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Bottom propagating gravity currents resulting from full- and partial-depth lock-
release experiments are investigated as they approach and then propagate up a rising
slope. Consistent with the prediction of a WKB-like theory, the gravity current front
decelerates in a nearly uniform manner along the slope as 0.112g′s(D/H)(2 − D/H),
in which g′ is the reduced gravity, s is the slope, D is the initial lock-fluid height, and
H is the ambient fluid height. The shape of the gravity current as it decelerates over
relatively steep slopes is found to be self similar with a nearly linear decrease of the
head height between the start of the slope and up to 80% of the distance to the nose.
Some deviation from self-similar behaviour is found in cases with small s because
of the comparatively large volume of fluid in the gravity current tail that flows
downslope while the front continues to advance upwards. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4872222]

I. INTRODUCTION

A gravity current is a primarily horizontal flow caused by a density difference between the
current and the ambient fluid.1–3 Gravity currents are manifest in nature as thunderstorm outflows,
sea breezes, salt wedges in estuaries, etc. In industrial processes, they are manifest as part of chemical
mixing, accidental gaseous releases, buoyancy-driven ventilation processes, etc.2 Gravity currents
have been well studied by way of theory, laboratory experiments, and numerical simulations for
the special case in which they travel along a flat, horizontal surface4–12 or over small obstacles.13

Benjamin6 modelled steady gravity currents using a reference frame that moved with the gravity
current front. He required mass and the flow force to be conserved and thereby derived a formula
for the speed of the gravity current as a function of the height of the gravity current, the height
of the ambient fluid, and the density difference between the two fluids. Additionally, assuming
energy conservation, he predicted the current should span half the ambient depth. Benjamin’s6

was a local analysis centred on the gravity current front, whereas other investigators considered
the explicit influence of initial conditions. Rottman and Simpson9 applied shallow water theory
coupled to Benjamin’s6 front condition and they performed full-depth lock-release gravity current
experiments to show that a current moved at constant speed until it had propagated six to ten lock-
lengths. Thereafter, the flow began to decelerate and transitioned to the buoyancy-inertia self-similar
phase.9, 11, 14 Shin et al.10 developed a theory that tested well against experimental measurements
and which examined the speed of partial-depth lock-release gravity currents, presumed to be energy
conserving.
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There have been relatively few laboratory studies of gravity currents moving downslope.15–19

Britter and Linden15 showed that, even for small inclination angles, the current resulting from a
constant volume flux source propagated at constant speed far downslope as a result of the balance
between gravity, that accelerates the flow, and basal friction and entrainment, which have a retarding
influence.

Regarding upslope flow, experiments are presently being conducted by Adduce and colleagues
(personal communication) who are investigating bottom propagating gravity currents on up sloping
beds with slopes ranging from 0 to 0.027 to assess the accuracy of numerical entrainment models.
Their numerical code, which solves the two-layer shallow water equations, is an extension of that
used in an earlier study20 of horizontally propagating currents.

The purpose of this investigation is to examine the evolution of bottom propagating gravity
currents from full- and partial-depth locks as they encounter a rising uniform slope ranging from
moderately shallow to steep. Besides the fundamental interest in exploring how fast and how far the
current moves upslope, this research more broadly constitutes the start of a theoretical and laboratory
experimental program investigating the advance of sea breezes over complex coastal terrain in order
to provide a better understanding of their impact upon vegetation, industry, and communities. An
example of an agricultural application is the influence of sea breezes that bring moisture and cooler
temperatures to the inland wineries near Santa Barbara, CA.

In Sec. II, existing theories for gravity currents in uniform-depth ambients are adapted using a
WKB-type22 analysis so as to predict how the front position changes in time when passing over a
shallow slope. Section III describes the setup of the lock-release experiments. Also outlined are the
image processing algorithms and analyses used to determine the horizontal velocity, deceleration
profile, and time varying shape of the gravity currents. In Sec. IV, measurements of front position
versus time are compared against the predictions of the WKB-like theory and the parameters that
affect the shape of the gravity current during the deceleration phase are identified. Finally, Sec. V
gives a summary of key results.

II. THEORY

Within this investigation the speed, u, of an inviscid, steady-state gravity current propagating
over a horizontal surface in an ambient fluid of depth H, is written in terms of a Froude number,
FrH, by U = FrH

√
g′ H in which g′ ≡ g(ρ� − ρa)/ρa is the reduced gravity based on the current

and ambient densities, ρ� and ρa, respectively. Benjamin’s steady-state analysis6 predicted FrH =
[δ(1 − δ)(2 − δ)/(1 + δ)]1/2 in which δ ≡ h/H is the ratio of the gravity current height, h, to H.
Additionally, assuming energy conservation, Benjamin6 predicted a current should occupy half the
channel depth, i.e., δ = 1/2 and so FrH = 1/2. This prediction was reasonably well borne out in full-
depth lock-release experiments,10, 21 which found δ � 0.5 and FrH � 0.45. The minor discrepancy
between theory and experiment indicated that the energy loss associated with mixing was a small
fraction of the kinetic and available potential energies of the flow.10, 12 Benjamin6 further predicted
the speed of a steady gravity current in an infinitely deep ambient to be U = √

2g′h. However,
because his theory did not explicitly take into consideration the initial conditions, it was unable to
give a deterministic prediction for the speed of partial-depth lock-release gravity currents.

By considering the return flow into the lock as well as the advancing gravity current head, Shin
et al.10 extended Benjamin’s6 analysis to predict the speed of energy-conserving gravity currents
released from partial-depth locks. In particular, Shin et al.10 predicted the current depth to be h = D/2,
where D is the initial depth of the gravity current fluid inside the lock. By extension, they predicted
the front speed to be

U = FrD

√
g′ H , (1)

where

FrD =
√

δ(1 − δ). (2)

Explicitly, in the full-depth lock-release limit, D → H (δ → 1/2), it can be seen that FrD → 1/2,
which equals FrH in the limit corresponding to an energy conserving half-depth gravity current.
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The predictions for both h and U reduced to those of Benjamin6 for full-depth lock-release currents
(D = H). However, in the limit D � H, they found U/

√
g′h = 1 instead of

√
2. Though their

theory involved the simplifying assumptions of energy conservation and negligible vertical acceler-
ations, its predictions were in strong agreement with the results of laboratory experiments (e.g., see
Figure 14 of Shin et al.10).

Both Benjamin6 and Shin et al.10 assumed that Re � 1, so that viscosity had a negligible effect
on the average velocity of the gravity current. The same assumption is used in this investigation and
holds true provided D/H is not very small. Viscosity is known to affect instabilities that develop
along the current front and consequent mixing behind the head. Experiments have shown, however,
that these instabilities exert little influence upon the mean spreading of the current head,23 which in
turn explains the success of two-dimensional numerical simulations in modelling the bulk features
of the flow.

To predict how the current front slows down over the slope, a WKB-like approach is taken.
This is similar to that used by Sutherland et al.,24 who examined surface gravity currents shoaling
over sloping topography. It is assumed that the front deceleration along the slope is caused only
by the decreasing ambient fluid height. Consistent with studies of downslope gravity current flow,
the influence of the along-slope component of gravity is assumed to be negligible compared to that
of the return flow of the ambient above the current head. This is likely a poor assumption if D/H
is sufficiently small. However, as we demonstrate in the experiments results that follow, it appears
to be a quite good assumption for D/H ≥ 1/2. The Froude number is assumed to be a constant,
FrD = F0, while the current propagates upslope into an ambient of decreasing height, Hs(x), where x
denotes the horizontal coordinate. This assumption is equivalent to the requirement that the ratio of
the current height to the ambient depth remains constant throughout the upslope propagation (e.g.,
see Sec. 11.6.4 in Simpson2). Together with (1), in which U ≡ dx/dt , this gives

dx

dt
= F0

(
g′ Hs(x)

)1/2
. (3)

For the case of a uniform slope, Hs(x) = H − sx for x > 0, the solution of (3) is

x(t) = − 1
4 F2

0 g′st2 + U0t , (4)

in which U0 is the speed of the incident current when it first encounters the slope at t = 0. Therefore,
the current should undergo a constant deceleration whose horizontal component has magnitude
dx = F2

0 g′s/2. Using (2), this is given in terms of D and H by

dx = 1
2 g′sδ(1 − δ) = 1

8 g′s
D

H

(
2 − D

H

)
. (5)

In particular, for full-depth lock-release currents (D/H = 1), dx = g′s/8.
For any value of D/H, the maximum horizontal distance traversed by the gravity current as it

runs upslope is

xmax = U 2
0

δ(1 − δ)g′s
= H

s
, (6)

in which the last expression is derived using (1). The corresponding maximum height measured from
the tank bottom is zmax = sxmax = H. Of course if D/H is small, in which case the initial available
potential energy of lock-fluid is also small, the front is not expected to rise up to the top of the slope.
This serves as a reminder that the neglect of the along-slope component of g′ in the derivation of
(5) and (6) is reasonable only in the limit of sufficiently large D/H.

An alternate prediction for the deceleration that implicitly accounts for the effect of along-slope
gravitational deceleration requires that the velocity of a gravity current must decrease as its kinetic
energy is converted to potential energy. Heuristically one might expect the current to rise upslope a
vertical distance D, equal to its initial height in the lock. Assuming the current undergoes a constant
deceleration as it rises upslope and that it stops at a vertical height D, the horizontal deceleration is
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FIG. 1. Schematic side-view of the setup before the start of an experiment with salt water of density ρ� and depth D (dark
grey) located behind a gate in a lock of length L�. A uniform slope of base length Ls and height H is situated to the right
(shaded black beneath the slope).

predicted to be

dx = U 2
0

2(D/s)
= 1

8 g′s
(

2 − D

H

)
. (7)

Predictions (5) and (7) will be tested through lab experiments.

III. EXPERIMENT SETUP AND ANALYSIS

A. Tank setup

The setup for these experiments is illustrated in Figure 1. Experiments were performed in a long
rectangular glass tank of interior length L = 197.5 cm, width 17.6 cm, and total height 48.5 cm. In
all cases, the tank was filled with fresh water to a height of H = 30.0 cm. A rigid plastic sheet, which
acted as a false bottom spanning the tank width, was then inserted with one end at the surface at
the right end of the tank and the other end touching the bottom a distance Ls from the right wall. Ls

ranged from 26.5 cm to 120.3 cm depending upon the length of the plastic sheet used. The resulting
constant slope, s, ranged from 0.25 to 1.13. The precision fit of the sheet pressing against the tank
sidewalls held it in place during the setup and execution of the experiment.

Experiments were performed with gravity currents released from either full- or partial-depth
locks. In a full-depth lock-release experiment, a water-tight gate was inserted into a vertical track
located a distance L� = 28.4 cm from the left wall of the tank. Thus, the lock spanned approximately
1/6 the tank length. Because a gravity current is expected to propagate at constant speed for at least
six lock-lengths along a horizontal bottom,9 any deceleration of the gravity current observed in the
experiments was attributed to upslope propagation. Indeed, in four experiments conducted with the
slope placed closer to the lock, the results were identical even when L − L� − Ls was reduced by
half.

After the gate was inserted, a predetermined mass of salt was mixed into the lock and the
resulting lock-density, ρ�, was measured using an Anton Paar DMA 4500 density meter, which had
a precision of 0.0001 g/cm3. The lock density ranged from 1.0010 g/cm3 to 1.0500 g/cm3 whereas
the ambient fresh water typically had a density of 0.9985 g/cm3.

The lock-fluid was dyed with a small amount of food colouring for the purposes of flow
visualization. The majority of the experiments were run with moderately shallow values of s, and
with relatively small values of g′. These experiments make up the data points with a deceleration
of 1.5 cm/s2 or less. The experiments conducted with larger values of s and g′, though less directly
applicable to environmental flows, served to validate (5) for a broad range of these parameters.

Partial-depth lock-release experiments were also run using a similar procedure to the one
described above. However, for these experiments the gate contained an aperture located just below
the free surface which was covered with a sponge and initially sealed with electrical tape. Salt was
mixed into the lock-fluid as in the full-depth lock-release experiments. The seal was then removed
from the aperture and salty fluid was slowly siphoned out of the bottom of the lock. Replacing the
extracted salt water, fresh ambient fluid flowed through the aperture into the top of the lock. The

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.128.216.34 On: Fri, 27 May

2016 18:17:57



046605-5 Marleau, Flynn, and Sutherland Phys. Fluids 26, 046605 (2014)

sponge served to minimize mixing between the fresh and salt water layers. Siphoning continued
until the salt water in the lock fell to its desired depth, D, measured to an accuracy of 1 cm
(Figure 1). Partial-depth experiments were performed with D/H = 0.50 and 0.75. The corresponding
Reynolds numbers calculated from Re = D

√
g′ D/ν, ranged between 8.6 × 103 and 1.3 × 105.

Experiments with smaller D/H were not performed in order to ensure that the Reynolds number
remained sufficiently large so that viscous effects had a negligible impact upon the observed upslope
deceleration.

For all of the experiments, a bank of fluorescent bulbs was placed behind the tank and translucent
white sheets were placed in front of these to provide nearly uniform background illumination. Movies
of the experiments were recorded by a Canon EOS Rebel T3i digital camera situated 3 m in front of
the tank midway along its length and midway between the free surface and bottom. The field-of-view
was set so that the entire tank length was included.

B. Observations and analyses

At the beginning of each experiment, the gate was swiftly extracted. The dense lock-fluid
collapsed into the ambient and travelled as a classical gravity current moving along the horizontal
bottom of the tank at constant speed until reaching the slope. Thereafter, the current progressed up
the slope in the x′-direction with x = x′ = 0 denoting the base of the slope (see Figure 1). During this
deceleration, particularly for the shallow-slope experiments, a progressively larger portion of the
fluid fell back down the slope while the ever-thinning gravity current front continued to propagate
in the positive x′ direction. The gravity current front eventually stopped and subsequently ran back
down the slope.

Figure 2 shows the evolution of a gravity current in a typical full-depth lock-release experiment.
Panels (a), (b), and (c) show snapshots of the experiment at times prior to the removal of the
gate, during horizontal propagation upon first reaching the slope, and during upslope propagation,
respectively. Figure 2(b) shows that the head height of the gravity current over the horizontal surface
is approximately half the ambient depth, as predicted from Benjamin’s6 energy-conserving theory.
Figure 2(c) shows that the shape of the gravity current thins as it propagates upslope. This evolution
was common for all experiments.

To evaluate the position of the gravity current front, time-series were constructed from movies
of the experiments. Horizontal time-series were generated by extracting horizontal slices from
successive frames, the slice being located 1 cm above the bottom of the tank so as to avoid including
in the image any fluid that had leaked from the lock prior to the gate extraction. The slices spanned a
horizontal distance L − Ls from the left-end wall of the tank. Diagonal time-series were constructed
from diagonal slices taken 0.5 cm above the sloping false-bottom. The slices in question began at
the tank bottom, ran along the sloping line segment x ′ = x

√
s2 + 1, and ended at the free surface.

Results were plotted with the horizontal co-ordinate system having x < 0 before the slope and
x′ > 0 along the slope (Figures 2(d) and 2(e)). By convention, time was set so that the front reached
the base of the slope (at x = x′ = 0) at time t = 0.

Using the horizontal and diagonal time-series from each experiment, data points were extracted
and used to create graphs of time versus front position (insets in Figures 2(d) and 2(e)). The data
points were obtained by visually identifying the interface between the dyed lock-fluid and the clear
ambient. In cases for which the location of the interface was unclear, its position was estimated to
be where the dye had an intensity approximately equal to the average dye intensity of the ambient
and lock fluids.

The front speed, u0, of the gravity current as it approached the slope was found from the slope
of the least-squares best-fit line through the data points of x versus t for the nose position taken
from the horizontal time-series image. For example, from the best-fit line through the data shown in
Figure 2(d) (inset), it was found that u0 = 3.74 cm/s. The corresponding Froude number was 0.45
for this experiment.

The deceleration of the front was found from the least-squares best-fit quadratic that was fit
to the data points corresponding to the current front in the diagonal time-series. Explicitly, the
along slope deceleration, dx ′ , was set to be twice the coefficient of the t2 term and the horizontal
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FIG. 2. Results of a full-depth lock-release experiment with D = H = 30.0 cm, ρ� = 1.001 g/cm3 and s = 0.25. Snapshots
show the gravity current at times (a) t = −10 s, (b) 0 s, and (c) 30 s with fields of view measuring 197.5 cm long × 30.2 cm
tall. (d) Front position as a function of time, t, prior to encountering the slope shown as a horizontal time-series and a plot
of the extracted data points with the dashed least-squares best-fit line (inset). (e) Front position as a function of time as the
gravity current propagated upslope shown as a diagonal time-series and a plot of the extracted data points overlying the
dashed least-squares best-fit quadratic curve (inset).

component of this deceleration was set to be dx = dx ′/
√

s2 + 1. For example, from the data shown in
Figure 2(e) (inset) the along slope deceleration was found to be dx ′ = 0.062 cm/s2 and the horizontal
deceleration was found to be dx = 0.060 cm/s2.

The evolving shape of the gravity current head between the nose and the base of the slope was
examined by comparing the profiles of gravity current height above the slope, h(x, t), measured
at five equally spaced times, where tmax corresponds to the point where the front ceased moving
upslope. For each value of t, h(x, t) was measured at 20 horizontal positions, x, over the slope. The
function was then rescaled first by dividing h by the gravity current height at the base of the slope,
h0(t), and then by dividing x by the front position xf(t). These definitions of h, h0, and xf are illustrated
in Figure 3.

IV. RESULTS

A. Horizontal speed before the slope

Consistent with related experimental9, 10 and numerical studies25 of bottom-propagating gravity
currents on horizontal surfaces, the gravity current front attained a constant speed within 1 s after
removal of the gate and it maintained that speed until reaching the base of the slope (e.g., see
Figure 2(d)). For all experiments, the front speed, u0, was measured and the corresponding Froude
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h(x, t)
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FIG. 3. Schematic indicating variables used to nondimensionalize the gravity current shape.

number, FrD, was calculated using (1). This was compared to existing theoretical and experimental
values. The Froude numbers of the full-depth lock-release experiments had an average value of FrD

= 0.45 ± 0.02. This was slightly smaller than the value predicted by Benjamin6 but was consistent
with other experimental findings.7, 10, 11 The Froude numbers for the D/H = 3/4 and D/H = 1/2
experiments had average values of FrD = 0.46 ± 0.03 and 0.40 ± 0.04, respectively. These results
are also consistent, within error, with the measurements made by Shin et al.,10 who found FrD = 0.48
and 0.44, respectively, and are consistent with the predictions given by (2) of FrD = 0.48 and 0.43,
respectively. For both full- and partial-depth lock-release experiments, energy loss due to mixing is
believed to be the reason that the experimental results are over-predicted by theory.

B. Front deceleration along the slope

In all experiments, the gravity current front slowed down immediately upon reaching the slope.
This immediate deceleration was most obvious in cases with larger values of s and g′. Furthermore,
between first encountering the slope and finally coming to rest, the deceleration of the front was
nearly uniform. As shown in Figure 4, the measured deceleration scales with g′, s, and D/H in a
way that is consistent with the theoretical prediction given by (5). No systematic deviation from this
prediction was found with s. The dashed line of Figure 4 is the least-squares best-fit line of the entire
data set and has a slope of 0.112 ± 0.002 leading to the following empirical relationship for the rate
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FIG. 4. Deceleration of the gravity current head found from a multitude of experiments that varied the slope, s, from 0.24 to
1.14 and the reduced gravity, g′, from 2 g/cm3 to 73 g/cm3. The dotted line is a least-squares line of best-fit. The error of
each data point is approximately equal to the size of the markers in the main figure.
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FIG. 5. Comparison of gravity current shapes in five different experiments with indicated D/H, s, and g′. Snapshots show
gravity currents at the instant the front has reached its maximum upslope elevation. Plots of nondimensional height vs
nondimensional horizontal position (right) are given at five different times (t∗ = 0.2, 0.4, 0.6, 0.8, 1.0) as indicated by the
legend in the top-right plot. (a) D/H = 1, s = 0.25, g′ = 22 g/cm2; (b) D/H = 1, s = 0.25, g′ = 44 g/cm2; (c) D/H = 1,
s = 0.58, g′ = 44 g/cm2; (d) D/H = 1, s = 1.1, g′ = 52 g/cm2; and (e) D/H = 1

2 , s = 1.1, g′ = 44 g/cm2.
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of deceleration of the gravity current front:

dx = (0.112 ± 0.002)g′s
(

D

H

)(
2 − D

H

)
. (8)

The numerical prefactor shows robust agreement with the predicted value of 1/8, which is remarkable
considering the relative simplicity of the theory outlined in Sec. II.

A comparison of the experimental results and the prediction of (7) shows significantly greater
scatter. In particular, the deceleration predicted by (7) is double that given by (5) in the case
D = H/2. Therefore, the open squares in Fig. 4 would lie far to the right of the corresponding dashed
line if (7) was used in place of (5).

C. Shape analysis

Figure 5 depicts the evolution of the gravity current shape during upslope propagation for
five different experiments. The snapshot image on the left side of each panel shows the gravity
current at its maximum upslope position. In each case, it can be seen that the gravity current fluid
attains a height below H and slightly different than D, its initial height inside the lock. From many
experiments, it was found that the gravity current fronts reached average heights of zmax = 0.86D
(0.86H), 0.99D (0.74H), and 1.15D (0.58H) for cases with D/H = 1, 0.75, and 0.5, respectively. In
light of the prediction following from (5) and (6) that zmax = H, one might expect larger measured
values of zmax. However, the prediction neglects along-slope gravitational deceleration and viscosity,
both of which exert a nontrivial influence over and above that associated with the ambient return
flow as the front approaches its maximum height. The measured deceleration nonetheless agrees
well with (5) because we apply a least-squares quadratic best fit to plots of the front position vs.
time; this method is statistically weighted toward determining the deceleration over the relatively
long times when viscosity remains comparatively unimportant.

The gravity current shape is much thinner and more elongated on the shallower slopes as
compared to the thicker gravity currents observed on steep slopes. The plots shown on the right side
of each panel in Figure 5 depict the nondimensional gravity current height versus the nondimensional
horizontal position at various nondimensional times, t∗, where t∗ = t/tmax. The overlap of the
rescaled gravity current shapes indicates that the gravity current maintains a nearly self-similar
shape during much of its upslope propagation. Specifically, in all cases shown, the decrease of the
nondimensionalized head height was linear between the start of the slope and up to approximately
80% of the distance to the nose and up until t∗ = 0.8. The self-similarity is most prominent when the
slope is steep (Figures 5(c)–5(e)) in which case the deceleration time was brief and little fluid flowed
downslope prior to the front reversing direction from upslope to downslope flow. Conversely, in
experiments with a shallow slope (Figures 5(a) and 5(b)), the front took a longer time to decelerate,
in which case a larger volume of dense fluid from behind the front reversed direction and flowed
downslope before the front reached its maximum height. This downslope flow increased the value
of h0(t), resulting in smaller values of h/h0 and a deviation from the self-similar shape evident at
earlier times or for larger values of s.

V. DISCUSSION AND CONCLUSIONS

An examination of Boussinesq, high Reynolds number gravity currents propagating up-slope
was conducted through rectilinear full- and partial-depth lock-release experiments with various
slopes and various values of reduced gravity. The dynamics of interest here are qualitatively differ-
ent from those associated with downslope flow; a gravity current front propagating upslope must
decelerate and ultimately reverse direction, whereas a front moving downstream may reach a constant
velocity when gravity exactly balances the influence of entrainment and basal friction.

A WKB-like theory was developed as an extension of the existing theory6, 10, 24 to determine a
heuristic prediction for the along slope deceleration of the gravity current flow. Consistent with this
theory, it was found that the gravity current front propagated at a constant velocity along the horizontal
portion of the tank and experienced near constant deceleration as soon as it began propagating
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upslope. More quantitatively, the relationship for the horizontal component of deceleration was
best estimated by (5): dx = g′s(D/H)(2 − D/H)/8. The coefficient of 1/8 agrees well with the
experimentally measured value of 0.112 ± 0.002. By comparison, Sutherland et al.24 found that a
full-depth lock-release surface gravity current propagating over a bottom slope decelerated as dx =
0.31g′s. The magnitude of deceleration was larger in these experiments because the deceleration did
not start until the nose was approximately halfway over the slope and, therefore, the front stopped
over a shorter distance.

The shape analysis revealed that the gravity current head steadily reduced in height as it
propagated upslope. For steep slopes (Figures 5(c)–5(e)) its shape, being scaled by the gravity
current height at the base of the slope and the along-slope length, showed strong self-similarity. For
shallow slopes, this self-similarity was less robust.

The range of parameters explored here provides a starting point for understanding gravity
currents propagating in complex environments occurring in industry and in the environment. On-
going work is examining gravity currents propagating in V-shaped canyons (C. S. Jones, personal
communication). Future work will explore gravity currents propagating upslope in ambient fluid of
nonuniform density to provide a model that more realistically captures coastal sea breezes interacting
with atmospheric inversions.
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