UNIVERSITY OF ALBERTA

AUTOMATIC SPEECH RECOGNITION OF LOW RESOURCE LANGUAGES

BY

ALLAN PLESNIARSKI

A THESIS SUBMITTED TO THE FACULTY OF ARTS IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR
OF ARTS

DEPARTMENT OF LINGUISTICS

EDMONTON, ALBERTA

April, 2024

UNIVERSITY OF ALBERTA FACULTY OF ARTS

ABSTRACT

Automatic Speech Recognition (ASR) can play a significant role in the
documentation of low-resource languages. There is typically a lack of labeled data for
low-resource languages to build accurate ASR systems. We will evaluate some of the
current approaches for neural network models to enhance ASR performance for such
languages. Current ASR approaches span from building a language model from scratch
such as ELPIS to fine-tuning existing multi-lingual models such as Meta Research MMS.
ASR performance error rates can range widely with greater amounts of annotated training
data resulting in lower error rates. Self-supervised learning with multi-lingual models is
explored as a practical solution for advancing ASR technology in low-resource linguistic
contexts. By harnessing the capabilities of neural network models, we pave the way for
more inclusive and accurate speech recognition systems. This study focused on exploring
ASR systems primarily for the transcription of the Totonac languages of Coatepec and
Upper Necaxa. Best ASR transcription results were achieved using Meta Research MMS
multilingual model with the Wave2vec ASR framework. The Totonac languages were
transcribed with a reasonable Phoneme Error rate based on the Highland Totonac language
trained into the Meta MMS model. The transcription accuracy of consonants is higher than
vowels, giving a linguistic researcher an automatically transcribed template that can serve

as the basis for manual fine-tuning of phonemes and word boundaries.

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor, Dr. Timothy Mills, for his guidance in
the phonology context of this paper, and in the overall structure of the paper.
Acknowledgements also go to Dr. David Beck for providing access to Totonac corpora, and
to the individuals who originally gathered and transcribed the corpora. Their combined
focus facilitated the production of a working ASR system for an endangered low-resource

language.

TABLE OF CONTENTS

1. AUTOMATIC SPEECH RECOGNITION METHODOLOGY
1.1 Speech Stream Segmentation
1.2 Feature Extraction
1.3 Neural Network
1.4 Encoder - Decoder Architecture
1.5 ASR Training Methodology
1.6 ASR Inference Methodology
2. HISTORY OF ASR SYSTEMS
2.1 ASR for a Low Resource Language based on a High Resource Language
2.2 ESPnet - End-to-End Speech Processing Toolkit
2.3 ELPIS - Endangered Language Pipeline and Inference System
2.4 Wav2vec - Waveform-to-Vector
2.5 XLSR - Cross-Lingual Speech Representation
3. METHODS
3.1 Method 1 - ELPIS
3.2 Method 2 - Meta Research MMS
3.3 Method 3 - XLS-R
4. RESULTS
4.1 ELPIS Totonac ASR Results

4.2 Meta MMS Totonac ASR Results

10

11

11

12

13

13

15

15

17

18

19

19

19

19

4.3 XLSR

5. DISCUSSION & CONCLUSIONS

5.1 Discussion

5.2 Conclusions

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

21

21

21

23

25

28

31

32

1. AUTOMATIC SPEECH RECOGNITION METHODOLOGY

A number of successive approaches have been used over the past few years for
Automatic Speech Recognition (ASR) of Low-Resource Languages (LRL). Typically, there
are not enough voice recordings of LRL to train a model for ASR based solely on the
available recordings. Therefore, most ASR methods for LRL employ models trained from
High-Resource languages (HRL). Each successive approach has used a more advanced
computational method to train an ASR model. For the purposes of this paper, the overall
methodology will be briefly described, but essentially treated as a black box for the

remainder of this paper.

1.1 Speech Stream Segmentation

The first step in the ASR process is to segment the speech stream into consistent
time steps called frames to feed forward into the process. A typical time step duration is 10

milliseconds, as shown in Figure 1 below.

LT S 1 OO | ' 1 (=4 |

Figure 1. An audio waveform diagram of a speech stream splitting process (Macaire, 2021)

1.2 Feature Extraction

The next second step in the ASR process is to characterize frequencies of the

speech frames into a matrix of numbers that can be used in computational processes. Figure
2 shows how a spectrogram of frequency intensity along the time axis is converted into a

logarithmic scale of numbers.

AN
047 | 0.56 . 053 | 036
009 | 042 . 032 | 045
E 0.64 = 0.17 0.06 | 0.88
@ .
= : : : :
j=n
2 | 086 | o034 089 | 0.15
o
045 | 076 . 071 | 033
0.11 | 039 024 | 0.74 >

Time

Figure 2. Speech spectrogram frame to frequency pattern extraction

1.3 Neural Network

The third step in the ASR process is the pre-processing stage of a neural network
that groups the frequency pattern matrix frames into similar patterns encompassing time
steps larger than each frame. This step is typically done by a Convolutional layer
employing an algorithm called Connectionist Temporal Classification (CTC). Figure 3
shows an example of CTC output for the spoken word “hubble” (Tjandra et al., 2022). The
speech frames along the time steps t1..t10 are a figurative representation of the spoken
letters, or phones, in the word. In computational terms, the speech frames are numeric
matrices as described earlier. Note that the letter “e” at the end of the word is silent and has
no representation. Also there are relatively silent speech frames within the word,
represented here by the letter epsilon. Speech frames that are consecutively similar are
merged into one representation, as in the letter “h”. However the epsilon frame in this case
prevents the two sequential, yet not unified, “b” representations from being merged. Finally

the empty placeholder frames are removed and the grouped output, in numeric matrix form,

is passed on to the next stage.

Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

step
speech h h u u € b € b 1 1
frame
merge h u € b € b 1
delete h u b b 1

€

output h u b b 1

Figure 3. Convolutional Layer processing of the word “hubble”

1.4 Encoder - Decoder Architecture

The fourth step in the ASR neural network is the encoder-decoder function. The
encoder function can be described as adding probabilities based on the sequence of
grouped speech frame representations. This combination of properties creates an interim
probability state of each representation that is then passed on to the decoder, as shown in

Figure 4.

The decoder function is to initially train a neural network based on the probability
states of the input speech signal in combination with a pre-transcribed speech signal. Thus
the decoder output is trained in a supervised way by comparison to actual known output.
The decoder passes the most probable speech representations to an output layer that emits

the ASR transcription.

h uw b bl e
TTTTTT
Output Layer

TTTTTT

Probability
Encoder date .y Decoder
. TTTTTTT
0.47 0.56 | - 0.53 | 0.36 <S> h u b b 1 e
0.09 0.42 | - 0.32 | 0.45 A
g | o064 017 | ... 006 | 0.88
E : : : :
=
E 0.86 0.84 R 0.89 0.15
0.45 0.76 - 0.71 0.33
0.11 0.39 R 0.24 0.74
=

Time

T

Convolutional Layer

T

frame 1 frame? ... — framen

Waveform

Figure 4. Overall ASR architecture

1.5 ASR Training Methodology

Initially an ASR neural network model is “trained” by passing transcribed text into
the decoder, as shown in Figure 4. Note that the first character is a placeholder token <S>
that indicates the start of an utterance. The decoder calculates the probability of the

character in the next probability state based on the previously transcribed character. So for

example the probability of the second character “u” in “hubble” will be calculated based on
the input of the previously transcribed character “h”. Note that the previously transcribed

(13 ,9

character is passed into the model to combine with the prior character “1”. The

sequential probabilities are combined to form a word representation at the output layer.

1.6 ASR Inference Methodology

Once an ASR model has been sufficiently trained to provide consistent phone and
word representations of speech for a particular language, the model can be used to infer
speech outside of that used to train and test the model. At inference time, the transcription
passed into the decoder comes from the output of the model itself, not a pre-existing
transcription. So for example in this case the output of the character “u” in “hubble”
becomes the input to calculate the probability of the next character “b”. Note that the silent
‘e’ is not in the speech stream, yet the model generates it in the output based on its

probability with the previous sequence of characters.

h uw b bl e
TTTTTT
Output Layer

Probability T T T T T T

Encoder Slate.s Decoder

TTTTTT

<S> h u b b

Figure 5. ASR Inference

10

2. HISTORY OF ASR SYSTEMS

Speech recognition accuracy has been measured at different levels depending on
the ASR method used: word, token, character and phoneme. Word Error Rate (WER) is
based on each individual word in the transcription. Token error rate (TER%) is measured
by the ratio of different words, including special characters like capitals, and punctuation
marks from the intended text. Character error rate (CER) is based on each individual
character in the transcription. Phoneme Error Rate (PER) is based on each distinct

phoneme in the transcription. The Error Rate calculation is the same for all:
ER=(S+D+I)/N

where Error Rate (ER) is based on the sum of the number of substitutions (S) plus the
number of deletions (D) plus the number of insertions (I), divided by the number of

correct items (N).

2.1 ASR for a Low Resource Language based on a High Resource Language

Scharenborg et al. (2017) used Dutch as a HRL and English as a LRL, since there
are phones in English like /&/ and /6/ which are absent in Dutch. Their method consisted of
three-steps: (1) build an ASR on the HRL Dutch, (2) transfer the phone inventory of the
LRL English to the HRL ASR, and (3) iteratively train the model using the self-labeled
phone sequences. The model was trained using Connectionist Temporal Classification
(CTC) which maps the speech signal into most probable phones.

The results were measured in the results achieved a TER between 71.67 and 72.52,
which is comparable to the phone error rates of cross-language ASR systems. Note that a
measure by TER is typically higher than Character error rate (CER%), because CER

considers each successive character to be a token without considering spaces.

11

2.2 ESPnet - End-to-End Speech Processing Toolkit

Watanabe et al. (2018) created an “End-to-End Speech Processing Toolkit” called
ESPnet. They used a software package called Kaldi to perform acoustic feature extraction
of audio files that were fed into a model training method using a more advanced
combination of CTC and attention based decoder network. An attention based decoder
network essentially focuses on the probability of each word of the input in a serial manner.

The flow of the ESPnet process stages is shown in Figure 6.

Stage 0 Stage 1 Stage 2 Stage 3
Kaldi-style
data
. End-to-end
preparation ASR
(no lexicon, F—
aining
F5T
preparation)
) Chainer or PyTorch
{ Kaldi J backend

N
Figure 6. ESPnet ASR Stages (Watanabe et al., 2018)

At Stage 0, the raw audio is input into Kaldi to extract audio features for Stage 1,
then converted in Stage 2 into a JSON format containing all the audio properties necessary
for ESPnet training. The ESPnet program backend encompasses the remaining stages.
Stage 3 is an optional Long-Short Term Memory (LSTM) network for character based
training. Stage 4 is the ESPnet main neural network consisting of a combination of CTC
and encoder-decoder transformer. End-to-end ASR training is a machine learning technique

where a single neural network is trained to transform input data directly into output using a

12

13
single model. In Stage 5 the output of the previous two stages is measured.

ESPnet was benchmarked on a standardized ASR benchmark called the Wall Street
Journal (WSJ) task. ESPnet achieved results of a CER between 3.6 to 10.1 depending on

the number of iterations, and a WER between 8.9 and 12.4.

2.3 ELPIS - Endangered Language Pipeline and Inference System

An ASR system called the Endangered Language Pipeline and Inference System
(ELPIS) was designed by Foley et al. (2018) to encapsulate the various stages an ASR
system goes through as shown above. ELPIS uses a virtual machine called a Docker
container to instantiate a website tied to the various backend functions like Kaldi. ELPIS is
targeted at linguistic researchers that are beginning to work with a volume of audio
recordings of their studied languages. ELPIS is capable of using ELAN transcriptions with
audio files to build either word level or phoneme level transcriptions. The word level
models are built from empty, so the greater the training data, the lower the WER. The WER
for less than one hour of training data can range from approximately 40 to 80 depending on

the language recordings (Foley et al., 2018).

2.4 Wav2vec - Waveform-to-Vector

Wav2vec is an ASR system developed by the Al team at Meta (Alexei Baevski et al.,
2020). Unlike Kaldi and other ASR frameworks that rely on pre-transcribed training and
test data, wav2vec uses a self-supervised approach to training data. Wav2vec trains models
by generating self-modified versions of speech audio and comparing them to the original
audio. This self-supervised fine tuning is iteratively repeated several times for each time

stepped representation of audio as shown in Figure 7.

14

Contrastive loss

? []
|
Transformer
Masked

Context C D

representations T

—'—'____‘_‘—*E"':

Quantized é)
representations Q
Latent speech Z
representations CNN

raw waveform XY

Figure 7. The raw audio waveform is separated into time steps that follow a series of
representations from raw waveform X to Context representations C (Alexei Baevski et al.,

2020).

The wav2vec framework separates raw audio waveform into a series of discrete
samples 25 ms long. These audio samples are represented as X. The audio samples are then
passed through a CNN layer. The CNN layer determines speech features based on the
frequency spectrogram of each audio unit, and adds the features to each representation,
converting them into latent speech representation units Z. The Z units are then passed
through a Transformer. The Transformer passes the series of Z units through an encoder /

decoder function that outputs the final transcribed context representations C.

Some of the Z units are set aside as quantized representation units Q that are later
compared to the transformer model output C. The comparison is used to compute a
transcription measure called Contrastive loss L. The Contrastive loss L is used to
iteratively refine self-supervised training. The algorithm then predicts the audio

transcriptions at further points in time to compare to generated transcriptions and thereby

progressively refine the ASR model.

2.5 XLSR - Cross-Lingual Speech Representation

XLSR represents a cross-lingual speech representation ASR framework that
incorporates wav2vec version 2. XLSR focuses on creating a multilingual model from raw
speech audio combined from several different languages. Models are built from a wide
cross section of languages that contain a wide range of phonetic features. The models are
initially built in the self-supervised approach of wav2vec. Later a model can be fine-tuned
with labeled data for a low resource language not included in the model. Pretrained XLSR

models have been created that range between 53 and 128 languages.

3. METHODS

Speech audio is typically sampled at a 44 Khz sampling rate. All ASR toolkits
employed required the conversion of audio to a 16 Khz sampling rate. Audio clips were
shortened as required by the ASR toolkit in use by using Audacity for conversational
level clips up to 3 minutes and Elan for utterance level clips up to 10 seconds. Using
noise reduction features provided by Audacity did not significantly alter the recognized

speech output.
3.1 Totonac Corpora

There were corpora for two Totonac varieties, Coatepec (McQuown, 2013) and
Upper Necaxa (Beck, 2004), used for ASR transcriptions. In the ASR method using the
Meta MMS model (Meta Research, 2024) described below, the model produced results
based on the Highland group of Totonac languages having the language code [tos], to
which Coatepec belongs as a subset. The language code format stems from an

internationally recognized standard designated ISO 639 for representing individual

15

16
languages and language groups (/SO - ISO 639 — Language Code, 2007). A comparison

of the phonological inventories of the three Totonac varieties is shown for consonants in

Table 1 and vowels in Table 2.

Labial Alveolar Post Velar Uvular Glottal
alveolar
central lateral
Nasal m n (n) (n)
Plosive p t k qq ?
Affricate ts th tl tf
Fricative] i) X hh
Approximant 1 y w
(0«

Table 1. Consonantal inventory of three Totonac varieties

Legend: black - all 3 varieties, red - Upper Necaxa, blue - Coatepec, purple - Highland

Front Central Back
plain laryngeal plain laryngeal plain laryngeal
High il il uu: uu:
Mid ee: ee: 0 O: 0o0:
Low aa: aa:

Table 2. Vowel inventory of three Totonac varieties

Legend: black - all 3 varieties, red - Upper Necaxa, purple - Highland and Upper Necaxa
Exceptions to note among the three varieties are that Upper Necaxa lacks the

lateral affricate /tl/ and uvular stop /q/ present in both Coatepec and Highland. Coatepec

lacks the laryngeal vowels present in Upper Necaxa and Highland. Only Upper Necaxa

17
has the mid vowels /e/ and /o/. Thus, Coatepec may be considered a subset of Highland,

while Upper Necaxa is phonologically distinct from the other two.

3.1 Method 1 - ELPIS

ELPIS ASR software was used to provide word level transcription of Highland
Totonac utterances. A letter to sound mapping file (Appendix A) was created from
transcriptions previously provided for the utterances. Since the utterance line
transcriptions appeared polysynthetic in nature, both Line and Prosody annotation levels

were used to generate separate sets of word level transcriptions.

To set up ELPIS for ASR transcriptions, follow the instructions on the ELPIS
documentation website (Welcome to the Elpis ASR Documentation! — Elpis 1.0.6
Documentation, n.d.). To prepare recordings, approximately one minute of audio was
split among 12 utterances. This version of Elpis requires the audio files to be in 16kHz
WAV format. Recorded audio in 44kHz format was opened in a program like Audacity
and exported in 16kHz format. The corresponding .eaf ELAN transcription file was split
to match the utterance audio files, thus resulting in 12 audio wav files and 12 .eaf files.
Ten of the utterances were used for training and two for testing. After loading the files
into the ELPIS website, the user can select which annotation tier to use for recorded
transcription. The tier transcriptions should be as clean and time aligned as possible.
There is an option to remove words and tags that were entered into the annotation for
note taking, but it is better to remove them completely from the annotation in advance if

possible.

ELPIS reads the audio and transcription files and produces a Word list it has

recognized, along with a frequency for each word. This list is beneficial in perceiving the

18
relative distribution of words in the transcription. A sample Word list is shown in Table 1

of Appendix A. A letter to sound mapping file manually composed by the user is then
uploaded to create what ELPIS calls a Pronunciation dictionary. ELPIS cross checks that
the characters uploaded in the letter to sound file match the characters in the
transcriptions and flags any characters not found in the mapping file. The corresponding

letter to sound mapping file is shown in Table 2 of Appendix A.

In the training phase, there is a selection of the number of n-grams to use for model
training. The default is one n-gram which corresponds to learning a single word, but best
results were achieved with an n-gram setting of three, which learns a combination of a

word along with two of its neighbors.

3.2 Method 2 - Meta Research MMS

Pre-trained models from the Massively Multilingual Speech (MMS) project were
used to transcribe Totonac varieties of Coatepec and Upper Necaxa using the [tos]
Highland Totonac language code. The steps to perform these transcription tasks are
recorded in a document called “Totonac Transcription Procedure” stored on github

(Allan Plesniarski, 2023).

Note that the Highland Totonac does not match the phonology of the two
transcribed Totonac varieties exactly. The orthography produced from the Meta model
for Highland Totonac was adjusted to match the orthography originally transcribed for
Coatepec and Upper Necaxa where the matching patterns were consistent. The

orthography matching patterns are listed in Appendix B.

Other language codes that include the voiceless alveolar lateral fricative /I/ in the

Meta MMS model were also tested to extract ASR transcriptions, including [nhi] for

Nahuatl. However, the transcriptions produced with non-Totonac language codes did not

reasonably match the Totonac corpora, likely due to word level differences.

3.3 Method 3 - XLS-R

A pre-trained XLS-R multi-lingual model Wav2Vec2-XLs-R-300M (Chaumond &
Davaadorj, 2023) was fine-tuned to create a custom model for Turkish utterance
transcription. Turkish speech was sourced from the
“mozilla-foundation/common_voice 16 17 dataset with 123 hours of recorded audio

from 1599 speakers available on HuggingFace (Mozilla Foundation, 2024).

The Mozilla dataset contains a number of other low resource languages, including
Western Sierra Puebla Nahuatl with the language code [nhi]. Nahuatl is one of the
languages that contains lateral fricatives similar to Upper Necaxa Totonac. A fine-tuned

model was then created for Nahuatl based on 1 hour of recorded audio from 2 speakers.

4. RESULTS

4.1 ELPIS Totonac ASR Results

The WER for Upper Necaxa training ranged from 60 to 80%, depending on the
choice of 3 or 2 n-gram training models respectively. The model inference error rate after
training was nearly 100% in two subsequent inference utterances, with the word

“tzama:” being most commonly recognized.

4.2 Meta MMS Totonac ASR Results

Totonac transcription results were generated using the large MMS model with the
“tos” Highland Totonac language code. Detailed ASR transcription results for two

varieties of Totonac, Coatepec and Upper Necaxa, are shown in Appendix B. The ASR

19

transcribed Phoneme Error Rate comparison between Coatepec and Upper Necaxa

vowels and consonants is shown in Figure 8.

Totonacan ASR Phoneme Error Rate

40-

30-

Totonacan

. Coatepec

20- - Upper Nacaxa

Phoneme Error Rate %

Vowels Consonants
Category

Figure 8. Phoneme Error Rates for Coatepec vs Upper Necaxa

Note that vowels have a higher PER than consonants for both Totonac varieties.
Coatepec ASR resulted in a slightly higher PER for both vowels and consonants than
ASR for Upper Necaxa. Tables 4 and 5 in Appendix B list both the ASR PER and the
Phoneme distribution percentage P% for both varieties. Note there is a difference in the
transcribed vowel and consonant inventories between the two varieties, which may be as
a result of the corpora used. The overall PER for Coatepec was 29% and the overall PER

for Upper Necaxa was 20%.

20

Example ASR transcriptions for both Totonac varieties are shown in Table 3.

Coatepec

Orig. | na:tmit Sli:gawhwaa qustaa taqati:n ni:Slakapa:stakaa papi:Canaa

ASR | na: t mit 8li:qajua gosta: taqati:n ni: Slakapa:staka pa: pi: ¢una:

Upper Necaxa

Orig. | a:li:sta:n pus mat puwan tu: tzej tale:ma:nalh tu: tale:ma:nalh nakixkilhnikan?

ASR | ali;sta:n pus matpuwaan tu: tze: talemanal tu: talemana naixquilhnikan

Table 3. Example Original vs. ASR transcriptions for Coatepec and Upper Necaxa

Note that the consonant ASR transcription matches reasonably inline with the

original despite the word boundaries being somewhat offset.

4.3 XLSR

The WER for Turkish ranged from 69% to 32% during training. The training data

volume for Nahuatl was not sufficient to determine a WER for training.

5. DISCUSSION & CONCLUSIONS

5.1 Discussion

Although ELPIS encapsulates lower level ASR functions to make the system more
user accessible, it can be challenging to set up a suitable computer runtime environment
to run ELPIS on Docker or ELPIS on a Cloud platform. The advantage of using ELPIS
for Low Resource Language ASR is that it helps a linguistic researcher to quickly
familiarize themselves with the word inventory frequency and letter to sound mappings

of available audio recordings. The challenge in using ELPIS is supplying a sufficient

21

volume of audio recordings and transcription files in order to obtain a reasonable Word

Error Rate.

The Meta MMS ASR transcription method produces a relatively low Phoneme
Error Rate for the Totonac varieties transcribed. Although the Highland Totonac variety
previously trained into the MMS model by Meta does not match the phoneme and word
inventory of the Totonac varieties tested exactly, it is sufficient to produce results that
show differences between the two varieties. Differences between the vowel and
consonant inventories between the two varieties could be determined. The Upper Necaxa
variety had a greater vowel phoneme inventory than the Coatepec variety. The overall
PER for Upper Necaxa was lower than Coatepec, with Consonants providing the bulk of
the difference by having a lower PER in Upper Necaxa. There was also a greater
percentage of Upper Necaxa consonants in the corpus as compared to vowels, with nearly

a 3:1 ratio. The Coatepec ratio of consonant to vowel phonemes was nearly 1:1.

Despite the PER for the Meta MMS ASR method being relatively low, the WER
for this method was significantly higher. This is because there is a greater difference in
Highland Totonac word inventory trained into the Meta MMS model as compared to the
Coatepec and Upper Necaxa utterances tested. Using Beyond Compare software to
compare the annotated words to the ASR word output, the WER of the Meta MMS ASR
method was estimated to be 50% or more depending on the transcribed word length. The

longer the transcribed word length, the greater the chance of an ASR transcription error.

The XLSR results produced high WER rates at inference time. The results were
affected by lack of training and testing data available of the low resource language for
fine tuning of the multilingual language model used. Further model fine tuning would

produce inference results with a lower WER.

22

5.2 Conclusions

For linguistic researchers with audio recordings and matching annotated
transcription files, ELPIS is an excellent tool to understand word and phoneme inventory
and frequency. ELPIS may initially produce inaccurate results for word level
transcription, considering that each time ELPIS is instantiated, the model needs to be

learned from scratch.

The ASR method with the highest accuracy for producing transcriptions of
Totonac languages was Meta MMS. Linguistic researchers need only to find the language
code already trained into available MMS models that most closely matches the low
resource language that they are transcribing. The transcription output provides a
substantially correct base from which to manually adjust the transcriptions, as opposed
solely to manual transcription by listening to the audio. There may also be auditory
biases that may skew what someone perceives as hearing when transcribing audio
manually. Employing an ASR transcription method eliminates any perceptual biases.
Since the transcription accuracy of consonants is higher than vowels, the consonants give
a transcribed framework from which the embedded vowels can be adjusted to match the
target language phonological inventory. The consonant transcription can also be used to

manually adjust word boundaries to match the target language morphology.

XLSR holds promise in producing lower WER with the availability of a sufficient
volume of audio and annotated transcriptions for model fine-tuning. Over time larger
XLSR models may be released incorporating more low resource languages. Further
research could focus on fine tuning the latest multi-lingual XLSR model with a specific
Totonac language. Integrating a distinct Totonac language that is mutually unintelligible

from other Totonac languages already trained into existing models would in theory

23

produce lower ASR Phoneme and Word error recognition rates.

24

25
REFERENCES

Alexei Baevski, Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations. 33, 12449—-12460.

Allan Plesniarski. (2023, December 6). LING402-ASR. GitHub.
https://github.com/plesniar/LING402-ASR

Beck, D. (2004). Upper Necaxa Totonac. Munich: LINCOM Europa.

Chaumond, J., & Davaadorj, M. (2023, October 3). blog/fine-tune-xisr-wav2vec2.md at
main - huggingface/blog. GitHub.
https://github.com/huggingface/blog/blob/main/fine-tune-xlsr-wav2vec2.md

Foley, B., Arnold, J., Coto-Solano, R., Gautier Durantin, T. Mark Ellison, Daan van Esch,
Heath, S., FrantiSek Kratochvil, Zara Maxwell-Smith, Nash, D. B., Olsson, O.,
Richards, M., San, N., Stoakes, H., Thieberger, N., & Wiles, J. (2018). Building
Speech Recognition Systems for Language Documentation: The CoEDL
Endangered Language Pipeline and Inference System (ELPIS). Minerva Access

(University of Melbourne). https://doi.org/10.21437/sltu.2018-43

1SO - ISO 639 — Language code. (2007). ISO.

https://www.iso.org/cms/%20render/live/en/sites/isoorg/home/standards/popular-sta

ndards/iso-639-language-code.html

Macaire, C. (2021). Recognizing lexical units in low-resource language contexts with
supervised and unsupervised neural networks. HAL Archives Ouvertes.
https://hal.science/hal-03429051

Meta Research. (2024, January 24). fairseq/examples/mms at main
facebookresearch/fairseq. GitHub.

https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr

https://doi.org/10.21437/sltu.2018-43
https://www.iso.org/cms/%20render/live/en/sites/isoorg/home/standards/popular-standards/iso-639-language-code.html
https://www.iso.org/cms/%20render/live/en/sites/isoorg/home/standards/popular-standards/iso-639-language-code.html

McQuown, Norman A. and Manuel Oropeza Castro. [1949] 2013. Audio of the recording
of the Textos Totonacos by Manuel Oropeza Castro. [Digitalization by the
Linguistic Laboratory at the University of Chicago.]

McQuown, Norman A. 1971. [1939-1968]. Textos totonacos. Microfilm Collection of
Manuscripts on Cultural Anthropology 100. Joseph Regenstein Library, The
University of Chicago.

Mozilla Foundation. (2024, January 16). mozilla-foundation/common_voice 16 1 -
Datasets at Hugging Face. Huggingface.co.
https://huggingface.co/datasets/mozilla-foundation/common_voice 16 1

Scharenborg, O. E., Ciannella, F., Palaskar, S., Black, A., Metze, F., Ondel, L., &
Hasegawa-Johnson, M. (2017). Building an ASR system for a low-resource
language through the adaptation of a high-resource language ASR system.
Preliminary results [in press]. Proceedings of the International Conference on
Natural Language, Signal and Speech Processing.
https://repository.ubn.ru.nl/handle/2066/244342

Tjandra, A., Singhal, N., Zhang, D., Kalinli, O., Mohamed, A., Le, D., & Seltzer, M. L.
(2022). Massively Multilingual ASR on 70 Languages: Tokenization, Architecture,
and Generalization Capabilities. arXiv.
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/logi
n.aspx?direct=true&db=edsarx& AN=edsarx.2211.05756&site=edslive&scope=site

Wang, C., Tang, Y., Ma, X., Wu, A., Dmytro Okhonko, & Juan Miguel Pino. (2020).
fairseq S2T: Fast Speech-to-Text Modeling with fairseq. ArXiv (Cornell
University). https://doi.org/10.48550/arxiv.2010.05171

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N. E. Y.,

26

Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., & Ochiai, T. (2018).

ESPNet: End-to-end speech processing toolkit. Waseda.pure.elsevier.com.
https://doi.org/10.21437/Interspeech.2018-1456
Welcome to the Elpis ASR documentation! — Elpis 1.0.6 documentation. (n.d.).

Elpis.readthedocs.i0. https://elpis.readthedocs.io/en/latest/

27

Table 4. ELPIS Word frequency in sample Totonac Training Files

APPENDIX A

Word Frequency Word Frequency
mat 5 chu 1
chi 4 cuento 1
ka 4 hka 1
lhtza 4 hnina 1
cha 3 X 1
he 3 ixa 1
ki 3 kawa 1
ma 3 kwan 1
tu 3 lakani 1
tzama 3 munka 1
wi 3 n 1
xla 3 naka 1
a 2 nama 1
j 2 ne 1
mpala 2 skuja 1
palaho 2 skaja 1
sajna 2 takuxtu 1

28

tzi tanka
u ti
xcha tin
ya wa
aa xkua
akxni xlho
chi'xku xni

chu

29

Table 5. ELPIS Letter to Sound Mapping file for Totonac Training Files

Consonants Vowels

ch te aa aa u) U
cc u() U
tz ts e:e uU
hh a:a:

kk k i: i i0: I:
k k 0: 0 i1
m m uu i Ik

nn nn il
nn a:A:
tt a: A: aa
X X ee
11 u(): U: ii
w W u: U: 00
jJ uu
Ss a() A

Y] aA

pp

APPENDIX B

Table 6. Meta MMS Highland Totonac Orthography Mapping

Corpora Match MMS Model
Output

Vowels a: a
a a

e e

é: é

I i

i i

0: 0

0: 0

u u

u u

Coatepec ¢ ch
1 lh

S X
Upper Necaxa wa hu

Table 7: Coatepec Totonac Transcription Phoneme Error Rate

APPENDIX C

Phoneme PER Phoneme%

a 26% 14%

a 77% 8%

a: 0% 2%

i 38% 5%

i 60% 4%

I: 14% 5%

u 67% 4%

u 86% 2%

u: 33% 2%
Vowels 44% 45%
y 0% 1%

w 50% 6%

? 100% 1%

¢ 0% 4%

1 0% 3%

p 0% 5%

t 0% 7%

q 0% 3%

s 0% 2%

S 0% 5%

k 25% 4%

1 0% 1%

m 14% 2%

n 17% 8%

h 100% 1%
Consonants 16% 55%

32

Total

29%

100%

Table 8: Upper Necaxa Totonac Transcription Phoneme Error Rate

Phoneme PER Phoneme%
a 43% 12%
a 0% 0%
a: 100% 0%
a: 50% 2%
e 75% 2%
1 0% 4%
i 100% 0%
i: 33% 2%
0 0% 0%
0: 100% 0%
u 83% 2%
u 0% 0%
u: 0% 0%

Vowels 42% 27%
] 20% 2%
w 20% 2%
X 10% 9%

1 5% 9%
p 33% 2%
4% 10%
r 0% 0%
] 25% 2%
k 31% 7%
m 0% 9%
n 8% 10%
26% 8%

33

z 0% 4%
c 100% 1%
tz 100% 2%
Consonants 12% 73%
Total 20% 100%

34

