University of Alberta

NETWORK TOPOLOGY INFERENCE WITHEND-TO-END UNICAST
MEASUREMENTS

by

Amir Malekzadeh

A thesis submitted to the Faculty of Graduate Studies anddreb
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Amir Malekzadeh
Fall 2013
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever witlibatauthor’s prior written permission.

Abstract

Network tomography is the problem of discovering the delag bpss rate of the internal links of
a network, assuming the internal nodes are not cooperafihg.first step to solving this problem
is finding network topology. Well-known tools suchtaaceroute solve this problem, however they
depend on cooperation by the internal nodes.

This thesis studies the problem of topology identificatidthaut relying on the cooperation of
the internal nodes of the network. Our work is based on a pmphiethod called theandwich
method. We suggest a novel probing scheme called TSP whitased on end-to-end unicast delay
measurements and combines the ideasandiwich andtraceroute. We also develop two topology
inference algorithm to find the topology of the network. Of¢he algorithms usesandwich data
and the other uses TSP.

Our simulation-based experiments show that TSP improwvetohology identification process

substantially compared to previous methods.

Acknowledgements

I would like to thank my supervisor, Professor Mike H. Mac@oefor his invaluable guidance,
encouragement and patience throughout this thesis. | t&magine this project done without his
incredible support.

I would also like to thank all my friends at University of Allia for being supportive and making

my life easy in graduate school. Lastly, | thank my family wilhbcan always count on.

Table of Contents

1 Introduction 1
2 Background and Related Work 4
2.1 TreeModel e 4
2.2 DataCollection e 4
2.21 SandwichProbe e 5
2.2.2 Additive Metrics e 6
2.3 Topologylinference 8
2.3.1 Maximum-Likelihood Approach 8
2.3.2 Constructive Approach 11
2.4 Conclusion e 13
3 Deciding with Difference Sets (DDS) 15
3.1 Deterministiccase e 15
3.1.1 Base CasSe v i e 16
3.1.2 RecursionStep 6 1
3.2 Stochasticcase e e e 18
3.3 Analysis e 20
3.4 Example . . . 02
3.5 Conclusion e e 23
4 Traceroute with Sandwich Probe (TSP) 24
4.1 TSP ProbingScheme 24
4.1.1 Traceroute e e e e e 24
4.1.2 TSP . . e 25
4.2 Inferringthe Topology e 26
4.3 Analysis e 26
4.4 Example e e 72
45 Conclusion e e 30
5 Experiments 31
5.1 Network Simulation. e 32
5.1.1 Simulated Network Example 32
5.1.2 TestTopologies e 34
5.2 Model-based Simulation e 34
5.3 EvaluationParameters 35
54 Results. e e 35
5.4.1 Network SimulationResults 35
5.4.2 Model-based SimulationResults 37
5.4.3 Accuracy Limitation 37
5.5 Conclusion e e 39
6 Conclusions and Future Work 41

Bibliography 43

List of Tables

aa ARBA WO
N hwhik MR

Actualrvalues e 20
Measured: values i e e 20
Actualz values ofthetree. 27
Actualy values ofthetree. 27
Estimated; valuesofthetree. 28
Estimated, values of thetree. L. 28
Network SimulationResults, 36

Comparison of Computational complexities and traffierbead. 40

List of Figures

gooaaaooig AhDLE WEOWWWLWW NNNNDNNN
voNoubwivRE Mwhik Noolhwivike NoubhwiheE

Physical and Logical Topologies aa. ... 5
SandwichProbe 6
Common Mistake in Previous Methods 7
Markov ChainMoves e 10
MCMC withoutaperfech 11
Shared PacketLoSS 12
Nodelnsertion 13
Tree afterinsertingleavesland 2. na . 16
Therecursionstep. e 17
Closerlookat Figure3.2-b e 18
Root has morethanonechild 18
The system of delay differences, 19
The actualtree. e e 21
Creating the exampletree. 22
TSP Probe e 6
Topology Inference Example L 27
The Actual Tree. e 28
Topology Inference Example L 29
An example simulated network.o 32
Architecture ofroutersin INETa. 33
IPP Model Framework 34
Correct Logical Topology of Sample Network Nb. 36
Logical Topology of Sample Network N@.Builtby TSP. 36
Logical Topology of Sample Network N@.Builtby Tomo 37
Correctness Ratio 38
Node Ratio e 83

RTT delays along a sample 18-hop path. 39

Chapter 1

Introduction

There are many network-based applications and servicésiéea information about the internal
condition of the network on which they are operating. Networonitoring, high quality media
streaming, peer-to-peer and collaborative environmemtegamples of services that can benefit
from knowledge of network topology, bandwidth, and traffiteinsity [1, 2, 3]. High quality media
streaming needs the available bandwidth to adjust therriasfon mode [4]. Peer-to-peer and
collaborative applications can use this information to fieers and communicate with them more
effectively [5].

Obtaining the necessary statistical data is not an easydastke applications. The applications
work on the end nodes and a huge amount of important dataysawallable at the internal nodes.
The administrators and owners of the internal nodes e.gters, do not have much motivation to
share this data with the users of the end nodes [6]. Moredvergetting harder to do so as the
traffic load through the Internet is getting larger. The essitneed to process more packets and
there is less resource to spend on unnecessary (from thaiathatiors’ point of view) tasks. Also
due to security reasons the administrators try to keep #isttal information about the network
confidential. For example on a public network e.g., the le&rrouters are often configured not
to respond to Internet Control Message Protocol (ICMP) agss to reduce overhead and avoid
security issues [7, 8, 9]. These messages are usually usesbasce of information about the state
of a network node or a packet. Therefore, the applicatioasube ICMP messages may not work
properly with public networks.

Currently most of the well known network topology and bebaviidentification tools such
astraceroute try to get as much help from internal nodes as they can. Theg sequests and
messages to the internal nodes and receive feedback frae tloales. For exampleaceroute uses
ICMP error messages sent by the routers and finds out whatreoate on the path between two
specific nodes. However, one cannot rely on the cooperationdes administered by someone else.
Depending on the cooperation of internal nodes, and relgmgpecific settings and configuration
details within them, makes this approach very vulnerabteiarmany cases limit their use to local

networks.

Due to the problems with cooperation-based methods, sosearehers have started to work on
the problem of inferring internal network structure andistics without relying on internal nodes
[10, 11, 3, 12, 13, 14]. This approach is knownreswork tomography. In this approach we
assume that we have access to a number of end nodes in therlnetwd we need information
about paths through network. The first step is to infer thevagt topology [13]. There are different
variations of this problem with different assumptions, tsas the number of source and receiver
nodes communicating with each other. Various characiesisf the network may be assumed, such
as whether or not we can send multicast messages [13, 3].

Network tomography techniques are facing two importantlehges. First, how to collect data
from the network efficiently and in a way that they do not retytbe internal nodes and do not
interfere with their performance. Second, how to infer thework topology and other desired infor-
mation from the data. To deal with the first challenge theeesame probing techniques suggested
to sample the network’s behaviour. Also depending on thel lefrour access to the network we can
get some information by monitoring some network’s devidesr the second part of the problem
there are also different suggested approaches such aticéhtnethods, search algorithms, etc. that
try to find out the network’s topology.

These solutions have some major limitations. Some of thenuseful in only a few cases, and
some of them face a trade off between complexity and accunacthis work we suggest a new
solution to infer network topology. We focus on the case wh&e have one source and several
receivers, and we use unicast end-to-end messages to peobetivork. Also we assume the routes
in the network are fixed during the time that these messagesea.

Cotes et al. introduced a method a delay-based unicast pailegl the sandwich probe [13]
which collects data from the network and they use a complekaoak&to infer logical topology using
the data which faces the trade-off between accuracy andmynesources. As our first contribution
we propose a light inference algorithm which uses the sarteetnd is much less complex to infer
topology.

All the tomography methods that we studied produce logiopblogy and has very limited
information about the internal nodes of the network. Ourm@intribution is using the idea of
traceroute to get more information about those nod@gaceroute uses a very elegant idea to infer
the path between two nodes, and in this work we tried to adapidea to the new limitations (i.e.,
no ICMP). Sandwich probe is also another elegant idea in #ié. fiwWe introduce a new probing
scheme which combines these two ideas that are previoustitasnfer network topology. We also
suggest a constructive methods to infer the network togalisgng the information we get from this
probes.

This new probing scheme gives us more information aboutéh&ark than the regular sandwich
probe. Therefore we can have more accurate topology inferefhe regular sandwich probe and

most of the previous probing schemes collect end-to-end dlbut the paths between pairs of

nodes. Our method on the other hand, collects chunks of datat @ach step along the path. This
additional information not only helps with the topologyé@nénce, also has the potential to replace
traceroute.

The rest of the thesis is organized as follows. In Chapter éalkeabout the tomography problem
more accurately and introduce some major works done andtidins of the field. In Chapter 3 and
Chapter 4 we introduce our ideas to solve the tomographyl@molvith some new features. Then
we talk about how the methods are tested, present the redute experiments and compare the

methods in Chapter 5. Finally we conclude the thesis in Girat

Chapter 2

Background and Related Work

In this chapter the tomography problem is modelled and soraeiqus works are explained in
order to introduce the major directions that researchetBiffiled are working on. The methods
proposed to solve network tomography problems can be brioketwo major steps: data collection
and topology inference. During the first step some data ateunetwork is collected by sending
probe messages or monitoring the network’s events. In thensestep this data is used to infer the
network topology or other characteristics of the networker®e are several ideas in these two steps
that we discuss separately.

Researchers use different models to model the problem. &/a stsgle model that is close to
most of the models and try to explain different algorithmsitiea same model. In the following we

first explain how we model the network and then we get to theratgns.

2.1 Tree Model

We discuss the problems in which there is a sirsglgce node and there is a setakeivers R. The
induced topology of the network is a tree. We name the sousteas theroot and the receivers
also as theeaves. A tree7 is defined by its set of nodds and set of direct linkd.. Among the
internal nodes of the tree, i.e., all the nodes except theand leaves, there are nodes with only
one child. Most of the topology inference algorithms do mdér these nodes and only the nodes
where some branching happens are important to these &lgritThe topology that is inferred by
these algorithms is called tHegical topology. Figure 2.1 shows the difference between physical

and logical topologies.

2.2 Data Collection

The methods proposed to collect tomography data can béfiddda different ways. One the most
important characteristics of a method is whether or notlieseon cooperation by nodes internal
to the network. If the network on which the tomography metlsogerformed is a public network,

and we do not have control of the internal nodes (routersiches, etc.), we can only expect a

root/sender @ root/sender

leaves/receivers leaves/receivers
@ (b)
(a) shows a tree topology and (b) shows its associated Idgjgalogy.

Figure 2.1: Physical and Logical Topologies

limited amount of information from those nodes [7]. On thbaesthand if we own the network,

we can program the internal nodes to collect and report tfugrivation we need. Thus, most of
the methods which assume cooperative behaviour of inteodds are useful for administrators of
corporate networks.

The second important factor about a method is whether itgsipa or active. Passive methods
do not interfere with the network’s normal traffic — they j@stt as monitors and try to reach a
conclusion using the available characteristics of thditraf his is only possible if we are able to
use the internal nodes to collect data. Active methods sesloepmessages across the network to
elicit information. Active methods can use end-to-end psobo they do not need to rely on help
from internal nodes. The downside of active methods is tigt impose extra load on the network;
these methods try to keep the extra load as low as possibkersat #o affect the network’s QoS.

The probes sent by active methods can be multicast or umtastages. Although not all net-
works support multicast, some methods require multicassages to collect the data they need [13].
Also there are some methods that try to minimize the size efdéta sent with each probe using
approaches like network coding [14, 15].

A probe is sent to measure some characteristic(s) of theomketw he most popular character-
istics are loss rate and delay along a path from one node tihn@moSome early work that uses
delay measurements requires time synchronization amangdties so the delay can be measured
accurately [12]; this may be difficult in some networks [18lethods that use loss rate [13] have the
advantage that they do not need time synchronization. Thsadvantage is that packet loss rates

are very low in a network that is functioning well, so this ¢ypf approach is less useful [16].

2.2.1 Sandwich Probe

In 2002, Coates et.al. proposed a method calledahdwich probe that measures delay and does
not need time synchronization [11]. Assume we have two wiffereceivers in the network, for
examplen; andns in Figure 2.2. The paths from the rootitg andn, have a common segment,
which is the path from the root te;. The goal of the sandwich probe is to estimate the delay an thi

common segment. A single sandwich probe consists of threleepa two small packets named

P2 3
q I:I Root Root
pl
/&
5 O\
g ‘\ "n3‘\
o e o
)] .,
l' \ l‘ hé
{ ® Pl @ ®
nl n2 nl n2
(a) (b)

Figure 2.2: Sandwich Probe

andp, with the same length, and a large packet name&ls shown in Figure 2.2-a all three packets
are sent from the root. The small packets are destined &nd the large one is destinedite. First

we sendp;. After waiting for a delay ofl, we sendy, and then we sengh right afterq. Packetp,

gets queued behingin every node from the root tes, where their paths diverge (see Figure 2.2-b).
As a result, it takes more time fgp to be delivered thap,. Assume the time difference between
the delivery ofp; andp is d + Ad. Coates et al. [11] show that if we set an appropriate value of
d, choose the sizes of packets correctly, and perform enoegisumements then the average\af

is a good estimate of the delay of the path from the roetstoFor two receivers andj, we define

x;,; as the estimated delay of their common path to the root. Orleecimportant features of the
sandwich probe is that the delay differences are measuiediagle node, so time synchronization

is not required.

2.2.2 Additive Metrics

In 2010 Ni et al. suggested a framework to combine infornmefiiom different probes [17, 3]. For
atree7 (V, L), a functiond is anadditive metric if

a)0<d(l)<oo, VieL

b) d(i,7) = > d(), Vi,jeV,

1€P(i,5)

whereP(i, 7) is the path between the pair of nodesndj. d(I) represents the length of the liikk
in the tree. For any € R let p(i) = d(root, i) and for anyi, j € R let p(i, j) = d(root, a;;) where
a;; is the lowest common ancestorofnd;j. New additive metrics can be constructed by convex
combination of a number of additive metrics, so the infoioratrom different probing schemes can
be used together. In order to do this, the output of the prabkes to get converted to an additive

metric. Ni et al. give some examples in their work.

1) Loss-Based Additive Metric: Let0 < a; < 1 be the probability that a packet get lost on the
link I andP(L; = 1) be the probability of a packet get lost on its path to the leah additive

Root @ Root @

[23 3

1 1 3
Q. [)
(a) (b)

(a) the actual topology of the network (b) mistaken topology
Figure 2.3: Common Mistake in Previous Methods
metric based on this measure is
dioss(l) = —logay, YVl € L
Ploss(i) = —logIP(L; = 1) i € R

P(L; =1)P(L; =1) . .
F(L.L, = 1) 1,7 € R.

ploss(iv .7) = —lOg

2) Delay-Based Additive Metric: Let z; be the measured delay of the lihlandz; be the mea-
sured delay for the path from root to the lgafThe additive metric that is suggested for this
measure is

daelay(l) = var(z;), VI €L

Pdelay (1) = var(z;), i € R
pdelay(ivj) = COU(Ii7$g‘), 1,7 € R.

3) Traceroute-Based Additive Metric: If some cooperation from the routers is possible and there
is some result from traceroute messages, another addiéitrécroan be defined using the hop

count to each leaf.

One of the main problems of the previous methods is that tbigat little information about the
internal nodes of the network. Therefore, when the algoritintroduced in Section 2.3 are creating
the topology using this information they cannot place ttierimal nodes accurately. Figure 2.3 shows
a very common mistake in these algorithms. A probing schéaiecbllects more information about
the internal nodes can help to prevent such mistakes. Inthleisis we suggest such a probing

scheme.

2.3 Topology Inference

There are two popular approaches for topology inference fift is based on maximume-likelihood,
and the second is constructive. The constructive algostrequire much less computation than the

maximume-likelihood approaches, but usually give less eateuresults [16].

2.3.1 Maximum-Likelihood Approach

Vardi was one of the first researchers working on network maphy. He was working on the
problem of estimating end-to-end path properties using fireasurements. In 1996 he suggested
the following equation to model the problem of estimating tumber of packets sent between each
pair of end nodes [18].

Y = AX, (2.1)

whereY is a vector of the measured data, which is the number of pagletsing through each
direct link during a specific time period. S6 has an element for each direct link of the netwdxk.
is a vector containing the amount of traffic on each end-wfmath during the time periodA is a
binary routing matrix. Lep be the number of end-to-end paths whose traffic is being atgitrand
|L| be the number of direct links in the network.is a|L| x p binary matrix in which the element
in row ¢ and columry is 1 if and only if thei-th end-to-end path contains theh direct link.

Some other researchers used this model for other networdgraphy problems. In the problem
Vardi was working on path characteristics were desired akctharacteristics were given. In other
problems with the same model, link characteristics (ddtsg, etc.) or the routing matrix may be
desired. The measurements are usually path-based ordisddtY = (Y7, ...,Y;)’ is a vector of the
measured dataX = (X1, ..., Xs)' is the vector of parameters to be estimated Arid a¢ x s binary
routing matrix. UsuallyX; is a random variable parametrized by som@and~y = (71, ...,7s)" IS
what we need to estimate.

Maximum-likelihood approaches are relatively computadidy complex, and they are feasible
only for small routing trees. Therefore, there are some ouho deal with the trade-off between
complexity and accuracy of these approaches. One of theas islto use pseudo-likelihood models.
This means dividing the problem described by Eq. 2.1 intesswsub-problems, solving each
separately, and then combining the solutions to get to ttaé $ilution. For the topology inference
problem it means finding the logical topology induced by efiéint groups of receivers and then

merging the topologies to create the complete logical toppl

Multicast End-to-End Loss

Duffield et al. [13] created a multicast loss probing framewand suggested to use maximum
likelihood techniques to find the topology of the network se a Bernoulli loss model for each

link { of the network, which means a packet successfully travéssitls the probability;. Multicast

probes are sent from the root towards all of the receivers. r€bult of each probe is described as
X = (Xy)vev WhereX, = 1 if the probes have reachedand X, = 0 otherwise. If we run a set
of n probese = (2, ..., () with 2@ = (X$),cv, the log-likelihood function for this event is
defined as

L(T,a) =log P(x|T,).

For a specific tre§” and a set of probesg;r is a loss probability set that maximiz€$T, «).
a7 = argmax L(T, a)
Duffield et al. suggested to use an ML classifier to find the w7, that maximizesC (7, é-r)

Tarr = argmax L(T, 67) (2.2)
TET(R)

Markov Chain Monte Carlo

Coates et al. suggested a maximum likelihood model basediomige similarity function for nodes

of the network [19]. For a tree with an end-node Bethere is g R| x |R| matrix X of estimated
pairwise similarities. LefX;; be a random variable parametrizedy for any pair of end-nodes
i,7. A samplex = {x;;} of X is measured. Let(x|vy) be the probability density function of the
random variables, which mea ~ p(x|v). X can come from the sandwich probes discussed in
section 2.2. Setting (x|7) as

L(xz|T)= sup p(xly),
v€G(T)

whereG(T) is the set of all possible’s for the treeT, they defined the maximum likelihood tree as

T (x) = argmax log L(x|T), (2.3)
TET(R)

whereT (R) is a forest of all trees with the set of leav@s
Also we can assume that the random variabigs are independent so if we 1&t; (z;;|v:; =

log p(zi;|7vi;) the log-likelihood is

logp(aly) =Y > huj(wislvig)-

i€R jeR\{i}
If the number of receivers is not very small it is not feasitulesearch the whole fore§t(R)
to find the tree that maximizes Eq. 2.3. Coates et al. sugljéstese a random search technique
to search the forest more efficiently and they came up with ekMeChain Monte Carlo (MCMC)
algorithm to find an approximate solution for Eq. 2.3. Theykma Markov chain with the trees in
the forest7 (R). This chain is created using two moves that change a stateaitree, into another
state. These two moves are depicted in Figure 2.4. The firgenwehich is called théirth move,

takes a tree, selects a ngdeith more than two children, inserts a nogeas the new parent of two

Birth Move

—>

[J

® [
Death Move

L4 [

In the upper figure the gray node is inserted and in the lowertloa gray node is deleted.

Figure 2.4: Markov Chain Moves

current children op. Thedeath move selects a node with two children and deletes it. It is easy to
see that these two moves are reversible so the search carbeaknrom mistaken decisions.

The search keeps making these moves and compiit€§") for each tree it visits. The longer
the search is run, the higher chance it has of reaching beges. The starting point of the search
can be any tree or it can be the result of some other methods.

The problem with Eq. 2.3 is that trees with more links can getds scores because they have
more degrees of freedom, i.e., they can get overfit. Thusse¢hech algorithm may end up with a
solution with too many links. To resolve this problem Coageal. tweaked the equation and added

a penalty for the number of links:

Txa(x) = argmax log L(z|T) — An(T) (2.4)
TEeT(R)

wheren(T) is the number of direct links, i.gl.L|, in the treeT and\ > 0 is a parameter to control
the number of links.

Adding a penalty parameter can solve the overfitting probleut it creates a new problem.
Tweaking is an important task and the authors do not suggest an exsubdi® do so. A probable
problem that we faced during testing this method is showrigaife 2.5. The original tree that the
algorithms is tested on is shown in Figure 2.5-a and Figusézhows the initial result that MCMC
starts with (this tree is given b< algorithm which will be introduced later in Section 2.3.Zhe
only change is needed to get from Figure 2.5-b to the coropdltgy is adeath move on the node
9. MCMC makes that move but because the penalty is not peyfeetlit makes an additionbirth
move, adds the node, and ends up with Figure 2.5-c as the final result. And if theafty is too

harsh, obviously the final result will have too few nodes. dodude performance of MCMC relies

10

(b) (@]
(a) the original tree (b) the initial state of MCMC (c) the fistate of MCMC

Figure 2.5: MCMC without a perfect

on the precision oA which makes MCMC hard to use.

2.3.2 Constructive Approach

Constructive methods gradually build up the network treleer€ are several proposed constructive

methods; most of them have a similar bottom-up approach:
1. Choose a pair/group of nodes with the highest similarity.
2. Merge the pair/group into a new single node.
3. Update the similarities between the new node and the atiges.
4. Continue until only one node remains.

The first step to set up such a method is to define a similaritgsome for nodes/leaves and this
measure has to be monotone if you start from the root and nmverlin the tree. Ranasamy et
al. [20] suggested such a method in 1999 that uses multieakeploss measurements. They define
the similarity score for a pair of nodes as the probabilipt thpacket is lost on its path from the root
to their lowest common ancestor.

In 2002, Duffield et al. [13] extended Ranasamy’s algoritmmrake it suitable for general,
non-binary trees. They defined a functiB¢U) which is the probability that a packet reaches the
lowest common ancestor of a set of nodesSo a pair of nodes, andb, have the highest similarity

if B(a,b) has the minimum value. They also argue that the minimur@f) occurs wherlU is

11

B(U) is the probability of a packet reachiagand B(U U v) is the same value fdr, soB(U) < B(U U v)

Figure 2.6: Shared Packet Loss

a set of siblings. U is a set of siblings then fd/’ C U we haveB(U’) = B(U). Figure 2.6
depicts this statement. Their algorithm after finding the pa = a, b with the minimumB(U),
checks all the other leavesand if B(U U u) = B(U) then it adds: to the setV and at the end
merges the whole set as a new node. Computiig) is not an easy task, so instead they used the
joint probability of the packets reaching the leaves toneste B(U); they also set a threshold for
comparing similarities.

Coates et al. [10] proposed another bottom-up method nanm&dbased on their likelihood
approach explained in section 2.3.1.Markov Chain MontddCarhich uses unicast measurements
to infer binary trees. They defined random variableg ~ p(x;;|vi;) as pairwise similarities
between the nodes. A sampte = {z;;} of X is measured (using the sandwich probe). Let
hij(xij|vi; = log(p(zi;]7y:5)). The similarity function for a pair of end-nodes is defined as

Yij = ar%é%ax(hij(xij 7) + hji@ily)- (2.5)
In each round the pair of nodésindj with the maximumy;; are selected and merged into a new
nodek, which is their parent in the final tree. The next step is toatpdhe similarities. LeRy
be the set of all the leaves that are descendants bfitially R; = ¢ for all the leaves and when
andj are merged inté&, R, = R; U R;. The similarities between the new nokl@nd all the other

remaining leaves is

ﬁ/kv = ﬁvk = argmax Z hrv(xrvh/) + hvr(xvrh/)- (26)
7€ER reRy

The algorithm keeps performing these steps until only ordememains.

More recently, Ni et al. [3] suggested a dynamic algorithmatial or delete a receiver from
the network. Using their method, it is possible to add nodesloy one and construct the whole
topology. The leaves are added to the tree in a recursive enamfhe recursive insertion algorithm
inserts a new node to a sub-tree. Figure 2.7 shows the thfeeedit options that this algorithm has
when inserting the new node in the nodg sub-tree. The new node is either onevsfsiblings, a
child of v, or a descendant. If the latter option is chosen the reaiegorithm should run for one

of v’s children. Some of the probing techniques discussed iti@®e2.2 provide depth estimation

12

v v v

“ i v 1N S ERNN
(a) (b) ©
(a) the new node is a child af (b) sibling ofv (c) one ofv’s descendants

Figure 2.7: Node Insertion

for the common ancestors of each pair of leaves, such astdeviazh probe or the additive metrics.
The insertion algorithm uses these data to decide amongtée options.

The algorithm uses a perset parameter as the shortest lgdssifgth of a link calledA. This
parameter is important in deciding between the three casgistdd in Figure 2.7 during the node
insertion process. Settingy to a proper value is important because\ifis too large the result tree
might end up with too few links and if it is is too small the ptelm shown in Figure 2.3 might
happen. However having a precise estimation of the lengtheofinks can help in the latter case.
Similar to MCMC, Ni et al. do not suggest a method to AetWe will talk more about this method
andA in Chapter 3.

2.4 Conclusion

We split topology finding process into two phases, data ctiia and topology inference and we
introduced some major directions in each phase. In dateat@h we talked about how differ-
ent characteristics of the network can be sued to get infoomabout the internal topology. The
current data collection methods do not give enough infoionadbout the internal network topol-
ogy, so some topology inference algorithms try to use somestable parameters to improve their
performances.

We categorized the tomography inference algorithms in mari-likelihood and constructive
approaches. Although there have been great improvemettig ifield, each of these approaches
faces different trade-offs and limitations. Maximum-likeod methods, e.g., MCMC idea by Cotes
et al. [11], have to face the overfitting problem. Cotes etaime up with the idea to add a penalty
parameter to their maximization criteria. But tweakingstharameter is a tricky task which is not
described how to get done.

Constructive methods are simpler in general. Some of thethauds are useful for a limited
types of networks, e.g., binary trees, or are less prec@entaximum-likelihood methods. Ni et al.

suggested a constructive method which outperforms prewounstructive methods, but as MCMC

13

its performance relies on the precision of a preset paramete

To summarize, the current methods do not collect enoughrirdtion and use very complex
methods that need some preset parameters and it is not oleah&se parameters should be set. In
these thesis we are trying to improve the data collectiorhots and suggest a topology inference

algorithm to use the data and find the network topology.

14

Chapter 3

Deciding with Difference Sets (DDS)

In the previous chapter we introduced the tomography pmofaled discussed some works that are
done in this area. As mentioned tomography methods corfststcosteps: data collection, and
topology inference. One of the data collection methodsudised in Chapter 2 is called sandwich
probe which is suggested by Cotes et al. [13]. The sandwichgs gives an estimation for the
distance from the source to the common parent of each pa@ceivers. Cotes et al. suggested a
Maximume-Likelihood approach to infer topology using samtiwdata. It is discussed in Chapter 2
that because of the high complexity of this approach it hatetd with the trade-off between accu-
racy and running resources. In this chapter we introducenatngctive method to find the network
topology using the information from sandwich probes. Thipraach is much less complex than
Maximum-Likelihood.

Before we get to the algorithm there are some symbols needsel¢xplained.

e 7, Delay (distance) from the source to the nade

P, »: The common parent of destinatiomsindb.

Ta,p- Delay (distance) from the source i) ;, or common delay.

xq,5- EStimated value for, ; using sandwich probe.

e 1, Estimated value fot, using sandwich probe. This can be obtained by sending all the

three sandwich parts to the same nade

We first assume that for all leavesb we have the exact values af, 7,, andr, ;. We suggest
an algorithm to create the tree using this information, tetend our algorithm to handle the real

problem in which we just have an estimation for each pieceatd.d

3.1 Deterministic case

In this section we assume that there is no randomness in starsyso we have exact delay values.

We suggest an algorithm to infer the logical topology of anek, given the values of, andr, ;

15

Root @ Root @

1

1@
(a) (b) (©)
(a) Tree with one leaf. (b)1,2 > 0. (c) 71,2 = 0.

Figure 3.1: Tree after inserting leaves 1 and 2.

for all leavesa, b.

The algorithm starts with a tree containing just the soufde®network. This is the root of the
tree. We add destination nodes to the tree as leaf nodestantn@e. This is done in a recursive
manner. Here, we explain the steps for the first and secomddeand then we explain the general

recursion step.

3.1.1 Base Case

First Leaf - Inserting the first leaf is trivial. The result is a tree wijttst one edge, of length,
(Figure 3.1-a).

Second Leaf - We user; to tell us where to insert the second leaf. We are working eitfcal
topologies, so there are only two possibilities for a trethwivo leaves. Ifr; » > 0 then the result

is Figure 3.1-b, otherwise it is Figure 3.1-c.

3.1.2 Recursion Step

We have explained the base case. Now we explain how to adek lesing recursion. We divide
this problem into two cases: a) the root has only one chilthéyoot has more than one child. We

discuss the first case, and then reduce the second case istlcase.

Root has only one child

Figure 3.2 shows the first case. This case also can be dividietiio cases, depending on whether

or not the following condition holds.
Va,b<n:Ton="Ton (3.2)

Condition 3.1 holds
If Condition 3.1 holds thei®, ,, is the same node for every existing leafin this case, there are
three possible locations for leaf These are shown by dotted lines in Figure 3.2-a. The lotébio

leafn is chosen as follows:

16

(b)
Dotted lines show the possibilities for leaf

Figure 3.2: The recursion step.

If Ya : 7, = 0, select location numbdr.
If Va : 0 < 7,,, < 74, Select location numbex.

If Ya : 74,n, = 74, Select location numbex.

In the first case, the delay from the source™g, is zero, saP, , must be the source node. In
the second case, the delay from the sourc€tq is less than the delay from the sourcedtcso
P, ,, must be higher in the tree thah In the third case, the delay from the sourcé?g, matches

the delay from the source th so we assume thdtis the parent o& andn.

Condition 3.1 does not hold

Here, leafn does not have the same parent as all the other nodes, so it must be $@meein
the sub-tree of nodé (Figure 3.2-b). Node@ has several children, and each of these children has
several leaves in their sub-trees. The measurements uggéitthe tree are the delays from pairs
of nodes to their common parent, so only the root can have loifat all other internal nodes must
have multiple children. If leaf is in the sub-tree off andd is notn’s parent, the common parent
of leafn and all the other leaves in the sub-tree wouldipexcept for leaves in the sub-tree of one
of d's children. For example in Figure 3.8 has three children and each child has a sub-tree. Leaf
n is in the sub-tre€' so P, , is d for all the leaves: in the sub-trees! and B. Thereforer, q is
equal tor, for all those leaves. On the other hand, the common pareaadf land the leaves in the
sub-treeC’ are deeper thad insideC, sor, , is greater tham, for those leaves. We just need to
find the sub-tre€' such that for all leaves in the sub-tre€” and all leave$ in any other sub-tree

the following condition holds:

Tn.a > Tnb aeCbé¢C (3.2

Given this, we can ignoré's other children, considet as the root and recursively insert leaf

into that sub-tree. Becaugdehas at least two children, the sub-tree has fewer leaveghiegoarent

17

Root

Figure 3.3: Closer look at Figure 3.2-b

Figure 3.4: Root has more than one child

tree, so the recursive algorithm eventually reaches the t@se of a tree with one leaf.

Root has more than one child

Now we discuss the case where the root has more than one Eligidré 3.4). Here, if leah
branches out at the root, we should have< n : 7, ,, = 0. Otherwise, similar to section 3.1.2-b
we need to find the sub-tree of the root whose leaves haverrgéghemon delay with leaf than the

other leaves. Then we ignore all the other children of th¢ and insert leaf.

3.2 Stochastic case

In reality there is no such thing as the exact delay from acotara destination. This is a measured,
stochastic value, so there will always be some randomnessha¥e to use the estimated values
obtained from several measurements with sandwich probles.algorithm we propose is a slight
variation of the one for the deterministic case.

What is the problem with just re-using the previous alganith In Figure 3.5 suppose we are
inserting leafn into the tree and we are at the point where we should decide ifhéw leaf should
be attached at nodg somewhere on the edge betwekand its parent, or in one of the sub-trees of
d’s children. Ifr, ,, for all leavesa in d’s sub-tree is equal to;, we sayn is attached tal. If 7, ,
is less tharry, thenn is on a branch on the edge betwegand its parent. It ,, for all leavesa
in the sub-tree of one af's children is greater than,, leafn should go in that sub-tree. However,

in the stochastic case, it is very unlikely that the valuels g exactly equal, ruling out the first

18

~~__—

.
1 2
a b ¢
Tn,a > Td 5, Tnb < Td ; Tn,e > Td
Va = Tn,a —&d ; Vp =%d —Tpp , Ve = Tn,c — Ld

Figure 3.5: The system of delay differences

possibility. For the other two cases, natural variatiorth@network due to changing loads could be
large enough to cause the algorithm to make the wrong decisigeneral, we would like to use as
much data as we can to reduce errors in tree construction.

During insertion of a new leaf, when we are deciding betwéensub-trees of a nodé(e.qg.,
noded in Figure 3.5) we build a collection @i + 1 sets, wher€' is the number of children af. We
number the setsy, s1, ..., s¢, Setsy holds information for the edge fromto its parent. Assuming
d’'s children are numbered from to c¢, the other sets hold information for the edges fréto the
child with the corresponding number. That is, there is onéoseeach child ofd.

Each set holds a number of values, where each value is agsbeiah one leaf of the sub-tree
rooted at that child. For example, in Figure 3.5, at ndd®ts is associated with the edge from
d to its parent. Sets; andss hold information for the children of. The values in these sets are
calculated as follows.

For each child:; of d we consider all the leavesin its sub-tree. Ifz, ,, is greater tham:; we
insert the valuer, , — x4 into sets; (e.g.,v, andv. in Figure 3.5). Otherwise we insert the value
ZTq — Tq,n INTO 5o’S Set (€.9.p3 in Figure 3.5). We assume that eaghy, is normally distributed, so
these differences are also normally distributed.

After examining all the leaves, we calculate the averageevédr each set to select one of the
sub-trees. As we noted above, the main problem is the extosileliness of equality. If leaf
branches out at, all the average values should be zero, but because we fdistical fluctuations
in our measurements, this is very unlikely. To solve thidybem we set a threshold and call a value
zero iff the average of the set is less than its standard devia#dter calculating the averages we
check all the sets. If all the averages are zero we attaithd. If the average 0§ is not zero we
say leafn should branch out on the edge frahto its parent, and we set the length of the edge from

d to its new parent equal to the average valuefif one of the other sets has a positive value, we

19

select the corresponding child and perform the recursidieésre. If the standard deviation is not
too high, all the averages except for at most one of them ghzrikzero, according to our definition.
If we still have more than one positive value we have to chdbeeone with the greater ratio of
average to variance because, if this ratio is grater, it isenumlikely that the measurement error

causes the positive value.

3.3 Analysis

To add a new leaf to the tree, we start at the root and walk down through the trethis process
we meetO(d) nodes, where is the depth of the tree. At each node we add all the leavesein th
sub-tree of that nodes into the sets and run some operatioflgffor each leaf. In conclusion it is
O(dN) operation to add a new leaf soO(dN?) to build the whole tree.

During the data collection phase, we seén@V?) sandwich probes to measure all the; and

each packet travels throughd) nodes. In totaD(dN?) packets are sent.

3.4 Example

In this section we apply the suggested algorithm to a smalirgte of a network to demonstrate the
algorithm step-by-step.

The example network has four receivers. Figure 3.6 showsap@ogy of the network and
Table 3.1 contains the exact valuesrgf, for all leavesa,b. The element in row. and columrb
showsz, ;, for a # b, and the element in row and columanshowsr,. These are the values we
would have in a deterministic version of the problem. To @iiim measurement noise, suppose we
have a standard deviation@® in all our measurements. Table 3.2 shows example measurezbva

corresponding to the exact values in Table 3.1.

Table 3.1: Actuat values

‘ 1 2 3
110 2 2 2
212 0 6 3
32 6 0 3
412 3 3 0

Table 3.2: Measured values
1 2 3 4
1490 190 2.00 2.05
21190 785 6.05 290
3|200 6.05 6.95 3.10
4| 205 290 3.10 5.00

We start with a single node as the root and insert the firsitdathe tree. This gives us the tree

in Figure 5.1-a. Inserting the second leaf is also stragghtérd: =, » is greater than zero, so we

20

())

Figure 3.6: The actual tree.

should add a new nod, - in the middle of the existing edge. The result is shown in Fégai1-b.
Then we can set the length of the edges using = 1.90, z; = 4.90, andz, = 7.85.
Now we add the third leaf. The root has only one child;, and condition 3.1 in section 3.1.2

does not hold, so as section 3.1.2-b says we build a colteofithree sets at nodg, :

e 5¢: Holds information for the edge fromf, » to the root.
¢ s1: Holds information for the edge frotf, to leafl.

e sy Holds information for the edge frotf, to leaf2.

Then we compares ,, for all the existing leaves to 1.90, which is the distance aP; » to the
root. For the first leafzs ; > 1.90, so we insertc3 ; — 1.90 = 0.10 into s;. For the second leaf,
x32 > 1.90, so we insertrs o — 1.90 = 4.15 into sy. Only the average of, is greater than its
standard deviation, so the third node should be attachdtetedge corresponding tg@, which is
the edge fronP; , to leaf2.

So far, we have the tree in Figure 5.1-c. To add the fourth astdéaf, similarly to the third leaf,
we build a collection of three sets at nofte,. With similar reasoning to the case of the third leaf,
we find that the fourth leaf should be placed somewhere initie sub-tree ofP; ». As noted in
section 3.1.2-b we ignore the rest of the childrerPpf, considerP; » as the root, and recursively

add the fourth leaf to the new tree. This time we build a ceibecof sets at nodé 3:

e 50 Holds information for the edge frotf 5 to P; 5.
e s1: Holds information for the edge frotf; 5 to leaf2.

e s9: Holds information for the edge from, 3 to leaf3.

21

Root @ Root ?

1.90
4.90 P
5.95
3.00
o ;
1 1 2

Figure 3.7: Creating the example tree.

22

Now we comparer, 2 andzy 3 to 6.05, which is the distance af, 3 to the root. Both are less
than6.05, so we inser6.05 — x4 2 = 3.15 and6.05 — z4 3 = 2.95 into setsy. The only set whose
average is greater than its standard deviation iso the fourth leaf should branch out on the edge
from P, 3 to its parent. The length of the edge frdf; to the fourth leaf’s parent is equal to the
average of,. The result is shown in Figure 5.1-d. In this example, eveth wome noise in the

measurements, the tree we have constructed correspordsgtucture of the actual network.

3.5 Conclusion

In this chapter we introduced a constructive topology iefee method called DDS which uses
sandwich data. In Chapter 2 we pointed a method suggested by dll [3] which is a similar
method, callediomo that inserts the leaves one by one. The main difference leettheir method
and ours is how the thresholds are set. We use the standaedioiewf a value as a threshold if the
value does not reach its standard deviation we call it a ZBnmo uses a preset threshaklas the
smallest possible length for a link. Setting the threshsldr important task in this method.Af is
too large the algorithm will not recognize the links shotteat A and may produce a wrong result.
So it has to be equal or smaller that the shortest link, andisftoo small then a noisy data may
cause extra links created in the resulting tree. Ni et alski®jw that if the error of each estimation is
less than% the algorithm will find the correct topology. The main benefibur method compared
to Tomo is that it does not have any additional parameter and only sesedwich data. In Chapter 5
we compared these method to each other as well as to anothieoanghich is introduce in the

following chapter.

23

Chapter 4

Traceroute with Sandwich Probe
(TSP)

In the previous chapter we suggested a solution to solveothedraphy problem which uses the
sandwich probing scheme. The probing scheme like the otieeiqus probing schemes give very
little information about the internal structure of the netl Traceroute is a well-known tool that
can collect such information, but it needs the cooperatich®internal nodes so we cannot use it
for our problem. But it is built based on a very elegant idea.tidéd to alter the idea and apply it to
our constraints.

In this chapter we suggest another topology inference naetheolve the network tomography
problem. This method uses a new probing scheme, called ronateewith Sandwich Probe (TSP)
and gives more information about the network topology. Pinibing scheme is based on the ideas
of the sandwich probe [13] artdaceroute. A topology inference algorithm is designed to use the
information given by the new probing scheme which unlike pinevious methods is capable of

finding the physical topology of the network rather than tigidal topology.

4.1 TSP Probing Scheme

To gain more information about the internal structure ofribwvork without relying on cooperative
internal nodes we combine the sandwich probe with the ideéeaoéroute to create a new type of

probe. In the following we first explaitmaceroute then introduce TSP.

4.1.1 Traceroute

Traceroute is a network tool that discovers and the path (route) betviiwernodes in the network

and measures the transit delay on each link. It uses a pyagferternet Protocol (IP) packets called
Time To Live (TTL) which is renamed to hop limitin ipv6. TTL ¶meter in IPv4 header whose
purpose is to prevent undeliverable packets from wandeninige network for ever and it sets an

upper bound on the time a packet can exist. The sender of @pseis the TTL to an integer less

24

than 255 (usually 128 or 64). Then each router that recelivepacket reduces this value by one and
if it reaches zero the packet gets dropped by the router.Wénsthe network will not get swamped
by undeliverable packets.

To discover the details of the path between two nadasdb, traceroute sends several ICMP
packets fronu to b. The first packet has a Time-To-Live (TTL) value bbf Thus, it goes only one
hop and gets dropped by the first node along the path. Thisfids returns an ICMP error message
to a containing its own IP address. Now nod&nows the address of the first node in the path. It
can estimate the round trip delay on this first hop by calmdahe time between sending its ICMP
packet and receiving the error message. Nedepeats this process, incrementing the TTL1by
until the ICMP packet it sends reaches nédedb sends an ICMP reply messagedtoThe result
is that nodex discovers all the nodes along the pattbt@s well as the round trip times to each of

them.

412 TSP

As mentioned in Chapter 2 not all routers behaviaseroute expects. Some routers are configured
not to send ICMP error messages at all, while others send #issages but do not include their IP
addresses in them. In our work, we assume that the interaiglsnaf the network are configured not
to reply to ICMP, so we cannot useaceroute. But TTL is a part of IP, not ICMP and it is necessary
for all the routers to reduce the TTL and drop the packets @fAd4. is zero.

We combine the idea of using TTL and create an altered veditire sandwich probe which we
introduced in Chapter 2. We know that a sandwich probe ettirthe delay of the common path
to two nodes. We note that these do not have to be two diffexahés. If we send all three packets
of the sandwich probe to the same node, and set the TTL of the fzacket to a certain valug
the large packet will be dropped afteihops. The delay difference between the two small packets
gives the delay along the path, up to #h¢h node. Figure 4.1 illustrates an examplefoe 2. For
a particular receiver node we definey; 5, as the delay from the root to tlie— ¢h node along the
path toi. Using this version of the sandwich probe, we can perfornmoagss similar taraceroute.
Instead of ICMP packets, we send a sandwich probe. The tinasumements are performed in the
end node instead of the starting node. This method gives @svay delays to the nodes along the
path, as opposed to the round trip delay times elicitettdgeroute. The TSP does not give us any
information about the addresses of the nodes along the path.

Some hops may have higher delay variance than others, salém tw have reliable measure-
ments, we need to send multiple probes. Therefore if we oale Isufficient resources to send a
limited number of probes, we try to keep the standard err@uofmeasurements equal, rather than
keeping the number of measurements equal for each hop.

Traceroute’s output is enough for inferring the topology, but TSP is betause it does not give

the IP addresses. In order to infer the topology we need igaat sandwich probe and TSP results

25

Cp2

TTL=2 I:I q Root Root
= E
p2 :ll m .
o o
® ST
(a) (b)

Figure 4.1: TSP Probe

together. The sandwich probe gives delay estimates fortthred segment along the paths to two

nodes; we call these estimatians; for the nodes andj.

4.2 Inferring the Topology

Assume we have measured all the valuesof andy; ;. involving the root and the receivers of
interest. We infer the topology of this portion of the netlwasing a constructive method. We start
with a tree containing only the root, and try to add leaveshtottee one by one. In the process,
we construct the internal topology as well. Assume we havee& tvhich is a partial tree of the
whole network. Now assume we want to add a new tettf the tree (see Figure 4.4). First we find
the leafn’ in the tree that maximizes, ,,. The paths from the nodesandn’ to the root have a
common segment, ang, ,, is our estimate of the delay along that segment. We need tofihdt
which node in the path from’ to the root these two paths separate. The delay from theaépar
node to the root has to be closeitp ,,. So we find the numbeér which minimizesx,, ,, — yn’ i,
which means thé-th node in the path of the root t¢ has the closest estimated delay:tp ,,. In
Figure 4.4 = 3. We consider thé-th node as the separation node, and add mobethe tree. As

a result the path from the root to the nodés the same as the path to nodeup to thek-th node,

and the rest of the path consists of new nodes.

4.3 Analysis

To add a new leaf to the tree, we have to find the notléhat maximizes; ,,. This takesO(V)
operations, wheré/ is the number of leaves. Then we need to find the claggsto x; ,,, which
takesO(d) operations, wheré is the depth of the tree. Thus, the time complexity for buigdthe
whole tree isO(N? + Nd).

During the data collection phase, we sén@dV?) sandwich probes to measure all the;, and
we sendD(Nd) TSP probes to measure all thg;. As the time complexity is small, we do not have

to measure all the; ; andy; ;, before running the algorithm. We can start the algorithmdmthe

26

Root

Figure 4.2: Topology Inference Example

measurements when they are needed. This way we can optimireimber of measurements. For
example, in Figure 4.4, the delays to the nodes along thelymtieen the root and nodeneed to
be measured only once. In many tomography applicatiorseiough to have the logical topology,
which means the internal nodes where no branching occurmaimportant. In this case we do not
need all they; .. For example, in Figure 4.4 the distances of the dashed raréesot necessarily
required. When we are adding a new nedendz,, ,, is the largest; ,, we can use binary search
to find they,, , that is closest ta,, ,,. Therefore, the number of measurement3('2 + Nlogd).

This is also the time complexity of building the tree.

4.4 Example

In this section we apply TSP on the same example network wetingghapter 3 to better compare
the two methods. Figure 4.3 shows the network topology wetadying. The input of the inference
algorithm includes sandwich probes’ output i.e., pairvaeenmon path estimations & = (z; ;)
and TSP’s outputo¥” = (y;). Table 4.1 and Table 4.2 sha¥ andY” calculated from Figure 4.3-
a. In Table 4.1 the element in raixand columny showsz; ;. In Table 4.2 each row represents the

measurements for one leaf. In rawhe first element ig; 1, the second one ig », etc.

Table 4.1: Actuals values of the tree.

A WN P

NDNDN C)___
WO ONDN
WO oN W
O W wWwN| b

Table 4.2: Actualy values of the tree.
2 4 5

2 3 4 6 8
2 3 4 6 7
2 3 5

A WNBE

27

())

Figure 4.3: The Actual Tree.

Table 4.3 and Table 4.4 show our estimations of Table 4.1 atde™.2 that are given by the
probing phase.

Table 4.3: Estimated values of the tree.
1 2 3 4

0.00 1.90 200 205

1.90 0.00 6.05 290

200 6.05 000 3.10

205 290 3.10 0.00

A WN PP

Table 4.4: Estimateg values of the tree.
1] 190 38 4.9
2| 190 305 460 590 7.85
3| 200 290 445 6.10 6.90
4| 210 310 4.9

We start by adding a single node as the root and the leavesidesi @ne by one to the tree.
Inserting the first node gives us the tree in Figure 4.4-antheber of the nodes and the link delays
come from the first row in Table 4.4. The length of the first ligk.9, which is the first element of
the the row. The length of the second link is the differende/ben the second and the first elements
i.e.,3.8—1.9 = 1.9 and the length of the third one is the difference betweendhgli and the third
elements.

To insert the second leaf we first look into Table 4.3 and find which is1.9. Now we should
find the node in the path from leafto the root whose distance to the root is closest.fo This is
the first node from the root and is calléy , in Figure 4.4-b. This means the paths of léaind2
separate at this node. Now using the second row of Table 4 egreate the rest of the path of leaf
2 and we get the tree in Figure 4.4-b. The separation poift iswhose distance to the rootis9.
The distance from next node in the path of the 2&f the root is3.05, so the length of the next link
is3.05 — 1.9 = 1.15 and the rest of the path is created with the same processddirshleaf.

28

Root @ Root

1.9 19
®

1.9 P ,(1.9)
®

1.1
]

1

(a))

@

Figure 4.4: Topology Inference Example

For the third leaf, we first have to find the leathat maximizeses ,,. This is the second leaf.
Table 4.3 shows thats o > x3 1 so the maximum ot ,, is z2 3 Which is5.5. The next step is to
find the node in the path from the root to the l@afthose distance to the root is closesttd. This
node is the parent of the leafwhose distance from to the root3s9. This node is called> 3 in
Figure 4.4-c and is the separation point of the paths of theels2 and3. The rest of the path for
the leaf3 contains only one link which can be created using the thivdiroTable 4.4.

Finally to add the last leaf, the procedure is the same aéothiird one. First we find the node
n in Table 4.3 that maximizes, ,, which is leaf3. The node with the closest distancertps is the
node calledP; 4 in Figure 4.4-d;z4 3 = 3.1 and the root’s distance tB, 4 is 3.05. According to
Table 4.4 the path of the ledfcontains one more link and we create that using the fourthinow

Table 4.4.

The final result of the algorithm is shown in Figure 4.4-d. Thest visible difference between

29

the result of this method and the result in Chapter 3, giveDb, is that this method gives the
physical topology as in Figure 4.3-a as opposed to DDS whigtsghe logical topology i.e., Fig-
ure 4.3-b.

4.5 Conclusion

We introduced another topology inference method in thigptdtanamed TSP. This method is de-
signed so it can produce physical topologies rather thaicabtppologies which is a benefit com-
pared to other methods. This capability is achieved by a nekipg scheme which combines
traceroute and sandwich ideas and collects more informatiout internal nodes of the network.
This method and other methods we discussed are compared folibwing chapter to show

how practical they are.

30

Chapter 5

Experiments

In previous chapters we talked about the tomography problersuggested some methods to solve
it. In this chapter we compare the performance of our methmdach other and to previous methods
to find out how useful our methods can be in practice. Also vezite know what are the limitations,
benefits, and costs of each method compared to others todtaiiioose the right method for each
application. We introduced two methods in Chapter 3 and €&napnamed DDS and TSP. Ni et
al. also proposed a method [3] which was mentioned in Ch&phtdb the best of our knowledge,
their algorithm has the best performance among the algositthat are already suggested for the
same class of topology identification problems that we stibte that there are two variations of
this method:Tomo andTRTomo. We use the first one as the second one uses information frem th
internal nodes which is not compatible with our problem ¢rists. These three methods (DDS,
TSP, and Tomo) are compared in this chapter.

As mentioned before, tomography methods consist of twosstggta collection and topology
inference. We use two different experiment methods: nédéwonulation and model-based simula-
tion. The difference is in the data collection step. For metwsimulation we used th@MNET++
framework [21] to create a very detailed network model whiokiers router queues, propagation
delays, etc. to have a realistic environment for our expenits. Network simulation however needs
more resources to run and allows fewer experiments than lsbeded simulation where the delays
follow a simple model rather than coming from simulated qgeuln the model-based simulation
we create randomly generated networks. The simulationgislfiabstract and link delays follow
a specific random distribution. This abstract model allowsairun many experiments in differ-
ent situations. We explain each experiment set-up sepaiaid report the results in this chapter.
These simulations are used to collect data about test nief\ead in the next step topology inference

algorithms are run separately on the data and the result®arpared.

31

& ,
routerQ -
3@ ﬁ %
= afGen5s

ro uterem riu ters
g
> g
]
3. -

>
‘@ dest3
I:rafl:eng.‘_mkéi routergrargen3 /
-
* == L]
5 =0

e
) I &l
@: = outet6afGeng sﬂ
routerfirafGend -
dest2

=% 1?@

o

~

fGeng
2 routers
trafGen8 \ 2
X L0y
s L2

g@ desto
= oy

dest4

dest1

Figure 5.1: An example simulated network.

5.1 Network Simulation

As mentioned above we uSMNET++ [21] simulation environment to create a realistic netwark t
run our experiments. OMNET++ is an open-source discretalsition environment written in C++.
Its main purpose is network simulation but it was created gsreeral simulation environment for
distributed or parallel systems. We use INET framework [22] which simulates several protocols
for wired and wireless networking, such as UDP, TCP, SCTPP\®, Ethernet, PPP, 802.11. It also
supplies models for many useful network elements, e.gtereuswitches, wired and wireless hosts,

etc.

5.1.1 Simulated Network Example

Figure 5.1 shows an example simulated network. The netwartains four types of nodes: routers,
traffic generators, source and destination nodes and rletinks which are responsible for limiting

the bandwidth and latency. The source and destination ravégbe nodes which run the tomogra-
phy algorithms that are explained in previous chapters.jdbhef the routers and traffic generators

are discussed in more detail in this section.

Routers

The delays that are imposed on the packets while passingghre routers are very important to

our tomography methods. Therefore realistic routers acessary for the simulation. The INET

32

a Router
=

mobility routingTable interfaceTable pcapRecorder[numPcapRecorders]

notificationBoard

3

1=

:r(e#thg)] ppplsizeof(pppa)]

ext[numExtinterfaces]

Figure 5.2: Architecture of routersin INET

framework has useful tools for this matter. Figure 5.2 shihvesnternal modules of an INET router.

Network Layer module handles the IP, ARP, and ICMP protocols. It also perforouting
protocols by using the routing table module.

Routing Table handles adding, removing and finding best path for a givetirgg®n subnet.
This module has interfaces so other modules (i.e., Netwasiel) can use it for routing.

The router can have different kinds Wetwork Interfaces: wlan, ethernet, and ppp. The inter-

faces have internal drop-tail queues to handle arrivingaridoing packets.
Background Traffic

In order to have a realistic environment there has to bestealbhackground traffic. The data car-
ried as payload by the background traffic is not importanttbis traffic is the greatest source of
randomness in our system so its behaviour should be sindilypical traffic in the Internet. We
use a model similar to the model used by the IEEE 802.16 wgrgioup for performance simu-
lation of proposed wireless MAC/PHY standards [23]. Theg adairly simple model to generate
HTTP/TCP, FTP, voice, and video streaming traffic.

The base of the model is called thaterrupted Poisson Process (IPP), which is a two state
process that is run by the traffic generator. This model gaasiself-similar traffic whose behaviour
is close to the traffic on the Internet. A combination of foBPk (4IPP) has been shown to give
good results [24]. Figure 5.3 depicts an IPP; it hassnand anOff state and when it is on it

generates packets at a configurable rate. Transition bettheetwo states is done randomly with

33

1-x 1y

X,y: transition
Probabilities

Figure 5.3: IPP Model Framework

the configurable probabilities af andy. Four IPPs with different parameters are used to generate
the traffic. Each IPP’s data rate depends on how often it isrmhitais configured byr andy
parameters. It also depends on how many packets it produees ivis on. In order to achieve a

given data rate the sum of packets generated by the four IRRédsbe computed.

5.1.2 Test Topologies

The networks that we run the experiments on have to haveaitoipologies to real networks to
show the performance of the methods in the real world. CAIRA tHeveloped a tool calleitter
[25] to gather information about topology of the Internetuses a traceroute-like method and is
used to map the AS level topology of the Internet. We took thia dneasured by runnirsgitter
daily in 2005 that contains data from over one million nod#s.selected different parts of the large

network to run the evaluations.

5.2 Model-based Simulation

There is significant queue processing for the backgrourifictia the network simulation. As a
result, these runs require substantial memory and timejngakdifficult to run experiments for
large networks and/or run many experiments. We used anéiharof simulation to cover this
problem. Although this is not as realistic as our networkwgation, it gives us the opportunity to
test our methods on many different cases and larger networks

In this method instead of using routers and queues and bagkditraffic, we suppose each link
in the network has a random delay with a certain mean valugh Wis assumption there is no
need to simulate the queueing of the background traffic. \Wated500 random trees each wit0
leaves. Each link in the network has a random delay with a melre between.2ms and20ms (as
observed in our network simulations). In the probing phalsemprobing a path, we take samples of
the link delays along the path and use the sum of the sampbe®aeh path we perform a number

of probes and use the average of the results for the topofdgseince algorithm.

34

5.3 Evaluation Parameters

Ni et al. [3] suggested two parameters to compare the pedicaof topology inference methods.

These parameters are:

e Correctness ratio,which is the ratio of the correctly inferred internal nodéshe network
to the total number of the internal nodes. An internal nodmissidered correctly inferred if
there is a node in the inferred topology with the same setadds in its sub-tree. A higher
correctness ratio means the resulting tree is closer todu@ladtopology. If this ratio is equal

to 1, it means the inferred topology is completely correct.

¢ Node ratio, which is the ratio of the number of the internal nodes in tha@metwork to the
number of internal nodes in the inferred topology. A highiffiedence between this ratio and
1 means the inference algorithm is less accurate in the nuafbieternal nodes. If the ratio
in more (or less) tham it means the resulting tree has more (or fewer) internal aititken the

actual network.

5.4 Results

The results of network and model-based simulations areepted separately in this section. Note
that the TSP method builds physical topologies as oppos&drtm and DDS which build logical
topologies. In order to compare their correctness and retitewe have to convert TSP’s results to

corresponding logical topologies then calculate corresgrand node ratios.

5.4.1 Network Simulation Results

We built ten different test networks in the simulation eowiment and run the three tomography
methods on them. For each network we sgitkprobe messages and compared each method'’s result
to the correct topology and computed its correctness and ratib. As mentioned in Chapter 3
Tomo needs an additional parameter calledhich is the length of the shortest link. We derivad
on a test network and used the same value for all the networks.

Table 5.1 shows the results for ten test networks. In termbetorrectness ratio TSP has far
better performance than the others in most cases. DDS atperforms Tomo in this parameter.
This can mean Tomo is very dependant on how welseT SP’s node ratio is also better than the
other methods on average and in most cases but it has a patiraeshe last large network. DDS
has the worst performance in this parameter. Among thesataple networks TSP has inferred two
topologies completely correctly and the other two methamddatnot find any topology completely
correctly.

In order to show what kinds of mistakes are made by each methecdcompare the results

of sample network numbet. Figure 5.4 shows the correct logical topology of this netwand

35

Table 5.1: Network Simulation Results

Sample No. | # of Receivers Correctness Ratio Node Ratio

TSP [DDS | Tomo || TSP | DDS | Tomo

1 10 1.00 | 0.86 0.71 0.86 | 1.29 0.86

2 16 0.78 | 0.89 0.56 0.89 | 1.33 0.78

3 16 0.89 | 0.44 0.22 0.89 | 1.44 0.78

4 16 0.89 | 0.67 0.67 0.89 | 1.44 1.33

5 16 1.00 | 0.78 | 0.67 1.00 | 1.33 | 0.67

6 16 1.00 | 0.60 | 0.30 1.00 | 1.40 | 0.90

7 16 0.75| 0.87 | 0.50 0.87 | 1.12 | 0.87

8 16 0.73 | 0.27 | 0.27 0.73 | 1.00 | 0.91

9 20 0.33 | 0.66 | 0.58 1.08| 142 | 1.16

10 20 0.42 | 0.33 0.33 0.5 1.42 1.25
| Average Error [[022] 036] 052][0.14] 0.32 | 0.20 |

Figure 5.4: Correct Logical Topology of Sample Network No.

25

Figure 5.5: Logical Topology of Sample Network NbBuilt by TSP

Figure 5.5 shows the logical topology returned by the TSFhowtThe major problem with TSP’s
result is that nodé4 is misplaced. This is happened because when the methodsimeate s, it
cannot find the correct common parent of noél@sd3 (or 4 or 5) and inserts the node in the wrong
place. But after that the nodes that are near réoaes placed correctly relative to nofe

Figure 5.6 depicts Tomo’s result and shows why its node tiatitigher thanl. In this case
Tomo cannot eliminate small measurement errors and adae extea links to the network. This is
the problem we discussed in Chapter 2 that occurs when a mesasnt error makes the inference

algorithm add a small extra link. DDS's result is very simiiaTomo’s and has only one more extra

36

Figure 5.6: Logical Topology of Sample Network NbBuilt by Tomo

link so we do not present that topology here but it means tti @Bnd Tomo suffer from similar

problems.

5.4.2 Model-based Simulation Results

Figure 5.7 compares the correctness ratio of TSP, DDS, amt Bonsidering the number of probes
sent. As the number of probes grows, TSP outperforms Tom@lgy20% higher correctness ratio.
DDS shows a poor performance compared to the other two metudlis not able to benefit much
from additional data when we send more probe messages whiahsrihe standard deviation does
not help to detect the measurement errors as much dses.

Figure 5.8 depicts the node ratio of the two methods. As youses TSP has a weaker node
ratio when we send fewer probes, but as more probes are seratibh approaches Tomo on the
other hand reaches the perfect node ratio quickly but dftdrits node ratio gets worse. Comparing
the two charts we can see that Tomo improves its correctagisswith more probes but it is not

able to improve the node ratio as much. Again DDS has a poultiaghis parameter.

5.4.3 Accuracy Limitation

We would very much like to understand whether increasingntivaber of probes leads us to a

perfectly correct topology every time. Unfortunately thesaer is no. We found a problem during

37

- 1 11 1 -
] WI%%iLiiiiii
0.8 — _ _

T + 1 1 1 L ¢ 1. 31 1 3 I T I [1 I I I
07k ,,LLTVL,LLTVLL%%VLLTLL
SR S W (D WD U (D D U W U U U U U U U U U D |

€ 6L 2 S e A
S 064
[~
2 05
£
Q
2 04
Q
@]
0.3 —%=TSP
-4—-DDS
027 =% Tomo
0.1
O T T T T T T T
0 50 100 150 200 250 300 350 400 450
of Probes
Figure 5.7: Correctness Ratio
2
1.8
1.6\
TN
1.2 L T [T - —
5" 1K]N}~{L\f:#%{gi BB
L T _
;:0.8 e e e e S R S S S S S
m v P e ' s e ' 5 e E e ': s s ' e ' 'S 'Y
0.6
0.4 —%—TSP
=—-DDS
2 =%—Tomo
0 T T T T T T T T
0 50 100 150 200 250 300 350 400 450

of Probes

Figure 5.8: Node Ratio

our network simulations which also exists in the Interndt.oithe methods that we use are based
on an assumption that the delay we measure is monotonic #t@ngath and strictly increasing.

However the way the routes handle routing, processing, aoppihg messages is more complex

38

600

500

400

300

200

Round-Trip Time Delay (ms)

100

1 2 3 4 S 6 7 8 9 0 11 12 13 14 15 16 17 18

Hop Distance

Figure 5.9: RTT delays along a sample 18-hop path.

than our models and that assumption is not always true.

This problem can be seen in Figure 5.9. The figure shows Raupd¥fime (RTT) delays
measured using traceroute along a sample path in the Iht&aeh hop’s delay is shown separately
and the hops without a delay are the ones which do not respol@MP queries. It is visible that
although the delay is growing overall along the path, it ismonotonic and decreases at some hops.

This non-monotonicity causes errors in our methods and esults depend on how often it
occurs in the network. We can make our measurements moresdéedyy increasing the number of
probes but this non-monotonicity is in the network’s natsieto face this problem we have to alter

the topology inference algorithms.

5.5 Conclusion

We developed two experimental systems to test our tomogramthods. The first system is a
detailed simulation with a fairly realistic behaviour artetsecond one has a simple model for
propagation delays and is less realistic but is much lightan the first system and can handle larger
networks and a larger number of experiments.

The results of the simulations show that TSP outperformsother methods in most cases.
Comparing DDS and Tomo in different experimental systemssydifferent results. The reason can
be Tomo’s dependence én SettingA in model-based simulation is easier than network simutatio
and Tomo shows better performance with more accutatdhe other difference between the two
systems is the effect of non-monotonicity we discussed @ti&@e5.4.3. This problem is not seen in
model-based simulation as opposed to network simulation.

We compare computational complexity of TSP, DDS, and Tomaeedkas their traffic overhead

39

in Table 5.2. The table shows that TSP builds the topologyenadficiently than the other two
methods, but they all run in polynomial time. TSP sends moob@ messages that the other two
methods thus uses more bandwidth and imposes more traffibeondtwork. If the network is
very busy this can be problematic especially if the probirarpss lasts too long, because then the

network’s routing paths might change.

Table 5.2: Comparison of Computational complexities aaffitroverhead.

N is the number of receivers amfds the depth of the network.

Method | Computational Complexity| Traffic Overhead
TSP O(N?+dN) O(dNZ + dNlogd)
DDS O(dN?) O(dN?)
Tomo O(dN?) O(dN?)

Beside its better performance, TSP is capable of buildingighl topologies and this is another

advantage compared to other methods.

40

Chapter 6

Conclusions and Future Work

In this thesis we addressed the network tomography prohidrich is the problem of finding infor-
mation about a network’s internal nodes and links. Thisnmiation is necessary for some network
monitoring, peer-to-peer, and collaborative tasks. Anangmt part of the problem, which we
worked on, is finding the topology.

The basis of our work is a probing method called the sandwiohe which is suggested by
Cotes et al. [11]. We developed two tomography methodsa&lleS and TSP. DDS is a topology
inference algorithm that finds network’s topology usingdsaith results and TSP is a new probing
scheme. Sandwich probes give us limited data about netsvoriérnal nodes. Combining the idea
of sandwich probe and traceroute we introduced a new prcaingme called TSP that collects step
by step data along network paths. We also developed a cdmgaipology inference algorithm for
TSP probing.

In order to test our methods we developed two different satiorh systems. The first system
is a detailed network simulation that simulates low layestpecols, queueing at the routers, and
background traffic. This system is fairly realistic and skdive problems that happen in the real
world, but it needs a large amount of process resources tugxeThe second system is simulation
of a simple model for propagation delays. In this system vezia®& each link in a network adds
a random delay to all passing packets. This simple systenmhaadle larger number of sample
networks and larger networks than the first system.

We compared performance of our methods with each other aoith@nmethod called Tomo
which is suggested by Ni et al. [3]. The comparison shows thatTSP method has a better
performance in most cases and its results are closer to tinectdopologies. In terms of traffic
overhead TSP sends more messages than the other two metlaasiround of probing which can
be a problem if the network is busy. Also TSP has the capgbiibuilding physical topologies, but
the other two methods do not.

This work can be expanded in a few directions, and one of thet mgportant ones is to look
into the problem mentioned in Chapter 5 which is caused bymonotonicity of measured delays

along a network path. Solving this problem may cause sigrifiaenprovements in our results.

41

Another possible direction is to use other capabilitieshaf TSP method. As mentioned in
Chapter 4 the TSP method does part of the job of traceroutenélyebe able to find more ways to
benefit from this possibility. Our methods can also be deyatdiomore to handle multiple sources
rather than a single source. Rabbat et al. have introducesttzoehthat uses a single source method
to find the topology of a multi source system [26].

Also we can optimize the traffic overhead of the methods addae the number of probes sent.
All the data collected by the probes is not useful, for exaniplthe TSP method during new node
insertion we only use data about a part of the node’s pathreTaee other ways to optimize the
probing process that are studied by other researchers. &uretve suggested one way [27] that we

can try to apply to our methods.

42

Bibliography

[1] A. Rowstron and P. Druschel, “Pastry: Scalable, deediztd object location, and routing for

(2]

(3]

[4]

[5]
[6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

large-scale peer-to-peer systems,Middleware 2001, pp. 329-350, Springer, 2001.

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, dRiise: peer-to-peer media
streaming using collectcast,” iRroceedings of the eleventh ACM international conference
on Multimedia, pp. 45-54, ACM, 2003.

J. Ni, H. Xie, S. Tatikonda, and Y. Yang, “Efficient and dymic routing topology infer-
ence from end-to-end measurementS8EE/ACM Transactions on Networking (TON), vol. 18,
no. 1, pp. 123-135, 2010.

M. LiSka and P. Holub, “Couniverse: Framework for build self-organizing collaborative
environments using extreme-bandwidth media applicatiansEuro-Par 2008 Workshops-
Parallel Processing, pp. 339-351, Springer, 2009.

P. Holub, H. Rudova, and M. Liska, “Data transfer plamqwith tree placement for collabo-
rative environmentsConstraints, vol. 16, no. 3, pp. 283-316, 2011.

R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Mcast-based inference of network-
internal loss characteristics/hformation Theory, |EEE Transactions on, vol. 45, no. 7,
pp. 2462—-2480, 1999.

B. Yao, R. Viswanathan, F. Chang, and D. Waddington, ‘Glogy inference in the presence
of anonymous routers,” ilNFOCOM 2003. Twenty-Second Annual Joint Conference of the
|EEE Computer and Communications. |EEE Societies, vol. 1, pp. 353-363, IEEE, 2003.

M. Baltatu, A. Lioy, F. Maino, and D. Mazzocchi, “Secuwrissues in control, management and
routing protocols,Computer Networks, vol. 34, no. 6, pp. 881-894, 2000.

M. H. Gunes and K. Sarac, “Resolving anonymous routeistigrnet topology measurement
studies,” inINFOCOM 2008. The 27th Conference on Computer Communications. |EEE,
pp. 1076-1084, IEEE, 2008.

R. Castro, M. Coates, and R. Nowak, “Likelihood baseatdmichical clustering,Sgnal Pro-
cessing, |EEE Transactions on, vol. 52, no. 8, pp. 2308-2321, 2004.

M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and¥ang, “Maximum likelihood
network topology identification from edge-based unicasasneements ACM SSIGMETRICS
Performance Evaluation Review, vol. 30, no. 1, pp. 11-20, 2002.

N. Duffield, J. Horowitz, and F. Lo Prestis, “Adaptive ticast topology inference,” ihNFO-
COM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3, pp. 1636-1645, IEEE, 2001.

N. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley, tMicast topology inference from
measured end-to-end lossiiformation Theory, IEEE Transactionson, vol. 48, no. 1, pp. 26—
45, 2002.

M. Gjoka, C. Fragouli, P. Sattari, and A. Markopouloup$s tomography in general topolo-
gies with network coding,” ittslobal Telecommuni cations Conference, 2007. GLOBECOM' 07.
|EEE, pp. 381-386, IEEE, 2007.

C. Fragouliand A. Markopoulou, “A network coding appoh to network monitoring,” id3rd
Allerton Conference on Communication, Control, and Computing, Monticello, IL, pp. 28-30,
IEEE, 2005.

43

[16] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Netiwtomography: recent develop-
ments,”Satistical Science, pp. 499-517, 2004.

[17] J. Niand S. Tatikonda, “Network tomography based ontaddmetrics,”Information Theory,
|EEE Transactions on, vol. 57, no. 12, pp. 7798-7809, 2011.

[18] Y. Vardi, “Network tomography: Estimating source-teation traffic intensities from link
data,”Journal of the American Statistical Association, vol. 91, no. 433, pp. 365-377, 1996.

[19] M. Coates and R. Nowak, “Sequential monte carlo infeesof internal delays in nonstationary
data networks,Sgnal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 366—376, 2002.

[20] S. Ratnasamy and S. McCanne, “Inference of multicastimg trees and bottleneck band-
widths using end-to-end measurements,”IINFOCOM’99. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Proceedings. |EEE, vol. 1,
pp. 353-360, IEEE, 1999.

[21] A. Varga and R. Hornig, “An overview of the omnet++ siratibn environment,” irProceed-
ings of the 1st international conference on Smulation tools and techniques for communi-
cations, networks and systems & workshops, p. 60, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineeriagps.

[22] A. Vargaet al., “Inet framework for omnet++ 4.0 ittp: //inet.omnetpp.org/, retrieved on May
2013.

[23] C. Baugh and J. Huang, “leee 802.16 task group 3, 8034®1/30r1: Traffic model for
802.16 tg3 mac,PHY Smulations.

[24] A. T. Andersen and B. F. Nielsen, “A markovian approachmodeling packet traffic with
long-range dependenceé&glected Areas in Communications, |EEE Journal on, vol. 16, no. 5,
pp. 719-732, 1998.

[25] “The CAIDA USCD macroscopic topology dataset - 2005,
http: //mww.cai da.org/tool s'/measurements/skitter, retrieved on May 2012.

[26] M. Rabbat, R. Nowak, and M. Coates, “Multiple source ltiple destination network tomog-
raphy,” inINFOCOM 2004. Twenty-third Annual Joint Conference of the |IEEE Computer and
Communications Societies, vol. 3, pp. 1628-1639, IEEE, 2004.

[27] Y. Gu, G. Jiang, V. Singh, and Y. Zhang, “Optimal probfiog unicast network delay tomog-
raphy,” inINFOCOM, 2010 Proceedings |IEEE, pp. 1-9, IEEE, 2010.

44

