
Dark Hex: A Large Scale Imperfect Information Game

by

Mustafa Bedir Tapkan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mustafa Bedir Tapkan, 2022

Abstract

Imperfect information games model many large-scale real-world problems. Hex

is the classic two-player zero-sum no-draw connection game where each player

wants to join their two sides. Dark Hex is an imperfect information version of

Hex in which each player sees only their own moves. Finding Nash equilibrium

for Dark Hex problems is computationally challenging, as the number of possi-

ble strategies for each player is large: for example, for the 4×3 board, the num-

ber of pure strategies is around 10113. In this work, we use a variety of methods

to find improved strategies for 4×3 Dark Hex. To start, we discuss different

versions of Dark Hex. After that we introduce a strategy for both players that

improve the current results of the ϵ-Nash equilibrium of Dark Hex on the 4×3

board; previously it was known that the first player can win with a probability

0.112 and second player with 0.732 giving ϵ = 0.156. We first improve these

bounds with new handcrafted strategies to 0.1428 and 0.75 respectively in ab-

stract game, ϵ = 0.107. We then further improve the strategies using a player,

trained by Monte Carlo Counterfactual Regret Minimization using probability

one pruning and imperfect recall abstraction. We introduce a new simplifica-

tion approach where we limit the actions based on their probabilities, the new

strategies introduced using simplification over the MCCFR strategies give us

an improved ϵ = 0.01 in the abstract game. We then introduce probability

smoothing with extra parameters. The final results give use 0.791 and 0.205

for players respectively, giving us ϵ = 0.002, in the abstract game. We dis-

cuss the differences between handcrafted and computer-generated strategies.

ii

Lastly, we compare players who were trained using Neural Fictitious Self-Play

and Monte Carlo Counterfactual Regret Minimization in different abstraction

and pruning settings, we fashion a round-robin tournament and report the

results; comparing the strength of all the trained players.

iii

To my grandpa

For teaching me to enjoy learning.

iv

A wizard is never late, nor is he early, he arrives precisely when he means to.

– Gandalf (Lord of the Rings, J.R.R. Tolkien)

v

Acknowledgements

I started my journey in Computer Science years back on a freshman table.

After many discussions and long nights, I have come to the University of Al-

berta to delve further into the things I am most interested in. Now concluding

another endeavour in the form of this thesis I have many to thank for reaching

here.

First I would like to tell you how much I appreciate having such supportive

supervisors, Ryan Hayward and Martin Mueller. They have provided me with

everything they could and further extended their friendships. Thank you for

being like second parents to me on this long and rocky road. They are the

main reason I have been able to reach the end of this passage.

Having experts on the topic you are trying to research around you is one of

the most crucial help. I was really lucky to have such amazing people on my

reach; Marc Lanctot and Dustin Morill. I am grateful that I have met these

resourceful people who have given me direction whenever I needed it, they

have guided me in the best way possible, I could not have wished for better

mentors.

These past years have had hard things to deal with; getting used to the

Edmonton colds and rough years of COVID. I was lucky enough to have many

great friendships that kept me sane during these tough times and made me

love this city. They were there when I got sick, failed to defend, or just didn’t

have enough energy to continue what I did. Having your friendship has been

the greatest gift in the past years; Nikoo Aghaei, Kiarash Aghakasiri, Hamza

Emra, Amirmohsen Sattarifard, Parnian Mehinrad, Liam Peet-Pare, Alexis

Arrigoni, Tom Pinder, Katie Burak, Mahtab Faroukh and Farnaz Kohankhaki.

You made every part of my time in Edmonton exceptional.

vi

Support from a distance is not an easy task by any means, when I am in

the most troubling situations my family was always there for me. Regardless

of their problems they have provided me with eyes and ears to bother on every

occasion. Especially my sister Nilgun Tapkan and my brother Tarik Bergstrom,

who encouraged me to learn and do more at every corner. My family was not

the only distant support I had, many friends along the way gave me fortitude,

some of them, in no particular order, are Mikhail Mekhedkhin-Meskhi, Natalie

Novak-Olszewski, Hediye Rostami and Ali Kaya.

I owe everything I have today to my teachers along the way. There have

been many, but I would like to extend my gratitude towards two in particular:

Ekrem Uzun, who thought me to love learning, and do what I love, and Kemal

Aydin, who became a lifelong mentor and a valuable friend, and thought me

to be organized and dedicated in life. I appreciate every minute you spent

with me.

vii

Contents

1 Introduction 1

2 Background and Related Work 8
2.1 Game Theory . 8

2.1.1 Hex . 13
2.1.2 Dark Hex . 14

2.2 Counterfactual Regret Minimization 15
2.2.1 Regret and Regret Minimization 16
2.2.2 Sequential Games and CFR 17
2.2.3 Monte Carlo Counterfactual Regret Minimization . . . 19
2.2.4 Outcome Sampling . 20

2.3 Reinforcement Learning . 21
2.4 Neural Fictitious Self-Play . 22
2.5 Imperfect Recall . 23

3 Analysis of Dark Hex Using Game Theory 24
3.1 Dark Hex Versions . 24
3.2 Dark Hex Strategy Generator 27
3.3 Evaluation: Best Response . 29
3.4 New Strategies and Improved Bounds for 4×3 Dark Hex . . . 31

3.4.1 Notation . 32
3.4.2 Improved First Player Strategy for 4×3 Dark Hex . . . 34
3.4.3 Improved Second Player Strategy for Dark Hex 38

4 Self-Learning Players: Reinforcement Learning and Regret
Based Methods 43
4.1 Imperfect Recall Dark Hex . 44
4.2 Probability One Win States 45
4.3 NFSP for Dark Hex . 48
4.4 MCCFR for Dark Hex . 48
4.5 Comparing Player Strengths: Round-Robin Arena 49
4.6 Better Strategies for 4×3 Dark Hex using Monte Carlo CFR . 50
4.7 SIP+: Smooth SIP . 57

5 Conclusion 58
5.1 Future Work . 59

References 61

Appendix A Appendix 65
A.1 Analysis on p-one . 65

viii

List of Tables

2.1 Rock-Paper-Scissors payoff table. Players pick a move simulta-
neously and get their corresponding payoff. The game is zero-sum. 9

2.2 A simplified zero-sum payoff table shows the payoff for the row
player only. The negated value is the payoff for the column player. 9

2.3 Prisoner’s dilemma. 10

4.1 Comparison of Perfect Recall and Imperfect Recall Dark Hex
on small board sizes. The game size refers to the number of
information states for every player. 44

ix

List of Figures

1.1 An empty Hex board. 3

2.1 Representing an extensive form game as a tree. The root is the
initial game state, an edge represents an action by one player
and nodes are game states. Leaf nodes are terminal states of
the game. 12

2.2 Information set tree representation with multiple histories. Both
paths end up in the same information state, but the actions are
different. 13

2.3 A 4x4 hex game. The cells are labeled with letters representing
the (diagonal) columns and numbers representing the rows. . . 14

2.4 An example game of Dark Hex where black wins on a 3×3
board. A) Black plays on a3. The white player’s board is not
updated, but the number of hidden stones h is increased. B)
White plays in the center updating their own board only. C)
Black tries to play in the center as well, resulting in failure.
Black now knows that there is an opponent stone on b2. D)
Black makes a different move, which succeeds. E) White tries
a2. F) White plays b1. G) Black plays on a1 and wins the game. 15

2.5 The dynamics of a reinforcement learning system. 22

3.1 A classic Dark Hex game. Both players boards are given for
each move. The most current move is shown with a red line
around the stone. The number of hidden stones for each player
is shown on the right bottom corner of their boards. A) Black
starts with a3. B) White plays b2. C) Black plays b2 and
discovers (collision) the white stone. D) Black makes another
move, a2. E) White discovers the black stone on a2. F) White
plays again, c2. G) Black wins with a1. 25

3.2 The abrupt Dark Hex version of the game shown in Figure 3.1. h
differs from the classic Dark Hex. The player often has no clear
knowledge of the number of opponent stones on the board. A)
Black plays a3. B) White plays b2. C) Black tries b2 and fails.
D) White plays a2 E) Black tries a2 and fails. F) White plays
c2 and wins. 26

x

3.3 DSaGe user interface with a 2×2 Dark Hex example. A) Main
page. B) New Game prompt. Initial board position, row and
column sizes must be entered as well as which player the strat-
egy is for, and whether to use isomorphic states. C) Past entries
can be searched and found in the search history, and the state
can be set to any selected position. D) After all the necessary
input is given, DSaGe prompts the user to save the strategy.
E) A printed version of the dictionary output, in the form of
”information state: (action, probability)”. 28

3.4 Generating a first player strategy on the 2×2 board using DSaGe.
A) Play a1 with probability 0.3 and b1 with 0.7. B) Since there
is no possibility for a collision any move succeeds. For the next
move we play a2. There is no probability given, so DSaGe
assumes a probability of 1. C) If a2 is successful the game
terminates, otherwise we need to provide another move. We
continue with the non-terminated branch, which is a collision,
and play b2. D) After all the branches from first move b1 are
terminated, DSaGe moves back to the a1 branch. We play a2
for this information state. E) If a2 succeeds the game termi-
nates, otherwise we still to provide the next move. Black has
no chance to win this game, so we enter ! or press random on
the UI for randomly completing this branch of the strategy. . . 29

3.5 An example state where move ordering effects the outcome of
the best responder and the player. 30

3.6 Visual representation of the strategy Sb. Circles present the
next moves with their probabilities in the middle. A) Sub-
strategy {a1(...) : 0.3, b1(...) : 0.7}. B) Sub-strategy a1(a2¬(...)).
C) Sub-strategy a1(a2¬(!)). D-E) Sub-strategy b1({a2|b2}). . 33

3.7 An empty 4×3 Dark Hex board. 34
3.8 Isomorphic pairs on the 4×3 board marked with the same color.

The pairs are: (a1, c4), (b1, b4), (c1, a4), (a2, c3), (b2, b3), (c2, a3). 34
3.9 Black connections for the continuation on Sb2

1 . The figure sum-
marizes the idea of the strategy. After b2, Black moves c3, a4
to get the connections y and z respectively, or moves on a x.
The filled circle represents a move that was already played, and
empty circles represent the possible connection stones for Black. 35

3.10 The game between Sb2
1 and a Ab-BR strategy against S1. Each

arrow represents a move. The circles represent the action taken
by the player of that color and its location. Fractions next to
the arrows show the probability of the given moves. Boards
in the same box represent the information state for black and
white players (black left, white right). The color of the boxes
shows which player board is updated last. If no box surrounds
the boards, the state is terminal. Figure 3.11 shows the rest of
the strategy continuing from the label Strategy X. 37

3.11 Strategy X, continuation of Figure 3.10. This branch contains
the only win for the black player. 38

3.12 Visual representation for the beginning move sequence (follow-
ing the edge). After c1, White tries to x1 and connects with y.
If x1 fails, White moves to x2 and connects with z. 38

xi

3.13 A) a1, a2 block. If considering White moves of c1, b1, Black
leaving one of these cells empty will result in a White win. B)
b1, b2 block. Without letting White move to b1, Black blocks
White forcing him to play on the other edge. C) b1, a2, a3 block.
White will discover all the black stones, and will be forced to
play a4. This is not a good blocking for Black. Even though
the win for White is delayed, it still is guaranteed. After White
a4, Black must play b3 to interrupt the immediate win. White
then follows the bottom edge and wins. These are the only
move sequences for Black to stop White from winning with the
first three successful moves. 39

3.14 A sample game when Black does not use the blocks from Figure
3.13. White wins by just following a shortest path to the left
edge. 40

3.15 A sample information state. White players view, we assume
that White has discovered all the black stones. White must
select connecting x’s or y’s as his next move. If Black selects
the same pair Black wins, otherwise White wins. The winning
probability for either player from this position is 0.5. 40

3.16 Visual representation of the game between S2 and a Ab-BR
strategy against S2. Each arrow represents a move. The circles
represent the action taken by the player of that color and its
location. Fractions next to the arrows show the probability of
the given moves. Boards in the same box represent the informa-
tion state for black and white players (Black on the left, White
on the right). The color of the boxes shows which player board
was updated last. No box surrounds the terminal state. Figures
3.17 and 3.18 show the rest of the strategy continuing from the
labels Strategy Y and Strategy Z. 41

3.17 Strategy Y, continuation of Figure 3.16. Ab-BR player (black)
gives up this branch, and focuses on Strategy Z instead. Black
does not try to stop the connection on the bottom edge. . . . 41

3.18 Strategy Z, continuation of Figure 3.16. Black wins this branch
with 0.5 probability. This gives the Ab-BR player a 0.25 prob-
ability to win overall. 41

4.1 Comparison of perfect and imperfect recall on a 3×2 Dark Hex
board. 45

4.2 Two pONE examples. Both figures show the black player’s
board. h is the number of hidden stones. 46

4.3 A pONE example on the 4×3 board. There are no hidden stones
and black is to play. Black plays b1 to block white. After White
move, Black tries c3. If c3 is occupied, plays b3 and wins with
probability one: if c3 is not occupied, Black tries b4 and c4. If
either are free black wins; if not, Black plays a4 and wins by
connecting a3 or b3. 46

4.4 The effect of pONE on traversing the 4×3 board. 47
4.5 Ranking for players playing as black and white on the 4×3

board. Each player played 105 games against all the other op-
ponents. Players receive +1 for a win and -1 for a loss. 50

4.6 The SIP strategy for Black. Figures 4.7 and 4.8 show the con-
tinuations of the strategy. 52

4.7 Continuation of Figure 4.6. 52
4.8 Continuation of Figure 4.6. 53

xii

4.9 The SIP strategy for White. Figure 4.10 and 4.11 show the
continuations C and D. 54

4.10 Sub-game C. Note the two Black wins in the bottom right corner. 55
4.11 Sub-game D. Black cannot win. Black wasted two moves at the

beginning on the top when White plays a4 so White wins on
the bottom. 56

4.12 Ranking for players including SIP. 56
4.13 Ranking for players including SIP+. 57

A.1 Number of p-one for each player given the number of hidden
stones. 65

xiii

Chapter 1

Introduction

The quest to develop machines that can behave in an intelligent manner has

captured the imagination of researchers for decades. Research into modern

artificial intelligence (AI) traces back to Alan Turing in the mid 1900s. In re-

cent years there has been a surge in interest in AI and, in particular machine

learning, as deep learning algorithms proved to be capable of solving problems

previously too challenging for machines. The question of what constitutes

intelligence is a subject of philosophical debate, and it has been defined in

different ways by different people. Rich Sutton, building on John McCarthy’s

definition of intelligence, states that “Intelligence is the computational part of

the ability to achieve goals in the world”, and, further, that “A goal achieving

system is one that is more usefully understood in terms of outcomes than in

terms of mechanisms.” [1], [2]. The last century has seen enormous progress

towards this goal of understanding, and building, the computational ability to

achieve goals in the world, and has led to some of the most exciting techno-

logical developments in the world today [3]–[9].

The AI research community contains competing paradigms and conceptual-

izations of what it means for a machine to be intelligent and, more importantly,

the best way to achieve this intelligence. One perspective, which has proven

useful in reinforcement learning (RL), is to consider an agent who acts in an

environment and makes decisions based on the dynamics of this environment,

possibly in the presence of other agents. Ultimately we would like to build

an agent that can effectively make decisions in the real world, but due to the

1

complexity of real world dynamics, it is often beneficial to study agents in

more simple and controlled environments. Games provide an ideal setting for

studying intelligence as their well-defined rules and simple dynamics allow for

systematic and incremental research. Further, the ability to perfectly simulate

games allows us to leverage the computational power of modern computers to

train agents in ways that are not possible if we rely on the real world as our

environment. It is for these reasons that games, both board games and video

games, have played an enormously important role in AI research.

Game theory, developed in its modern form in the 1950s by John Nash,

John Von Neumann and others, studies interactions between agents with the

use of mathematical models. While not intrinsically connected to research

in AI, game theory provides a useful framework for understanding dynamics

within games with well defined rules. Within game theory there are a variety

of types of games, each with their own distinct properties. Since this thesis

focuses on the game of Dark Hex, we restrict our attention to two-player

extensive form zero sum games.

Such games can be categorized based on the information the agents have:

perfect-information and imperfect-information games. In perfect information

games, a player has complete knowledge of the game state before making a

decision. In imperfect information games, the agents have partial information

about the environment or the other agents. Chess is a popular example of a

perfect information game where both players have perfect knowledge of the

board and the possible moves for the opponent. On the other hand, Poker

is an imperfect information game where a player only has partial informa-

tion about the opponent’s hand. Research on imperfect information games is

more challenging due to this partial knowledge. In this thesis we focus on an

imperfect information version of the game Hex.

2

a b c
1
2
3
4

b1a1

a2

c1

c2

a3 b3 c3
a4 b4 c4

b2

Figure 1.1: An empty Hex board.

Hex is a game with a rich but relatively short history. It was invented by

Piet Hein in 1942 [10], and was made popular by the famous mathematician

John Nash. Hex is a two-player zero-sum perfect information game with no

draw [11]. The game is played on an n×m board with hexagonal cells where

each player tries to connect their sides of the board (east to west or north to

south) before the opponent does so. The black player moves first, and players

take turns placing a stone of their colour on the board until one player achieves

an uninterrupted connection.

Dark Hex is an imperfect information version of the game Hex. It is played

on two identical Hex boards. Players sit in a fashion that neither can see their

opponent’s board. An umpire knows both players’ boards. When a player

wants to make a move, the umpire lets them place a stone or tells them if

the cell is occupied, in which case player chooses another cell to play. Games

of this kind are commonly called phantom games, blind games or as in chess

kriegspiel. This family of games is, in particular, hard to deal with due to

its immense number of games possible. Therefore there is limited research on

such games. Even tiny boards have massive complexity. For a 4x3 hex board

the number of strategies is roughly 1.506× 10113 [12].

A Nash Equilibrium is an equilibrium value associated with player strate-

gies where no player can benefit from deviating from their strategy unilaterally.

Finding a Nash Equilibrium in a game means that both players did the best

they can do (in zero-sum two-player games), considering the other player is

3

not changing their strategy. However, finding the exact Nash Equilibrium is

usually unfeasible for large games because of its need to traverse every game

possible. Nevertheless, a significant amount of work was put in to either ap-

proximate or calculate the Nash Equilibria for games such as Poker and Liars

Dice [13], [14].

An ϵ-Nash Equilibrium is an approximate Nash Equilibrium. The measure

ϵ represents how distant the given strategy is from a Nash Equilibrium strategy

in terms of value. A best response strategy is a strategy tailored to win as

much as possible against a specific strategy. We can measure the success of a

strategy by finding the expected win rate against its best response strategy.

This measure is called the best response value.

Research in games

Research in games has been a common goal and interest of the AI community

for many years [15], [16]. Most of this effort has been directed to perfect

information games [4], [17], [18]. Research on imperfect information games

was elevated after the development of sequence-form linear programming [19]

in 1994.

Poker has been the most popular family of games in this domain. Kuhn

Poker [20] and similar variants [21], [22] have made it possible to test ideas

on smaller games in the same family. Around the year 2000 computer Poker

research became the interest of many researchers [23]–[28]. The University

of Alberta has developed poker AIs using the sequence-form LP mentioned

before. Many competitions and poker programs were developed after 2000.

Competitions with some of the world’s strongest human players in two-player

poker games were held where the AI beat all the players in the end [29], [30].

A regret-based algorithm called Counterfactual Regret Minimization was the

main technical achievement [31]. Many variants and descendant algorithms

further improved the CFR algorithm [32]–[34]. In 2016 a CFR-based algorithm

beat a group of professional Poker players in the full-size No-Limit Texas

Hold’em Poker game [3]. In recent years, the popularity of deep learning has

also carried on to CFR algorithms [34]–[36].

4

Abstraction and a Strong Dark Hex Player

For large games, a common approach is to use an abstraction of the game that

holds its basic structure in only a fraction of the size. A solution to this new

abstraction then gets translated back to the original version. If the abstraction

inherits the strategical properties of the game, the newfound strategy performs

well in the original game as well. There is an extensive research on this tra-

ditional approach [28], [37]–[40]. This method can be flawed since there are

cases where abstractions that perform better against average play are more

exploitable [37].

One property, in particular, makes abstraction in imperfect information

games harder: The abstraction might never reach some states, and not make

use of the actions that are needed in order to reach the equilibrium point.

A strategy that was never encountered might be necessary to beat another

player’s strategy. Therefore one would need extensive game-specific knowledge

to craft a well-designed abstraction of the game.

We use two different abstraction techniques in this work. The first one is

called imperfect recall [41]. We ignore the history of the game and only use

the current board state as the information state. This reduces the memory

requirements of any algorithm by orders of magnitude. We also use a neural

network embedded in Neural Fictitious Self Play algorithm, which is the second

abstraction.

Contributions

The main contributions of this thesis are:

• A precise description and analysis of the game Dark Hex and

its variants. The game has found little attention in modern research so

far. We introduce the rules and different versions of the game alongside

some terminology.

• New approximate bounds for each player in 4×3 Dark Hex. We

introduce three new, successively stronger strategies for both players on

5

the 4×3 board that improve the best known bounds in approximation.

We first develop stronger strategies by hand, then introduce a better

strategy generated by computer using an end-to-end learning approach.

The first player bound is improved from 0.112 to 0.125 and then to

0.205. The second player’s is improved from 0.732 to 0.75, then to 0.786.

These new bounds get us to 0.99 of the Nash equilibrium. In a final

step, We introduce a technique to smooth out the learned probabilities,

which improves the first player bound to 0.793; overall we get an ϵ-Nash

equilibrium strategy with ϵ = (1−0.205−0.793) = 0.002 for both players

in approximation.

• A database of sure win states for both players on small boards.

Pruning the state space is extremely helpful for games with high branch-

ing factors. Following prior work on determining sure win states [12], we

generate a database of all sure win states up to 4×3 board size and make

it publicly available at our GitHub repository (github.com/BedirT/darkhex.

We make use of this database in our Dark Hex player experiments, and

show how effective they are.

• Introduction of an Imperfect Recall Dark Hex Model. We in-

troduce an imperfect recall representation of Dark Hex, and evaluate it

in different settings against the perfect recall, showing how effective the

abstraction is, reducing the game to 0̃.001 of its original size.

• New players and empirical results on their performance. We

provide the first Dark Hex players in the literature which use the tech-

niques of Neural Fictitious Self-Play and Monte Carlo Counterfactual

Regret Minimization. We develop these agents under different pruning

and abstraction settings and compare their strength on the 4×3 board.

We show that our final player SIMCAP+ shows a huge success while

again our player SIMCAP takes the second spot. Other than our meth-

ods, we show that MCCFR performs much better compared to all the

NFSP methods. Also Imperfect Recall methods perform a lot better

6

https://github.com/BedirT/darkhex

than perfect recall.

7

Chapter 2

Background and Related Work

In this chapter, we discuss background material in game theory and machine

learning that is needed to read the rest of the thesis.

In Section 2.1 we introduce the basics of game theory, the terminology and

explain the games that we use throughout the thesis. In Section 2.2 we intro-

duce techniques for regret minimization: Counterfactual Regret Minimization

(CFR) and Monte Carlo Counterfactual Regret Minimization (MCCFR). We

also discuss the sampling method we use, Outcome Sampling. In Sections 2.3

and 2.4 we give short reviews of Reinforcement Learning (RL) and Neural

Fictitious Self-Play (NFSP). Lastly, in Section 2.5 we explain the imperfect

recall abstraction technique.

2.1 Game Theory

Here we give the foundations of game theory needed for the rest of the thesis.

This thesis is about two-player finite games. Nonetheless, most of the concepts

here apply to multiple players.

A strategy is a set of probability distributions for each possible position

in a game for a player. A normal-form game is a game where all players

decide on a strategy simultaneously, without knowing the opponent’s strategy.

Each player receives a payoff (reward, utility), stating how good or bad the

chosen strategy was against the opponent’s chosen strategy.

In a bi-matrix game, a table (matrix) states the payoffs for each player,

given the strategy used by both. Traditionally, the first player is the row

8

player and the second player is the column player.

In a zero-sum game the players’ utilities sum to zero, meaning that if a

player has utility u, then the opponent has utility −u.

Example: Table 2.1 shows an Rock-Paper-Scissors (RPS) game payoff

table. This is a zero-sum game. It is common to show only the payoff matrix

for the row player in zero-sum games as in Table 2.2.

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

Table 2.1: Rock-Paper-Scissors
payoff table. Players pick a move
simultaneously and get their corre-
sponding payoff. The game is zero-
sum.

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Table 2.2: A simplified zero-sum
payoff table shows the payoff for
the row player only. The negated
value is the payoff for the column
player.

In a pure strategy the player chooses a single action with probability 1

in each state. An example in RPS, is playing Rock all the time.

In zero-sum games the minimax equilibrium is equivalent to the Nash equi-

librium and was introduced by John Von Neumann in 1928 ??, but since the

majority of the researchers on this topic uses Nash equilibrium we also continue

using that.

A pure Nash equilibrium is a pair of pure strategies such that no player

benefits from diverging from it. We call strategies that form a Nash equilibrium

Nash strategies. Define Si as the set of possible strategies for player i. Let

si ∈ Si be a pure strategy for player i. s = (s1, s2) is a pure strategy profile,

and ui(s) is the utility for player i when players follow s. s is a pure Nash

equilibrium iff

∀s′

1 ∈ S1, ∀s
′

2 ∈ S2 : u1(s) ≥ u1(s
′

1, s2) and u2(s) ≥ u2(s1, s
′

2) (2.1)

Example 2: Prisoner’s Dilemma Officials have arrested two people for

a crime. There is, however, very little evidence against them. Both are taken

to different isolated cells and asked to betray the other. If only one person

9

betrays, there will be no charges against the one who betrays, and the other

person will go to prison for three years. If both betray, they will go to prison

for two years each, and if neither betrays, they can only keep them in for one

year. The matrix is shown in Table 2.3. This is not a zero-sum game.

Prisoner 2
Betray Silent

Betray 1,1 0,3
Prisoner 1

Silent 3,0 2,2

Table 2.3: Prisoner’s dilemma.

At first glance the best overall outcome for the group is for both prisoners

to keep silent and get one year each. However, from the individual’s point of

view, betraying is more beneficial regardless of what the other prisoner does.

For example for prisoner 1, if prisoner 2 decides to keep silent, it is more

beneficial to choose to betray since he will go free right away. If prisoner 2

decides to betray, it is again more beneficial for prisoner 1 to betray and get

the sentence of two years instead of three. So if both prisoners think from their

perspective only, they reach a sub-optimal point for the group and themselves.

The Nash equilibrium in this example is for both players to betray.

There is no pure Nash equilibrium in RPS. A player should not choose

the same move all the time, considering that the other player can exploit this

strategy. A mixed strategy is a probability distribution over all possible

pure strategies. Let us denote the mixed strategies for player i as Σi, and a

combination of mixed strategies for both players as Σ = Σ1×Σ2. A strategy

profile is σ = (σ1, σ2) where σi ∈ Σi. So, σi is a probability distribution over

strategies in Si. A strategy profile is a Nash equilibrium if no player i benefits

from changing this strategy unilaterally. A Nash equilibrium is defined using

expected payoffs, ui(σ). Formally,

ui(σ) = ui(σ1, σ2) = Eσ[ui(s)] =
∑
s1∈S1

∑
s2∈S2

σ1(s1)σ2(s2)ui(s1, s2) (2.2)

For denoting the strategies of all opponents of player i in σ, we use σ−i.

10

An ϵ-Nash equilibrium is a generalization of the Nash equilibrium dis-

cussed above, where players cannot gain more than ϵ by changing their strategy

unilaterally. Formally, σ is an ϵ-Nash equilibrium iff

∀i∀σ′

i ∈ Σi : ui(σ
′

i, σ−i)− ui(σ) ≤ ϵ (2.3)

Equation 2.1 is the special case of Equation 2.3 with ϵ = 0.

A best response strategy BR(σ−i) is a strategy where player i achieves

the greatest possible payoff against a given opponent strategy σ−i. Formally

σi ∈ BR(σ−i) iff

∀σ′

i ∈ Σi : ui(σi, σ−i) ≥ ui(σ
′

i, σ−i) (2.4)

Any Nash strategy is interchangeable with any other Nash strategy in a

zero-sum two-player game. So for Nash equilibrium profiles σ = (σ1, σ2) and

σ
′
= (σ

′
1, σ

′
2), (σ1, σ

′
2) and (σ

′
1, σ2) are also Nash equilibrium profiles. All

the expected utilities of Nash strategies for a given player are the same, i.e.

ui(σ) = ui(σ
′
).

The expected utility of a player is also called the value of the game for

that player. From now on, we will use the term value for the first player’s

expected payoff unless otherwise specified. The second player will receive the

negated value.

Exploitability is the distance of a strategy from the equilibrium value

when opponent is playing the best response strategy. If player i changes their

strategy from a Nash equilibrium to the new strategy with value v−ϵi where v

is the equilibrium value, it is exploitable by ϵi ≥ 0. The opponent can exploit,

and get the value −v + ϵi. Formally, if σ is a Nash equilibrium profile where

σ = (σ1, σ2), and σ
′
1 is an updated strategy for player 1 that is exploitable by

ϵ1, then

∃σ′

2 ∈ Σ2 : u1(σ
′

1, σ
′

2) = min
σ
′′
2 ∈Σ2

u1(σ
′

1, σ
′′

2) = v − ϵ1 (2.5)

The sum of the exploitability of the two players is a measure of the distance

of a strategy profile to the Nash equilibrium; ϵσ = ϵ1 + ϵ2.

11

An extensive form game is a game where the players take sequences

of actions in a single game. Unlike normal-form games, each move results

in a new state until reaching the terminal state. A tree structure represents

all possible plays of this type of game. The root of the tree represents the

starting state of the game. Each node represents a game state, and each edge

represents an action taken in the parent node state, resulting in the child node

state. Every leaf node represents a terminal state with a payoff for the root

player. Figure 2.1 shows an example of an extensive-form game tree.

a1 b1

b2a2

a1 b1

b2a2

a1 b1

b2a2

a1 b1

b2a2

a1 b1

b2a2

a1 b1

b2a2

Action (b1)

Game
State

Initial
Game
State

Terminal
Game
State

Figure 2.1: Representing an extensive form game as a tree. The root is the
initial game state, an edge represents an action by one player and nodes are
game states. Leaf nodes are terminal states of the game.

A history is a sequence formed by the actions of all the players starting

from the initial game state. Let H be the set of possible game histories.

A history h ∈ H is a terminal history if it reaches a terminal state. A

successor of history h is denoted as ha where the h is extended with action

a. A player function P (h) determines the player to play after h.

An information state is a partial game state information a player has at

a given point in an imperfect information game. An information state does

12

not necessarily represent the full game state since the players may have private

information. An information set is the set of all histories that end up in the

same information state. Figure 2.2 shows an information set I = {h1, h2}

where h1 = a and h2 = bc for actions a, b, c.

a
b

c

Figure 2.2: Information set tree representation with multiple histories. Both
paths end up in the same information state, but the actions are different.

2.1.1 Hex

Hex is a two-player zero-sum perfect-information extensive-form game. It is

newer than games such as Go and Chess. With the recent developments in

Computer Games [6], [7], [17], [42] hex also drew the renewed interest of re-

searchers [18], [43]–[46]. We describe the rules and give some information

about the game.

Hex is played on a board with hexagonal cells. Each player is assigned two

opposing sides of the board. Black tries to connect the top and bottom sides,

while white connects the left and right sides. A connection is an uninterrupted

chain of stones in a single colour. Players take turns placing their stones on

the board starting with black. A player can place one stone of their own color

on any empty cell when it is their turn. Figure 2.3 shows a hex board where

Black has won by connecting its sides.

13

a b c d
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

d1

d2

d3
d4

Figure 2.3: A 4x4 hex game. The cells are labeled with letters representing
the (diagonal) columns and numbers representing the rows.

Hex is a no-draw game. One player will win no matter how the players

proceed [10]. An extra stone is never harmful to a player [10]. The first player

has a winning strategy in hex on any n×n board as proved by John Nash

[10]. In tournaments and casual games, it is common to use 11×11 or 13×13

boards.

2.1.2 Dark Hex

Dark hex is an imperfect information version of the game hex. All the rules

of hex apply except that the players have incomplete information about the

game state.

Players have no knowledge of the location of the opponent’s stones unless

they have discovered them by trying to make a move on an occupied location.

The referee in the game sees the full game state and informs the player if a

move tried is legal or not. The detailed rules about the information leaked to

the other player during these tries depend on the game version. We discuss

several of these versions in Chapter 3. In this thesis, we mainly focus on

the rules where the player who attempted a move tries again until the move is

successful, and opponent is not informed of the failed tries. Figure 2.4 presents

a sample game on a 3×3 board.

14

h = 1h = 0

WHITE PLAYER BOARDBLACK PLAYER BOARD

A

h = 1h = 1

B
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 0

C
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 2h = 0

D
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 0

E

WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 1

F

WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 2h = 1

G

WHITE PLAYER BOARDBLACK PLAYER BOARD

Figure 2.4: An example game of Dark Hex where black wins on a 3×3 board.
A) Black plays on a3. The white player’s board is not updated, but the number
of hidden stones h is increased. B) White plays in the center updating their
own board only. C) Black tries to play in the center as well, resulting in
failure. Black now knows that there is an opponent stone on b2. D) Black
makes a different move, which succeeds. E) White tries a2. F) White plays
b1. G) Black plays on a1 and wins the game.

2.2 Counterfactual Regret Minimization

A way to compute Nash equlibria is to learn a Nash strategy iteratively over

time, improving the strategy step by step by calculating the ϵ-Nash equilibria,

and modifying to improve the ϵ, such that ϵ → 0. A method to approximate

Nash equilibria is Counterfactual Regret Minimization (CFR).

CFR is the current baseline algorithm that is widely used for playing im-

perfect information games. CFR uses the regret minimization theory proposed

15

by Hannan in 1957 [47] with regret matching by Heart and Mas-Collell [48].

We explain Regret Minimization in Section 2.2.1, CFR in Section 2.2.2 and

MCCFR, a Monte Carlo variant of CFR, in Section 2.2.3. In Section 2.2.4 we

introduce outcome sampling, the sampling method we use for MCCFR.

2.2.1 Regret and Regret Minimization

Regret is a measure of success for a given state action. At a decision point,

a player takes action a ∈ A and receives reward r. In a learning environment,

a players’ goal is to maximize their total reward. This is an online learning

problem since the rewards are received only after the actions are taken. The

players decide between exploration or exploitation, either trying out a less

explored action or choosing to exploit the action with the highest estimated

reward.

Assume an agent making decisions at some state for every time step t ∈ T

and receiving a utility ut for the corresponding time step, {u1, u2, . . . , uT}. Let

ut
a be the utility of choosing action a at time step t. We define the expected

regret of not taking action a at all time steps as

RT (a) = E

[∑
t∈T

(ut
a − ut)

]
(2.6)

External regret is a way to measure how good an agent is doing. For

player decisions N the accumulated external regret is

RT = max
i∈N

RT (a) = max
i∈N

E

[∑
t∈T

(ut
a − ut)

]
(2.7)

An algorithm is considered a regret minimization algorithm if the av-

erage regret R̄T = RT/T approaches 0 over time. Using regret minimization,

an algorithm will eventually approach the minimax value. If the players play

T times against each other the average reward for player i will at least be

vi − R̄T , where vi is the minimax value for player [49].

If R̄T < ϵ for both players, then the average strategy profile is a 2ϵ-

equilibrium [49]. Regret-based algorithms use this idea to approximate the

Nash equilibria.

16

2.2.2 Sequential Games and CFR

So far we only considered non-sequential games. In this section we focus

on sequential games by extending the regret minimization framework. CFR

makes use of the Regret Matching Algorithm. Since there are dependencies

in sequential games (a move leads to the next state of the game) we have to

consider:

• The probabilities of reaching each information set

• In a forward pass, updating the game state and probabilities of player

action sequences

• In a backward pass, computing the utilities of the information sets

We first define the necessary components to examine and understand the

regret matching and counterfactual regret formulations. We then summarize

CFR mathematically and finish the section with the pseudo-code.

Formula components:

• h:h:h: A history, the action sequence from the initial game state to some

state s.

• I:I:I: An information set, the set of all the histories leading to a certain

state.

• t:t:t: A time step where 0 ≤ t ≤ T , where T is the time limit.

• σt
i :σt
i :σt
i : A strategy, a mapping for player i from a legal action a ∈ A(Ii) in

information set Ii to the probability of taking that action at time t.

• σt:σt:σt: A strategy profile, a probability distribution over all possible actions

for all players at time t.

• σt
−i:σt
−i:σt
−i: A strategy profile that excludes player i’s strategy.

• σI→a:σI→a:σI→a: A probability distribution equal to σ, except action a is always

chosen for information set I.

17

• πσ(h):πσ(h):πσ(h): A reach probability, the probability of reaching h when following

σ.

• πσ(I):πσ(I):πσ(I): A reach probability, the probability of reaching information set I

through any possible history h ∈ I, πσ(I) =
∑

h∈I π
σ(h).

• πσ
−i(I):πσ
−i(I):πσ
−i(I): The counterfactual reach probability for information set I, the

probability of reaching I when player i always takes actions to reach the

information set I.

• Z:Z:Z: The set of all terminal game histories.

• z:z:z: A terminal history, h ❁ z for z ∈ Zz ∈ Zz ∈ Z.

• ui(z):ui(z):ui(z): The utility of terminal history z for player i.

The counterfactual value vi(σ, h) for player i given strategy σ at non-

terminal history h is defined as

vi(σ, h) =
∑

z∈Z,h❁z

πσ
−i(h)π

σ(h, z)ui(z) (2.8)

The counterfactual regret for not taking action a in history h is

r(h, a) = vi(σh→a, h)− vi(σ, h) (2.9)

The counterfactual regret of not taking action a in the information set I is

r(I, a) =
∑
h∈I

r(h, a) (2.10)

rti(I, a) is the regret when players other than i move according to σt on

information set I. The cumulative counterfactual regret is

RT
i (I, a) =

T∑
t=0

rti(I, a) (2.11)

We define RT,+
i (I, a) as max

(
RT

i (I, a), 0
)
. The regret is the difference

between the value of always choosing action a at I and using σ for the action

18

selection. We weigh the values by the other players’ probability of reaching

a node. Heart and Mas-Colell’s regret matching [48] applied to cumulative

regrets leads to the updated strategy

σT+1
i (I, a) =

RT,+

i (I,a)∑
a∈A(I) R

T,+
i (I,a)

, if
∑

a∈A(I) R
T,+
i (I, a).

1
A(I)

, otherwise.
(2.12)

This iterative method is computationally heavy since we need to traverse

every action. This makes it impossible to use vanilla CFR on games with

practical sizes. Monte Carlo CFR (MCCFR) in Section 2.2.3, is a more scalable

and efficient variant of CFR.

2.2.3 Monte Carlo Counterfactual Regret Minimization

Monte Carlo CFR is a sample-based version of the CFR algorithm in Sec-

tion 2.2.2. Instead of finding the true counterfactual regret values, MCCFR

computes unbiased estimates of them. This gives an anytime algorithm that

can use as many samples as wanted. In expectation, it still converges to the

same value as the true value. The sampling method plays an important role in

MCCFR. In this work, we use outcome sampling (described in Section 2.2.4).

Let us define Q = {Q1, Q2, ...} as the subset of all terminal histories, Z,

where
⋃

Q∈Q Q = Z. Qj is a block of terminal histories where Qj ⊆ Z. The

difference of MCCFR from CFR comes from the samplings of these blocks. For

each time step t, the probability of sampling Qj is qj > 0. Then the probability

of any terminal history z is contained in a given block for all information sets

I such that z ∈ Qj, h ❁ z, h ∈ I, is:

qt(z) =
∑

j:z∈Qt
j

qtj (2.13)

The sampled counterfactual value v̄ is:

v̄i(σ, I|j) =
∑

z∈QjQjQj∩ZI

1

qt(z)

1

qt(z)

1

qt(z)
πσ
−i(h)π

σ(h, z)ui(z) (2.14)

If one guarantees qt(z) ≥ δ > 0 then the sampled regret is well-defined.

19

The bolded parts are the only difference between v and v̄ in CFR (equation

2.8). The expected value of v̄i(σ, I|j) is equal to vi(σ, I) [50].

The main question when using MCCFR is how to pick a good sampling

scheme. Sampling affects both theoretical guarantees and empirical perfor-

mance. As an example, if Q = {Z} the MCCFR is the same as vanilla CFR.

In this thesis, we use outcome sampling (Section 2.2.4).

Algorithm 1: Monte Carlo Counterfactual Regret Minimization

Require: a sampling scheme S
1: Initialize:

regret tables: ∀I ∈ I, ∀a ∈ A(I) : rI [a]← 0
cumulative strategy tables: ∀I ∈ I, ∀a ∈ A(I) : sI [a]← 0
initial profile: ∀I ∈ I, ∀a ∈ A(I) : σ(I, a)← 1/|A(I)|

2: for t ∈ {1, 2, 3, ...} do
3: for i ∈ N do
4: Sample a block Q using S
5: for h where h ❁ z, h ∈ I, z ∈ Q,P (h) = i do
6: σi(I) ← RegretMatching(ri) using Eq. 2.12
7: for a ∈ A(I) do
8: Let r̄ ← r̄(I, a) sampled regret for a
9: rI [a]← rI [a] + r̄
10: sI [a]← sI [a]+ AverageStrategyIncrement(sI , t, σi, I, a)

“AverageStrategyIncrement” in the algorithm refers to updating the av-

erage strategy. This update is a simple summation for a given information

state, starting from 0 (just like the strategy tables). The time complexity of

the MCCFR algorithm depends on the sampling method used to define Q.

The space complexity is O(|C1| + |C2|) where Ci = {(I, a)|I ∈ Ii, a ∈ A(I)},

since any sampling method needs to keep all the information sets for both

players in memory.

2.2.4 Outcome Sampling

Outcome sampling [50] chooses Q such that each block only contains a single

terminal history z. In each iteration of MCCFR, outcome sampling updates

only the values for the information sets along with the history z. As long as

the sampling probability distribution σ has some positive probability p > 0

20

for each pair (I, a), Equation 2.14 is well-defined.

Outcome Sampling MCCFR (OS-MCCFR) works as follows:

1. Sample a terminal history z using policy σ.

2. Compute every reach probability for every history h ❁ z by a forward

traversal.

3. Backward traverse from z and compute the players’ probabilities of play-

ing every action other than the action to reach z.

4. Compute the counterfactual regret for z and add it to the total regret.

We use on-policy ϵ-greedy exploration. With probability ϵ, the algorithm

samples an action uniformly at random, and with probability 1− ϵ, it follows

the players policy. Since sampling is for a single terminal history, this results

in linear time complexity in the depth of the game tree for each iteration. [50]

for further information on sampling methods.

2.3 Reinforcement Learning

We use Reinforcement Learning (RL) with the algorithm Neural Fictitious

Self-Play (NFSP). Here we introduce the basics of RL before explaining NFSP.

RL is a branch of machine learning where players try to maximize their

expected reward by interacting with the environment. The environment is

modelled as a Markov decision process (MDP). The individual players

are called agents. An environment surrounds an agent. A state is a repre-

sentation of the environment that the agent receives. Agents behave according

to a probability distribution over legal actions, called a policy, at each state.

Agents try to improve their policies by maximizing their total reward over

time. For time step t, the total reward is Rt =
∑T

i=t ri+1, where T is the

time step where game terminates, and ri is the reward received at time step

i. Checkout Figure 2.5 for a visual representation of an RL system.

21

World

action

reward

En
vi
ro
nm

en
t

A
gent

Figure 2.5: The dynamics of a reinforcement learning system.

Experience can be represented by a transition tuple, as (st, at, rt+1, st+1).

At state st, the agent takes the action at, receives the reward of rt+1 and

transitions to the next state st+1.

Learning an action-value function Q(s, a) is a common goal in rein-

forcement learning. It represents the value to take action a at time step t

and following the policy π afterwards, Q(s, a) = Eπ[Rt|St = s, At = a]. In

On-policy learning, the agent learns about the policy it follows, while in the

off-policy case the agent learns about a different policy.

Q-learning is one of the most popular off-policy methods [51], which learns

about the greedy policy. A Deep Q Network (DQN) [52] utilizes neural net-

works in an online fashion for Q-learning.

2.4 Neural Fictitious Self-Play

Neural Fictitious Self-Play (NFSP)[53] is a method we use to develop Dark Hex

players. NFSP is a scalable end-to-end reinforcement learning approach for

learning an approximate Nash Equilibrium strategy with no prior knowledge

about the game.

Fictitious Self-Play(FSP) agents learn from interacting with each other.

Each agent has two different memories. MRL stores the transition tuples

generated while playing against each other. MSL stores the agent’s own be-

haviour. The self-play sampling is set up so that theMRL memory for an agent

approximates the data of an MDP that is generated by the average behaviour

of the other agents. Therefore a learned solution gives us an approximate

best response against this MDP. An agent’s supervised learning data (MSL),

similarly, predicts the agent’s own average behaviour.

22

NFSP incorporates neural networks as function approximators in fictitious

self-play. Each agent has two datasets suitable for deep RL and SL, generated

as described above. First using MRL, the agent trains a neural network and

off-policy RL to predict action values, Q(s, a|θQ). This network defines the

agents’ best response strategy to the MDP, with an epsilon exploration factor,

β = ϵ-greedy(Q).

The second network is trained to predict a best response policy Π(s, a|θΠ)

against the agent’s own past using MSL. During self-play, an agent chooses

its actions based on a mixture of both these strategies, π and β.

2.5 Imperfect Recall

With perfect recall, players remember every piece of information during a

game. Many algorithms that are guaranteed to converge to a Nash equilib-

rium are based on perfect recall. Once some information is forgotten, the

convergence guarantees do not hold anymore.

Some game information holds no value to a player but explodes the number

of information states. Such information should be safe to forget.

Game abstraction is mostly applied to reduce the size of the game. Before

finding an equilibrium, the resulting strategies are translated back to the orig-

inal game. Imperfect Recall is an abstraction where players forget parts of the

past information.

In [50] Lanctot shows that Imperfect Recall abstraction holds the conver-

gence guarantees if the abstracted game has well-formed properties (section

5.2). A relaxed version skew well-formed is shown to allow deriving a bound

on the average regret. Empirical results are shown for another condition be-

ing relaxed and still getting good results in CFR. We derived our abstraction

based on the results of the relaxed conditions since we don’t have well-formed

or skew well-formed properties

The game-specific details of Imperfect Recall for Dark Hex (for our version),

such as the convergence guarantees and information release for the players, are

presented in Section 4.1.

23

Chapter 3

Analysis of Dark Hex Using
Game Theory

In this chapter, we examine Dark Hex using traditional game theory methods.

We introduce three new versions of Dark Hex and describe the algorithmic

tools we built to investigate the game, collect data for early win conditions,

and define a notation to formalize strategies. We give new bounds for the 4×3

board together with the associated strategies.

3.1 Dark Hex Versions

We discuss three alternate versions of Dark Hex alongside the original version,

define new terminology, and illustrate the games with short examples.

Classic Dark Hex

We mentioned the rules of the classic version in the Background section. Here

we introduce and compare the different versions.

In classic Dark Hex (CDH), after each move by the opponent the player

only learns that the opponent has completed their move. After each move

attempt, a player learns either that the attempt was successful, and the move

was made and it is now the opponent’s turn, or that it was unsuccessful, in

which case the player tries again. Figure 3.1 shows a sample game.

24

h = 1h = 0

WHITE PLAYER BOARDBLACK PLAYER BOARD

A

h = 1h = 1

B
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 0

C
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 2h = 0

D
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 0

E

WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 1h = 1

F

WHITE PLAYER BOARDBLACK PLAYER BOARD

h = 2h = 1

G

WHITE PLAYER BOARDBLACK PLAYER BOARD

Figure 3.1: A classic Dark Hex game. Both players boards are given for each
move. The most current move is shown with a red line around the stone. The
number of hidden stones for each player is shown on the right bottom corner
of their boards. A) Black starts with a3. B) White plays b2. C) Black plays
b2 and discovers (collision) the white stone. D) Black makes another move,
a2. E) White discovers the black stone on a2. F) White plays again, c2. G)
Black wins with a1.

Abrupt Dark Hex

Abrupt Dark Hex (ADH) modifies the collision rule of classic Dark Hex. After

an attempted move, the player loses their turn. See Figure 3.2.

25

h = 1h = 0

WHITE PLAYER BOARDBLACK PLAYER BOARD

A

h = 1h = ?

B
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = ?h = 0

C
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = ?h = ?

D
WHITE PLAYER BOARDBLACK PLAYER BOARD

h = ?h = 0

E

WHITE PLAYER BOARDBLACK PLAYER BOARD

h = ?h = ?

F

WHITE PLAYER BOARDBLACK PLAYER BOARD

Figure 3.2: The abrupt Dark Hex version of the game shown in Figure 3.1. h
differs from the classic Dark Hex. The player often has no clear knowledge of
the number of opponent stones on the board. A) Black plays a3. B) White
plays b2. C) Black tries b2 and fails. D) White plays a2 E) Black tries a2
and fails. F) White plays c2 and wins.

Noisy Dark Hex and Flash Dark Hex

Classic Dark Hex and abrupt Dark Hex differ in their collision rules, whereas

noisy Dark Hex (NDH) and flash Dark Hex (FDH) differ in the information

revealed after a collision. After each player’s move attempt that is unsuccess-

ful,

• in NDH the opponent is told that there has been a collision,

• in FDH the opponent is told that there has been a collision, and where

the collision occurred.

Both CDH and ADH can be played in three ways, with no noise or flash,

with noise, or with flash.

In this thesis we only consider CDH and leave further exploration of other

variants to future work.

26

3.2 Dark Hex Strategy Generator

A strategy is encoded as the probability of taking each legal action at a given

information state. For a strategy to be complete, it needs to include a proba-

bility distribution for every possible game state that the player can encounter

when following that strategy.

When we write a strategy on paper, we do not specify the strategy in the

same way as on the computer. We use a concise syntax formulation that we

can understand with minimal detail. This is very convenient since the number

of information states in the strategy can get large.

We developed Dark Hex Strategy Generator (DSaGe), an easy-to-use tool

to help generate a strategy. DSaGe makes sure that the given strategy is

complete, and that the player has an answer for any reachable information

state. We use DSaGe to generate the strategies in Sections 3.4.2 and 3.4.3.

Figure 3.3 shows the interface. We can either use notational representation as

input or follow along with a game where every game state possible is presented

and requires input from the user to define the actions and their probabilities.

For the first input method, the user must follow the notation given in Sec-

tion 3.4.1. If the given strategy is not complete, DSaGe will give an error and

terminate the process. The user then needs to retry after fixing the strategy.

This method is only useful when the strategy is developed carefully by hand,

or when using an altered version of the output from the second method.

The second method is more intuitive and understandable. The user starts

with an empty board and provides the probability distribution for every infor-

mation state presented. Figure 3.4 shows an example of generating a strategy

by using the second method. In the end, DSaGe can output a strategy in the

format of a dictionary of the given strategy.

27

Figure 3.3: DSaGe user interface with a 2×2 Dark Hex example. A) Main
page. B) New Game prompt. Initial board position, row and column sizes
must be entered as well as which player the strategy is for, and whether to use
isomorphic states. C) Past entries can be searched and found in the search
history, and the state can be set to any selected position. D) After all the
necessary input is given, DSaGe prompts the user to save the strategy. E)
A printed version of the dictionary output, in the form of ”information state:
(action, probability)”.

28

Figure 3.4: Generating a first player strategy on the 2×2 board using DSaGe.
A) Play a1 with probability 0.3 and b1 with 0.7. B) Since there is no possibility
for a collision any move succeeds. For the next move we play a2. There is no
probability given, so DSaGe assumes a probability of 1. C) If a2 is successful
the game terminates, otherwise we need to provide another move. We continue
with the non-terminated branch, which is a collision, and play b2. D) After
all the branches from first move b1 are terminated, DSaGe moves back to
the a1 branch. We play a2 for this information state. E) If a2 succeeds the
game terminates, otherwise we still to provide the next move. Black has no
chance to win this game, so we enter ! or press random on the UI for randomly
completing this branch of the strategy.

3.3 Evaluation: Best Response

The ultimate goal when producing strategies is finding the optimal strategy,

meaning finding a strategy that will win against any strategy as much as it is

possible. To be able to find this strategy is the goal we have throughout this

thesis. However another problem arises before we can go ahead and come up

with new strategies: evaluation.

We have mentioned the bare bones of best response in Chapter 2, but we

did not go in detail for the practicality of it. In the case of Dark Hex, being

29

able to calculate true best response is near impossible. In this section, we go

over the reasoning as to why, and introduce the alternative approaches we use.

In Dark Hex, we have uneven game tree; a state that is black to play, might

be followed by a state that is again black to play. This makes it unfeasible

to make true best response calculations based on tree level. Instead we have

to calculate it based on the histories. This requires us to keep the entire set

of histories in the memory (or calculate them repeatedly), in which case the

memory requirements or time requirements to be able to run the best response

will be too large to handle with today’s computers. Reduced action branching

sometimes allows us to calculate such value, but this is limited to very small

strategies.

We introduce Abstract Best Response (Ab-BR) as a way of evaluating the

game in the abstract space. We use this heuristic for getting an idea of how

well a given strategy is doing in the imperfect recall setting. Unfortunately

however, the best response value found on the abstract game does not translate

back to the real game. For example, Figure 3.5 shows a strategy where the

move ordering is important and Ab-BR fails to capture the real best response.

Here if the player started with c1 the next move is going to be b3, if player

started with a4 the next move will be b2. This strategy is a part of our

handcrafted strategy, and a key point to evaluation; true best response will

use the history and get 0.625 as value while Ab-BR will get 0.75.

a b c
1
2
3
4

b1a1

a2

c1

c2

a3 b3 c3

a4 b4 c4

b2

Figure 3.5: An example state where move ordering effects the outcome of the
best responder and the player.

In Ab-BR, instead of using the histories to calculate the reach probabilities,

30

we are bucketing each history to information sets and using the summation of

the reach probabilities as a metric to reaching some information state without

the knowledge of the history. So the Ab-BR value of strategy σ in information

set I for player i is

vi(σ, I) = maxa∈Aq(I, a)
∑
h∈I

πσ
−i(h)

Apart from this heuristic, which does not hold much value in the full game,

we are also making use of Approximate Best Response (ABR). ABR uses

Reinforcement Learning to find a best response strategy against any given

strategy. When we fix a strategy in an imperfect information environment

such as Dark Hex, we get a single player stochastic environment. We then

can use this single player environment in combination with well known RL

algorithms such as Alpha Zero or DQN or any other one that does well in this

setting.

For our experiments we use an implementation with a DQN due to time

constraints, but using Alpha Zero would give a closer result due to stronger

signal.

3.4 New Strategies and Improved Bounds for

4×3 Dark Hex

Duane Broline proved that the first player can always win Dark Hex on a 3×3

board [54]. For any board size 3 × m where m > 3, the first player can use

the same 3 × 3 strategy on a part of the board, ignoring the other part, to

guarantee a win.

The more interesting question for us is if the first player needs to go the

longer distance on a m× 3 board where m > 3. We focus on the 4×3 board.

Previous bounds for 4×3 Dark Hex found by François Bonnet were that the

first player can win with at least probability 0.112 and the second player with

at least probability 0.732 [12]. However Bonnet does not specify any strategy

to actually match these numbers. We aim to give strategies that one can play

against, and also provide the matching best response values. In this section, we

31

provide new hand-crafted strategies discovered by Ryan Hayward with values

of 0.1428 and 0.75 against the Ab-BR. We then get 0.625 for the second player

against true best response. Later on, in Section ?? we present two better

strategies generated by our players and discuss some of the differences.

We first provide the notation that we use to formalize the strategies and

then explain strategies S1 and S2 for black and white players respectively.

3.4.1 Notation

We use symbols to describe the moves in a player’s strategy. A complete

strategy from the root must contain an answer for every possible reachable

information state. This notation provides all the essential tools to describe a

complete strategy.

1. si:si:si: Play move/sub-strategy si.

2. si, sj:si, sj:si, sj: Play moves/sub-strategies si, sj in order.

3. (si, sj):(si, sj):(si, sj): Priority on groups of strategies. Parenthesis imply a precedence

on the strategies.

4. {s0 : p0, s1 : p1, · · · , sn : pn}:{s0 : p0, s1 : p1, · · · , sn : pn}:{s0 : p0, s1 : p1, · · · , sn : pn}: Play moves/sub-strategies si with correspond-

ing probabilities pi, where 0 ≤ i < n. Every move must be paired with

a probability and
∑

i pi = 1.

5. {s0, s1, · · · , sn}:{s0, s1, · · · , sn}:{s0, s1, · · · , sn}: Play moves/sub-strategies si equiprobably, pi =
1

n+1
.

6. si¬(· · ·):si¬(· · ·):si¬(· · ·): Try si and if there is a collision continue inside the parentheses.

7. {si|sj}:{si|sj}:{si|sj}: Equivalent to {si¬(sj), sj¬(si)}

8. !:!:!: Continue uniformly at random, select any legal action until the game

is over.

As an example, we develop a first-player strategy for the 2×2 board. As-

sume the strategy Sb where Black first plays a1 with probability 0.3 and b1

with probability 0.7. There is no possibility for the first move to fail since

32

Black starts the game, therefore there is no need to specify what would hap-

pen in the case of a collision. For the second Black move, if the first move

was a1 the player plays a2. If that fails, it is a definite loss no matter where

the opponent plays, so Black can play anywhere. If the first move was b1, the

second move will be a2 or b2 equiprobably, if either one fails then Black will

play the other one.

We formalize this example using our notation:

Sb = {a1(a2¬(!)) : 0.3, b1({a2|b2}) : 0.7}

Figure 3.6 shows the strategy visually, with the corresponding notational

representation on each move or condition.

1
2

a b
.3 .7

b2a2

A

1
2

a b
a1 b1

b21

B

1
2

a b
a1 .5

.5a2

C

1
2

a b
a1 b1

b21

D

1
2

a b
a1 b1

1a2

E

Figure 3.6: Visual representation of the strategy Sb. Circles present the
next moves with their probabilities in the middle. A) Sub-strategy {a1(...) :
0.3, b1(...) : 0.7}. B) Sub-strategy a1(a2¬(...)). C) Sub-strategy a1(a2¬(!)).
D-E) Sub-strategy b1({a2|b2}).

33

3.4.2 Improved First Player Strategy for 4×3 Dark Hex

a b c
1
2
3
4

b1a1

a2

c1

c2

a3 b3 c3
a4 b4 c4

b2

Figure 3.7: An empty 4×3 Dark Hex board.

In strategy S1, Black plays {b2, b3} as the opening move. The b3 strategy, Sb3
1

is the isomorphic transformation of b2, Sb2
1 . We show this transformation as

T (Sb2
1) = Sb3

1 . T simply converts the moves to their isomorphic equivalents.

For the 4×3 board, isomorphic pairs of cells are shown in Figure 3.8.

a b c
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

Figure 3.8: Isomorphic pairs on the 4×3 board marked with the same color.
The pairs are: (a1, c4), (b1, b4), (c1, a4), (a2, c3), (b2, b3), (c2, a3).

In Sb2
1 , Black has 3 connection options from b2: Connect to the top edge

through b1, c1 (x), connect to c3 through b3, c2 and b4, c4 (z), or connect to a4

through a3, b3 (y), shown in Figure 3.9. In the end Black needs to connect x

with either y or z to win. In strategy Sb2
1 , Black selects one of x, y, z to start

with, and tries to connect in randomized manner.

34

a b c
1
2
3
4

x x

z

y y|z c3
a4 z z

b2

Figure 3.9: Black connections for the continuation on Sb2
1 . The figure sum-

marizes the idea of the strategy. After b2, Black moves c3, a4 to get the
connections y and z respectively, or moves on a x. The filled circle represents
a move that was already played, and empty circles represent the possible con-
nection stones for Black.

We provide the strategy S1 formally in Definition 1.

35

Definition 1: Formal Definition of S1

S1 = {Sb2
1 , Sb3

1 }
Sb2
1 = b2 {{α, β, γ} : 0.858, {δ, θ} : 0.142}

Sb3
1 = T (Sb2

1)

α = {b1|c1}, {X, Y }
X = a4¬(c3¬(!), {x0|x1}), a3¬(b3¬(!))
x0 = b3¬(c2, b4¬(c4)), b4¬(c4)
x1 = b4¬(c4, b3¬(c2)), b3¬(c2)
Y = c3¬(a4¬(!), a3¬(b3)), {y0, y1}
y0 = b3¬(c2¬(!), b4¬(c4¬(a4))), b4¬(c4¬(a4)), !
y1 = b4¬(c4¬(a4, b3¬(a3))), b3¬(c2¬(!))

β = c3¬(a4, a3¬(b3), b1¬(c1), !), b3¬(c2¬(!)), {β1, β2}, !
β1 = c1¬(b1¬(!)), b4¬(c4¬(!))
β2 = b4¬(c4¬(a4)), c1¬(b1¬(!))

δ = c3¬(a4, c1¬(b1), a3¬(b3), !), c1¬(b1¬(!)), {δ0|δ1}, !
δ0 = b3¬(c2¬(!)), b4¬(c4¬(a4))
δ1 = b4¬(c4¬(a4, b3¬(a3))), b3¬(c2¬(!))

γ = a4¬(γneg), b3¬(a3¬(!)), b1¬(c1), !
γneg = c3, b3¬(c2), {c1¬(b1), b3¬(c2)}, !

θ = a4¬(θneg), {c1|b1}¬(!), a3¬(b3), !
θneg = c3, {c1|b1}, b3¬(c2), b4¬(c4), !

Using strategy S1, Black wins with at least probability 0.1428 in abstract

game. Figures 3.10 and 3.11 show a Ab-BR strategy for Sb2
1 , playing against

Sb2
1 .

36

b2

1.0

b2

1.0

b3

1.0

1.0 a3

1.0 a1

0.36 a40.14 c10.36c30.14b1

1.0a3 1.0a3

Strategy X

1.0c2 1.0 c2

0.5 a40.5c3

White Wins White Wins

1.0a3 1.0a3

1.0c2 1.0 c2

1.0

c2

0.5 a40.5c3 0.8 b3

0.2

c1

White Wins White Wins

White Wins

Figure 3.10: The game between Sb2
1 and a Ab-BR strategy against S1. Each

arrow represents a move. The circles represent the action taken by the player
of that color and its location. Fractions next to the arrows show the probability
of the given moves. Boards in the same box represent the information state
for black and white players (black left, white right). The color of the boxes
shows which player board is updated last. If no box surrounds the boards, the
state is terminal. Figure 3.11 shows the rest of the strategy continuing from
the label Strategy X.

37

Strategy X

1.0

c2

1.0

c4

1.0

c4

1.0 c2

1.0

c2

1.0

b4

1.0

a1

0.8 b30.2c1

0.8 b40.2c1

White Wins

1.0 a11.0c4

White Wins Black Wins

Figure 3.11: Strategy X, continuation of Figure 3.10. This branch contains
the only win for the black player.

3.4.3 Improved Second Player Strategy for Dark Hex

a b c
1
2
3
4

x1y

y|z

c1

c2

z b3 c3
a4 b4 c4

x2

Figure 3.12: Visual representation for the beginning move sequence (following
the edge). After c1, White tries to x1 and connects with y. If x1 fails, White
moves to x2 and connects with z.

38

In the second player strategy S2, the first move is on either of the obtuse

corners, {c1|a4}. If there is a collision, the player switches to the other corner,

and plays according to the 3×3 strategy, which is a sure win. If the first move

succeeds, the first player continues on the same side of the board and tries to

connect by simply following the edge. For example if c1 succeeds, the next

moves will be on b1 and a1. Figure 3.12 shows this connection idea. Unless

Black blocked White using one of the patterns given in Figure 3.13, White will

win following this strategy.

As an example, assume Black plays b1, b3 as the first two moves while White

played c1. White can now follow the strategy Sw = b1¬(b2, a2¬(a3)), a1¬(a2¬(. . .)),

plays b1 and if succeeds continues with a1 and a2, since Black did not block

a1, a2 White will win. If b1 fails, White plays b2, and connects with a2, a3.

Figure 3.14 shows the end game.

a b c
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

A a b c
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

B a b c
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

C

Figure 3.13: A) a1, a2 block. If considering White moves of c1, b1, Black
leaving one of these cells empty will result in a White win. B) b1, b2 block.
Without letting White move to b1, Black blocks White forcing him to play on
the other edge. C) b1, a2, a3 block. White will discover all the black stones,
and will be forced to play a4. This is not a good blocking for Black. Even
though the win for White is delayed, it still is guaranteed. After White a4,
Black must play b3 to interrupt the immediate win. White then follows the
bottom edge and wins. These are the only move sequences for Black to stop
White from winning with the first three successful moves.

39

a b c
1
2
3
4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

Figure 3.14: A sample game when Black does not use the blocks from Figure
3.13. White wins by just following a shortest path to the left edge.

If the direct path is blocked as in Figure 3.13, White moves to the opposite

corner or its adjacent cell with equal probability, so ({a3, a4}). From here,

the probability of White winning is 0.5 since White picks a side (either b3, c2

or b4, c4), and if Black picks the same pair, Black wins and otherwise White

wins. See Figure 3.15 for an example of this case.

a b c
1
2
3
4

b2

a1 b1 c1

a2 x

a3 x c3
a4 y y

Figure 3.15: A sample information state. White players view, we assume that
White has discovered all the black stones. White must select connecting x’s
or y’s as his next move. If Black selects the same pair Black wins, otherwise
White wins. The winning probability for either player from this position is
0.5.

Figures 3.16, 3.17 and 3.18 show the strategy S2 playing against a Ab-BR

strategy.

40

1.0 b2

0.5 c10.5a4

Strategy Y Strategy Z

Figure 3.16: Visual representation of the game between S2 and a Ab-BR strat-
egy against S2. Each arrow represents a move. The circles represent the action
taken by the player of that color and its location. Fractions next to the arrows
show the probability of the given moves. Boards in the same box represent
the information state for black and white players (Black on the left, White on
the right). The color of the boxes shows which player board was updated last.
No box surrounds the terminal state. Figures 3.17 and 3.18 show the rest of
the strategy continuing from the labels Strategy Y and Strategy Z.

1.0

b1

1.0

b4

1.0

a3

1.0

c4

White Wins

Strategy Y

Figure 3.17: Strategy Y, continuation of Figure 3.16. Ab-BR player (black)
gives up this branch, and focuses on Strategy Z instead. Black does not try to
stop the connection on the bottom edge.

1.0

b1

1.0

b1

1.0

b2

1.0

b3

1.0

a4

0.5

a3

1.0

a4

1.0

a4

1.0

a1

Strategy Z

1.0 a3

0.5 c21.0 c2

Black WinsWhite Wins

Figure 3.18: Strategy Z, continuation of Figure 3.16. Black wins this branch
with 0.5 probability. This gives the Ab-BR player a 0.25 probability to win
overall.

The a4 strategy, Sa4
2 is the isomorphic transformation of c1 strategy, Sc1

2 ,

41

T (Sc1
2) = Sa4

2 . So we fully describe details of Sc1
2 , then define Sa4

2 as a trans-

formation.

Definition 2: Formal Definition of S2

Sc1
2 = c1¬(α), b1¬(β), a1¬(a2¬(θ))

Sa4
2 = T (Sc1

2)
S2 = {Sc1

2 , Sa4
2 }

α = a4, {α0, α1}
α0 = b3¬(b4, c3¬(d3)), c2¬(c3¬(!))
α1 = b4¬(b3, c2¬(c3)), c3¬(c4¬(!))

β = b2¬(βneg), a2¬(a3¬(a4, b3¬(b4, c4¬(c3))))
βneg = b3, {b0, b1}
b0 = a3¬(a4, c2¬(c3)), c2¬(c3¬(!))
b1 = c2¬(c3, a3¬(a4)), a3¬(a4)}

θ = {δ, γ}
δ = a3¬(δneg), b2¬(b3¬(!), c2¬(c3¬(!)))

δneg = a4, {n1, n2}
n1 = b3¬(b4, c4¬(c3)), c2¬(c3¬(b2))
n2 = b4¬(b3, c2¬(c3)), c4¬(c3¬(b3, b2¬(c2)))
γ = a4¬(a3, b2¬(b3, c2¬(c3))), {γ1, γ2}
γ1 = b3¬(b4¬(c4¬(c3))), c2¬(c3¬(b2¬(!)))
γ2 = b4¬(b3¬(!), c2¬(c3¬(b2))), c4¬(c3¬(!))

42

Chapter 4

Self-Learning Players:
Reinforcement Learning and
Regret Based Methods

In Chapter 3 we introduced our handcrafted player. In this chapter we develop

new learning agents which use combinations of:

• Early terminal states pruning

• Imperfect Recall abstraction

• Neural Fictitious Self-Play

• Monte Carlo Regret Minimization with Outcome Sampling

After explaining the details of each method mentioned in the list above, in

Section 4.5, we experimentally compare the MCCFR and NFSP algorithms

in different settings on the 4×3 board. In Section ?? We learn new strate-

gies for both Black and White that improve the best response values provided

in Chapter 3 and are generated completely by computer using an end-to-end

learning approach. We then conclude this chapter by introducing two incre-

mentally better post processing algorithms SIP and SIP+, and the improved

best response values we get using these new methods.

43

4.1 Imperfect Recall Dark Hex

We use the imperfect recall (IR) abstraction [50] to reduce the size of the

game to a level where we can apply the MCCFR and NFSP algorithms. The

state-space of Dark Hex grows drastically with the board size, see Table 4.1.

We need to reduce the game size to allow good approximations with little

information loss.

Board Size Abstraction Game Size Relative Size
2× 2 Perfect Recall 441 1

Imperfect Recall 42 0.9
3× 2 Perfect Recall 196357 1

Imperfect Recall 410 0.02
3× 3 Perfect Recall 19119486978 1

Imperfect Recall 12556 6.5 ×10−8

4× 3 Perfect Recall ≈ 1017 1
Imperfect Recall 367919 ≈ 3.6× 10−13

Table 4.1: Comparison of Perfect Recall and Imperfect Recall Dark Hex on
small board sizes. The game size refers to the number of information states
for every player.

In this section, we discuss why an imperfect recall abstraction is a good

first step to abstracting Dark Hex. We then evaluate the information loss of

IR on 2×2 boards by using the vanilla CFR algorithm [31].

With perfect recall, a player remembers every piece of information seen

during a game. In Dark Hex, this means that the player knows their board

and the order of the actions. In Chapter 3, when evaluating and generating

strategies by hand, we do not take the order of the previous moves into account:

the only thing that matters in the information state is the board itself. We

use the same idea for imperfect recall abstraction. We ignore action history

and keep only the current board information.

In NFSP and MCCFR we make use of the IR abstraction. In Section ??

we show that the computer-generated strategy that uses the IR abstraction

gives better minimax bounds than the handcrafted strategies in Chapter 3,

showing the success of this abstraction method.

To compare perfect recall Dark Hex with IR Dark Hex we use vanilla CFR.

44

For the sake of keeping the computation small, we use a 3×2 board and report

the best response value. We use the same settings of vanilla CFR for both

algorithms except the abstraction to isolate the effect.

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

oi
ta

bi
lit

y

3x2 Dark Hex Vanilla CFR
Imperfect Recall
Perfect Recall

Figure 4.1: Comparison of perfect and imperfect recall on a 3×2 Dark Hex
board.

As we see in Figure 4.1 the best response value in imperfect-recall abstrac-

tion converges almost as well as perfect recall with a minor difference. In the

meantime, the reduction of the size of the game is ≈ 1013 for boards bigger

than 3×3 (Table 4.1). This is a huge improvement as our main concern is the

game size.

4.2 Probability One Win States

In Dark Hex, if players play optimally, the set of terminal states can be ex-

tended by probability-one win states (pONE), as explained by Bonnet [12]. In

this section, we explain how we handle pONE and give two different examples.

A Dark Hex game state is terminal if and only if one player has joined

their two sides of the board. However, sometimes a player knows they can win

45

with probability 1. When we generate a strategy by hand, we use this idea.

We stop looking for a response and resign if we see that the opponent has a

pONE win, or we follow our own pONE strategy.

In Figures 4.2a and 4.2b show two examples. In Figure 4.2a, Black knows

all the white stone locations. There is no hidden stone and a1 is a winning

move for Black. We can pre-compute this information state, and stop here,

there is no need to make another move and actually play a1. In Figure 4.2b,

Black can win with either a1 or b1, and number of hidden stones is 1. Black

tries both cells and wins with probability 1. This is another pONE state where

Black does not need to continue playing. Figure 4.3 shows a deeper example.

h = 0

(a)

h = 1

(b)

Figure 4.2: Two pONE examples. Both figures show the black player’s board.
h is the number of hidden stones.

a b c
1

2
3

4

b2

a1 b1 c1

a2 c2

a3 b3 c3
a4 b4 c4

h = 0

Figure 4.3: A pONE example on the 4×3 board. There are no hidden stones
and black is to play. Black plays b1 to block white. After White move, Black
tries c3. If c3 is occupied, plays b3 and wins with probability one: if c3 is not
occupied, Black tries b4 and c4. If either are free black wins; if not, Black
plays a4 and wins by connecting a3 or b3.

Incorporating pONE with our algorithms has two benefits: It reduces the

game tree size and strengthens end-game play. We present two experiments

46

to quantify these benefits.

Figure 4.4 shows the difference in the number of states encountered and the

time it takes to have a single traverse on the search tree on a 4×3 Dark Hex

board when using and not using pONE. We see a significant difference in the

number of states, where the time shows only a minor benefit. This gap is due

to the table lookup, even though the operation for item search is O(1), having

to search for every state adds up to the total time. The main benefit here is

for memory since we keep the information states stored. For 4×3 board, we

have over %20 savings on memory.

p-one no p-one
0

1

2

3

4

5

6

7

Nu
m

be
r o

f s
ta

te
s e

nc
ou

nt
er

ed
 (x

10
00

00
)

Number of states
for p-one vs no p-one

p-one no p-one
0

500

1000

1500

2000

Ti
m

e
(s

)

Time
for p-one vs no p-one

Figure 4.4: The effect of pONE on traversing the 4×3 board.

The second experiment shows that the use of pONE improves the end game

results of the players. We train an MCCFR agent for 106 iterations on 4×3

imperfect recall Dark Hex. We then make this agent play 104 games against

itself. Every time the agent loses a game where the pONE value was a win for

itself at some state, we count that as a “missed win”. The result shows 828

missed wins, equaling to 8.2% better performance using pONE.

We used NFSP and MCCFR to train agents with the imperfect recall

abstracted game and pONE pruning. In Sections 4.3 and 4.4 we first discuss

47

the details of these algorithms applied to Dark Hex, and why are they feasible

and good choices in this case. In section 4.5 we pit the agents using the

handcrafted player, NFSP, and MCCFR against each other in games with

perfect and imperfect recall. Lastly, in Sections 4.6 and 4.7 we introduce new

Dark Hex strategies using SIP and SIP+, and present improved best response

values as well as new results of the tournament with the improved players.

4.3 NFSP for Dark Hex

Neural Fictitious Self-Play is an anytime algorithm which can run with limited

computational power and time. As explained in Section 2.4, NFSP iteratively

improves players based on their average behaviour and an approximate best

response against their opponent’s average strategy. Given the right parameter

adjustment, NFSP converges to the Nash equilibrium in the limit [53].

The NFSP agents are trained using a simple Residual Network with 2

convolutional layers. The first layer uses 512 filters with a kernel size of 3.

Relu activation is applied after the layer. The second layer uses 256 filters

with kernel size 3 and Relu afterwards again. After the second layer, max-

pooling of size 2 is applied before flattening the outputs. Lastly, 2 dense hidden

layers were added with 512 and 256 units and applied relu after each.

We use a replay buffer capacity of 2 × 105 and reservoir buffer capacity

of 2 × 106. The learning starts at the buffer size of 1000. The rest of the

parameters are as in the implementation of NFSP in version 1.1.1 of Open

Spiel [55].

4.4 MCCFR for Dark Hex

Counterfactual regret minimization is a widely used algorithm in practice when

developing players for imperfect information games. Vanilla CFR (Section

2.2.2) traverses the full game tree, therefore is not a good candidate for large

games. Monte Carlo Counterfactual Regret Minimization [32] is a sample-

based version of CFR. It is an anytime algorithm that can run as long as time

and computation power allows.

48

We use Outcome Sampling (Section 2.2.4) as the sampling method in all

the experiments with MCCFR. The training speed of MCCFR is one of the

reasons why we prefer it over other methods. Compared to NFSP, MCCFR

gets much better results much faster. All our MCCFR players are trained in

less than a day while NFSP players were trained in half a week each. The

results in Section 4.5 shows the performance even with this time difference.

4.5 Comparing Player Strengths: Round-Robin

Arena

We evaluate the success of our different implemented methods on a 4×3 board.

We play n = 105 games for each pair of players. Players play as Black half

the time. We describe each agent with their specific settings and provide the

results and discussion.

• Handcrafted Player (HP): Implements the handcrafted strategy de-

scribed in Chapter 3. We know that this player has 0.75 win probability

in abstract game as White and 0.124 as Black.

• MCCFR with IR and pONE (MCCFR-IR-p): An MCCFR agent

using Outcome Sampling. This agent uses both pONE and the IR ab-

straction. It was trained for 109 iterations.

• MCCFR with IR and without pONE (MCCFR-IR): Same as

MCCFR-IR-p, except without pONE.

• MCCFR with perfect recall (MCCFR-PR): Same settings as MCCFR-

IR, except without Imperfect Recall.

• NFSP with IR and pONE (NFSP-IR-p): An NFSP agent using

both pONE, and Imperfect Recall.

NFSP with IR and without pONE (NFSP-IR): Same as NFSP-

IR-p but without pONE.

NFSP with perfect recall (NFSP-PR): Same settings as NFSP-IR,

except without Imperfect Recall and having a different neural network

49

setting. Since perfect recall is not suitable for convolutional networks

as we have history data that does have any spacial value to it, we use

a linear neural network instead. The details are the same as the mlp

network in version 1.1.1 of Open Spiel [55].

HP M
CC

FR
-IR

-p

NF
SP

-IR

NF
SP

-P
R

M
CC

FR
-IR

NF
SP

-IR
-p

To
ta

l

Second Player

MCCFR-IR-p

HP

MCCFR-IR

NFSP-PR

NFSP-IR

NFSP-IR-p

(-)Total

Fir
st

 P
la

ye
r

-0.623 0 -0.324 -0.367 -0.261 -0.285

0 -0.705 -0.599 -0.404 -0.274 -0.414

-0.88 -0.777 -0.592 -0.568 0 -0.512

-0.997 -0.78 -0.633 0 -0.518 -0.448

-0.98 -0.766 0 -0.566 -0.634 -0.602

-0.995 -0.788 -0.734 -0.555 -0.66 0

-0.623 0 -0.324 -0.367 -0.261 -0.285 -0.372

0 -0.705 -0.599 -0.404 -0.274 -0.414 -0.479

-0.88 -0.777 -0.592 -0.568 0 -0.512 -0.666

-0.997 -0.78 -0.633 0 -0.518 -0.448 -0.675

-0.98 -0.766 0 -0.566 -0.634 -0.602 -0.71

-0.995 -0.788 -0.734 -0.555 -0.66 0 -0.746

0.895 0.763 0.576 0.492 0.47 0.452 -0.608

Arena (Average Reward)

0.8

0.6

0.4

0.2

0.0

Figure 4.5: Ranking for players playing as black and white on the 4×3 board.
Each player played 105 games against all the other opponents. Players receive
+1 for a win and -1 for a loss.

Figure 4.5 shows that as Black the MCCFR-IR-p performs the best fol-

lowed by MCCFR-IR. HP is ranked third, showing that the Black strategy

we generated by hand was weaker than the MCCFR players. On the other

hand, HP takes the first place as the White, at first glance this might seem

counter intuitive, but if we look closely, we can see that MCCFR-IR-p is still

outperforming HP, but HP performs better against the other players therefore

in summation gets the best player spot for white.

4.6 Better Strategies for 4×3 Dark Hex using

Monte Carlo CFR

In this section, we introduce Simplified Policy (SIP) algorithm to get better

strategies than HP on the 4×3 board. The strategies are completely computer-

generated. We get a 0.786 win rate against the abstract best response for the

50

second player, compared to 0.75 from the previous handcrafted strategy, and

0.205 for the first player, greatly improving the previous 0.1428. This gives

us a (1 − 0.786 − 0.205) = 0.009 epsilon on abstract best response. We also

get 0.153 and 0.757 win rate against approximate best response in full game,

which gives us an epsilon of (1 − 0.757 − 0.153) = 0.09. In Section 4.7 we

improve even further by adding smoothing on top of SIP, reaching a pair of

strategies within ϵ = 0.041 of the Nash equilibrium (ABR).

We first explain the process of generating the strategy, then present figures

showing the new strategies playing against abstract best response. Lastly,

we discuss some of the differences between our handcrafted strategy and SIP

strategy.

SIP is a post-processing algorithm. We use MCCFR-IR-p as a base since

we got the best performance from it in Section 4.5. SIP introduces two new

parameters:

1. Branching factor: We limit the number of actions to b. The best-

response calculation is heavily effected by the branching factor. Keeping

it minimal allows us to generate a best-response strategy if b was small

enough.

2. ϵ threshold: To reduce the irrelevant actions we use a threshold of ϵ,

and ignore actions with probability below the threshold. For example,

if one move has probability 0.99 and the second move has probability

0.01, we can ignore the second move, which halves the time and space

required. This technique also helps get rid of noise, non-zero valued

actions that are not optimal.

After choosing at most b actions with at least ϵ probability in each information

state, we apply softmax on the reduced probability set to normalize the values

and use this simple probability distribution as the player’s policy.

We tested different parameters to get the best results. For the first player

to get 0.153 win rate against the approximate best response we use (b = 8, ϵ =

0.1). For the second player; to get 0.719 win-rate against true best response,

51

we use (b = 2, ϵ = 0.1). We then get 0.757 win rate against the approximate

best response using (b = 8, ϵ = 0.1).

Figures 4.6, 4.7 and 4.8 shows SIP as Black playing against the abstract

best response strategy. We provide the figures and after each one the discussion

of the differences between SIP and the Handcrafted Player (HP).

0.51 b30.49b2

Sub-game A Sub-game B

Figure 4.6: The SIP strategy for Black. Figures 4.7 and 4.8 show the contin-
uations of the strategy.

In Figure 4.6 SIP is almost identical to HP, which selects b2, b3 with 0.5

probability each. Since SIP gives a slightly higher probability to b3, the ab-

stract best response player goes against Sub-game B by starting the game with

b2.

1.0

b2

1.0

a3

0.72

b1

1.0

b1

1.0

b3

1.0

a1

1.0

a4

1.0

b1

1.0

b3

Sub-game A

1.0 b30.28 c1

1.0 c1
White Wins (pONE)

White gives up Black wins

Figure 4.7: Continuation of Figure 4.6.

In Figure 4.7, Black prioritizes the short distance over the long one and

connects with the top border using b1, c1. This gives Black a chance to win on

either side of the board. If White plays on top Black will win, otherwise Black

still has a chance to compete. Here we see the biggest difference with HP. In

HP, we prioritize c3, a4 over the b1, c1 connection. SIP however completely

ignores these moves at the start.

52

1.0 c1

1.0c2

1.0c2

1.0a2

1.0c2

1.0a3 1.0a2

1.0c21.0a2

1.0a3

0.53c11.0b2

0.35a3

0.69c10.31b1

1.0a2

0.51c2 0.49a2

0.34a4

0.66

b4

0.65

b4

1.0

a3

1.0

a1

1.0

b4

0.47

a2

1.0

a1

1.0

b2

1.0

c1

1.0

b3

1.0

a3

1.0

b4

1.0

b4

1.0

a3

1.0

b3

Follows the same
strategy as c1 branch:

White wins

White gives up

Black wins (pONE)

White wins (pONE) Black wins

White wins

White wins

Black wins

Sub-game B

Figure 4.8: Continuation of Figure 4.6.

In Figure 4.8 SIP again focuses on the shorter distance connection with

a4 and b4. The b4 branch leads to a loss for SIP, but the followed strategy

is clear. The focus is on a2, c1, as in HP. The a4 branch however follows a

different strategy after the discovery of white stone on b2. SIP plays a3 or b4.

Its choice of a3 looks wise considering that it puts White in a fork. White

needs to play either the right or the left side, which leaves the other side open.

For HP, we did not consider this connection, instead, we randomly selected a

side for White before making a move on a3. This could be one of the major

53

differences in playing strength.

b4 is a less intuitive move. Black places a random stone which leads to

discovering a white stone. This move leads to a pONE state. Black assumes

that there is a white stone on b4. Otherwise, the game is already over since

White has a connection on one side and two cells to connect on the other

side. Here Black determines if the game will still go on and if so Black gains

knowledge of a white stone, which later leads to a pONE win for Black. Other

than this move, the b4 branch follows the same strategy as the a3 branch.

Figures 4.9, 4.10 and 4.11 shows SIP as White playing against abstract

best response strategy.

0.5 a40.5c1

Sub-game C Sub-game D

1.0 a1

Figure 4.9: The SIP strategy for White. Figure 4.10 and 4.11 show the con-
tinuations C and D.

In Figure 4.9 we see the same opening as in HP, equiprobably playing c1

and a4. The abstract best response player opens the game with a1 to block

White on the top row just as we explained in blocking in HP in Section 3.4.2.

54

1.0b3

1.0b2

1.0a1

0.25b3

1.0b1

0.53b2

1.0b4

0.63a4

1.0a1

0.38b2

0.5b2 0.5b30.7b1

1.0b3

1.0a4

1.0b3

1.0b3

1.0b1

1.0b3

1.0a3

1.0b1

1.0

c1

1.0

a2

1.0

b2

1.0

c2

1.0

a4

1.0

a4

1.0

b2

0.5

b4

0.5

c2

0.47

b3

0.37

a3

1.0

c4

0.3

a3

0.54

a1

0.46

a2

1.0

a2

0.62

c3

0.75

a1

1.0

a2

1.0

c3

Black gives up

White gives up

Black gives up White wins Black wins

Black wins

White wins

White wins

Sub-game C

Figure 4.10: Sub-game C. Note the two Black wins in the bottom right corner.

In Figure 4.10 White plays b1 or a3 as the second move. b1 follows the

same strategy as HP: Following the edge to join its sides until it gets blocked.

After the block, as in HP it plays a3, a4 and follows the bottom edge. If the

second move is a3, SIP tries an early connection on c1, b2, a3. We do not have

this strategy incorporated in HP.

55

Sub-game D

0.69b3

0.28c2

0.49c4

1.0b1

1.0b4

1.0a2

1.0

a4

1.0

c1

1.0

b2

1.0

c2

1.0

a4

1.0

b4

0.42

b3

0.31

b2

0.58

a2

0.51

c3

0.72

b4

White wins White wins White wins

White wins

White wins Black gives up

Black gives up

Figure 4.11: Sub-game D. Black cannot win. Black wasted two moves at the
beginning on the top when White plays a4 so White wins on the bottom.

In Figure 4.11 SIP follows the same strategy as sub-game C but this time

without getting blocked.

To evaluate its strength, we add SIP in the arena from Section 4.5.

Figure 4.12: Ranking for players including SIP.

56

4.7 SIP+: Smooth SIP

On the first look, we realize that some of the probabilities in SIP are close to

simple fractions such as 1
2
. We hypothesize that these probabilities should be

rounded systematically to a near simple fraction.

We call this “smoother” version, SIP+. We add two new parameters that

control the smoothing operation. The first parameter is N , the maximum

fraction denominator we look for. The second parameter we introduce is η,

the maximum distance from the probability to a fraction where we smooth

out. In the case of multiple fractions satisfying the smoothing constraints, we

choose the one closest to the input probability.

Using SIP+ we get improved results for the first player, increasing the

winning probability from 0.786 to 0.793 against the abstract best response,

and bringing our ϵ for the Nash equilibrium to (1− 0.793− 0.205) = 0.002 as

our final result in abstract space. For these results we use (N = 20, η = 0.005).

Same strategy gives us 0.202 and 0.757 win rate against approximate best

response, which gives us (1− 0.757− 0.202) = 0.049 as the final epsilon in the

full game. SIP+ is the strongest player in our findings.

SI
M

CA
P+

SI
M

CA
P

M
CC

FR
-IR

-p

HP To
ta

l

Second Player

SIMCAP+

SIMCAP

MCCFR-IR-p

HP

(-)Total

Fir
st

 P
la

ye
r

0 -0.55 -0.532 -0.548

-0.58 0 -0.562 -0.514

-0.592 -0.592 0 -0.623

-0.775 -0.785 -0.705 0

0 -0.55 -0.532 -0.548 -0.543

-0.58 0 -0.562 -0.514 -0.552

-0.592 -0.592 0 -0.623 -0.602

-0.775 -0.785 -0.705 0 -0.755

0.649 0.642 0.6 0.562 -0.613

Arena (Average Reward)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 4.13: Ranking for players including SIP+.

57

Chapter 5

Conclusion

In this thesis, we have evaluated the imperfect information game of Dark Hex.

We focused on four main questions about 4×3 Dark Hex:

1. What is the game, what are some interesting variations and why is it

difficult?

2. What are some techniques that we can use to analyze the game?

3. What is the best handcrafted strategy we can generate using deduction

and basic evaluation?

4. How can we improve this strategy using AI methods?

We briefly introduced some versions of Dark Hex and described the rules

of the game. We then gave an explanation on an improved mixed strategy

generated by hand and with the help of tools such as DSaGe. We introduced

a new mathematical notation which can describe a strategy concisely. We

discussed the reasoning behind every move in the strategy in a game against

the abstract best response player.

After creating a good handcrafted strategy we focused on using a computer

based approach. We first used sure win states to prune the game tree to a

more manageable level. We introduced Imperfect Recall abstracted Dark Hex

which reduced the game size by a large margin. After having a workable sized

game, we used the algorithms, NFSP and MCCFR to generate players. We

compared these players and chose MCCFR to further work with. We intro-

duced a new simplification method, SIP, to get rid of the actions we think

58

would be irrelevant. The new player generated by SIP, improved upon the

handcrafted strategy. We then realized some of the probabilities are close to

simple fractions, and introduced two new parameters to smooth the probabil-

ities where necessary. The improved player generated by SIP+, achieved an

ϵ-Nash equilibrium with ϵ = 0.002 in abstract game and got ϵ = 0.049 against

approximate best response. For each step of improvements we also discussed

the differences between the new strategy and the previous one.

We incrementally improved the known strategies for 4×3 Dark Hex ending

up with an end-to-end approach to be able to generate new strategies for large

games such as Dark Hex.

5.1 Future Work

Based on our work, we describe potential follow-ups.

1. Other Dark Hex versions. We introduced four different versions of

Dark Hex but focused only on classical Dark Hex. Investigating the same

methods on different versions is one natural next step in our work. Since

for the versions introduced in this thesis there are no baseline strategies,

any strategy would be an improvement.

2. Simplified MCCFR. We simplified the MCCFR trained strategies for

our best results. This idea should be generalized into a useful algorithm

to implement and test on large and small games that uses fewer actions,

and simpler probabilities. The embedding of simplification ideas in MC-

CFR is not straight-forward, since MCCFR needs to explore further in

order to strengthen the player over time. We think that it is a very

interesting future research topic.

3. Larger boards. The given methods are anytime and could be applied

to larger boards, such as 4×4. With a more efficient implementation of

pONE, it is possible to implement exactly the same approach on a 4×4

board and investigate the strategies.

59

4. Parameter study. The performance of NFSP in our experiments as

surprisingly bad. Even though we did some preliminary parameter search

and network structure tests, it might be worthwhile to do an in depth

parameter search for better results with NFSP.

60

References

[1] J. McCarthy, “From here to human-level AI,” Artificial Intelligence,
vol. 171, no. 18, pp. 1174–1182, 2007. 1

[2] R. Sutton, The Definition of Intelligence, 2016. [Online]. Available: http:
/ / incompleteideas . net / IncIdeas / DefinitionOfIntelligence .

html. 1

[3] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, 2019. 1, 4

[4] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep Blue,” Artificial
Intelligence, vol. 134, no. 1-2, pp. 57–83, 2002. 1, 4

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015. 1

[6] D. Silver, T. Hubert, J. Schrittwieser, et al., “A general reinforcement
learning algorithm that masters Chess, Shogi, and Go through self-play,”
Science, vol. 362, no. 6419, pp. 1140–1144, 2018. 1, 13

[7] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of
Go without human knowledge,” nature, vol. 550, no. 7676, pp. 354–359,
2017. 1, 13

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grandmaster level in
StarCraft II using multi-agent reinforcement learning,” Nature, vol. 575,
no. 7782, pp. 350–354, 2019. 1

[9] G.-W. Wei, “Protein structure prediction beyond AlphaFold,” Nature
Machine Intelligence, vol. 1, no. 8, pp. 336–337, 2019. 1

[10] R. B. Hayward and B. Toft, Hex, inside and out: the full story. CRC
Press, 2019. 3, 14

[11] D. Gale, “The game of Hex and the Brouwer fixed-point theorem,” The
American Mathematical Monthly, vol. 86, no. 10, pp. 818–827, 1979. 3

[12] F. Bonnet, “Winning strategies in Dark Hex: Hex with hidden stones,”
ICGA Journal, vol. 40, no. 3, pp. 234–245, 2018. 3, 6, 31, 45

[13] M. Johanson, N. Bard, M. Lanctot, R. G. Gibson, and M. Bowling,
“Efficient Nash equilibrium approximation through Monte Carlo coun-
terfactual regret minimization.,” in AAMAS, Citeseer, 2012, pp. 837–
846. 4

61

http://incompleteideas.net/IncIdeas/DefinitionOfIntelligence.html
http://incompleteideas.net/IncIdeas/DefinitionOfIntelligence.html
http://incompleteideas.net/IncIdeas/DefinitionOfIntelligence.html

[14] F. Timbers, E. Lockhart, M. Lanctot, et al., “Approximate exploitability:
Learning a best response in large games,” arXiv preprint arXiv:2004.09677,
2020. 4

[15] C. E. Shannon, “A chess-playing machine,” Scientific American, vol. 182,
no. 2, pp. 48–51, 1950. 4

[16] G. Tesauro, “TD-Gammon, a self-teaching backgammon program, achieves
master-level play,” Neural computation, vol. 6, no. 2, pp. 215–219, 1994. 4

[17] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go
with deep neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484–489, 2016. 4, 13

[18] S.-C. Huang, B. Arneson, R. B. Hayward, M. Müller, and J. Pawlewicz,
“MoHex 2.0: a pattern-based MCTS Hex player,” in International Con-
ference on Computers and Games, Springer, 2013, pp. 60–71. 4, 13

[19] D. Koller, N. Megiddo, and B. Von Stengel, “Fast algorithms for finding
randomized strategies in game trees,” in Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, 1994, pp. 750–759. 4

[20] H. Kuhn and A. Tucker, “Extensive games and the problem op informa-
tion,” Contributions to the Theory of Games, pp. 193–216, 2016. 4

[21] O. Morgenstern and J. Von Neumann, Theory of games and economic
behavior. Princeton University Press, 1953. 4

[22] G. J. Gordon, “No-regret algorithms for structured prediction problems,”
Carnegie Mellon University, Tech. Rep., 2005. 4

[23] D. Billings, “Computer poker,” Ph.D. dissertation, University of Alberta,
1995. 4

[24] J. Schaeffer, D. Billings, L. Peña, and D. Szafron, “Learning to play
strong poker,” in The International Conference on Machine Learning
Workshop on Game Playing, 1999. 4

[25] L. Barone and L. While, “Evolving adaptive play for simplified poker,” in
1998 IEEE International Conference on Evolutionary Computation Pro-
ceedings. IEEE World Congress on Computational Intelligence, IEEE,
1998, pp. 108–113. 4

[26] G. Kendall and M. Willdig, “An investigation of an adaptive poker
player,” in Australian Joint Conference on Artificial Intelligence, Springer,
2001, pp. 189–200. 4

[27] D. Koller and A. Pfeffer, “Representations and solutions for game-theoretic
problems,” Artificial intelligence, vol. 94, no. 1-2, pp. 167–215, 1997. 4

[28] J. Shi and M. L. Littman, “Abstraction methods for game theoretic
poker,” in International Conference on Computers and Games, Springer,
2000, pp. 333–345. 4, 5

62

[29] N. Brown and T. Sandholm, “Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018. 4

[30] The second man-machine poker competition, 2008. [Online]. Available:
http://webdocs.cs.ualberta.ca/~games/poker/man-machine/. 4

[31] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret min-
imization in games with incomplete information,” Advances in Neural
Information Processing Systems, vol. 20, 2007. 4, 44

[32] M. Lanctot, K. Waugh, M. Zinkevich, and M. H. Bowling, “Monte Carlo
Sampling for Regret Minimization in Extensive Games.,” in NIPS, 2009,
pp. 1078–1086. 4, 48

[33] O. Tammelin, “Solving large imperfect information games using CFR+,”
arXiv preprint arXiv:1407.5042, 2014. 4

[34] K. Waugh, D. Morrill, J. A. Bagnell, and M. Bowling, “Solving games
with functional regret estimation,” in Twenty-ninth AAAI conference on
artificial intelligence, 2015. 4

[35] D. R. Morrill, “Using regret estimation to solve games compactly,” M.S.
thesis, University of Alberta, 2016. 4

[36] N. Brown, A. Lerer, S. Gross, and T. Sandholm, “Deep counterfactual
regret minimization,” in International conference on machine learning,
PMLR, 2019, pp. 793–802. 4

[37] K. Waugh, D. Schnizlein, M. H. Bowling, and D. Szafron, “Abstraction
pathologies in extensive games.,” AAMAS (2), vol. 2009, pp. 781–8, 2009. 5

[38] D. Billings, N. Burch, A. Davidson, et al., “Approximating game-theoretic
optimal strategies for full-scale poker,” in IJCAI, vol. 3, 2003, p. 661. 5

[39] M. B. Johanson, “Robust strategies and counter-strategies: Building a
champion level computer poker player,” M.S. thesis, University of Al-
berta, 2007. 5

[40] A. Gilpin, T. Sandholm, and T. B. Sørensen, “Potential-aware auto-
mated abstraction of sequential games, and holistic equilibrium analysis
of Texas Hold’em poker,” in Proceedings of the 22nd National Conference
on Artificial Intelligence - Volume 1, ser. AAAI’07, Vancouver, British
Columbia, Canada: AAAI Press, 2007, pp. 50–57, isbn: 9781577353232. 5

[41] M. Lanctot, R. Gibson, N. Burch, M. Zinkevich, and M. Bowling, “No-
Regret Learning in Extensive-Form Games with Imperfect Recall,” Pro-
ceedings of the 29th International Conference on Machine Learning, ICML
2012, vol. 1, May 2012. 5

[42] N. Brown and T. Sandholm, “Libratus: The Superhuman AI for No-
Limit Poker,” in IJCAI, 2017, pp. 5226–5228. 13

63

http://webdocs.cs.ualberta.ca/~games/poker/man-machine/

[43] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo tree search
in Hex,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 2, no. 4, pp. 251–258, 2010. 13

[44] ——, “Solving Hex: beyond humans,” in International Conference on
Computers and Games, Springer, 2010, pp. 1–10. 13

[45] P. Henderson, B. Arneson, and R. B. Hayward, “Solving 8x8 Hex,” in
Twenty-First International Joint Conference on Artificial Intelligence,
2009. 13

[46] R. Hayward, Y. Björnsson, M. Johanson, M. Kan, N. Po, and J. van
Rijswijck, “Solving 7× 7 Hex: Virtual connections and game-state re-
duction,” in Advances in Computer Games, Springer, 2004, pp. 261–
278. 13

[47] J. Hannan, “Approximation to Bayes risk in repeated play,” Contribu-
tions to the Theory of Games, vol. 3, no. 2, pp. 97–139, 1957. 16

[48] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150,
2000. 16, 19

[49] A. Blum and Y. Monsour, “Learning, regret minimization, and equilib-
ria,” 2007. 16

[50] M. Lanctot, “Monte carlo sampling and regret minimization for equilib-
rium computation and decision-making in large extensive form games,”
Ph.D. dissertation, University of Alberta (Canada), 2013. 20, 21, 23, 44

[51] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992. 22

[52] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through
deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015. 22

[53] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016. 22, 48

[54] G. A. Heuer, T. Stratton, D. A. Smith, et al., “Problems,” Mathematics
Magazine, vol. 54, no. 2, pp. 84–87, 1981, issn: 0025570X, 19300980.
[Online]. Available: http://www.jstor.org/stable/2690443 (visited
on 04/27/2022). 31

[55] M. Lanctot, E. Lockhart, J.-B. Lespiau, et al., “OpenSpiel: A Framework
for Reinforcement Learning in Games,” CoRR, vol. abs/1908.09453, 2019.
arXiv: 1908.09453 [cs.LG]. [Online]. Available: http://arxiv.org/
abs/1908.09453. 48, 50

64

http://www.jstor.org/stable/2690443
https://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1908.09453

Appendix A

Appendix

A.1 Analysis on p-one

In this section we provide statistics on p-one for board sizes of 2×2, 3×3, 4×3.

We report the number of p-one states for both players based on the number

of hidden stones in an information state.

Figure A.1: Number of p-one for each player given the number of hidden
stones.

65

We can see that the the boards of equal size have the first player in advan-

tage. In 4×3 board however, the second player has the clear advantage.

66

	Introduction
	Background and Related Work
	Game Theory
	Hex
	Dark Hex

	Counterfactual Regret Minimization
	Regret and Regret Minimization
	Sequential Games and CFR
	Monte Carlo Counterfactual Regret Minimization
	Outcome Sampling

	Reinforcement Learning
	Neural Fictitious Self-Play
	Imperfect Recall

	Analysis of Dark Hex Using Game Theory
	Dark Hex Versions
	Dark Hex Strategy Generator
	Evaluation: Best Response
	New Strategies and Improved Bounds for 43 Dark Hex
	Notation
	Improved First Player Strategy for 43 Dark Hex
	Improved Second Player Strategy for Dark Hex

	Self-Learning Players: Reinforcement Learning and Regret Based Methods
	Imperfect Recall Dark Hex
	Probability One Win States
	NFSP for Dark Hex
	MCCFR for Dark Hex
	Comparing Player Strengths: Round-Robin Arena
	Better Strategies for 43 Dark Hex using Monte Carlo CFR
	SIP+: Smooth SIP

	Conclusion
	Future Work

	References
	Appendix Appendix
	Analysis on p-one

