s of the concept. Negated
predicétcs can be added by two tasks: the Accept Efample Task, and the Differencing
Task. As with positive examples, the Accept Ex pf@Task attempts to incorporate
information from negative examples that do nof violate constraints on the concept
description. If a predicate in an example descriptigh is not true of some positive cxamplc', '

then that predicate is added to the concept descrfpuon. A more difficult situation arises -



\whcn the concept dcscription incorrectly classifies a negative example as aninstance of the

' - concept. The followmg example is taken from learning of a rule for inferring * graspable "

. ‘At this point, several examples have been presented, and the currcnt concept descnpnon is:

kx[Body(a(cx), b(a(ex)), ex) A cylmder(b(a(ex)), ex) A small(b(a(ex)) rlx)]
“Somcthmg with a small, cylindrical ’body "

. The past positive example is “insulated-object +,"whose description is:

Pos(graspable, Ex-4) A insulated(a(Ex-4), Ex-4) A body(a(Ex-4), b(a(Ex-4)), Ex-4)
A small(b(a(Ex-4)), Ex-4) A cyh dcr(b(a(Ex-4)), Ex- 4) A contents(a(Ex 4), d(a(Ex-
4)), Ex-4) A hot(d(a(Ex-4)), Ex-4)

“A posmve example of ‘graspable’ is somethmg insulated with a small, cylmdncal
body, and hot contc”nts ” n ,

y

The current negative cxamplc 1S unmsulated -object —, whose dcscnptxon is:

. —Pos(graspable, Ex-5) A body(a(Ex -5), b(a(Ex-5)), Ex-S) A small (a(Ex 5)), Ex- 5)
A cylmdcr(b(a(Ex -5)), Ex-5) A contents(a(Ex-S) d(a(Ex 5)); EX-5 hot(d(a(Ex ),
Ex-5) *

. "‘A ncgauvc example of graspable’ is somcthmg W1th a small, cylmdncal body, and
- hot contents.”

The Classification Task finds that the concept descriptibn is too general to correctly r
classify * umnsul -obj - The lefcrencmg Task now attcmpts to specxahze the concept
dcscnpuon by cfeatmg an “add REQ subtask” (with a REQ boundary) and an “add-NOT
subtask" (thh a NOT boundary) Neg -rule- generalzzanons are used by th1s task. A

R prcdlcatz Pisa ncg-rulc gcncrahzatmn of a predxcate Q iff @ has a MOST GEN- PRED that

is a NEG ANTECEDENT OF a rule that has Pasa CONSbQUENT The relatlonshlp

} bctwccn P and Qis shown in ﬁgurc 5.3.

“_‘I&-gen-pted o Mt-seﬂpwd

b

e Flgure53 Ncgauve Rule Gencrahmnons
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The add-REQ subtask initializes the REQ -boundary to all prcchcatcs true of the past
posmve example but not of the current negative example. cht the add- REQ s\ubtask

chooscs a REQ- boundary element Q and tries to add- REQ it to the concept dcscnpttOn If

wr
the attempt is successful, then the lefe:éncmg Task terminates. Othcrwmc, Qis “deleted -

from the:REQ-boundary. If Q sausfxcs

Q(Past) ﬂQ(Curr) A -REQ(Q, 1)

“Q is true of the Pas:t example, false of the Curr example, and"is not currently a
REQ’ d - & ¥ .

i " "QA -

" then 1ts rule generaha('non %re ‘%{ded, to.. thc REQ boundary, and {ts" neg- rule
generahzauons are added to the NOT-boundary ”

¢
o

B

The add-NOT subtask mmahzcs the NOT- boundary to all predicates true of Curr but
“not o_f Past, Next thc add-NOT subtask chooses a NOT-boundary element Q and tnes_ to
’add NOT it to the concept description. If the attempt is succcssful thcn the Diffcrcncing

Task temunates Olhermse Q is dgleted from thc NOT- boundary IfQ satmftcs

Q(Curr) A -‘Q(Past) A —-NOT(Q, t)

“Q is true of the Curr example, false of the Past cxample and is not currently a
BRI NOT " : ) Sy

then 1ts rulc generallzanons are added to the NOT boundary, and its neg- rulé@;

[N

generahzanons are added to the REQ-boundary.
’I'he thfercncmg Task altcmates betwecn these two sub}asks since each adds new
elements to the other’s boundary. If both boundanes are empty, then the lefercncmg Task
;ternunatcs unéuccessfully Success by either the add- REQ subtask or-the add NOT
| subtask produccs a relatively correct description.’ | B
_ For thc “umnsulatcd Ob]CCt =" example the REQ boundary is mmalxzcd 0 '
. _{msulatcd(a(cx), ex)} and the. NOT boundary 1s mmahz% to {} ‘During carhcr 1carmhg
| nnsulatcd(a(cx), cx) was dropped so it %annot be add REQ d Smcc msulatcd(a(cx), cx)

g e
© SR ra‘ %w 7 aaﬂ/ /@W - b

- R

has 'no rule gcneraltzauo.ns, thc kE? bouﬂd‘ﬁry bcComcs cmpty Howcver,
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insulated(a(ex), ex) has a neg-rulcfgcncralization, hot(b(a(ex)), ex), arising from the rule
learned ecarlier: ‘ | -
If  something has contents \ .
& it has a body - ) -
& the contents are hot _
& it’s not insulated
Then its body is hot
The add-NOT subtask successfully adds —hot(b(a(ex)), ex) to the concept

dcscripn'on and the Differencing Task tcrminatcs with‘thc following concept dcscripn’on-

Aex[body(a(ex), b(a(ex)), ex) A small(b(a(ex)), ex) A cylmdcr(b(a(ex)), ex) A
—hot(b(a(ex)), ex)]

B “Somethmg with a small, cylindrical body that isn thoL”

This concept description is relatively correct, as rcqmred. LAIR learns the domain

theory for the “cup” domain, consisting of 1 rule for “hot” and “cup,” 2 rules each for |

“s)ﬁ;blc_," “open-vessel,” graspable,” and “liftable.” Learning requires 26 examples and

takes about 570 ‘seconds of CPU time.
LR

,

5.3 Leaming the Concept of an Arch

5.3.1 Overview

The “arch” concept was one of the first learned by machine learning systems
(W‘inston, 1975), so piovides a basis for comparison for LAIR. The system is given
successivc examples of arches and non-arches, and ‘must induce a descrip‘tion of an arch.
LAIR does constructwc mducﬂon by treating Winston’ s generalization tree as prior
knowlcdgc of thé*system, anJl usmg this knowledge to infer features that are implicit in the
example descriptions. The equcnce of examples used by Winston’s ARCH program, and

LAIR, is shown belo“\/., . ‘ &

R
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Ex-1+ Exio  TExae xd 5
Figure 5.4 Arch Examples

In contrast to ARCH, which matched concept descriptions agairfst examples, LAIR is’

told how objects and parté correspond. This information }s given by using the same

skolem function name for the corresponding -part or object across exampies.

532 Trace o . :

LAIR starts with pridr knowledge corresponding to Winston's gencralizétion tree.
tS AN -

v

For this trace, we wiil present example descriptions, prior knowledge, concept ‘
descriptions, and predicates in the logical syntax. The generalization tree is ‘represcntc'd as
the following implications:

VexVy[Shape(y, Square, ex) = Shape(y, 4-sided, ex)]

VexVy[Shape(y, Rectangle, ex) = Shape(y, 4-sided, ex)]

VexVy[Shape(y, 4-sided, ex) = Shape(y, Polygon, ex)] : «

VexVy[Shapc(y, chge, ex) = Shape(y, Polygon, cx)] \
VexVy[Shapc(y, Oval, ex) =>Shape(y, Polygon ex)]

The first example is:

Pos(arch, Ex-1) A Shape(a(Ex-1), Square, Ex-1) A Shape(b(Ex-1), Square, Ex-1) A
Shape(c(Ex-1), Square, Ex-1) A OnTop(a(Ex-1), b(Ex-1), Ex-1) A Ontop(a(Ex-1),
b(Ex-1), Ex-1) A Abuts(a(Ex-1), b(Ex-1), Ex-1) ~ Abuts(a(Ex-1), c(Ex-1), Ex-1)

LAIR forms the initial concept description:

Ax[Shape(a(x),-Square, x) A Shapc(b(x) Square, x) A Shapc(c(x), Square, x) A

OnTop(a(x), b(x), X) A Ontop(a(x) b(x), x) A Abuts(a(x), b(x) x) A Abuts(a(x)
c(x), x) , _ o

g

The second example is a negative example of an arch:’
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-aPos(arch Ex-2) A Shape(a(Ex-2), Squarc Ex-2) A Shape(b(Ex- 2), Square Ex-2)
A Shape(c(Ex-2), Square, Ex-2)

This example is corrcctly ,classiﬁcd as a non-instance of the arch éoncept because
several REQ’s in the concept description, OnTop(a(;t), b(x), x), Ontop(a(x)., b(x), X)s
Abuts(a(x), b(x), x), and Abuts(a(;),‘c(x),' x), are not satisfied by the current example.
The third \cxample is a negative example of an arch because blccks a(x) and b(x) are

touching:

@—,Pos(arch Ex 3) A Shape(a(Ex-3), Squarc Ex-3) A Shape(b(Ex-3), Square, Ex-3)
A Shapc(c(Ex -3), Square, Ex-3) A OnTop‘a(Ex -3), b(E(\B), Ex-3) A Ontop(a(Ex-3),

b(Ex-3), Ex-3) A Abuts(a(Ex-3), b(Ex-3), Ex- 3) A Abuts(b(Ex 3), c(Ex-3), Ex-3) A ‘
Abuts(a(Ex-3), c(Ex-3), Ex-3) = = ,

fao F

LAIR modifies its dcscnj;}lon tog include "ﬁAbUtS(b(x) c(x) x) during the Accept

Examplc Task becagse this doqs noo violate any constramts on the concept descnpuon The

rev&fd conccpt description is: | 3 | o e
B ", ) ~: o "\‘ - LY . Q
& -M’[Shapc(a(q%Squarc; x) A Shape(b(x), Square,.x) A Shape(c(x), Square, ’xaxx
OnTop(a(x), bé), x) ~-@Qntop(a(x¥ b(x), x) A /thé&a(x), b(x), x) A Abuts(a(x),
c(x), x) A --Abuts(b(x), c(x), x)] ‘:‘
This modified dcscriptionvcprrcctly clg,ssifies-the ‘current example i)ccause

AY

Abuts(b(Ex 3), c(Ex-3), Ex-3) can be proven T.hf’fourth example is not correctly
classified because Squarc(a(Ex~4), Ex-4) cannot be Broven.
Pos(arch, Ex-4) A Shape(a(Ex-4), Wedge, Ex-4) A Shape(b(Ex-4), Square, Ex-4) A
Shape(c(Ex-4), Square, Ex-4) A OnTop(a(Ex 4), b, Ex-4) A Ont0p(a(Ex 4), b(Ex 4),
- Ex-4) A Abuts(a(Ex-4), b(Ex-4), Ex- 4) A Abuts(a(Ex 4), c(Ex-4), Ex- 4) _j.; -
LAIR drops Shape(a(x), Square, x) from the concept description, and remcmbevrs fhis
as a constraint on future concept descriptious LAIR searches for infbrma’tio’h to conserve,

- looking at Shape(a(x), 4»sxdcd x), whxch is Drob’d and Shape(a(x), Polygon X), Wthh . -
is add REQ d. The ﬁnal concept descnptxon is:

7 o
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Ax[Shape(a(x), Polygon, x) A Slﬁé(b(x), Square, x) A Shape(c(x), Squarc X) A
OnTop(a(x), b(x), x) A Ontop(a(x), b(x), x) A AbutS(a(x), b(x), x) A Abuts(a(x)
- c(x)(x), x) A =Abuts(b(x), c(x),’ I

The user can request that th1§ be conyencd intd' a rule for recognizing instances of an
arch, by specifying a name of a pre&icatc for the concept, and arguments of the pncdicaté

For example, 1f the user specifies that the name of the predicate is to be Arch, and the

arguments are ' 'bc »Ws corresponding to skolem functions a, b,andc, the followmg

,"‘,u ), ‘ e,&é-}m .

dﬁb?‘ 'to the system’s knowledgc

’ »“,‘ ‘ . ‘ ]
Wapt(y, Polygon x) A Shape(z, Square, x) A Shape(w, Square, x)

NI Top(y, z, x) A Ontop(y, z, X) A Abuts(y, z, x)AAbuts(y.w X)
A—Q\buts(z w, x)] = Arch(y, z, w, x)]]

Note that the skolem functions a, b, ¢ are changed to variables y.' z, w. The frashe
me‘mory/i‘s modified to include the frames and slots necessary to represent this rule aﬁd to

AN

support its us€ in future leaming, so that Arch(y, z, w, x) can be instantiated to be a feature

S

of future examples.
5.3 Discussion

to ARCH. In comparing LAIR to ARCH, it is important to realize that LAIR cannot match
up descriptions for itself, which was the heart. of Winston’s p'rogra'm and one reason why
_ ARCH could deal only with near-misses. However, there are several other important
differerices between LAIR and ARCH: |

I, ARCH requires near-misses even if the matchingis done for ARCH. ‘In contrast,

LAIR does not require near-misses. ARCH requires near-misses because, in addition .

to the xﬁatbhing problem, ARCH will not lcndw which feature to make a NOT if there

are more than orne. If ARCH makes an error in choosing Wthh feature to make a

NOT, then ARCH wﬂl either not learn correctly or will havc to backtﬁck%p the point )

at wfuch it chose thc fcaturc and choose some other feature. LAIR is ablc to undo ns

NOTSs with the drop-NOT rule, so LA[R can revise just that one error, rather than

-

PER Y

&

" LAIR s able to correctly learn the description of an arch f'r,x the examples presented .



révisin§ all of ‘th“e"».le,aming: that OClechd‘i)cthcn the time the error 'was made and the
time the error was discovered.
2. LAI‘_RMr‘cprcscnts gencraiization hierarchies as implications, which gan also represent

I
non-hierarchical knowledge.2ARCH’s knowledge rqprcscntati'gn is restricted to

hierarchies or total orders. . ™
- - : ’ = .\.‘:-v'f"ﬁ)} - . !
. LT T e e,
5.4. Extending LAIR to Learn Analogies '_ RS %,;,,ﬁfg " )
5.4.1 Overview | o St e

e ;'

1oy A
;-'\_{his example shows how LAIR can learn by analogy. We can view analogy as
sfcr of knowledge from a “base domain,” such as the solar system, to a “target
dommn.h; such as the Rutherfoghﬁodcl of the atom. For oxample we say “the atom is like

thc solar systcm " This analogy problem has been studied by Gentner (1983) and Burstein

(1986) %

" 5.4.2. Trace" .

LAIR starts with knowledge about the objects in the base domain and target domain,

rcprcsontcd as the following 1mphcatxons Tkns knowledge is previously learned

knowfcdgc that has been ﬁght to LAIR at some cax(cher um‘cgﬁd @s mnant ‘role in

é
- leaning the analogy. LAIR’s prior knowledge is shown below: v
Kriowledge about the Sun: : ' . . &W .
chVy[Sun(y, ex) = Yellow(y, ex)] o - 54
§ VexVy[Sun(y, ex) = Hot(y, ex)] . o “‘m 3 ‘ '

' VexVy[Sun(y, ex) => Massive(y, ex)]
chVy[Sun(y, €x) => Phys-Obj(y,d:x)]

Knowlcdgc about a Planct
chVy[Planct(y, ex) = Phys Obj(y, ex)]

wo ‘
Knowledge about the Nuclcus .
- VexWy[Nucleus(y, ex) = Charge(y, Pos, )]
chVy[Nuclcus(y ex) = Phys- Ob_](y, cx)]
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Knowléage aboyt the Electm‘ﬁ:
VexVy[Electron(y, ex) =» Charge(y, Neg, ex)]
VexVy(Electron(y, ex) = Phys-Obj(y, ex)]

Knowledge about Physics:

VexVxVy[Phys- Ob](y, ex) A Phys- Ot((y, ex) A Massive(x, ex)

= Grav-Attract(x, y, ex)}

VexVxVy[Chargc(x Pos, ex) A Charge(y, Neg, cx)

= Elect-Attract(x, y, ex)]
chVxVy[Elcct Atfract(x, y, ex) =>Attracts(x y, ex)] . .
 VexVx¥y[Grav-Attract(x, y, ex) = Attracts(x, y, ex)] , Lo wpend e
. chVxVy[Attmcts(x, yiex).z More-Massive(x,, cx)] ok
) Vex‘v’xVy[Attracts(x y, ex) = Revolves- Around(x y,cx)] ‘

—

To “solve” the analogy betwecn the solar system and the atom, we give LAIR a
description of the solar system and a description of the atom. Its task-is to find a concept 'l
they are an instance of. It will find commonalities that could be argued to be the same as

\

the mapping problem. So, first LAIR is presented with the description of the solar system: "

Pos(Ex 1) A Sun(A(Ex-1), Ex-1) A Planet(B(Ex-1), Ex-1)

: - ; Figure 5.5. The Solar Systcm

' LAIR forms the folk;wmg analogical concept: oA
Ax[Sun(A(x), x) A Planet.(B(x), x)] |
Next, LAIR is presented with Lhe descn’ptioh of the atom:

Pos(Ex-2) A Nucleus(A(Ex 2), Ex 2)A Electron(B(Ex-2), Ex- 2)

-®

\  Figure 5.6. The Atom
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LAIR first modifies the analogy description to include the predicates Nucleus(A(x),
x) and Electron(B(x), x), since these predicates have not hw found to be false of the target
or base domains. The modified description, o »
Ax[Sun(A(x), x) A Planet(B(x), x) A Nucleus(A(x), x) A Electron(B(x), x)]
is now tested against the target and the base domains. None of the predicates are implicitly

true of both, so all of them are dropxed from the analpgy dcscnpuon

hue

Vﬁ
LAIR conserves the mformauon lost in dropping Sun(A(x) X), Planet(B(x) x),

Planet(B(x), x), Elcctron(B(x), x), and Nucleus(A(x), x) by @gdmg Attracts{ A(x), B(x).
A
x), Phys-Obj(B(x), x), More-Massive-Than(A(x), B(x) X), and Phys -Obj(A(x), x)
¢ respectively. LAIR's specialized analogy description is: , m

—
Ax[More-Massive-Than(A(x), B(x), x) A Phys-Obj(A(x), x) A Phys-Obj(B(x), x)
A Attracts(A(x), B(x), x)]

1 Howcvcr although this description is relatively correct, and conserves information
for'each of the prcdlcatcs that were dropped from the previous analogy description, it is

A lacking a predicate that we would like. LAIR is told that this is not a correct description.
\ and goes on to add-REQ Revolves-Around(A(x), B(x), x). 'i’his produces ‘the desired

-

analogy description:

).x[Morc Massive-Than{A(x}, B(x), x) A Phys- ObJ(A(x), x) A Phys-Obj(B(x), x)
A Attracts(A(x), B(x), x) A Revolves-Around(A(x), B(x), x)] ,

The Unification Task involves looking at many features that could not be addéd to the
analogy description. LAIR mp:‘éscms this knowledge explicitly. 'To clarify LAIR’s
knowledge about the base and target domains, as opposed to thc analogy, their descriptions
are shown below in diagrammatic form. Note that thcsc descnpuons "are much more

spcciﬁc g}\man;he original descriptions given to LAIR (figures 5.5 and 5.6).

-



-

-

Revolve

Figure 5.8. Knowledge about the Atom
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Figure 5.9. Tlﬁ: Analogical Concéiat
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5.4.3. Discussion
I‘AIR is able to correctly learn the analogy between the solar system and the atom by
presenting the descriptions of them as positive examples of the analogy. Its performance

brings up a very important point about this leamning approach—deduction stops as soon as

it is done conserving information and has an analogy description that covers the base and

target domains. We will discuss this point, and comparé the learning approach to
Gentner’s structure mapping theory. : ? . »

Gentner’s central claims are: R

A Y

Analogy is characterized by the mapping of relations between objects, rather
than attributes of objects, from base to target; and, further that the particular
relations mapped are those that are dominated by higher-order relations that
belong to the mapping (the systemaricity claim). These ruleg have the
desirable property that they depend only on syntactic’ properties of the
knowledge representation, and not on the specific content of thé domain.
Further, this theoretical framework allows us to state the differences between
analogies and literal similarity statements, abstractions and other kinds of
comparisons (Gentner, 1983).. ’ T
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Itis worthwhiic to see how Gentner’s analysis would apply to our representation of
the central force system analogy. Although'vthégg?ﬂarc no highcr-brd::r relations ciplicitly
represented, if there were to be higher-ordcr rclaﬁons, or systcmé. clearly Ia gravitational
system and a electrical attractio system would be fcamnablc ¢andidates. The definition of ‘
attribute and relation must be modified since predicates that correspond :o attributes m
Ger'nncr’s theory have two arguments in our system, because of the need to fcprcscnt .
example arguments. Therefore, we define attributes to be binary predicates, and relations
to be tcma}y predicates. Gentner's Systematicity Principle corrcctl'ydprcdicts that the
attribute Phys-Obj(x, y) should be mappcd over, sin¢® it participates in a systch of
relations: the gravitational attraction system. Our system alsp corrcc,tly predicts that'lhc{
attribute Phys-Obij(x, y) should be mapped over, because it is provablc of all the posmvc
examples of a central force systcm Gentner’s syntactic theorgyand Syswmaucxty Principle
\ predict that the rclationGrav-Attract(x, y, z) should be mapped over, as it is both a_.rcladon
and one that is part of an interconnecting set of relations describing a system, namely a
gravitational system. However, Grav-Attract(x, y, z) is not appliéablc in the target domain;

our system in fao@docs not include this prcdlcatc in the central force systcm description.

Thus, in this hrmtcd domain and for this lumtcd example, our system finds a more accurate

H

--{H‘Gf‘mappmgs.

In contrast to Gentner’s approach that"is based on syntax, and avoids domain-
dependent information, our sy’%tcm relies on domainsdcpchdcnt informa‘u’on to do the

mapping. Howcvcr, each of the pxcccs of pnor knowlcdgc seem rcascnablc for somconc

ficdge soby

capablc of understa.ndmg the analdg‘ X
o reasonablc fora systcm that mc?
" the-other hand, for systems that sgmply with
4

techmqucs without considerations of psychologxcal plausxbxhty, dus ls a dxsadvantagc. since

representing domain knowledge is usually a labor-intensive and\wdxous task.
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Gentner relies on predicates that arg

Jris. However, we cahnot know whether a

ure (c.g. massive(obj)) or as a relationship

1

predicate will be represented as an o¥ig
ness(obj) = 200]). In contrast, LAIR relies on

between an object and a véluc (c.8. (ma '

‘ v . e »' . ” * 0 . .
the meaning of a predicate: what ples it is true of, and its relationship to other

predicates via implications.

Tﬂcrc are a number of disadvantages of our approach t(-> analogical mapping. The
first disadvantage is that it has no sense of what correspondences shquld be made and
when all the necessary mappings are done. The fact that we need to prompt it for
“Revolves-Around” is important. As a leaming system, its fundamental goal is to lc:im a
correct concept description from both positive and negative examplés. Analogical mapping
problems deal with learning from positive-only examples, so different constraints an the
ad%’quacy of a “concept description” or “analogi‘;cal mapping” need to be formulated.
‘Without a sound criteria for “when is g\ﬁappmg complete?”’ a system cannot be expected tof‘
always find a complete mapping. Definition of such criteria for analogical mapping

remains an open research problem. A disadvantage of LAIR, but nqs of our approach, is

that “solar system” is defined as a “something that has a sun and a planet.” LAIR could be

¥
extended to bgndle this definition if the skolem functions A(x) and B(x) were introduced

/
using arule, e.g.

Vex,x[solar-system(x, &) = [sun(a(x), ex) A planet(b(x), ex)]]

eliminating the nécd for thc information about a sun and a planet to be explicit in thc

‘ examplc H0wcvcr then thc teacher could not tell LAIR the corrcspondences between
skolcm functxons bccausqjthls information s given by presenting examples’ wuh thc"‘&ame
skolcm functxpn namcéfor corresponding parts. Since the system wguld 'gencrate the
skolem functilm names, the‘tcachcr would not bc'ablc to ensure ‘that the same names are
generated. In principle, LAIR could be modxﬁed to accept this \MovnaUOn explicitly rather
than unphcxtly, so that it would be able to handle this case, but this is beyond the scc/)pc of
- the current implementation., v

- N

\

© N, ‘v» ¢
B A
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Another aspect of our system that n clarification is that mapping is dcﬁn¢d not as
the proccss of trying to prove a feature infa base domain true of the target domam butasa

successful attempt to prove a feature
disadvantage of «this approach is thatfanalogies are frequently used to convey new-

information about the target. For eafnple, a common analogy used to teach novige .

programmers is “variables are like bdxes” (Burstein, 1986). Here, some transfer of

features is intended, but not others. TRe system must infer what feature rypes are valid

ones to map. If a learner lacks sufficien priaknowlcdgc to successfully prove a feature of |

the base domain true of the target domath, L/;.IR would predict no transfer would occur. In

practice, transfer does occur, something fhat cannot be accounted for by LAIR.

LAIR does not account for the fagt that a leamer may not even ry to prove many

features of the base domain true of the farget domain. This may relate more to the way
A} . .

inference is done in LAIR rather than LAJR's applicability to analogical mapping problems.

First, LAIR does deductive inference] Humans are notoriously bad at deduction'

Deduction is one reasoning approach thatjwe use to build intelligent systems, but may not

have any corresponding process in the hufhan maghinery. Second, LAIR dpes deduction
without regard to interrelationships betwee features other than those explicitly rgpresented
as implications. In practice, there may‘ be relationships between features such as “if feature 7

Fy is not true of x, then feature Fsy cannot‘po ibly be true of x; so don’t even try to prove

e

R Fs of x”. If our lcarmng system used such deductive apparatus, then it might make

correct predictions for such cases. Tﬁg impdrtant point is inference is lmponam.}m

:malogxcal mapping, and that systems that do not\accurately model human inference may

have difficulty in accu.r*ly modelling analogical

In summary, our model of understanding ana gi_c's has several advantage over

. 9 .
Gentner's theory. First, it makes a more accurate tion of what is mapped for this

-

formulation, of the central force system problem. Secony, it does not rely hcavily{ -on

»

whether knowledge is represented as a relation or as a featurd\ Our model has several

a base doma}n true of the target domain. A

4
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~ disadvantages. fimt‘,‘our model has little sense of what correspondences should be made
and whf:n the “r‘nappings"larc done. Second, our model cannot {account for how
infc;rmatipn is conveyed from & base domain to a target domain in which'tﬁc learner has.
little or no prior knoMc‘d'ge. ‘Last, our m&dcl dch not model human inference “accufatcly:
so it does not rqg‘gcl intermediate step‘s of anqlogicalmépping ac'curatcly. Nevertheless,
thcrc‘appcar to be rclationShi’ﬁs between coﬁcppt learning and analogical mapping that

deserve further attention, and areas of common interest.

55 Summary ) : | T

LAIR is able to learn concéptg\i{\ a number .ovf different domains. The traces showed
how constraints guide consu;uctivc inducﬁon, how pﬁor knowledge can influence or enable
learning, and how inffl)nnatic;alcdnscrvation can be a useful h\éurisﬁc for learning concept
descriptions. LAIR can be éxtcndéd to learn ahalogical concepts, but further w'ork“is
réqui_rcd if LAIR is to model human analogical learning. LAIR has some advantages over

ARCH, but does not addr'css the matching problem, for which ARCH’s solution is a

_substantial contribution tp machine learning. \
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Coqclusions and Implications
6.1 Introduction ’ . | : S

. \ ) - \
This section summarizes conclusions about how to guide constructive \nduction,

discusses relationships of this work to analogical mapping and ciplan.ation-bascd learning,

“and proposes some directions for future research. .
. 3

‘6.2 Conclusions about Guiding Constructive Induction

LAIR demonstrates how éonstructivc induction can be controlled by (1) reaucing itto
simpler operations, (2) consuﬁnhg the simpler operations to preserve relative corre ‘mes.
(3) doing deductive inference on an ‘as-nccdéd basis to meet specific information |

requirements of learning sub-tasks, and (4) constraining the search 'space by subtask-
dcpcndcnt constramts In addmon LAIRS®s rules are rclanvcly complctc in the scnseothat a

corrcct usable conccpt description can be derived, if one exists, without backtracking or

maintaining multiple concept dmnpuons.
. N 4 . » N
Rcducing constructive induction to the opcrations of deductive inference, add-REQ,

add- NOT drop REQ, and “drop-NOT has scvcral advantages. First, the reduced
op‘atxons are simpler, and can be more /txghtly constra{ncd_ Second, the reduced ‘-
‘ opcrations are nelativcly complete and prcsér:'c relative correctness. This allows LAIR to
lcam a correct concept description without backtrackmg or maintaining multiple concept
dcscnptxons even if far-misses are prcscntcd or examples are prescntcd in an arbitrary

order.
Doing deductive inference on an as‘-nccdcd'ba‘sisﬂi; imporiant for several reasons.

Fig'st, dcductivc‘ i;xfcrence is cxpénsivc. By doing deduction on an as-ncedcd basis, LAIR

avoids having to infer many propositions that may be ixﬁlcvant to the task at hand. LAIR

N
~ "
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Constructivc induction can also be controlled by subtask—dependent constraints. Fog

examplc the REQ -boundary and the NOT bounda.ry arc potennel ‘gandldates for

" constructive induction, so smallcr boundanes rcduccs thc amount of constructive md‘hcuon

to be done. LAIR uses logical constramté on .thc expansion of these boundaries that are
. e

| dependent on the ‘current subtask. For example, the Differencing Task not ohly constrains

candidates for constructive induction to fe plausible new features of a concept dcscripu‘on;

'~ but also to be plausible new features that correctly rule out the current negative example.

6.2. Relationship to Analogical Mapping

.LAIR’s performance on the “central force system” cpnccpi demonstrates that concept
learning systems can solve some analogical mapping problems. However, the goal of
LAIR, to form a ;rclativcly cormrect concept dcsgription, is too general for aﬁalogibal
mappiqg: Since analogical mapping als§ addresses the fu_ndamcmaﬂy diffcn:qt problem of |
conveying information from one domain to another, additipnal inference methods need to

be déﬁnc_d if LAIR is to solve analogical mapping problems satisfactorily .

6.4 Relation to Explanation-Based Learning

. ¥
An importanit and recent method of leaming is explanation-based leaming (Mitchell,

, & . .
Keller, & Kedar-Cabelli, 1986). Explanation-based learning uses a domain theory (u‘/hat I

 refer to as prior knowledge) from which it is possible to expldin why an example is an.

)

instance of a concept.” This section will discuss the Explanation Based Generalizer (EBG)

»

of Mitchell, Kefler, and Kedar-Cabelli.
Mitchell et al define the explanation-based conccpt leammg problcm with different
terminology from that used in this work. [ will prcscnt Mitchcll et al.’ s, terminology,

noting correspondences to our tcrrmnology whcrc appropriate. A concept is defined as a

Y
predicate over some umvcrse“ mstanccs and each instance in this universe is described

by a collection of groundaé,t,crals that rcprcs¢nt its features and their values. A concept is

themforL eﬁuivalcnt to a concept in our system, and an instance is equisuient to an example
£
| .

|

' . -
\} . X » "w‘::,j .
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in our system. A concept definition describes the necessary and sufficient é&nd‘itions for
v N » .
being an cxaxﬁplc of the concept, while a &ujﬁcieni concept definition describes sufficient
conditions for being. an example of the concept. A concept definition is therefore equivalent
to a cgrrect concept de}s‘criptior.l in our system, and a sufficient concept definition would be
a concept description that d&scﬁbéd no negative exarr}plcs (although it might not describe all
positive examples) in our system. A generalizatiori of an examplc' is a concept definition
which describes a set containing that example, and corresponds t0a concept description |
that describes that example in our system. An explanation of how an instance is an
example of a concept is a proof that the example satisfies the concept definition. An

explanation structure is the proof tree, modified by replacing each instantiated rule by the

S
]

associated general rule.
The cxplanation—bassd generalization problem can be stated as follows:

Given: ' —
. Goal Concept: A concept definition describing the concept to be learned.
(It is assumed that this concept definition fails to satisfy the Operationality -
Critc:ion.) ‘ :
¢ Training Example. Anexample of the goal concept.
. - Domagin Theory: A set of rules and facts to be used in explaining how the -
training example is an example of the goal concept.
. jonali iterion: A predicate over concept definitions, specifying
the form in which the learned concept definition must be expressed.
DReermine:

. A generalization of the training example that is a sufficient concept definiton
for the goal concept and that satisfies the operationality criterion. -

Mitchell et al. make the importar{t point that without the notion of operationality, the
input goal concept definition could always be a correct output conceps definition and there

would be nothing to learn! Mitchell et al. state that
' ;
The operationality criterion imposes a requirement that learned concept
definitions must be not only correct, but also be in a usable form before learning
is complete. B :
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However, in principle, an operationality criterion might be used to impose other
requirements on a goal concept dcﬁni@on. For example, one might require that the goal
B concept definition bc understandablexto the user, or that ihc goal concept definition be of a
form that is particularly efficient for the system to use. The operationality requfemcnt also
presupposes that the system that is to use the output cor‘rcét concept definition lacks the
dédu"ctivc apparatus of the EBG sys&m: otherwise it would be able to use tt;e the goal
éonccpt definition and the deductive apparatus to correctly classify all of the examples.

- t
The EBG method is defined as follows:

) 1.Explgin; Construct an explanation in terms of the domain theory that proves how
AW the rraining example satisfies the goal concept definition.
« This explanation must be constructed so that each branch of the explanation
structure terminates in an expression that satisfies the operationality

criterion.
2.Generalize: Determine-a set of sufficient conditions under which the explanation
. structure holds, stated in terms that satisfy the operationality criterion.

« This is accomplished by regressing the goal concept through the explanation
structure. The conjunction of the resulting regressed expressionsy
constitutes the desired concept definition. '

An important point about explanation-based systems is that the goal concept definition
must be input to the system. Similarity-based methods using constructive induction are
capable of leaming goal concept definitions. For example, the description of ‘icup" learned
by LAIR is the goal concept of Winston’s cxplanation-bascd ANALOGY program
(Winston, Binford, Katz & Lowry, 1983). In an explanation-based systcrﬁ, the domain
knowledge must be strong enough to deduce that the goal concept definition is true of the

- example. Therefore, each conjunct in the goal concept definition is an implicit feature of
the example that can be added to a concept description by means of constructive induction.
Mitchell et al. suggest:

Further research is needed to extend the EBG method to generalization tasks in -

which the domain théory is not sufficient to deductively infer the desired
concept ... Thus, a major research issue for explanation-based generalization 1s

to develop methods that utilize imperfect domain theories to guide

generalization, as well as methods for improving imperfect theories as learning

proceeds ... While EBG infers concept definitions deductively from a single
example, similarity-based methods infer concept definitions inductively from a :
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.number of training examples. It seems civarly dcsu'able to develop combined

methods that would utilize both a domain theory and multiple training examples

to infer concept definitions. This kind of combined approach to generalization
will probably be essential in domams where ortly imperfect theories are
available.

LAIR provides a parual solution to this problcm, since learned concept can become
prior knowledge (domam theory in Mitchell etal’s terminology) for future lcammg tasks.
For example, the description of “graspable” learned by LAIR in the “cup” domain isk

‘transformed into a rule, and is added to the domain theory.

Mitchell et al. state “explanation-based methods such as EBG~qvercome thc n;ain

lmutanon of snmxlanty based methods: their mab:hty to produce justified\generalizations.”
However, thc inability of similarity-based methods to produce justified gcncrahzaUOns is
" not inherent in the method: LAIR’s gencrahzauqns are clearly justified since they only drop
features that cannot occur in a correct concept ;lcscripu'on. LAIR, like EBG systems, can
also justify their classification of examples by outputting a trace of the proof that a concept
description is true of an example. -

Arother important difference between explanaﬁon-bascd generalization and LAIR is
the qcntralit? of examples tq the learning process. Mitchell et al. note that “one wonders -
why tmining examples are requu-cd at all [ih EBG systems] ... In principle, they are not ...
Training examples provide a means of focusing the learner on formulating only concept
descriptions that are relevant to the environment in which it operates.” On the other hand,
examples in LAIR convey important information. This difference is pahially due to the fact
that LAIR is acquiring new knowledge, i.e. a definition of the concept, whereas according .
to Mitchell et al., the explanation-based generalizer is “not acquiring truly ‘ncv?’
knowledge, but only enabling the leamner to reformulate, operationalize, or deduce what the
learner already knows implicitly.” However, as Mitchell et al. mention, “this statement is
somewhat misleading ... this kind of learning is non-trivial.”

Another way to view the difference between the two systems is as\a

competer{ce/perfonnance distinction. LAIR is able to leam knowledge that allows it to be

~
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more competent, i.c. to recognize instances of concepts thz;t it has not previously knowﬁ,
whereas the EBG system is learning performance ‘know.yledgc. i.e. how to efficiently
recognize instances of a congept it already knows. Performance is important, and may

12

even affect competence if a system has limited resources:

The explanation-based and similarity-based systems using constructive induction
perform complementary functions. The similarity-based, constructive induction systems
are useful for accretion of knowledge. The explanation-based systems are useful fop tuning
and restructuring this knowledge into more useful forms (Rumelhart & Norman; 1978,
Anderson, 1986). The complementary nature of these forms of learning s'uggcst‘that r
combined systems exploiting the best features of each method might be an interesting area

for future research.

6.5. Directions for Future Research

There are many ways in which LAIR could usefully be extended. This section will
discuss the foll;wing areas: Hdeduction,‘altcmatc concept description forms, multiple
concept leamning in the same domain, and combin;tjon with explanation-based léaming.

One area of futpre r.gscarch is improvement and extension of LAIR’s deduction
'stratcgy. ILAIR could be extended to do hierarchical deduction: doing higher level, skeletal

"'\prooWQN the full proof. LAIR’s inference dould also be extended to statistical and
probzibilisti;:ﬂix\lferencc. LAIR assumes that .no noise is present in the examples. In systems
that extract their own positive and ncggtivc examples from observation, noise often occurs.
Statistical inference would be useful in dealing with these kinds of problems.

A second area of future research is Extcnsion of LAIR to learn disjunctive concept
descriptions. LAIR assumes that it' is learning a conjunctive concept. One way in which
LAIR could be modified to learn disjunctive concepts is to have LAIR infer plausible
groupings of positive examples into sets that could each be described by a different disjunct

of a concept description. Many conjunctive concept leaming systems have been extended
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to learn disjuncts by pgr,titiqning examplegmaccording to the time thdy were prcscntc,d:
Logically, howcvcr,.ﬁlcrc is no reason to assume that this is a good partitioning.
Partitioning examples by using knowledge about thc‘cxamplc descriptions might be a better
way to learn disjunctive concept descriptions.

" A third area of future research is multiple concept learning in the same domain. LAIR
is cumnﬂy able to icarn concepts in a domain, and to use learned concepts as prior
knowledge for future learning tasks'. LAIR could be extended to use knowledge of how it
learned previous concepts on future concept learning tasks by becoming aware of what is
“relevant ’fn‘ “impoﬂant" in a domain. | |
B oy

» Burth area of future resg
Y .;ﬂ;e»/é,

inducﬁon learning method of 9y

ch is combination of the similarity-based, constructive

w ith explanation-based methods. As mentioned,

£

—

these methods seem complerhcntary. Future research could be done on how these systems
could be combined into an integrated, effective system.

’
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