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Abstract

This thesis presents a novel data-driven approach for identifying category-

selective regions in the human brain that are consistent across multiple par-

ticipants. By leveraging a massive fMRI dataset and a multi-modal (language

and image) neural network (CLIP), we trained a highly accurate contrastive

brain decoder to predict neural responses to naturalistic images in the human

visual cortex. We then applied a novel adaptation of the DBSCAN clustering

algorithm to identify clusters of voxels across multiple brains that decode sim-

ilar concepts, which we term shared decodable concepts (SDCs). The SDCs

are interpreted by identifying the closest embeddings to each cluster centroid

and analyzing the associated images and text. In contrast to other methods,

ours does not require registration to a template space, allowing us to maintain

the unique functional layout of each participants brain. It also uncovers both

activating and deactivating stimuli, highlighting the importance of both in

understanding brain function. Our approach allowed us to uncover category-

selective areas for food, subcategories of bodies and places, color, numerosity,

object size, softness, lighting conditions, and more, demonstrating the versa-

tility and potential of our approach for exploring brain functions.
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Chapter 1

Introduction

The visual cortex is one of the most thoroughly studied regions in the human

brain. Previous research has largely focused on identifying the types of visual

stimuli that drive responses in distinct areas of the brain. It is well-established

that early visual system constructs low level representations of texture, depth,

color, and shape. This information is then projected to higher visual areas,

some of which selectively respond to broad categories of stimuli such as faces,

bodies, places, words, and food. These category-selective areas typically cor-

respond to large patches of cortex, and many visual regions remain poorly

characterized, leaving gaps in our understanding of their functional organi-

zation. Motivated by these gaps, our work seeks to explore and map these

lesser-known regions using a novel methodology.

In this work, we introduce a data-driven approach to discover new category-

selective areas in the visual cortex and to identify sub-categories within exist-

ing ones. Our method leverages a massive fMRI dataset, the Natural Scenes

Dataset (NSD), and a multimodal (natural language and image) neural net-

work architecture, CLIP, to train a contrastive decoder that maps brain re-

sponses to CLIP embeddings. We then apply a novel adaptation of the DB-

SCAN clustering algorithm to the decoder model parameters in order to find

areas of high similarity across participants. We refer to these clusters as shared

decodable concepts (SDCs)—dimensions of CLIP space that can be decoded

from multiple participants in the NSD study. To interpret these SDCs, we

identify sets of CLIP embeddings closest to each cluster centroid and examine
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the corresponding images and text associated with those embeddings. Addi-

tionally, we investigate the negated cluster centroids, enabling us to explore

stimuli that both activate and deactivate specific cortical regions.

Our method for identifying category-selective brain areas offers unique ad-

vantages over prior approaches. Typically, multi-participant data is warped to

a template space, and further analysis proceeds with the assumption that func-

tionally similar areas will also overlap anatomically. In contrast, we preserve

the native space of each participant’s brain, maintaining the unique cortical

layout and avoiding potential misalignment issues. Despite the absence of spa-

tial alignment constraints, our method consistently uncovers SDCs localized to

similar cortical regions across participants. Moreover, the use of a contrastive

loss function mitigates the decoder model’s tendency to ignore categories that

are under-represented in the stimulus set, and thus might otherwise go undis-

covered. This is evidenced by the contrastive-trained decoder’s significantly

higher accuracy compared to a baseline ridge-regression decoder. Lastly, our

examination of stimuli that both activate and deactivate each cluster pro-

vides compelling evidence for their potential functions, aligning with recent

research on “offsembles” of neurons that are selectively inhibited by visual

stimuli (Pérez-Ortega et al., 2024). This suggests that deactivation may be

just as important as activation when interpreting the function of brain areas.

Our approach has enabled us to uncover areas selective for a diverse range

of stimuli, including faces, food, subcategories of bodies (e.g., legs, hands,

motion, sitting, groups), subcategories of places (e.g., indoors, outdoors, na-

ture), color, numerosity, object size, softness/hardness, lighting conditions,

and more. These findings not only expand our understanding of the visual

cortex but also demonstrate the potential of our method to uncover the di-

verse functions of brain areas, making it a versatile tool that can be applied

to studying various types of stimuli beyond just visual processing.

1.1 Objectives

The contributions of this master’s thesis can be summarized as follows:
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• We demonstrate that the use of a contrastive loss function significantly

improves the accuracy of the decoder model, improving the decodability

of under-represented categories in the stimulus set.

• We applied a novel adaptation of the DBSCAN clustering algorithm

to the decoder model parameters, enabling the identification of SDC

clusters across participants without relying on spatial alignment.

• We investigate the stimuli that both activate and deactivate the SDC

clusters, providing deeper insights into the potential functions of brain

areas.

1.2 Outline

In chapter 2, we review previous research that is relevant to this master’s

thesis. First, we highlight the core studies that have revealed the function of

areas in the human visual system. Then we describe the fMRI recordings from

the natural scenes dataset (NSD) that we use in this study. Next, contrastive

learning techniques are discussed including the contrastive language-image pre-

training (CLIP) model that is utilized in this work. Following this, we discuss

the DBSCAN clustering algorithm which we modify to discover areas that

are used to decode similar concepts across participants. Finally we outline

previous works that have investigated the similarity between deep learning

representations and neural data.

Chapter 3 describes our methodology for training decoder models that

predict deep learning representations from CLIP using neural recordings from

NSD. The full pipeline including the data split, pre-processing, decoding model,

hyperparameter selection, and evaluation are described. Then we present our

novel adaptation of the DBSCAN clustering algorithm. This algorithm is ap-

plied to the decoder models to find brain areas of high similarity across multiple

participants. Next we provide the details of how we select the representative

images and text that are used to interpret the discovered brain areas.

Chapter 4 displays the discovered brain areas on flattened cortical surface
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maps, along with corresponding representative images and text for interpreta-

tion.

In the final chapter 5 we discuss our conclusions and contributions of this

master’s thesis. Additionally, we consider some potential limitations of this

work, broader societal impacts, and directions for future work.
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Chapter 2

Related Work

In this section, we present a review of the relevant literature that supports our

research question. First, we provide an overview of the primary brain areas

in visual cortex and their known functions. Following this, we introduce the

Natural Scenes Dataset (NSD), which provides the fMRI recordings utilized

in this thesis. We then briefly examine contrastive learning techniques and

the CLIP language-vision model, which we used to generate numerical rep-

resentations of the stimulus images from NSD. Subsequently, we discuss the

DBSCAN clustering algorithm, which we utilize in our analysis to identify

novel category-selective brain regions. In the final section we highlight other

studies similar to ours that use representations generated by deep neural net-

works to analyze neural recordings in human visual cortex.

2.1 Functional Localization in Visual Cortex

When light enters the eye, visual information travels from the retina to the

lateral geniculate nucleus through the optic nerve, and then projects to the

primary visual cortex (area V1) in the occipital lobe. Hubel and Wiesel, 1962

were the first to discover that neurons in V1 are tuned to respond to edges that

are oriented at particular angles. V1 then projects to many areas including

V2, V3, and V4, which build more complex representations of visual properties

such as texture, depth, color, and shape.

Many previous studies have discovered higher visual areas that selectively

respond to particular types of stimuli. Kanwisher et al., 1997 found an area
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in the fusiform gyrus that responds much stronger to faces than any other

stimuli. Multiple tests were conducted to confirm that the FFA does not

respond to low-level features of human faces or any other human body part.

This provided convincing evidence that the FFA will only respond strongly to

an image of a face.

Soon after, Downing et al., 2001 discovered a region that they named the

extrastriate body area (EBA). The EBA was shown to have a large response to

images of human bodies, or to cutouts of individual body parts. Notably, the

EBA will respond mildly to animal bodies and to cutout parts of human faces

(i.e. eyes, ears, or a mouth), but responds very weakly to whole human faces.

Later, the visual word form area (VWFA) was discovered to reside in the left

fusiform gyrus (McCandliss et al., 2003). This area responds specifically to

visually presented words, but not to auditory word stimuli.

Another key functional area in visual cortex is the parahippocampal place

area (PPA Epstein and Kanwisher, 1998. They showed that this area has a

strong response to images of indoor and outdoor scenes, a mild response to

cutouts of objects, and no response to images of faces. Interestingly, the PPA

will respond just as strongly to an empty room as a furnished room, or to a

room where the component pieces have been cutout and separated. However

if the cutout pieces are rearranged and scrambled, the response is significantly

diminished. This suggests is that the geometry of the scene is what drives a

response in PPA.

In addition to the PPA, the occipital place area (OPA) and retrosplenial

cortex (RSC) have been shown to be involved in scene processing. Dilks et al.,

2013 provided evidence that the OPA has a functional purpose in processing

scenes. When participants were subject to transcranial magnetic stimulation

(TMS) 1 of the OPA, they struggled to discriminate between matching scenes,

and also to categorize types of scenes. However, the perception of other types of

images such as faces and objects was not disrupted. Furthermore, perception

1Transcranial magnetic stimulation (TMS) is a non-invasive method for stimulating neu-
rons in the brain. An electromagnetic coil is placed on the participants scalp which creates
a varying magnetic field. This field induces an electric current in a target neural population.
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of scenes was not disrupted when TMS was applied to other control brain

areas. Maguire, 2001 highlighted 10 cases in the literature where a lesion

in RSC resulted in difficulties in navigation. In all cases, the patients could

recognize landmarks, but they struggled to place them on a map or navigate in

familiar environments. This suggests that navigation is an important function

of RSC.

With the onset of the Natural Scenes Dataset (NSD), three studies have

uncovered another region in the visual cortex that reliably responds to images

of food. Pennock et al., 2022 and Jain et al., 2022 both use a hypothesis-driven

approach, where they designed their analysis specifically to test whether food

selective cortex exists. Pennock et al., 2022 localized visual cortex that were

highly correlated with the color saturation of presented stimulus images. This

area of cortex was further investigated to determine the contribution of image

saturation, luminance, warmth, presence of circular objects (due to overlap

of shape-selective cortex), and presence of food in the presented images to

brain responses in different ROIs. The number of food pixels was determined

to have the greatest contribution to brain responses. Jain et al., 2022 found

food-selective cortex by fitting voxel-wise encoding models that predict brain

responses as a function of a small set of binary labels that indicated the lo-

cation, perspective, and content of each image. The encoder models that had

significantly high weights for the food-related labels were used to identify the

voxels that had a specific response to food stimuli. Khosla et al., 2022 used a

purely data driven approach to locate the food areas. Bayesian non-negative

matrix factorization was applied to brain responses to find approximately 20

components for each participant. An inter-subject spatial consistency metric

was applied in the MNI template space to identify 5 components that were

consistent across participants. These components corresponded to the FFA,

PPA, EBA, VWFA, and the unexpected food area.
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2.2 Natural Scenes Dataset

The natural scenes dataset (NSD) is a massive fMRI dataset acquired to study

the underpinnings of natural human vision (Allen et al., 2022). Eight partic-

ipants were presented with 30,000 images (10,000 unique images over 3 rep-

etitions) from the Common Objects in Context (COCO) naturalistic image

dataset (Lin et al., 2014). Out of the 10,000 images shown to each partici-

pant, 9,000 were unique images that were not shown to any other participant

in the study, while the remaining 1,000 were shared images that were shown

to all participants. The brain images were acquired with a 7-Tesla scanner,

which enabled very high 1.8 mm spatial and 1.6 second temporal resolutions,

with full brain coverage. The participants were instructed to fixate on the

center of the screen while images were presented for a 3 second duration with

a 1 second gap between each image. A total of 40 1 hour scanning sessions

were administered over the course of a year with each participant to complete

the study. The participants were additionally challenged to perform a continu-

ous recognition task during scanning, where they were provided with a button

and instructed to press it on the second and third presentations of each image.

The three presentations of each image were randomly distributed to any of the

40 scanning sessions, and could be presented many months apart, making this

task fairly challenging. Some participants did not complete all fMRI recording

sessions and three sessions were held out by the NSD team for the Algonauts

challenge. Further details can be found in Allen et al., 2022.

As a first level of analysis, the raw fMRI data was pre-processed using a

general linear model (GLM). The GLM is typically implemented as a regular-

lized linear regression that predicts the fMRI time series from a design matrix

that describes the timing of stimulus presentations. The design matrix is con-

structed as a N ×T array where N is the number of image presentations, and

T is the number of brain images acquired in a scanning run. The matrix is

initialized to zeros and a value of 1 is inserted on each row to indicate which

image is currently presented. To account for delay in the blood oxygen level

dependant (BOLD) response, the columns of the design matrix are convolved
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with a haemodynamic response function (HRF), that mimics the typical ob-

served response profile of neural populations when recorded with fMRI. The

resulting parameters of this model are referred to as the beta-weights and are

used in our subsequent analyses. Each beta-weight represents a voxel’s percent

signal change from baseline when a particular image was presented.

2.3 Contrastive Learning

Contrastive learning is a powerful representation learning technique that has

applications in many deep learning domains including computer vision, natural

language processing, and reinforcement learning. The core idea is to maximize

the similarity between similar datapoints (positive pairs), and minimize the

similarity of dissimilar datapoints (negative pairs) in a latent space. One of

the earliest examples of contrastive learning is the Siamese network (Brom-

ley et al., 1993) that consisted of a twin network with shared weights and

a contrastive loss function. This model was applied to distinguish authentic

hand-written signatures from forgeries. Much later, Chopra et al., 2005 for-

mulated one of the first supervised contrastive loss functions for applications

in deep learning. Their loss function takes pairs of data points (xi, xj) and

corresponding categorical labels (yi, yj), and minimizes the distance between

their embeddings ||f(xi) − f(xj)||
2
2 if they have the same class i.e. yi = yj.

The full loss function is defined as follows:

Lcontrastive(xi, xj) =

{

||f(xi)− f(xj)||
2
2 yi = yj

max(0, ϵ− ||f(xi)− f(xj)||
2
2) yi ̸= yj

where ϵ is a hyperparameter that defines a lower bound on the distance

between negative samples.

For unsupervised datasets, augmentation strategies can be applied. The

SimCLR technique (Chen et al., 2020) applies visual augmentations (random

cropping, color distortions, and gaussian blur) to create two views of the same

image as positive pairs, while other random images are used to create negative

pairs.
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The contrastive language-image pre-training (CLIP) (Radford et al., 2021)

model is critical to this masters thesis. CLIP consists of a jointly-trained

image and text encoder that share a representation space. These encoders are

trained on a dataset of over 400 million image and text pairs with a massive

N = 32, 768 minibatch size. The InfoNCE contrastive loss function (Oord

et al., 2018) is used to maximize the similarity between images and their

corresponding text captions, while minimizing the similarity of mismatched

images and captions. At each training iteration, the N matching image and

text pairs are used as the positive samples, and the N2 − N mismatched

image and text pairs are used as negative samples. The main power of CLIP

comes from the use of natural language as a training signal. While most

computer vision models are limited to a finite set of image classes, CLIP has

the potential to learn any image property that can be explained with natural

language. This allows CLIP to function as a general purpose vision model that

reliably transfers to many computer vision tasks.

2.4 DBSCAN Clustering Algorithm

This work uses a modification of a clustering algorithm known as density-

based spatial clustering of applications with noise (DBSCAN) (Ester et al.,

1996), to discover category-selective regions in human visual cortex. The DB-

SCAN algorithm works by finding points that are densely packed together and

groups them into clusters, while points that are in sparse regions are marked

as outliers. The model is parameterized by a neighborhood size ε and a point

threshold minPts. Each point is classified as either a core point, a border

point, or an outlier. The algorithm can be summarized using the following

steps:

1. Points that have at least minPts points in their ε-neighborhood are

marked as core points.

2. A graph G is constructed where the vertices are core points, with edges

between core points that have a distance less than ε.
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3. Clusters are formed by finding the connected components of G

4. The remaining non-core points are added to clusters as border points if

they are within the ε-neighborhood of a core point, otherwise, they are

marked as outlier points that do not belonging to any cluster.

The main advantages of DBSCAN is that it does not require the user to

pre-specify the number of clusters in the dataset, it can find clusters of any

shape, and it can robustly handle datasets with many outlier points. However,

the hyperparameters ε and minPts require careful tuning to extract meaningful

clusters from the data, and the algorithm can struggle to deal with datasets

where the clusters have varying densities. A common issue if for all of the

points to merge into a single cluster if ε is too high or minPts is too low. This

can be resolved by grid searching different combinations of ε and minPts until

there is a reasonable amount of clusters and points per cluster.

2.5 Decoding Deep Representations from Brain

Activity

A widely used technique in neuroscience involves training models to estab-

lish a mapping between neural recordings, such as fMRI data, and numerical

representations of the corresponding stimuli. When these models map brain

responses to stimulus representations, they are referred to as decoders. Con-

versely, when they map stimulus representations to brain responses, they are

known as encoders. In recent years, it has become common to use deep learn-

ing models to generate the stimulus representations that are then used to train

brain decoding and encoding models. Khaligh-Razavi and Kriegeskorte, 2014

laid the foundations for this approach by investigating the similarity between

convolutional neural network (CNN) representations and neural recordings

from inferior temporal (IT) cortex in monkeys and humans. In a comparison

of 37 models, the representations in a deep CNN trained to classify images

in the ImageNet (Deng et al., 2009) dataset had the highest similarity to IT.

Later, Horikawa and Kamitani, 2016 more thoroughly investigated the similar-
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ities between early and deep representations in a CNN, and brain recordings

from early and later stages of visual cortex. They found that early features

in the CNN had the highest correlations to early visual areas such as V1 and

V2, but had low correlation to areas such as PPA and FFA. In contrast, the

deep representations in the CNN had very high correlations to PPA and FFA,

with slightly lower correlations to V1 and V2. This provided evidence that

the hierarchy of features in deep models somewhat mirrors the hierarchy of

representations in the human visual cortex.

In parallel with the preparation of this maters thesis, numerous studies

have trained encoding and decoding models using neural recordings from NSD

and stimulus representations generated with CLIP. Wang et al., 2023 compared

the voxel-wise encoding performance using representations from CLIP and a

CNN trained on ImageNet. The encoders trained with CLIP representations

were able to explain far more variance in almost every region in the visual

cortex, suggesting that CLIP generates representations that are significantly

more brain-like compared to previous models. Further evidence that CLIP

representations have strong brain-like representations comes from studies that

aim to fully reconstruct the stimulus image from held-out brain responses (Q.

Liu et al., 2024; Y. Liu et al., 2023; Ozcelik and VanRullen, 2023; Scotti et al.,

2023). These methods typically train a decoder that predicts CLIP representa-

tions from brain responses, and then the brain-decoded CLIP vectors are input

to diffusion based image-generation models. The resulting brain-reconstructed

images have many striking similarities in structure, composition, and seman-

tic detail to the original stimulus images. This motivates the hypothesis that

the brain responses recorded in NSD contain semantic information that is not

limited to the presence of faces, places, words, bodies, and food.

2.6 Chapter Summary

In summary, this review has outlined the literature relevant to our research.

We have detailed the key brain areas in the visual cortex and their functions,

introduced the Natural Scenes Dataset (NSD) that provides the fMRI data for
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our study, and briefly discussed contrastive learning techniques along with the

CLIP language-vision model, that we use to create numerical representations

of stimulus images. Additionally, we have described the DBSCAN clustering

algorithm that is modified in our analysis to discover novel category-selective

brain regions. Finally, we highlighted similar studies that utilize deep neural

network representations for analyzing neural recordings.

In the next chapter, we will focus on the process of decoding CLIP repre-

sentations from brain responses within the NSD.
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Chapter 3

Methods

To identify shared decodable concepts (SDCs) in the brain, we derived a map-

ping from anatomical brain space to a representational space in which we can

explore semantic sensitivity to visual input. In this chapter we describe the

components of this mapping: a dataset of fMRI recordings (NSD), a multi-

modal image-text embedding model (CLIP), and our method to map from

per-image brain responses to their associated multimodal embeddings. We

consider two models and verify that our proposed contrastive decoder outper-

forms a baseline ridge regression model. In the final section we introduce our

clustering method for identifying concepts that are decodable from the brains

of multiple participants in NSD.

3.1 fMRI Data

As described in section 2.2, this work utilizes neural recordings from the Natu-

ral Scenes Dataset (NSD) that were pre-processed with a general linear model

(GLM). We denote the brain responses as X(k) for participants k ∈ {1 . . . 8}

(for brevity, we sometimes drop the superscript (k) in the following sections).

Each value in these matrices represents the signal change of a voxel in response

to the presentation of a particular image in the NSD experiment. The dimen-

sionality of these matrices varies as some participants did not fully complete

all 40 fMRI recording sessions.
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3.2 Representational Space for Visual Stimuli

To generate representations for each stimulus image, we use CLIP (Radford

et al., 2021), a model trained on over 400 million text-image pairs with a con-

trastive language-image pretraining objective. CLIP consists of a text-encoder

and image-encoder that jointly learns a shared low-dimensional space trained

to maximize the cosine similarity of corresponding text and image embeddings.

We use the 32-bit Transformer model (ViT-B/32) implementation of CLIP to

create a 512-dimensional representation for each stimulus image used in the

NSD experiment. We train a decoder model to map from fMRI responses

during image viewing to the associated CLIP vector for that same image. No-

tably, because CLIP is a joint image-language model, these CLIP vectors also

correspond to text captions in the pretraining stage, which can be used to

describe the images presented to the participants.

3.3 Data Preparation

Data Split We split the per-image brain responsesX and CLIP embeddings

Y into training (XTrain,YTrain), validation (XVal,YVal), and test (XTest,YTest)

folds for each of the 8 NSD participants. For each participant, the validation

and test folds were chosen to have exactly 1,000 images with three presenta-

tions. Some participants in the NSD did not complete all scanning sessions and

only viewed certain images once or twice. The images that were not viewed 3

times are assigned to the training set, which varies in size across participants.

Of the shared 1,000 images that all participants saw, 413 images were shown

three times to every participant across the sessions released by NSD. These

413 images appear in each participant’s testing fold.

Voxel Selection The NSD fMRI data comes with voxelwise noise ceiling

estimates that can be used to identify reliable voxels. However, the noise ceiling

is calculated using the full dataset. Therefore, these noise ceiling estimates

should not be used to extract a subset of voxels for decoding analyses because

they are calculated using images in the test set, which is a form of double-
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dipping (Kriegeskorte et al., 2009). We therefore re-calculated the per-voxel

noise ceiling estimates specifically on our designated training data only. We

selected voxels with noise ceiling estimates above 8% variance explainable to

use as inputs to the decoding model. The exact number of voxels input to the

model was [17883, 18358, 13476, 11899, 17693, 18692, 9608, 6772] for subjects 1

through 8 respectively. In our visualizations, regions of the flattened brain

surface in black represent voxels that have passed this voxel selection threshold.

Voxel Normalization Brain responses were per-voxel normalized to have

zero mean and unit standard deviation within each scanning session. This

standardizes the data across scanning sessions, ensuring that variation due to

external factors does not influence our analysis. With this normalization, a

value of zero corresponds to the mean response across all stimulus images,

while positive and negative values represent above average and below average

activation, respectively. This approach allows our decoder model to utilize

both the positive and negative aspects of stimulus driven brain responses.

3.4 Decoding Methodology

Decoding Model The decoding model g(X;θ) = Ŷ is a linear model

trained to map brain responses X = [x1, . . . ,xn],xi ∈ R
v to brain-decoded

CLIP embeddings Ŷ = [y1, . . . ,yn],yi ∈ R
512. Here n is the number of train-

ing instances, and v is the participant-specific number of voxels that pass the

noise ceiling threshold. We optimize the brain decoder using the InfoNCE

definition of contrastive loss (Oord et al., 2018), which is defined below in

Equations 3.1 and 3.2.

Contrast(A,B) = −
1

M

M
∑

i=1

log

(

exp(ai · bi/Ä)
∑M

j=1 exp(ai · bj/Ä)

)

(3.1)

LInfoNCE(A,B) =
1

2
[Contrast(A,B) + Contrast(B,A)] (3.2)

In this definition A = [a1, . . . ,an] and B = [b1, . . . , bn] are embeddings for

two modalities representing the same data points, the · operator represents co-
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Figure 3.1: Decoding CLIP representations from the brain. We create CLIP
representations by passing NSD training set stimuli to CLIP (frozen). The
NSD team showed these same images to human participants during fMRI
scans. We train a linear decoder with contrastive loss (Eq. 3.2) to predict
CLIP embeddings from the fMRI responses to the corresponding images. Black
arrows represent the flow of data through the procedure and dashed red lines
represent gradient updates used to train the model.

sine similarity, and Ä is a temperature hyper-parameter. The loss is minimized

when the distance between matching embeddings is small, and the distance

between mismatched embeddings is large. In the original CLIP setting, A and

B represent embeddings for images and corresponding text captions. In our

implementation, we apply the contrastive loss to image embeddings computed

by a pretrained frozen CLIP model and CLIP embeddings predicted from

fMRI, i.e. we optimize minθ L(Ŷ ,YCLIP) = L(g(X;θ),Y ). An illustration of

the decoding procedure is given in Figure 3.1.

The decoding model is trained for 5000 iterations (29 to 45 epochs de-

pending on the participant’s training set size) with the Adam optimizer, a

batch size of 128, and a fixed learning rate of 1e−4. Data augmentation is

applied to help slow overfitting by adding random noise to training samples

xi ← xi+z sampled from a normal distribution z ∼ N (0, Ã2) where the noise

standard deviation Ã is a hyper-parameter. We set Ä = 0.03 and Ã = 0.1 in

our implementation. Hyper-parameters were selected based on performance

on the validation set. We compare our contrastive decoder to a baseline ridge
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Figure 3.2: Top-k accuracy for CLIP decoding using the proposed contrastive
decoder and a ridge regression baseline. The contrastive decoder implemen-
tation outperforms the ridge regression baseline across various values of k.
Chance performance is given in green. Accuracy calculated on held-out data.
Bars indicate the standard error (SE) across the 8 NSD participants. Addition-
ally, we include a comparison to Y. Liu et al., 2023 who report the mean top-k
accuracy across 4 subjects (1, 2, 5, 7) using brain responses to 982 test images
(dashed red line). We average the results of our own contrastive decoder across
these participants for a fair comparison (dashed blue line). Despite a slightly
larger test set, our contrastive decoder has a higher accuracy for all reported
values of k.

regression model trained on the same data. We used grid search to select the

best ridge regularization parameter ¼ ∈ {0.1, 1, 10, 100, 1000, 10000, 100000}

using the validation data. The optimal ¼ was 10000 for participants 1, 2, 5, 6,

and 1000 for participants 3, 4, 7, 8. The decoder models were trained on an

NVIDIA GeForce RTX 2060. Training time was approximately 2 minutes for

each model.

Evaluation We evaluate our models using top-k accuracy, which is com-

puted by sorting in ascending order all true representations {y1 . . . yn} by their

cosine distance to a predicted representation ŷi. Top-k Accuracy is the per-

centage of instances for which the true representation yi is amongst the top-k
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items in the sorted list. Chance top-k accuracy is 100·k
n

% where n is the number

of held-out data points used for evaluation. Figure 3.2 shows the results of

this evaluation. The contrastive decoder outperforms ridge regression across

all values of k. Recall that our end goal is to identify shared decodable con-

cepts (SDC) in the brain. Our methodology for this task relies on the predicted

CLIP vectors, and so our subsequent analyses require an accurate decoding

model.

3.5 Finding Shared Brain-Decodable Concepts

and their Representative Images

In this section, we describe our methods for finding and interpreting areas of

the brain that respond to semantically similar images, and that are consis-

tent across participants. We approach this problem by analyzing the weight

matrices W (k) from the optimized linear decoders described in section 3.4

g(k)(x(k)) = W (k)x(k) = y for all subjects k ∈ {1 . . . 8}. First, we observe that

the decoder’s linear transformation W (k)x(k) =
∑v

i=1 w
(k)
i · xi

(k) is simply a

summation of parameter vectors w
(k)
i ∈ R

512 that are scaled by brain response

values x
(k)
i ∈ R. This means that when x

(k)
i is above or below baseline activa-

tion, the CLIP dimension represented by w
(k)
i is increased or decreased in the

brain-decoded embedding. This motivates the key to our analysis: we view

the parameter vector w
(k)
i as a CLIP vector that represents a brain-decodable

concept for voxel i. This allows us to use cosine distance d(w
(k)
i ,w

(r)
j ) be-

tween the weight vectors for voxels i, j from participants k, r as a measure of

similarity between the decodable concepts of brain voxels across participants.

Our objective is to apply a clustering algorithm using this metric in order to

find areas in the brains of multiple participants that have a high conceptual

similarity. We refer to these underlying concepts as shared decodable concepts

(SDCs). We interpret the SDCs by retrieving a set of representative images

associated with the brain-decoded CLIP vectors that are closest to the cen-

troid of each SDC cluster. A schematic of the algorithm we apply is given in

Figure 3.3.
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Cross Participant Clustering To discover SDCs, we apply a novel clus-

tering method to the per-voxel model parameter vectors w
(k)
i across all partic-

ipants. We base our clustering method on the density-based spatial clustering

of applications with noise (DBSCAN) (Ester et al., 1996) algorithm, which is

described in detail in the related works section 2.4. Compared to the origi-

nal algorithm, we redefine the core point criteria in step (1) and rename the

threshold variable minPts as minNeighbors. Our second modification is to add

a final expansion step (5) where each cluster can grow slightly larger within

each participant. Steps 2-4 are unchanged. Figure 3.4 outlines the application

of our modified DBSCAN algorithm to modeling fMRI data. Our modified

DBSCAN algorithm is summarized as follows:

1. A point w
(k)
i is marked as a core point if there are points from at least

minNeighbors other participants within its ε neighborhood.

2. A graph G is constructed where the vertices are core points, with edges

between core points that have a distance less than ε.

3. Clusters are formed by finding the connected components of G

4. The remaining non-core points are added to clusters as border points if

they are within the ε-neighborhood of a core point, otherwise, they are

marked as outlier points that do not belonging to any cluster.

5. All points inside the εexpansion neighborhood of a point in a cluster become

members of that cluster with the constraint that they must be from the

same participant.

With the modification to step 1, a core point now identifies voxels that rep-

resent a brain-decodable concept that is shared with at least minNeighbors

participants. The addition of step 5 was motivated by our early experiments,

where we noticed that there were sometimes only one or two voxels belong-

ing to certain participants for each cluster. This was helped by applying a

within-participant expansion of clusters. We introduced a new hyperparam-

eter εexpansion that controls the degree of cluster expansion. Unlike steps 1-4,
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it is possible for a point to be assigned to multiple clusters in step (5). This

allows the cluster boundaries to grow slightly larger for each participant, and

we found that this did not significantly change the cluster location or semantic

interpretations.

We present results using a fixed value for minNeighbors = 3. This means

that each cluster must include at least 4 out of 8 participants in the study.

This allows for the discovery of SDCs that may show up less reliably in some

participants. Furthermore, we use a range of values for ε ∈ {0.5, 0.55, 0.6, 0.65}

to explore clusters at different density scales. We set the expansion neighbor-

hood size εexpansion = min(ε + 0.05, 0.65) so that the cluster boundaries can

grow slightly larger than the baseline neighborhood size ε, but not exceeding

0.65 as we noticed neighborhoods become over-connected as ε approaches 0.7.

The number of cross-participant clusters found was 9, 14, 12, 11 for ε values

of 0.5, 0.55, 0.6, 0.65 respectively. This variant of the DBSCAN clustering

algorithm uses minimal CPU resources and executes within a few minutes.

To reduce the impact of random initialization and combat the noise inher-

ent in fMRI, we re-trained the decoder model 50 times for every participant

and compute the average of the resulting parameter vectors. In other words,

each averaged parameter vector w
(k)
i used in our analysis represents the av-

erage of 50 concepts that a voxel could represent depending on the random

initialization of the decoder. We found that this significantly improved the

quality and consistency of the clusters revealed by our modified DBSCAN

algorithm.

Selecting Representative Images To interpret the semantic meaning of

an SDC cluster, we first computed the cluster centroid by taking the mean of

all parameter vectors within the cluster w̄ = 1
|I|

∑

(i,k)∈I w
(k)
i where I is a set

of tuples identifying the voxel and subject indices for an SDC cluster. When

the cluster voxels are above or below baseline activation, the CLIP dimension

represented by w̄ is increased or decreased in the brain-decoded embedding,

respectively. We note that DBSCAN has the ability to create non-globular

clusters for which the centroid might not be a good representative. In our
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experience the centroid is within ε of a core point within the cluster, implying

that it is likely fairly representative of the cluster.

In order to find the representative images for an SDC cluster, we can con-

sider the nearby image-embeddings to the cluster centroid w̄. Instead of using

the original CLIP embeddings for each image, we instead used the subject-

specific brain-decoded embeddings Ŷ
(k)
Test. This allows us to focus specifically

on the information that can be decoded from fMRI, which could be a subset of

the information represented by CLIP space. For images that were viewed more

than once we average the embeddings within and across participants. These

averaged brain-decoded embeddings from held-out test data are denoted by

Ŷ AVG
Test . To select nearby images we define D(w,Y ) = {d(w,y)|y ∈ Y } which

is the set of distances between a CLIP vectorw to a set of CLIP embeddings Y .

We take the cosine distances between the SDC cluster centroid D(w̄, Ŷ AVG
Test )

and the negated centroid D(−w̄, Ŷ AVG
Test ) and retrieve the images corresponding

to the smallest values in these sets as the positive and negative representative

images respectively.

Selecting Representative Words Similarly, we can find sets of represen-

tative words for the SDC clusters. To accomplish this we first embed all

5 captions for each of the 73000 images in the NSD stimulus set to obtain

Ytext ∈ R
365000×512. Unlike the representative images, these embeddings are

not brain-decoded and are generated solely by the CLIP text encoder. To se-

lect the best representative captions we computeD(w̄,Ytext) andD(−w̄,Ytext)

and select the captions corresponding to the 50 smallest distances in each set

as the positive and negative captions respectively. We then utilize the word-

cloud python package to create visualizations of the most frequently occuring

words in the captions, which we present in the following chapter.
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Figure 3.3: Deriving SDC clusters. (a): The participant-specific linear
decoder matrices. (b): Our modified DBSCAN clustering procedure is ap-
plied to the linear decoders (See Figure 3.4 for details). (c): Our DBSCAN
procedure derives binary masks over the voxels in the linear decoders for a
specified number of clusters (of which one is highlighted in orange) (d): The
rows corresponding to the selected voxels in the binary masks are extracted
from the linear decoder matrices. (e): The 512-dimensional representations
from the previous step are averaged over voxels and participants to derive
a cluster centroid for each cluster derived from DBSCAN. We visualize the
cluster centroid for a particular DBSCAN cluster. (f): The linear decoders
are used to predict brain-decoded embeddings Ŷ k

Test for the held-out test data.
The predicted embeddings for repeated images are averaged within and across
participants to give Ŷ AV G

Test . (g): Cosine distance is calculated between the
cluster centroid and the brain-decoded embeddings. (h): The images most
associated with the cluster centroids (positive images) and most negatively
associated with the cluster centroids (negative images) are identified. Pos-
itive / negative images for the SDC cluster pictured here appears to corre-
spond to global vertical/horizontal orientation in the associated images. (i):
Color-coded participant-specific voxel clusters are displayed on a flatmap of
the brain’s cortical surface in common fsaverage space (overlapping areas are
displayed in white). Regions of interest labels are highlighted on the flatmap
image in white outlines. For the specified cluster (e), whose positive / negative
images are associated with orientation, the flatmap indicates bilateral shared
voxel clusters in early visual cortex.
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Figure 3.4: Illustration of our DBSCAN variant applied to multi-
participant fMRI data. There are 3 participants in this example and
minNieghbors = 2. (a): A zoomed-in view of a cluster with three core points.
The outer ring around each point shows its ε-neighborhood and whether it
is a core, border, or outlier point. Black arrows emphasize points that are
neighbors. The points with neighboring points from at least 2 other distinct
participants are marked as core points. Non-core points that neighbor core
points are added to the cluster as border points. The remaining points are
marked as outliers. (b): A zoomed-out sketch of a set of points that form 3
clusters. Since minNieghbors = 2, a high-density region will form clusters if
and only if it contains points from at least 3 participants.
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3.6 Chapter Summary

In this chapter we described the NSD dataset and the CLIP model that was

used to generate numerical representations of the stimulus images. Using NSD

and CLIP, we trained a contrastive decoder that maps brain responses to CLIP

embeddings, and demonstrated that a contrastive approach outperforms a

baseline ridge regression model. Finally, we needed a methodology to interpret

our contrastive model. A novel DBSCAN variant supported our interpretation

efforts, allowing us to discover SDC clusters. We explored these clusters using

representative images and words. In the next section, we will showcase a

selection of the SDC clusters, the corresponding images and words, and offer

our interpretations.
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Chapter 4

Results

The clustering method described in chapter 3 not only identifies previously

discovered functional areas but additionally identifies new ones, both of which

we explore in this section. We emphasize that there is no constraint that

voxels within a shared visual semantic cluster be spatially adjacent in the

brain, yet during visualization we consistently find contiguous patches both

within and across participants. In order to identify the locations of shared

voxel clusters in our visualizations, we overlaid region of interest boundaries

onto the flatmap visualizations in Freesurfer’s fsaverage space. For functional

ROIs, we retraced the ROIs given in the NSD dataset during the functional

localization experiments (fLoc, Stigliani et al., 2015).

4.1 Faces

One of the first reported functionally localized areas for higher-order vision was

the fusiform face area (FFA) (Kanwisher et al., 1997). Our method identifies

a face-related concept (Figure 4.1 ε = 0.55, cluster 7) that is localized to FFA

and includes voxels from all 8 participants. This cluset also has some voxels

in the extrastriate body area (EBA), likely because many face images include

part or all of a person’s body. We note that the positive representative images

are not exclusively human and include a range of animal faces. The images

often depict people eating and handling food, or holding other objects such as

toothbrushes or cell phones.

Interestingly, the negative representative images often display bodies, but
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Figure 4.1: Cluster 7 (ε = 0.55). Positive images are strongly associated with
faces, while the negative images represent depictions of people whose faces are
not visible. Voxel clusters are primarily found in bilateral FFA and EBA.

there is a striking lack of clearly visible faces. There are several examples

where people are visible, but their faces are obscured or they are facing away

from the camera. This suggests that there may be a dip in FFA activity for

images where a person’s face might be expected (and thus FFA is primed

to activate) but not clearly visible. Thus the brain’s representation for the

opposite of a face is a scene with the conspicuous absence of faces.

4.2 Food and Color

Previous work has specifically noted the correlation of very colorful images

with food-related images, and attempted to define food areas in the absence

of color (Jain et al., 2023). Our method also identifies a large possibly food-

related cluster that spans FFA, PPA, and V4 (cluster 0, ε = 0.55, Figure 4.2).

At first inspection most of the positive representative images are food-related.

However, we also observed many vibrant and colorful positive images that

contained no food. Strikingly, the negative representative images are entirely

gray-scale, suggesting that this cluster may be related to color. Thus, we
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speculate that this cluster is not specifically related to the identification of

food, but might rather correspond to any colorful image.

We notice two other food related clusters when ε = 0.65. The positive

images for cluster 3 (Figure 4.4) are mostly images of food. However, we

observed themes of softness, round objects, and animals shared across the food

and non-food images. Meanwhile, the negative images depicted many rigid and

boxy objects such as trains, busses, and city buildings. This supported the

idea that this cluster responds to a soft versus hard concept and is again not

entirely food-specific.

Cluster 5 (Figure 4.3) is shared across seven participants and is localized

to frontal brain regions. Voxels are located in the orbital sulci, as well as the

boundary between the triangular part of the inferior frontal gyrus and the

inferior frontal sulcus. These frontal regions are consistent with a network of

voxels reported by Pennock et al., 2022 to be activated by food images. We

noted that the positive images to contain images of food on plates, as well as

a few non-food images (bear, skiing, playing baseball). We were not able to

discern a strong core concept in the negatively associated images, aside from

a distinct lack of food.
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Figure 4.2: Cluster 0 (ε = 0.55). Positive images are associated with food and
color. Negative images are entirely grayscale. Voxel clusters span bilateral
FFA, V4, and PPA.

Figure 4.3: Cluster 5 (ε = 0.65). Food-related images with shared voxel
clusters in anterior regions of the brain.
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Figure 4.4: Cluster 3 (ε = 0.65). Positive images are of soft, often circular
food. Negative images depict hard objects (buses or buildings). Voxel clusters
are in left hemisphere around PPA.

4.3 Bodies

Our method identifies five notable body-related areas at ε = 0.55 in and

around EBA (Downing et al., 2001). The positive representative images for

cluster 2 (Figure 4.5) show people and animals outside with an emphasis on

legs and active movement. The negative images typically depict people in-

doors sitting with their legs obscured by tables. Cluster 11 (Figure 4.6) has

a similar emphasis on hands instead of legs. People are displayed in a vari-

ety of contexts with their hands clearly visible, while the negative images are

exclusively non-primate animals without hands. This cluster also shows in-

door/outdoor contrast in the representative image groups and so there is some

PPA activation. Cluster 3 (Figure 4.7) shows groups of three or more people

in the positive images, with a strong focus on an individual person, animal,

or object in the negative images. Cluster 6 (Figure 4.8) appears to be related

to full-body leaping motions, with the negative images showing people sitting

or standing still. In contrast, cluster 5 (Figure 4.9) shows a mixture of images
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Figure 4.5: Cluster 2 (ε = 0.55). Positive images are strongly associated with
presence of legs, while negative images are typically people at tables whose
legs are obscured. Voxel clusters are primarily in bilateral EBA.

of people who are crouched or sitting, along with images of pet cats and dogs

laying down.
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Figure 4.6: Cluster 11 (ε = 0.55). Positive images are strongly associated with
hands and hand motion, while negative images are associated with animals (no
hands). Voxel clusters are primarily in bilateral EBA and FFA.

Figure 4.7: Cluster 3 (ε = 0.55). Positive images display crowds, while nega-
tive images are of individuals. Voxel clusters are in bilateral EBA.
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Figure 4.8: Cluster 6 (ε = 0.55). Positive images show people jumping or
leaping, while negative images are of people standing still or sitting. Voxel
clusters are in and around left hemisphere EBA.

Figure 4.9: Cluster 5 (ε = 0.55). Positive images show people and animals who
are crouched, sitting, or laying down, while the negative images show people
standing. Voxel clusters are primarily found in bilateral FFA and EBA.
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4.4 Places

When ε = 0.55, cluster 1 (Figure 4.10) is very large and overlaps strongly with

PPA, OPA, and RSC. The positive representative images usually display an

urban area where the camera is looking forward down a long path or road.

In contrast, the negative images contain many close-up images of objects on

tables where the surrounding environment is not visible. This suggests that

this cluster may be related to scene geometry, navigation, or the reachability of

locations in a scene (Dilks et al., 2013; Epstein and Kanwisher, 1998; Maguire,

2001). Cluster 9 (Figure 4.11) strongly overlaps with PPA and displays out-

door scenes with consistent vegetation for the positive images. The negative

images show indoor scenes where human-made objects are prominent, with a

distinct lack of vegetation.

At ε = 0.6, cluster 4 (Figure 4.12) display indoor scenes (the positive

representative images). This cluster is mostly localized in OPA with some

voxels in PPA. The positive images depict cluttered indoor scenes such as

kitchens, work spaces, and living rooms. There is typically a flat surface such

a desk, counter-top, or table at the focal point of the image. The negative

images depict outdoor scenes with animals.
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Figure 4.10: Cluster 1 (ε = 0.55). Positive images show scenes with large open
areas. Negative images are close-ups of objects that have no scene geometry.
Clusters span bilateral RSC, OPA, and PPA.

Figure 4.11: Cluster 9 (ε = 0.55). Positive images display scenes with plants
and foliage, while negative images show human-made objects. Voxel clusters
are in bilateral PPA.
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Figure 4.12: Cluster 4 (ε = 0.60). Positive images show indoor scenes with
desks and tables. Negative images show outdoor scenes with animals. Voxel
clusters are primarily in bilateral OPA and PPA.

4.5 Horizontal/Vertical Cluster

Very early work on the visual system discovered the tuning of the early visual

system for lines of a particular orientation (Hubel and Wiesel, 1962). Two

clusters emerge that reflect this tuning, both at ε = 0.65. Cluster 1 (Fig-

ure 4.13) has a strong horizontal component with strong horizon lines or large

objects spanning the middle of the visual field creating a horizon-like line.

Notably, the negative images are images with a strong vertical component.

The inverse is true for cluster 7 (Figure 4.14) which shows strong verticality

in the positive images, and horizontal in the negative. Interestingly some of

the negative images from cluster 1 appear as positive images in cluster 7, and

vice versa. The localization of both clusters is V2/V3.
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Figure 4.13: Cluster 1 (ε = 0.65). Positive images are associated with a
horizontal mid-line, while negative images display a vertical mid-line. Voxel
clusters are primarily in right hemisphere V2.

Figure 4.14: Cluster 7 (ε = 0.65). Positive images are associated with a
vertical mid-line, while negative images display a horizontal mid-line. Voxel
clusters are primarily in bilateral V3.
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4.6 Repeated Elements (Numerosity) Cluster

We observed that cluster 12 (ε = 0.55, Figure 4.15) has positively associated

images typically with repeated elements of related items, while negative im-

ages typically contained singular instances of items. We suggest that this SDC

could be related to quantity processing and numerosity. We observed voxel

clusters primarily in right OPA and IPS regions. As with other clusters, natu-

ralistic images often implicates functional areas associated with place (OPA).

The IPS has been widely reported in prior work to be associated with quantity

processing, e.g. grammatical number processing Carreiras et al., 2010, mathe-

matical processing deficits Ganor-Stern et al., 2020 and numerical processing

Koch et al., 2023). Our observations in the visual domain provide converg-

ing evidence that the right IPS is associated with quantity processing across

multiple modalities.
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Figure 4.15: Cluster 12 (ε = 0.55). Positive images are associated with re-
peated elements, while negative images are single objects or individuals. Voxel
clusters are primarily located in OPA and IPS.

Figure 4.16: Cluster 2 (ε = 0.65). Positive images display close-ups of large
animals or objects. Negative image show objects at a distance. Voxel clusters
are located between EBA and V4.

39



4.7 Close vs Far Cluster

With ε = 0.65, cluster 2 (Figure 4.16) seems to represent big things (air-

planes, busses) and close up pictures of larger animals (zebras, elephants).

The negatively associated images are scenes that usually depict significant

depth, including paths leading into the hills with animals or people in the dis-

tance. Sarch et al., 2023 explored the representation of image depth in cortex

and also found that similar areas of cortex respond strongly to images with

objects very close to the camera. In addition, Luo et al., 2023 reported that

this general area is sensitive to relatively large objects.

4.8 Soft vs Hard Clusters

We observe two clusters that relate to soft versus hard objects. When ε = 0.60,

cluster 8 shows images with a strong focus on clothing, bedding, and other

textiles. The negative images show trains, and concrete-dominant architecture.

The voxels in this cluster are mostly found in the right hemisphere bordering

the area between FFA and EBA. As discussed in section 4.2, cluster 3, ε = 0.65

displays many soft foods in the positive representative images (Figure 4.4),

with some instances of soft non-food objects. Additionally, we observe many

hard and rigid objects in the negative representative images. This suggests

that this cluster also responds to soft versus hard objects and is not entirely

food related.
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Figure 4.17: Cluster 8 (ε = 0.60). Positive images contain textiles, bedding,
and other soft things. Negative images show hard objects. Voxel clusters are
primarily in the right hemisphere between EBA and FFA.

Figure 4.18: Cluster 7 (ε = 0.50). Positive images display a contrast between
a light source and a dark environment. Negative images show uniform ambient
lighting. Voxel clusters are primarily in bilateral RSC and PPA.
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4.9 Lighting-Related Cluster

When ε = 0.5, most clusters are smaller or disconnected versions of clusters

seen at higher ε values. The exception is cluster 7 (Figure 4.18), which is

unique to ε = 0.5 and includes voxels in RSC and PPA. The positive images

depict scenes with a high contrast in lighting. There is typically a dark en-

vironment with a bright light or a window that is partially illuminating the

room. Conversely, the negative images depict close-up pictures of objects with

uniform ambient lighting. This strongly suggests that this cluster of voxels

responds to images that display a high contrast in lighting.

4.10 Words

Words and signs appear in NSD, and so we were interested to see if a word-

related concept would emerge from our technique. When ε = 0.60 we found

cluster 11 to have images with objects with characters like signs and clocks.

The negation of this concept is perhaps best characterized as having strong

visual contrast over large areas of the image (e.g. a backlit traffic light or a

white desk). This cluster is bilaterally localized to the borders of V4. We note

that this cluster is adjacent but not strongly overlapping with the visual word

form area (VWFA) (McCandliss et al., 2003).
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Figure 4.19: Cluster 11 (ε = 0.60). Positive images display words and symbols,
while negative images have no discernible theme. Voxel clusters are primarily
around bilateral V4.

4.11 Representative Word Clouds

In Figure 4.20, we present word clouds containing the most frequent words

in the representative captions for each image. In most cases the word clouds

support our interpretation of each underlying cluster concept. For example

the word cloud for the lighting cluster (Figure 4.18) containing the words lit,

lamp, sun, illuminated, dark, dimly, brightly, all of which are indicative of

lighting conditions. Similarly, the repeated elements cluster (Figure 4.15) is

well-characterized by words like group, together, formation, squadron, herd,

which emphasize the concept of repetition or grouping.

In some cases, while the word clouds provide partial support for our de-

scriptions, the thematic patterns become more apparent when examining the

representative images. For example the positive representative words for the

hands cluster (Figure 4.6) contains action-oriented words like as cutting and

slicing, and the legs cluster (Figure 4.5) features words such as riding and

running. However it is difficult to identify the overall theme of hands or legs
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without the representative images.

The word clouds for the food clusters offer additional insights. The food

and color cluster (Figure 4.2) is strongly indicative of favoring the color ver-

sus grayscale concept. In contrast, the anterior food cluster (Figure 4.3) has

a strong association to food-related terms like food, eating, plate, avocado,

and feeding. However, the food and softness cluster (Figure 4.4) lacks food-

specific words despite an evident theme of food in the representative images.

Although there are some softness-related words such as sheep, fur, slush, and

snowy, there is not a strong theme of softness in the word cloud. These ob-

servations highlight the complexity of interpreting semantic representations

in data-driven analysis, motivating the importance of targeted, hypothesis-

driven experiments. For example, an fMRI experiment could be designed to

test the neural responses to food stimuli compared to alternative categories

like softness or color.
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Figure 4.20: Word clouds for all SDC clusters. The positive and negative
representative words are displayed side-by-side along with a subset of the rep-
resentative images. The text to the left identifies the corresponding flatmap
figure and our interpretation of the SDC. The vertical line SDC is omitted for
space.
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4.12 Chapter Summary

In this section we showcased a selection of SDC concept clusters that were

uncovered using our contrastive decoder and modified DBSCAN clustering al-

gorithm. Our interpretation of each cluster was based off selecting the closest

CLIP embeddings to each cluster centroid. As expected, we identified clusters

corresponding to familiar categories such as faces, places, bodies, food, color,

and orientation. Interestingly, we also discovered clusters representing object

size, softness, lighting conditions, and object repetition. These interpreta-

tions were further supported by generating representative word clouds using

CLIP text representations for each cluster (Figure 4.20). Overall, our findings

demonstrate the effectiveness of our method for identifying both expected and

novel category-selective areas in the human brain.
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Chapter 5

Conclusion

In this master’s thesis, we present a novel, data-driven approach designed to

uncover new category-selective areas in the brain and refine our understanding

of known ones. Leveraging the Natural Scenes Dataset (NSD) and the CLIP

neural network, we trained a contrastive decoder to map brain responses to

CLIP embeddings. We demonstrated that a contrastive decoder outperforms a

ridge-regression baseline, improving the decodability of under-represented im-

age categories in NSD. By applying a modified DBSCAN clustering algorithm,

we identified SDC clusters, representing dimensions of CLIP space that are de-

codable across multiple participants. Analyzing the stimuli that both activate

and deactivate these SDC clusters provided deeper insights into their func-

tions. Negative representations were particularly helpful in our understanding

of SDCs for faces, softness, food and color, object size, and numerosity. Our

method serves as a powerful hypothesis-generation technique with broad ap-

plicability to new datasets.

5.1 Broader Impacts

Methods that decode neural activity could have substantial impacts on both

neuroscience and broader society. Identifying new category-selective brain re-

gions could assist in diagnosing neurological and psychiatric conditions, surgi-

cal planning, development of brain-computer interfaces, and potentially help-

ing individuals with locked-in syndrome or related disabilities to better com-

municate.
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However, there are also significant ethical considerations with technologies

that decode neural responses. If these techniques are used outside controlled

research environments, there is a risk that they could be used for intrusive

monitoring of mental states. As with all emerging technologies, responsible

deployment is needed in order for society as a whole to maximize benefit while

mitigating risks.

5.2 Limitations and Future Work

While our approach offers many advantages, it is not without drawbacks.

Firstly, we are limited by the stimulus images that were chosen for the NSD

experiment. Although the use of a contrastive loss function helps mitigate

this, our model may still be biased toward over-represented categories in the

stimulus set. Additionally, the use of CLIP may introduce its own biases, as

some signal in the brain responses may not be fully captured by the CLIP

embeddings. The use of fMRI also presents certain limitations. Despite its

high spatial resolution, its limited temporal resolution restricts the ability to

capture rapid neural activity that may play a crucial role in visual processing.

Future work could address these limitations by utilizing larger and more di-

verse fMRI datasets, incorporating higher temporal imaging techniques such as

electroencephalogram (EEG) or electrocorticography (ECoG), and exploring

alternative stimulus representations beyond CLIP.

Additionally, our clustering approach might merge concepts within regions

of CLIP space that have relatively uniform densities, potentially missing inter-

esting SDCs. This issue could be addressed by adapting the heirarichcal ver-

sion of DBSCAN, or by using different criteria to merge the cross-participant

core points into clusters.

Furthermore, we acknowledge that our method is not a replacement for

traditional hypothesis-driven experiments. It will be important for future

work to test for alternative hypotheses for what might be driving responses

in SDC clusters. Another interesting research direction is the application of

this method to other sensory modalities beyond vision, such as auditory or
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somatosensory stimuli.
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