
University of Alberta

NETWORK TOPOLOGY INFERENCE WITHEND-TO-END UNICAST
MEASUREMENTS

by

Amir Malekzadeh

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Amir Malekzadeh
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor anysubstantial portion thereof may be printed or

otherwise reproduced in any material form whatever withoutthe author’s prior written permission.



Abstract

Network tomography is the problem of discovering the delay and loss rate of the internal links of

a network, assuming the internal nodes are not cooperating.The first step to solving this problem

is finding network topology. Well-known tools such astraceroute solve this problem, however they

depend on cooperation by the internal nodes.

This thesis studies the problem of topology identification without relying on the cooperation of

the internal nodes of the network. Our work is based on a probing method called thesandwich

method. We suggest a novel probing scheme called TSP which isbased on end-to-end unicast delay

measurements and combines the ideas ofsandwich andtraceroute. We also develop two topology

inference algorithm to find the topology of the network. One of the algorithms usessandwich data

and the other uses TSP.

Our simulation-based experiments show that TSP improves the topology identification process

substantially compared to previous methods.



Acknowledgements

I would like to thank my supervisor, Professor Mike H. MacGregor for his invaluable guidance,

encouragement and patience throughout this thesis. I cannot imagine this project done without his

incredible support.

I would also like to thank all my friends at University of Alberta for being supportive and making

my life easy in graduate school. Lastly, I thank my family whom I can always count on.



Table of Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Tree Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4

2.2.1 Sandwich Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Additive Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Topology Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8
2.3.1 Maximum-Likelihood Approach . . . . . . . . . . . . . . . . . . . .. . . 8
2.3.2 Constructive Approach . . . . . . . . . . . . . . . . . . . . . . . . . .. . 11

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3 Deciding with Difference Sets (DDS) 15
3.1 Deterministic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 15

3.1.1 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Recursion Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Stochastic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18
3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

4 Traceroute with Sandwich Probe (TSP) 24
4.1 TSP Probing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

4.1.1 Traceroute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Inferring the Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 26
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

5 Experiments 31
5.1 Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 32

5.1.1 Simulated Network Example . . . . . . . . . . . . . . . . . . . . . . .. . 32
5.1.2 Test Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

5.2 Model-based Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 34
5.3 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 35
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

5.4.1 Network Simulation Results . . . . . . . . . . . . . . . . . . . . . .. . . 35
5.4.2 Model-based Simulation Results . . . . . . . . . . . . . . . . . .. . . . . 37
5.4.3 Accuracy Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

6 Conclusions and Future Work 41

Bibliography 43



List of Tables

3.1 Actualτ values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Measuredx values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Actualx values of the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Actualy values of the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Estimatedx values of the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Estimatedy values of the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Network Simulation Results . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 36
5.2 Comparison of Computational complexities and traffic overhead. . . . . . . . . . . 40



List of Figures

2.1 Physical and Logical Topologies . . . . . . . . . . . . . . . . . . . .. . . . . . . 5
2.2 Sandwich Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6
2.3 Common Mistake in Previous Methods . . . . . . . . . . . . . . . . . .. . . . . . 7
2.4 Markov Chain Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10
2.5 MCMC without a perfectλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Shared Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12
2.7 Node Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13

3.1 Tree after inserting leaves 1 and 2. . . . . . . . . . . . . . . . . . .. . . . . . . . 16
3.2 The recursion step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17
3.3 Closer look at Figure 3.2-b . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 18
3.4 Root has more than one child . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18
3.5 The system of delay differences . . . . . . . . . . . . . . . . . . . . .. . . . . . 19
3.6 The actual tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 21
3.7 Creating the example tree. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 22

4.1 TSP Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Topology Inference Example . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 27
4.3 The Actual Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28
4.4 Topology Inference Example . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29

5.1 An example simulated network. . . . . . . . . . . . . . . . . . . . . . .. . . . . 32
5.2 Architecture of routers in INET . . . . . . . . . . . . . . . . . . . . .. . . . . . . 33
5.3 IPP Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34
5.4 Correct Logical Topology of Sample Network No.4 . . . . . . . . . . . . . . . . 36
5.5 Logical Topology of Sample Network No.4 Built by TSP . . . . . . . . . . . . . . 36
5.6 Logical Topology of Sample Network No.4 Built by Tomo . . . . . . . . . . . . . 37
5.7 Correctness Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 38
5.8 Node Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.9 RTT delays along a sample 18-hop path. . . . . . . . . . . . . . . . .. . . . . . . 39



Chapter 1

Introduction

There are many network-based applications and services that need information about the internal

condition of the network on which they are operating. Network monitoring, high quality media

streaming, peer-to-peer and collaborative environments are examples of services that can benefit

from knowledge of network topology, bandwidth, and traffic intensity [1, 2, 3]. High quality media

streaming needs the available bandwidth to adjust the transmission mode [4]. Peer-to-peer and

collaborative applications can use this information to findpeers and communicate with them more

effectively [5].

Obtaining the necessary statistical data is not an easy taskfor the applications. The applications

work on the end nodes and a huge amount of important data is only available at the internal nodes.

The administrators and owners of the internal nodes e.g., routers, do not have much motivation to

share this data with the users of the end nodes [6]. Moreover,it is getting harder to do so as the

traffic load through the Internet is getting larger. The routers need to process more packets and

there is less resource to spend on unnecessary (from the administrators’ point of view) tasks. Also

due to security reasons the administrators try to keep the statistical information about the network

confidential. For example on a public network e.g., the Internet, routers are often configured not

to respond to Internet Control Message Protocol (ICMP) messages to reduce overhead and avoid

security issues [7, 8, 9]. These messages are usually used asa source of information about the state

of a network node or a packet. Therefore, the applications that use ICMP messages may not work

properly with public networks.

Currently most of the well known network topology and behaviour identification tools such

as traceroute try to get as much help from internal nodes as they can. They send requests and

messages to the internal nodes and receive feedback from those nodes. For example,traceroute uses

ICMP error messages sent by the routers and finds out what routers are on the path between two

specific nodes. However, one cannot rely on the cooperation of nodes administered by someone else.

Depending on the cooperation of internal nodes, and relyingon specific settings and configuration

details within them, makes this approach very vulnerable and in many cases limit their use to local

networks.

1



Due to the problems with cooperation-based methods, some researchers have started to work on

the problem of inferring internal network structure and statistics without relying on internal nodes

[10, 11, 3, 12, 13, 14]. This approach is known asnetwork tomography. In this approach we

assume that we have access to a number of end nodes in the network, and we need information

about paths through network. The first step is to infer the network topology [13]. There are different

variations of this problem with different assumptions, such as the number of source and receiver

nodes communicating with each other. Various characteristics of the network may be assumed, such

as whether or not we can send multicast messages [13, 3].

Network tomography techniques are facing two important challenges. First, how to collect data

from the network efficiently and in a way that they do not rely on the internal nodes and do not

interfere with their performance. Second, how to infer the network topology and other desired infor-

mation from the data. To deal with the first challenge there are some probing techniques suggested

to sample the network’s behaviour. Also depending on the level of our access to the network we can

get some information by monitoring some network’s devices.For the second part of the problem

there are also different suggested approaches such as statistical methods, search algorithms, etc. that

try to find out the network’s topology.

These solutions have some major limitations. Some of them are useful in only a few cases, and

some of them face a trade off between complexity and accuracy. In this work we suggest a new

solution to infer network topology. We focus on the case where we have one source and several

receivers, and we use unicast end-to-end messages to probe the network. Also we assume the routes

in the network are fixed during the time that these messages are sent.

Cotes et al. introduced a method a delay-based unicast probecalled the sandwich probe [13]

which collects data from the network and they use a complex method to infer logical topology using

the data which faces the trade-off between accuracy and running resources. As our first contribution

we propose a light inference algorithm which uses the same data but is much less complex to infer

topology.

All the tomography methods that we studied produce logical topology and has very limited

information about the internal nodes of the network. Our main contribution is using the idea of

traceroute to get more information about those nodes.Traceroute uses a very elegant idea to infer

the path between two nodes, and in this work we tried to adapt that idea to the new limitations (i.e.,

no ICMP). Sandwich probe is also another elegant idea in the field. We introduce a new probing

scheme which combines these two ideas that are previously used to infer network topology. We also

suggest a constructive methods to infer the network topology using the information we get from this

probes.

This new probing scheme gives us more information about the network than the regular sandwich

probe. Therefore we can have more accurate topology inference. The regular sandwich probe and

most of the previous probing schemes collect end-to-end data about the paths between pairs of

2



nodes. Our method on the other hand, collects chunks of data about each step along the path. This

additional information not only helps with the topology inference, also has the potential to replace

traceroute.

The rest of the thesis is organized as follows. In Chapter 2 wetalk about the tomography problem

more accurately and introduce some major works done and directions of the field. In Chapter 3 and

Chapter 4 we introduce our ideas to solve the tomography problem with some new features. Then

we talk about how the methods are tested, present the resultsof our experiments and compare the

methods in Chapter 5. Finally we conclude the thesis in Chapter 6.

3



Chapter 2

Background and Related Work

In this chapter the tomography problem is modelled and some previous works are explained in

order to introduce the major directions that researchers inthis filed are working on. The methods

proposed to solve network tomography problems can be brokeninto two major steps: data collection

and topology inference. During the first step some data aboutthe network is collected by sending

probe messages or monitoring the network’s events. In the second step this data is used to infer the

network topology or other characteristics of the network. There are several ideas in these two steps

that we discuss separately.

Researchers use different models to model the problem. We use a single model that is close to

most of the models and try to explain different algorithms onthis same model. In the following we

first explain how we model the network and then we get to the algorithms.

2.1 Tree Model

We discuss the problems in which there is a singlesource node and there is a set ofreceivers R. The

induced topology of the network is a tree. We name the source also as theroot and the receivers

also as theleaves. A treeT is defined by its set of nodesV and set of direct linksL. Among the

internal nodes of the tree, i.e., all the nodes except the root and leaves, there are nodes with only

one child. Most of the topology inference algorithms do not infer these nodes and only the nodes

where some branching happens are important to these algorithms. The topology that is inferred by

these algorithms is called thelogical topology. Figure 2.1 shows the difference between physical

and logical topologies.

2.2 Data Collection

The methods proposed to collect tomography data can be classified in different ways. One the most

important characteristics of a method is whether or not it relies on cooperation by nodes internal

to the network. If the network on which the tomography methodis performed is a public network,

and we do not have control of the internal nodes (routers, switches, etc.), we can only expect a

4



(a) shows a tree topology and (b) shows its associated logical topology.

Figure 2.1: Physical and Logical Topologies

limited amount of information from those nodes [7]. On the other hand if we own the network,

we can program the internal nodes to collect and report the information we need. Thus, most of

the methods which assume cooperative behaviour of internalnodes are useful for administrators of

corporate networks.

The second important factor about a method is whether it is passive or active. Passive methods

do not interfere with the network’s normal traffic – they justact as monitors and try to reach a

conclusion using the available characteristics of the traffic. This is only possible if we are able to

use the internal nodes to collect data. Active methods send probe messages across the network to

elicit information. Active methods can use end-to-end probes so they do not need to rely on help

from internal nodes. The downside of active methods is that they impose extra load on the network;

these methods try to keep the extra load as low as possible so as not to affect the network’s QoS.

The probes sent by active methods can be multicast or unicastmessages. Although not all net-

works support multicast, some methods require multicast messages to collect the data they need [13].

Also there are some methods that try to minimize the size of the data sent with each probe using

approaches like network coding [14, 15].

A probe is sent to measure some characteristic(s) of the network. The most popular character-

istics are loss rate and delay along a path from one node to another. Some early work that uses

delay measurements requires time synchronization among the nodes so the delay can be measured

accurately [12]; this may be difficult in some networks [16].Methods that use loss rate [13] have the

advantage that they do not need time synchronization. Theirdisadvantage is that packet loss rates

are very low in a network that is functioning well, so this type of approach is less useful [16].

2.2.1 Sandwich Probe

In 2002, Coates et.al. proposed a method called thesandwich probe that measures delay and does

not need time synchronization [11]. Assume we have two different receivers in the network, for

examplen1 andn2 in Figure 2.2. The paths from the root ton1 andn2 have a common segment,

which is the path from the root ton3. The goal of the sandwich probe is to estimate the delay on this

common segment. A single sandwich probe consists of three packets: two small packets namedp1

5



Figure 2.2: Sandwich Probe

andp2 with the same length, and a large packet namedq. As shown in Figure 2.2-a all three packets

are sent from the root. The small packets are destined ton1 and the large one is destined ton2. First

we sendp1. After waiting for a delay ofd, we sendq, and then we sendp2 right afterq. Packetp2

gets queued behindq in every node from the root ton3, where their paths diverge (see Figure 2.2-b).

As a result, it takes more time forp2 to be delivered thanp1. Assume the time difference between

the delivery ofp1 andp2 is d + ∆d. Coates et al. [11] show that if we set an appropriate value of

d, choose the sizes of packets correctly, and perform enough measurements then the average of∆d

is a good estimate of the delay of the path from the root ton3. For two receiversi andj, we define

xi,j as the estimated delay of their common path to the root. One ofthe important features of the

sandwich probe is that the delay differences are measured ata single node, so time synchronization

is not required.

2.2.2 Additive Metrics

In 2010 Ni et al. suggested a framework to combine information from different probes [17, 3]. For

a treeT (V, L), a functiond is anadditive metric if

a) 0 < d(l) < ∞, ∀l ∈ L

b) d(i, j) =
∑

l∈P(i,j)

d(l), ∀i, j ∈ V ,

whereP(i, j) is the path between the pair of nodesi andj. d(l) represents the length of the linkl

in the tree. For anyi ∈ R let ρ(i) = d(root, i) and for anyi, j ∈ R let ρ(i, j) = d(root, aij) where

aij is the lowest common ancestor ofi andj. New additive metrics can be constructed by convex

combination of a number of additive metrics, so the information from different probing schemes can

be used together. In order to do this, the output of the probesneed to get converted to an additive

metric. Ni et al. give some examples in their work.

1) Loss-Based Additive Metric: Let 0 < αl < 1 be the probability that a packet get lost on the

link l andP(Li = 1) be the probability of a packet get lost on its path to the leafi, an additive

6



(a) the actual topology of the network (b) mistaken topology

Figure 2.3: Common Mistake in Previous Methods

metric based on this measure is

dloss(l) = −log αl, ∀l ∈ L

ρloss(i) = −log P(Li = 1) i ∈ R

ρloss(i, j) = −log
P(Li = 1)P(Lj = 1)

P(LiLj = 1)
i, j ∈ R.

2) Delay-Based Additive Metric: Let xl be the measured delay of the linkl andxi be the mea-

sured delay for the path from root to the leafi. The additive metric that is suggested for this

measure is

ddelay(l) = var(xl), ∀l ∈ L

ρdelay(i) = var(xi), i ∈ R

ρdelay(i, j) = cov(xi, xj), i, j ∈ R.

3) Traceroute-Based Additive Metric: If some cooperation from the routers is possible and there

is some result from traceroute messages, another additive metric can be defined using the hop

count to each leaf.

One of the main problems of the previous methods is that they collect little information about the

internal nodes of the network. Therefore, when the algorithms introduced in Section 2.3 are creating

the topology using this information they cannot place the internal nodes accurately. Figure 2.3 shows

a very common mistake in these algorithms. A probing scheme that collects more information about

the internal nodes can help to prevent such mistakes. In thisthesis we suggest such a probing

scheme.

7



2.3 Topology Inference

There are two popular approaches for topology inference. The first is based on maximum-likelihood,

and the second is constructive. The constructive algorithms require much less computation than the

maximum-likelihood approaches, but usually give less accurate results [16].

2.3.1 Maximum-Likelihood Approach

Vardi was one of the first researchers working on network tomography. He was working on the

problem of estimating end-to-end path properties using link measurements. In 1996 he suggested

the following equation to model the problem of estimating the number of packets sent between each

pair of end nodes [18].

Y = AX, (2.1)

whereY is a vector of the measured data, which is the number of packets passing through each

direct link during a specific time period. SoY has an element for each direct link of the network.X

is a vector containing the amount of traffic on each end-to-end path during the time period.A is a

binary routing matrix. Letp be the number of end-to-end paths whose traffic is being estimated and

|L| be the number of direct links in the network.A is a |L| × p binary matrix in which the element

in row i and columnj is 1 if and only if thei-th end-to-end path contains thej-th direct link.

Some other researchers used this model for other network tomography problems. In the problem

Vardi was working on path characteristics were desired and link characteristics were given. In other

problems with the same model, link characteristics (delay,loss, etc.) or the routing matrix may be

desired. The measurements are usually path-based or link-based.Y = (Y1, ..., Yt)
′ is a vector of the

measured data ,X = (X1, ..., Xs)
′ is the vector of parameters to be estimated andA is at×s binary

routing matrix. UsuallyXi is a random variable parametrized by someγi andγ = (γ1, ..., γs)
′ is

what we need to estimate.

Maximum-likelihood approaches are relatively computationally complex, and they are feasible

only for small routing trees. Therefore, there are some methods to deal with the trade-off between

complexity and accuracy of these approaches. One of these ideas is to use pseudo-likelihood models.

This means dividing the problem described by Eq. 2.1 into several sub-problems, solving each

separately, and then combining the solutions to get to the final solution. For the topology inference

problem it means finding the logical topology induced by different groups of receivers and then

merging the topologies to create the complete logical topology.

Multicast End-to-End Loss

Duffield et al. [13] created a multicast loss probing framework and suggested to use maximum

likelihood techniques to find the topology of the network. Assume a Bernoulli loss model for each

link l of the network, which means a packet successfully traversesl with the probabilityαl. Multicast

8



probes are sent from the root towards all of the receivers. The result of each probe is described as

X = (Xv)v∈V whereXv = 1 if the probes have reachedv andXv = 0 otherwise. If we run a set

of n probesx = (x(1), ..., x(n)) with x(i) = (X
(i)
v )v∈V , the log-likelihood function for this event is

defined as

L(T , α) = log P (x|T , α).

For a specific treeT and a set of probes,̂αT is a loss probability set that maximizesL(T , α).

α̂T = argmax
α

L(T , α)

Duffield et al. suggested to use an ML classifier to find the topology T̂ML that maximizesL(T , α̂T )

T̂ML = argmax
T ∈T (R)

L(T , α̂T ) (2.2)

Markov Chain Monte Carlo

Coates et al. suggested a maximum likelihood model based on pairwise similarity function for nodes

of the network [19]. For a tree with an end-node setR, there is a|R| × |R| matrixX of estimated

pairwise similarities. LetXij be a random variable parametrized byγij for any pair of end-nodes

i, j. A samplex = {xij} of X is measured. Letp(x|γ) be the probability density function of the

random variables, which meansX ∼ p(x|γ). X can come from the sandwich probes discussed in

section 2.2. SettingL(x|T ) as

L(x|T ) ≡ sup
γ∈G(T )

p(x|γ),

whereG(T ) is the set of all possibleγ’s for the treeT , they defined the maximum likelihood tree as

T̂ (x) = argmax
T ∈T (R)

log L(x|T ), (2.3)

whereT (R) is a forest of all trees with the set of leavesR.

Also we can assume that the random variablesXij are independent so if we lethij(xij |γij =

log p(xij |γij) the log-likelihood is

log p(x|γ) =
∑

i∈R

∑

j∈R\{i}

hij(xij |γij).

If the number of receivers is not very small it is not feasibleto search the whole forestT (R)

to find the tree that maximizes Eq. 2.3. Coates et al. suggested to use a random search technique

to search the forest more efficiently and they came up with a Markov Chain Monte Carlo (MCMC)

algorithm to find an approximate solution for Eq. 2.3. They make a Markov chain with the trees in

the forestT (R). This chain is created using two moves that change a state, i.e., a tree, into another

state. These two moves are depicted in Figure 2.4. The first move, which is called thebirth move,

takes a tree, selects a nodep with more than two children, inserts a nodep′ as the new parent of two

9



In the upper figure the gray node is inserted and in the lower one the gray node is deleted.

Figure 2.4: Markov Chain Moves

current children ofp. Thedeath move selects a node with two children and deletes it. It is easy to

see that these two moves are reversible so the search can comeback from mistaken decisions.

The search keeps making these moves and computesL(x|T ) for each tree it visits. The longer

the search is run, the higher chance it has of reaching bettertrees. The starting point of the search

can be any tree or it can be the result of some other methods.

The problem with Eq. 2.3 is that trees with more links can get better scores because they have

more degrees of freedom, i.e., they can get overfit. Thus, thesearch algorithm may end up with a

solution with too many links. To resolve this problem Coateset al. tweaked the equation and added

a penalty for the number of links:

T̂λ(x) = argmax
T ∈T (R)

log L(x|T )− λn(T ) (2.4)

wheren(T ) is the number of direct links, i.e.,|L|, in the treeT andλ ≥ 0 is a parameter to control

the number of links.

Adding a penalty parameter can solve the overfitting problem, but it creates a new problem.

Tweakingλ is an important task and the authors do not suggest an exact method to do so. A probable

problem that we faced during testing this method is shown in Figure 2.5. The original tree that the

algorithms is tested on is shown in Figure 2.5-a and Figure 2.5-b shows the initial result that MCMC

starts with (this tree is given byALT algorithm which will be introduced later in Section 2.3.2).The

only change is needed to get from Figure 2.5-b to the correct topology is adeath move on the node

9. MCMC makes that move but because the penalty is not perfectly set it makes an additionalbirth

move, adds the node9, and ends up with Figure 2.5-c as the final result. And if the penalty is too

harsh, obviously the final result will have too few nodes. To conclude performance of MCMC relies

10



(a) the original tree (b) the initial state of MCMC (c) the final state of MCMC

Figure 2.5: MCMC without a perfectλ

on the precision ofλ which makes MCMC hard to use.

2.3.2 Constructive Approach

Constructive methods gradually build up the network tree. There are several proposed constructive

methods; most of them have a similar bottom-up approach:

1. Choose a pair/group of nodes with the highest similarity.

2. Merge the pair/group into a new single node.

3. Update the similarities between the new node and the othernodes.

4. Continue until only one node remains.

The first step to set up such a method is to define a similarity measure for nodes/leaves and this

measure has to be monotone if you start from the root and move lower in the tree. Ranasamy et

al. [20] suggested such a method in 1999 that uses multicast packet loss measurements. They define

the similarity score for a pair of nodes as the probability that a packet is lost on its path from the root

to their lowest common ancestor.

In 2002, Duffield et al. [13] extended Ranasamy’s algorithm to make it suitable for general,

non-binary trees. They defined a functionB(U) which is the probability that a packet reaches the

lowest common ancestor of a set of nodesU . So a pair of nodes,a andb, have the highest similarity

if B(a, b) has the minimum value. They also argue that the minimum ofB(U) occurs whenU is

11



B(U) is the probability of a packet reachinga andB(U ∪ v) is the same value forb, soB(U) < B(U ∪ v)

Figure 2.6: Shared Packet Loss

a set of siblings. IfU is a set of siblings then forU ′ ⊆ U we haveB(U ′) = B(U). Figure 2.6

depicts this statement. Their algorithm after finding the pair U = a, b with the minimumB(U),

checks all the other leavesu and ifB(U ∪ u) = B(U) then it addsu to the setU and at the end

merges the whole set as a new node. ComputingB(U) is not an easy task, so instead they used the

joint probability of the packets reaching the leaves to estimateB(U); they also set a threshold for

comparing similarities.

Coates et al. [10] proposed another bottom-up method named ALT based on their likelihood

approach explained in section 2.3.1.Markov Chain Monte Carlo, which uses unicast measurements

to infer binary trees. They defined random variablesXij ∼ p(xij |γij) as pairwise similarities

between the nodes. A samplex = {xij} of X is measured (using the sandwich probe). Let

hij(xij |γij = log(p(xij |γij)). The similarity function for a pair of end-nodes is defined as

γ̂ij = argmax
γ∈R

(hij(xij |γ) + hji(xji|γ). (2.5)

In each round the pair of nodesi andj with the maximum̂γij are selected and merged into a new

nodek, which is their parent in the final tree. The next step is to update the similarities. LetRk

be the set of all the leaves that are descendants ofk. Initially Ri = i for all the leaves and wheni

andj are merged intok, Rk = Ri ∪ Rj . The similarities between the new nodek and all the other

remaining leavesv is

γ̂kv = γ̂vk = argmax
γ∈R

∑

r∈Rk

hrv(xrv|γ) + hvr(xvr |γ). (2.6)

The algorithm keeps performing these steps until only one node remains.

More recently, Ni et al. [3] suggested a dynamic algorithm toadd or delete a receiver from

the network. Using their method, it is possible to add nodes one by one and construct the whole

topology. The leaves are added to the tree in a recursive manner. The recursive insertion algorithm

inserts a new node to a sub-tree. Figure 2.7 shows the three different options that this algorithm has

when inserting the new node in the nodev’s sub-tree. The new node is either one ofv’s siblings, a

child of v, or a descendant. If the latter option is chosen the recursive algorithm should run for one

of v’s children. Some of the probing techniques discussed in Section 2.2 provide depth estimation

12



(a) the new node is a child ofv (b) sibling ofv (c) one ofv’s descendants

Figure 2.7: Node Insertion

for the common ancestors of each pair of leaves, such as the sandwich probe or the additive metrics.

The insertion algorithm uses these data to decide among the three options.

The algorithm uses a perset parameter as the shortest possible length of a link called∆. This

parameter is important in deciding between the three cases depicted in Figure 2.7 during the node

insertion process. Setting∆ to a proper value is important because if∆ is too large the result tree

might end up with too few links and if it is is too small the problem shown in Figure 2.3 might

happen. However having a precise estimation of the length ofthe links can help in the latter case.

Similar to MCMC, Ni et al. do not suggest a method to set∆. We will talk more about this method

and∆ in Chapter 3.

2.4 Conclusion

We split topology finding process into two phases, data collection and topology inference and we

introduced some major directions in each phase. In data collection we talked about how differ-

ent characteristics of the network can be sued to get information about the internal topology. The

current data collection methods do not give enough information about the internal network topol-

ogy, so some topology inference algorithms try to use some adjustable parameters to improve their

performances.

We categorized the tomography inference algorithms in maximum-likelihood and constructive

approaches. Although there have been great improvements inthe field, each of these approaches

faces different trade-offs and limitations. Maximum-likelihood methods, e.g., MCMC idea by Cotes

et al. [11], have to face the overfitting problem. Cotes et al.came up with the idea to add a penalty

parameter to their maximization criteria. But tweaking this parameter is a tricky task which is not

described how to get done.

Constructive methods are simpler in general. Some of these methods are useful for a limited

types of networks, e.g., binary trees, or are less precise than maximum-likelihood methods. Ni et al.

suggested a constructive method which outperforms previous constructive methods, but as MCMC

13



its performance relies on the precision of a preset parameter.

To summarize, the current methods do not collect enough information and use very complex

methods that need some preset parameters and it is not clear how these parameters should be set. In

these thesis we are trying to improve the data collection methods and suggest a topology inference

algorithm to use the data and find the network topology.

14



Chapter 3

Deciding with Difference Sets (DDS)

In the previous chapter we introduced the tomography problem and discussed some works that are

done in this area. As mentioned tomography methods consist of two steps: data collection, and

topology inference. One of the data collection methods discussed in Chapter 2 is called sandwich

probe which is suggested by Cotes et al. [13]. The sandwich probes gives an estimation for the

distance from the source to the common parent of each pair of receivers. Cotes et al. suggested a

Maximum-Likelihood approach to infer topology using sandwich data. It is discussed in Chapter 2

that because of the high complexity of this approach it has todeal with the trade-off between accu-

racy and running resources. In this chapter we introduce a constructive method to find the network

topology using the information from sandwich probes. This approach is much less complex than

Maximum-Likelihood.

Before we get to the algorithm there are some symbols needed to be explained.

• τa: Delay (distance) from the source to the nodea.

• Pa,b: The common parent of destinationsa andb.

• τa,b: Delay (distance) from the source toPa,b, or common delay.

• xa,b: Estimated value forτa,b using sandwich probe.

• xa: Estimated value forτa using sandwich probe. This can be obtained by sending all the

three sandwich parts to the same nodea.

We first assume that for all leavesa, b we have the exact values ofτa, τb, andτa,b. We suggest

an algorithm to create the tree using this information, thenextend our algorithm to handle the real

problem in which we just have an estimation for each piece of data.

3.1 Deterministic case

In this section we assume that there is no randomness in our system, so we have exact delay values.

We suggest an algorithm to infer the logical topology of a network, given the values ofτa andτa,b

15



(a) Tree with one leaf. (b)τ1,2 > 0. (c) τ1,2 = 0.

Figure 3.1: Tree after inserting leaves 1 and 2.

for all leavesa, b.

The algorithm starts with a tree containing just the source of the network. This is the root of the

tree. We add destination nodes to the tree as leaf nodes, one at a time. This is done in a recursive

manner. Here, we explain the steps for the first and second leaves, and then we explain the general

recursion step.

3.1.1 Base Case

First Leaf - Inserting the first leaf is trivial. The result is a tree withjust one edge, of lengthτ1

(Figure 3.1-a).

Second Leaf - We useτ1,2 to tell us where to insert the second leaf. We are working withlogical

topologies, so there are only two possibilities for a tree with two leaves. Ifτ1,2 > 0 then the result

is Figure 3.1-b, otherwise it is Figure 3.1-c.

3.1.2 Recursion Step

We have explained the base case. Now we explain how to add leafn using recursion. We divide

this problem into two cases: a) the root has only one child, b)the root has more than one child. We

discuss the first case, and then reduce the second case to the first case.

Root has only one child

Figure 3.2 shows the first case. This case also can be divided into two cases, depending on whether

or not the following condition holds.

∀a, b < n : τa,n = τb,n (3.1)

Condition 3.1 holds

If Condition 3.1 holds thenPa,n is the same node for every existing leafa. In this case, there are

three possible locations for leafn. These are shown by dotted lines in Figure 3.2-a. The location for

leafn is chosen as follows:

16



Dotted lines show the possibilities for leafn.

Figure 3.2: The recursion step.

If ∀a : τa,n = 0, select location number1.

If ∀a : 0 < τa,n < τd, select location number2.

If ∀a : τa,n = τd, select location number3.

In the first case, the delay from the source toPa,n is zero, soPa,n must be the source node. In

the second case, the delay from the source toPa,n is less than the delay from the source tod, so

Pa,n must be higher in the tree thand. In the third case, the delay from the source toPa,n matches

the delay from the source tod, so we assume thatd is the parent ofa andn.

Condition 3.1 does not hold

Here, leafn does not have the same parent as all the other nodes, so it must be somewhere in

the sub-tree of noded (Figure 3.2-b). Noded has several children, and each of these children has

several leaves in their sub-trees. The measurements used toinfer the tree are the delays from pairs

of nodes to their common parent, so only the root can have one child; all other internal nodes must

have multiple children. If leafn is in the sub-tree ofd andd is notn’s parent, the common parent

of leafn and all the other leaves in the sub-tree would bed, except for leaves in the sub-tree of one

of d’s children. For example in Figure 3.3,d has three children and each child has a sub-tree. Leaf

n is in the sub-treeC soPn,a is d for all the leavesa in the sub-treesA andB. Thereforeτn,a is

equal toτd for all those leaves. On the other hand, the common parent of leafn and the leaves in the

sub-treeC are deeper thand insideC, soτn,a is greater thanτd for those leavesa. We just need to

find the sub-treeC such that for all leavesa in the sub-treeC and all leavesb in any other sub-tree

the following condition holds:

τn,a > τn,b a ∈ C, b /∈ C (3.2)

Given this, we can ignored’s other children, considerd as the root and recursively insert leafn

into that sub-tree. Becaused has at least two children, the sub-tree has fewer leaves thanthe parent

17



Figure 3.3: Closer look at Figure 3.2-b

Figure 3.4: Root has more than one child

tree, so the recursive algorithm eventually reaches the base case of a tree with one leaf.

Root has more than one child

Now we discuss the case where the root has more than one child (Figure 3.4). Here, if leafn

branches out at the root, we should have∀a < n : τa,n = 0. Otherwise, similar to section 3.1.2-b

we need to find the sub-tree of the root whose leaves have higher common delay with leafn than the

other leaves. Then we ignore all the other children of the root and insert leafn.

3.2 Stochastic case

In reality there is no such thing as the exact delay from a source to a destination. This is a measured,

stochastic value, so there will always be some randomness. We have to use the estimated values

obtained from several measurements with sandwich probes. The algorithm we propose is a slight

variation of the one for the deterministic case.

What is the problem with just re-using the previous algorithm? In Figure 3.5 suppose we are

inserting leafn into the tree and we are at the point where we should decide if the new leaf should

be attached at noded, somewhere on the edge betweend and its parent, or in one of the sub-trees of

d’s children. If τa,n for all leavesa in d’s sub-tree is equal toτd, we sayn is attached tod. If τa,n

is less thanτd, thenn is on a branch on the edge betweend and its parent. Ifτa,n for all leavesa

in the sub-tree of one ofd’s children is greater thanτd, leafn should go in that sub-tree. However,

in the stochastic case, it is very unlikely that the values will be exactly equal, ruling out the first

18



xn,a > xd , xn,b < xd , xn,c > xd

va = xn,a − xd , vb = xd − xn,b , vc = xn,c − xd

Figure 3.5: The system of delay differences

possibility. For the other two cases, natural variations inthe network due to changing loads could be

large enough to cause the algorithm to make the wrong decision. In general, we would like to use as

much data as we can to reduce errors in tree construction.

During insertion of a new leaf, when we are deciding between the sub-trees of a noded (e.g.,

noded in Figure 3.5) we build a collection ofC+1 sets, whereC is the number of children ofd. We

number the setss0, s1, ..., sc, Sets0 holds information for the edge fromd to its parent. Assuming

d’s children are numbered fromc1 to cC , the other sets hold information for the edges fromd to the

child with the corresponding number. That is, there is one set for each child ofd.

Each set holds a number of values, where each value is associated with one leaf of the sub-tree

rooted at that child. For example, in Figure 3.5, at noded sets0 is associated with the edge from

d to its parent. Setss1 ands2 hold information for the children ofd. The values in these sets are

calculated as follows.

For each childci of d we consider all the leavesa in its sub-tree. Ifxa,n is greater thanxd we

insert the valuexa,n − xd into setsi (e.g.,va andvc in Figure 3.5). Otherwise we insert the value

xd − xa,n into s0’s set (e.g.,vb in Figure 3.5). We assume that eachxa,n is normally distributed, so

these differences are also normally distributed.

After examining all the leaves, we calculate the average value for each set to select one of the

sub-trees. As we noted above, the main problem is the extremeunlikeliness of equality. If leafn

branches out atd, all the average values should be zero, but because we have statistical fluctuations

in our measurements, this is very unlikely. To solve this problem we set a threshold and call a value

zero iff the average of the set is less than its standard deviation. After calculating the averages we

check all the sets. If all the averages are zero we attachn to d. If the average ofs0 is not zero we

say leafn should branch out on the edge fromd to its parent, and we set the length of the edge from

d to its new parent equal to the average value ofs0. If one of the other sets has a positive value, we

19



select the corresponding child and perform the recursion asbefore. If the standard deviation is not

too high, all the averages except for at most one of them should be zero, according to our definition.

If we still have more than one positive value we have to choosethe one with the greater ratio of

average to variance because, if this ratio is grater, it is more unlikely that the measurement error

causes the positive value.

3.3 Analysis

To add a new leafn to the tree, we start at the root and walk down through the tree. In this process

we meetO(d) nodes, whered is the depth of the tree. At each node we add all the leaves in the

sub-tree of that nodes into the sets and run some operation ofO(1) for each leaf. In conclusion it is

O(dN) operation to add a new leafn, soO(dN2) to build the whole tree.

During the data collection phase, we sendO(N2) sandwich probes to measure all thexi,j and

each packet travels throughO(d) nodes. In totalO(dN2) packets are sent.

3.4 Example

In this section we apply the suggested algorithm to a small example of a network to demonstrate the

algorithm step-by-step.

The example network has four receivers. Figure 3.6 shows thetopology of the network and

Table 3.1 contains the exact values ofτa,b for all leavesa, b. The element in rowa and columnb

showsxa,b for a 6= b, and the element in row and columna showsτa. These are the values we

would have in a deterministic version of the problem. To bring in measurement noise, suppose we

have a standard deviation of0.2 in all our measurements. Table 3.2 shows example measured values

corresponding to the exact values in Table 3.1.

Table 3.1: Actualτ values
1 2 3 4

1 0 2 2 2
2 2 0 6 3
3 2 6 0 3
4 2 3 3 0

Table 3.2: Measuredx values
1 2 3 4

1 4.90 1.90 2.00 2.05
2 1.90 7.85 6.05 2.90
3 2.00 6.05 6.95 3.10
4 2.05 2.90 3.10 5.00

We start with a single node as the root and insert the first leafinto the tree. This gives us the tree

in Figure 5.1-a. Inserting the second leaf is also straightforward: x1,2 is greater than zero, so we

20



Figure 3.6: The actual tree.

should add a new nodeP1,2 in the middle of the existing edge. The result is shown in Figure 5.1-b.

Then we can set the length of the edges usingx1,2 = 1.90, x1 = 4.90, andx2 = 7.85.

Now we add the third leaf. The root has only one childP1,2, and condition 3.1 in section 3.1.2

does not hold, so as section 3.1.2-b says we build a collection of three sets at nodeP1,2:

• s0: Holds information for the edge fromP1,2 to the root.

• s1: Holds information for the edge fromP1,2 to leaf1.

• s2: Holds information for the edge fromP1,2 to leaf2.

Then we comparex3,a for all the existing leavesa to 1.90, which is the distance ofP1,2 to the

root. For the first leaf,x3,1 > 1.90, so we insertx3,1 − 1.90 = 0.10 into s1. For the second leaf,

x3,2 > 1.90, so we insertx3,2 − 1.90 = 4.15 into s2. Only the average ofs2 is greater than its

standard deviation, so the third node should be attached to the edge corresponding tos2, which is

the edge fromP1,2 to leaf2.

So far, we have the tree in Figure 5.1-c. To add the fourth and last leaf, similarly to the third leaf,

we build a collection of three sets at nodeP1,2. With similar reasoning to the case of the third leaf,

we find that the fourth leaf should be placed somewhere in the right sub-tree ofP1,2. As noted in

section 3.1.2-b we ignore the rest of the children ofP1,2, considerP1,2 as the root, and recursively

add the fourth leaf to the new tree. This time we build a collection of sets at nodeP2,3:

• s0: Holds information for the edge fromP2,3 toP1,2.

• s1: Holds information for the edge fromP2,3 to leaf2.

• s2: Holds information for the edge fromP2,3 to leaf3.

21



Figure 3.7: Creating the example tree.

22



Now we comparex4,2 andx4,3 to 6.05, which is the distance ofP2,3 to the root. Both are less

than6.05, so we insert6.05− x4,2 = 3.15 and6.05− x4,3 = 2.95 into sets0. The only set whose

average is greater than its standard deviation iss0, so the fourth leaf should branch out on the edge

from P2,3 to its parent. The length of the edge fromP2,3 to the fourth leaf’s parent is equal to the

average ofs0. The result is shown in Figure 5.1-d. In this example, even with some noise in the

measurements, the tree we have constructed corresponds to the structure of the actual network.

3.5 Conclusion

In this chapter we introduced a constructive topology inference method called DDS which uses

sandwich data. In Chapter 2 we pointed a method suggested by Ni et al. [3] which is a similar

method, calledTomo that inserts the leaves one by one. The main difference between their method

and ours is how the thresholds are set. We use the standard deviation of a value as a threshold if the

value does not reach its standard deviation we call it a zero.Tomo uses a preset threshold∆ as the

smallest possible length for a link. Setting the threshold is an important task in this method. If∆ is

too large the algorithm will not recognize the links shorterthat∆ and may produce a wrong result.

So it has to be equal or smaller that the shortest link, and if it is too small then a noisy data may

cause extra links created in the resulting tree. Ni et al. [3]show that if the error of each estimation is

less than
∆

4
the algorithm will find the correct topology. The main benefitof our method compared

to Tomo is that it does not have any additional parameter and only uses sandwich data. In Chapter 5

we compared these method to each other as well as to another method which is introduce in the

following chapter.

23



Chapter 4

Traceroute with Sandwich Probe
(TSP)

In the previous chapter we suggested a solution to solve the tomography problem which uses the

sandwich probing scheme. The probing scheme like the other previous probing schemes give very

little information about the internal structure of the network. Traceroute is a well-known tool that

can collect such information, but it needs the cooperation of the internal nodes so we cannot use it

for our problem. But it is built based on a very elegant idea. We tried to alter the idea and apply it to

our constraints.

In this chapter we suggest another topology inference method to solve the network tomography

problem. This method uses a new probing scheme, called Traceroute with Sandwich Probe (TSP)

and gives more information about the network topology. Thisprobing scheme is based on the ideas

of the sandwich probe [13] andtraceroute. A topology inference algorithm is designed to use the

information given by the new probing scheme which unlike theprevious methods is capable of

finding the physical topology of the network rather than the logical topology.

4.1 TSP Probing Scheme

To gain more information about the internal structure of thenetwork without relying on cooperative

internal nodes we combine the sandwich probe with the idea oftraceroute to create a new type of

probe. In the following we first explaintraceroute then introduce TSP.

4.1.1 Traceroute

Traceroute is a network tool that discovers and the path (route) betweentwo nodes in the network

and measures the transit delay on each link. It uses a property of Internet Protocol (IP) packets called

Time To Live (TTL) which is renamed to hop limit in ipv6. TTL isa parameter in IPv4 header whose

purpose is to prevent undeliverable packets from wanderingin the network for ever and it sets an

upper bound on the time a packet can exist. The sender of a packet sets the TTL to an integer less

24



than 255 (usually 128 or 64). Then each router that receives the packet reduces this value by one and

if it reaches zero the packet gets dropped by the router. Thisway the network will not get swamped

by undeliverable packets.

To discover the details of the path between two nodesa andb, traceroute sends several ICMP

packets froma to b. The first packet has a Time-To-Live (TTL) value of1. Thus, it goes only one

hop and gets dropped by the first node along the path. This firstnode returns an ICMP error message

to a containing its own IP address. Now nodea knows the address of the first node in the path. It

can estimate the round trip delay on this first hop by calculating the time between sending its ICMP

packet and receiving the error message. Nodea repeats this process, incrementing the TTL by1

until the ICMP packet it sends reaches nodeb andb sends an ICMP reply message toa. The result

is that nodea discovers all the nodes along the path tob, as well as the round trip times to each of

them.

4.1.2 TSP

As mentioned in Chapter 2 not all routers behave astraceroute expects. Some routers are configured

not to send ICMP error messages at all, while others send the messages but do not include their IP

addresses in them. In our work, we assume that the internal nodes of the network are configured not

to reply to ICMP, so we cannot usetraceroute. But TTL is a part of IP, not ICMP and it is necessary

for all the routers to reduce the TTL and drop the packets whose TTL is zero.

We combine the idea of using TTL and create an altered versionof the sandwich probe which we

introduced in Chapter 2. We know that a sandwich probe estimates the delay of the common path

to two nodes. We note that these do not have to be two differentnodes. If we send all three packets

of the sandwich probe to the same node, and set the TTL of the large packet to a certain valuek,

the large packet will be dropped afterk hops. The delay difference between the two small packets

gives the delay along the path, up to thek-th node. Figure 4.1 illustrates an example fork = 2. For

a particular receiver nodei, we defineyi,k as the delay from the root to thek − th node along the

path toi. Using this version of the sandwich probe, we can perform a process similar totraceroute.

Instead of ICMP packets, we send a sandwich probe. The time measurements are performed in the

end node instead of the starting node. This method gives us one way delays to the nodes along the

path, as opposed to the round trip delay times elicited bytraceroute. The TSP does not give us any

information about the addresses of the nodes along the path.

Some hops may have higher delay variance than others, so in order to have reliable measure-

ments, we need to send multiple probes. Therefore if we only have sufficient resources to send a

limited number of probes, we try to keep the standard error ofour measurements equal, rather than

keeping the number of measurements equal for each hop.

Traceroute’s output is enough for inferring the topology, but TSP is notbecause it does not give

the IP addresses. In order to infer the topology we need the original sandwich probe and TSP results

25



Figure 4.1: TSP Probe

together. The sandwich probe gives delay estimates for the shared segment along the paths to two

nodes; we call these estimationsxi,j for the nodesi andj.

4.2 Inferring the Topology

Assume we have measured all the values ofxi,j andyi,k involving the root and the receivers of

interest. We infer the topology of this portion of the network using a constructive method. We start

with a tree containing only the root, and try to add leaves to the tree one by one. In the process,

we construct the internal topology as well. Assume we have a tree, which is a partial tree of the

whole network. Now assume we want to add a new leafn to the tree (see Figure 4.4). First we find

the leafn′ in the tree that maximizesxn′,n. The paths from the nodesn andn′ to the root have a

common segment, andxn′,n is our estimate of the delay along that segment. We need to findout at

which node in the path fromn′ to the root these two paths separate. The delay from the separation

node to the root has to be close toxn′,n. So we find the numberk which minimizes|xn′,n − yn′,k|,

which means thek-th node in the path of the root ton′ has the closest estimated delay toxn′,n. In

Figure 4.4,k = 3. We consider thek-th node as the separation node, and add noden to the tree. As

a result the path from the root to the noden is the same as the path to noden′ up to thek-th node,

and the rest of the path consists of new nodes.

4.3 Analysis

To add a new leafn to the tree, we have to find the nodei that maximizesxi,n. This takesO(N)

operations, whereN is the number of leaves. Then we need to find the closestyi,k to xi,n, which

takesO(d) operations, whered is the depth of the tree. Thus, the time complexity for building the

whole tree isO(N2 +Nd).

During the data collection phase, we sendO(N2) sandwich probes to measure all thexi,j , and

we sendO(Nd) TSP probes to measure all theyi,k. As the time complexity is small, we do not have

to measure all thexi,j andyi,k before running the algorithm. We can start the algorithm anddo the

26



Figure 4.2: Topology Inference Example

measurements when they are needed. This way we can optimize the number of measurements. For

example, in Figure 4.4, the delays to the nodes along the pathbetween the root and nodek need to

be measured only once. In many tomography applications, it is enough to have the logical topology,

which means the internal nodes where no branching occurs arenot important. In this case we do not

need all theyi,k. For example, in Figure 4.4 the distances of the dashed nodesare not necessarily

required. When we are adding a new noden, andxn′,n is the largestxi,n we can use binary search

to find theyn′,k that is closest toxn′,n. Therefore, the number of measurements isO(N2+Nlogd).

This is also the time complexity of building the tree.

4.4 Example

In this section we apply TSP on the same example network we used in Chapter 3 to better compare

the two methods. Figure 4.3 shows the network topology we arestudying. The input of the inference

algorithm includes sandwich probes’ output i.e., pairwisecommon path estimations orX = (xi,j)

and TSP’s output orY = (yi,k). Table 4.1 and Table 4.2 showX andY calculated from Figure 4.3-

a. In Table 4.1 the element in rowi and columnj showsxi,j . In Table 4.2 each row represents the

measurements for one leaf. In rowi the first element isyi,1, the second one isyi,2, etc.

Table 4.1: Actualx values of the tree.
1 2 3 4

1 0 2 2 2
2 2 0 6 3
3 2 6 0 3
4 2 3 3 0

Table 4.2: Actualy values of the tree.
1 2 4 5
2 2 3 4 6 8
3 2 3 4 6 7
4 2 3 5

27



Figure 4.3: The Actual Tree.

Table 4.3 and Table 4.4 show our estimations of Table 4.1 and Table 4.2 that are given by the

probing phase.

Table 4.3: Estimatedx values of the tree.
1 2 3 4

1 0.00 1.90 2.00 2.05
2 1.90 0.00 6.05 2.90
3 2.00 6.05 0.00 3.10
4 2.05 2.90 3.10 0.00

Table 4.4: Estimatedy values of the tree.
1 1.90 3.8 4.90
2 1.90 3.05 4.60 5.90 7.85
3 2.00 2.90 4.45 6.10 6.90
4 2.10 3.10 4.90

We start by adding a single node as the root and the leaves are added one by one to the tree.

Inserting the first node gives us the tree in Figure 4.4-a, thenumber of the nodes and the link delays

come from the first row in Table 4.4. The length of the first linkis 1.9, which is the first element of

the the row. The length of the second link is the difference between the second and the first elements

i.e.,3.8− 1.9 = 1.9 and the length of the third one is the difference between the fourth and the third

elements.

To insert the second leaf we first look into Table 4.3 and findx1,2 which is1.9. Now we should

find the node in the path from leaf1 to the root whose distance to the root is closest to1.9. This is

the first node from the root and is calledP1,2 in Figure 4.4-b. This means the paths of leaf1 and2

separate at this node. Now using the second row of Table 4.4 wecreate the rest of the path of leaf

2 and we get the tree in Figure 4.4-b. The separation point isP1,2 whose distance to the root is1.9.

The distance from next node in the path of the leaf2 to the root is3.05, so the length of the next link

is 3.05− 1.9 = 1.15 and the rest of the path is created with the same process for the first leaf.

28



Figure 4.4: Topology Inference Example

For the third leaf, we first have to find the leafn that maximizesx3,n. This is the second leaf.

Table 4.3 shows thatx3,2 > x3,1 so the maximum ofx3,n is x2,3 which is5.5. The next step is to

find the node in the path from the root to the leaf2 whose distance to the root is closest to5.5. This

node is the parent of the leaf2 whose distance from to the root is5.9. This node is calledP2,3 in

Figure 4.4-c and is the separation point of the paths of the leaves2 and3. The rest of the path for

the leaf3 contains only one link which can be created using the third row in Table 4.4.

Finally to add the last leaf, the procedure is the same as for the third one. First we find the node

n in Table 4.3 that maximizesx4,n which is leaf3. The node with the closest distance tox4,3 is the

node calledP2,4 in Figure 4.4-d;x4,3 = 3.1 and the root’s distance toP2,4 is 3.05. According to

Table 4.4 the path of the leaf4 contains one more link and we create that using the fourth rowin

Table 4.4.

The final result of the algorithm is shown in Figure 4.4-d. Themost visible difference between

29



the result of this method and the result in Chapter 3, given byDDS, is that this method gives the

physical topology as in Figure 4.3-a as opposed to DDS which gives the logical topology i.e., Fig-

ure 4.3-b.

4.5 Conclusion

We introduced another topology inference method in this chapter named TSP. This method is de-

signed so it can produce physical topologies rather than logical topologies which is a benefit com-

pared to other methods. This capability is achieved by a new probing scheme which combines

traceroute and sandwich ideas and collects more information about internal nodes of the network.

This method and other methods we discussed are compared in the following chapter to show

how practical they are.

30



Chapter 5

Experiments

In previous chapters we talked about the tomography problemand suggested some methods to solve

it. In this chapter we compare the performance of our methodsto each other and to previous methods

to find out how useful our methods can be in practice. Also we need to know what are the limitations,

benefits, and costs of each method compared to others to be able to choose the right method for each

application. We introduced two methods in Chapter 3 and Chapter 4 named DDS and TSP. Ni et

al. also proposed a method [3] which was mentioned in Chapter2. To the best of our knowledge,

their algorithm has the best performance among the algorithms that are already suggested for the

same class of topology identification problems that we study. Note that there are two variations of

this method:Tomo andTRTomo. We use the first one as the second one uses information from the

internal nodes which is not compatible with our problem constraints. These three methods (DDS,

TSP, and Tomo) are compared in this chapter.

As mentioned before, tomography methods consist of two steps, data collection and topology

inference. We use two different experiment methods: network simulation and model-based simula-

tion. The difference is in the data collection step. For network simulation we used theOMNET++

framework [21] to create a very detailed network model whichcovers router queues, propagation

delays, etc. to have a realistic environment for our experiments. Network simulation however needs

more resources to run and allows fewer experiments than model-based simulation where the delays

follow a simple model rather than coming from simulated queues. In the model-based simulation

we create randomly generated networks. The simulation is highly abstract and link delays follow

a specific random distribution. This abstract model allows us to run many experiments in differ-

ent situations. We explain each experiment set-up separately and report the results in this chapter.

These simulations are used to collect data about test networks and in the next step topology inference

algorithms are run separately on the data and the results arecompared.

31



Figure 5.1: An example simulated network.

5.1 Network Simulation

As mentioned above we useOMNET++ [21] simulation environment to create a realistic network to

run our experiments. OMNET++ is an open-source discrete simulation environment written in C++.

Its main purpose is network simulation but it was created as ageneral simulation environment for

distributed or parallel systems. We use theINET framework [22] which simulates several protocols

for wired and wireless networking, such as UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, 802.11. It also

supplies models for many useful network elements, e.g., routers, switches, wired and wireless hosts,

etc.

5.1.1 Simulated Network Example

Figure 5.1 shows an example simulated network. The network contains four types of nodes: routers,

traffic generators, source and destination nodes and network links which are responsible for limiting

the bandwidth and latency. The source and destination nodesare the nodes which run the tomogra-

phy algorithms that are explained in previous chapters. Thejob of the routers and traffic generators

are discussed in more detail in this section.

Routers

The delays that are imposed on the packets while passing through the routers are very important to

our tomography methods. Therefore realistic routers are necessary for the simulation. The INET

32



Figure 5.2: Architecture of routers in INET

framework has useful tools for this matter. Figure 5.2 showsthe internal modules of an INET router.

Network Layer module handles the IP, ARP, and ICMP protocols. It also performs routing

protocols by using the routing table module.

Routing Table handles adding, removing and finding best path for a given destination subnet.

This module has interfaces so other modules (i.e., Network Layer) can use it for routing.

The router can have different kinds ofNetwork Interfaces: wlan, ethernet, and ppp. The inter-

faces have internal drop-tail queues to handle arriving andoutgoing packets.

Background Traffic

In order to have a realistic environment there has to be realistic background traffic. The data car-

ried as payload by the background traffic is not important butthis traffic is the greatest source of

randomness in our system so its behaviour should be similar to typical traffic in the Internet. We

use a model similar to the model used by the IEEE 802.16 working group for performance simu-

lation of proposed wireless MAC/PHY standards [23]. They use a fairly simple model to generate

HTTP/TCP, FTP, voice, and video streaming traffic.

The base of the model is called theInterrupted Poisson Process (IPP), which is a two state

process that is run by the traffic generator. This model generates self-similar traffic whose behaviour

is close to the traffic on the Internet. A combination of four IPPs (4IPP) has been shown to give

good results [24]. Figure 5.3 depicts an IPP; it has anOn and anOff state and when it is on it

generates packets at a configurable rate. Transition between the two states is done randomly with

33



Figure 5.3: IPP Model Framework

the configurable probabilities ofx andy. Four IPPs with different parameters are used to generate

the traffic. Each IPP’s data rate depends on how often it is on and it is configured byx andy

parameters. It also depends on how many packets it produces when it is on. In order to achieve a

given data rate the sum of packets generated by the four IPPs should be computed.

5.1.2 Test Topologies

The networks that we run the experiments on have to have similar topologies to real networks to

show the performance of the methods in the real world. CAIDA has developed a tool calledskitter

[25] to gather information about topology of the Internet. It uses a traceroute-like method and is

used to map the AS level topology of the Internet. We took the data measured by runningskitter

daily in 2005 that contains data from over one million nodes.We selected different parts of the large

network to run the evaluations.

5.2 Model-based Simulation

There is significant queue processing for the background traffic in the network simulation. As a

result, these runs require substantial memory and time, making it difficult to run experiments for

large networks and/or run many experiments. We used anotherform of simulation to cover this

problem. Although this is not as realistic as our network simulation, it gives us the opportunity to

test our methods on many different cases and larger networks.

In this method instead of using routers and queues and background traffic, we suppose each link

in the network has a random delay with a certain mean value. With this assumption there is no

need to simulate the queueing of the background traffic. We created500 random trees each with30

leaves. Each link in the network has a random delay with a meanvalue between0.2ms and20ms (as

observed in our network simulations). In the probing phase when probing a path, we take samples of

the link delays along the path and use the sum of the samples. For each path we perform a number

of probes and use the average of the results for the topology inference algorithm.

34



5.3 Evaluation Parameters

Ni et al. [3] suggested two parameters to compare the performance of topology inference methods.

These parameters are:

• Correctness ratio,which is the ratio of the correctly inferred internal nodes of the network

to the total number of the internal nodes. An internal node isconsidered correctly inferred if

there is a node in the inferred topology with the same set of leaves in its sub-tree. A higher

correctness ratio means the resulting tree is closer to the actual topology. If this ratio is equal

to 1, it means the inferred topology is completely correct.

• Node ratio, which is the ratio of the number of the internal nodes in the actual network to the

number of internal nodes in the inferred topology. A higher difference between this ratio and

1 means the inference algorithm is less accurate in the numberof internal nodes. If the ratio

in more (or less) than1 it means the resulting tree has more (or fewer) internal nodes than the

actual network.

5.4 Results

The results of network and model-based simulations are presented separately in this section. Note

that the TSP method builds physical topologies as opposed toTomo and DDS which build logical

topologies. In order to compare their correctness and node ratio we have to convert TSP’s results to

corresponding logical topologies then calculate correctness and node ratios.

5.4.1 Network Simulation Results

We built ten different test networks in the simulation environment and run the three tomography

methods on them. For each network we sent500 probe messages and compared each method’s result

to the correct topology and computed its correctness and node ratio. As mentioned in Chapter 3

Tomo needs an additional parameter called∆ which is the length of the shortest link. We derived∆

on a test network and used the same value for all the networks.

Table 5.1 shows the results for ten test networks. In terms ofthe correctness ratio TSP has far

better performance than the others in most cases. DDS also outperforms Tomo in this parameter.

This can mean Tomo is very dependant on how we set∆. TSP’s node ratio is also better than the

other methods on average and in most cases but it has a poor result on the last large network. DDS

has the worst performance in this parameter. Among these tensample networks TSP has inferred two

topologies completely correctly and the other two methods could not find any topology completely

correctly.

In order to show what kinds of mistakes are made by each method, we compare the results

of sample network number4. Figure 5.4 shows the correct logical topology of this network and

35



Table 5.1: Network Simulation Results

Sample No. # of Receivers
Correctness Ratio Node Ratio

TSP DDS Tomo TSP DDS Tomo

1 10 1.00 0.86 0.71 0.86 1.29 0.86
2 16 0.78 0.89 0.56 0.89 1.33 0.78
3 16 0.89 0.44 0.22 0.89 1.44 0.78
4 16 0.89 0.67 0.67 0.89 1.44 1.33
5 16 1.00 0.78 0.67 1.00 1.33 0.67
6 16 1.00 0.60 0.30 1.00 1.40 0.90
7 16 0.75 0.87 0.50 0.87 1.12 0.87
8 16 0.73 0.27 0.27 0.73 1.00 0.91
9 20 0.33 0.66 0.58 1.08 1.42 1.16
10 20 0.42 0.33 0.33 0.5 1.42 1.25

Average Error 0.22 0.36 0.52 0.14 0.32 0.20

Figure 5.4: Correct Logical Topology of Sample Network No.4

Figure 5.5: Logical Topology of Sample Network No.4 Built by TSP

Figure 5.5 shows the logical topology returned by the TSP method. The major problem with TSP’s

result is that node24 is misplaced. This is happened because when the method inserts nodes6, it

cannot find the correct common parent of nodes6 and3 (or 4 or 5) and inserts the node in the wrong

place. But after that the nodes that are near node6 are placed correctly relative to node6.

Figure 5.6 depicts Tomo’s result and shows why its node ratiois higher than1. In this case

Tomo cannot eliminate small measurement errors and adds a few extra links to the network. This is

the problem we discussed in Chapter 2 that occurs when a measurement error makes the inference

algorithm add a small extra link. DDS’s result is very similar to Tomo’s and has only one more extra

36



Figure 5.6: Logical Topology of Sample Network No.4 Built by Tomo

link so we do not present that topology here but it means that DDS and Tomo suffer from similar

problems.

5.4.2 Model-based Simulation Results

Figure 5.7 compares the correctness ratio of TSP, DDS, and Tomo considering the number of probes

sent. As the number of probes grows, TSP outperforms Tomo by up to20% higher correctness ratio.

DDS shows a poor performance compared to the other two methods and is not able to benefit much

from additional data when we send more probe messages which means the standard deviation does

not help to detect the measurement errors as much as∆ does.

Figure 5.8 depicts the node ratio of the two methods. As you can see TSP has a weaker node

ratio when we send fewer probes, but as more probes are sent the ratio approaches1. Tomo on the

other hand reaches the perfect node ratio quickly but after that its node ratio gets worse. Comparing

the two charts we can see that Tomo improves its correctness ratio with more probes but it is not

able to improve the node ratio as much. Again DDS has a poor result in this parameter.

5.4.3 Accuracy Limitation

We would very much like to understand whether increasing thenumber of probes leads us to a

perfectly correct topology every time. Unfortunately the answer is no. We found a problem during

37



Figure 5.7: Correctness Ratio

Figure 5.8: Node Ratio

our network simulations which also exists in the Internet. All of the methods that we use are based

on an assumption that the delay we measure is monotonic alongthe path and strictly increasing.

However the way the routes handle routing, processing, and dropping messages is more complex

38



Figure 5.9: RTT delays along a sample 18-hop path.

than our models and that assumption is not always true.

This problem can be seen in Figure 5.9. The figure shows Round-Trip Time (RTT) delays

measured using traceroute along a sample path in the Internet. Each hop’s delay is shown separately

and the hops without a delay are the ones which do not respond to ICMP queries. It is visible that

although the delay is growing overall along the path, it is not monotonic and decreases at some hops.

This non-monotonicity causes errors in our methods and our results depend on how often it

occurs in the network. We can make our measurements more accurate by increasing the number of

probes but this non-monotonicity is in the network’s nature, so to face this problem we have to alter

the topology inference algorithms.

5.5 Conclusion

We developed two experimental systems to test our tomography methods. The first system is a

detailed simulation with a fairly realistic behaviour and the second one has a simple model for

propagation delays and is less realistic but is much lighterthan the first system and can handle larger

networks and a larger number of experiments.

The results of the simulations show that TSP outperforms theother methods in most cases.

Comparing DDS and Tomo in different experimental systems gives different results. The reason can

be Tomo’s dependence on∆. Setting∆ in model-based simulation is easier than network simulation

and Tomo shows better performance with more accurate∆. The other difference between the two

systems is the effect of non-monotonicity we discussed in Section 5.4.3. This problem is not seen in

model-based simulation as opposed to network simulation.

We compare computational complexity of TSP, DDS, and Tomo aswell as their traffic overhead

39



in Table 5.2. The table shows that TSP builds the topology more efficiently than the other two

methods, but they all run in polynomial time. TSP sends more probe messages that the other two

methods thus uses more bandwidth and imposes more traffic on the network. If the network is

very busy this can be problematic especially if the probing process lasts too long, because then the

network’s routing paths might change.

Table 5.2: Comparison of Computational complexities and traffic overhead.

N is the number of receivers andd is the depth of the network.
Method Computational Complexity Traffic Overhead

TSP O(N2 + dN) O(dN2 + dNlogd)

DDS O(dN2) O(dN2)

Tomo O(dN2) O(dN2)

Beside its better performance, TSP is capable of building physical topologies and this is another

advantage compared to other methods.

40



Chapter 6

Conclusions and Future Work

In this thesis we addressed the network tomography problem,which is the problem of finding infor-

mation about a network’s internal nodes and links. This information is necessary for some network

monitoring, peer-to-peer, and collaborative tasks. An important part of the problem, which we

worked on, is finding the topology.

The basis of our work is a probing method called the sandwich probe which is suggested by

Cotes et al. [11]. We developed two tomography methods called DDS and TSP. DDS is a topology

inference algorithm that finds network’s topology using sandwich results and TSP is a new probing

scheme. Sandwich probes give us limited data about network’s internal nodes. Combining the idea

of sandwich probe and traceroute we introduced a new probingscheme called TSP that collects step

by step data along network paths. We also developed a compatible topology inference algorithm for

TSP probing.

In order to test our methods we developed two different simulation systems. The first system

is a detailed network simulation that simulates low layer protocols, queueing at the routers, and

background traffic. This system is fairly realistic and shows the problems that happen in the real

world, but it needs a large amount of process resources to execute. The second system is simulation

of a simple model for propagation delays. In this system we assume each link in a network adds

a random delay to all passing packets. This simple system canhandle larger number of sample

networks and larger networks than the first system.

We compared performance of our methods with each other and another method called Tomo

which is suggested by Ni et al. [3]. The comparison shows thatthe TSP method has a better

performance in most cases and its results are closer to the correct topologies. In terms of traffic

overhead TSP sends more messages than the other two methods in each round of probing which can

be a problem if the network is busy. Also TSP has the capability of building physical topologies, but

the other two methods do not.

This work can be expanded in a few directions, and one of the most important ones is to look

into the problem mentioned in Chapter 5 which is caused by non-monotonicity of measured delays

along a network path. Solving this problem may cause significant improvements in our results.

41



Another possible direction is to use other capabilities of the TSP method. As mentioned in

Chapter 4 the TSP method does part of the job of traceroute. Wemay be able to find more ways to

benefit from this possibility. Our methods can also be developed more to handle multiple sources

rather than a single source. Rabbat et al. have introduced a method that uses a single source method

to find the topology of a multi source system [26].

Also we can optimize the traffic overhead of the methods and reduce the number of probes sent.

All the data collected by the probes is not useful, for example in the TSP method during new node

insertion we only use data about a part of the node’s path. There are other ways to optimize the

probing process that are studied by other researchers. Gu etal. have suggested one way [27] that we

can try to apply to our methods.

42



Bibliography

[1] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems,” inMiddleware 2001, pp. 329–350, Springer, 2001.

[2] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise: peer-to-peer media
streaming using collectcast,” inProceedings of the eleventh ACM international conference
on Multimedia, pp. 45–54, ACM, 2003.

[3] J. Ni, H. Xie, S. Tatikonda, and Y. Yang, “Efficient and dynamic routing topology infer-
ence from end-to-end measurements,”IEEE/ACM Transactions on Networking (TON), vol. 18,
no. 1, pp. 123–135, 2010.

[4] M. Liška and P. Holub, “Couniverse: Framework for building self-organizing collaborative
environments using extreme-bandwidth media applications,” in Euro-Par 2008 Workshops-
Parallel Processing, pp. 339–351, Springer, 2009.

[5] P. Holub, H. Rudová, and M. Liška, “Data transfer planning with tree placement for collabo-
rative environments,”Constraints, vol. 16, no. 3, pp. 283–316, 2011.

[6] R. Cáceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-based inference of network-
internal loss characteristics,”Information Theory, IEEE Transactions on, vol. 45, no. 7,
pp. 2462–2480, 1999.

[7] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology inference in the presence
of anonymous routers,” inINFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, vol. 1, pp. 353–363, IEEE, 2003.

[8] M. Baltatu, A. Lioy, F. Maino, and D. Mazzocchi, “Security issues in control, management and
routing protocols,”Computer Networks, vol. 34, no. 6, pp. 881–894, 2000.

[9] M. H. Gunes and K. Sarac, “Resolving anonymous routers ininternet topology measurement
studies,” in INFOCOM 2008. The 27th Conference on Computer Communications. IEEE,
pp. 1076–1084, IEEE, 2008.

[10] R. Castro, M. Coates, and R. Nowak, “Likelihood based hierarchical clustering,”Signal Pro-
cessing, IEEE Transactions on, vol. 52, no. 8, pp. 2308–2321, 2004.

[11] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang, “Maximum likelihood
network topology identification from edge-based unicast measurements,”ACM SIGMETRICS
Performance Evaluation Review, vol. 30, no. 1, pp. 11–20, 2002.

[12] N. Duffield, J. Horowitz, and F. Lo Prestis, “Adaptive multicast topology inference,” inINFO-
COM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3, pp. 1636–1645, IEEE, 2001.

[13] N. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley, “Multicast topology inference from
measured end-to-end loss,”Information Theory, IEEE Transactions on, vol. 48, no. 1, pp. 26–
45, 2002.

[14] M. Gjoka, C. Fragouli, P. Sattari, and A. Markopoulou, “Loss tomography in general topolo-
gies with network coding,” inGlobal Telecommunications Conference, 2007. GLOBECOM’07.
IEEE, pp. 381–386, IEEE, 2007.

[15] C. Fragouli and A. Markopoulou, “A network coding approach to network monitoring,” in43rd
Allerton Conference on Communication, Control, and Computing, Monticello, IL, pp. 28–30,
IEEE, 2005.

43



[16] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomography: recent develop-
ments,”Statistical Science, pp. 499–517, 2004.

[17] J. Ni and S. Tatikonda, “Network tomography based on additive metrics,”Information Theory,
IEEE Transactions on, vol. 57, no. 12, pp. 7798–7809, 2011.

[18] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link
data,”Journal of the American Statistical Association, vol. 91, no. 433, pp. 365–377, 1996.

[19] M. Coates and R. Nowak, “Sequential monte carlo inference of internal delays in nonstationary
data networks,”Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 366–376, 2002.

[20] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees and bottleneck band-
widths using end-to-end measurements,” inINFOCOM’99. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1,
pp. 353–360, IEEE, 1999.

[21] A. Varga and R. Hornig, “An overview of the omnet++ simulation environment,” inProceed-
ings of the 1st international conference on Simulation tools and techniques for communi-
cations, networks and systems & workshops, p. 60, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008.

[22] A. Vargaet al., “Inet framework for omnet++ 4.0,”http://inet.omnetpp.org/, retrieved on May
2013.

[23] C. Baugh and J. Huang, “Ieee 802.16 task group 3, 802.16.3c-01/30r1: Traffic model for
802.16 tg3 mac,”PHY Simulations.

[24] A. T. Andersen and B. F. Nielsen, “A markovian approach for modeling packet traffic with
long-range dependence,”Selected Areas in Communications, IEEE Journal on, vol. 16, no. 5,
pp. 719–732, 1998.

[25] “The CAIDA USCD macroscopic topology dataset - 2005,”
http://www.caida.org/tools/measurements/skitter, retrieved on May 2012.

[26] M. Rabbat, R. Nowak, and M. Coates, “Multiple source, multiple destination network tomog-
raphy,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol. 3, pp. 1628–1639, IEEE, 2004.

[27] Y. Gu, G. Jiang, V. Singh, and Y. Zhang, “Optimal probingfor unicast network delay tomog-
raphy,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

44


