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Abstract

This thesis presents an acoustic migration/inversion algorithm that inverts seismic re

flection data for the angle dependent subsurface reflectivity by means of least-squares 

minimization. The method is based on the primary seismic data representation (single 

scattering approximation) and utilizes one-way wavefield propagators ('wave-equation 

operators') to compute the Green's functions of the problem. The Green's functions link 

the measured reflection seismic data to the image points in the earth's interior where an 

angle dependent imaging condition probes the image point's angular spectrum in depth.

The proposed least-squares wave-equation migration minimizes a weighted seismic 

data misfit function complemented with a model space regularization term. The regu

larization penalizes discontinuities and rapid amplitude changes in the reflection angle 

dependent common image gathers - the model space of the inverse problem. 'Rough

ness' with respect to angle dependence is attributed to seismic data errors (e.g., incom

plete and irregular wavefield sampling) which adversely affect the amplitude fidelity of 

the common image gathers. The least-squares algorithm fits the seismic data taking their 

variance into account, and, at the same time, imposes some degree of smoothness on the 

solution. The model space regularization increases amplitude robustness considerably. 

It mitigates kinematic imaging artifacts and noise while preserving the data consistent 

smooth angle dependence of the seismic amplitudes.

In least-squares migration the seismic modelling operator and the migration operator 

- the adjoint of modelling - are applied iteratively to minimize the regularized objective 

function. Whilst least-squares migration/inversion is computationally expensive syn
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thetic data tests show that usually a few iterations suffice for its benefits to take effect. 

An example from the Gulf of Mexico illustrates the application of least-squares wave- 

equation migration/inversion to a real-world dataset. The efficient implementation of 

the algorithm is a challenge and had to be confined to two spatial dimensions (i.e., 2-D 

earth). Fortunately, distributed computing accelerates the computational turnaround of 

least-squares migration/inversion greatly. Therefore, given the rapidly evolving com

puter technology, it is conceivable that 3-D least-squares migration /inversion will be

come amenable to a practical implementation in the near future.
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Introduction

Seismic imaging of geological subsurface structures and the inversion for seismic reflec

tivity are powerful tools for the detection, interpretation and the appraisal of hydrocar

bon reservoirs. The seismic reflection method can be understood as a multi-source and 

multi-receiver scattering experiment. Seismic sources and receivers are placed at the 

earth's surface. The sources emit seismic energy into the subsurface at varying locations 

and the receivers record the earth's response as a function of time and position relative 

to the source. The goal of seismic imaging/inversion is to invert the recorded response 

(wavefield seismograms) for the subsurface properties. To this end a stepwise, linearized 

imaging/inversion strategy based on the primary (i.e., single scattering) wavefield rep

resentation has been adopted in this thesis. One distinguishes between imaging and 

inversion, although, this distinction is not sharply defined and quite often subject to de

bate (Wapenaar, 1996). Roughly, imaging aims at producing a map or an image of the 

position and distribution of the reflecting boundaries and objects by back-propagating 

the surface wavefield. In addition to that, inversion attempts to invert for the magnitude 

variations of the angle dependent subsurface reflectivity. The inverted reflectivity is re

lated to the medium's detail structure and contains information about the local rock and 

pore-space properties. In exploration seismology, imaging is usually termed (depth or 

time) migration. Migration is less demanding than inversion in terms of wavefield am

plitude preservation, the phase (i.e., travel-time) is the primary concern. In inversion one 

demands both correct phase and correct amplitude information. Hence, the proper dy

namic treatment of the recorded wavefield becomes an issue. Since, in a practical sense, 

migration can be regarded as a less ambitious form of inversion, the umbrella term mi

gration/inversion is frequently used to emphasize this close relationship.

The primary data representation invokes a number of simplifications to make the

1
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Figure 1: Seismic energy partitioning for a compressional wave (P wave) impinging on a plane 
interface in an elastic continuum at an angle 6. Both reflected and transmitted compressional (P) 
and shear (S) waves result. The discontinuity separates regions of different compressional- and 
shear wave velocity and density, cp, cs and p, respectively.

generally non-linear inverse problem tractable. The inversion is tackled by a stepwise, 

linearized approach and is based on certain assumptions regarding the physical pro

cesses responsible for the seismic data. Essentially, the inversion process consists of three 

stages: surface related pre-processing (e.g., surface related multiple suppression), angle 

dependent reflectivity migration/inversion and target related post-processing (medium 

parameter inversion) (Berkhout and Wapenaar, 1990).

Most notably, the primary data representation handles only single scattering data. 

Multiply scattered data are treated as noise, and multiple suppression is a key ingredient 

in the first processing stage.

The second stage involves wavefield back-propagation and reflectivity estimation. A 

macro- or background velocity model for wavefield back-propagation is inferred from 

the travel-time related attributes of the surface wavefield with the help of velocity analy

sis or tomographic techniques. Based on the independently obtained macro-velocities the 

surface wavefield is back-propagated (migrated) into the subsurface where the reflection 

angle dependent target reflectivity is estimated. The procedural separation between the 

determination of the long wavelength properties (macro-velocities) and the estimation 

of the short wavelength attributes (reflectivity) is a typical characteristic of the stepwise, 

linearized inversion approach.

The third stage attempts to infer detailed medium parameter information from the 

inverted reflectivity. It is important to realize that, in exploration seismology, one deals

2
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mostly with fairly regular interfaces that separate geological units of different physical 

properties. Hence, the scattering process is usually treated, somewhat undiscriminat- 

ingly, as specular reflection scattering. The earth is generally described as an elastic 

continuum with many discontinuous interfaces. Figure 1 illustrates elastic specular re

flection and transmission scattering for the simple two layer case. In this situation, the 

well-known Zoeppritz equations (Aki and Richards, 1980) govern the wave energy par

titioning at the interface as a function of medium parameters (i.e., compressional- and 

shear wave velocity and density), and angle of incidence. Elastic mode conversions be

tween compressional (P) and shear (S) waves occur as the waves undergo scattering. 

Supposing migration/inversion can provide a reliable estimate of the angle dependent 

reflection coefficient (ideally, for all involved wavefield modes), Zoeppritz's equations 

allow then to invert for the medium parameters above and below the interface. This is 

not an easy task, since non-linearity, non-uniqueness etc. complicate the inverse prob

lem. Finally, the inverted medium parameters can be interpreted in terms of rock and 

pore-space properties.

The outlined processing flow has many shortcomings that can hamper a successful 

and unambiguous inversion. For instance, the single scattering assumption means that 

wave modes are allowed to change their type only once during propagation. Transmis

sion losses are neglected entirely. That is, single scattering also implies that the medium 

contrasts have to be somewhat weak. Furthermore, where the local interface curvature 

is significant compared to the dominant wavefield wavelength, the description of scat

tering in terms of a specular reflection process breaks down; a more general theory than 

Zoeppritz's equations that relates the scattering angle spectrum with the medium prop

erties is then required. In practice, however, inversion based on the described strategy 

has oftentimes been successful within its limitations. Rather than an inversion for abso

lute values, seismic imaging/inversion is a science of anomalies (Castagna, 1993). The 

inversion for relative parameter variations and deviations from certain expected aver

age values has proven to be a realistic goal. The detected anomalies hold many clues 

and are a valuable aid for the structural, stratigraphic and lithologic interpretation of the 

subsurface.

Figure 2 details the inversion process in a schematic flowchart (Berkhout and Wape-

3

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Migration/inversion of PS response

Estimation of P macro velocity field Estimation of S macro velocity field

Migration/inversion of PP response

Lithologic inversion for rock and pore param eters

ti-com ponent seism ic shot records

Decomposition in P and S waves

Surface multiple suppression

Elastic inversion for P and S velocity and  density

Figure 2: Flowchart illustrating linearized seismic inversion in steps (modified after Berkhout 
and Wapenaar (1990)). The highlighted sub-process, PP least-squares migration/inversion for 
reflectivity inversion, is the main topic of this thesis. Each box in this flowchart is a topic of 
ongoing research in its own right.

naar, 1990). The flowchart is specific for seismic data acquired on land. In the marine 

cases, where sources and receivers are separated from the elastic earth by a water layer, 

obvious modifications apply.

The main topic of the thesis is the highlighted box in Figure 2, the migration/inversion 

of compressional waves for angle dependent subsurface reflectivity (P to P reflections). 

More specifically, a novel least-squares wave-equation migration/inversion is introduced 

that yields regularized common image gathers (CIGs). The approach is novel in that it 

combines the concept of numerical least-squares optimization, wave-equation migration 

in complex media and angle dependent imaging. The least-squares migrated CIGs, the 

solution of the inversion, contain amplitude information closely related to the bandlim- 

ited reflectivity. They are of potentially higher quality and fidelity than conventionally 

obtained CIGs. Since only compressional waves are considered, the theory for migra

tion/inversion is developed within the less involved acoustic approximation of contin

uum  mechanics.

4
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In migration/inversion one attempts to invert the seismic data by constructing an ap

proximate inverse to the forward integral operator that relates the subsurface model per

turbations (the reflectivity) to the observed seismograms (e.g., Clayton and Stolt (1981), 

Bleistein et al. (2001)). Under the single scattering approximation, the integral opera

tor can be approximately inverted via a linear integral operator. This integral operator 

is composed of Green's functions that account for the wave propagation in the back

ground medium (i.e., the macro-velocity field). Migration/inversion algorithms using 

ray-theoretical Green's functions are based on the solutions of the eikonal and trans

port equation, the high frequency approximation of the wave-equation. Alternatively, 

one-way wavefield propagators can be employed to calculate the Green's function of 

the problem (e.g., Gazdag and Sguazzero (1984), Stoffa et al. (1990) , Ristow and Riihl 

(1994)). These operators, frequently called wave-equation operators, have the advantage 

of inherently accounting for multi-pathing (Gray and May, 1994). Evidence is mount

ing that wavefield propagators perform significantly better than techniques based on the 

high frequency approximation.

One way to invert seismic data entails the approximate inversion of the forward mod

elling operator by analytical means. A second technique involves a numerical approach 

where the solution is retrieved by solving a linear discrete inverse problem. In that case, 

one seeks a model that fits the seismic (primary) data and, moreover, exhibits certain 

features and characteristics imposed by a model regularization. This approach to migra

tion / inversion is called least-squares migration. Early developments of least-squares mi

gration can be found in LeBras and Clayton (1988) and Lambare et al. (1992). More recent 

papers by Nemeth et al. (1999) and Duquet et al. (2000) focus on the advantages of least- 

squares Kirchhoff migration/inversion (i.e., imaging based on ray theory) when uneven 

subsurface illumination and imaging artifacts due to irregularly and coarsely sampled 

seismic wavefields are the issue. Duquet et al. (2000) also demonstrate how to further 

improve the mitigation of sampling artifacts in common offset Kirchhoff migration by 

applying an smoothing constraint on the offset CIGs. As opposed to the course taken in 

this work, all of the cited least-squares migration algorithms are based on ray-theoretical 

Green's functions.

Kuehl and Sacchi (2001b) show that, in principle, the concept of least-squares migra-

5
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tion can also be applied to split-step DSR (double-square-root) wavefield propagators 

(Claerbout, 1985; Popovici, 1996). With the introduction of a data covariance matrix 

(Tarantola, 1987) least-squares migration can account for missing data and unbalanced 

subsurface illumination due to variations in the common-midpoint (CMP) fold. Unfor

tunately, the standard recursive DSR implementation does not offer an efficient com

putation of offset CIGs as common offset Kirchhoff migration does. A non-recursive 

implementation of DSR migration, on the other hand, allows for the computation of sep

arable offset DSR operators (Popovici, 1995; Kuehl and Sacchi, 2001a), but precludes the 

use of modifications, such as the split-step correction, that generalize the DSR operator 

for laterally varying media. That is to say, an alternative to common/separable offset 

wave-equation migration needs to be found for regularized least-squares wave-equation 

migration to be of practical use.

Recently, increasing attention has been given to wave-equation imaging principles 

that yield angle domain CIGs in complex media. These CIGs carry valuable angle de

pendent amplitude information (e.g., Stolt and Weglein (1985), de Bruin et al. (1990), Xu 

et al. (1998), Prucha et al. (1999), Wapenaar et al. (1999), Mosher and Foster (2000), Sava et 

al. (2001)). The employed ray parameter CIGs consist of a set of depth images as a func

tion of offset ray parameter extracted from the back-propagated seismic wavefield. These 

CIGs are similar to migrated r  — p (i.e., slant stacked) midpoint-offset gathers (Ottolini 

and Claerbout, 1984; Mosher et al., 1996; Mosher et al., 1997). However, in generalized 

DSR migration combined with ray parameter domain imaging the order of slant stacking 

and wavefield propagation is reversed thereby relaxing the restriction to laterally invari

ant media. The midpoint-offset wavefield gathers are recursively back-propagated and 

the wavefield is decomposed at each depth level. Lastly, the wave-equation imaging con

dition (evaluation of the propagated wavefield at time zero) is applied to the slant stacked 

local wavefield. The amplitude variations with ray parameter (AVP) are closely related 

to the amplitude variations with angle (AVA) of the bandlimited reflectivity. Knowing 

the dip directions and the dip angles of the (locally) plane reflectors the CIGs can be 

converted to AVA plots.

In order to cast generalized DSR migration for AVP/AVA inversion into the least- 

squares framework, one needs to define a modelling/migration adjoint operator pair.
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The migration and modelling operators are then iteratively applied to minimize the 

weighted least-squares data misfit using a conjugate gradient (CG) optimization algo

rithm. The proposed least-squares DSR migration is constrained with a ray parameter 

dependent smoothing regularization that increases the robustness of the inversion (Kuehl 

and Sacchi, 2002). The constraint penalizes discontinuities and rapid amplitude changes 

that most likely stem from numerical imaging artifacts and acquisition footprint, not AVA 

effects.

The thesis is organized as follows: Chapter 1 discusses the forward seismic modelling 

problem in great detail. In the second chapter, inversion concepts based on the previ

ously outlined primary data representation are devised. As already mentioned, there 

exist essentially two avenues that can be followed to achieve this: by approximations 

to the inverse problem solution, or by numerical optimization schemes, both of which 

are conveniently derived within the framework of least-squares optimization. The third 

chapter exemplifies and tests the theory derived in the previous chapters with numer

ous synthetic data examples ranging from simple to complex. In Chapter 4 least-squares 

migration for AVP/AVA is applied to a real-world marine dataset from the Gulf of Mex

ico. Real data issues like macro-velocity model building and multiple suppression are 

addressed. The last chapter digresses briefly into computational issues of (least-squares) 

migration. Efficiency considerations are an integral part of any discussion on seismic in

version, since a fast computational turnaround is imperative. Chapter 5 introduces the 

real-valued Hartley transform as an alternative to the complex-valued Fourier transform 

to optimize the modelling and migration operators (Kuehl and Sacchi, 1999; Kuehl et al., 

2001). That chapter also touches on the topic of distributed computing. Finally, a con

cluding discussion summarizes the main points of the thesis and attempts to shed some 

light on the road ahead.
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Chapter 1

Seismic data modelling

The first step to the formulation of any inverse problem is the forward or modelling 

problem. It is emphasized what may be obvious: If a forward/m odelling operator fails 

to describe the relevant physics of a process one is seeking to invert, the inverse oper

ator will give erroneous results. Any mathematical operator, of necessity, becomes an 

idealization of the true nature of physics, capturing some features and excluding others. 

However, if care is taken that the physics of a sub-process is sufficiently honoured, a 

successful inversion for the parameters influencing this process is oftentimes possible.

This thesis is concerned with the imaging/inversion of the earth's subsurface prop

erties using reflected seismic waves. Seismic imaging/inversion has two goals. First, the 

seismic surface data are back-propagated (inversely extrapolated) into the earth to image 

and position geological structures ('depth migration'). Second, if care is taken that ampli

tude effects are accounted for during back-propagation ('true-amplitude migration') the 

data can be locally inverted for the amplitude variation with angle of the reflection coef

ficients. The second goal is more demanding but, if successful, allows for the inversion of 

physical parameters defining the geological units separated by the reflecting interfaces.

The inverse problem becomes tractable by simplifying the forward modelling rela

tionship. More precisely, the employed imaging/inversion techniques are based on a lin

earized, acoustic primary representation of the seismic surface data. Such techniques do 

not account for multiply reflected waves (multiple scattering). This imposes a smallness 

constraint on the coefficients defining the reflecting boundaries. Where significant multi

ple seismic energy is present in the data, multiple suppression techniques prior to imag-

8

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



ing/inversion have to be applied. In any case, the 'robustness' of the imaging/inversion 

algorithms with respect to all simplifications needs to be assessed carefully. It therefore 

is important to discuss the seismic data modelling operators in some detail.

Besides the limitations mentioned above, the simplified seismic data representation 

has other shortcomings (Gray, 1997). First, the modelling operators are derived for a 

fluid-like medium. In reality, seismic waves propagate in an elastic earth. That is, longi

tudinal (compressional) and transversal (shear) waves exist and mode conversion occur 

at interfaces. In spite of the restriction to compressional waves, seismic imaging based 

on the acoustic wave-equation has in many cases been successful. This is explained by 

the fact that seismic sources generate mostly compressional waves. Furthermore, most 

seismic surveys record only the pressure or the vertical particle velocity component and 

thus register predominantly compressional waves. The latter statement implies that the 

seismic waves travel in a near vertical direction at the receiver location. The normally low 

near surface velocities help for this assumption to be fulfilled. When elastic wave prop

agation effects are significant the formalism needs to be extended to elastic media (e.g., 

Wapenaar et al. (1987)). This extension is based on the premise that the recorded seismic 

data can be decomposed into compressional and shear wave responses before applying 

the imaging/inversion operators (Wapenaar et al., 1990). Second, the described method 

ignores anisotropy, which is known to affect seismic waves dynamically and kinemati

cally (Vestrum et al., 1999). While it is possible to generalize the described operators to 

accommodate the kinematic effects of anisotropy (Kitchenside, 1991; Le Rousseau, 1997) 

such an extension is beyond the scope of this thesis. Third, the operators fail to correct 

for wavefield attenuation. Attenuation through lossy material can be modelled by an 

exponential loss of amplitude along the propagation path (viscoelastic media). However, 

it is difficult to estimate the amount of loss to be corrected. Fourth, the effects of fine 

structure in the medium properties on wavefield propagation are neglected owing to an 

implicit smoothness assumption underlying the derivation of the propagators.

Based on all of the above, Gray (1997) asserts that one can raise valid objections 

against the entire subject of 'true-amplitude' seismic imaging/inversion. Claerbout (1992) 

summarizes the same scepticism, stating "The phrase 'true-amplitude migration' has 

questionable meaning". However, seismic imaging has proven many times to be a ro-
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1.1. BASIC EQUATIONS

bust tool for structural imaging of subsurface properties. To an extent this is also true for 

the inversion for amplitude information, since, according to Gray (1997), 'true-amplitude 

migration' for AVA inversion can be seen as a more rigorous, wave-equation based ex

tension of amplitude variation with offset (AVO) analysis. It is widely accepted that AVO 

analysis has contributed to exploration success in the past (Gray, 1997). Despite this eco

nomical success, the ability of the employed operators to produce AVA information must 

be considered a bonus to the more robust structural imaging capabilities. The correct 

treatment of angle dependent amplitudes is bound to fail if one or more of the assump

tions implicit in the above simplifications is severely violated.

1.1 Basic equations

The basic equations for wave propagation in continuous media are briefly reviewed for 

the sake of completeness (e.g., Wapenaar and Berkhout (1989)).

1.1.1 Equation of motion and constitutive relation

For lossless, inhomogeneous solids the linearized equation of motion (Newton's law) in 

cartesian coordinates reads:

where ^ = 1 ^ , 3  stand for x,y and z, respectively, and i = 1,2,3. The vector u  is the particle 

displacement as a function of the vector x =  (x , y , z ) and time t. Furthermore, repre

sents the nine components of the symmetric stress tensor, also as a function of space and 

time. The scalar p =  p(x) is the space dependent mass density in the equilibrium state. 

For an isotropic material the linearized stress-displacement equation (Hooke's law) is:

where 8ij is the Kronecker delta and A =  A (x) and p =  /;,(x) are the space dependent 

Lame parameters. The e*j are the nine components of the symmetric strain tensor. Lame's 

parameters are related to the bulk compression modulus K  = K{x)  and the shear modu-

ibility describes the material resistance to a change in volume when subject to a load. It is

d2Ui ^  d m (1 .1 .1 )

=  ASijV ■ u +  2 peij, (1 .1 .2 )

lus G =  G(x) by K  =  A +  |/ i  and G = p, respectively. The bulk modulus of incompress-
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1.1. BASIC EQUATIONS

Material K (GPa) G (GPa) V p(g/cm3)
Water 2 . 1 0 0.5 1 . 0

Sandstone 17 6 0.34 1.9
Olivine 129 82 0.24 3.2

Table 1.1: Elastic parameters for some common earth materials (after Lay and Wallace (1995)).

defined by the ratio of an applied hydrostatic pressure to the induced fractional change 

in volume. The shear modulus, or rigidity is a measure of a material's resistance to shear 

stress. Yet another frequently used modulus is Poisson's ratio v. It describes the ratio 

of radial to axial strain when a uniaxial stress is applied (e.g., t h  /  0 , T2 2  =  T3 3  =  0 ). 

Poisson's ratio's relation to Lame's parameters is:

-6 2 2  A
V  = (1.1.3)

6 1 1  2(A +  //)

The maximum value is u = 0.5. This is true for a fluid, when p, =  0. Most earth materials 

have a Poisson ratio between 0.22 and 0.35 (Lay and Wallace, 1995). Table 1.1 lists typical 

values of the bulk modulus, the shear modulus, Poisson's ratio and density for a few 

common earth materials.

1.1.2 Acoustic approximation

The equations (1.1.1) and (1.1.2) are simplified for fluid-like media. The off-diagonal 

stress tensor components r^ , where i 7  ̂ j  (shear stresses), are zero; hence, K  =  A and

G =  n =  0. Pressure is defined by pn =  —t u and can be written as p = p n  = P22 =  P33

according to Pascal's law. The equation of motion (1.1.1) simplifies to:

d2u _
p-gt 2  =  -V p , (1.1.4)

and the stress-displacement equation (1 .1 .2 ) becomes:

p = - K V  ■ u. (1.1.5)

Next, source terms are added to the equations (1.1.4) and (1.1.5):

P ~  +  V p  =  {,  (1.1.6)
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

and

^ p  + V  ■ u = iv, (1-1.7)

where f  is the body force density and iv represents a volume density of volume injection 

(for example an airgun). Notice that equation (1.1.7) is the equation of continuity. The 

equations (1.1.6) and (1.1.7) are combined to the second order variable-density wave- 

equation for the pressure p:

<1X8)

The phase velocity is defined by:

(1X 9)

As it stands, equation (1.1.8) describes the wave motion for compressional waves in an 

arbitrary fluid-like medium.

1.2 Forward w avefield  extrapolation

The well developed theory of wavefield propagation (e.g., Aki and Richards (1980), Wape- 

naar et al. (1987)) that aims to solve the coupled system (1.1.6) and (1.1.7) constitutes an 

ideal framework for the derivation and understanding of seismic primary data imag

ing/inversion techniques.

1.2.1 Two-way wavefield representation

In surface seismic applications, the depth dimension is the wave propagation direction 

of preference. The axes perpendicular to the direction of preference are referred to as 

lateral coordinates. Consider a subsurface model that is subdivided into many thin slabs 

of thickness dz = A z  = Zi — Zi-\ (Figure 1.1), where either symbol, dz or Az, will be 

used depending on whether a discrete or continuous notation is more convenient. It is 

stressed that the computational slab boundaries do not necessarily coincide with phys

ical/geological layer boundaries. The layered model is understood as a computational 

grid, and the medium parameters K  and p are allowed to vary smoothly in the lateral 

direction within each finite slab. The goal is to recursively extrapolate/propagate the
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

Z <  0

x

K (x ,y ,Z j )  p ( x ,y ,Z j)

z >  0

Figure 1.1: The coordinate system for seismic wave propagation. The 2  axis is the direction 
of preference in seismic applications where sources and receivers are placed at the surface. The 
plane at z0 = 0  serves as a reference datum and does not necessarily coincide with the actual 
surface. The medium parameters are allowed to vary vertically and laterally. For computational 
purposes the depth axis is discretized into thin slabs of thickness Az = -  Zi~\. The parameter
variations have compact support confined to the half-space z > 0.

wavefield from one depth level to the other. To this end the coupled equations (1.1.4) 

and (1.1.5) are expressed in the temporal frequency domain:

-iujpV  +  V P =  F, (1.2.1)

and

+ V • V =  - i u l v, (1.2.2)K

where V  =  {Vx,Vy, VZ)T and F  =  (Fx,Fy, FZ)T are the monochromatic particle velocity 

and body force density vectors, respectively, and P  are Iv are the monochromatic pres

sure and volume injection density, respectively. The time dependence is given by elu3t 

where oj is the angular frequency. The normal particle velocity and the pressure are con

tinuous across interfaces separating regions of different medium properties (Wapenaar,

1998). Hence, it is useful to write the equations (1.2.1) and (1.2.2) in terms of the vertical

velocity Vz and pressure P. The z derivatives are isolated from the lateral derivatives and 

Vx and Vy are eliminated from the equations (1.2.1) and (1.2.2):

^  = - iupVz + Fz, (1.2.3)
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

and

dVz ~ iujP  + JL ( + d f  I dP
dz K  dx \iu)p d x )  dy \iu>p dy

+iulv -  (1.2.4)
dx \iu)pJ dy \iu)p)

The notation is simplified with the assignment of the operator %2 -

(u> \ 2 d ( 1  d \  d ( I  d \  ~ ^
% = (c )  + p t e [ p t e ) + * % { } % ; ) ’ (12-5)

the wave vector:

Q = (P,Vzf ,  (1.2.6)

and the source vector:

d (  Fx \  d (  F,D = |  { - J -  . (1 .2.7)
T

The equations (1.2.3) and (1.2.4) read in matrix notation:

d Q
^  =  AQ +  D, (1.2.8)

with

- ( & %  ° P) '  (L2’9) 
The equation (1.2.8) is the two-way representation of wavefield propagation. The term

two-way representation is due to the property of equation (l.2 .8 ) to inherently account 

for downgoing and upgoing waves. Alternatively, in the next section the one-way rep

resentation is treated that explicitly distinguishes between the downgoing and upgoing 

wavefield states. The solution to the source free part of (1.2.8), in recursive propagator 

notation, is:

Q(*i) =  Y ( z h z i - l ) Q ( z i - l ) ,  (1.2.10)

with

Y (2 *,zi-i) =  exp{Aj(zi -  2 i_i)}, (1.2.11)

or:
i - l

Q(«) =  exp{Aj( 2  -  Zi-x)} J J  expiAjiz j  -  *j_i)}Q(z0)
i=i

= Y ( z , z 0)Q(z0), (1 .2 .1 2 )
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

where exp{-} is understood as a series expansion (Ursin, 1983). Moreover, the propagator 

satisfies the initial condition:

The product representation in equation (1.2.12) is ordered in depth. The solution includ

ing the source term reads (Aki and Richards, 1980):

nates and derivatives. Wapenaar et al. (1987) discuss the numerical implementation of 

the above equations for the case of laterally varying media. Their numerical examples un

derline the validity of the solution in horizontally layered media with smoothly varying 

velocities and densities in the lateral direction. Theoretically, one could use the two-way 

representation for both modelling and imaging. For imaging, this representation is less 

useful, since imaging algorithms are usually based on the primary data representation. 

That is, multiply reflected wavefield energy is not considered. In order to correctly back- 

propagate (inverse extrapolate) multiple reflection data, a detailed prior knowledge of 

the subsurface velocity field is necessary. This prior knowledge is generally not available. 

In fact, having this information would make imaging/inversion essentially unnecessary. 

Hence, more robust - but also less accurate - one-way propagators that do not gener

ate reflected waves are utilized in most imaging/inversion applications. This reasoning 

reflects the ubiquitous dilemma of seismic imaging/inversion. For completeness, it is 

mentioned that Kosloff and Baysal (1983) and Baysal et al. (1984) point out properties of 

the two-way representation that are interesting for imaging/inversion. By suppressing 

reflected energy in the two-way representation these properties may be exploited result

ing in algorithms that are valid in smoothly varying media (in all directions) and which 

are accurate up to high tilt angles of propagation.

1.2.2 One-way wavefield representation

The purpose of the one-way wavefield representation is to decompose the total acoustic 

wavefield described by the equations (1.1.4) and (1.1.5) into two separate components, 

one for downgoing waves and one for upgoing waves (Claerbout, 1971). Where there are

Y(*o,*o) =  I- (1.2.13)

Q(*0 =  Y(2,20)Q(zo) +

It is understood that the symbolic propagators depend implicitly on the lateral coordi-
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

medium parameter changes, one wave type scatters into the other. This decomposition 

allows for the interpretation of the evolving wavefield in terms of propagation (phase- 

shift) and scattering (interaction between the downgoing and upgoing states). To this 

end the square-root operator Hi is formally defined by:

sumed to be negligible. Neglecting the lateral density variations gives H 2 the form of the

responding eigenvectors. The columns of the composition matrix L  are normalized with 

respect to the vertical energy flux (Wapenaar, 1998). The operator L -1  decomposes the 

wave vector Q  into downgoing and upgoing wavefield components or states P + and 

P ~ , respectively. In the same way the source vector D  is transformed into the one way 

representation of the source distributions S + and S~. In matrix notation, composition 

and decomposition are:

W apenaar and Grimbergen (1996) define a m odified velocity c', such that (p -)2 =  ( f ) 2 ~  3Vlfp^ lP +  ^ r -  
This definition retains the form of %2 as a H elm holtz operator and thus allow s for the incorporation o f lateral 
density variations in  one-w ay propagation. This possibility has not been considered here because reliable 
density inform ation is generally not available in  exploration seism ic. M ore importantly, the transm itted  
w avefield , the m odelled  w avefield  com ponent in one-w ay m odellin g /im agin g , is relatively insensitive to 
the density variations (Wu, 1996).

(1.2.15)

such that

(1.2.16)

That is, lateral derivatives of the density field and the commutator [(tu/c)2, V2] are as-

Helmholtz operator. 1 The two-way operator A  is decomposed according to A  =  L A L  1 

(Wapenaar, 1998), with

(1.2.17)

(1.2.18)

and

(1.2.19)

The diagonal elements in A  are the eigenvalues of A  and the columns of L  are the cor-

Q =  LP, D =  LS, (1.2 .20)
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

and

P  =  L- 1 Q, S =  L_ 1 D, (1.2 .21)

where P  =  (P+, P  )T and S =  (S+, S  )r . Upon inserting (1.2.20) into (1.2.8) the differ

ential equation for P  follows:

(1.2 .22)
dP „
“o-  — P P  + S) dz

where

Componentwise, this reads:

B  =  A - L - 1 ^  =  A  +  © .dz ~

d_ (P+  
dz \ P -

-iHi 0 
0  -\-lbL] + r +  n~ 

n + r~
p+
p -  +

s+
s~

where

and

T+ = T~ = - -  ( C ^ C x  +  C i ldzC2) ,

n + = n~ = - -  {c^dzCx -  c^ dzc 2) .

(1.2.23)

(1.2.24)

(1.2.25)

(1.2.26)

The first matrix on the right hand side of the equation (1.2.24) is the propagation ma

trix. The second matrix is responsible for the interactions between the downgoing and 

upgoing wavefield states (scattering). According to the structure of equation (1.2.24) the 

scattering matrix is comprised of forward (transmission) scattering operators along the 

diagonal and backward (reflection) scattering operators along the anti-diagonal.

For completeness, the relation between the one-way and the two-way representation 

in terms of two-way propagation is briefly discussed. Using the eigenvalue decompo

sition the propagator for the two-way representation in equation (1 .2 .1 0 ) is replaced by 

three sub-processes (Wapenaar et al., 1987):

Y( z i , z i - i )  =  L(zi)W(zi ,Zi- i )Ij  L(zi -1), (1.2.27)

with

W (zi,zi_i) =  expjA^Zj -  Zi-1 )}. (1.2.28)

A flowchart in Figure 1.2 illustrates the relation between the two representations. While 

both approaches are mathematically equivalent, the two-way representation in equation
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

- 1

z i-l w
Z :

V,

Figure 1.2: Flowchart demonstrating the relation between the two-way and the one-way repre
sentation of wavefield propagation (after Wapenaar et al. (1987)).

(1 .2 .1 0 ) is numerically advantageous if wavefield extrapolation based on two-way prop

agation is to be carried out (Wapenaar et al., 1987).

In the next section the (flux-normalized) one-way wavefield representation serves to 

formulate propagators that exclusively operate on either downgoing or upgoing waves. 

This restriction allows for the formulation of one-way propagators for imaging/inversion 

that do not produce reflected energy.

1.2.3 Recursive one-way wavefield propagator

One-way extrapolation operators provide an economical method for modelling certain 

types of wave motion. The basic restriction is that only the transmitted wavefield com

ponent is modelled. The ultimate goal of imaging/inversion is to image the scattering 

operator that gives rise to the recorded (primary) reflected wavefield.

Laterally invariant media

For the moment, it may be assumed that there are no lateral medium parameter varia

tions. Hence, all wavefield quantities can be expressed in the lateral Fourier domain. It 

follows for the operator

H 2 = k 2z =  0 2 - ( f c 2 +  A;2)) {12 29)

where the 'hat' symbolizes quantities in the lateral wavenumber domain. The variables 

kx and ky are the horizontal wavenumbers and kz is the vertical wavenumber. The space 

dependence is given by e*kx, where k =  {kx,ky,k z). For notational convenience, the
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

lateral wavenumber vector is defined: k< =  (kx. ky). Equation (1.2.29) is the dispersion 

relation of the wave equation. The operator Hi  is trivial:

Hi = kz = — y l  -  for 1 > (1.2.30)c V ur ur
and

ui r 2 lie/12 r2 lk) l2
Hi = kz = i —\ —L ------ 1, for 1 < ----- 5 • (1.2.31)

c V ur or
The latter equation causes exponentially decaying waves (evanescent waves) in the causal 

one-way solutions (see below). The case 1 =  c corresponds to the critical angle 

of incidence for waves impinging on an interface with a positive velocity discontinuity, 

which causes a head wave to be produced. In terms of ray theory in smoothly vary

ing velocity fields (Appendix A), this situation corresponds to the turning point where 

downgoing/upgoing rays reverse their direction. In the following, the head wave and 

turning ray phenomena are excluded from modelling and thus imaging/inversion. In 

the laterally homogeneous case the source free part of the equations (1.2.24) simplifies to:

= Tikzp ±  + (1-2.32)

where kz =  y .  The term \ k ~ i(Pjp is the differential reflection coefficient per unit depth

in a horizontally layered medium (compare to section 1.3.3). The key to formulating

one-way propagators is that interactions between the downgoing and upgoing states 

are neglected. Consequently, the equations (1.2.32) decouple into two separate one-way 

wave equations:
B P ^
—  = t  ikzP±.  (1.2.33)

The causal solutions (downward extrapolation for downgoing and upward extrapolation 

for upgoing states) are written in terms of discrete, recursive one-way propagators:

P+(zi) = e - ^ - 2i-i).P+ (^_ i) =  W +{zh z ^ i ) P +{z^i ) ,  (1.2.34)

and

P~(zi-i)  = e+ik^ - ^ p - ( z i )  = W~ (zi-i, Zi)P~ (zi). (1.2.35)

The propagators satisfy:

W +( z i - i , z ^ i )  -  W-(zi ,Zi) = I , (1.2.36)

where I  is the identity operator in the wavenumber domain.
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

Laterally varying media

If the scattering operator in equation (1.2.24) is neglected the source free, decoupled one

way wave equations for laterally varying media follow:

«p±
= TiH iP ^ .  (1.2.37)

oz

The (continuous) one-way propagators W ± for laterally variant media are defined by:

( £  T  m )  Z’ Z>) = ° ’ (L2,38)

complemented with the initial condition:

W± (x/, 2: =  z', x[, z') = 5{xt -  xj), (1.2.39)

where xj =  (:/;, y). Consider the functions P ± (x'l. z r) that are solutions of the one-way

wave equations (1.2.37). With the properties (1.2.38) and (1.2.39) one has:

F ± (xi,z) = J  W ±(xi,z,x'l, z ' )P± {x'l,z')dx,l, (1.2.40)

hence the term propagator for W ± . Causality requires z > z' for downward propagation 

W + and z < z' for upward propagation W ~ . From equation (1.2.39), the propagator can 

be solved by a Taylor series expansion with respect to (z — z') (Grimbergen et al., 1998):

k\ dzkk= 0

(1.2.41)

Using the properties (1.2.38) and (1.2.39) one has:

LXJ /  t \ K

W ^ i x u z ^ z ' )  =  E  (=F 0 fĉ ( x t - x | ) ,  (1.2.42)

or formally:

k\k= 0

W ^ix i ,  z, x[, z') ~  exp{qpi7^i (z -  z')}S(xi -  x[). (1.2.43)

Hence, the propagator W ± acts as the kernel for the operator exp{=pi?T| (z — z1)} (Grim

bergen et al., 1998). The Taylor expansion is valid for small extrapolation steps z — z' , 

that is, for the extrapolation across one thin slab Az — z\ — Zj_i. The extension to larger
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

extrapolation steps is again achieved by recursive application of the exponential operator 

(depth ordered product representation). The causal downward propagator is:

i - 1

W +(xh z,x'u z') = exp{- iH i(z  -  Zi-i)} J J  exp{iHi{zj -  Zj-i)}6 (*i -  x{), (1.2.44)
j=i

where z' = zq and H\ depends on depth z. The causal upward propagator W~  is defined

where z > z' and z < z' for downgoing- and upgoing waves, respectively, and Az > 0  in 

both cases.

Split-step propagator

For computational purposes the operator Hi is expanded in terms of lateral slowness 

perturbations As =  s — so to the first order:

where s =  1/c. The quantity so equals the average lateral slowness within the slab Az. 

The split-step approximation involves the negligence of the square-root in the denomi

nator of equation (1.2.46) (Stoffa et al., 1990). This approximation yields for Hi  simply:

operator in the lateral Fourier domain (Gazdag, 1978). The second term is a vertical 'time- 

shift' that depends on the slowness perturbation As and is applied in the space domain.

analogously. To warrant a compact notation in later equations one may write causal 

down- and upward propagation in product representation symbolically as:

W± (x(,2 ,x{,2:') =  exp{-tftiA«}<S(xj -  x{), (1.2.45)

U) (1.2.46)

Hi ~  Hi  +  wAs, (1.2.47)

and for the exponential operator in equation (1.2.45):

exp{ - iH iA z}  « (1.2.48)

where Az > 0. The leading term H {{ in the exponential is implemented as a phase-shift
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

The relatively crude split-step approximation yields a simple and economical marching- 

type algorithm that shuttles between the lateral Fourier and space domain ('dual-domain 

implementation'). This approximation has proven to be sufficiently accurate in many 

situations. The hybrid split-step propagator, operating in both the space and the spatial 

wavenumber domain, becomes:

exp{—*«!Az}  «  = SSoT ^ e ~ ik^ zT ^ , (1.2.49)

where and are the forward and inverse lateral Fourier transforms, respectively. 

The split-step operator symbol SSo has been introduced for later convenience. The verti

cal wavenumber is:

k°z = s 0u j  1 - ^ .  (1.2.50)
Sr\U)

To investigate the accuracy of the split-step approximation consider the index n =  sqc =  

^  that is the ratio of the actual velocity c and the reference velocity cq = within a slab 

Az.  The exact dispersion relation is expressed as:

«*, =  / _  w
u; V or

and the split-step approximated dispersion relation becomes:

ckz cn|k/ | 2—  tan \  1 -  01 *' — n +  1. (1.2.52)
oj V ur

The accuracy of this approximation depends on the magnitude of n =  1 +  <5n. Figure 1.3 

shows the split-step approximation for three different values of 6n. For small contrasts 

the approximation is acceptable up to high tilt angles of propagation. In large contrast 

media the accuracy deteriorates quickly as the propagation angle increases. As opposed 

to finite-difference techniques that are obtained from a direct square-root expansion of 

the operator Hi  (Claerbout, 1985), the split-step dispersion relation is exact w hen no 

lateral velocity variations are present.

PSPI propagator

Where strong lateral velocity variations are present, a more accurate extrapolation tech

nique is necessary. There exist a number of techniques to achieve this (e.g., Ristow and
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0.8

0.4

—  Exact dispersion relation 
. Split-step: 8n=0.05

—  Split-step: 8n=0.1 
Split-step: 8n=0.15

0.2

0.80.2 0.4

Figure 1.3: The exact dispersion relation and its split-step approximation corresponding to the 
equations (1.2.51) and (1.2.52), respectively. The split-step approximated dispersion relations are 
shown for three magnitudes of relative lateral velocity perturbation: Sn = 0.05, Sn = 0.1 and 
Sn = 0.15.

Riihl (1994); Grimbergen et al. (1998)). One way to improve accuracy is to apply the 

split-step propagator in a wavefield windowing fashion. Gazdag and Sguazzero (1984) 

proposed the phase-shift-plus-interpolation (PSPI) technique to better account for sig

nificant lateral velocity variations. Kessinger (1992) combined the split-step approach 

with PSPI, hereafter referred to as the split-step PSPI technique. The extrapolation pro

cedure consists essentially of two steps. First, the wavefield is phase-shift extrapolated 

across the thin slab Az for a number of reference slownesses instead of just one 

average slowness so. This is followed by the split-step correction with respect to the ref

erence slownesses s"ej. Second, the actual wavefield is computed by interpolating the 

resulting reference wavefields. Clearly, the split-step PSPI is sensitive to the reference 

slownesses s”ey and a higher number of them results in a more accurate extrapolation. 

Bagaini et al. (1995) proposed an adaptive criterion for selecting the reference slownesses 

sre f = which has been adopted in this thesis. The wavefield copying and linear in-
J  r e f

terpolation operator Cn  and £j\r, respectively, are defined. The first operator creates N
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1.3. LINEARIZED DATA MODELLING

identical wavefield copies, where N  is the number of selected reference slownesses s”ej  

for a particular thin slab. Then, the N  wavefields are phase-shift extrapolated and split- 

step corrected with respect to the N  reference slownesses. The interpolation operator £n 

combines the N  resulting reference wavefields P ^ ( x i ,  z) by a weighted summation in 

the space domain according to the actual velocity c:

N

P ± (x,,z) -  (1.2.53)
71=  1

where

r n+1  — ra n =  re£ _°  „n+ 1
Cre f  Cre f

r  — r n , n+1 =  C , °re f  ~n+T jrT
if <%ef < c < a n“ l =  o  ̂ else' (1.2.54)

Cr e / Cr e / „

with 1 < n < N  — 1. The split-step PSPI propagator is symbolically summarized as:

exp { - iH iA z}  *  £NS?nefF ~ e  :lK* * zCNPXl, (1.2.55)

where

and

(L2-56>r e / V w

with A sn = s -  s" (1.2.57)
r e /  ^

The superscript N for the inverse Fourier transform J 7 - 1  and the split-step operator <S 

indicates that both are to be applied N times. Depending on the lateral velocity profile 

within each slab either the phase-shift, the split-step, or the split-step PSPI propagator are 

used for wavefield extrapolation. This results in a flexible and adaptive marching-type al

gorithm. The wavefield propagators are calculated and applied for separate frequencies 

u, which makes the algorithm structure well suited for the implementation in a parallel 

computer architecture.

1.3 Linearized data m odelling

In the previous section one-way wavefield propagators that extrapolate the wavefield 

from one depth level to the other have been introduced. In this part the forward m od
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1.3. LINEARIZED DATA MODELLING

elling formula is derived that relates the reflection operator TZ+ to the seismic surface 

data.

1.3.1 Primary data representation

The one-way Green's functions G± are defined (Wapenaar, 1996) as:

G±(x,x')  =  S ( x - x ' ) ,  (1.3.1)

where

G+(x,x ') = H(z  — z ' )W +(xi,z,x'l,z'), (1.3.2)

and

G~(x,x')  = H(z' — z)W~{x.i, z , xj, z ' ) .  (1.3.3)

The Heaviside function H  generates the ^-function in depth and forces the Green's func

tions to be causal. It is useful to introduce the reference one-way wave-equation:

( £ - B re/) G  =  M ( x - x ') J (1.3.4)

with the diagonal Green's matrix G:

G(x ,x' ) = ( G+(^ X,) g _ (^ , )) .  (1.3.5)

and the 2 x 2  identity matrix I . The operator B rej  is the propagation operator A :

_,°Wl) .  d.3.6)

That is, the reference solution does not include explicit scattering. The equation to be 

solved is:

( j t - B j P  = SS(u)6 ( x - x a), (1.3.7)

where S(u)) is the source's frequency signature and x,s. the source location. It is useful to 

define the contrast operator V — B — B rej, so that the problem can be stated as:

^  -  B re/)  P  =  SS(uj)S(x. -  x s) + Y P , (1-3.8)

or as an integral equation:

P(x) =  / G ( x ,x ') ( S ( x ') 5 M . ( x '- x s) +  Y (x ')P ( x ') ) ^ ,  (1.3.9)
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or

P(x) =  G (x ,x s)S(xa)S(w) +  J  G (x ,x /)Y (x ')P(x ')dx/. (1.3.10)

The iterative solution for this integral equation entails the Born series:

P n(x) =  G (x ,x fl)S(xB)S(w) +  J  G (x ,x ')Y (x ')P n_1 (x')dx', (1.3.11)

for n > 0 and P° =  G (x ,x s)S(xs)5'(w). Choosing n =  1 yields the first order or linear 

Born approximation:

P x(x) =  G (x ,x s)S(xs)5(w) +  S ( u ) /G (x ,x O Y (x O G (x ',x s)S(xs)dx'. (1.3.12)

The choice of the reference operator (1.3.6) leaves the contrast operator y  =  0 .  Consider 

the primary upgoing response P~ related to the source function for downgoing waves 

S + and disregard the direct wave. Moreover, if transmission effects are neglected above 

the target reflector represented by TZ+(x!) (homogeneous or small contrast overburden) 

one obtains (Wapenaar, 1996):

P~(-x) =  S(c j ) J  W _ (x, x/)7£+(x/)W+ (x/,x,j)5 +(xs)dx/. (1.3.13)

Finally, the operator 7£+(xJ, z') is replaced by its convolution kernel f?+ (xr; — x sj, zJ) for 

specular reflections (see section 1.3.2), and equation (1.3.13) breaks down into three sub

processes (Wapenaar and Herrmann, 1996):

P +(x'sl,z') = J  W +(-x'sl, z ' , x shz0)S+(x8i ,z0)dx.sh (1.3.14)

p-(x.'rl,z') = j  R +{x!r l - < i , z ' ) P +K n z ' ) d < n  (1-3.15)

and

P~{xri ,z0) =  J  W~(-xri ,z0 , x ,rhz')P~(x'rl,z ')dx/rl, (1.3.16)

where the source signature S(cj) has been dropped for simplicity. It is clear, however, 

that all subsequent equations are inherently bandlimited by S(to). Ideally, the source sig

nature should be deconvolved from the data. This requires the knowledge of the wavelet 

S(cj) which can be difficult to estimate. Deconvolution, if successful, increases the fre

quency bandwidth and enhances the resolution power of the seismic data. For horizon

tal interfaces separating regions of different medium parameters R + is a ^-function in
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depth. If more than one target reflector is considered, the omitted z' integration in the 

equations (1.3.14) to (1.3.16) becomes relevant again. The reflection kernel R + links the 

local downgoing wavefield P +(x'sl, z') with the upgoing wavefield P~(x.'rl,z') at the tar

get reflector. In general, the convolution kernel in equation (1.3.15) is non-stationary to 

accommodate smooth lateral velocity variations directly above the reflecting interface. 

The non-stationarity is addressed in Section 1.3.4. In a strict sense, only horizontal in

terfaces are considered. A mathematically rigorous treatment of irregular interfaces is 

not straightforward. Therefore, the interfaces are assumed to be horizontal for now. Sec

tion 1.3.4 introduces an ad hoc reflector dip correction for specular reflections off moder

ately irregular interfaces based on ray theoretical considerations. The primary one-way 

representation with its three sub-processes is illustrated in Figure 1.4. The Section 1.3.3 

discusses the effect of neglecting overburden transmission effects in more detail. More

over, for the approximate validity of the primary representation in practical situations 

the following two pre-processing steps are required:

• decomposition of the physical measurements into one-way wavefields (i.e., 'deghost

ing'),

• elimination of multiple reflections related to the free surface.

In numerical data simulations these requirements are satisfied by absorbing boundary 

conditions in the computational subsurface model.

1.3.2 Specular reflection

To verify equation (1.3.13) for laterally invariant media, the reflection mechanism (1.3.15) 

is evaluated in the lateral Fourier domain. For horizontal interfaces the reflection kernel 

R +(xri — x si,z') becomes the differential operator \k~z ^ffi-8 (z — z'), where ksz =  kszp 

is the vertical wavenumber of the impinging downgoing wavefield. Since the kernel is 

a multiplication operator in the Fourier domain, there is no conversion between differ

ent horizontal wavenumbers (specular reflection). The reflected upgoing wavefield as a 

function of the illuminating downgoing wavefield is thus:

1 ~ r l k
P~(krl,z') =  - k ; zl - ^ P +(ksl,z !), (1.3.17)
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ww
R eflector elem ent

Figure 1.4: The primary one-way representation for seismic reflection data. Transmission losses 
due to energy partitioning at interfaces between the reference plane zq and the target reflector 
element are neglected. Note that the ray concept is invoked for illustration only.

where kri =  k,/ and k r 2  =  — k sz according to Snell's law. Moreover, in laterally invariant 

media phase-shift propagators link the source and receiver wavefields at zq w ith the local 

wavefields at z' (Gazdag, 1978).

1.3.3 Acoustic reflection and transmission coefficients

In this section angle dependent (flux normalized) reflection and transmission coefficients 

for a plane boundary of two fluids are derived and discussed. This allows for a some

what simplistic assessment of the errors involved in neglecting overburden transmission 

losses within the acoustic approximation. In reality, this assessment has limited validity. 

In an elastic medium, compressional waves that impinge on a medium discontinuity gen

erate in part converted shear waves. That means compressional waves leak energy to the 

shear wavefield component, and compressional and shear waves can no longer be treated 

as being independent. When dealing with real-world data, the more realistic Zoeppritz 

equations for plane waves impinging on a plane boundary replace the fluid-fluid reflec

tion and transmission coefficients (Aki and Richards, 1980). Fortunately, this does not 

change any of the migration/inversion concepts discussed in Chapter 2. It is clear, how

ever, that any medium parameter inversion subsequent to acoustic m igration/inversion 

is based on Zoeppritz's equations, not the acoustic approximation. Keeping this restric

tion is mind, it is justified to derive migration/inversion for compressional waves within 

the mathematically less involved acoustic approximation.
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Situation 1: Situation 2:

+ 1 - + + +
P,=RP, P = T Pr l 1 2

+ + + + + + + —

P = T P, 2 1 p2=t  p, J* p2=r p 2 **2

Figure 1.5: Flux normalized reflection and transmission at a medium discontinuity. Situation 1: 
In the left diagram incoming downgoing and reflected upgoing waves exist in the upper medium 
and only transmitted downgoing waves exist in the lower medium. Neglecting the reflected 
upgoing wave leaves only the flux normalized transmission process for downward extrapolation 
(right diagram). Situation 2: In the left diagram incoming upgoing and reflected downgoing 
waves exit in the lower medium and only transmitted upgoing waves exist in the upper medium. 
Again, neglecting the reflected downgoing wave leaves the flux-normalized transmission process 
for upward extrapolation (right diagram). The indices 1 and 2 stand for the wavefields in the 
upper and lower half of the medium, respectively. The transmission coefficients are identical in 
both cases: T+ = T~.

Consider the two situations illustrated in Figure 1.5. A plane boundary separates 

two homogeneous layers with velocities c\ and C2  and densities p\ and p2 for the first 

and second layer, respectively. Without loss of generality, the boundary is assumed to be 

perpendicular to the z axis. In the first situation the incident downgoing wavefield P (+ 

and the reflected upgoing wavefield P f  exist in the upper layer. Only the transmitted 

wave P2+ may exit in the lower medium. In the second situation the configuration is re

versed. There are an incident upgoing wavefield and a downgoing reflection in the lower 

medium and a transmitted upgoing wavefield in the upper medium. The boundary con

ditions demand that the pressure P  and the normal particle velocity Vz be continuous 

across the interface. With the equations (1.2.20) and (1.2.21) in the lateral wavenumber 

domain (assuming no lateral variations) the reflection coefficients R + and R~ and the 

transmission coefficients T + and T~ are (Wapenaar, 1998):

R+ =  5 -  =  b l ~ b 2, (1.3.18)
Px+ kz l + k Z2

P+
RT = =  - R +, (1.3.19)

^ 2

, , w (R +)2, (1-3.20)
kz,i kZji T- kZ j2
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Example 1: Example 2:

£ - 0 . 5

Angle of incidence (degrees)

>9-0.5

Angle of incidence (degrees)

Example 3: Example 4:

Compl. coeff.

£ - 0 . 5

Angle of incidence (degrees)

Compl. coeff.

£ - 0 . 5

Angle of incidence (degrees)

Figure 1.6: Four examples illustrating the angle dependence of the acoustic reflection coefficient 
R+. Example V. c\ = 2600y, C2 = 2000y, pi = 1 .4^- and p2 = 2 .2 5 ^ . Example2: c\ — 2600y, 
c2 = 2000f , pi = 2 .2 5 ^  and p2 = 1 .4 ^ .  Example 3: Cl = 2000^, c2 = 2600f, Pl = 2 .2 5 ^  
and p2 = 1 -4 ^ 3  • Example 4: ci = 2000^, c2 = 2600^, pi = 1 .4 ^  and p2 = 2 .2 5 ^ .

=  v /l -  (F+)2, (1.3.21)
F2 V «Z,1

and

T + =  T~, (1.3.22)

where ftz ,i,2  =  —  |k ; | 2 and fcz ,i,2  = These relationships can be written in

terms of angle of incidence 9 using the plane wave parameterization with the horizontal 

ray parameter p = smĉ  = ^  and Snell's law. The dispersion relation becomes fcz ,i,2  = 

1 — ('{^P2- The reflection and transmission coefficients for situation 1 in the ray 

param eter/angle domain are:

R+ =  ^ y / l - y - ^ C i V l - ^  (13  23)

p2c2 y / l -  cjp2 +  pici a /i  -  4 p 2
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T+ =  2 V/p 2 C2 PlC1 y T -  c j p y i  -  c j ' f t  3 24

P 2 C 2  a / i  -  c f p 2 +  P i  Cl v ^ l  -  C2P2

The following observations for the angle dependent reflection coefficient i?+ are made:

• If ci > C2  and P2 C2 > pici, then the reflection coefficient will be a positive value for 

normal incidence. As 9 increases, the reflection coefficient will decrease, reaching 

zero at the intramission angle 9q:

P2 = \J (ci/c2 ) 2  — sin2 3  2g^
Pi \ / l  — sin2 60

Beyond the intramission angle, the reflection coefficient decreases to a value of —1 

at grazing incidence (example 1 in Figures 1.6 and 1.8).

• If ci > c2 and p2 c2 < pici, the reflection coefficient is always negative and equals 

— 1 for grazing incidence (example 2 in Figures 1.6 and 1.8).

• If c2 > ci the vertical wavenumber kZ2 becomes complex for angles greater than 

the critical angle 0C: sin(0c) =  c i/c2.The wave amplitude is exponentially decaying 

in the lower medium (evanescent wave). By defining kZ2 — %kZ2 — i \Jc\p2 — 1 

one can write for postcritical reflections:

R + =  (1.3.26)
k z i  +  i k z  2

For postcritical reflections the magnitude is 1 (total reflection), and the induced 

phase shift is <p =  2 tan - 1  (examples 3 and 4 in Figures 1.6 and 1.8).

For interfaces with a change in density only the reflection coefficient is angle inde-
P2 - P 1 
P2+P1 '

pendent: R + — R + = 2 2 _ 2 i

The flux-normalized transmission coefficients allows for a simplistic assessment of the 

errors involved in the negligence of transmission loss in the primary data representation 

(1.3.13). Consider the situation depicted in Figure 1.7. Assuming there is one extra inter

face between the target reflector element and the source/receiver datum  one has the total 

transmission coefficient:

T +T~ = 1 -  (.R+)2, (1.3.27)
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Z  * R eflector elem ent
I

Figure 1.7: The primary one-way representation with one extra interface between the
source/receiver datum and the target reflector element. The total transmission effect due to the 
additional interface is T+T~ = 1 — (R+)2.

where R + is the reflection coefficient of the additional interface. Neglecting transmission 

loss thus causes an error (R +)2. Figure 1.8 shows the transmission coefficients and the 

associated error terms for the medium parameters in Figure 1.5. For small contrasts, the 

angle dependent transmission error is negligible. For complex media w ith many layers 

and significant scattering, the cumulative second- and higher order errors may become 

significant. In such a case the primary data formula (1.3.13) will produce erroneous am

plitudes. Moreover, if the layering is fine, phase distortions can occur that result in dis

persion effects not accounted for by equation (1.3.13) (Wapenaar and Flerrmann, 1996).

1.3.4 DSR m odelling

In this section the generalized DSR (double-square-root) modelling propagator is derived 

(Claerbout, 1985). The DSR propagator treats the source and receiver wavefields simul

taneously and allows for a compact wavefield operator notation. The following devel

opment assumes that both sources and receivers have the same monopole characteristic. 

That is, their directional signatures are isotropic. Consider a multi-source and multi

receiver experiment. A number of single-source/multi-receiver experiments are carried 

out and combined to a single multi-source/multi-receiver dataset \F. Ideally, the entire 

reference plane zq is covered with source and receiver positions. In practice, of course, 

one has to deal with a finite survey area and finite recording aperture effects. The goal is 

to implement the primary modelling formula (1.3.13) for the multi-source/multi-receiver
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Example 1: Example 2:

Example 3:

0)
o  1.5

; 0.5

§ 0 .5

Angle of incidence (degrees)

§  0.5

Angle of incidence (degrees)

Example 4:

A head 
wave is

—\  pi

*

0 20 40 60 80
Angle of Incidence (degrees)

A head 
wave is 

produced.

§ 0 .5

Angle of incidence (degrees)

Figure 1.8: The flux normalized transmission coefficients T+ = T~ for the parameters in Figure 
1.6 (solid line). The transmission error term (f? + ) 2 is shown for comparison (dotted line). For 
small contrasts, the angle dependent transmission error is negligible. For complex media with 
significant scattering, the cumulative second- and higher order errors may become significant.

situation. The left hand side of equation (1.3.13) is understood as a function of the con

tinuous receiver coordinate x r =  x a s  well as of the continuous source coordinate x s. 

With the wavefield quantity \I/(xr ,x s,,zo, w) representing the multi-source/multi-receiver 

dataset at the reference datum  zq the modelling equation becomes:

^(x^x^cu) =  J  VF_ (xr ,x,a;)7^(x)W+(x ,xs,a;)(ix, (1.3.28)

where the +  sign for the reflection kernel has been dropped for notational convenience. 

The source term S + is assumed to be constant for all sources and, therefore, has been 

dropped as well. This might not be the case in practice and would have to be ad

dressed during pre-processing. For clarity, the previously omitted frequency depen

dence is included as an argument. By exploiting the reciprocity relation W + (x, x s, co) = 

W ~(xs,x, uj) (Wapenaar and Grimbergen, 1996) multi-source and multi-receiver mod-
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Space domain Wavenumber domain Ray domain
=  (x s,ys, z s) 

Xr =  f a n  Uri z r)

x si =  (xs,ys)
x rl =  {Xri Ur) 

m  =  \ { x ri + X S;) 

h =  \ { x ri - x sl)

ks =  i}^SXlkay , k s z ) 

k r =  {krxi  k ry, k r z ) 

k si =  (ksxi  k sy)  

kr/ — (k rxi  kry)  

k  m =  k  r/ "T k s; 

k/j, = k  ri k s/

P « =
Pr =  | f

P  si =  
p  =  kri

p km.
trm uj
„  k«,
P h ~  u

Table 1.2: Nomenclature and relationships for the source-receiver and the midpoint-offset 
coordinate systems (Stolt and Benson, 1986).

elling is carried out in two stages. First, the source/receiver wavefield 'I'|oc(xr;, x si,z, co) 

directly above the reflecting interface is created. It exhibits the AVA related to the medium 

properties above and below the target reflector. The coupling mechanism between the 

local interface reflection coefficient and the local wavefield is explained further below. 

Second, the upward propagators for the sources and receivers link the local wavefield 

'kioc(x rU x sii z -, w) to the wavefield ^(x,./, x sj, z q , uj) at the reference plane z q :

y ( x ri , x si,zo,u;) = J  J  W ~ (xri, z0,x'rl, z ,u )W ~ (xsi, z0,x'8l, z)

x $ Ioc(x '|, x ',, z, u)dx'sldx'rl. (1.3.29)

Inserting the upward propagator from equation (1.2.45) for the source- and receiver prop

agators in equation (1.3.29) gives:

y { x ri , x si ,z0,u) = + ^ ))A z} fi0 C(xfi,x si)z,w), (1.3.30)

where and are the square-root operators for the sources and receivers, respec

tively, in source-receiver coordinates. At this point, it is convenient to introduce the 

midpoint-offset coordinate system. The lateral coordinates are transformed according 

to (Stolt and Benson, 1986):

m = ^ i x ri + x si), h =  i ( x w -  x si), or xs( =  m - h ,  xr/ =  m  +  h, (1.3.31)

where m  is the midpoint vector and h is the half offset vector. The half offset vector h is 

not to be confused with the full offset vector x ri — x s;. The descriptors 'half' and 'full' are 

mostly omitted in the following for the sake of brevity. Table 1.2 gives an overview over
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1.3. LINEARIZED DATA MODELLING

the nomenclature and the relationships of some relevant quantities in the source-receiver 

and midpoint-offset coordinate systems. In midpoint-offset coordinates equation (1.3.30) 

reads:

tf(m,h,zo,f*;) =  1^*° exP{“ * (^ S ,h  +  ^ i 2 ,h)Az}^oc(m ,h ,z ,a 7), (1.3.32)

where h and h are the source and receiver square-root operators, respectively, 

expressed in midpoint-offset coordinates. This is the generalized form of Claerbout's 

(1985) DSR (double-square-root) propagator formulated within the context of wavefield 

modelling. Since the medium parameters are allowed to vary smoothly in the lateral di

rection, \t;oc(m, h, z, co) is a function of the midpoint position m. As mentioned earlier, 

the presented formalism is valid only for horizontal interfaces. However, for moderately 

irregular interfaces a local specular reflection mechanism is expected to hold (Aki and 

Richards, 1980). Therefore, irregular interfaces are approximated by piecewise planar 

and (dipping) reflector elements with angle dependent specular reflection coefficients as 

a function of midpoint location m. Where the interface curvature is significant relative 

to the dominant wavelength of the local seismic wavefield, this subsurface parameteri

zation breaks down in a dynamic sense. The scattering mechanism is then non-specular 

and the 'reflection coefficient' is merely a measure of diffraction scattering strength (We- 

glein and Stolt, 1999).

Angle dependent modelling for moderately irregular interfaces

The mechanism that couples the angle dependent reflection coefficient R  w ith the local 

source/receiver wavefield 'T/oc(m, h, z, oj) is easiest analyzed in terms of the local slow

ness vectors (Appendix A). Consider the slowness vectors p s and p r for the local source 

and receiver wavefields, respectively (Figure 1.9 and Table 1.2). For moderately irregular 

interfaces the reflection mechanism is specular and source and receiver slowness vectors 

describe a rhombus with diagonals d m =  pr +  p s and d h =  pr — p s in the reflection plane. 

The vector d m consists of the horizontal midpoint slowness vector pm and the vertical 

component pmz. Similarly, the diagonal d/t consists of the horizontal offset slowness vec

tor p h and the vertical component pflz. The modulus of p h is the offset ray parameter: 

Ph =  | P/J- The vector d m is normal to the reflecting surface while the vector d h is parallel
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Reflector dip < a ' lm

Azimuth

Strike direction

Dip direction
Reflection-plane/reflector intersection

Figure 1.9: A source/receiver ray pair coincident at an interface. The locally planar interface 
generates a specular reflection. The source and receiver slowness vectors p, and pr, respectively, 
are tangential to the rays. At the point of coincidence they describe a rhombus with diagonals 
dm = pr + ps and d^ = pr -  pg in the reflection plane. The vector dft is parallel to the intersection 
of the reflection plane with the reflector. The vector dm is normal vector to the reflector. 6 is 
the angle of incidence measured against dm and </> is dip angle of the reflector. The angle a is 
the azimuth defined as the angle between the reflection-plane/reflector intersection and the dip 
direction.

to the intersection of the reflection plane with the reflector surface. From Figure 1.9 one 

finds:
si„#  =  . M  =  =   (i.3.33)

2|pr | 2 2\Jcos2  a  cos2  <f> +  sin a
where 9 is the angle of incidence of the reflection coefficient in equation (1.3.23), 4> is the 

reflector dip and a  is the azimuth defined as the angle between the reflection-plane and 

reflector intersection with respect to the dip direction. The velocity c(m) is the veloc

ity directly above the reflection point at (m, z). Relationship (1.3.33) couples the joint 

source/receiver wavefield quantity to the angle of incidence 9 of the reflection coeffi

cient in equation (1.3.23). The reflector dip <j> and the azimuth a  enter as local parameters 

that have to be provided. The azimuth a  is determined from the dip direction and the 

horizontal offset slowness vector p h. The quantity yjcos2 a  cos2  </> +  sin2 a  simplifies to 

cos cf> when the strike direction is normal to the reflection-plane. Because the reflection 

coefficient is frequency independent, the following procedure to set up the local (off

set Fourier transformed) wavefield ^ oc(m, k/j,z,u;) directly above the target reflector
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hx
hx

hx

Figure 1.10: The radial trace transform (RTT) maps the (k/i, to) space into the (ph,co) space (Ap
pendix B). Only the planes khy — 0 and phy = 0 are shown. The RTT extracts the wavefield 
amplitudes along radial lines in the (khx,co) space and maps the result into the (phx,u>) domain. 
In practice, the limited offset wavenumber range due to a finite recording aperture and the finite 
frequency band (shaded area) cause truncation effects in the (phx, co) space. The maximum unbi
ased offset ray parameter is denoted by p™£x. The adjoint of RTT operator maps lines parallel to 
the to axis into radial lines in the (phx,co) domain (after Sava et al. (2001)). In three dimensions the 
transformation maps cones in the (kh,u>) space to cylinders in the (ph,co) domain and vice versa.

results:

• calculate the angle dependent reflection coefficient using the medium properties 

above and below the interface at depth location (m, z),

• determine the local dip direction and dip angle <f>,

• convert the incidence angle 6 to offset slowness using the parameter set (ph; (p, a) 

according to equation (1.3.33),

• place the corresponding values for reflection coefficient in the {ph, lo) domain par

allel to the co axis,

• and, finally, transform the local reflection coefficient from the (p/,,u) domain into 

the local wavefield ’f%c(m, k^, z, co).

The last step is necessary to have the local wavefield in a format suitable for a recur

sive wavefield propagator that does not depend on the offset ray parameter. The con

version is achieved through the adjoint operator of the radial trace transform (RTT) in
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the (k/!,o;) domain (de Bruin et al., 1990; Prucha et al., 1999; Mosher and Foster, 2000; 

Sava et al., 2001). The RTT is recognized as an implementation of the better known r —p 

transform (Appendix B). In modelling, the adjoint of the RTT operator is employed; for 

imaging/inversion, the RTT operator itself becomes important. The action of the RTT 

operator and its adjoint are illustrated in Figure 1.10. In the (ph,uj) domain the reflec

tion coefficients are arranged parallel to the w axis along concentric cylinders with radius 

ph = |p h |. To obtain the corresponding local wavefield in the (k/,, w) domain the cylinders 

are mapped into cones determined by the ratio:

Ph = — ■ (1-3.34)UJ

This mapping, including the distribution of R(m,z ,6)  along the ui axis in the (ph,u)  

domain, is formally expressed as:

^<oc(in, kft, z , uj) = AXuR ( m , z ip h\</>,a) = 2 ^ R (m ,z ,p ft;0 ,a ) |Ph=kji/a,, (1.3.35)

where 2^ is the identity operator with respect to frequency. The operator AX^ models 

the wavefield's amplitude variation as a function of ray parameter (AVP) rather than 

angle. Ray parameter and reflection angle are closely related through equation (1.3.33) 

and 4> and a  enter as external parameters. The mapping procedure is carried out at each 

midpoint location m. A modelling algorithm based on this recipe appears rather cum

bersome. Fortunately, in (least-squares) imaging/inversion this model parameterization 

is not carried out explicitly as to be explained in the next chapter. Finally, to have a 

more compact notation the generalized DSR upward propagator symbol for the joint 

source/receiver wavefield is introduced:

V {SR){z0,z) =  Y T °  exp{-*(?42,h +  ^S2,h)A*}’ (1.3.36)

and, w ith the modelling operator A L^, equation (1.3.32) becomes:
poo

' fr(m,h,z0,u) = V {SR) (z0, z ^ ^ M u j R i m . ,  z , p h; </>, a)dz, (1.3.37)
J Zo

where is the inverse offset Fourier transform. The previously omitted z integration 

has been included (multiple target reflectors), which automatically implies negligible

38

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



1.3. LINEARIZED DATA MODELLING

R eflector  elem ent

Figure 1.11: The 'survey-raising' thought experiment. Consider a source (diamond) and a re
ceiver (triangle) located directly above the target reflector element. The amplitude variation with 
angle (AVA) of the wavefield directly above the reflector is proportional to angle dependent re
flection coefficient l?(m, z, 9) = R{m, z ,ph; <£, a). According to equation (1.3.32) the application 
of the 'double-square-root' propagator is equivalent to datuming the sources and receivers along 
their ray paths to the reference plane zq.

transmission effects (low contrast media). The action of the (generalized) DSR propa

gator v ( SR) (zo, z) can be regarded as datuming the local wavefield at the reflector datum 

z to the source/receiver datum  z q . Figure 1.11 illustrates this with the 'survey-raising' 

thought experiment.

Angle independent modelling

Often in imaging no attention is paid to the angle behavior of the (local) wavefield. Only 

(angle dependent) amplitude changes due to propagation effects are considered, and 

the reflection coefficients are approximated by an angle independent average R(m, z) of 

R(m. z, 6). If the reflection process is non-specular, f?,(m, z) is an angle independent mea

sure of (diffraction) scattering strength. The operator AZU in equation (1.3.35) simplifies 

greatly. Rather than mapping the corrected reflection coefficient into cones, the average 

coefficient is evenly distributed over the entire (k^, uj) space. Hence, the local wavefield 

is a constant function of kh, as opposed to slowly varying. In this case, the modelling 

operator is replaced by I k h,oj- Effectively, the scattering mechanism does not exhibit 

angle dependence and simplifies to that of a reflector/diffractor with an angle indepen

dent radiation pattern. The local wavefield's offset dependence is then S(hx)S(hy) at the 

reflector/diffractor location (Weglein and Stolt, 1999). In other words, the local wavefield
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\&/oc(m, h =  0 , z, cu) and the coefficient jR(m, z) can be directly identified:

$ V (in , h =  0, z, u) = T ^ l kh!0JR{ m, z) = R{ m, z). (1.3.38)

An algorithm based on this parameterization ignores AVA effects and thus aims at struc

tural rather than amplitude information.

Implementation in laterally invariant media

Consider a laterally invariant medium. All involved quantities are expressed in the 

midpoint-offset Fourier domain:
roc

&(km,k h,z0,w )=  'p(SR’)(zo,z)'AXuR (km, z , p h;<f>,a)dz, (1.3.39)
J  ZQ

where

V {SR) {ze, z) = J [ Z0 e~ik*Az, (1.3.40)

with

hence the term 'double-square-root' propagator (Claerbout, 1985). For a computer imple

mentation it is convenient to prescribe the modelling procedure in an algorithmic form. 

The depth integration in formula (1.3.39) is discretized according to:

^ ( k ^ k ^ z c w )  =  ^ ( k m ^ h ^ c w )  +'P('SK){zo,zi)^ioc{km, k h,zi,u})

+  V^SR) {zQ, z2)'&ioc(km, k/», z2, U)) +  . . . ,  (1.3.42)

where the quantity $ ioc(km, k h, Zi-i, u) -  M u R { k m, zu p h, <f>,a),i =  1 , 2 , . . . ,  is under

stood as the local wavefield integrated over one thin slab Az = dz. In recursive form, the 

reflection coefficient jR(km, zl , 0) =  R{km, Zi,ph; 4i, cc) at depth level z, is fed into the total 

wavefield previously upward propagated from the depth level below:

^(kmjkfcjZi-ijw) =  V iSR){zi-i, Zi)^{km,kh, Zi,uj) +  A Iwi?(km, p^; 0, a), (1.3.43)

where

V^SR\z i - i ,Z i )  = e~ik^ z and * =  1 ,2 , . . . .  (1.3.44)

The recursion is carried out for all depth levels of interest and initialized w ith a zero 

wavefield. Notice that in this notation the total wavefield ^ (k m, k^z^uS)  contains the 

reflection scattering contributions from all previous depth levels.
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R ( k  m  £, ,Ph ; <t> > « )

TRUE hi = *
FALSE

Local wavefield 
modelling Copy wavefield N tim es

Fourier transform 
over midpoint and offset

R epeat the  first 5 s te p s  for 
the source wavefield

Phase-shift extrapolate 
sou rces and receivers 
 (forward)_______

Interpolate the  N wavefields 
(receivers)

Phase-shift extrapolate 
receiver wavefield N tim es 

(forward)

Fourier transform 
over midpoint and offset 

N tim es
Inverse Fourier transform 
over midpoint and offset

Fourier transform 
over midpoint and offset

Split-step correct 
(forward)

Split-step correct receivers 
N tim es (forward)
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(AT)
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Figure 1.12: Flowchart for recursive generalized DSR modelling. Both the split-step DSR mod
elling and the split-step PSPI DSR modelling propagator are illustrated. The recursion is initial
ized with a zero wavefield and i — 1,2, For simplicity, the initial midpoint Fourier transform
for the reflectivity R has been omitted in the flowchart.

Non-recursive DSR modelling

An alternative, non-recursive, form of the DSR operator in laterally invariant media 

proves useful in the next section:

$ (k ra,k h,2;o,a;) =  f  e~l ^ o kzdzM u R ( k m, z , p h-,(l>,a)dz, (1.3.45)
J ZQ

where the discrete slab thickness Az has been replaced by the differential dz. Instead 

of applying the phase-shift recursively, the cumulative phase-term is calculated and ap

plied to the wavefield all at once, and the reflection contributions from all depth levels are 

integrated into the surface wavefield. As shown below, this form allows for the deriva

tion of a DSR modelling formula for separate offsets h. However, the non-recursive form 

(1.3.45) precludes the use of correction techniques such as the split-step approximation 

that make the DSR propagator suitable for laterally varying media.
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Separate offset DSR modelling

If the scattering mechanism is reflection angle independent the offset-domain version of 

formula (1.3.45) follows:

t ( k m,h ,z 0,w) =  /  ^ e~l ^ o kzdz j # ioc(km,h  =  0 ,z ,u )dz

PO O

= / a(km,h , z o , z ,u ) ^ ioc(km,h  =  0,z ,u)dz,  (1.3.46)
JZQ

where \I>;0C(km,h  =  0 , z ,u )  =  T k^ l k h^ R ( k m, z) =  R(km,z). The inverse offset Fourier 

transform of the exponential in equation (1.3.46) entails the cumulative phase-shift term 

a{km, h, zo, z,oj) as a function of offset (Popovici, 1995). Clearly, this formula allows for 

the direct computation of separate offset data. The computational cost, however, is com

parable to that of formula (1.3.45), since the phase-shift term still needs to be calculated 

for all involved wavenumbers. For the special case of zero-offset data 4' (km, h  =  0, z q , u >) 

there exists a analytical stationary phase approximation (see also Appendix C) that al

lows for an easy computation of the phase-shift term a. Within a constant factor this 

approximation amounts to setting in equation (1.3.41) to zero (Stolt and Benson, 1986; 

Popovici, 1995; Alkhalifah, 2000):
/•OO

* { k m,z0 ,u>) = e - i f*ok°dz' v loc(km,z,cv)dz, (1.3.47)
J zo

where

fe = T V 1 _ £ 4 ^ ’ <L3-48>
and

^ioc{kmi z iw) =  F2(kmiz ). (1.3.49)

This is the 'exploding reflector' modelling formula (Claerbout, 1985) which forms the ba

sis for post-stack migration. The local wavefield ^(odkm, z, <*>) is set up by distributing 

the scattering coefficient R(km, z) over the frequency band to be modelled. A recursive 

implementation of equation (1.3.47) makes correction techniques that accommodate lat

eral velocity variations applicable.
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Implementation in laterally varying media

Generalized DSR modelling in laterally heterogenous media is implemented using ei

ther the split-step or the split-step PSPI algorithm. First, consider the generalized DSR 

operator extended by the split-step correction (Popovici, 1996). The recursive algorithm 

follows:

implementation of split-step DSR modelling by means of a flowchart representation. Bet

ter accuracy is achieved with the split-step PSPI DSR propagator. Let

which means that the receiver and the source component of the separable DSR propa

gator are applied consecutively. See Figure 1.12 for the flowchart representation of split- 

step PSPI modelling. The number of midpoint and offset Fourier transforms involved

where

V(SR\ z i -u Z i )  = (1.3.51)

■iwfAs^+As^JAzs <?ki =  s < ? s w
* 0  So So (1.3.52)

The slowness perturbations for the sources and receivers, respectively, are:

A = s(m  — h) — sq and A s ^  =  s(m  +  h) — sq. (1.3.53)

The wavefield at the initial depth level is zero. Figure 1.12 details the efficient computer

r ^ RHzi- 1,zi) = ei

■itoAs ’̂W’̂ Az (1.3.55)

with

(1.3.56)

With these definitions the split-step PSPI DSR propagator becomes:

(1.3.57)
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in equation (1.3.57) (2 x (4 x N  +  4) per depth step) prohibits a practical implementa

tion of the split-step PSPI propagator in three spatial dimensions. The computational 

burden is significantly reduced in two dimensions allowing for a feasible computer im

plementation for moderately sized datasets. For a more detailed discussion surrounding 

computational issues refer to Chapter 5.

2.5-D DSR modelling

The attention is now turned to the problem of seismic data collected along a 2-D line 

( V r  =  i j s  = 0) for a medium that does not vary in the y direction. That is, the data col

lection is understood to be perpendicular to the reflector strike direction. The term 2.5-D 

refers to a modelling formula that is based on the y invariance of the m edium properties 

but yet approximately accounts for 3-D wavefield propagation effects (Stolt and Benson, 

1986). Consider the DSR modelling equation in the form (1.3.45). Since the medium is 

invariant and the wavefield's offset dependence is singular along the y coordinate, the 

local wavefield becomes: 4'ioc{kmx , h x , z,u)5(kmy) = A l wR{krnx, z ,phx; (f>)S(kmy), where 

AZu is understood to be applied in 2-D. Equation (1.3.45) is now evaluated for the profile 

line yr = ys = 0 (Stolt and Benson, 1986):

{ k m x i  k h x i z 0 > w ) =  f  d k m y  f  e  z° ^ l o c i ^ m x i  k h x i  Z , U l ) S ( k m y ) d z
J j  ZO

poo
=  I  ^ l o c i f ^ m x ■> ^ h x •> Z^ u i)

j  Zo

J  dksy J  d k r y e ^ ^ 3̂ ^ ' 8 { k sy +  kry)dz. (1.3.58)

I z 0 

X

One of the ky integrals is trivial. The other one is solved by a stationary phase approxi

mation (Appendix C), leading to:
/»00

^2.5(kmx,khx , z o ^ ) =  /  V ^ l e - ir^ ksz+krz)dz' ^ l0C{kmxA hx, z M d z ,  (1.3.59)
j  Zo

where

X>2.5 =  ĵ i  J  {kJz +  krz )dz\  (1.3.60)

and ksz and krz are evaluated at the stationary point ksy — kry =  0. Dropping the factor 

Z?2 .5  in the denominator is equivalent to the 2-D version of equation (1.3.45). The effect
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of V 2 I is to convert line sources into point sources (Stolt and Benson, 1986). Assuming 

a constant velocity earth and small propagation angles the expression for V 2.5 simplifies 

to:

X>2.5 ~  — \Jiootj'wi’-, (1.3.61)

where trwT  is the two-way travel-time. In practice, the phase-shift induced by \ / iu  is fre

quently ignored, but the amplitude scaling factor l ~  (£ tw t)~^ should be considered 

when 2-D formulas are to be applied to real-world data (Chapter 4).
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Chapter 2

Seismic migration/inversion

Chapter 1 gives an extensive description of forward seismic data modelling based on 

wavefield propagators. The goal now is to invert the forward operator for the model 

parameters, the location and the relative magnitude of the (angle dependent) reflectiv

ity. To this end imaging/inversion is cast into the framework of least-squares inversion. 

This approach yields both approximate analytical imaging/inversion formulas and it

erative inversion schemes that lean upon well developed optimization techniques. An 

integral part of (least-squares) imaging/inversion is inverse wavefield extrapolation or 

back-propagation. Inverse one-way extrapolation requires the input of an a priori macro- 

or background velocity model. This model does not have to be the exact subsurface 

velocity. The macro-velocity model is a smooth representation of the true subsurface ve

locities that determines the travel-time or low frequency attributes of the seismic wave

field. The closer the model is to the truth the better. On the other hand, the one-way 

propagators do not account for fine detail. That means, even an exact velocity model 

is not expected to give fundamentally different results than a somewhat smoother rep

resentation. Hence, the logic of imaging/inversion is described as follows: A smooth 

macro-velocity model is provided to back-propagate the seismic wavefield into the sub

surface and an AVP/AVA inversion/analysis yields the medium's short wavelength de

tails (i.e., the angle dependent reflection coefficients). The procedure for building the 

macro-velocity model draws information from many different sources. These include 

geologic models or borehole information. One very important technique to infer velocity 

information is based on the imaging operator itself. The redundant illumination of each
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subsurface point with waves impinging from different angles allows for a focusing anal

ysis called 'migration velocity analysis' (e.g., Yilmaz and Chambers (1984), Biondi and 

Sava (1999)). If the 'correct' macro-velocity model is provided back-propagated waves 

originating from the same subsurface location should reproduce the same spatial image. 

Discrepancies, on the other hand, lead to an out-of-focus subsurface image. Focusing 

is achieved by recursively updating the macro-velocity model. As simple as it appears, 

migration velocity analysis requires significant effort and ingenuity and is the topic of on

going geophysical research. The following chapter relies on the fact the macro-velocity 

model is sufficiently well known to ensure reasonably accurate wavefield propagation.

2.1 Least-squares inversion

The development of least-squares inversion adopts a description in terms of vectors and 

matrices. In the continuous case, vectors are elements of an infinite dimensional vector- 

space and matrices are linear operators. The vector-matrix description applies to dis

cretized spaces and can easily be translated into computer code. The usually irregularly 

sampled wavefield data are sorted into midpoint-offset bins. This binning procedure 

results in a finite and discrete data vector d (in 'lexicographical arrangement') w ith an 

irregular pattern of live and dead traces (i.e., bins filled with zeros). The reflection co

efficient f?(m, z, 0) = R(m, z, p h; </>, a) is discretized and arranged in a model vector f  

as a function of midpoint, depth and horizontal slowness by means of the relationship 

(1.3.33). That is, the model vector contains the ray parameter dependent common image 

gathers (CIGs) for all midpoint positions and the reflector dip angle 4> and the azimuth a 

are implicit parameters in the model space vector f . The discrete model and the binned 

data are related via the following linear system:

d =  Lf +  n, (2.1.1)

where L represents a numerical realization of the generalized recursive DSR modelling 

operator. The error term n stands for modelling errors, missing data and noise (Duijn- 

dam, 1988). The 2-D computer implementation utilizes phase-shift, split-step, or split- 

step PSPI propagators, depending on the complexity of macro-velocity field. A 3-D im

plementation has not been attempted.
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2.1. LEAST-SQUARES INVERSION

The linear system is inverted using the Bayesian approach (e.g., Menke (1984), Taran- 

tola (1987)) by seeking the maximum of the a posteriori probability density function (pdf):

p(f|d) ~p(d|f)p(f), (2.1.2)

where p(d |f) is the likelihood function and p(f) the a priori distribution of the model 

vector. This solution to the inverse problem is called the MAP (maximum a posteriori 

probability) estimator. Assuming a Gaussian distribution for the seismic wavefield data 

the likelihood function is given by the normal distribution with data covariance matrix

C d:
p ( d | f ) ~ e- K d - L f ) TC d- 1(d -L f )  (ZL3)

Unfortunately, seldom in seismic data processing is there a good estimate of the data

covariance. However, empty bins are accommodated by choosing Cd to be diagonal

with entries ad 1 for the dead traces and <rd = 1 for live data. For the moment, let 

the prior model distribution be normal with a diagonal covariance matrix with constant 

variance. To simplify the problem the diagonal weighting matrix W  is introduced such 

that Cf7 l =  W TW . That is, weights much smaller than one are assigned to empty bins 

and weights of magnitude one to live traces (unless the live traces exhibit an assessable 

variance). The maximum a posteriori solution to the inverse problem is the solution that 

minimizes the following cost or objective function:

min F( f) =  ||W (d -  L f)||2 +  ^ | | f | | 2. (2.1.4)
af

This is the standard, weighted least-squares inverse problem with damping regulariza

tion (Menke, 1984). The solution is the well-known normal equation:

f  l s  = (L 'W r W L +  -^ D ^ L 'W ^ W d , (2.1.5)Of

where the operator L' is the adjoint of the modelling operator L. In terms of matrix

algebra, the adjoint is obtained by transposition and complex conjugation. From the

structure of the normal equations it is clear that applying the adjoint operator 1/ yields 

a first approximation of the model vector. Indeed, conventional migration imaging is 

defined as the adjoint of modelling (Claerbout, 1992):

f  m i g  = L'd. (2.1.6)
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2.2. SEISMIC MIGRATION

The data weighting operator W T W  is omitted here, since it does not have any influence 

on the migration result when incomplete data sampling is the issue.

Instead, the more general least-squares solution can be obtained by minimizing the 

cost function (2.1.4) with a gradient optimization technique. To this end, the modelling 

and the migration operators L and I / ,  respectively, need to be applied recursively. This 

also opens up the opportunity to incorporate more sophisticated model regularization 

techniques (i.e., a non-diagonal model covariance matrix). However, first the focus is on 

the migration operator 1/ and its improvements derived from the least-squares inversion 

approach.

2.2 Seism ic m igration

Consider the generalized DSR modelling operator as given by equation (1.3.37):

poo
\l>(m,h,zo,a;) =  / V ('SR^(zo,z)Jr̂ A I LjR(m,z,p-,(j),a)dz. (2.2.1)

J Zo

In the discrete inverse problem the following identifications are made:

d =  ^ (m ,h ,^ 0,o;), (2.2.2)
poo

L =  /  d z V ^ i z o ^ ^ A l u ,  (2.2.3)
J  ZQ

f  =  R(m,z,p-,(f>,a). (2.2.4)

The application of the migration operator L' in f  m / g =  L 'd involves taking the individ

ual adjoint operators and reversing their order:1

R m i g {™, z,Ph\<t>, a ) = J  dw.A^h7?(fl5),(z ,zo )^ (m ,h ,zo ,w ), (2.2.5)

where v ( RSY (z, zo) = [V^s r ^(zq, z)]1. Migration involves two distinct steps. First, the 

data \I/(m, h, zq,uj) are back-propagated by the adjoint operator p (Rsy (z, zo). Consider, 

for the moment, the DSR phase-shift propagator V^sr^(zq, z) in equation (1.3.40). If 

the evanescent modes in the upward propagator V^SR^(zo,z) are neglected, the adjoint 

phase-shift propagator (the anti-causal downward propagator) is in fact the inverse. The

1The adjoint o f the linear integration operator f  d z  is the identity l z . A  sim ilar relationship holds w ith  
respect to  the frequency variable: [ /  dui] =  l u .
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2.2. SEISMIC MIGRATION

evanescent solutions decay exponentially and do not contribute significantly to the seis

mic wavefield. Therefore, this is a very good approximation. Second, the cascaded op

erators /  dwA! estimate the model R,Mic;{m -, z-Ph'i <f>, «)• Effectively, f  duA! is the RTT 

(Appendix B) in the (k/t, w) space followed by a summation over frequency (Figure 1.10). 

The summation over frequency is equivalent to the classical migration imaging condition 

(e.g., Claerbout (1985)). Stolt and Weglein (1985) interpret the frequency summation in 

terms of the causality principle.

Implementation in laterally varying media

Modelling and migration in heterogenous media are implemented by recursive extrapo

lation. The recursive form of the DSR modelling formula (1.3.50) is reiterated for easier 

comparison:

^(m , h, Zj_i, a;) =  V ^ S R )  (zj-i, «t)^(m, h, z u  c j ) +  ^ h1 A I u R ( m , Z i , p h ; ^ , a ) ,  (2.2.6)

with the p(s x )(zi-i,zi)  operator as defined in equation (1.3.51) for split-step propaga

tion, and in equations (1.3.54) and (1.3.57) for split-step PSPI propagation. The adjoint 

procedure, the migration algorithm, follows:

T'(m, h,Zj,uj) =  p (RSY(zi,Zi-i)'I'(m,h,Zj-i,u)), (2.2.7)

and

R MiG(m,Zi ,ph;<i>,a) = J  d w ^F h $ ,(m ,h ,z i,w). (2.2.8)

The adjoint DSR propagator in terms of the split-step propagation is (Figure 2.1):

V {Rsy (zi, z i - 1 ) =  +k- )AzTmFhS(*s y , (2.2.9)

with
s W  =  s W s ^ Y  =  eM A S(*)+AS(s>)A (2.2.10)

Apart from the sign change in the argument of the complex exponentials, the split-step 

modelling and migration operators differ only by the order in which they apply the split- 

step correction. Similarly, the adjoint split-step PSPI propagator follows (Figure 2.1):

=  V {R)> {zh Z i ^ ) V ^ '  {zhZi. i), (2.2.11)
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Figure 2.1: Flowchart for recursive generalized DSR migration L'. Both the split-step DSR mi
gration and the split-step PSPI DSR migration propagator are illustrated (i = 0,1,2 ...). Compare 
to the modelling flowchart in Figure 1.12. For simplicity, the final midpoint Fourier transform for 
the estimate R m i g  has been omitted in the flowchart.

with

V {Ry'i s y {zi,  Zi. i )  =  (2 .2 .1 2 )

where
,(« ) ' ,(5)';JV   gioj&s(R}’(s }’nAz  (2 2 13)

The adjoint split-step PSPI propagator corresponds to the windowed non-stationary- 

phase-shift (NSPS) propagator described by Margrave and Ferguson (1999). First the 

sources and then the receivers are back-propagated. At the entry stages of each recursion 

step, the adjoint linear interpolation operator £ distributes the weighted initial 

wavefield into N reference wavefields with weights according to equation (1.2.54). The 

adjoint wavefield copying operator C' simply amounts to a summation of the N reference 

wavefields.
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2.2. SEISMIC MIGRATION

R eflector  elem en t

Figure 2.2: The 'survey-sinking' thought experiment. Consider a source (diamond) and a re
ceiver (triangle) located at the reference plan z0- The 'adjoint' operation to equation (1.3.32) can 
be thought of as datuming the sources and receivers along their ray paths back to the reflector 
location.

It is important to note that if the split-step NSPS propagator were used for m od

elling in Chapter 1, the split-step PSPI migration operator would result as a consequence. 

Whether one propagator technique should be given preference over the other for either 

modelling or migration is not obvious. This ambiguity stems from the fact that nei

ther the split-step nor the split-step PSPI/NSPS propagator are symmetric. Symmetry 

is relatively easily restored in split-step propagation by applying half of the split-step 

'time-shift' before and the other half after the phase-shift operator (Lee et al., 1991). The 

split-step PSPI/NSPS propagators can also be made symmetric (Ferguson and Margrave, 

2002). Unfortunately, the symmetric version of split-step PSPI/NSPS propagation re

quires significantly more computational effort. Whether the symmetric propagators hold 

any numerical advantages for least-squares migration has not been investigated. How

ever, a comparative test in Chapter 3 demonstrates that split-step NSPS and split-step 

PSPI perform equally well for zero-offset migration.

The recursive computer implementation of generalized DSR migration is illustrated 

in Figure 2.1. Compare the schematic flowchart also to Figure 1.12. Figure 2.2 interprets 

the duality between modelling and migration by invoking the 'survey-sinking' thought 

experiment as the 'adjoint of survey-raising' in Figure 1.11.
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2.2. SEISMIC MIGRATION

Angle independent migration

The above modelling and migration formulas all contain the ray parameter dependent 

operators A I ^  and f  duA',  respectively. It is clear, however, that nothing changes in 

terms of wavefield propagation when these operators are replaced with their ray parame

ter independent counterparts, from equation (1.3.38) and its adjoint f  dkh f  du. For 

migration, the result is the more conventional DSR imaging formula (Claerbout, 1985) 

that is suitable for structural imaging. The adjoint operation /  dkh f  do; evaluates the 

local wavefield at t — 0 and h =  0. This is in agreement with the concept of a local 

wavefield collapsing to an offset ^-function at the image point. This is also equivalent 

to summing (stacking) the ray parameter CIGs along the ray parameter axis which effec

tively averages the angle dependent reflection coefficients. Chapter 3 has examples for 

both angle-independent and angle-dependent migration.

Zero-offset migration

So far, all described imaging operators fall into the category of pre-stack migration. In 

practice, pre-stack imaging is sometimes replaced by a simplified post-stack imaging 

strategy that separates the imaging process into two stages. First, the data are normal- 

move-out (NMO) corrected and stacked to approximately simulate zero-offset data. Sec

ond, zero-offset migration yields the structural image based on the adjoint of the m od

elling formula (1.3.47):

Again, a recursive implementation with an appropriate operator expansion takes care of

migration using split-step and split-step PSPI/NSPS propagators.

2.2.1 Ray parameter imaging Jacobian

If ray param eter/angle information is to be extracted from the local wavefield an im

proved migration formula should be considered. One way to improve the migration is 

by recognizing that migration involves changing from the data space (ui dependence) 

to the model space (z dependence) and therefore constitutes a change of variables that

R mi g (Ku, z) =  J (2.2.14)

lateral velocity variations. This is exemplified in Chapter 3 for zero-offset modelling and
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2.2. SEISMIC MIGRATION

should ideally consider the corresponding (imaging) Jacobian (Stolt and Benson, 1986; 

Sava et al., 2001). In an approximate sense, this imaging Jacobian is equivalent to the 

cascaded operators L'L in equation (2.1.5) without the data weighting operator W TW . 

To see this, it is assumed that the velocity field is laterally invariant for the entire area 

between the reference datum z q  and the target reflector location z: 2

RMiG(km, z , p h-,(f),a) = J  duA'ef*okzdz y ( k m, k h,zo,u).  (2.2.15)

It is useful to formulate equation (2.2.15) as a function of constant offset slowness p^. This 

is achieved by reversing the order of the RTT operator A'  with the propagation operator 

for a constant p h, which is equivalent to migration in the r  — p domain (Ottolini and 

Claerbout, 1984). 3 Hence, one can dispense with the radial trace transform and write the 

migration formula, including the data 'I', as a function of p h:

RMiG{km, z , p h\4>,a) = ^dw e*^ofcz|phd̂ ( k m,p ft,^0,w), (2.2.16)

The same logic is applied to the modelling formula. Concatenating constant ray param 

eter modelling and migration according to L'LIp,  leads to:

R M I G ^ m ,  Z, Ph'i fa °0 =  /  /  d z ' j t f  k^ dz" R i k r n ^ z ' ^ - ^ a ) .  (2.2.17)

The phase term is rapidly oscillating for all u  except when z = z' (Stolt and Benson, 1986). 

Hence, the velocity around the target is taken as constant leading to:

RMiG{km, z , p h;(f),a) =  J  du)e~tkz\phz J  dz'elkz]phz'R{km, z', p h-4>, a). (2.2.18)

A change of variables from oj to z yields:

RM iG % n,z ,ph\4>,a) = J  dkze - lkz\phZ ^  J  dz'elkz\phz' R ^ , p^; 0, a). (2.2.19)

RÔ -mi k-zi Ph'i 4*i a )- (2.2.20)
Ph

Consequently,

. . dui
R m i g (km? kz, Ph‘, (p, oi) = ^

2This assum ption is less restrictive than it first appears, since, w ithin the lim its o f one-w ay w ave prop
agation, one can alw ays datum  the seism ic w avefield  through the com plex overburden to a n ew  reference 
plane zo close to the target reflector.

3The RTT and the DSR propagator do not com m ute for arbitrary velocities.
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In the vertical wavenumber domain the action of applying is equivalent to ap

plying the imaging Jacobian J  =  ^ r \ Ph- This suggests that (locally) pre-multiplying the 

downward continued wavefield with the inverse of the (diagonal) Jacobian annihi

lates the amplitude distortion induced by the change from data to model space (Sava et 

al., 2001). Given in its recursive form, the amplitude scaled migration algorithm follows:

\I/(m, h, Zi, uj) =  (2.2.21)

and

R(m,Zi ,ph-,4>,a) «  J  du)J~x A ' h,2j,w). (2.2.22)

The explicit expression for the Jacobian can be found in Appendix D. The imaging Ja

cobian is indeed helpful to retrieve the correct angle dependence as demonstrated in 

Chapter 3.

2.2.2 Illumination operator

Duquet et al. (2000) follow a different strategy to improve the migration operator L'. 

Their technique involves an approximation of the cascaded operator L 'W r  W L, includ

ing the data weighting operator. They aim at compensating for illumination issues gen

erated by the acquisition geometry (acquisition footprint) and the velocity field structure 

(wavefield focusing/defocusing effects). To this end, the simplified, reflection angle in

dependent subsurface parameterization is adopted. Duquet et al. (2000) compute the 

diagonal of the chained operator L 'W r W L by means of ray tracing (Appendix A). Ide

ally, application of the inverse of the diagonal operator should balance the subsurface 

illumination. A similar, propagator-based, approach can be followed using the separate 

offset formula in equation (1.3.46) (Kuehl and Sacchi, 2001a). However, as opposed to the 

ray tracing technique of Duquet et al. (2000) the restriction to laterally invariant media 

applies. Consider the (angle independent) model space 5-function:

fm >,z' =  R (m )z ') =  ^(m  — m ,)5(2: — z'). (2.2.23)

Applying the cascaded operators L 'W TW L to the unit impulse model function (2.2.23) 

yields the corresponding 'diagonal element'. The modelling operator impulse response
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is:

* * (m ,h ,z0,w) =  |a ( k m, h, z q , z ' ,  uj)e~ikm’m' } , (2.2.24)

where W  is the weighting operator containing the binning information. The application 

of the adjoint migration operator to the impulse response yields at the image point 

location (m ',z'):

J  dw {^m {W T,M in ,h , 2 o,uO} a '(k TO,h,z',zo,w)}> (2.2.25)

where the inverse midpoint Fourier transform is understood to be evaluated for m '. The 

quantity measures the scattered wavefield energy that is successfully recorded and 

subsequently imaged at its origin as a function of offset h. In other words, is a

subsurface illumination function/m ap that is sensitive to both acquisition footprint and 

wavefield focusing/defocusing effects. The adjoint phase term a' is conveniently ob

tained from a  by a simple sign change. The formula (2.2.25) is computationally expen

sive. However, it becomes manageable if only a few frequencies are considered. When 

W  is the identity the innermost midpoint Fourier transform pair disappears. The cost 

of computing the formula (2.2.25) is then similar to two pre-stack migrations. Finally, 

applying the inverse of f m',2' to all subsurface points of the migrated image compensates 

for the aforementioned effects, since fmijZi — diag {L/W t W L} ps I /W t W L . However, 

the usefulness of equation (2.2.25) is very limited because of its restriction to laterally 

invariant media. In practice, illumination issues arise in media with a complex velocity 

structure. Hence, as it stands, ray tracing is the method of choice for the computation of 

illumination maps. A 2-D example for equation (2.2.25) can be found in Chapter 3.
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2.3 Constrained least-squares m igration/inversion

Instead of trying to find approximations to the least-squares solution, numerical opti

mization techniques offer the possibility to minimize the objective function (2.1.4) itera

tively. Better yet, numerical minimization allows to incorporate regularization strategies 

that help to improve the robustness of the inversion. It turns out that a costly minimiza

tion of the standard least-squares objective function (2.1.4) holds relatively little advan

tage over (amplitude scaled) migration in equation (2.2.22) unless significant illumination 

issues due to a varying midpoint fold plague the inversion (Kuehl and Sacchi, 2001b). On 

the other hand, the performance and robustness of least-squares migration for AVP/AVA 

inversion can be significantly enhanced by model space regularization (Kuehl and Sac

chi, 2002). A model smoothness constraint penalizes roughness (i.e., discontinuities and 

rapid amplitude changes) in the ray parameter dependent CIGs:

min F(f) =  ||W (d -  L f)||2 +  A2|jDf||2, (2.3.1)

where D =  is the n-th order radial derivative in the (phx,Phy) plane. 4 The idea is 

that roughness is caused by imaging artifacts and acquisition footprint noise, not AVA 

effects. The derivative operator acts as a low-pass filter that suppresses undesired ray 

parameter fluctuations. In this thesis only first order derivatives have been used. Ef

fectively, the regularization imposes a similarity constraint on neighboring constant ray 

parameter sections. It is noted that Duquet et al. (2000) followed a similar strategy to 

suppress kinematic artifacts in constant offset Kichhoff migration. The tradeoff param 

eter A2 determines the weight of the roughness penalty term in equation (2.3.1). With 

the ray parameter sampling interval Aph =  ^Ja p \x +  Ap2hy the product 7  =  A2 x Aph 

controls the amount of smoothing.

Iterative gradient minimization by conjugate gradients (CG) (Hestenes and Stiefel, 

1952; Scales, 1987) is an excellent tool for seismic inversion. CG minimization does not 

require any explicit matrix operator inversion and thus is suitable for an operator appli

cation 'on the fly'. It avoids forming the product L 'W t W L. This is a crucial feature, 

since migration and modelling operators are coded as functions rather than matrices.

4In a 3-D im plem entation azim uthal sm oothness could be im posed as w ell.
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Moreover, CG minimization converges faster than the more conventional steepest de

scent technique (Strang, 1986). A CG recipe for least-squares inversion (CGLS) reads as 

follows (Scales, 1987):

Choose the starting model fo to be zero. Put the data auxiliary vector s equal to the 

binned seismic data: so =  d. The auxiliary model vectors r  and p  are initialized with 

the migration: ro =  p 0 =  L'so, and the second auxiliary data vector q is set up with the 

modelled (de-migrated) data: q0 =  Lp0. Then for i =  0 ,1 ,2 ,...:

O t - i + l —

fi+ 1

Q? * Q*

=  f  i +  CCj+lPj

S»+l = Sj aj+iqj

r i+ l II o
T

+

Pi+1
r*+i • r i + i

Pj+1

^i-Ti
= r i+1 +  f t+1p i

q*+i =  L P i+ i , (2.3.2)

where L and L/ are the modelling and migration operator, respectively, in the temporal 

frequency domain.

The iterative process can be stopped and resumed at any stage. Additional model 

and data space operators are incorporated by augmenting the operators L and L' ap

propriately. For instance, to minimize the regularized cost function (2.3.1) the following 

augmentation retains the algorithmic structure of CGLS (Scales, 1987):

=  fW L \ , , (W d
a nd  d " U J -  ( 2 M )

Most commonly, model space regularization means either damping, in which case D 

is diagonal or finite-difference smoothing, in which case D is banded. It is important

that the (augmented) operators L' and L are indeed an adjoint operator pair. To test

this property Claerbout (1992) proposed the so-called 'dot-product test'. The numerical 

operator implementations have to satisfy:

d  • d =  f  • f , (2.3.4)
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for any vectors f  and d, where d  =  Lf and f  =  L'd. The input vectors f  and d  define the 

model and data space, respectively. They are loaded with random numbers. For properly 

coded operator pairs L and 1/ the 'dot-product test' should be satisfied down to the least 

significant digit.

Constrained least-squares migration for AVP/AVA inversion based on equation (2.3.1) 

is exemplified and extensively tested with numerous examples in Chapter 3. Chapter 

four presents a real-world data example.
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Chapter 3

Synthetic data examples

This chapter covers both conventional migration and least-squares migration examples 

that illustrate and test the theory outlined in the previous parts of the thesis. Synthetic 

data tests are valuable to gain insight into the performance of imaging/inversion algo

rithms. However, the tests have to be interpreted with care. It is important that the 

synthetic data are generated by a more general operator than the one the inversion oper

ator is originally based on. The full acoustic wave-equation, the starting point in Chapter 

1, is certainly a good choice for forward modelling. Full wave-equation finite difference 

modelling is well developed and yields data that, when carefully implemented, contain 

the relevant physics and few numerical artifacts (Clayton and Engquist, 1990; Press et 

al., 1997). Effects that are absent from the synthetic acoustic 2-D finite difference data in

clude: surface multiples, absorption, anisotropy, out-of-plane reflections, mode conver

sions etc., all of which can potentially obscure the test results. For low contrast, layered 

media faster ray-tracing modelling can replace the computing intensive finite-difference 

approach. If a migration/inversion method fails to perform well under these 'clinical' 

conditions, there is no hope it can succeed when applied to real-world data.

3.1 M igration

As amply discussed, the goal of migration is less ambitious than that of inversion. How

ever, migration is the nucleus of inversion, since accurate propagation is a prerequisite 

for successful inversion. It is therefore instructive to examine the structural imaging ca

pabilities of migration operators. In structural imaging the 'stacked' migrated section is
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Figure 3.1: The Marmousi compressional velocity field. The velocities range from 1500 to 5500 
m/s. The Marmousi model is structurally complex, with many thin layers broken by several 
major faults and an unconformity surface. The folded carbonate sedimentation series at about 2.5 
km forms the structural hydrocarbon trap.

of interest. Stacking is the summation of the CIGs along offset ray parameter. This is 

equivalent to applying the simplified imaging operator f  dkh f  da) to the local wavefield. 

Stacking enhances the signal-to-noise ratio, suppresses imaging artifacts and multiples 

and thus improves the image quality in general. Obviously, one is deprived of this pow

erful tool in (least-squares) migration for AVP/AVA inversion.

The first two sections introduce generic synthetic datasets that have become quasi 

standards for the testing of imaging algorithms. The first dataset is based on the so- 

called 2-D Marmousi model. The Marmousi dataset is well suited for the testing of both 

structural imaging and AVP/AVA inversion (Section 3.2.2). The second 2-D dataset is 

derived from the 3-D SEG/EAGE salt model. The salt model is a challenge to imaging al

gorithms due to its strong velocity contrasts. It is a very good example to demonstrate the 

superior performance of the split-step PSPI over the split-step propagator but its model 

parameterization makes it less useful for assessing AVP/AVA inversion methods.
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Figure 3.2: The Marmousi density field. The Marmousi dataset is based on a variable-velocity 
and density model making it well suited for acoustic AVP/AVA studies (see Section 3.2.2).

3.1.1 The Marmousi model

The Marmousi model is based on a geological cross section through the North Quenguela 

Trough in the Cuanza Basin in Angola (Versteeg, 1994). The dataset consists of 240 

'single-cable marine shot records' acquired using acoustic finite-difference modelling, 

with variations in both acoustic velocity and density (Figure 3.1 and Figure 3.2). Details 

regarding the data generation can be found in Versteeg (1994). The model was gener

ated by the French Petroleum Institute, and was released to the public for the purpose of 

testing migration and velocity estimation techniques.

Versteeg (1994) describes the geologic background of the Marmousi model. In sum

mary, the geologic history underlying the model consists of two distinct phases. The first 

phase is marked by a continuous sedimentation of marls and carbonates. These deposits 

were folded and then eroded with the erosion surface being flat. The resulting anticlinal 

structure forms the hydrocarbon trap. The second phase began with the deposition of 

an isopachous saliferous evaporitic series. On this series a clayey-marly series and later 

shaly-sandy detrital sediments were deposited. These sediments are strongly affected 

by normal growth faults caused by lateral salt creep due to the overburden pressure.
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Figure 3.3: Two shots of a total of 240 shot records. The distance between two consecutive 
receivers is 25 m with a total of 96 traces per shot. Initial offset is 200 m and maximum offset 
is 2575 m . The data were filtered with a trapezoid frequency filter with (0,10,35,55) Hz. The 
line was 'shot' in an end-on configuration from west to east (left to right in Figure 3.1). Distance 
between shots is 25 m. The direct arrival and refracted waves have been muted.

The high velocity wedges seen in Figure 3.1 are remnants of this process. The Marmousi 

model is structurally complex, with many very thin layers, which makes for very realistic 

synthetic data. Two example shots in Figure 3.3 illustrate the data complexity. Even when 

the correct velocity model is used, many imaging methods cannot completely image the 

hydrocarbon trap (Gray and May, 1994).

The split-step DSR propagator proves sufficiently accurate to produce a very good 

image of the Marmousi model. The migration code has been implemented on an SGI 

Origin 2400 shared-memory parallel computer (400-MHz processors). The algorithm's 

parallelization is done with respect to the temporal frequencies. More details on the com

putational aspects of the pre-stack migration are discussed in Chapter 5. The migration 

used every second midpoint of the original midpoint-offset sorted dataset. This results 

in a data cube of size 256 x 64 x 1024 including zero padding for the Fourier/FIartley 

transforms (see also Chapter 5). The migration was performed for a frequency band of 5
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Horizontal Distance [km]

Figure 3.4: The split-step DSR migrated Marmousi data. The split-step approximation yields 
a very good Marmousi image despite the structural complexity of the model. The hydrocarbon 
trap is clearly delineated.

to 60 Hz and took about one minute on 32 processors. A fast computational turnaround 

is critical when least-squares migration/inversion is to be carried out. Figure 3.4 shows 

the very good imaging result.

3.1.2 The SEG/EAGE salt model

For the purpose of a comparative propagator test, the SEG/EAGE salt model is intro

duced (Aminzadeh et al., 1994). As mentioned earlier, the SEG/EAGE model serves 

solely as a test for structural imaging. The salt model assumes a constant density lim

iting its usefulness for AVP/AVA studies. More importantly, most reflectors are repre

sented in a 'spiky' rather than a 'blocky' fashion making these reflectors unsuitable for 

AVP/AVA inversion. Figure 3.5 gives an overview over the 3-D velocity field and its em

bedded geologic structures. The model was designed to address 3-D imaging issues in a 

typical Gulf of Mexico setting. At this stage, 3-D implementations of the (least-squares) 

migration algorithm or approximations thereof have not been considered (Biondo and 

Palacharla, 1996). The shown examples are based on a 2-D profile running through the
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Figure 3.5: 3-D perspective of the EAGE/SEG salt model (Aminzadeh et al., 1994) with the salt 
sill, different faults, sand bodies and lenses. The overall model dimensions are 13.5 x 13.5 x 4.2 km 
in the x,y,z  directions, respectively. The salt crest is at about 325 m. The model has been designed 
in part to test various imaging algorithms in different geologic settings: salt flank, salt overhang 
and sub-salt. The velocities surrounding the salt body are typical of Gulf of Mexico sediments. 
Two velocity profiles are shown. Hot colors correspond to low velocities with red being the water 
velocity of 1500 m/s. The velocity profile for the cross section A-A' is shown in Figure 3.6.

salt model (profile A-A' in Figure 3.5). The simulated data are purely 2-D in that they do 

not include 3-D propagation effects and out-of-plane reflections which is in theoretical 

agreement with the 2-D versions of the migration formulas derived in Chapter 2.

The first migration example involves zero-offset migration in equation (2.2.14). The 

conducted tests investigate the accuracy of split-step, split-step PSPI, and split-step NSPS 

extension of equation (2.2.14). The synthetic data in Figure 3.7 have been generated by 

'exploding-reflector' modelling to assess the best-case capabilities of zero-offset/post- 

stack migration (O'Brien and Gray, 1996). Rather than the exact adjoint of the migration 

operator a full wave-equation version analogous to equation (1.3.47) calculated the up- 

going wavefield. Since the full wave-equation does not have any numerical propaga

tion angle limitations, the occurring discrepancies between the migration and the model 

are attributed to inaccuracies of the employed migration propagator. O'Brien and Gray
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Figure 3.6: Velocity profile A-A' from the SEG/EAGE salt model. The velocities range from 1500 
m /s (water) to 4481 m /s (salt). Darker shades denote higher velocities. Notice the relatively 
lower velocities below the overpressure surface.

H o rizo n ta l d is ta n c e  [km ]

Figure 3.7: The 'exploding-reflector' dataset for the profile A-A' of the SEG/EAGE salt model. 
The data approximately simulate a zero-offset seismic section. The dataset serves to assess 
the structural imaging capabilities of different zero-offset/post-stack migration algorithms. To 
achieve more realism one has to run full shot-record simulations (see also Figure 3.11).
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Horizontal D istance [km]

Figure 3.8: Split-step zero-offset migration of the 'exploding-reflector' data in Figure 3.7. There 
is a significant amount of artifacts in the sub-salt area.

(1996) conducted a similar study comparing wave-equation (i.e., propagator based imag

ing) versus Kirchhoff migration (i.e., ray theoretical imaging).

The split-step migrated 'exploding-reflector' data are shown in Figure 3.8. Obviously, 

the high velocity salt body presents a problem for the split-step technique. Given the 

ideal input data, the migration result is only fair. The artifacts in the sub-salt region are 

due to the insufficient wide-angle accuracy of the split-step approximation in the pres

ence of high velocity contrasts (see also Figure 1.3). The zero-offset migration obtained 

with the split-step PSPI propagator is seen in Figure 3.9. Overall, the split-step PSPI mi

gration produces a much better imaging result than the faster split-step migration. How

ever, the split-step PSPI method shows slight deficiencies for the steep salt flank, and not 

all of the steep faults in the sub-salt zone are properly imaged. To select the velocities 

at each depth step, the adaptive algorithm described by Bagaini et al. (1995) has been 

employed, averaging 5.7 reference velocities per depth step in this example. For com

parison, Figure 3.10 shows the result obtained with the split-step NSPS propagator. The 

images in Figure 3.9 and Figure 3.10 are nearly identical. The same reference velocities 

were used. Upon close inspection the split-step NSPS technique appears to have imaged
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Figure 3.9: Split-step PSPI zero-offset migration of the 'exploding-reflector' data in Figure 3.7. 
The sub-salt area is cleaner and better imaged than in Figure 3.8.

the salt flank slightly better than the split-step PSPI algorithm, but the differences are 

subtle.

An additional level of realism is added to the tests by generating finite-difference shot 

records across the model. Because surface sources are used in the shot modelling, there is 

no guarantee that all reflection points will be illuminated as effectively as they were when 

modelled by exploding reflectors (O'Brien and Gray, 1996). In addition, internal multi

ple reflections are now included in the data. Surface related multiples are not present 

because of an absorbing surface boundary condition. Figure 3.11 is the zero-offset data 

extracted from the full shot records. A comparison between Figure 3.7 and Figure 3.11 in

dicates that the more 'true-to-life' zero-offset section could pose challenging data quality 

problems. Not all events seen in the 'exploding-reflector' data are equally well repre

sented in the zero-offset data. The sub-salt image produced by split-step DSR migration 

is illustrated in Figure 3.12. The superimposed lines indicate reflectors to be imaged. 

The split-step PSPI DSR migration in Figure 3.13 benefits from the multi-reference veloc

ity approach. The reflectors are better imaged and phase inconsistencies present in the 

split-step migration have been largely resolved.
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Figure 3.10: Split-step NSPS zero-offset migration of the 'exploding-reflector' data in Figure 
3.7. The image is nearly identical to the split-step PSPI result in Figure 3.9. The split-step NSPS 
technique has produced a slightly better image of the steep salt flank than split-step PSPI.
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Figure 3.11: The zero-offset traces for the profile A-A' of the SEG/EAGE salt model. The data 
were acquired using finite-difference simulations. Only the zero-offset traces are shown. The 
migration examples in Figures 3.12 and 3.13 use the corresponding offset data.
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Figure 3.12: Sub-salt image of the split-step DSR migrated dataset for the profile A-A' of the 
SEG/EAGE salt model. The superimposed lines indicate some of the reflectors of the sub-salt 
area. The migration used a total of 323 midpoints with offsets ranging from 0 to 2097 m.
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Figure 3.13: Sub-salt image of the split-step PSPI DSR migrated dataset for the profile A-A' of the 
SEG/EAGE salt model. Compare this figure to Figure 3.12. The split-step PSPI algorithm handles 
the large velocity contrast better. The imaged reflectors match the true model more closely. Notice 
the improved phase consistency.

70

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



3.2. LEAST-SQUARES MIGRATION

3.2 Least-squares m igration

The following least-squares migration examples fall roughly into two categories:

• (post- and pre-stack) least-squares migration using reflection angle independent 

operators, and

• reflection angle dependent least-squares migration for AVP/ AVA inversion.

The lack of compelling advantages of the first category over conventional migration pro

vides the incentive for studying the latter, modelling/migration that considers angle/ ray 

parameter dependent CIGs. As it turns out, regularized least-squares migration for re

flectivity inversion has the potential to perform considerably better than conventional 

migration.

3.2.1 Angle independent least-squares migration

This section deals exclusively with examples investigating reflection angle independent 

least-squares migration. That is to say, the generation of CIGs is not an option. The ben

efits of this rather simplistic approach are limited. Despite this somewhat pessimistic 

assertion, the experience gained from applying the various forms of least-squares migra

tion makes it a worthwhile exercise. The perhaps more important findings are discussed 

in next section that is devoted to least-squares migration for AVP/AVA inversion.

The potentials and limitations of least-squares migration are assessed stepwise. When 

developing least-squares algorithms the first tests usually involve the application of the 

inversion algorithm to data modelled by the original forward operator itself. This is 

useful to confirm the correct implementation of the minimization algorithm. In addition, 

the 'adjointness' of the operator should always be confirmed with the 'dot-product test' 

(equation 2.3.4). Clearly, tests of this kind do not make any statement about the quality 

of the operators themselves.

The first example uses a simple bandlimited reflectivity model (Figure 3.14). The ex

amined method is zero-offset least-squares migration using the split-step extended ver

sion of the operator pair in equation (1.3.47) and equation (2.2.14) (Kuehl and Sacchi, 

1999). Reflection angle independent least-squares migration amounts to minimizing the
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Figure 3.14: Left: A simple reflectivity model convolved with a Ricker wavelet. The interval 
velocities are in meters per second. Right: The zero-offset data generated by the forward split- 
step modelling operator.

objective function (2.1.4). The 'exploding-reflector' data in Figure 3.14, the presumed 

surface data, have been generated with the forward (angle independent) modelling op

erator. Noticeably, there are edge effects in the data. Any artifacts caused by the forward 

operator, and all intrinsic simplifications diminish the robustness of the inversion when 

applied to real-world data. Nonetheless, it is instructive to perform the inversion on 

the forward operator modelled data to assess the algorithm's performance under ideal 

conditions. The migration and the least-squares migration are depicted in Figure 3.15. 

Least-squares migration removes almost all of the spurious energy after 5 iterations of 

the CG algorithm (2.3.2). Only a few iterations are necessary to achieve convergence. 

The least-squares test is repeated for the reflection angle independent version of the 

split-step DSR operator (equations (1.3.51) and (2.2.9)). Figure 3.16 shows four modelled 

common-midpoint (CMP) gathers based on the reflectivity model in Figure 3.14 (left). 

Five iterations of the pre-stack least-squares algorithm suffice to obtain a fairly good re

sult in terms of artifact reduction (Figure 3.17). Unfortunately, neither angle independent 

pre-stack nor post-stack least-squares migration prove to be a robust tool when applied 

to seismic data that were generated by a more general modelling technique (e.g., finite 

difference modelling). In other words, there is no guarantee that this somewhat 'naive'
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Figure 3.15: Left: The split-step migration using the data in Figure 3.14. The application of the 
adjoint operator causes residual artifacts. The image amplitudes have been clipped to emphasize 
the differences between the migration and the model in Figure 3.14 (left). Right: In the least- 
squares migrated image the artifacts are almost completely removed. The retrieved reflectivity is 
close to the true model after 5 iterations of the CG algorithm.

least-squares migration approach provides superior imaging when applied to well sam

pled real-world wavefield data (Nemeth et al., 1999). On the contrary, in the worst case, 

artifacts can result that otherwise would be absent from the conventionally migrated im

age. On the other hand, if the wavefield sampling is sub-optimal the data weighting 

operator in the objective function (2.1.4) takes effect and least-squares migration reveals 

some of its potential.

Subsurface illumination

The following examples are intended to demonstrate that least-squares migration can 

correctly balance the seismic amplitudes when the seismic wavefield is unevenly sam

pled. In particular, the illumination issue caused by a strongly varying midpoint fold 

is addressed. Figure 3.18 (top) shows the first five of a total of one hundred midpoint 

gathers obtained by Kirchhoff modelling (Bleistein et al., 2001). Figure 3.19 (top) is the 

split-step DSR migration of the complete data. The model consists of two types of reflec

tors, labelled as reflector 1 and 2. Reflector 1 has about 70% of the reflection amplitude 

of reflector 2. Despite finite survey line effects, this ratio is well preserved for the most
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Figure 3.16: Four common midpoint (CMP) gathers modelled with the reflection angle indepen
dent split-step DSR operator.

part of the migrated section. Figure 3.18 (bottom) depicts the five midpoint gathers af

ter having randomly removed 80% of the data in the first half of the midpoint gathers. 

This creates a severe illumination issue due to a strongly non-uniform midpoint fold dis

tribution. The migration of the incomplete data (Figure 3.19) shows incorrect reflection 

strengths all across the section, plus some spurious artifacts. Large parts of the image are 

dimmed while the least-squares migration in Figure 3.19 (bottom) retrieves the reflectors 

after seven iterations with the correct amplitude ratio preserved. Figure 3.20 demon

strates that least-squares migration gives robust results also when random noise is added 

to the data. These examples are encouraging. However, it is also true that conventional 

migration in combination with an appropriate input data normalization is likely to pro

duce comparable results. Zheng et al. (2001) investigate weighting strategies to remedy 

the effects of the acquisition footprint on Kirchhoff migrated gathers for AVA analysis. 

They tested different techniques with mixed results, area weighting (Canning and Gard

ner, 1998) being the most promising approach. In any case, if more forgiving structural 

imaging is the goal (i.e., the stacked seismic image) even a simple CMP fold normal

ization balances the subsurface illumination sufficiently well. This reflects the ambiva

lence of the stacking process. Stacking is tremendously healing for structural imaging 

but, at the same time, destroys valuable amplitude information. The angle independent
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Figure 3.17: Left: The migrated pre-stack data from Figure 3.16. Right: The pre-stack least- 
squares migrated data after 5 iterations of the CG algorithm.

modelling/imaging operators do not offer the option to generate CIGs. Consequentially, 

least-squares migration is expected to have more relevance for reflection angle dependent 

migration/inversion than for structural imaging.

A different, data sampling independent, illumination issue arises in media where the 

velocity structure causes focusing and defocusing effects (e.g., shadow-zones). As an 

alternative to least-squares migration, the computation of the illumination operator can, 

then, help to scale the migrated section to compensate for these effects (Duquet et al., 

2000; Rickett, 2001). Illumination compensation can be critical when seismic data are to 

be interpreted in terms of amplitude anomalies (e.g., bright/dim  spots). A step towards 

this approach is discussed in Section 2.2.2. As it stands, the proposed technique in Section 

2.2.2 is restricted to laterally invariant velocity fields and therefore is of very limited use.

In spite of this important caveat, a constant offset illumination map (h = 100 m) is 

shown in Figure 3.21 (top) for illustration. The underlying velocity field increases lin

early with depth. As in the previous examples, the midpoint fold is varying w ith a 

reduction of about 80% for the first 50 CMPs. The dark shades in Figure 3.21 denote 

better illumination. The lateral variation in the illumination is obvious. Apart from that, 

the lack of depth penetration due to the small offset is apparent. The constant offsets 

illuminate a relatively narrow band centering around 0.2 km that soon peters out with
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depth. As expected, for larger offsets (600 m) the deeper parts of the model become better 

illuminated (Figure 3.21 (middle)). When all offsets (0 to 600 m) are included illumina

tion is dominated by the lateral variance due to the irregular midpoint fold (Figure 3.21 

(bottom)).

Alternatively, Duquet et al. (2000) employed ray-tracing to calculate the illumination 

operator in arbitrary media. More recently, Rickett (2001) favored wavefield propagators 

for the same task. He took advantage of a conjecture by Claerbout and Nichols (1994) to 

normalize the migrated data. They observed that after consecutive modelling and migra

tion of a reference image, the ratio between the reference image and the m odelled/de

migrated image will be a weighting function with the correct physical units. Rickett 

(2001) tested different reference images with partially promising results. Whether the 

propagator approach offers any real advantages over the ray-tracing based technique 

remains to be seen.
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Figure 3.18: Top: The first five of one hundred midpoint gathers generated by a Kirchhoff mod
elling code. Bottom: The same midpoint gathers after randomly removing 80% of the data.
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Figure 3.19: Top: Pre-stack migration of the complete dataset. Middle: Migration of the incom
plete data. Bottom: Least-squares migration of the incomplete data (7 CG iterations).
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Figure 3.20: Top: Incomplete CMP data with 10% random noise added. Middle: Migration of 
the incomplete noisy data. Bottom: Least-squares migration of the incomplete noisy data (7 CG 
iterations).
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Figure 3.21: Top: Near offset illumination map (100 m). Darker shades mean better illumina
tion. The underlying velocity field increases linearly with depth. Middle: Far offset illumination 
map (600 m). Far offsets penetrate deeper than the near offsets. Bottom: The illumination map 
computed for all offsets (0-600 m). The illumination is dominated by the acquisition footprint, 
especially the near surface.
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3.2.2 Least-squares migration for AVP/AVA inversion

Reflection angle dependent modelling/migration adds an extra dimension to the seismic 

image. The ray parameter dependent CIGs carry meaningful and valuable AVP informa

tion that is closely related to the target reflector AVA. The CIGs allow to incorporate a 

smoothing regularization that improves robustness of least-squares migration consider

ably (Kuehl and Sacchi, 2002). The objective function to be minimized is now equation 

(2.3.1). It is important to study the selection of the inversion parameters: the tradeoff 

parameter A, and the smoothing length Aph that is determined by the ray parameter 

sampling interval. Synthetic (finite-difference) data tests facilitate the determination of 

parameter combinations that are likely to yield reasonable inversion result when, as with 

real-world data, the true solution is unknown. Moreover, subsurface models w ith in

creasing complexity provide insight into the potentials and pitfalls of least-squares mi

gration for AVP/AVA inversion in general.

The first example is a simple, horizontally layered model. For 1-D earth models less 

sophisticated techniques, such as trace-by-trace attenuation compensation (e.g., compen

sation for geometrical spreading) followed by NMO correction, that convert the data 

into a form suitable for amplitude analysis can work reasonably well (Stolt and Weglein, 

1985; Castagna, 1993). However, the relatively low computational cost of least-squares 

migration in layered media greatly facilitates the study of various aspects considering the 

algorithm's performance. The second model is structurally slightly more interesting and 

makes the split-step approximation necessary. However, it poses no real challenge for the 

split-step propagator. The test primarily confirms that the AVP/AVA inversion formulas 

also apply to dipping and moderately curved reflectors. The last example in this section 

is the Marmousi model. As previously described, the Marmousi dataset is based on a 

variable velocity and density model. The intricate model structure makes the data very 

realistic. Unfortunately, this complexity also complicates the comparison to the theoret

ical AVA in equation (1.3.23). Rarely are the events seen in the CIGs due to simple, well 

isolated interfaces. Most events are merely a superposition of reflections from a series 

of layers and fine structure, and thus have complex AVA behavior. Despite the domi

nating 'composite reflectors', two relatively well isolated reflectors have been picked to
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Velocity (m/s) Density (g/cm3) Thickness (m)
2000 2.25 500
2350 1.6 300
1900 2.3 300
2500 1.7 300
2500 2.0 Half-space

Table 3.1: Parameters for the horizontally layered model with 4 reflecting interfaces. The pa
rameters have been chosen such that the absolute magnitude of the normal incidence reflection 
coefficient does not exceed 0.1. This model is considered a low contrast medium. See Figure 3.24 
for the angle dependent reflection coefficients. Polarity reversals (180° phase changes) in the AVA 
occur for the first three reflectors. The last reflector exhibits a constant AVA characteristic.

demonstrate the benefits (and pitfalls) of least-squares migration for AVP/AVA inversion 

in complex media.

Horizontally layered model

The horizontally layered model consists of four reflecting interfaces. The acoustic model 

parameters in terms of compressional velocities and densities range from 1900 m /s  to 

2500 m /s  and from 1.6 g/cm3 to 2.25 g/cm3, respectively. More details including the 

layer thicknesses are specified in Table 3.1. All interfaces are well separated. Two meth-

O ffset [m]
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F  1.0-

1.5-

O ffset [m]
200  4 0 0  600.........   I

L
V

if 1 ;r -
1 ". I

Tr . . . J
Figure 3.22: Left: CMP gather generated by a ray-tracing code. The code models (cylindrical) 
geometrical spreading but no transmission effects. The offsets range from 0 to 660 m. The third 
reflector is about one order of magnitude weaker than the first reflector. Right: The same CMP 
after randomly removing 50% of the data.
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Figure 3.23: Left: Migrated CIG of the complete data. The offset ray parameter axis ranges from 
0 to 800/is/m in steps of 20/is/m. Right: Least-squares migrated CIG (4 iterations) of the complete 
data.

ods to generate the synthetic data have been chosen for this example: a ray-tracing and 

a finite-difference modelling technique. Unlike the finite difference algorithm, the ray- 

tracer does not account for energy partitioning at the interfaces. Hence, a comparison of 

the inversion results based on the two synthetic datasets reveals the effect of neglecting 

transmission losses in the inversion. For low contrast media the results are expected to be 

virtually identical. The example based on the ray-tracing test data is described first. The 

ray-tracer takes advantage of the fact that, in a stratified medium, the ray parameter is 

constant for a particular ray. The geometrical spreading has been calculated assuming a 

cylindrical wavefront resulting in a l / \ / i  amplitude scaling, where s is the distance trav

elled by the ray. The CMP data are shown in Figure 3.22. They exhibit a clear amplitude 

variation versus offset (AVO). The offsets range from 0 to 660 m incrementing by 11 m. 

This corresponds to an offset-to-depth ratio of about 0.5 for the deepest reflector. Figures 

3.22 shows the same data after randomly removing 50% of the live traces. The reduced 

dataset is used when the performance of the data-weighting operator W  and the model 

regularization in equation (2.3.1) are to be tested under more difficult circumstances. Re

moving data is a simple way of introducing errors in the data.

Figure 3.23 depicts the migrated ray parameter CIG and the least-squares migrated 

ray parameter CIG after 4 iterations of the CG algorithm. The apparent AVP of the mi-
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Figure 3.24: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.23 (left). The labels 
R1 to R4 correspond to the four reflectors from top to bottom. The absolute amplitudes have 
been picked. All values have been scaled with the inverse of the ray parameter imaging Jacobian 
for horizontal interfaces. The moduli of the true AVA are shown as solid lines. Right (R1-R4): 
The same picks based on the least-squares CIG in Figure 3.23 (right) after 4 iterations of the CG 
algorithm. No angle dependent scaling has been applied.

grated CIG is slightly compromised by finite aperture effects. The wavelet broadening 

(dispersion) towards high ray parameters seen for the first reflector is explained by the 

frequency tapering effect inherent in the radial trace transform (see also Figure 1.10). The 

migrated CIG is otherwise clean and of good quality. The smearing due to the finite aper

ture is mitigated in the least-squares migrated result. The tradeoff parameter was set to 

A =  0.01 and the ray parameter increment was Ap =  20/is/m resulting in a moderate 

smoothing effect to ensure AVP/AVA preservation. Apart from some finite aperture ef

fects the migrated and the least-squares migrated result are of comparable quality. This is 

confirmed by the AVP to AVA converted amplitude picks in Figure 3.24. The amplitude 

picking procedure involves the definition of windows on the CIGs and the determina

tion of the absolute values within these windows. Since the absolute values have been 

picked sign changes appear as cusps in the AVA curves. Note that the cusps are not in 

contradiction to the smoothness constraint, since smoothness is enforced on the CIGs, 

not the AVA curves. Both the migrated picked AVA and the least-squares migrated AVA 

match the theoretical AVA closely for a large range of incidence angles. Inevitable finite 

recording aperture effects cause the AVA of all reflectors to eventually taper off to zero.
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Figure 3.25: Left: Migrated CIG of the complete finite-difference data. As opposed to the ray- 
tracing data the wavelet has been shifted to be zero-phase. This explains the slightly earlier onset 
of all signals. Right: The corresponding picked AVA. The dashed line indicates the theoretical 
cumulative error due to neglected transmission losses.

Next, synthetic data generated by a finite-difference algorithm based on the full acous

tic wave-equation have been inverted. Figure 3.25 shows the migrated CIG and the 

picked AVA. The CIG based on the ray-tracing data in Figure 3.23 and the CIG in Figure 

3.25 are very similar. Differences are attributed to transmission loss, first arrival muting 

artifacts and a slightly narrower offset range for the finite difference input data. Further

more, the highest frequencies may have been distorted slightly by finite-difference grid 

dispersion (Press et al., 1997). The picked AVA in Figure 3.25 follows the theoretical AVA 

closely. For comparison, the theoretical cumulative transmission losses are also plotted 

in Figure 3.25 indicating that the transmission angle dependence is weak in this case, but 

can have a negative impact where the AVA is small.

Based on the above findings one can conclude that migration gives reliable AVA es

timates in layered media, provided the data are well sampled along offset and noise 

free. Of course, the inverse ray parameter imaging Jacobian needs to be applied. 

Nonetheless, it is important to keep in mind that the primary data representation as

sumes a low contrast medium and the absence of fine layering. While constrained least- 

squares migration helps to suppress spurious energy, the computing intensive least- 

squares migration is expected to be more compelling when the data sampling is poor.
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Figure 3.26: Left: Migrated CIG of the incomplete data. Right: Least-squares CIG (14 iterations) 
of the incomplete data. The data misfit for the least-squares migration is shown in Figure 3.27.

To challenge the inversion algorithm input data with significant irregularity, the re

duced CMP in Figure 3.22 was inverted. The migrated CIG in Figure 3.26 clearly bears 

the stamp of acquisition footprint noise. The amplitudes are discontinuous along the ray 

parameter axis, and there is spurious energy between the reflectors. The least-squares mi

grated CIG (14 CG iterations) in Figure 3.26 is overall cleaner and exhibit a smooth AVP. 

To ensure that the data weighting operator takes full ef

fect the data residuals have been minimized to the point

where the data misfit levels off to its plateau. Figure 09
0.6

3.27 is the data misfit up to 19 iterations of the CG al- 1 07
$

gorithm. In this example, 14 iterations were sufficient to |  06

achieve a good inversion result. The picked AVA of the 2 oa
0 .3

migrated and the least-squares migrated CIGs are por

trayed in Figure 3.28. The migrated AVA curves are dis

torted. Especially, the AVA estimation for the two deep- Figure 3.27: Normalized data
^  , m is fit  ( in c o m p le te  d a ta ),est reflectors is poor. On the other hand, when picked

on the least-squares CIG the curves are smooth and follow largely the theoretical AVA. 

For large ray parameters, where there is an abrupt change in the AVA due to the finite 

recording aperture, the smoothing regularization averages some of the finite offset effects

8  1 0  12  14  16  182 64
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Figure 3.28: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.26 (left). 50% of the data 
were randomly set to zero prior to migration (see also Figure 3.22). Right (R1-R4): The same picks 
based on the least-squares migrated CIG (14 iterations) in Figure 3.26 (right).

into the previously recoverable angle range. This is a reminder that smoothing has to be 

applied with care to avoid solutions that are 'too smooth' or 'too flat'. In this example, 

the tradeoff parameter was A =  0.01. Compare this result also to Figure 3.24.

Figure 3.29 shows the CIG based on the incomplete data after 10 CG iterations and the 

least-squares CIG when the data weighting operator W  in equation (2.3.1) is the identity
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Figure 3.29: Left: Least-squares migrated CIG (10 iterations) of the incomplete data. Right: 
Least-squares migrated CIG (14 iterations) of the incomplete data without data weighting.
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operator. The least-squares CIG after 10 iterations looks virtually identical to the one 

after 14 iterations in Figure 3.26. In terms of amplitudes, however, the picked AVA in 

Figure 3.30 reveals subtle differences. The least-squares CIG without data weighting 

exhibits residual wavelet distortions that are absent in the least-squares migrated CIG in 

Figure 3.26. Obviously, the AVA curves in Figure 3.30 are biased by the missing data. The 

curves are merely a smoothed version of the migration result in Figure 3.28. This example 

supports the important point that weighted least-squares migration produces smooth 

and clean solutions and yet fits the seismic data in a sensible way. That is, regularized 

least-squares migration can be interpreted as data consistent AVA smoothing.

The next example tests how random noise influences the inversion result. To make 

sure that the AVA is not too severely deteriorated noise with a moderate signal-to-noise 

ratio of 10 has been added, where the maximum absolute amplitude defines the signal 

strength. Figure 3.31 is the migrated and the least-squares migrated CIGs using the in

complete and noisy data. Clearly, the additional noise has further degraded the migrated 

CIG. The least-squares CIG (14 iterations) is significantly cleaner and has a smooth AVP. 

The corresponding picked AVA is shown in Figure 3.32. As expected, the migrated AVA
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20 40 60
Angle of incidence (deg)

0 20 40
Angle of incidence (deg)

0 20 40
Angle of incidence (deg)

0 20 40
Angle of incidence (deg)

*0.08

50.06 5 0.06o 0.06 o 0.06

2 0.04 2 0.042 0.04 2 0.04

5  0.02 =  0.02 50.02 50.02

10 20 30
Angie of incidence (deg)

'0  10 20 30
Angle of incidence (deg)

0 10 20 30
Angle of incidence (deg)

0 10 20 30
Angle of incidence (deg)

Figure 3.30: Left (R1-R4): AVA picked from the least squares-migrated CIG (10 iterations) in 
Figure 3.29 (left) shown as the dot-dashed line. The crossed line is the previously shown result 
after 14 CG iterations. Right (R1-R4): The picks based on the least squares migrated CIG (14 
iterations) in Figure 3.29 (right) where the data weighting operator W has been replaced by the 
identity operator.
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Figure 3.31: Left: Migrated CIG of the incomplete and noisy data. Right: Least-squares migrated 
CIG (14 iterations) of the incomplete and noisy data.

suffers significant distortions from acquisition footprint and random noise, whereas the 

least-squares migrated AVA matches the theoretical values much better, but is certainly 

not perfect. The high noise level relative to the third reflector has caused some deviation 

from the true AVA. The last test in this series confirms that this deviation is indeed due
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Figure 3.32: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.31 (left). The data were 
incomplete and random noise with a signal to noise ratio of 10 (based on the absolute maximum 
amplitude) has been added. Right (R1-R4): The same picks from the least-squares migrated CIG 
(14 iterations) in Figure 3.31 (right).
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Figure 3.33: Left: Migrated CIG of the noisy data. Right: Least-squares migrated CIG (4 itera
tions) of the noisy data.

to random noise. This time, the input data were noisy but complete. See Figure 3.33 for 

the migrated and least-squares migrated CIGs. The associated AVA curves are in Fig

ure 3.34. The least-squares migrated AVA curves are smoother than the migrated ones 

with both showing essentially the same trend. Since the data weighting operator W  is 

the identity matrix except for a few padded far offset samples, the data misfit has not
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Figure 3.34: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.33 (left). White noise with 
a signal-to-noise ratio of 10 has been added. Right (R1-R4): The same picks from the least-squares 
migrated CIG (4 iterations) in Figure 3.33 (right).
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been minimized to its plateau. It seems reasonable to conjecture that smoothing and am

plitude scaling equivalent to the application of the inverse imaging Jacobian takes effect 

after a few iterations.
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Figure 3.35: Velocity (top) and density model (bottom) with a slightly dipping, a moderately 
curved and dipping, and a flat reflector. The flat reference reflector is represented by a density 
change only. The migrated and stacked sections are shown as overlays.

Model w ith a curved interface

The previous model was restricted to depth dependent velocities allowing for a fast com

putational turnaround. The next model is also relatively simple but has lateral struc

ture. Figure 3.35 portrays the velocity and density fields. The data have been generated 

by finite-difference modelling with offsets that range from 0 to 1140 m incrementing by 

Ah = 20m. The stacked split-step migration images a small portion of the model, shown 

as overlays in Figure 3.35. Figure 3.36 is the migrated and the least-squares migrated CIG 

at CMP location 4600 m. The relatively coarse offset sampling caused aliasing artifacts
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Figure 3.36: Left: Migrated CIG at CMP location 4600 m (see Figure 3.35). Finite aperture effects 
and offset aliasing cause spurious energy in the CIG. Right: Least-squares CIG (6 iterations) at 
CMP location 4600 m. Most of the spurious energy has been cleaned up. The picked AVA for the 
second and the third reflector are shown in Figure 3.37.

in the migrated CIG, whereas least-squares migration (6 iterations with A =  0.006 and 

Aph =  15/is/m) suppresses the aliasing noise effectively. Figure 3.36 shows the picked 

AVA of the middle and the bottom reflector. The dot-dashed line is the AVA when the 

local dip angle in equation (1.3.33) is not considered in the AVP to AVA conversion. The 

result confirms nicely that a specular reflection process also holds for moderately curved 

interfaces.
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Figure 3.37: Left: AVA for the second reflector picked on the least squares CIG in Figure 3.36. 
The dot-dashed line indicates the AVA without dip correction. Right: AVA for the third reflector 
picked on the least-squares CIG in Figure 3.36.

93

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



3.2. LEAST-SQUARES MIGRATION

The Marmousi model

The Marmousi model has been extensively described previously. As mentioned earlier, 

imaging techniques based on the high-frequency approximation (i.e., ray-tracing based 

imaging) often struggle to produce a good structural image of the Marmousi model. The 

relatively simple split-step wavefield propagator, on the other hand, yields good results. 

This is confirmed by the migrated image in Figure 3.4 shown earlier. Here the focus is 

on AVP/AVA inversion issues. The complex structure of the Marmousi model makes a 

careful selection of the depth point whose AVA is to be estimated crucial. Two criteria 

guided the selection process. First, the depth points should be located in the upper half of 

the model so as to ensure sufficiently large ray parameter/angle range coverage. Second, 

to compare the inverted AVA with the theoretical AVA the picked reflection event, the 

target, ought to be generated by a single, locally plane, interface. The Marmousi model is 

complex with significant fine layering. Hypothetically, composite reflections from mul-
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Figure 3.38: Left: Portion of the migrated and stacked Marmousi image. Right: CIG at CMP 
location 7500 m. The arrow indicates the reflector picked for AVA analysis.
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Figure 3.39: Left: Portion of the migrated and stacked Marmousi image. Right: Least-squares 
migrated CIG (4 iterations) at CMP location 7500 m.

tiple interfaces ('tuning effects') could be modelled and compared to the inverted CIGs, 

but this approach has not been pursued. Given the relatively low frequency content of 

the source wavelet only few reflections satisfy the 'single interface criterion'.

Figure 3.38 shows the first target reflector at CMP location 7500 m. The left image 

is a portion of the migrated and stacked Marmousi data with the arrow indicating the 

picked target phase in the CIG. All available offsets of the Marmousi data have been 

used in the migration. As it is often the case in reality, the near offsets up to 100 m 

are missing. The consistent absence of near offset information causes a dim region for 

small ray parameters. Visual inspection of the gathers can help to identify regions of 

missing data information. These areas should be excluded from a subsequent inversion 

for elastic/lithologic parameters. Figure 3.39 shows the same m idpoint CIG after 4 itera

tions of the least-squares algorithm using a moderate smoothing regularization (A =  0.01, 

Ap = 15/is/m). The energy in the previously dim zone has been partially boosted. Never

theless, the small ray parameter amplitudes have to be interpreted with caution. Overall,
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Figure 3.40: Left: Blow-up of the migrated target reflector CIG and the picked AVA curve. Right: 
Blow-up of the least-squares migrated target reflector CIG ( 6  iterations) and the corresponding 
AVA. One has to take care not to produce solutions that are 'too flat'.

the least-squares CIG exhibits improved wavelet continuity along ray parameter and ap

pears more interpretable. However, it is once more emphasized that the interpretation of 

the amplitudes in terms of specular reflections breaks down where the target reflector is 

strongly irregular or has lateral support on the order of the dominant wavelength or less. 

In any case, as far as structural imaging is concerned, the stacked ray parameter CIGs 

yield the familiar DSR migration result.

Figure 3.40 zooms in on the target reflector for both the migrated and the least-squares 

migrated CIG. The picked AVA curves are shown below the CIGs. The AVA is biased by 

the missing near offset traces. Despite its roughness, the AVA curve picked on the mi

grated CIG agrees with the theoretical AVA trend. The least-squares migrated AVA after 

6  iterations is smooth and closer to the true AVA. However, a higher number of iterations 

produces a solution that is 'too flat'. Since least-squares migration is computationally 

expensive, one desires to compute as few CG iterations as possible. A relatively high 

tradeoff parameter yields smooth and cleaner CIGs fast but can also jeopardize the AVA
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Figure 3.41: Left: CMP data at location 7500 m of the Marmousi model. Notice that the first live 
trace is at (half) offset 100 m. Right: The CMP after removing 70% of the live traces.

fidelity. Ideally, one would like to have a universal parameter 7 =  A2  x Aph that war

rants AVA fidelity and yet produces smooth solutions efficiently. Future tests will show 

whether it is possible to come up with reliable, data independent values for 7 .

In order to test the effect of sub-optimal wavefield sampling 70% of the Marmousi 

data have been randomly set to zero. The CMP data at location 7500 m in Figure 3.41 

illustrate the sparseness of the reduced dataset. The corresponding migrated and least- 

squares migrated CIGs and their AVA curves are shown in Figure 3.42. The irregular 

acquisition geometry has left a strong imprint on the migrated CIG, and the reduced 

wavelet continuity is also reflected in the AVA picks. Although the correct AVA trend ap

pears to be preserved the footprint noise renders a reliable AVA fit questionable, whereas 

the least-squares migration ( 1 2  iterations) restores continuity and reduces the footprint 

noise considerably. A comparison with the least-squares CIG using the full data in Figure 

3.40 confirms that almost all retrieved events are real. The least-squares AVA matches the 

true AVA between 15 and 35 degrees. Missing data and perhaps smoothing have some-
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Figure 3.42: Left: Blow-up of the migrated target reflector and the picked AVA curve (incomplete 
wavefield data). Right: Blow-up of the least-squares migrated target reflector CIG (12 iterations) 
and the corresponding AVA (incomplete wavefield data).

what reduced the recovered angle range.

Figure 3.43 illustrates the second location chosen for an AVA study. The target re

flector is dipping with 4> =  30° and is located in the more complex, faulted area of the 

Marmousi model. Figure 3.43 depicts the least-squares migrated CIG for location 6200 m 

adjacent to the stacked migration. Figure 3.44 zooms in on the least-squares CIGs based 

on the complete and the incomplete data. The CIGs are strikingly similar. The wavefield 

phase with the strong positive anomaly for large ray parameters is identified as the target. 

The picks with and without dip correction are plotted in Figure 3.44. The dip correction 

helps to improve the match between the picked AVA and the theory. However, the match 

between the picked and the theoretical AVA based on the 'single interface assumption' is 

not quite as obvious as in the previous examples. This is attributed to fine structure AVA 

effects and, possibly, cumulative transmission losses caused by the relatively complex 

overburden.

Finally, the Figures 3.45, 3.46 and 3.47 compare constant ray parameter images (ph =
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Figure 3.43: Left: Portion of the migrated and stacked Marmousi image CMP. Right: Least- 
squares migrated CIG (4 iterations) at CMP location 6200 m.

400/is/m) of the migrated complete data, the migrated incomplete data and the least- 

squares migrated incomplete data, respectively. The image quality in Figure 3.45 is 

clearly inferior to the migrated image in Figure 3.4. This is not surprising, since Figure 

3.4 is equivalent to the summation over all constant ray parameter images. Figure 3.46 

depicts the migrated incomplete data in which kinematic artifacts due to missing data 

have further deteriorated the image quality. Instead, the least-squares migrated constant 

ray parameter image in Figure 3.47 is comparable, and in many areas even superior, to 

the migrated complete data in Figure 3.45. In terms of kinematic artifact reduction, the 

smoothing regularization has a very similar effect as ray parameter stacking.

Yet another way to glean the inversion success is by comparing the original input 

data to the reconstructed data. The reconstructed data results from the application of 

the modelling operator. Figure 3.48 depicts both the complete and the reduced constant 

offset (500 m) Marmousi data. Figure 3.49 is the reconstructed data after the first CG iter

ation based on the incomplete input. The data gaps have been partially filled but streaks
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3.2. LEAST-SQUARES MIGRATION

remain clearly visible. After 12 iterations the wavefronts have been largely healed and the 

energy is well balanced. The reconstruction agrees well with the original data in Figure 

3.48 (top). Most of the differences are attributed to the single scattering approximation of 

the modelling and migration operators.
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Figure 3.44: Left: Blow-up of the least-squares migrated target reflector CIG (4 iterations) and 
the picked AVA curve (complete wavefield data). The dot-dashed line is the AVA without dip 
correction. Right: Blow-up of the least-squares migrated target reflector CIG (12 iterations) and 
the corresponding AVA (incomplete wavefield data).
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Figure 3.45: Constant ray parameter migration of the Marmousi model (ph = 400/zs/m). All 
available wavefield data were used in the migration.

101

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .

*+(%(%+(+&(+(+'*(%)%+(+%('(+%(&(*+%(()%+(%!%*(+((+



3.2. LEAST-SQUARES MIGRATION

CMP position [m]
3 0 0 0  4 0 0 0  5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  9 0 0 0

0 -

0 .5 -

„ 1 .0 - 
Ej*:

■B 1 . 5 -

2 . 5 -

Figure 3.46: Constant ray parameter migration of the Marmousi model (ph — 400/is/m). Only 
30% of the available wavefield data were used in the migration.
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Figure 3.47: Constant ray parameter least-squares migration image of the Marmousi model (ph 
400/is/m). Only 30% of the available wavefield data were used in the least-squares migration.
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Figure 3.48: Top: Complete constant offset (500 m) Marmousi dataset. Bottom: 70% reduced 
constant offset dataset.
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Figure 3.49: Top: Reconstructed constant offset data after one CG iteration based on the incom
plete input data in Figure 3.48. Bottom: Reconstructed constant offset data after 12 CG iterations. 
Notice the wavefront healing effect.
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Chapter 4

Field data example

The concept of AVP/AVA imaging/inversion is applied to a real data example. Ana

lyzing AVP/AVA trends aids the interpretation of seismic data in relation to subsurface 

rock and pore-space properties. Rather than directly inverting for elastic parameters, the 

adopted strategy interprets the AVP/ AVA response leaning upon a classification scheme 

that relates AVP/AVA trends and anomalies to certain reservoir types (Rutherford and 

Williams, 1989). This strategy is well established in 'industry-style' seismic exploration 

(Castagna, 1993). The seismic data have been acquired in the Gulf of Mexico and do

nated by Western Geophysical for testing purposes. The Gulf of Mexico is known for 

challenging sub-salt imaging issues. Moreover, free surface related multiples and a low 

primary-to-multiple energy ratio often hamper the image quality (Verschuur and Prein, 

1999). Careful multiple attenuation during pre-processing is a prerequisite for AVP/AVA 

analysis. Furthermore, the velocity field needs to be inferred from the picked NMO stack

ing velocities (Dix, 1955). The pre-processed data are then analyzed with the focus on the 

angle behavior of a particular target reflector. The aim is to determine whether the target 

fits the AVP/AVA signature that is indicative of a gas bearing geologic formation. A pre

viously conducted AVP/AVA study by Gratwick et al. (2002) identifies the reflector as a 

so-called class III bright spot (Rutherford and Williams, 1989). The anomaly is believed to 

be caused by a relatively low impedance gas bearing sand that exhibits a high amplitude 

anomaly on far offsets (i.e., large angles or ray parameters).
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4.1. THE GULF OF MEXICO DATA

4.1 The G ulf of M exico data

The provided line is located in relatively deep water (about 1400 m). The following ac

quisition parameters describe the initial field data set (Verschuur and Prein, 1999):

• shot numbers: 2000-3000,

• shot interval: 87.5 ft,

• number of traces per shot: 180,

• farthest offset: -15993 ft,

• nearest offset: -330 ft,

• group (receiver) spacing: 87.5 ft,

• number of samples per trace: 2404,

• time sampling 4 ms.

Figure 4.1 shows a portion of the NMO corrected and stacked data ('brute-stack'). Direct 

and refracted waves have been muted before NMO correction, and all distances are con

verted to the metric system. The area of interest is the sub-salt reflector at about 3.6 s at 

CMP location around 18 km. The first order ocean-bottom surface multiple is easily iden

tified and partially masks the flat target reflector. The prominent salt body extends almost 

all across the shown part of the section. Together, the free surface, the ocean bottom and 

the top and bottom of the salt body act as a potent generator of first and higher order 

multiples that are often difficult to identify. The prominent first order ocean-bottom mul

tiple is particularly troublesome for the AVP/AVA analysis of the target reflector. Thus, 

multiple suppression is crucial. In summary, the following processing steps were applied 

prior to (least-squares) migration:

• Direct and refracted wave muting,

• yj trwr  scaling to approximately transform the amplitudes from point sources to 

lines sources (see equation (1.3.61)),
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Figure 4.1: Brute-stack of the Gulf of Mexico data. The first-order ocean bottom multiple that 
partially masks the circled target reflector is easily identified.

• multiple suppression by high resolution parabolic Radon filtering (Sacchi and Por- 

sani, 1999).

Figure 4.2 is the stacked section after multiple suppression. Compare the stack to the 

brute-stack in Figure 4.1. The flat target reflector is largely freed from multiple energy. 

The overlaid curves in Figure 4.2 are velocity profiles inferred from the picked stacking 

velocities w ith the help of a 'Dix inversion' algorithm (see below). In a strict sense, this 

type of velocity inversion is applicable only to media with no or small lateral variations. 

Since the area of interest does extend over the salt edges, Dix's velocity inversion is ex

pected to work sufficiently well. The spatially interpolated velocities serve as the velocity 

field for the (least-squares) depth migration.

4.2 V elocity m odel b u ild ing

Depth migration requires the input of a velocity model (i.e., interval velocities). The in

terval velocities (Figure 4.2) are obtained from the stacking velocities using a 1-D regular

ized least-squares 'Dix inversion'. The employed algorithm is similar to the one proposed
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Figure 4.2: Stack after multiple suppression. The first order ocean-bottom multiple has been 
largely removed. The overlaid curves indicate the CMP positions where velocity profiles have 
been inverted. The salt body shows as a strong high velocity anomaly in the profiles.

by Lizarralde and Swift (1999) for inverting vertical seismic profile (VSP) data for inter

val velocities. However, in this case the forward operator is based on the linear relation 

between the squared stacking velocities C2(t) and the squared interval velocities c2 (Dix, 

1955):

C2(t) = ± J 2  A U c l .  (4.2.1)
i=0

where the time axis has been subdivided into N  — 1 equally spaced intervals A t t: t = 

Atj. Equation (4.2.1) is simply the forward relation of Dix's well-known inversion 

formula for velocities in a layered medium (Dix, 1955). The forward relationship (4.2.1) 

is rewritten as a regularized least-squares fitting problem:

min F(f) =  ||(d -  L f ) | | 2  +  A2 ||SD f||2, (4.2.2)

where f  is the model vector w ith the unknown squared interval velocities, d is the data 

vector containing the stacking velocities and L is the summation operator in equation

(4.2.1). An unregularized least-squares inversion of equation (4.2.1) is notoriously un

stable for high frequency variations in the stacking velocities. Therefore the objective
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Figure 4.3: The migration velocity field obtained by spatial interpolation of the 1-D least-squares 
'Dix inversion' result and time to depth conversion.

function (4.2.2) is supplemented with a regularization term that penalizes roughness in 

the solution. A selector operator S complements the first-order differential operator D 

in order to disable the smoothing regularization at time locations of reliable reflectors. 

Reflection times picked during the velocity analysis present a natural choice for the se

lector operator. The purpose of the selector operator is twofold. First, strong reflections 

imply high quality data, hence an accurate fit is desired for these locations. Second, dis

abling the smoothing regularization allows for the development of discontinuities in the 

solution and thus honors the lithologic discontinuities which lead to the reflection in the 

first place. As a result, the smoothing operator together with the selector operator yield 

a 'blocky', edge preserving, rather than a smooth solution (Lizarralde and Swift, 1999). 

The tradeoff parameter A in equation (4.2.2) determines the degree of 'blockyness'. Since 

the problem size is relatively small, the minimization (4.2.2) is solved by means of stan

dard matrix inversion (Menke, 1984) rather than iterative gradient optimization. Finally, 

the inverted interval velocities are converted from time to depth. The inverted interval 

velocities for 4 selected CMP locations in Figure 4.2 show the characteristic high velocity
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4.3. AVP/AVA INVERSION

anomaly for the salt body. The lateral velocity variation is moderate in the area of inter

est, and thus justifies a linear interpolation between the inverted CMP locations (Figure 

4.3).

4.3 AVP/AVA inversion

Both a migration and a regularized least-squares migration were carried out for the area 

of interest down to a depth of 4500 m. The (least-squares) split-step DSR migration used 

a total of 220 CMPs. The migration velocity field is mildly varying in the lateral direction, 

hence the efficient split-step corrected DSR operators should perform adequately.

M igration

Figure 4.4 depicts the stacked migration, the ray parameter CIG and a ray parameter 

depth slice through the flat target reflector. Apart from some apparent multiples, most 

events in the CIG are flat suggesting that the interval velocity field is reasonably close 

to the truth. Only a few sub-salt events show some residual move-out ('frowns') which 

indicates that the velocities have been overestimated in some parts of the model. Since 

the stacked migration is nevertheless of fairly good quality, the extra effort involved in 

oftentimes tedious velocity updating does not appear worthwhile.

The CIG and the depth slice confirm that the target reflector does indeed have the 

characteristic of a class III gas sand. This agrees with the findings by Gratwick et al. 

(2002). The amplitude increases with ray parameter, where angle and ray parameter are 

directly related through =  sin 0/c. While the amplitude trend towards larger ray pa

rameters is unambiguous, the small ray parameters are adversely affected by the initially 

missing near offsets. This result exemplifies how AVP/AVA analysis can aid the assess

ment of a potentially gas bearing geologic structure.

Least-squares migration

The benefit of least-squares migration is expected to be limited, since no real data vari

ance issues are apparent for the well sampled marine data set at hand. As seen in the 

synthetic data tests, migration yields good results in such cases. However, an improve

ment in terms of the CIG's interpretability due to ray parameter smoothing could be
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achieved as demonstrated in Figure 4.5. Only 4 iterations of the least-squares algorithm 

have been computed, enough for the smoothing regularization to take effect. In partic

ular, the depth slice in Figure 4.5 appears less random and emphasizes the amplitude 

anomaly better. Upon careful comparison of Figure 4.4 with Figure 4.5 one notices an 

interesting side effect of least-squares migration that has not been discussed as yet: Reg

ularized least-squares migration attenuates internal multiples with significant residual 

move-out, and thus better resolves the top of the salt body in this example. Figure 4.6 

zooms in on a small area from 16 km to 17 km horizontally and 1 km and 2.5 km ver

tically. The migration and the least-squares migration are shown side-by-side and their 

amplitudes have been normalized with respect to the highly reflective salt top. The least- 

squares migration has slightly higher resolution and images the faulted sediment struc

ture better. The prominent first order internal salt multiple is attenuated.

I l l
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Figure 4.4: The migrated (and stacked) data, the ray parameter CIG (right) and the ray parameter depth slice through the target 
reflector (bottom). The vertical and the horizontal lines indicate the location of the CIG and the depth slice, respectively. The depth 
slice shows increasing amplitudes with angle in the area of the target reflector. The events seen in the CIG are mostly flat indicating 
that interval velocity estimate is fairly good. The increasing amplitude with ray parameter for the target reflector is also apparent in the 
ray parameter CIG.
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Figure 4.5: The least-squares migration after 4 iterations with moderate smoothing (A = 0.005; Ap = 14ps/m). The ray parameter CIG 
(right) is smoother and more coherent along the ray parameter axis. The depth slice shown at the bottom reflects this as well. The 
increased wavelet continuity makes the computation of depth slices for AVP studies more robust. The stacked migration is very similar 
to Figure 4.4. Some multiple energy, especially within the salt body, is suppressed.
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Figure 4.6: Left panel: Parts of the migrated sediment structure and the salt body ranging from 
16 km to 17 km in CMP location. Right panel: Least-squares migration of the same area. The 
amplitudes of both sections are normalized with respect to the prominent top-salt reflector.
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Chapter 5

Computational aspects

The computation of (generalized) DSR modelling and imaging operators is demanding 

in terms of number of floating point operations and memory allocation. An implemen

tation in three spatial dimensions has not been attempted in this thesis, since even an 

efficient 2-D implementation of least-squares migration/inversion is a challenge. Stor

ing full pre-stack data in the computer's memory can exceed the limits of today's com

puters technology. For instance, a small 2-D seismic survey with 512 midpoints, 128 

offsets and 1024 time samples results in a dataset size of about 268 Mbytes. Depend

ing on the utilized propagators (split-step propagation is more memory efficient than 

split-step PSPI/NSPS propagation) multiple times this memory is required to perform 

least-squares migration/inversion. The CG optimization can not be computed 'in-place' 

and temporary workspace has to be allocated to perform various computational tasks. In 

other words, memory efficient coding is important if larger and more realistic datasets are 

to be tackled. Moreover, phase-shift propagator techniques that attempt to account for 

lateral velocity variations make substantial use of the fast Fourier transform (FFT). Gen

erally, the Hermitian symmetry of the complex-valued Fourier transform causes compu

tational redundancies in terms of floating point operations and memory requirements. 

In practice, a combination of the FFT with the well-known real-to-complex Fourier trans

form is usually employed to avoid such complications (Press et al., 1997). As an alterna

tive means to the Fourier transform the inherently real-valued, non-symmetric Hartley 

transform (Bracewell, 1986) is introduced into wavefield propagation (Kuehl and Sacchi, 

1999; Kuehl et al., 2001). The Hartley transform automatically avoids the Hermitian sym-
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5.1. THE HARTLEY TRANSFORM

metry resulting in optimized code that is comparable in efficiency to algorithms based 

on the real-to-complex FFT.

5.1 The H artley transform

Since the seismic wavefield is real-valued, the complex Fourier transform has Hermi

tian symmetry. Hence, a brute force implementation leads to redundant operations and 

memory allocation. The Hartley transform (Bracewell, 1986) can be used to optimize 

such codes. The fast Hartley transform (FHT) is closely related to the complex FFT but 

is more suitable for real-valued data because of its inherently real-valued nature. The 

Hartley transform codes the amplitude and phase of a real-valued function in a single 

real-valued transform without symmetries. It satisfies similar theorems equivalent to 

those of the Fourier transform and can therefore replace the FFT in virtually any appli

cation that involves real-valued data (Bracewell, 1986). The Hartley transform has been 

successfully used in other geophysical applications such as wavefield modelling and data 

filtering (Saatcilar et al., 1990; Saatcilar and Ergintav, 1991). A complete set of fast Hartley 

transform algorithms is available in the literature. Here, the radix-2 decimation in time 

FHT is exclusively dealt with. Refer to Sorensen et al. (1985) for other implementations 

of the FHT.

The 1-D Hartley transform and its inverse are given by

with the real-valued Hartley kernel cas(ux) =  cos(ux) + sin(ux) (Bracewell, 1986). The 

variables x  and u denote the conjugate Hartley variables. The orthogonal Hartley trans

form is related to the unitary Fourier transform and satisfies similar theorems. For seis

mic imaging an extension of definition (5.1.1) to higher dimensions becomes necessary. 

This extension is not obvious since

(5.1.1)

cas(ux + vy) ^  cas(ux)ca,s(vy), 

as opposed to the Fourier kernel, which is obviously separable:

exp (i(ux + vy)) =  exp (iux) exp (ivy).

(5.1.2)

(5.1.3)
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5.1. THE HARTLEY TRANSFORM

Both sides of equation (5.1.2) are used as 2-D Hartley kernels in the literature. Here, the 

multiplicative definition of the 2-D Hartley transform suggested by Sundarajan (1995) is 

adopted and referred to as version I:

a ,  w ,v)  =  2 . / /  f (x ,  y)cas(ux)cas(vy)dxdy, (5.1.4)

with an obvious extension to the 3-D case:

Hi(u,v,w) = — —̂3- f  f  f  f(x,y,z)cas(ux)cas(vy)cas(wz)dxdydz. (5.1.5)
(2tt)2 J  J  J

Some authors refer to this definition as the 'cascas(cas)' transform (e.g., Bracewell (1986)). 

Here, for stylistic reasons, the equations (5.1.4) and (5.1.5) are called (multi-dimensional) 

Hartley transforms (version I), in agreement with Sundarajan (1995). Sundarajan also 

defines version II of the 2-D Hartley transform:

Hn (u,v) = ~  J J  f{x,y)cas(ux + vy)dxdy, (5.1.6)

where the argument of the kernel is the sum of the arguments of the 1-D kernels. How

ever, the definitions (5.1.4) and (5.1.5) are separable into 1-D Hartley transforms and 

therefore computationally more convenient to obtain than version II. Both versions of 

the N-dimensional Hartley transform are orthogonal (Bracewell, 1986).

Figure 5.1 to Figure 5.4 illustrate the relation between the 2-D Fourier transform and 

the 2-D Hartley transform (version I) for a 2-D boxcar function. This simple example 

demonstrates how the Hartley transform conveniently stores all amplitude and phase 

information in a single real-valued function.
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5.1. THE HARTLEY TRANSFORM

f(x.y)

Figure 5.1: For illustration, a 2-D boxcar function is used as input for two spectral transforms: 
the 2-D Fourier transform and the real-valued 2-D Hartley transform (version I). The resulting 
spectra are shown in Figures 5.2,5.3 and 5.4.

Re{F(u,v)}

Figure 5.2: The symmetric real-part of the 2-D Fourier transform of the 2-D boxcar function in 
Figure 5.1.
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5.1. THE HARTLEY TRANSFORM

lm{F(u,v)}
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Figure 5.3: The anti-symmetric imaginary-part of the 2-D Fourier transform of the 2-D boxcar 
function in Figure 5.1.

H(u,v)
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0

- 0.5 
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-3

Figure 5.4: The Hartley transform of the 2-D boxcar function in Figure 5.1. The Hartley trans
form exhibits no symmetry and codes phase and amplitude information in a single real-valued 
function.
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5.1. THE HARTLEY TRANSFORM

•  H (v)

H e (N /2-v) *  H (N /2-v)

*  H (N /2 + v )H o (N /2+ v)

H 0 (N-v) •  H (N -v)

Figure 5.5: The 'Hartley butterfly' according to equation (5.1.8). The sine and cosine factors are 
evaluated at where N  is the length of the discrete sequence (after Sorensen et al. (1985)).

5.1.1 The fast Hartley transform (FHT)

In accordance with equation (5.1.1) the discrete 1-D Hartley transform (DHT) and its 

inverse for a length-N sequence f ( n ) , 0 < n < N  — l, are defined by (Bracewell, 1986):

N —l

H (v ) =  (n )cas ( iV'
71=0 

JV-1

2tt
:vn

17=0

2ir
cas | —  vn

0 < v < N  -  1,

0 < n < N  — 1. (5.1.7)

A complete set of fast algorithms for computing the DHT can be found in Sorensen et al. 

(1985), including a radix-2 decimation-in-time FHT. The FHT is based on the DHT de

composition formula, which is similar to the Danielson-Lanczos formula for the discrete 

Fourier transform (DFT) (Press et al., 1997). A length N  =  2M DHT is divided into two 

length-N /2 DHT's, one over the even-indexed samples He and one over the odd-indexed 

samples H0/ and combined to form the DHT of the full-length sequence:

' 2 vr
H(u) =  He(u) +  H0(v) cos j + H0(N -  v) sin ^

N
(5.1.8)

where the indices of the half-length transforms for the even and odd indices are evalu

ated modulo N/2.  The decomposition formula (5.1.8) is applied recursively until length-2
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5.1. THE HARTLEY TRANSFORM

□  real-to-com plex FFT

□  FHT

■  com plex  FFT

8 9 10 11 12 13
m =  lo g 2 N

Figure 5.6: Relative computation times for the complex FFT, real-to-complex FFT and FHT as a 
function of the transform length N = 2m. The times have been obtained on a Pentium processor.

transforms are obtained. This structure resembles the fast Fourier transform (FFT) de

rived by Cooley and Tukey (1965). Figure 5.5 shows a flowchart representation of equa

tion (5.1.8), called the Hartley butterfly. Since it is desired to compute the FHT 'in place', 

four elements are included in each Hartley butterfly to avoid overwriting an element 

that will be needed later. Sorensen et al. (1985) provide a radix-2 decimation in time FHT 

Fortran code based on the described Hartley butterfly. They also conduct a number-of- 

operations count and show that, when coded efficiently, the FHT takes only a few more 

additions than an equivalent real-to-complex FFT. In this sense the FHT can be regarded 

as a means to compute a time- and memory-optimized, real-valued spectral transform. 

Figure 5.6 compares the computation times of the complex FFT, real-to-complex FFT and 

FHT obtained in a simple test using different transform lengths N. The result confirms the 

number-of-operations count by Sorensen et al. and demonstrates that time saving bene

fits over the complex FFT are increasingly significant with increasing transform lengths. 

The extension to higher dimensions (version I) is most easily accomplished by multiple 

application of the 1-D FHT along the respective dimensions without loss in efficiency. 

However, this is not to suggest that algorithms based on the Hartley transform are gen

erally more efficient than those making use of the real-to-complex FFT. The Hartley trans

form is merely an alternative tool to the Fourier transform which might be attractive to
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5.1. THE HARTLEY TRANSFORM

practitioners developing efficient algorithms that exploit the symmetries of the Fourier 

transform.

5.1.2 Wavefield propagation using Hartley transform

To make use of the Hartley transform in wavefield modelling and migration all oper

ations need to be posed in the Hartley domain. To this end all Fourier transforms are 

replaced with Hartley transforms (version I). Three operations involved in modelling 

and migration are affected by the domain change: the complex phase-shift propagator, 

the split-step correction and the radial trace transform, and, of course, their respective 

adjoint operations. All other operations are analogous to their Fourier counterparts, the 

only difference being that they are real-valued. The expression for the 2-D phase-shift 

propagator (i.e., kmy =  khy = 0) is derived in Appendix E. The Hartley domain oper

ation that replaces the causal upward propagator Zi) in equation (1.3.44) is

(Kuehl et al., 2001):

^Hi {kmXi khxi zi—i, ca) =  Hj {kmxi khx, cj) cos(kz A.z)

+  ^ H i ( k m x , k h x , Z i , - u } ) s m ( k z A z ) ,  (5.1.9)

where the wavefields are understood to be Hartley transformed over midpoint, offset 

and time (version I). Two real multiplications substitute the complex phase-shift operator. 

Adjoint downward wavefield propagation simply amounts to switching the sign in front 

of the sine term. The 'time-shift' theorem of the Hartley transform (Bracewell, 1986) 

readily transfers the 2-D version of the complex split-step correction operator <sif ̂  in 

equation (1.3.52) to the Hartley domain (Kuehl et al., 2001):

y CH i ( m x , h x , Z i - u u )  =  4'HJ(ma;,/ix,^_i,w )cos(a;(A s(s) +  A s(fi))Az)

+^HI (mx,hx ,Zi-i, - u )  sm(u){As^  +  A s ^ )A z ) ,(5.1.10)

where the superscript c signifies the split-step corrected wavefield with respect to the 

sources and the receivers. Again, two real operations substitute one complex multiplica

tion and a sign change in front of the sine term yields the adjoint. The extension to split- 

step PSPI/NSPS propagation is straightforward. Kuehl et al. (2001) supply schematic 

flowcharts for angle independent split-step and split-step PSPI migration in the Hartley
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5.2. PARALLEL COMPUTER IMPLEMENTATION

domain. If angle imaging/inversion is desired the operator pair A I W and f  dcoA' needs 

to be expressed in the Hartley domain as well.

5.1.3 Ray parameter m odelling/imaging using Hartley transform

As it turns out, the Hartley version of ray parameter modelling and imaging AX^ and 

f  du)A', respectively, have the same form as their Fourier counterparts. First, consider the 

imaging operator f  duiA' in the Fourier domain. Since the Fourier transformed wavefield 

4/ (mx, phx ,z,oj) exhibits Hermitian symmetry, the final step, the summation of frequency, 

effectively becomes:
poo

R{mx,z ,phx-,<l>,a) = 2 /  du$l{$(mx,phx,z ,u )} ,  (5.1.11)
Jo

where 5R{^{mx,phx, z, w)} denotes the real part of the Fourier transform. Noting that

$t{'&(mx,phx,z,u})} = £{'f!HI {‘mx,Phx,z,u))}

= ^ [ ^ H I (mx,Phx,z,u) + ^HI (mx,pilx,z ,-u})],  (5.1.12)

where (rnx-/Phx, z, w)} is the even part of the Hartley transformed wavefield, one

arrives at the imaging operator f  duiA':

R(mx,z ,phx-,4>,a) =  /  d u A ' ^ Hl{mx,khx,z,u)) =  /  dutyH l { m x , k h x , z ,u)\khx==PhxU,,

(5.1.13)

where all involved quantities reside again in the Hartley domain (version I). The adjoint

2-D modelling operator A I ^  in the Hartley domain is now straightforward:

= AZuR{mx,z ,phx;<l>,a) =XojR{mx,z ,phx;(f),a)\Phx=khx/ui. (5.1.14)

That is to say, switching from the Fourier to the Hartley domain leaves the form the 

modelling and imaging operators untouched.

5.2 Parallel com puter im plem entation

When computed sequentially even optimized 2-D generalized DSR propagators do not 

yield an acceptable turnaround for least-squares migration/inversion in complex media. 

Fortunately, the propagators exhibit a computational structure that makes them relatively
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5.2. PARALLEL COMPUTER IMPLEMENTATION
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Figure 5.7: Execution times for the parallel computation of the split-step DSR migration of the 
Marmousi dataset (Figure 3.4). The code has been implemented in a shared-memory (SGI Origin 
2400) and a distributed-memory computer architecture (Pentium cluster). Access restrictions to 
the SGI computer required a minimum usage of 8  processors.

easy to implement in a parallel computer architecture. Except for the operators that cou

ple the wavefield to the reflectivity, AXW and f  duo A', and the dot-products in the CG 

minimization routine in equation (2.3.2) all operations are completely separable in the 

frequency domain. That is, wavefield propagation does not require inter-processor com

munication for different frequencies. Since most of the computational time during least- 

squares migration is spent on wavefield propagation, this type of algorithm is suitable 

for both shared memory and distributed memory computing architectures. The algo

rithm is said to exhibit a coarse grained computational structure (low communication-to- 

computation ratio). A parallel implementation in either computer environment greatly 

improves the feasibility of least-squares migration/inversion for medium sized datasets. 

The 2-D split-step DSR pre-stack migration of the Marmousi dataset (Chapter 3) serves 

as a benchm ark for a com parative test. The com putation  tim es for the pre-stack DSR mi

gration on a Pentium cluster (distributed memory) and for an SGI Origin 2400 (shared 

memory) are graphed in Figure 5.7. The overall turnaround on the Pentium cluster is 

about two times slower than on the SGI. Clearly, both implementations scale nicely for 

the tested number of processors.
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Discussion and Conclusion

The goal of seismic imaging is to invert the seismic surface data for the reflectivity of 

the geologic subsurface structures. To make the non-linear inverse problem tractable 

geophysicists usually decompose the inversion into several linear sub-process. This de

composition entails inevitable simplifications of the underlying physics of wave motion. 

Many different schemes, ranging from simple NMO correction followed by AVO analy

sis to sophisticated tomographic inversion and 3-D pre-stack depth migration, have been 

devised to tackle the inverse problem. The complexity of the geologic environment to 

be investigated, the data quality, economical considerations and other factors influence 

which scheme is the most appropriate for a particular imaging/inversion project. Sim

plifications are often motivated by necessity because of limited computer power. More 

importantly, perhaps, a break down into linear sub-processes adds flexibility, control and 

robustness to the inversion. It is the task of the geophysicist to find a pertinent compro

mise between feasibility and fidelity to the nature of wave propagation and scattering. If 

the angle dependent reflectivity inversion fails, it should fail gracefully rather than catas

trophically with respect to the invoked simplifications. For instance, the fact that depth 

migration yields useful structural images also when the observed angle dependence does 

not agree with a specular reflection process is invaluable to migration/inversion in com

plex media.

In this thesis, linearized seismic wave-equation imaging/inversion has been cast into 

the least-squares inversion framework. This is an instructive approach to inversion, since 

it yields both formulas that approximate the least-squares solution and iterative least- 

squares algorithms that make use of well developed optimization techniques. Clearly, 

the latter is computationally more demanding but also opens the opportunity to regular

ize the least-squares solution. Furthermore, if the seismic data have significant variance
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least-squares migration is able to account for that. Regularized least-squares inversion 

has proven to be beneficial in many other geophysical applications. Successful examples 

are the 1-D impedance inversion and the high resolution Radon transform. It is there

fore conceivable that also least-squares migration/inversion will be practically relevant. 

Ray parameter dependent common image gathers are an excellent domain for model 

space regularization. Penalizing roughness in the reflection ray parameter CIGs helps to 

retrieve solutions that are physically sensible. The logic behind the smoothing regular

ization is based on the notion that discontinuities or rapid amplitude changes along ray 

param eter/angle stem from numerical imaging artifacts and acquisition footprint noise. 

The reflection angle dependence is preserved, since it is slowly varying.

The theory of least-squares migration for AVP/AVA migration/inversion has been 

presented for 3-D acoustic media. This thesis favors one-way wavefield propagators over 

ray theoretical Green's functions, since propagators handle the seismic wavefield with 

greater generality. They inherently account for multi-pathing and treat caustics properly, 

features that are difficult to honor with the high frequency approximation of the wave- 

equation.

In a strict sense, the proposed algorithm is applicable only to compressional seismic 

waves. The synthetic data examples invert for a fluid-fluid AVP/AVA characteristic. The 

real earth, on the other hand, is elastic and Zoeppritz's equation for specular PP reflec

tions governs the reflection angle dependence of compressional waves. However, this 

does not affect the concept of regularized least-squares migration nor does it change the 

algorithm itself when applied to compressional seismic data. One simply has to be aware 

of it. Most seismic surveys record predominantly compressional wave energy and an ex

tension to the full elastic case has not been considered here. In practical terms, such an 

extension would amount to a wavefield separation into compressional and shear wave 

constituents and subsequent independent AVP/AVA migration/inversion.

The regularized least-squares migration /inversion has been extensively tested with 

the help of 2-D synthetic data examples. These tests are important, since the adopted 

primary data representation is known to have limitations that can compromise the inver

sion result. The primary representation does not account for transmission loss and fine 

structure filtering effects due to multiple scattering. Hence, inversion based on this repre-

126

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



sentation works best in media with small to moderate medium contrast. The tested sub

surface models range from simple to complex, with mostly small to moderate reflection 

coefficients. The results underscore that regularized least-squares migration performs as 

expected within its theoretical limitations. It is found that least-squares wave-equation 

migration can retrieve AVP/AVA functions that, despite inevitable finite aperture effects, 

are close to the true AVA. In all examples, the smoothness constraint proves particularly 

beneficial when the seismic data are compromised by incompleteness. Acquisition foot

print effects in terms of kinematic artifacts and amplitude distortion in the ray parameter 

CIGs could be successfully mitigated in regularized least-squares migration.

In spite of the good results, it must be acknowledged that the AVP/ AVA estimate ob

tained from migration is comparable to that of costly least-squares migration provided 

the imaging Jacobian is considered, the medium is moderately complex and the seis

mic wavefield is optimally sampled. Contingent on the above points, migration is likely 

to be the method of choice. This also implies that if a reliable data reconstruction of 

incomplete data prior to migration is possible, least-squares migration may be replaced 

w ith data reconstruction followed by amplitude scaled migration (Duijndam et al., 2000). 

There exists a variety of data reconstruction (interpolation) techniques (e.g., Duijndam et 

al. (1999)). However, for sparse data in complex media data interpolation tends to be 

unreliable, while regularized least-squares migration/inversion has the advantage of a 

model constraint that enhances robustness and gives good results even for very sparse 

data. Data interpolation schemes, in general, lack a comparable physical regularization 

constraint. Therefore, they are likely to be less robust under very sparse conditions. A 

systematic comparison of data reconstruction versus least-squares migration is beyond 

the scope of this thesis, albeit desirable in the future.

The synthetic data tests are confirmed by the 2-D field data example. The dataset is 

from the Gulf of Mexico and exemplifies a typical sub-salt imaging situation. The tar

get is a potentially gas bearing sand whose AVA is characterized by an increase in the 

reflection amplitude with angle. The marine data are well sampled and have no appar

ent data variance issue. While the expected AVP/AVA trend could be well reproduced 

with conventional migration, the least-squares migration CIGs are smoother and more 

interpretable. Some multiple energy could be attenuated as well. This is a promising
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result, but much more experience with sparser and more challenging datasets needs to 

be gathered in order to better assess the benefits of regularized least-squares migration 

for real-world data.

Dense wavefield sampling is typical for marine data. Data acquired on land is of

ten significantly more irregular. The incomplete data issue is particularly troublesome 

when imaging/inversion is to be carried out in three spatial dimensions. This is because 

of the often encountered sparseness and irregularity of 3-D seismic surveys owing to 

economical and practical reasons. It is expected that least-squares migration becomes 

particularly beneficial in such cases. Unfortunately, a computer implementation of the 

3-D least-squares wave-equation migration is a major obstacle. The 3-D phase-shift type 

propagators that are amended for complex media make substantial use of 4-D Fourier 

transforms. A time-efficient computation of these is at the limit of today's computer 

technology. Efficiency is paramount, since geophysicists demand a fast turnaround in 

order to conduct parameter and performance tests that allow them to develop effective 

processing strategies. The real-valued Hartley transform as an alternative to the com

plex valued Fourier transform has been employed to optimize the computation of the 

wavefield operators. However, the Hartley transform must be regarded as a mere alter

native and does not entail an optimization level that can not be achieved w ith Fourier 

transform techniques. Fortunately, the 2-D implementation in a parallel computer en

vironment (shared or distributed memory) yields excellent speed-up performance. It is 

therefore only a matter of time before a parallel 3-D implementation of (least-squares) 

wave-equation migration becomes feasible. The regularized least-squares approach is 

expected to unfold its full potential in 3-D seismology.
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Appendix A

High frequency approximation

Consider the source-free acoustic wave-equation (1.1.8) for constant density:

0. (A.0.1)

where the velocity c is slowly varying. Assuming a time harmonic wavefield,

p(x,t)  = etu,tp(x), (A.0.2)

one arrives at the reduced wave-equation or Helmholtz equation:

V 2 +  4 )  p(x) =  0 . (A.0.3)
c  ,

In the ray theoretical approach one seeks a solution of the formp(x) =  A(x)e%ulT̂ \  where 

t  is called the eikonal, A(x) is the slowly varying amplitude and the frequency u i is as

sumed to be large (high frequency approximation). Upon inserting this ansatz one finds:

j ?

This condition is approximately satisfied if:

w2 ( ^  -  (V t ) 2  ) A  +  2iu V A  • V r +  iwV2TA + V2A ) eiUT = 0. (A.0.4)

(V r ) 2 =  ^  =  ^2, (A.0.5)

which is the eikonal equation, and

4 V 2t +  2V r • VA =  0, (A.0.6)

which is the transport equation. The high frequency approximation is violated where 

amplitudes have a strong spatial dependence as in the vicinity of velocity discontinuities
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or at focal points or caustics (Cerveny, 1985). Ray-tracing finds the trajectories that are 

perpendicular to the wavefronts defined by r  =  const.:

where s is the arc length of the ray and r  is the ray vector. It is convenient to introduce the 

slowness vector p =  ^  that has magnitude |p| =  ^ =  s and is tangential to the ray. The 

ray trajectories are found by (numerically) integrating a system of first order equations 

(ray-tracing system) (Cerveny, 1985):

The transport equation (i.e., amplitude) is solved by means of dynamic ray-tracing (Cer

veny, 1985). Dynamic ray-tracing finds the local wavefront curvature about the cen

tral ray up to the second order (parabolic wavefront). The first order corresponds to 

a local plane wave approximation and gives rise to the relationship between slowness, 

wavenumber and temporal frequency:

respect to the central ray. Figure A .l and Figure A.2 illustrate numerical ray-tracing and 

travel-time extrapolation based on the second order approximation, respectively, for the 

Marmousi velocity model. In Kirchhoff migration/inversion the Green's functions are of 

the form:

where the amplitude A(x, x ') is the solution of the transport equation for a point source 

at x' and r(x , x') is the corresponding travel-time.

(A.0.7)

(A.0.8)

(A.0.9)

integration along the ray solution yields the eikonal (i.e., travel-time):

(A.0.10)

k
(A.0.11)P  =  -u

Dynamic ray-tracing also allows for the extrapolation of travel-time information with

C?(x,x/ ) =  A (x ,x ')e <WT(x’x,\ (A.0.12)
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Figure A.l: A sample shot with a ray fan consisting of 161 rays superimposed on the 
smoothed Marmousi velocity model. Note the shadow zones and caustics. For sufficient 
coverage with travel-time information extrapolation becomes necessary.

H orizontal position [m]

Figure A.2: A sample shot with with rays and travel-times. The travel-times are extrapo
lated from 161 central rays by a parabolic wavefront approximation (Beydon and Keho, 
1987). The travel-times are given in seconds. The solid areas indicate that no travel-times 
are available.
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Appendix B

Radial trace transform (RTT)

Consider the r —p transform (Ottolini and Claerbout, 1984):

=  J dh^(m , h , — p/j • h). 

A temporal Fourier transform yields the equivalent equation:

J  dh’Fjm, h, z,u}) (B.0.2)

where kh — p hui. This is written as:

=  tf(m ,k h ,3 ,w)|kh=PhW = A!V{m ,kh,z,w).  (B.0.3)

This is the radial trace transform (RTT) in the offset wavenumber/frequency domain as 

illustrated in Figure 1.10. The RTT maps cones from the (k/j,oj) into cylinders in the 

(p^w ) space. That is, in 2-D, radial lines are mapped into lines parallel to the uj axis. 

In practice, this mapping requires data interpolation in the gridded (k/,, w) space. The 

adjoint A  of the radial trace transform, relevant to modelling, achieves the opposite by 

mapping data points located on concentric cylinders in the {ph, u>) space into cones in the 

(kh,uj) space:

where the tilde sign indicates that the numerical RTT is not exactly invertible. In seismic 

imaging/inversion the RTT transform occurs always in conjunction with a summation

T'jm, k/j, z, uj )  = V ( m ,p h,z ,u ) lPh=kh/u = AV(m, p h, z, u j ) ,  (B.0.4)
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over frequency (imaging condition). For modelling and migration the adjoint operator 

pair results:

J  dujA' —  AXw , (B.0.5)

where 2 ^ is the identity with respect to frequency.
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Appendix C

2.5-D stationary phase approximation

The goal is to approximate integrals of the form
p b

1 =  f(x )e iT9^ d x ,  (C.0.1)
J  a

where g(x) is called the phase function and r  is a parameter. As the parameter r  gets 

large, the integrand becomes highly oscillatory, effectively summing to zero except where 

the phase function is stationary (Scales, 1997). The method of stationary phase allows for 

an approximation of this type of integral. If g(x) has a stationary point g'(xo) in the

interval [a, b] and g"(xo) 7  ̂ 0 in [a,b] a good approximation for the integral (C.0.1) is

achieved by

2?r - f {x0)e^T9M+w/4\  (C.0.2)
V T9 (®o)'

provided /  is not singular for xo (Bleistein and Handelsman, 1986). The stationary phase 

approximation is invoked for the kry integral in equation (1.3.58). Let

J  dkryeiT9^ y \  (C.0.3)

with

- O r -  + <c o -4>
t = u, and /  =  1. One finds:

g'(kry) =  r [  ;------ 1  =  +  —= = L =  | dz' (C.0.5)U y r V J  J Z 0  W2  ̂ L  c2(fĉ +fcjj /1 e * ( k ? x + k ? J  J
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Hence, the stationary phase approximation is:

I  w e l 4

\

27r

fzo ( t  + t )  dz '

- i f * ( k s z + k r z ) d z '
" 6  0 i (C .0 .7 )

where it is understood that all involved quantities are to be evaluated at the stationary 

point kry = ksy =  0 .
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Appendix D

Ray parameter imaging Jacobian

Since ray parameter imaging is carried out for a constant offset slowness, the dispersion 

relation for kz is expressed as a function of p ft:

kz — ksz +  krz {(w y 
c J

“Phi 2 + y ( - ) 2 -  *km + ujph\2
4 V V c )

The imaging Jacobian becomes (Sava et alY 2001):

duj
dk7

Ph

dkz
duj

- l

Ph
a> I ( k m - Q J P h ) ‘P h  ijJ  _  (km +u;pfe)-pfa

r  A  A+
- 1

which is arranged to:

'1 CPh’ PhJ  =
u  _UJ_ \ +  ckm • p h (  u UJ

Note that for horizontal interfaces kaz =  krz

4ca cksz ckyz 

u j  c o s  6

(D.0.1)

(D.0.2)

(D.0.3)

, where 9 is the specular incidence

angle, and the Jacobian simplifies to (Wapenaar et al., 1999):

-  -1 - 1

J
1 sin 9 \  2
c c j  cos 9 2  cos#

(D.0.4)

All involved quantities are understood to be evaluated locally at the target reflector.
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Appendix E

Phase-shift operator in Hartley 
domain

To avoid notational clutter, the causal, upward extrapolated 2-D wavefield is denoted 

by a prime, ^'HlII (kmx,khx, u>) = (kmx, khx, z -  A z, u), and the subscripts 1 ?/ and 

H u  differentiate between the Hartley transformed wavefields according to version I and 

version II, respectively. For zero-offset propagators khx is set to zero.

Zero-offset phase-shift operator using Hartley transform (version I)

The 2-D Hartley transform (version I) is expressed as the sum of its even part £ {^ H j (kmx ,w)} 

and its odd part 0 {T,/// (kmx, a;) }:

Comparison of the real part and the imaginary part 3{\I/(A;mx, w)} of the

2-D Fourier transform with (E.0.1) and (E.0.2) yields:

(E.0.1)

@{^Hi (kmxiw)} — 2  \^Hi(kmxi^) ^H /( kmx, w)]

=  [  [  '&(mx,t)sm(kjnxm x + Gjt)iJ j  ty(mx,t) sm(kmxm x +  <jjt)dmxdt. (E.0 .2 )

(E.0.3)
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With ^'Hl(kmx,u}) = S{^ 'H[{krnx,uj)} + 0 { ^ ' H[{kmx,uj)}, the relations (E.0.3), and the 

Fourier zero-offset phase-shift operator the Hartley domain zero-offset phase-shift oper

ator (version I) is found by direct substitution after a few algebraic steps:

'&,HI (kmx,u) =  y Hl(kmx,u)cos(kzAz)  + ^ Hl{kmx, - u )  sm{kzAz) .  (E.0.4)

Offset phase-shift operator using Hartley transform (version I)

Given that version II of the 3-D Hartley transform satisfies

{kmx, khxi =  3:{'3/(A;m;C, khx, w)}, (E.0.5)

one can easily find the corresponding offset phase-shift operator (version II):

m x i  khx,u) -  Hn (k m x  f khx,u)cos{kzAz)

+  HU {-kmx, -khx,  -W) sin(A:zAz). (E.0.6)

Using the addition formulas for cosine and sine in three dimensions (Bronstein et al., 

1997), the following relations between versions I and II of the Hartley transform are de

rived:

^ Hjj{kmx, khx,^) =  2 ^ Hi (—kmx,khx,w) +  <&HI {kmx, khx, A)

~l~4/jjj(kmx, khx, —A) — 4/hi { kmx, —khx, —co)], (E.0.7)

and

4 / H i  { k m x ,  k h x ,  ^ [ ^ H / /  ( — k m x , k h x ,  w ) "b 4 / / / / /  { k m x ,  k h x , Co)

Hn{kmx, khx, —&) ^Hj[{ — kmx, —khx, w)j? (E.0.8)

which means the same relation holds in both directions. Noting that sine terms change 

their leading sign for negative frequencies to honor causality, the relations (E.0.6), (E.0.7)
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and (E.0.8) are used to find the offset Hartley phase-shift operator (version I):

^ H i  { k m x  , k h x ,  tu) =  ~ [ ^  j j n  ( k h x ,  w) +  ^  jji t  { k m x ,  _ ^ k n  w)

{ k m x ,  k h x ,  ~~w)  — { ~ k m x ,  — k h x ,  ~ w ) ]

= ^Hi(kmx,khx,u) COs{kzAz)

+  “ Hu {kmx7 — khx, ~ " h  ^  Hn{ — kmx, khx,

— ^Hi i {—kmx, —k h x , ^ H u  {kmx, khx, w)] sin(fcz Az)

= ^Hi {kmx, khx,u) cos{kzAz) + ^Hi {-kmx, ~khx, -w ) sin(fc* Az)

+ [ * * / , ( *  m x ' i  k h x , w )  -  ^ H n { -  k m x i - k hx,u)]sm{kzAz)

-  ^Hi {kmx, khx,u) cos{kzAz)  +  ^Hi{kmx,khx, -w ) sin(fcz Az).(E.0.9)

That is to say, the complex phase-shift term is replaced by two real multiplications in the 

Hartley domain.
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