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Abstract 

Studying structural changes in tropical forests is essential for understanding changes in 

ecosystem complexity. In this thesis, I studied changes in ecosystem structure using two 

different airborne Light Detection and Range (LiDAR) systems collected 16-years apart (the 

2005 dry season and the 2022 wet season). Line- and shape-based waveform metrics were used 

to document structural changes in secondary Tropical Dry Forests located in Santa Rosa 

National Park, Guanacaste, Costa Rica. 

My analysis based on a 16-year growth period showed significant variations in canopy height-

related profiles, particularly in the RH50, RH100, and other waveform-produced metrics such as 

(Cx and Cy). Our results revealed that the centroid location on tree height (Cy) and the derived 

Radio of Gyration (RG) present significant changes. 

Moreover, I observed positive correlations between Cy and CH, RG and RH100 especially in 

the wet season data collected in 2021. These findings not only enhance our understanding of the 

growth dynamics of TDFs in Santa Rosa National Park but also provide valuable insights that 

can inform future conservation efforts. By comprehending these complex chronosequence 

changes and growth patterns, we can develop effective strategies for preserving and managing 

these critical ecosystems in a changing world.  
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1.0  Introduction 

A Tropical Dry Forest (TDF) is an ecosystem defined as having more than 50% of its deciduous 

trees growing with a mean annual temperature of ≥25 °C and total annual precipitation between 

700 and 2000 mm (Sánchez-Azofeifa et al., 2005). Approximately 54% of the total area of 

tropical dry forests (TDFs) is located in the Americas, encompassing an estimated 519,600 km2. 

Specifically, Central America account for 203,900 km2 or approximately 39% of the total TDF 

area in the Americas. (Portillo-Quintero & Sánchez-Azofeifa, 2010). TDFs are ecosystems that 

provide a niche for many different types of species and steadily contribute to many 

multifunctional ecosystem services (Sánchez-Azofeifa et al., 2005; Calvo et al., 2017; Poorter 

et al., 2019). By the end of the 20th century, secondary TDFs had become the dominant land 

cover type in many Latin American countries as a result of a slowdown in deforestation and an 

increase in conservation initiatives (Castillo et al., 2012).  

 

Seasonality and the capacity to support deciduous species are two of the most readily 

identifiable characteristics of TDFs in the neotropical forest (Murphy, 2008). The dry season in 

the Central America, characterized by no rainfall, lasts from December to May of the following 

year (McLaren et al., 2003). Prolonged dry periods are a significant feature of TDFs and shape 

the ecology of these ecosystems, driving patterns in vegetation structure, species composition, 

and ecosystem processes. As a result of this seasonal drought, 90–95% of deciduous trees shed 

their leaves to reduce evaporation (Jaramillo et al., 2003). At the beginning of the rainy season 
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(June), rain replenishes TDFs with moisture, allowing for enhanced leaf production and canopy 

expansion (Gu et al., 2018). 

 

Over the past few decades, several studies have contributed to a better understanding of the 

ecological dynamics of TDFs (Sánchez-Azofeifa et al., 2005; Castro et al., 2010). A common 

denominator of these efforts is the need to map TDFs as a function of successional stage. 

Successional stage is defined as the regeneration of forest growth from natural or human 

disturbances (Kalacska et al., 2004). Generally, successional stages are characterized using the 

vertical and horizontal structure of the forest, leaf flushing dynamics, and density of green 

canopy cover (Lebrija-Trejos et al., 2011). TDF succession, however, is influenced by other 

variables such as Leaf Area Index (LAI), species composition, length of wet and dry seasons, 

canopy height, land-use history, soil type, and age since abandonment (Almeida et al., 2019, 

Arroy-Mora et al., 2005). Therefore, secondary TDFs can be classified into three successional 

stages: early, intermediate, and late (Arroyo-Mora et al., 2005).  

 

The unique ecology of TDFs underscores the importance of studying and conserving these 

ecosystems, which are important for their biodiversity, ecosystem services, and human well-

being. For ecological remote sensing studies, early, intermediate, and late successional stages 

can be mapped by comparing the aforementioned variables over time and space (Castillo et al., 

2012). From a chronological point of view, and considering the number of years since 

abandonment of a given parcel of land, early forests are those with a chronological age between 

0-15 years, intermediate forests are those with ages between 15-35 years, and late forests as 
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those with more than 35 years (Arroyo-Mora et al., 2005). Late TDFs` forest are not necessarily 

the climax, but they are used as a final reference based on changes in structure and composition 

(Calvo-Rodriguez et al., 2017). In general, early TDFs deciduous trees account for 80%-100% 

of the total number of stems; however, in the older succession stage, the percentage of 

deciduous trees can drop to between 30% and 50% (Arroyo-Mora et al., 2005). Over time, 

deciduous trees and lianas dominate TDFs, with this last structural group becoming more 

dominant in the intermediate stages (Falcão et al., 2015). Lianas generally contribute to a 

reduction in canopy openness and an increase in the woody area index (Sanchez-Azofeifa et al., 

2017). 

 

Light Detection and Ranging (LiDAR) has become a commonly used technology for 

understanding the vertical and horizontal characteristics of TDFs (Castillo-Núñez et al., 2011). 

Unlike passive optical techniques, LiDAR systems use a self-emitted laser beam to illuminate a 

target and measure the beam albedo (Asner et al., 2014). The differences in the beam’s return 

times and frequency can be used to estimate the distance and shape of the target. LiDAR 

systems can be categorized into three types: (1) Terrestrial Laser Systems (TLS), (2) airborne 

systems, and (3) spaceborne systems. Ground, airborne, and spaceborne LiDAR systems deal 

with the quantification of forest structure differently, despite the use of the same physical 

principles (Almeida et al., 2019). For example, ground-based LiDAR systems are advantageous 

for layer profiles and tree/liana structures because they record data from the bottom to the top of 

the forest. This property makes it possible to capture tree branch elements such as tree stems 

with precision and accuracy not available before, and can be compared to the bird’s eye 

perspective obtained from airborne and spaceborne LiDAR systems (McCombs et al., 2003). 
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On the other hand, airborne LiDAR systems (especially drone-based systems) provide a unique 

opportunity to characterize temporal changes in forest structure due to phenology (Sanchez-

Azofeifa et al., 2017). As a result, LiDAR systems (ground, airborne, and spaceborne) are 

among the most efficient and accurate methods available to ecologists and conservation 

biologists to study ecosystems (Martinuzzi et al., 2013). 

 

Many different types of airborne LiDAR systems are currently available, such as the Land, 

Vegetation, and Ice Sensor (LVIS) from the National Aerospace Administration (NASA), the 

Leica SPL100, the Galaxy from Teledyne Optech, and the RIEGL LMS-Q680I are the current 

airborne platforms. LiDAR data can be estimated using two approaches: discrete return (DR) 

and full-waveform (FW). The utilization of a small footprint and the capture of diverse 

reflectances from each beam in DR LiDAR systems enable the acquisition of highly precise 

information that is essential for extensive research, especially in the fields of aboveground 

biomass and individual tree studies (Sumnall et al., 2016). The small footprint of the DR 

LiDAR system provides high-resolution data, facilitating detailed analyses of individual trees 

and other objects, which, in turn, enhances our understanding of forest composition and 

structure (Reyes-Palomeque et al. 2021). In addition, the DR LiDAR system captures multiple 

returns from a single laser pulse, enabling acquisition of more detailed information on the 

distribution and characteristics of the forest canopy (Fedrigo et al., 2018). These highly accurate 

and precise data have numerous applications in forestry, ecology, and other related fields. 

Although DR LiDAR systems offer many advantages, they also have some limitations that need 

to be considered. One of the main disadvantages of DR LiDAR is that it is unable to penetrate 

dense vegetation, resulting in underestimation of forest canopy height and biomass (Sumnall 
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Hill and Hinsley, 2016). Another disadvantage of DR LiDAR is that it requires clear visibility 

and a line of sight between the sensor and the ground surface (Clark et al., 2011). This means 

that it is not suitable for use in areas with heavy cloud cover or during adverse weather 

conditions such as rain or snowfall. 

 

Nonetheless, full-waveform (FW) LiDAR is a powerful technology that has gained 

considerable attention in recent years because of its ability to capture highly detailed 

information about the physical properties of vegetation and terrain. FW LiDAR systems record 

the entire waveform of backscattered light, providing more detailed information on the vertical 

distribution of vegetation and ground objects (Sumnall et al., 2016). This technology has 

several advantages over other LiDAR systems, including improved accuracy in estimating 

forest biomass and greater ability to penetrate dense vegetation (Park et al., 2011). Despite its 

numerous advantages, the full-waveform LiDAR has some limitations. One of the main 

drawbacks is that they can be expensive to operate and maintain, making them less accessible to 

some researchers and organizations (Fieber et al., 2015). In addition, the processing of 

waveform data can be complex and time-consuming, requiring specialized technical expertise 

and computational resources.  

 

One of the most reliable instruments, Land Vegetation and Ice Sensor, has been used to collect 

Earth science data for decades. The LVIS collects ground features with a 1064 nm-wavelength 

(Table1) laser containing three detectors (Huang et al., 2012). From its first mission in 1998, 

LVIS collected data from several regions, including Greenland, Alaska, Central America, and 
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Canada. In 2005, NASA used a King Air B-200 airplane installed with an LVIS sensor to 

collect data from northwest Costa Rica using a 20m footprint (Castillo et al., 2011, Huang et 

al., 2012). On the other hand, the RIEGL LMS-Q680I provides full-waveform collection 

through echo signals collected from the subjects on the surface (Table 1). Since 2008, the 

RIEGL LMS-Q680I has been regarded as one of RIEGL's most dependable devices (Park et al., 

2011). Data from the RIEGL LMS-Q680I, using a 1550 nm-wavelength LiDAR system, can 

determine variations within two millimetres based on 266 000 readings per second (Jalobeanu 

et al., 2012). The RIEGL LMS-Q680I can properly estimate the structure and profile of a given 

forest using a modified flight route and a high-density cloud point. In the majority of cases, the 

RIEGL LMS-Q680I outperformed the TLS, particularly regarding the generation of Digital 

Terrain Models (DTM) (Jalobeanu et al., 2012). Consequently, contemporary research on forest 

structure and archaeology has benefited from this sensor (Cavender-Bares et al., 2020). 

Table 1: Parameters of LVIS and RIEGL LMS-Q680I LiDAR systems 

 Footprint 

size  

Wavelength accuracy Operating 

altitude 

Pulse 

firing 

rate 

Operation 

date 

LVIS 20m  1064nm ≤2m <10km 100-

500Hz 

1995-

present 

RIEGL 

LMS-Q680I 

0.5m 1550nm ≤20mm 1-1.6km 80k-

240kHz 

2008-

present 

Source: http://www.riegl.com/nc/products/airborne-scanning and 

https://lvis.gsfc.nasa.gov/Home/index.html 

 

http://www.riegl.com/nc/products/airborne-scanning
https://lvis.gsfc.nasa.gov/Home/index.html
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Numerous studies have been conducted in recent years at Santa Rosa National Park (SRNP) 

using LiDAR systems (Sánchez-Azofeifa, et al., 2015; Gu et al., 2018; Zhao et al., 2021). 

However, only a few studies have compared TDFs over a 16-year period. Dupuy et al., (2012) 

studied the TDF in the Yucatan over a period of 60 years and found that the vegetation structure 

and composition of TDFs varied significantly with time since abandonment. Specifically, 

researchers found that forest height, basal area, and species richness increased with time since 

abandonment, while stem density decreased. Additionally, they found that soil nutrients, 

topography, and climate are important predictors of forest structure and composition. Falcão et 

al. (2015) argued that a better understanding of these strategies can help inform conservation 

and management efforts as well as improve our understanding of the ecological processes that 

drive TDF dynamics, while highlighting the importance of these traits in enabling plant species 

to thrive in highly variable and dynamic environments. Furthermore, Reyes-Palomeque et al., 

(2021) presented a study on the use of LiDAR to map forest age and characterize vegetation 

structure and species composition in TDFs. The authors argue that LiDAR technology can be a 

valuable tool for mapping and monitoring TDFs, which can help inform conservation and 

management strategies. The study also underscores the need for further research on TDFs, 

particularly in the areas of forest age and succession, to better understand these important 

ecosystems and protect them for future generations. 

 

Given the need to understand the different capabilities of the LVIS and RIEGL LMS-Q680i 

systems, this thesis aims to study changes in the structure of TDFs located at the Santa Rosa 

National Park Environmental Monitoring Super Site (SRNP-EMSS) over a 16 year span (2005–

2021) using point cloud and waveform LiDAR data.    
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2.0  Studying Tropical Dry Forests secondary succession (2005-

2021) using two different LiDAR systems 

2.1 Abstract 

Chronosequence changes among Tropical Dry Forests (TDFs) are essential for understanding 

this unique ecosystem, which is characterized by its seasonality (wet and dry) and a high 

diversity of deciduous trees and shrubs. From 2005 to 2021, we used two different airborne 

LiDAR systems to quantify structural changes in the forest at Santa Rosa National Park. Line- 

and shape-based waveform metrics were used to record the overall changes in the TDF 

structure. Based on a 16-year growth analysis, notable variations in height-related profiles were 

observed, particularly for the RH50, RH100, and waveform-produced canopy heights. The 

results showed that Cy and RG have increased since the forests have been growing, whereas Cx 

has decreased. The decrease in Cx is due to the fact that ground returns are less when canopy 

density grows and canopy height increases. A positive relationship was observed between Cy 

and CH, RG and RH100 especially in the wet season data collected in 2021. These findings 

provide important insights into the growth dynamics of TDFs in Santa Rosa National Park, and 

could inform future conservation efforts.  
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2.2 Introduction 

At the beginning of the XXI century, Tropical Dry Forests (TDFs) spanned 3.4 million hectares 

in Central America (Marín et al., 2005). Despite the considerable extent of these forests, a 

significant portion remains unprotected and susceptible to unregulated deforestation and land 

use/cover change policies such as agricultural expansion, anthropogenic fires, and illegal 

logging (Marín et al., 2005). These anthropogenic forces have severely disrupted ecosystem 

services, including the provision of drinking water, biodiversity conservation, and climate 

regulation, particularly over the past two decades (Siyum, 2020). Although measures such as 

logging bans and the establishment of national parks have been implemented for preservation, 

the future dynamics of TDFs remain uncertain. The existing knowledge regarding the 

continuous safeguarding of TDFs and their future evolution is insufficient. 

 

Over the past three decades, remote sensing has become increasingly important for studying 

ecological processes within TDFs, with both passive and active platforms being employed.  

Applications of these platforms have concentrated first on mapping TDFs extension and growth 

rates (Kennard et al., 2002), and then on the characterization of their vertical structure and 

composition (Li et al., 2017). Currently, remote sensing studies are aimed at characterizing 

tropical secondary forest structure and composition (Castillo-Núñez et al., 2011). The former, 

presents new challenges to remote sensing (Castillo-Nez et al., 2011; Martinuzzi et al., 2013; 

and Gu, et al., 2018). For example, Gillespie et al. (2009) used passive remote sensing to study 

the richness of tropical forests  (dry, moist, and wet), which was later expanded in a study by 

Chitale et al., (2019), who used the Normalized Difference Vegetation Index (NDVI) from 
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Landsat Thematic Mapper data from 2010 to develop a sound estimation of plant species 

richness and identify areas of high biodiversity. In terms of active remote sensing studies, 

Ghulam et al., (2014) and Solberg et al., (2017) have used active InSAR  remote sensing data to 

study the invasive species and forest biomass. Among these active systems, Light Detection and 

Ranging (LiDAR) has shown potential in addressing some of the limitations of radar systems 

by providing more precise estimates of vegetation height and sensitivity to shifts in structural 

attributes, making it essential for distinguishing different forest successional stages, particularly 

in secondary forests. (Castillo et al.,2012). 

 

The LiDAR technology works by measuring the intensity and travel duration of a laser pulse 

reflected by a canopy to create a three-dimensional map, which determines the distance 

between objects by measuring the travel return time of a given pulse (Park et al., 2011). 

However, LiDAR systems face application challenges, particularly in dense tropical forests, 

where various canopy layers and tree branches become major laser beam reflectors. Such 

problems can be resolved using longer wavelength waveforms, because airborne topographic 

LiDAR systems use wavelengths between 905 and 1550 nm, which, in turn, balances the 

penetration depth of the laser signal and its absorption by water (Schneider et al.,2014). In 

secondary forests, full-waveform LiDAR systems can use reflected energy to collect additional 

data such as the canopy and understory profile of a given forest plot. 

 

More specifically, the amount of time a beam of light travels is converted into a distance to 

distinguish between the first return, which often originates from components positioned at the 



16 

 

top of the canopy, and the most recent return (ground returns) (Pirotti et al., 2011). The method 

of converting the amount of time spent traveling into distance yields a dataset that evaluates the 

heights of targets located significantly below the trajectory of the detector. This approach has 

been extensively employed in diverse climatic ecosystems to analyze forest characteristics such 

as canopy height, aboveground biomass, and forest structure (Stan et al., 2019). As the laser 

signal travels through the canopy, it comes into contact with different forest structural 

components (e.g., branches and leaves), facilitating differentiation between secondary and 

primary/mature forests (Sánchez-Azofeifa et al., 2015). However, the absence of forest age 

information in successional studies poses a significant hurdle for accurately estimating 

biodiversity and forest function (Castillo-Núñez et al., 2011).  

 

The process of assessing the structural successional changes in tropical secondary forest, in 

relation to their respective successional stages, has emerged as an indispensable and unrivaled 

technique for elucidating the intricacies of plant community dynamics (Janzen, 2000). 

Secondary forests vary in their species composition and forest structure over time, showing 

trade-offs in plant architecture in line with the dynamics of the succession stage (Zhao et al., 

2021). LiDAR technologies enable the establishment of the relative age of a forest by observing 

its structure (tree height, Diameter at Breast Height (DBH), and species composition) (Phillips 

et al., 2017).  Numerous studies, such as those of Zhao et al. (2021), used hyperspectral, full-

waveform LiDAR data and machine learning classifiers to map early, intermediate, and late 

successional stages.  Zhao’s et al. (2021) data fusion approach, combined with machine 

learning classifiers, demonstrated that LiDAR systems are an essential data source for 

improving the accuracy of forest age identification in TDFs. 



17 

 

 

Nevertheless, few studies have used LiDAR to study temporal changes as a function of 

successional stage. Considering the potential contributions of multitemporal LiDAR 

acquisitions to the understanding of tropical forest changes as a function of ecosystem 

succession, the purpose of this study was to use airborne LiDAR information collected in 2005 

and 2021 to study changes in the structural attributes of a TDF.  Specifically, LiDAR waveform 

derived metrics were used to characterize changes between early, intermediate, and late forests 

over a period of 16 years.    

 

2.3 Study area 

This study was conducted at Santa Rosa National Park's (SRNP) environmental monitoring 

super site in Guanacaste (Figure 1), northwest Costa Rica (10°48′53′′ N, 85°36′54′′ W). Since 

1971, the SRNP has been part of the Costa Rica National Park system and a component of the 

Guanacaste Conservation Area (Allen, 2001). The SRNP was originally a hacienda that slowly 

recuperated into a mosaic of different forest patches with different successional stages 

(Meléndez Chaverri, 1974).  

 

The topography of the study area is rather flat (approximately seven percent slope), and from 

northwest to southeast, the elevation drops from 325 masl to sea level. The bulk of precipitation 

at the SRNP falls during the six-month rainy season, with an annualized rate of roughly 1,750 

mm (May-November) (Sánchez-Azofeifa et al., 2005). The average annual temperature of the 
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SRNP is approximately 25 °C. From December to May, 80–100 percent of the young forest's 

vegetation loses its leaves, but this proportion declines to 30–50 percent in the intermediate 

stages and 10–40 percent in the old growth stages (Arroyo-Mora et al. 2005). 

Figure 1. Location of the Santa Rosa National Park Environmental Monitoring Super Site in 

Guanacaste, Costa Rica, and the footprint of the LVIS data and the RIEGL LMS-Q680i data 

used in this study. The color ramp in LVIS, ranging from blue to yellow, represents the 

elevation changes from low to high. In the RIEGL LMS-Q680i system, a color gradient from 

dark red to white signifies a similar shift in elevation, with low elevations represented by lighter 

colors and higher elevations by darker shades 
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2.4 Data and methods 

 

2.4.1 LVIS data and RIEGL LMS-Q680i data 

In 2005, the LVIS-equipped King Air B-200 aircraft collected surface reflectance data above 

the SRNP. The LVIS system captured over 180,000 waveforms decoded from 432 bins for each 

LiDAR echo beam (Table 1). Under the LVIS Data Structure (LDS) coding, the original binary 

data were reorganized to LVIS Canopy Elevation (. lce), LVIS Ground Elevation (.lge), and an 

LVIS Geolocated Waveform (. lgw) formats respectively. 

 

The second dataset was obtained from the RIEGL LMS-Q680i system.  Using a high laser pulse 

(repetition rate up to 400 kHz) and more than 260,000 measurements per second, the RIEGL 

LMS-Q680i collects high-quality data independent of the complexity of the terrain (Table 1). In 

2021, Stereo Carto Central America provided a 2000 m scan of the SRNP image with 1m 

resolution. After image pre-processing and raw laser processing, *.tif contained image data, and 

the *.las file restored point clouds data that are used in this study. 

 

It is noticeable that the data collection by the LVIS was conducted during the dry season of 

2005, a period during which most trees were in a leaf-off stage. This limited tree canopy crown 

density influenced the energy returned to the sensor, resulting in modifications to the waveform 

when compared to the leaf-on season data collected by the RIEGL LMS-Q680i. In 2021, the 

RIEGL LMS-Q680i gathered leaf-on data from TDFs during the wet season. During the leaf-on 

season, the proliferation of leaves in the TDFs resulted in a greater number of canopy returns. 
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2.5 Methods 

2.5.1 Description of workflow 

In this study, two different types of LiDAR systems were used for the analysis, as indicated 

above. The workflow used in this study is illustrated in Figure 2. The workflow aims to 1) 

upscale the small footprints from RIEGL (1m) to LVIS (20m), 2) produce the RIEGL 

waveform and unify its format with the LVIS data, 3) produce the tree waveforms, 4) separate 

three successional stages, and 5) conduct a comparison using waveform metrics between 2005 

and 2021.  

 

Figure 2. Workflow applied to the LVIS and RIEGL datasets to analyze changes in forest 

structure as a function of successional stage between 2005 and 2021. 
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This analysis was performed using the LVIS LiDAR 2005 and RIEGL LMS-Q680i 2021 

waveforms. The following variables were extracted from the two datasets for 2005 and 2021 

(Table 2): Canopy Height (CH) and Relative waveform Intensity at 25, 50, 75 and 100% of the 

vertical profile (RH25, RH50, RH75 and RH100), which quantified the vertical changes in 

vegetation; the visualized balanced point (centroid) of the waveform (Cx and Cy) (Eq:1), which 

depicted the changes in waveform amplitude and waveform sensitivity and the Radio of 

Gyration (RG), which quantified the changes in waveform shape. 

Eq1: 

𝐶 =
∫ 𝑓(𝑥,𝑦) ⅆ𝑙

∫ ⅆ𝑙
                                                               (1) 
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Table 2 : Description of the LiDAR metrics used in this study. WAF is the waveform 

amplitude figure, and NCE is the normalized cumulative return energy figure. 𝑯𝒈 is the ground 

return which means elevation of the lowest detected mode within the waveform (m). 

Acronym Source Unit Description 

RH25 NCE meter Relative Height related to 𝐻𝑔 at which 

25% of the waveform energy occurs. 

RH50 NCE meter Relative Height related to 𝐻𝑔 at which 

50% of the waveform energy occurs. 

RH75 NCE meter Relative Height related to 𝐻𝑔 at which 

75% of the waveform energy occurs. 

RH100 NCE meter Relative Height related to 𝐻𝑔 at which 

100% of the waveform energy occurs. 

Cx WAF waveform 

amplitude 

The x coordinate of the waveform 

centroid (under the waveform coordinate 

system) 

Cy WAF meter The y coordinate of the waveform 

centroid (under the waveform coordinate 

system) 

RG WAF null The second moment of the waveform or 

the radius of gyration, is the root mean 

square of the sum of the two-dimension 

distances that all points on the waveform 

are from its centroid (under the waveform 

coordinate system) 
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Annual rate null %/year The annual rate is calculated by the 

increased value divided by the total years, 

then divided by the total increased 

amount. In the thesis, the time period is 

constant at 16 years. 

 

2.5.2 Pseudo-waveform synthesis (RIEGL to LVIS) 

To compare forest changes between the two data collections, the smaller footprint (1 m) from 

the RIEGL system must be upscaled to match the larger footprint (20 m) of the LVIS system 

(Figure 3). In addition, the formats of the two LiDAR systems should be unified. Hence, several 

conversions were necessary to match the RIEGL (2021) dataset with the LVIS (2005) dataset. 
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Figure 3. LVIS footprints are recorded with a footprint diameter of 20-meters for the 2005 

flight. The RIEGL system used a 1-meter footprint to derive a discrete point cloud from the 

waveform information in 2021.  

 

 

 

The “rGEDI” package was utilized to convert. “las” files (RIEGL) to “.h5” files (LVIS pre-

processing files) to obtain comparable data between the two systems (Figure 4). This process 

included:1) clipping the RIEGL discrete point cloud within the 20m LVIS footprint, so a point 

cloud with a radius corresponding to the LVIS can be produced; and 2) using the “rGEDI” 

package to convert the clipped point cloud to the waveforms with. “h5” conversion file. The 

generated files were classified as “synthesized waveform files”. 
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Figure 4. Workflow associated with the processing of the waveforms: 1. The LVIS centroids 

were located. 2. The discrete point cloud is clipped using the standard LVIS radius 3. The .h5 

files are derived from all of those individual point clouds. Then we compared the LVIS (2005) 

waveform and the.h5 waveform from RIEGL (2022). 

 

In addition to the digitized waveforms, the original LVIS files contain additional information, 

including “zt” and “zg,” which correspond to the elevation of the highest detected return and 

the lowest detected mode, respectively, as well as the mean signal noise level “sigmean.” After 

noise cancelation, the LVIS waveform is comparable to the converted RIEGL waveform. By 

matching data in a comparable format, the same approach can be used to analyze the 

waveforms. 
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2.5.2.a Tree height from waveform  

Forests are distinguished by the fact that the tree height is determined using waveforms. As the 

full-waveform LiDAR data shows, the height of the tree is the time elapsed between the treetop 

returns and the ground returns, which can be determined from the distance between the two 

most prominent peaks in the amplitude waveform. In the different seasons, TDF exhibits 

distinct variations in ecosystem which are recorded by the LiDAR waveform. Throughout the 

wet season, an increased number of leaves reflect energy from the TDF canopy, resulting in 

waveforms (Figure 5) that display a prominent peak within the primary canopy layer. However, 

in the dry season TDFs experience a significant reduction in leaf coverage, leading to a 

decrease in canopy returns and energy absorption compared to the rainy season. Consequently, 

the dominant peak of the waveforms shifts towards ground returns (Figure 6). 

 

More precisely, the commencement of the signal 𝐻𝑏 indicates both the initial return and peak of 

the canopy (Figures 5 and 6) while 𝐻𝑔 indicates the second peak of the returning signal, or the 

signal reflected off the ground. 𝐻𝜏 represents the total height of the tree.  

(Eq 2): 

 

                                                   𝐻𝜏 = 𝐻𝑏 − 𝐻𝑔        (2) 
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Figure 5. The tree top is the first return represented by 𝑯𝒃, the main ground return is 

represented by 𝑯𝒈, and 𝑯𝝉 is the tree height during the wet season. During the wet season, 

more leaves return the energy from the tree top and waveform showing the dominant peak in 

the main canopy. During the wet season, more leaves return energy from the tree top and 

waveform, showing a dominant peak in the main canopy. 

 

 

Figure 6. The left figure represents a waveform from the dry season. During this time of year, 

the TDF’s leaves drop substantially, the canopy returns and the energy absorption are lower 

than during the rainy season. The ground returns from the dominant crest of the waveforms. 
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According to Roberts (1998), canopy structure (e.g., density and closure) influences the 

recognition of the highest point of the canopy instead of the highest peak of the largest mode in 

a waveform. Therefore, to select the ground peak, Harding et al., (2005) specified that the 

ground surface must be the end-peak of the relative amplitude. They also found that the 

beginning of the first main peak was at the top of the canopy and the strongest return from the 

bottom was the ground return. Therefore, it is hypothesized that the RIEGL average tree height 

(𝐻𝜏−𝑅𝐼𝐸𝐺𝐿) in 2021 is greater than the LVIS average tree height 𝐻𝜏−𝐿𝑉𝐼𝑆 in 2005. 

 

2.5.2.b Waveform metrics 

The most commonly used method for estimating height changes is to calculate the Relative 

Height (RH) metrics (e.g., RH25, RH50, RH75, and RH100). The vertical heights are denoted 

as RH25, RH50, RH75, and RH100, based on the vertical distances between the 25%, 50%, 

75%, and 100% energy returns. From the LVIS .lge file, the RH metrics are estimated by the 

function of the zg value, which is the lowest detected elevation within the waveforms. The zg 

values of the REIGL data may be identified using the same approach, notwithstanding the 

identical scale waveform amplitude, and ensuring that the RH metrics of the two distinct lidar 

systems are comparable. 

 

The analysis of waveforms requires shape-based metrics, in addition to RH measurements. 

According to Muss et al. (2013), shape-based metrics present a challenge to the standard energy 
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accumulated approach, specifically in the absence of potential information from the waveform 

shape and collinearity of the quantile datasets (RH metrics). Using the connection between the 

shape, location, and wavelength of the LiDAR waveforms, the position of the centroid (Cx and 

Cy) was computed as a function of the balanced point of the waveforms. The centroid provides 

more exact and direct information on the position and form of waveforms. In this study, C is 

relative to the ground, as the detected waveforms indicate that the tree canopy returns to the 

ground. In addition, the Radius of Gyration (RG) was computed by utilizing the root mean 

square of the distance between the center of the waveform and its edge to quantify the 

waveform. 

(Eq 3): 

                          𝑅𝐺 = √∑(𝑥𝑖−𝐶𝑥)2+∑(𝑦𝑖−𝐶𝑦)
2

𝑛
                     (3) 
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2.5.2.c  Age group and succession stages 

Understanding the growth trajectory of secondary forests requires a chronosequence approach, 

particularly for long-term studies (Quesada et al., 2009). According to Arroyo-Mora et al. 

(2005), successional phases are influenced by vertical and horizontal structures, the dynamics 

of leaf flushing (leaf on/leaf off), and the density of the green canopy cover. The four stages of 

succession include pastures, early succession, intermediate succession, and late succession; 

since 2005, early forests were still a mixture of pasture and trees, and only the changes that 

occurred during the intermediate and late succession periods have been taken into account. 

 

According to Zhao et al. (2021), an age-attributed metric can be used to merge LVIS LiDAR 

data with hyperspectral information to provide an age map with groups of 0-10 years, 10-20 

years, 20-30 years, 30-50 years, and 50+ years. Using Zhao et al. (2021) as a reference, we 

considered three forest age groups:  0-30 years (early) old, 30-50 years (intermediate), and > 50 

years (late).  Because there were 16 years between images, the age of the forest also changed. 

Hence, by 2021, each stage (2005) had moved into the next successional stage: the early to 

intermediate, the intermediate to late, and late stage remained the same. Then we separated the 

late stage in 2021 to late1 and late2. Late1 is grown from intermediate stage in 2005 and late2 

grew from the late stage in 2005. 
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2.6 Results 

2.6.1 Change in relative height traits and canopy height 

Table 3 provides the variations in RH metrics relevant to the four succession stages in 2005 and 

2021. The RH25 shows slight fluctuations in height between 2005 and 2021, indicative of the 

fact that, irrespective of the successional stage, the understory vegetation has increased. In 

contrast, the alterations in the upper canopy are moderate and increase by two to five meters. 

The transition from early (2005) to intermediate (2021) has the highest rate of change among 

the four RH metric groups, about four to ten times that of the other groups. As a comparison of 

the same age group, late (Table 3) and late1 (Table 3) show similar mean RH75 and RH100 

values of 11m and 17m, respectively. The trees in the late1 group have already completed the 

growth transition from intermediate 2005, indicating a high degree of age similarity between 

the late (2005) and late1 (2021). 

 

Between 2005 and 2021, variations in the mean and standard deviation of the forest's 

succession stages are observed, particularly for RH25. During the previous 16 years, the move 

from the late stage to the late2 stage resulted in an increase of six meters across all RH metric 

categories (6.3%/year). One conspicuous shift is the marked rise in the RH50 of the early stage 

in 2005, which surged to 6.25 meters by 2021 (6.0%/year), nearly six times its initial height. 

These findings suggest that tremendous growth and development have transpired within the 

forest during the specified timeframe. The intermediate to late stages, however, exhibited the 

least amount of growth over the span of 16 years. This minimal growth, particularly evident in a 
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mere two-meter increase in RH100. It is, nevertheless, important to realize that the changes 

between the late stage in 2005 and the late1 stage in 2021 are modest for RH75 and RH100, 

signaling that the forest has stayed generally homogeneous in these higher RH metric 

categories. In conclusion, it is obvious that the forest has considerably altered in the early stage 

during the past sixteen years, while remaining rather stable in the late stage. 

 

Table 3: 2005(LVIS) and 2021(RIEGL) mean Relative Height with the 25%, 50%, 75% and 

100% energy back with one standard deviation. Data is grouped as a function of successional 

stages. 

year 2005 (LVIS) 2021 (RIEGL) 

stage early intermediate late intermediate late1 late2 

RH25 

(m) 

0.40±0.38 1.25±1.43 2.71±2.39 4.01± 2.10 6.15±2.37 8.43±3.34 

RH50 

(m) 

1.32±1.20 4.21±2.82 6.42±3.88 6.25±2.59 9.30±2.74 12.16±3.60 

RH75 

(m) 

3.39±2.06 8.21±3.31 10.11±4.56 8.18±2.83 11.89±2.87 15.13±3.66 

RH100 

(m) 

9.39±3.21 15.49±3.90 17.11±5.91 13.16±3.10 17.52±3.08 21.28±3.92 
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Figure 7 presents the density distribution of Canopy Heights (CH) in 2005 and 2021. Maximum 

of the distributions are observed at 16 and 17 m, respectively.  This data is close to the 

intermediate stage (red) from 15 to 18 m in Figure 8. Nonetheless, there is a substantial 

variance in CH between 2005 and 2021, with the mean canopy height expanding from 14.2 

meters to 17.0 m (2.8 m) over the whole study area about . Figure 7 also shows that for the CH 

changes in 2005, there is a distinct gap between the 2021 CH from 0 to 11 m, indicating a 

transition from pasture to an early successional stage not currently observed on the 2005 data.   

 

The intermediate stage (red) in Figure 8 shows CH from the intermediate stage in 2005 to the 

late1 stage in 2021 for this group. Among the three groups in Table 3 that exhibit a consistent 

trend in RH100 from the intermediate (2005) to late1 (2021) stages, the trees in this particular 

group display the least amount of growth variation. 
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Figure 7. Density chart showing the density of Canopy Heights (CH) in 2005 and 2021. Blue 

represents the LVIS 2005 and orange represents RIEGL 2021. 
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Figure 8. Point graph showing the different Canopy Heights (CH) for the early, intermediate 

and late successional stages in 2005, and then changes to the intermediate, late1, and late2 

stages in 2021. Curved circles represent the density. When circle size increases, a lower density 

is represented.  
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2.6.2 Comparison of waveform centroid metrics  

Figure 9 presents the different Cx and Cy positions of the three successional stages in 2005. Cx 

changes between 5-20 and the Cy between 10-20 m. The intermediate stage follows the late 

stage, and the Cx in this stage is more adaptable, ranging from 10 to 60. The early stage is 

depicted at the bottom of the graph with an elevation profile that is approximately 4m lower. 

This is owing to the fact that tree height is lower in the early stage, as demonstrated in the RH 

metrics of Table 3. Moreover, the intermediate stage dominates the graph, which is consistent 

with the intermediate stage in Figure 8. 

 

Figure 9. Point graph showing Cx and Cy as representing each footprint`s centroid of the 2005 

waveforms. Separated colours express the early stage in dark, intermediate stage in red and the 

late stage in blue. 
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In Figure 10, which pertains to the year 2021, the primary Cx values exceed 20, indicating a 

significant decrease compared with the Cx values in 2005 that is related to high ground return 

in leaf-off  season. Additionally, the stages are more distinctly separated, with pronounced 

margins observed between them. The demarcation between the intermediate stage and late1 

stages becomes apparent when Cy attains a value of 7, while the distinction between the late1 

and late2 stages becomes apparent at a Cy value of 15. Despite some overlap between the late1 

and late2 stages, the majority of the data points are concentrated in the late1 stage. 

 

Furthermore, there is a notable variation in the density of data points among the different 

growth stages. Specifically, the intermediate stage in 2005 and the late1 stage in 2021 account 

for the majority of the points. This trend suggests that the trees have undergone considerable 

growth, resulting in a denser and more layered canopy. 
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Figure 10. Point graph using Cx and Cy to represent each footprint’s centroid of the 2021 

waveform. Separated color express the intermidiate stage in dark, the late1 stage in red and the 

late2 stage in blue. 
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2.6.3 Comparing waveform line-shape based metrics  

In Figure 11, the LVIS (2005) frequency distribution presents a plateau in point density at Cx 

=14 and continually decreases the density to Cx = 78. The highest Cx point density in 2021 is 

reached at a Cx of 9 waveform amplitude.  Simultaneously, the max Cx in 2021 reached 37, 

which is less than half of the maximum value recorded in 2005, approximately 78.The 2005 

waveform surpasses the 2021 data, suggesting that the ground return energy in 2005 was 

greater than that collected in 2021. The primary factor driving this difference is that the leaf-off 

season's Cx is typically higher than in the leaf-on season. Consequently, less canopy cover is 

available to absorb the energy during the leaf-off season. 

 

Figure 11. Frequency distribution of Cx illustration changes between  2005 and 2021. 
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Figure 12 presents a comparison between Cy in 2005 and 2021. The elevation profile is shown 

by the Y-axis. The data indicates that the 2005 peak is around 3.5 meters in height, whereas the 

2021 peak is approximately 9 meters. The graph depicts a changing trend in the line, which, 

according to waveform analysis, suggests that the vertical profile is rising since the trees have 

been growing over a period of 16 years. 

 

 

Figure 12. Frequency distribution of Cy illustration changes between  2005 and 2021. 
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Figure 13 presents a comparison for RG between 2005 and 2021. The 2021density line 

demonstrates an upward trend as trees are growing which is expected from an ecological point 

of view. Figure 13 presents the distribution of RG as a function of successional stage.  The tree 

growth depicted in Figure 14 appears to follow the successional stage group, with the late stage 

having the highest rate of rise and the highest RG value compared to the early stage in 2005, as 

indicated by the bottom of the point cloud. 

 

 

Figure 13. Line graph illustrating the density of the RG distribution in 2005 and 2021. 
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Figure 14. Point graph showing the RG points grouped by the early, intermediate and late 

stages. The X axis represent the LVIS 2005 data and the Y axis is RIEGL 2021 data. The color 

from black, red and blue represent the early stage, intermediate stage, and late stage 

respectively.  

 

 

2.6.4  Relation between the metrics 

The correlation between several metrics, including Cx, Cy, RG, CH and RH100, in both 2005 

and 2021 are depicted in Figure 15 and Figure 16. Of these metrics, the relationship between Cx 

and RG in Figure 15 stands out, as it indicates a high level of correlation. This is due to the fact 

that Cx yields a higher value compared to Cy in the calculation of RG, suggesting that ground 

returns from 2005 are the primary contributor to energy reflectance since the data was collected 

in dry season. Additionally, Figure 15 shows that the ground returns during the dry season 

produced the largest peak, which significantly contributed to the Cx calculation. 
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Figure 15 also reveals favorable correlations between the CH-RH100, Cy-RH100, and Cy-CH 

connections. This can be attributable to the fact that variations in CH, Cy, and RH100 are 

connected to differences in the forest`s vertical profile. In contrast, RG has a negative 

correlation with CH, RH100, and Cy, indicating that ground returns are very robust and weaken 

the link between tree height profiles and ground returns. 

 

Moving on to Figure 16, RG is positively influenced by metrics related to vertical profiles, 

especially in the range of 0.5-1. This is particularly noticeable in the CH-RH100, RG-RH100, 

and RG-CH relationships, which display the opposite correlation compared to the 2005 data. 

The reason for this is that during the leaf-on season, multiple canopy layers contribute 

significantly to energy reflectance, as shown in Figure 5. Consequently, the waveform peak is 

dominated by canopy reflectance, and the waveform amplitude related to Cx is negatively 

related to the remaining four metrics. 
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Figure 15. Correlation graph showing the relation between the Cx, Cy, RG, CH and RH100 

metrics in 2005. The color gradient represents the degree of positivity or negativity between the 

measurements. Blue is negative, whereas red is positive. 
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Figure 16. Correlation graph showing the relation between the Cx, Cy, RG, CH and RH100 

metrics in 2021. The color gradient represents the degree of positivity or negativity between the 

measurements. Blue is negative, whereas red is positive. 
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2.7 Discussion  

This study delves into the topic of waveform metrics and their effectiveness in visualizing the 

evolution of tropical dry forests (TDFs) in Costa Rica over a period of 16 years. This study uses 

a combination of LVIS and RIEGL data collected in 2005 and 2021, respectively, to provide a 

comprehensive analysis of the changes that have occurred in TDFs over time.  

 

In recent years, RIEGL data has been gathered, allowing researchers to study the SRNP in 

greater detail and at a resolution of 1 m. These data offer valuable insights into the potential 

changes that may have occurred in TDFs over the past 16 years. By analyzing the waveform 

metrics from both datasets, the study concluded that tree height and canopy height in the SRNP 

have increased since the initial LVIS data collection in 2005. This study provides vital 

information to academics, conservationists, and policymakers concerned with the preservation 

and management of TDFs. Visualizing the variations in TDFs over time using waveform 

metrics can help identify areas requiring conservation efforts and project the possible effects of 

climate change and other environmental variables on these ecosystems. This research 

contributes to our understanding of TDFs and their significance in tropical environments for 

sustaining biodiversity and ecological balance. 
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2.7.1 Mapping forest with time series by LiDAR 

The results of waveform analysis revealed progressive growth of TDFs at the SRNP. The 

average canopy height grew by 2.8 meters. The ascending variables are also reflected in the 

rising RH metrics (Table 3), shifting the Cy density position (Figure 12), increasing RG density 

(Figure 13), and shifting the Cx and Cy positions (Figure 9 and 10). In Figure 7, an interesting 

gap appears between the 2021 CH line from 0 m to 11 m, which shows that there may be 

factors contributing to faster growth or development in early stage compared to the other two 

successional stages. More related research is required to identify these elements and their 

possible influence on forest ecosystems. 

 

These findings are consistent with previously published assessments of tropical regions, and our 

study updates and expands on previous comparisons of canopy height and RH metrics (Gu et 

al.,2018). Moreover, our work updated the comparison to include not only the RH100 height, 

but also the RH25, RH50, and RH75 heights, along with showing increases in tree heights 

across all RH matrices. Mora et al., (2015) found TDFs showed an increase of tree height in the 

first 3 years and are expected to continue the growing trend for 15 years. The chronosequence 

model predicts an increasing trend that matches the results of our work in the RH100 

comparison (Table 3) and the Cy changes (Figure 12).  

 

Separately, different successional stages showed different rates of increase. The early stage 

showed the most significant increase in canopy height, with an increase of approximately 4 m 
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in RH100, whereas the late stage exhibited less growth. Each stage had a unique canopy height 

range, as demonstrated by Sánchez-Azofeifa et al. (2015). It is noticeable that in Figure 8 and 

Table 3, the intermediate (2005) to late1 (2021) stages show the least variation in growth. This 

phenomenon can be attributed to the cross-sectional components of the transition zone between 

the early to intermediate stages and the intermediate to late stages. In other words, the transition 

from one stage to the next in this group was relatively smooth and consistent, leading to a more 

uniform growth pattern and less variation among individual trees. 

 

However, we demonstrated here that the early, intermediate, and late stages result in the 

uniqueness of Cx, Cy, and RG. Although Figures 12 and 13 show some overlapping point data, 

the separate distribution of each stage point confirms the sensitivity of the shape-based 

waveform. However, the study of the successional stage is restricted by the difficulty of 

continuing data collection, which prevents comprehension of the unique dynamics inside the 

forest, particularly in the transition zone or the border of the age map (Duan et al., 2023). In 

TDFs, elements such as temperature, humidity, soil moisture, precipitation, and light have a 

substantial impact on the 16-year growth (Nath et al., 2006). Specifically, Nath et al. (2006) 

identified precipitation, temperature, and soil properties as the primary factors affecting 

secondary forest development. This study utilized long-term data collected between 1988 and 

2000, including parameters such as diameter at breast height (DBH), precipitation, temperature, 

and soil properties. The data revealed a positive correlation between tree growth and both 

precipitation and soil moisture but a negative correlation between forest growth and 

temperature. It is critical to recognize that this research does not account for environmental 
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changes that may have occurred in Santa Rosa National Park throughout its 16-year expansion 

period, since these changes were never documented or examined. 

 

At the same time, the uncertainty (overlay part in Figures 9 and 10) of 2021`s successional 

stages is the result of the theoretical chronosequence of forest development. Our study showed 

only one possible trajectory of TDFs growth. However, Borges et al. (2023) suggested a 

possible method to pursue future estimations based on the similarity of forest growth, regardless 

of the type of forest. Future studies predicting the future development of TDFs should consider 

the possible relationship between TDFs and other types of forests. 

 

2.7.2 Seasonal impact of the TDFs comparison 

The TDFs exhibit a clear differentiation between the wet and dry seasons. During the wet 

season, the TDFs experience higher levels of soil moisture and precipitation, which leads to an 

increased flourishing of the forest in comparison to the dry season. In fact, during the wet 

season, the TDFs exhibit growth patterns similar to those of wet forests. The growth is slowed, 

however, and even halted when the dry season arrived (Vieira & Scariot, 2006). This 

seasonality is evidenced by the findings from the 2005 LVIS (dry season) and the 2021 RIEGL 

(wet season) studies. Specifically, the growth of TDFs has been observed to be faster during the 

wet season compared to the dry season (Poorter et al., 2019). 
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The seasonality of the TDFs also introduces uncertainty into forests studies, which is 

manifested in the inverse relationship observed in Figure 15 and Figure 16. The reversal of 

energy returns in the dry season is due to the fact that leaves, which are the primary reflectors 

of LiDAR signals, are absent during this period. Consequently, the LiDAR system detects 

mostly ground returns rather than canopy returns, resulting in the observed waveform peak 

(Figure 6). Conversely, during the wet season, when leaves are present on the trees, the LiDAR 

system detects mostly canopy returns, leading to the observed major energy occupation by 

canopies. 

 

Simultaneously, early stage forests are comprised of a dense herbaceous understory and a 

massive openness canopy of drought deciduous trees (Sánchez-Azofeifa, et al.,  2015). The 

results of the 2005 LVIS contain a large number of early-stage forests, as indicated by the 

lowest canopy height in Figure 7 and Table 3. On the other hand, the intermediate and late 

stages have a greater number of fast growing trees, lianas, and evergreen crowns, which offer a 

thicker canopy to the TDFs in wet season (Zhao, et al., 2021). As a result, the LVIS 2005 early 

stage waveform displays a greater number of ground returns than the other two stages in the 

waveform. Compared to data from 2021, the canopy layers absorb more energy since, 

presumably, there are no early-stage remnants. The waveform of the 2021 wet season resembles 

the typical forest LiDAR waveform more closely (Figure.4) (Reitberger, et al., 2008). 

 

It is worth noting that the seasonality of TDFs introduces some uncertainty into forest studies. 

As mentioned earlier, the absence of leaves during the dry season can lead to high ground 



51 

 

returns and little canopy returns, indicating a lower number of trees or a smaller number of 

leaves on the trees. This introduces uncertainty into forest studies that rely on LiDAR data, 

particularly when trying to estimate tree height, tree biomass and carbon storage. Therefore, it 

is essential to consider seasonality when using LiDAR data for forest studies, and to take 

measures to account for the absence of leaves during the different seasons. 

 

Furthermore, it is important to note that the resolution of the original data comparison between 

LVIS and RIEGL is significantly different, with a ratio of 20:1. This represents a considerable 

upscaling of the data, which may introduce additional noise and uncertainties into the results. 

Therefore, the potential impact of this upscaling on the data and the resulting interpretations 

should also be considered and discussed. The study from Silva et al., (2018) pointed out a 

similar methods to convert the point clouds to waveforms to ensure the small footprint LiDAR 

system is comparable with large footprints. Silva et al., (2018) discovered that the outcomes of 

the big and small footprints were comparable, particularly the canopy height and ground 

elevation. And from the preceding paragraph, the SRNP`s TDFs followed a similar pattern of 

development. As a consequence of our research, it is advisable that future studies compare data 

from the same season in order to eliminate the influence of the TDFs’ seasonality, which has no 

correlation with the footprint size. 
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2.8 Conclusion  

In this study, the TDFs in Santa Rosa National Park (SRNP) have witnessed growth over 16 

years. Based on the Canopy Height, Relative Height, stage group, waveform shape, and line 

metrics analysis, the following conclusions can be drawn: 

 

With 16 years of growth, TDFs revealed notable variations in height-related profiles, 

particularly from RH50, RH100, and waveform produced canopy height. Line- and shape-based 

waveform metrics recorded all changes in the TDFs during the 16 years of growth. Cy and RG 

increased during forest growth, and Cy showed a positive relationship, particularly in the 2021 

wet season results. Cx is shown to have relatively decreased because the ground returns are 

lower when the canopy density increases and the canopy height increases.  

Intermediate (2005) and late1 (2021) stage trees contributed to the main canopy height with the 

largest number of trees. By 2021, it is rare to notice early-stage forests in TDFs using LiDAR. 

The wet and dry seasons in TDFs drive significant changes in the waveform, especially in 

relation to the Canopy Height and RG. Thus, the same seasonal data introduces fewer 

influencers in the result, which means that the same season data results are more comparable.  

The results of our study demonstrated changes in TDFs levels within 16 years. This is the first 

study to quantify the chronosequence of TDFs over the long term, which provides a possible 

trajectory of TDFs` growth at different stages and a reference for future estimation of 

vegetation structures. 
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3.0  Conclusion  

3.1 Summary and contribution  

The aim of this study was to advance the understanding of chronosequence changes in Tropical 

Dry Forests by analyzing different waveform metrics. In conclusion, this study offers valuable 

insights into the growth of secondary tropical dry forests (TDFs) in Santa Rosa National Park 

(SRNP) over a 16-year period. Using a range of metrics, including Canopy Height, Relative 

Height, waveform shape, and line metrics, the study revealed notable variations in the height-

related profile of TDFs, particularly in RH50, RH100, and waveform produced Canopy Height. 

Compared with the research by Mora et al. (2015), this study is the first to visualize long-term 

differences and changes in the forest instead of using chronosequence model estimation. The 

results show that line- and shape-based waveform metrics recorded all changes in the TDFs 

during 16 years of growth, with the Cy and RG increasing during the growth of the dry forest 

canopies and Cy showing a positive relationship, especially in the 2021 wet season results. 

However, Cx relatively decreased because of the lower ground returns when the canopy density 

increased and canopy height increased. This research continued the study by Gu et al.,(2018), 

who first identified the successional stages using waveform metrics. The study also found that 

intermediate (2005) and late1 (2021) stage trees contribute to the main canopy height with the 

largest number of trees, and by 2021, the early stage forest in TDFs is rare to notice from the 

LiDAR. Furthermore, wet and dry seasons in TDFs drive significant changes in the waveform, 

particularly in relation to canopy height and RG, emphasizing the need to consider seasonal 

data when making comparisons. 
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In addition to being threatened by human activities and natural disturbances, TDFs are highly 

valued for their ecological significance. They are home to a diverse range of plant and animal 

species, many of which are both endemic and endangered (Portillo-Quintero et al. 2010). TDFs 

also play an important role in regulating global climate, as they sequester carbon from the 

atmosphere and help mitigate the effects of climate change (Le Qu´er´e et al., 2015; Reyes-

Palomeque et al., 2021). Despite their ecological importance and value, TDFs remain among 

the least protected ecosystems in the tropics, and urgent action is needed to protect and 

conserve them for future generations (Sánchez-Azofeifa et al., 2015). Although TDFs are more 

fragile and occupy a larger area, research on their dynamics and secondary successional 

changes lags behind that of Tropical Wet Forests (Dupuy et al., 2012). The findings of this 

study have important implications for the management and conservation of TDFs.  

 

The significant variations observed in the height-related profile of TDFs suggest that these 

forests are not static but undergo dynamic changes over time (Lebrija-Trejos et al., 2010). 

Therefore, it is crucial to monitor TDFs regularly using LiDAR and other remote sensing 

technologies to track their growth and assess the impact of environmental factors, such as wet 

and dry seasons. This study also highlights the importance of considering the stage of the forest 

when analyzing canopy height, as intermediate- and late-stage trees contribute the most to 

canopy height. Finally, the results emphasize the need to compare the TDFs data collected 

during the same season to accurately assess changes over time. 
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These results have important implications for the management and conservation of TDFs, 

highlighting the need for regular monitoring using remote sensing technologies and the 

importance of considering the successional stage of the forest and seasonal changes when 

analyzing canopy height. Through temporal data comparisons, this study underscores the 

importance of continued research and monitoring of TDFs to ensure their long-term 

sustainability and conservation. 

 

3.2 Future work 

Despite the promising results of the current study, there is still much to be done to better 

understand the dynamics of secondary TDFs in Santa Rosa National Park (SRNP) and their 

response to environmental changes. One important avenue for future research is to collect more 

detailed annual data on TDFs, including canopy height, to better capture changes over time. 

This will provide a more comprehensive understanding of the growth patterns and responses of 

TDFs to environmental change.  

 

Another important consideration for future research is ensuring that data from the same season 

are more comparable. As noted in the current study, the wet and dry seasons caused significant 

changes in waveform and canopy height. Therefore, to accurately capture and compare the 

growth patterns and changes in TDFs over time, it is important to collect data at the same time 

of the year to minimize seasonal variation. This will help ensure that the data collected are 

comparable across years and seasons. 
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Overall, future studies should attempt to provide a deeper understanding of the developmental 

patterns and environmental responses of TDFs. This may be accomplished by collecting more 

precise and similar data and studying the responses of TDFs to various environmental stresses. 

Such studies are essential for the development of effective management techniques that can 

conserve and safeguard TDFs in SRNP and other locations with comparable characteristics. 
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