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ABSTRACT

This dissertation presents a semi-analytic solution for the problem associated with an 

elliptic inclusion embedded within an infinite matrix with a homogeneously imperfect 

interface subjected to simple mechanical and thermal loadings. The interface is modeled 

as a spring (interphase) layer with vanishing thickness. Under the assumptions o f this 

model the interface bonding will no longer be considered perfect and interfacial 

displacement discontinuities will be allowed. The role o f  the imperfect interface 

parameters on the stress field and average stress is investigated systematically. Both the 

inclusion and the matrix materials are considered to be homogeneous, isotropic and 

linearly elastic.

Three distinct studies o f composites incorporating imperfect interfacial bonding 

under the influence o f thermal and mechanical loading are presented in this dissertation. 

The solutions thus obtained illustrate the effectiveness o f the present solution 

methodology.

Complex variable techniques are used to obtain infinite series representations of the 

stresses induced within the inclusion. The results obtained demonstrate how the (non- 

uniform) stress field and the average stresses inside the inclusion vary with the aspect 

ratio o f the inclusion and the parameter describing the imperfect interface. In addition, 

and perhaps most significantly, for different aspect ratios o f  the elliptic inclusion, we 

identify a specific value o f the interface parameter which corresponds to maximum peak 

stress along the inclusion-matrix interface or within the elliptic inclusion. Furthermore, 

the results indicate that it is possible to reduce the thermal stress by inserting a reasonably 

thick compliant interphase layer under a thermal loading. For the first time, the present
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work provides a systematic study on the combined effects o f an imperfect interface with 

the aspect ratio o f the inclusion shape. The results could be used to evaluate effective 

properties of composite materials incorporating non-ideal material interfaces and to 

design these interfaces for minimizing peak interfacial or internal stresses.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL BACKGROUND & LITERATURE REVIEW

Most materials and structures in engineering contain defects in the form of inclusions, 

cracks, and voids or second phase particles. The popular application of composite 

materials in recent decades has prompted researchers to investigate the elastic behavior o f 

fibers embedded in the matrix material involving various bimaterial geometries. It is now 

well understood that the presence of inhomogeneities in an elastic material may result in 

stress intensification in their vicinities, and the local disturbances (thermal or mechanical) 

can induce some "weak" areas that might further cause the failure of the composite. The 

exact mechanism by which this process occurs is complex and often involves the 

interaction of different types o f defects such as voids, cracks, inclusions and dislocations.

The high temperature and pressure processes used when fabricating composites may 

also contribute to form a region between an individual fiber and the surrounding matrix, 

commonly referred to as an interphase. This region of the material, in most cases, 

exhibits different mechanical properties from either side o f the constituents (Brennan, 

1988; Lerch et al, 1990; Sottos et al, 1992). The interphase may, sometimes, be viewed as 

a diffusion zone, a nucleation zone, a chemical reaction zone or a combination of any of 

the above. Due to its general complexity in forming, the interphase has to be

l
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characterized at several levels for one to fully comprehend the nature o f bonding 

developed between the bulk materials. A survey o f the literature reveals that extensive 

research has been done in the areas of micromechanics, chemistry and material sciences 

on the interphase (Brennan, 1988; Kim and Bau, 1992). While a comprehensive 

thermomechanical characterization o f the interphase is difficult, a great deal o f effort has 

been made to physically measure and model the effects o f the interphase on the local and 

global failure mechanisms o f the composites (Brennan, 1988; Jayaraman et al, 1993a,b).

In many cases, manufacturing o f composites may also require that an individual fiber 

be coated before being embedded in the host matrix. This may be done to enhance the 

bonding strength between the fiber and matrix, to remove unfavorable stress 

concentrations along the fiber/matrix interface region or to isolate the fiber from severe 

service conditions. Therefore, the interphase can be considered as a thin interfacial layer 

between an inclusion and a matrix, that can be created by coating the inclusions, or by 

chemical reactions during the fabrication process. This layer is often modeled as an 

imperfect interface o f  vanishing thickness across which the displacements may be 

discontinuous. It is well known that the interphase layer between the fiber and the matrix 

material affects the overall mechanical properties and the strength of the composite. 

Walpole (1978) has shown that even a thin coating on a fiber could have a pronounced 

effect on the field just outside the inclusion. Further studies have shown (Benveniste et al, 

1989; Dasgupta and Sirkis, 1992; Mikata and Taya, 1985) that adjusting the fiber volume 

fraction and the thickness o f  the coating may improve the stress state at the fiber/matrix 

interface. It was suggested by Theocaris and Phillippidis (1985) and later expanded by 

Jayaraman and Reifsnider (1991) to model the interphase properties by means of a

2
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gradient property model. This model, however, can be used only under very specific 

mathematical simplifications (Jayaraman et al, 1992,1993a,) which sometimes yield 

unrealistic results (Lu, 1993).

Many research efforts have been devoted to characterizing the complex behavior of 

the interphase. The following general observations are discussed in Jayaraman et al, 

1992: a) the interphase is responsible for transmitting any interaction between the fiber 

and the matrix; b) interphasial degradation has a definite effect on the global properties 

and response o f  the composite material; and c) interphasial failure may often lead to 

global failure o f composite materials. Given the nature o f the interphase and its effect on 

interfacial bonding, it is important to consider the interfacial bonding stiffness together 

with the corresponding elastic fields. Thus, incorporating the interphase properties into 

the analysis not only requires complete knowledge about the interphase but also demands 

a more complicated model. In addition, a significant amount o f research has been devoted 

to investigating the impact o f the interphase, or coating properties (Agarwal and Bansal, 

1979; Benveniste et al, 1989; Jayaraman et al, 1992; Pagano and Tandon, 1990) on the 

mechanical properties o f the composites. Recognizing the existence o f  an interphase 

implies that the composite has to be regarded, at least, as a three-phase material. Such a 

consideration requires complete knowledge of the physical properties o f  the interphase, 

information which is mainly in situ, and is very difficult to measure. Therefore it is 

suggested that other suitable methods be developed to account for the interphase effects.

In contrast to the interphase approach outlined above, the concept o f interface 

becomes a natural candidate to solve the complex problems associated with an 

interphase. In three-dimensional problems, an interface is defined as a two-dimensional
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imaginary entity, or border, that physically separates distinct material phases such as fiber 

and matrix. Physically, it can be viewed as a limiting case o f an interphase layer with 

very thin (vanishing) thickness. This imaginary boundary separates the bulk materials 

and, consequently, allows the material properties to be changed abruptly across the 

interface. As we know, the interphase is three-dimensional, but the interface is the 

limiting value o f the interphase as its thickness tends to zero. Consequently, unless the 

actual bonding mechanism o f the composite or the physical/chemical properties of the 

interphase is o f concern, this model provides a much-simplified way of modeling the 

complex behavior o f the interphase.

Although the failure o f  composite materials does not necessarily occur at the material 

interface, debonding along the interface does play an important role in various failure 

processes. In some instances, interfacial separation leads directly to catastrophic failure, 

while in other circumstances failure results from void nucleation as a result of a sequence 

of inclusion decohesion events (Levy, 1991; Needlerman, 1990).

Traditionally, the interface is considered as a surface across which both the 

displacements and the tractions are continuous. Such an interface is usually referred to as 

a perfect interface (Benveniste et al, 1989; Dokos, 1949; Dundurs and Zienkiewicz, 

1964; Dundurs, 1989; Honein and Herrmann, 1990; Jasiuk et al, 1992; Jayaraman et al, 

1993, Ru & Schiavone, 1996). A review of earlier research can be found in Hashin, 1983. 

Recent studies have shown, however, that, this model, is not suitable in the presence of 

an interphase layer (Achenbach and Zhu, 1989,1990). In fact, a prominent feature of 

certain brittle matrix composites is the presence of imperfect bonding between various 

constituent materials, such as the interface between fiber/interphase or interphase/matrix.

4
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Such poor bonding has generally been considered as essential for damage tolerance or 

ultimate fracture resistance in the presence of strong, stiff matrix materials. The nature of 

the bonding is, in turn, affected by the properties o f the constituents due to their influence 

on the stress field caused by process conditions as well as loading conditions (Dhingra 

and Fishman, 1986; Pagano and Tandon, 1990). To promote the understanding o f the 

local stress fields near the inclusion/matrix interface, a more realistic model to delineate 

the complex interfacial characteristics needs to be established.

A critical examination o f the literature dealing with the interface problem of 

composite materials also reveals that the vast majority of contributions are concerned 

with effective properties o f  composites when imperfections o f the interface are 

considered (Aboudi, 1987; Benveniste, 1985; Benveniste and Miloh, 1986; Hashin, 1990; 

Jun and Jasiuk, 1993; Mai and Bose, 1975; Pagano and Tandon, 1990). A review o f 

methods for finding the effective moduli for two-dimensional composites with sliding 

inclusions (imperfect tangential bonding) can be found in Jun and Jasiuk, 1993. Among 

the studies undertaken to evaluate localized elastic fields in the presence of interface 

imperfections, practically all results are related to the circular inclusion (Gao, 1995; Ru 

& Schiavone, 1997, Sudak et al, 1999). No systematic research and solution are available 

for an elliptic inclusion with imperfect interface, even for anti-plane shear in spite of its 

fundamental importance to composite mechanics. This is partially due to the 

mathematical difficulties encountered when formulating and analyzing the problem. The 

simplest imperfect interface model is the elastic spring-type interface model (Aboudi, 

1987) in which the tractions are continuous, displacements are discontinuous and 

proportional to the tractions. The proportionality (or spring) constants characterize

5
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the stiffness of the interface between the inclusion and the matrix. This model was first 

proposed by Jones and Whitter (1967) to solve a wave propagation problem across a 

bimaterial interface, and later was extended by a number o f researchers to find the 

effective properties o f composites containing spherical inclusions (Benveniste and Miloh, 

1986; Mai and Bose, 1975). A numerical treatment o f a square periodic inclusion array in 

an infinite matrix has been given by Achenbach and Zhu (1989). Hashin (1991b) 

provided an analytical solution for a spherical inclusion using this model. Hashin 

demonstrated that the interface imperfection could have significant effect on the stress 

fields in and near the inclusion. Using certain simplifications, he also showed that the 

material properties and thickness o f the interphase layer may be related to a limited 

number of interfacial parameters associated with interfacial bonding. His analysis also 

gives a reasonable explanation for possible material overlapping across the interface.

Most of the existing analytical models are based on the assumption that the fibre- 

matrix interface has uniform properties e.g. that the interphase layer has uniform 

thickness and material properties (in this case, the interface is referred as a 

homogeneously imperfect interface). In some cases, for example, when an interface 

exhibits significant inhomogeneous damage it becomes necessary to consider an 

inhomogeneously imperfect interface. Therefore, recently, Ru & Schiavone, 1997 and 

Sudak et al, 1999, have investigated the inhomogeneous interface but only for the circular 

inclusion. In most cases o f interest in composite mechanics, the interphase layer can be 

considered to be equal thickness and approximately uniform properties around the 

inclusion. Hence, the homogeneously imperfect interface model described by Hashin 

(1991b) provides an adequate approximation to the behavior o f the actual interphase layer

6
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between the matrix and the inclusion. Therefore, in this thesis we adopt this approach and 

base our analysis on the homogeneously imperfect interface model.

For the elliptic inclusion with a homogeneously imperfect interface, no systematic 

research and solution are available despite its importance to composite mechanics. In this 

case (elliptic inclusion), it is o f interest to investigate the shape effect on stress fields by 

adjusting the aspect ratios o f the elliptic inclusion.

It is well known that the single-inclusion problem is the fundamental problem in a 

composite (Eshelby, 1957, 1959; Hashin 1991b). For example, Eshelby considered one 

single inclusion and Eshelby’s tensor is a famous solution in a composite. For many 

problems in composites such as calculation o f effective (global) material properties o f the 

composite, it is most important to obtain the average strain or stress field for the inclusion 

phase in the composite. We may use several different approximate procedures (for 

example, Dilute Approximation, Self-Consistent Scheme, Mori_Tanaka Method, etc.) to 

obtain the effective (global) material properties o f the composite once we know the 

average stress and average strain field within the single-inclusion embedded within an 

infinite matrix. In addition, the single-inclusion model is suitable for modeling 

composites with fiber volume fractions up to 40% (Schmauder et al, 1992). Under this 

condition, the interaction among neighboring fibers and its influence on the stress fields 

on the overall composite system can be neglected. Therefore a single inclusion model 

should describe the stress and displacement fields inside and around the inclusion reliably 

for low or medium fiber volume content composites (Schmauder et al, 1992). More 

important, the single-inclusion model adopted in this analysis is a much simpler and more

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



practical model than other available multi-inclusion composite models (Achenbach and 

Zhu, 1990).

Furthermore, the single-inclusion model may be extended to the problem o f thermal 

stress analysis. As we know, thermal mismatch induced stresses are considered as the 

main cause o f failure in many materials and devices, such as metal-ceramic composites 

and passivated interconnect lines in integrated circuits (Gouldstone et al, 1998; Ru, 

1998a; Ru et al 1999; Shen, 1998; Dao et al, 1997; Gleixner et al, 1997; Wu et al, 1996). 

Many practical problems require a systematic study o f the effects o f interphase layers on 

thermal mismatch induced stresses in inclusion/matrix systems. For example, the failure 

o f interconnect lines due to thermal stress-induced voiding has become a major issue in 

the design o f reliable integrated circuits (Gouldstone et al, 1998; Gleixner et al, 1997). In 

this case, the line is subjected to large tensile stresses upon cooling from high passivation 

deposition temperatures.

1.2 OBJECTIVES AND DISSERTATION OVERVIEW

The present project emphasizes an elliptic inclusion with a homogeneously imperfect 

interface condition. The objective o f this research is to employ this imperfect interface 

model to study several fundamental problems in composites associated with a single 

elastic elliptic inclusion with imperfect interface embedded within an infinite matrix 

subjected to simple mechanical and thermal loadings. Our aim is to develop a semi- 

analytical solution and to study systematically the role o f the imperfect interface

8
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parameters on the corresponding stress field. Once the local stress and strain fields o f the 

inclusion/matrix interface are determined, we can predict the possible failure mechanism 

o f the composite structure. The knowledge o f the influence o f  an imperfect interface on 

the localized elastic fields will also enable us to calculate the effective (global) material 

properties o f the composite more accurately so that the design o f such structures can be 

enhanced.

In the present research, complex variable techniques are used to obtain infinite series 

representations of the stresses which, when evaluated numerically, demonstrate how the 

stress field inside the inclusion varies with the aspect ratio o f  the ellipse and parameters 

describing the imperfect interface.

Three distinct studies o f composites with an imperfect interfacial bonding are 

presented in this dissertation. They are organized as follows. Chapter 2 reports the semi- 

analytic solution for the problem associated with an elliptic inclusion embedded within an 

infinite matrix in anti-plane shear. Chapter 3 develops the analogous problem in plane 

elasticity. In Chapter 4, the same imperfect interface model is extended to study the 

problem of thermal stress analysis associated with an elliptic inclusion embedded within 

a compliant layer in an infinite matrix subjected to a uniform change in temperature. 

Chapter 5 provides some concluding remarks with some suggestions for future research.

9
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CHAPTER 2

AN ELLIPTIC INCLUSION WITH AN IMPERFECT 

INTERFACE IN ANTI-PLANE SHEAR

2.1 INTRODUCTION

Problems involving elastic inclusions with imperfect bonding at the inclusion-matrix 

interface (imperfect interface) have received a considerable amount of attention in the 

literature (see, for example, Benveniste, 1984; Hashin, 1990, 1991a,b, 1992; Jasiuk & 

Tong, 1989; Jasiuk & Kouider, 1993; Gao, 1995 and Ru & Schiavone, 1997). Interest in 

these problems is motivated by the study of interface damage in composites (for example, 

debonding, sliding and/or cracking across an interface) and its subsequent effect on the 

effective properties o f composites.

One of the more widely used models of an imperfect interface (see, for example, 

Aboudi 1987, Achenbach & Zhu 1989, Hashin 199lb, Gao 1995 and Ru & Schiavone 

1997) is based on the assumption that tractions are continuous but displacements are 

discontinuous across the interface. More precisely, jumps in the displacement 

components are assumed to be proportional, in terms of ‘spring-factor-type’ interface 

parameters, to their respective interface traction components. When these interface

10
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parameters are assumed to be uniform along the entire length of the material interface, 

the interface model is said to represent a homogeneously imperfect interface. Using this 

model, Hashin (1991b) examined the case of a spherical inclusion imperfectly bonded to 

a three-dimensional matrix. In contrast to the case o f perfect bonding (see, for example, 

Eshelby 1957), Hashin found that, under a remote uniform stress fieid, the state of stress 

inside the inclusion is no longer uniform. The analogous result in plane elasticity has 

been established by Gao (1995) for a circular inclusion (see also Qu (1993a,b) for similar 

results concerning an elliptic inclusion with a ‘slightly weakened interface’). To the 

author’s knowledge, despite its importance to composite mechanics and the study o f  

elastic inclusions with imperfect interfaces, the solution o f the problem of an elliptic 

inclusion with homogeneously imperfect intetface has not been recorded in the literature.

In the present chapter, we consider the problem associated with an elliptic elastic 

inclusion embedded within an infinite matrix in anti-plane shear when the interface is 

homogeneously imperfect (Shen et al, 1999a). Using complex variable techniques we 

obtain infinite series representations of the corresponding stresses which, when evaluated 

numerically, demonstrate how the (non-uniform) stress field and the average stress within 

the inclusion vary with the parameter describing the imperfect interface. In addition, we 

show that, in some cases (depending on the aspect ratio o f the inclusion), interfacial 

stresses are found to be non-monotonic functions o f the interface parameter. In these 

cases, it is possible to identify specific values o f the interface parameter which 

correspond to maximum peak stress along the interface.

II
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2.2 PROBLEM FORMULATION

Anti-plane shear deformations are one o f the simplest classes o f deformations that solids 

can undergo. In anti-plane shear (or longitudinal shear, generalized shear) of a cylindrical 

body, the displacement is parallel to the generators o f  the cylinder and is independent of 

the axial coordinate. Therefore, anti-plane shear, with just a single scalar axial 

displacement field, may be viewed as complementary to the more complicated plane 

strain deformation, with its two in-plane displacements. Studies in the area of elasticity 

anti-plane elasticity were largely motivated by the promise of relative analytic simplicity 

compared with plane problems since the governing equations are described by a single 

second-order linear or quasi-linear partial differential equation rather than the higher- 

order or coupled systems of partial differential equations found in theories of plane 

elasticity. Thus the anti-plane shear problem plays a useful role as a pilot problem, within 

which various aspects of solutions in solid mechanics may be examined in a particularly 

simple setting (Horgan, 1995 for a complete account o f  anti-plane elasticity).

Consider a domain in infinite in extent, containing a single internal elastic 

inclusion, with elastic properties different from those of the surrounding matrix. The 

linearly elastic materials occupying the matrix and inclusion are assumed to be 

homogeneous and isotropic with associated shear moduli /// and ju?, respectively. At 

infinity, the prescribed deformation is that o f a simple shear. We represent the matrix by 

the domain 5j and assume the inclusion occupies an elliptic region 5 2 - The ellipse /'w ill 

denote the inclusion-matrix interface. In what follows, the subscripts 1 and 2 will refer to

12
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the regions 5| and S2 , respectively, (x, y ) is a generic point in 9?  and w(.r, y) will denote 

the elastic (anti-plane) deformation at the point (x, y).

W e assume that the interface is homogeneously imperfect as described in §2.1. The 

interface condition in anti-plane elasticity is therefore given by (see Ru & Schiavone 

1997)

h[wl - (w ,+ c o  = = , on T ,  (2 . 1)
an an

where h = constant is the imperfect interface parameter, n is the outward unit normal to r  

and co (x, y) represents the additional displacement induced within the inclusion by a 

uniform eigen-strain specified below. We note that as h approaches infinity in (2.1), we 

must have w\ = xvi+co{x, y) so that, in this case, (2 .1) describes a perfectly bonded 

interface (see, for example, Ru & Schiavone 1996). Similarly, i f  h — 0, (2.1) reduces to 

the case of a traction-free interface which characterizes the complete debonding o f the 

inclusion from the matrix. Consequently, the following boundary value problem 

describes anti-plane shear deformations of an elliptic inclusion with the imperfect 

interface of the form (2.1) (see Ru & Schiavone 1997):

V 2 w, =0, in S |, V 2w, = 0 , in S2

. r -1 dw, . dw. dw-,h[wx — w,J = f t^ — ^  + hco , / / ,—- L = // ,  —-^ o n  r  
an an dn

wi (X y) = cxx  — c2y  + 0 (1), x 1 + y 2 —> 0 0

(2.2)

13
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Here, ca, a =1,2 are given constants (remote stress parameters).

We denote the complex potentials corresponding to wa(x ,y ) ,a  = 1,2 , by <t>\ (z) and

02 (z), respectively. Since 0 \  (z) and 0h (z) are analytic within 5i and Si, respectively, we 

can write,

2wk = 0 ,(z )  + 0 ,(z)
- e S *  (A: = 7.2)

where crc  and erir represent the corresponding stress components in anti-plane shear. 

Noting that

3 w,
2 — ±  =  0 \  ( z ) e /"<;> +  0 (z^-™'-’’ , z e  T  , 

an ~

where, represents (in complex form) the outward unit normal to r at z, the boundary 

value problem (2 .2 ) can now be re-written in complex form as:

0 ,(z )  = d 0 2(z) + ( l - S ) 0 , ( z )  + a[0'2(z)eM:) + 0 '2 (z)e-"'(-',] +cu*(z),ze T  

0 X (z) = Az + 0(1) , Izl -»  oo.

(2.4)

Here

A = cx+ ic, , a -  —  > 0 , £  = ———  > -L a)* = +&et (2.5)
‘ 2h 2jux 2

14
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and a; is a known complex constant determined by the uniform eigen-strain given in the 

inclusion.

2.3 CONFORMAL MAPPING

Let r  be an ellipse with center at the origin of the complex r-plane, semi-major and 

semi-minor axes a and b , respectively and foci at x=  ± 2R, R > 0. Consider the following 

conformal mapping from the complex r-plane to the complex ^-plane (Muskhelishvili 

1963):

r  = m(g) = R{£ + ± ) ,R  = ^  ~ b~ > 0,c  = g  + in = rem (2.6)

planer-plane

Figure 2.1: The conformal mapping from z-plane to £-p!ane

15
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As illustrated in Figure 2.1, we imagine the enclosed region S> to be cut along the 

segment D, = {(x,0): —2R < x  < 2R \  connecting the foci o f the ellipse. This cut may be 

thought o f as an ellipse, which is confocal with 1~~ but whose minor axis is zero. Hence 

the cut region in Si may be thought of as the limiting case o f a region between two 

confocal ellipses.

Using (2.6), we map the ellipse* = /?(/?* + —̂ -)cos0 ,y  = R (R*— ^ s i n #  and its
/? R

exterior region in the complex r-plane, onto and outside, respectively, the circle o f radius 

R* in the complex £,-plane (see Figure 2.1). Here

R . = a + J a 2- 4  R 2_ = f c ] ± > l  (27)
2 R V a — b

Since, @2 (z) is analytic in Si, it follows that

0 2(z) = 0 2(z), r e D ,  (2 .8 )

2.4 GENERAL SOLUTION

For convenience, we write

0 a (z) = 0 a (mtf)) = 0 a{£ \  a  = 1 ,2 ,

L6
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so that, in the c-plane, condition (2 .8 ) becomes 

<*>2 ( f )  = 4>2(l). V<f:|£| = l

Using (2.6), writing £ = re'0 and noting that (England 1971)

e/2«,=) _  ”*'(£) e„,U) _ £ e_in(:) _  |  m'(£)
r~ /« '(£)’ r |m '(£ ) |’ r \m'(%)\

the problem (2.4) reduces to finding analytic functions 0 a(Q, a  = 1,2 in the regions 

| c | > R* and I < [ £ | < R*, respectively, such that

<£[(£) = S 0 2(c) + ( \ - S ) 0 2(c) + /3[c0'2(c )+ c 0 '1(c)] + com(c) + com(c), |c| = /?* , (2.9)

0 2(C )= 0 2(C), c = I

0 l(£) = ARc + 0(1) c —>00 .

(2 . 10)

(2 . 11)

Here,

a  a  a 1 —b2
W  =  -; . |  I ------r ^ > 0  (2 - 1 2 )

^  PC's)! W l + 6  s in“ 6? ^

Since d>i(4) is analytic in |£| > i?*, using (2.11), it can be represented there by the 

following Laurent series

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 ,{c) = ARc + ̂ d nr '  (2.13)
«=o

where dn are unknown coefficients to be determined. Similarly, 0i(4) is analytic in the 

annul us 1 < |£| < R ' and hence has Laurent series representation there given by

0 1{ c ) = J j b„cn (2.14)

where, again, b„ are unknown constants to be determined.

From Eq. (2.10), letting % — re10 we obtain (see, for example, Muskhelishvili 1963)

b. = b_,, 0 , ( f ) = j r  b, (<?" + f - )  (2.15)
11=0

In the following equations, since the constants bo and do make no contribution to the 

calculation of stresses, they will be taken to be zero. The problem is then reduced to the 

determination o f the complex coefficients dn and bn (ji = 1, 2...). The interface condition 

(2.9) can be rewritten as

0 X (£) -  5 0 r (£) + {8 - 1)02 (£) = /3[c0 '2 (c) + c 0 ’2 (c)] H- com{c) + comic), |c| = R' (2.16)

Using (2.13) and (2.15), the left-hand side o f Eq. (2.16) becomes

18
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A R Z - 5 ± b J -  + (< * - l) i  b , f "  + £ < .£ '" - S ± b „ r "  +
n= l n —\ / r = l  « = [  / /= l

Since the above expression is real, we obtain ( setting £ — R'e'e )

d x = A R (R ')2 + (2 £ -l)[6 , -b [ { R ')2\ w h e n « = l (2.17)

d n = ( 2 ^ - l ) [ 6 „ - ^ ( / ? * ) 2"] when n *  1 (2.18)

Using the expressions (2.17) and (2.18) to eliminate dn (n -  1, 2...), the left-hand side of 

Eq. (2.16) becomes

d>, (£ )- S 0 2 (<f) + ( S - 1)02 (£) = R R '(A eie + Ae~w) -
_    (9 19)

+b,e-M \ ( R y  + (^ -l)X C « ')-[* .e"  +*.«■*'], IH = R~
n -1 m s I

Noting Eqs. (2.6), (2.12) and (2.16) and setting £ = R' e10, the interface condition (2.16) 

is further reduced to:

J l  + b 's in 2 0 \R R '[ (A -c o - -% -)e id + ( A - c o — %-)e~i0] -  £ S ib ,/"6 + b ](/?*)" +
[ ■/? '  2̂ '  «=i

£ ( ^ - l ) ( i ? * ) - " [ V ^  + 6 ite-"'fl] l  = £ ^ - [ ( / ? * ) " ( V 'V' '  + K e-‘"d) - (R 'y " (b „ e - ’"0 + £>"*)] 
«=i J "  b

(2 .20)

Substituting the expression (see Appendix)
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AT-! g «2 . W  +  e - n \ W  _  f ] ( e i2W - 1>0 +  e / 2 < l - . U  )0  ^

tr 1 . „-‘2Bt=o  ̂ , I e + e
R 4 R 2

(2 .21 )

into Eq. (2.20) (here M i s a sufficiently large integer) and letting T — A —co— we
R

obtain

A/-I
R R ' \  ( e i 2 t e  +  e ~ i 2 k e )

[<t=0

x(Te‘e +Te-‘e ) =

1 e'2* + 6 T 2<?
R' R~ + 12\ r  \e ‘~

A/-1

k=0
1 + -

1 en e +e-i2B
R 4 R

] T [ b , /" *  +  ](/?*)" +  ( l - < ? ) x

+ e- —  _ ^ ( e' + e )]

/ ; = I  

' a/-I

A-=0
1 +

1 en e +e-i2e
R' R '2

4* /  [ei2Afff ',~i2Ste — rt f ' ‘n{sr~l)0 ■ „'2< 1-A/)0 ^+ e-,4Wt' -//(e* 4 -e

«=l
1 + -

1 e/2* + e - /2tf
R' R '2

x

2 > [ 6 „ e "  +b,e-"“>](R-r
b«=i

1 e/2® +e -,'M I # / *  +b,e‘-’W y
n=l

(2 .22)
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Furthermore, noting that I 2k = I _lk, and equating coefficients o f em0 in the interface 

condition (2 .2 2 ), we finally obtain

m —I m —I

+G .; )6 ,y., * P , j ) b i M ^ F nkI , k (2.23)
7=0 i=0 y'=0 *=0 i-=0

Here, n =l,3,5...m , where m is odd and always less than M; D„#, £„# are real constants; 

G„j, Pnj- are real constants related to the imperfect interface parameter h and Fnf: are 

complex constants. For example, by comparing Eqs. (2.22) and (2.23), when M=5, n- 3 

(m=5), we obtain

= ~ ;  0,10 = < 5 R '+ ^ r S  OJ20 = < L _ ^ ) + L _^ .; Ojj0 = - i ^ ; £ . M0 =£>,„ =0; 

c  = _ £ - • £ •  _ _ i z £ .  £  - I z £ _ . ? £ z l .  £
6 /?* 00 ~ / ? ‘3 ’ ~ /? * 5 /?* ’ 20 -  ^*3 ’ 330 ~ >̂* ’

■̂340 ~ 3̂50 — 0 ; FL —
a

30 M*3

0,0, = W 3 + - ^ ) ; D jm = - 2  s r - - ' ~ ^ - , d 32, = - F l [D », = a - S X - F

‘XfY |
Dul = D 35I = 0;G3I = ^ R ^ + - L . )

b K

O,o, p r ) ;  = - ^ ;  o ,„  = « ’; o ,„  = W ! + -^ r);

O341 =-«';0,5, =0;P„ = -32(_L+-L)
O K  K
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D!02 = -8R'*; D3i2 = S ( R - , + R - y ,D ,22 = - S R ^ - D 331 = - 2 _ £ ; d m = (I -  <5)(—̂
K K K

i s 5a
^352 — 5 ^^32  ~ ^ ^

£)0, =-(l-^)-L; = ( I - 5 ) (-L  +  _L ); E m  =-(l-(5)_L; = « 5R ' 3;
/v K K K

^/y |
e 34, = S(R-‘ + r ' y, e 3S2 = - S R ' 5m P 12 = ^ r -= V

b i\

PX = 0 ^ = T ( l + - ^ r ) ~ ; F u  = r ( l + - i - ) - - | r ;F,3 = - - l r ;F32 = F3S = 0

2.5 NUMERICAL EXAMPLES AND DISCUSSION

We compute (numerically) the complex coefficients of the Laurent series for a wide 

range of imperfect interface parameters and aspect ratios a/b.

2.5.1 The Case of Remote Mechanical Loading

We first consider the case o f remote loading in the absence o f any eigenstrain inside the 

inclusion. That is, when T = A, T = A.

Let b = I and consider the case o f an epoxy matrix surrounding a glass inclusion. 

The material properties of the matrix and the inclusion are described by (Huang and Hu 

1995):

£■/ = 2.76 Gpa, Vi = 0.35, / / /— 1.02 Gpa 

E2 = 72.4Gpa, v2 = 0.2, fi2 -30.17Gpa,
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where, E is Young’s modulus and v is Poisson’s ratio.

It is well known that, in the case o f a perfectly bonded interface in anti-plane 

elasticity, the stress and strain fields inside an elliptic inclusion are uniform (see, for 

example, Ru & Schiavone 1996). In fact, when h = °o (corresponding to (X= 0, perfect 

bonding) and Gnj = Pnj = 0 in (2.23), we obtain

Xd' u add* / R A - 8 * ~ i ,  , A 1 - 8SR b. H —b\ = ARR , b, = —--------- ;—, 6 , =b5 = ... = 0 where 8  = — — .
1 R 1 8  i - s  SR

Consequently,

^  , R A — 8 ‘ A z
2 ~ 0 + 8  i / ?’

which coincides with the result obtained in R u & Schiavone (1996) for an elliptic 

inclusion with perfectly bonded interface.

In practice, the imperfect interface parameter h is rendered dimensionless by 

division by//, l b , where /// is the shear modulus o f the matrix and b is the minor axis of 

the ellipse.

In the case of the homogeneously imperfect interface, numerical computation of 

the corresponding series demonstrates that the non-uniformity of the stress field inside 

the inclusion depends significantly on the aspect ratio of the ellipse and the imperfect 

interface parameter.
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In what follows, we present results for three different ranges o f the aspect ratio 

a/b. In each case, the number o f  coefficients in the corresponding series is chosen so that 

the error in the numerical calculations is maintained below 1%. This is achieved simply 

by calculating an increasing sequence o f partial sums from each o f the (uniformly 

convergent) infinite series representations and noting the minimum number o f 

coefficients required to ensure that the difference between any two subsequent partial 

sums is less than 1 %.

CASE 1 When 1 < a/b < 3, only the coefficients b/ and bj are necessary to achieve the 

desired accuracy. In this case, we find that

«> , = * „ + ( 6 , - 3 *3 )
(  -  \ (  -  \~ . 4- b 3 __j IR )

(2.24)

We obtain values o f  bi and 6 ? by selecting m -  3 and M - l m  Eq. (2.23). It should 

be noted that the result for a/b = 1 cannot be obtained directly from the numerical 

analysis but is available analytically. The relationship between average stress and the 

imperfect parameter h, in this case, is given in Figure 2.2.

The average stress inside the inclusion is defined as

f&'jdA
— -d_Off = (2.25)
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where A is the area o f  the ellipse.

In Figures 2.3 and 2.4, the stress distribution along the interface and the regions o f 

the ellipse described by the lines x  = 0 and y  = 0 is plotted for the value a/b = 3 and 

different values o f the parameter h. It is clear that the non-uniformity o f the stresses 

inside the inclusion is very strong. In fact, when h = 5E+5, the local stresses reach 

maximum values.

Oxz

3.5 -

2.5 -

1.5

Oxz
0.5 •

5.00E+0510

Imperfect Interface Parameter h

Figure 2.2: Effect of the imperfect interface parameter h on the average stress ( <7 C / S0xz) 

inside the inclusion when the remote stress is S0xz
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Figure 2.3: Non-uniformity o f stress along the interface when the remote stress is Soxz

with a/b=3
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Figure 2.4: The stress distribution along the x andy axes for remote stress Sbxz with a/b=3
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CASE 2 When 2<a/b<6, it is sufficient to consider only the coefficients b/, bj and b$ to

obtain the required accuracy. In this case, we obtain

= 4  + {bx -3b ,  + 5 b5) 4- +{b2 ~5bs)
VK J

+ b. (2.26)

We may obtain values o f b/, bi and bs by selecting m—5 and M—9 in Eq. (2.23). 

The corresponding stress distributions are presented in Figures 2.5, 2.6 and 2.7.

6

5

4

3

2

1

0
5 10 SO 100 200 500 1.00 5.00 1.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00

E+03 E+03 E+04 E+05 E+05 E+06 E+06 E+07 E+07 E+08 E+08 E+09

Imperfect Interface Parameter h

Figure 2.5: Effect of the imperfect interface parameter h on the average stress ( /  S 0xz)

inside inclusion when the remote stress is S0xz
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Figure 2.6: Non-uniformity o f  stress along the interface when the remote stress is Sbxz

with a/b= 6
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Figure 2.7: The stress distribution along the jc and y  axes for remote stress 5qxz with a/b=6
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CASE 3 When 6<a/b<9, only b[, bs, b7 and b7 are required to obtain the desired

accuracy. In this case, we obtain

d>2 =b0 + (£?, - 3 b 2 +Sb5 +28b7)— + (b3 - 5 b 5 +l4b7)
R

f  -7 V
~R

+ Cbs - 7 b 7)
f  -  V

/?  J  

(2.27)

We may obtain values o f b /, bj, 6 5  and 6 7  by selecting m=7, A/=l I in Eq. (2.23). 

The corresponding stress distributions are presented in Figures 2.8, 2.9, 2.10.

xz.

Ox?

0 *
0.1 1 5 10 100 500 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00

E+03 E+03 E+04 E+04 E+05 E+05 E+06 E+06 E+07 E+07 E+08 E+08

Imperfect Interface Param eter/?

Figure 2.8: Effect of the imperfect interface parameter h on the average stress (cr.tr / S0xz) 

inside the inclusion when the remote stress is S0xz
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Figure 2.9: Non-uniformity o f stress along the interface when the remote stress is Sqxz

with a/b—9
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Figure 2.10: The stress distributions along the .r and y  axes for the remote stress Sqxz with

a/b=9
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It is noted that for values of the aspect ratio a/b> 10, the procedure is similar although a 

much larger number o f  coefficients is required to evaluate the corresponding series to the 

desired accuracy.

The above results indicate that the average stress alone is insufficient to describe the 

debonding and failure o f  the interface because the average stress is a monotonic function 

of h. This means that the average stress does not give any useful information about the 

debonding and failure o f  the interface. It is the local stress (maximum) that decides where 

the debonding and failure will occur. For example, from the stress distribution along the 

interface in Figure 2.9, the maximum local stresses occur at 6 = 0 , k. These stresses are 

much greater than those in the case o f  perfect bonding although the average stresses (see 

Figure 2.8) are smaller. In addition, from Figures 2.2, 2.5 and 2.8, it is clear that the 

effect o f the imperfect interface parameter h on the average stress inside the inclusion 

increases with the aspect ratio o f the ellipse.

It should be emphasized that the imperfect interface condition (2.1) arises from the 

assumption o f the existence o f a thin flexible coating (interphase layer) of thickness t «  

b with shear modulus fJc «  min{/J./, fJ.2} between the inclusion and the matrix (Hashin 

1991b). This defines the physical meaning of the parameter h. In practice; the interface 

model may be represented by an adhesive layer. For the present case, h is in the range 1 

to 1 0 6 v/hich demonstrates that the stress field is closely related to this physical meaning 

of h. In addition, the local stresses along the (imperfect) interface itself reach maximum 

values when the interface parameter h reaches a particular value (/?*). For the example
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under consideration, the relationship between the parameter h* and the aspect ratio a/b is 

presented in Figure 2. L1.

1400000

1200000  -

1000000

800000 -

600000 -

400000

200000

h*

Oxz

Oxz

Oyz

Oyz

/v

y  A

2 3 4 5 6  7 8 9  10

a/b

Figure 2.11: The relationship between h* and a/b

Since values o f h* correspond to local maximum stress and are related to the mechanical 

properties and thickness o f the adhesive layer between the inclusion and the matrix, the 

parameter h* may be used as a control parameter when designing composites involving 

elastic inclusions. For example, for the remote loading Sqxz and aspect ratio a/b= 1 

(circular inclusion), the peak stress corresponds to the value h* =°° (perfect bonding). 

However, when a/b—3, the peak stress corresponds to h* =5E+5. Since h* is rendered 

dimensionless by division by/7, l b , for a specific aspect ratio, we could avoid the peak
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stress by adjusting /// (the shear moduli o f the matrix), and the thickness o f the 

interphase layer (related to b).

Imperfect Interface Parameter ft

Figure 2.12: The effective peak stress along the interface varies as a function o f the 

imperfect interface parameter h when the remote stress is Sqxz

In order to better understand the relationship between the imperfect interface parameter h 

and the failure of the interface, Figure 2.12 plots the peak stresses as a function of the 

imperfect interface parameter. These peak stresses are calculated at the values 6 = 0 or k 

and correspond to the effective stress which is defined by the relation

I—■>------   ^  \ -

G effective = + °Tr • 1x1 Figures 2.3, 2.6 and 2.9, we note that the values of —— are
Sq.x=
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(7
much smaller than the corresponding values o f when the remote stress is Soxz-

O.C

Thus, the effective stress is mainly determined by c ^ . Furthermore, at the values 0 = 0

a , .
or i t , the effective stresses is equal to the values o f ~  because the values o f —— are

Oxr ^ O x z

zero. The maximum peak stresses in Figure 2.12 correspond to values o f the parameter 

h*. For the circular inclusion, we know that the maximum peak stress appears at h=°° 

(see Ru & Schiavone 1997). However, for the elliptic inclusion, the maximum peak 

stresses are related to the imperfect interface parameter and the aspect ratio. To explain 

this, we note that for the present interphase layer model (Hashin 1991b), in order to keep 

the thickness o f the adhesive layer between the elliptic inclusion and the matrix uniform, 

unlike the innermost edge, the outer edge o f  the interphase layer cannot be elliptical. This 

is why, in the case o f a homogeneously imperfect interface, values o f h* correspond to 

different local maximum stresses for different values of the aspect ratio a/b (for the 

circular inclusion with homogeneously imperfect interface the outer edge o f the 

interphase layer is circular). This makes the stress distributions along the interface 

extremely complicated in the case of an elliptic inclusion.

2.5.2 Eigenstrain Problem

By a suitable choice of eigenstrain in Si, the problem considered in § 2 .5.1 (remote 

loading with no eigenstrain in Si) can be shown to be equivalent (in the sense that the
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stress field induced within S2 is equivalent) to one in which the remote loading is zero. In 

fact, if  A is the remote loading parameter, we choose the eigenstrain co such that

R 'z(AR'2 - A )  
R '4 - 1

co+- CO

R ^
— co —

CO =

— R '2(AR'2 — A)
00 = --------- 77----------

R — 1

(2.28)

ik_ i k .
^0«r SJ)*?

,h=5E5 h=5E5

h=E5

infinity

h=E4 h=E4

h=2E3h=2E3

in f in ity
X

(b)

Figure 2.13: The stress distribution with a/b—3 for the matrix along x axis with different h 

when (a) remote mechanical loading Soxz; (b) eigenstrain loading

It is worth noting that for the above condition, the stress distribution in the eigenstrain 

problem is equivalent (to that with remote loading and no eigenstrain in SS) only within 

the inclusion, and not in the matrix. For example, the stress distribution in the matrix
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along the x-axis in the case when a/b=3 is presented in Figure 2.13. In the case of remote

<7
mechanical loading, all stresses in the matrix tend to —— = 1  when x tends to infinity, as

■SL

cr
expected. On the other hand, for the eigenstrain loading, all stresses tend to —— =0 in the

SnO .tz

similar situation.

2.6 SUMMARY OF RESULTS OBTAINED

This chapter presents a semi-analytic solution of the problem o f  an elliptic inclusion with 

homogeneously imperfect interface in anti-plane shear. The results show that the 

interface imperfection has a significant effect on stress fields in and near the inclusion 

(along the interface). The non-uniformity of stress is closely related to the interface 

parameter describing the imperfection and the aspect ratio of the ellipse. It has also been 

demonstrated that the definition o f  the imperfect interface and the physical explanation of 

the interface parameters used in Hashin (1991b) are indeed suitable for describing the 

nature o f the interface.

Our calculations show that using only average stress is insufficient to describe the 

debonding and failure o f the material interface since both are controlled by interfacial 

stresses which are themselves closely related to the imperfect interface condition. 

Furthermore, it has been shown that the effect of the imperfect interface parameter h on 

the average stress inside the inclusion increases with the aspect ratio of the ellipse. In 

particular, our results indicate that it is possible to predict and control the debonding and
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failure o f the interface by identifying a distinct value (h*) o f the interface parameter 

which depends on the aspect ratio o f the ellipse and the properties and thickness o f the 

adhesive layer between the elliptic inclusion and the matrix. This is a direct consequence 

o f the fact that values o f h* correspond to maximum peak stress along the interface. 

Furthermore, we have shown that, for a specific aspect ratio, it is possible to avoid or 

minimize peak interfacial stress by adjusting ju/ (the shear modulus o f the matrix) and the 

thickness o f the interphase layer.
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C H A PT E R  3

STRESS ANALYSIS OF AN ELLIPTIC INCLUSION 

WITH A HOMOGENEOUSLY IMPERFECT 

INTERFACE IN PLANE ELASTOSTATICS

3.1 INTRODUCTION

The present chapter extends the work initiated in Chapter 2 for anti-plane shear elasticity 

to plane elasticity. In Chapter 2, we considered the problem associated with an elliptic 

inclusion with a homogeneously imperfect interface embedded within an infinite matrix 

in anti-plane shear and found the peak interfacial stress to be a non-monotonic function o f 

the parameter h describing the imperfect interface. In addition, it was shown that the 

influence of the parameter h on the average stress inside the inclusion increases with the 

aspect ratio of the ellipse.

O f greater theoretical and practical interest, however, is the plane problem. 

Consequently, in this chapter, we consider plane deformations o f an elliptic elastic 

inclusion embedded within an infinite matrix when the inclusion-matrix interface is again 

homogeneously imperfect. Using complex variable techniques we obtain infinite series
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representations o f the corresponding stresses which, when evaluated numerically, again 

demonstrate how the peak interfacial stress and the average stress inside the inclusion 

vary with the parameter h describing the imperfect interface (Shen et al, 1999b,d). 

Perhaps most significant is the fact that our results demonstrate that the peak stress along 

the interface is again a non-monotonic function of h. This allows us to identify a specific 

value h* o f the interface parameter which corresponds to maximum peak stress along the 

inclusion-matrix interface (Shen et al, 1999b,d). We also identify another value (also 

referred to as h*) o f  h which corresponds to maximum peak interfacial strain energy 

density as defined by Achenbach & Zhu (1990). In each case, we plot the relationship 

between this new parameter (/z*) and the aspect ratio o f the ellipse. This gives significant 

and valuable information regarding the failure of the interface using two different yet 

well-established failure criteria (Shen et al, 1999b,d).

3.2 PROBLEM FORMULATION

It is well-known that for plane deformations, the displacement components (ux,uy), stress 

(or traction) components (<Jxx,a}y,crX}) and the components of the resultant force (FXyFv) in 

9? referred to a Cartesian coordinate system are given in terms o f two analytic functions 

4(z) and yj{z) by (Muskhelishvili, 1963) :

2  M{ux + iu v) = [ r c m  -  zip' ( z ) - ^ ( z ) ]  (3-D

£7 .tx+ 0 \v = 2[0'(z) + 0'(z)] , (3.2)
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= < F (z )+ p {z)-[zP \z )  + yf{z)\  , (3-3)

Fx +iFy = -i{0(z) + zP (z)  + ys(z)Yp . (3.4)

Here, z=x+iy is the complex coordinate, v  is Poisson's ratio, k = 3 - 4  v for plane strain and, 

k = ( 3 - v ) / ( 1  + v) for plane stress and [ ]’ represents the change in the corresponding

function in moving from point p  to point q along any arc pq.

Across the interface F, the boundary displacements and tractions are written in 

normal-tangential (( n,t) -) coordinates as:

2 fi{uH +iut)=[K<p{z)-z<j>\z)-y/{z)}e-ip(--) , (3.5)

=<t>'(z)+<f>'(z)-[zf(z) + ys\z)]e2ipl'-' , (3.6)

where n is the outward unit normal at z e T  also represented, in complex form, by 

(where p  defines the angle between the normal direction n and the positive .v-axis). 

Assume that the elliptic inclusion is bonded to the matrix by a homogeneously imperfect 

interface. The interface conditions are then given by (Ru, 1998b)

k - < ] ] = 0  , <Tm = h x( z ) t« j ]  , o -b, = A 2 ( z ) [ [ m , ] ] .  (3.7)

Here h\ and hi are two non-negative interface parameters (basically the 'spring -type 

constants' o f the interface model having dimension o f stress divided by length) and 

[[*]] = (*) i ~ (*) 2 denotes the jump across F  Since the model o f the homogeneously
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imperfect interface is based on that of an adhesive layer, the constants h\ and hi 

represent the degree o f bonding at the interface. With this in mind, we mention that the 

classical case o f perfect bonding is obtained from our model in the limiting case when 

h/= h i—00. Similarly, the case of pure sliding can be obtained by setting hi=0 and h2 =°° 

while the completely debonded interface can be described by setting h t= h2—0. Any 

remaining finite positive values o f h\ and hi represent the imperfectly bonded interface 

considered in this chapter.

The asymptotic conditions at infinity are given by

<f>x{z) = Az + o( 1), ^ ,( r )  = 5z + o(I), z ~ ,

where A and B are given constants characterizing the remote stress field.

By considering the second and third expressions in Eq. (3.7), we may obtain

(3.8)

Similarly, from Equation (3.5), we can write the displacements in the form:

2 k ,+ ™ ,] ] = £ [k-,0 , ( z ) - z<px' (z:)- yrx( z ) ] -  -------[r 2<p2(z) - z02'( z ) - ys2(z )], on F,
Mi

(3.9)
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2 [[«„ -  in, ]] =  ----- [**, (z) -z<px\ z ) ~  yrx (z )]-    [rc2 <f>2 (z) -  z<p2' (z) -  y/2 (z)], on F
Ml /^2

(3.10)

The geometry o f the problem is simplified by mapping the ellipse into the unit circle 

using the mapping function (Muskhelishvili, 1963):

m &  = ^ R 4  + ̂ - ) , R Z  = j 1 +
f  I V

, c = C + it] =  re iff (3.U)

z-plane

Figure 3.1: Conformal mapping from r-plane to £-plane

Here,

R = > 1,/ = V a2 - b1
V a — b
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We imagine the enclosed region Sz to be cut along the segment Dx = {(.r,0): —/ < x  < /}

connecting the foci. This cut may be thought o f as an ellipse, which is confocal with r  

but whose minor axis is zero. Hence the cut region in Sz may be thought of as the limiting 

case o f  a region between two confocal ellipses.

If, in the cut ellipse (53),

the functions 0 ?(z), will take only one and the same value when the point z

approaches the segment D\ from either side. Consequently, the conditions (3.12) ensure 

that (fh(z), are analytic functions throughout the domain Sz.

For convenience, we write 0(<£) =0(aw(4)) and = ^m(<£)) so that in the mapped 

plane, the displacements, stresses and resultant forces respectively take the form:

<p2( z ) = 0 2(z), ys2(z) = yf2(z) z s D , , (3.12)

2 n (u x +iu ) = K$(g) -  m(£)d>(£) -  y i g ) , (3.13)

+<7,,. =2[<D(£)+<!>(£)] , (3.14)

(3.15)

Fx + iFy = -i[(p(%) +  m(£)4>(£) + . (3.16)
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Here, the prime denotes differentiation with respect to d>(<f) = and

¥ (£ )  = . Similarly, the condition (3.12) becomes:

&(£) = &(£)» ^ 2  (£) = ^ 2  (£), v ^ :|^| = l / ^ -  (3-17)

The condition that tractions be continuous across the interface may be integrated to

become a resultant continuity condition of the form:

(F t +/F,.)I = (F C+ /F l. ) 2 . (3-18)

For convenience, we introduce an auxiliary stress function i2(<£) such that (see Stagni,

1991)

. (3.19)
m'(£)

Thus, using (3.16), (3.18) and (3.19), continuity o f tractions across the interface may be 

expressed in the form:

^ (^ )  + Q 1(^) = ^ ( # ) + Q 2( ^ ,  |£| = 1 . (3.20)

The complex potentials <f>d£) and are now expanded into their respective Laurent

series in the matrix and in the inclusion as follows:
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2 «=0

n , ( # ) = 7 ( 4 + s ^ + Z c . f "2 R „=0
/h-0

(3.21)

//=0

Q 2( a  = X ( A , ^ 1+ « ' ("+l))

(3.22)

n = 0

Note that the constant terms have been om itted since they have no effect on the stress

/ Adistribution. From (3.19), at infinity, Q , ( £ ) = — (— b BR)<%. Furthermore, (3.17)
2 R

combined with (3.21) and (3.22) yields the following relation (see Gong & Meguid, 

1993):

Tn = - ^ T +(n + l ) - 4 ~ ( R 4 ~ i) ,  (n — 0,1,2,3.......)"  2 « + 2  ’  «  ^ 2 « + 2  v  ’  j ^ 2 ii+4 v  / j  v  t /
(3.23)

Consequently, (3.23) allows us to express the coefficients Tn, En in terms o f  the 

coefficients Dn, Sn. The traction continuity condition (3.20) now becomes:

t -A R Z + 'Z  + L ± + S R )f -  j r  £>„ f + £ ( C ,  -  £ .  )<f
2 „=o 2 n = 0 H=0

+ 7 ^ - '" ' ’)
H—0
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Noting that £  = e'a on the interface, comparing coefficients, we obtain

Co = - - A R  +  E 0 + S 0, A0 = T 0 + D o + BR)  ( « = 0 )
2 2 R

Cn =  ~En +  S n , C n = E " + S „  (n= 1 ,2,3......... )

A" = Tn +  Dn  , An —Tn +  D„ (fl— 1,2,3.........)

Thus the coefficients A n, C„ can be expressed in terms of the coefficients D n, S„. 

unknown coefficients are therefore D n, S„. These can be obtained from the 

condition (3.8) as follows.

In the mapped £-plane, noting the following relations from England (1971),

r  \m■©I r \m•(si

equations (3.9) and (3.10) become

M m (&\ IA A
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Similarly, (3.6) becomes

„■ _ fVr -  (f l  h - 7 ^  d  1 ^ '(£ ) 1 f 2  #* '(£) _
m'(£) m'(£) { </£ ™'(£) "*'(£) "*'(£)J /w'(^)

<P'(€) . <P'(€) "<£> , ^ '(£ ) Li/a r  n9Q )
"*'(£) «■(£) I K ( ^ ) ] 2 «•(£) i» '(0 j

Multiplying the above expression by the (non-vanishing) factor [m' ( £ ) ] 2 m' (£ ), and 

eliminating y/\%) using (3.19), we obtain

[m'(<f) ] 2 m’(£ )K „  - iff* ] = [m1 (£)]2[*'(#) ~ e vea ( § ) ]  (3.30)

Consequently, from (3.27) - (3.29), the interface condition (3.8) becomes

[ m ' t f ) ] 2W t f ) - e 2ieQ.\Z)\  =

4 1 ' [fit fJ-2 J

/?[ +/?, |—5------ \m(<f )|[m' (£)]! *“ {—  k  *, (O  -  Q, (# )]-— [*■: * .(# )“  « z  (£)]]
IM Mi I

Using (3.11), we can eliminate £ from the right-hand side of this expression and obtain:
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m -\/l + 6 * sin2 6 — <j(/z, —h2)m'e 10 —  \k .(/)x -£ 2 ,]— — [/tr2<z>2 - Q 2] 
.A M 2

+

(/z, + h2)m'e i d —  [k-,0, - Q , ] -------[ic,0, -£ 2 ,]
.A  A

■e r

(3-31)

where b*=(a2-b2)/b2. From (3.21)-(3.26), noting that g  = e‘° on the interface, we obtain 

the final form o f the interface condition (3.8):

W l  + 6*sin2 0 ^ -{ ( /z , - h 2)Qn +{hx+h2)Qn}
O

r e  T (3.32)

where

n=o
Q, = g, - g y - " 1 - g , e - !l‘ - % N „ e M  -

I

i M . r V * '  + f i N,lR -1e''

11=0

i(tt+2)e

11=0

g, = AtfA,

ti=0

I A ,E IA A,
T ’A2 ' Wi 2/? = A‘£ ,M " = (A 2jD" + A 3r J

A„ =(A4E „ + A 5Sn\ A l = —  (1 + jc,),A, = ^ -  + — ,A 3 = -£— £ -  
'  A  1 ‘ A  A  A  A

1 1 A 1 K -> T7 1 t A  ~D D \A 4 —----------- ,A S —----- 1------, E — + BR)
A  A A  A 2  \R

(3.33)
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From (3.11) and (3.21)-(3.26), the interface condition (3.32) becomes

\d0 + d le~'e + d 2e ‘e + d je-2ie + d 4e 2ie + d5e~ve + d be 4W 4 - ne i0̂ 2)d +
n=0 n=0

= A-\/l +b* sin2 d x 

" X P„eiO,+2)0 + ^ O ne~iln+4)9 4- c0 4 -c (e  ,a -f-c-,e'e 4- f 2e'~0 -\-c3e '~e +cAe lie 4- - iA 6

,1=0 ,i=0

(3.34)

where

U„ =  2 / 2 [ - R 4 (Tn +  D„ ) («  +  1) +  2 R \ f n +i +  Dn+1) («  +  3) -  ( 7 V 4  +  Z>„+4) («  +  5)] 

2 R 2 (rB+I + )(/i 4- 2) + 2(r„+3 + D„+3)(« + 4) +
V„ = 211 R4(En+4 + 5 n+4)(/7 + 5 )-2 /? 2(£:n+, +5„+2)(« + 3) +

(£„ + )(« +1) 4- 2R1(Tn + Z>„)(« + 1) + (rn+2 + Dn+2 )(« + 3)

(3-35)

— '̂/i-r4 + ,̂1+2 > 0,1 ~~ R,t+2 Hn+A & ,1  i
Fn = 2  (/z, +h2)R~2N„ + (/z,- h ^ i l  + R-4^ , , ,

G„ = 2(A, + h2 )R ~2 M„ + (/z, -  h2 )(l + /T 4 K  ,

={hl +h2)N„ 4-( /z ,  —h2 )R~2M ii,J„ = ( /z, +h2)M„ + ( / z , - h1)R~1N „, 

K,t = h x  +h2)R-2N„ +{hx- h 2)M„]R-2,
L „  =  [(/z, 4- h 2 ) R  ~2 ~M  n +  (/z, - / z 2 R ] / T 2 ,

A  = ( A ,  + ^ 2 ) G ' i  - g ' 3 / ? _ 2 ) + ( /zi ~ h 2 ) { g i  + g iR ~2\  
f 2 =  (/z, +h2)g3 -  (/z, -  /z2 ) ^ 2 ,

A  = ( A ,  + A 2 ) ( - g - 2 - g - , / ? ' 2 ) + ( / ? ,  - f i 2 t j s 3 - g i R ^ l  

A  =  [(/2I +  k 2 )g 2 ~  i.h l ~  h 2 )g3 I72 "2 ’
Cq — f\~ ^~  f ' 2 "t" G q 4~ H o , C| — Z<| 4” H j , c 2 L 3 4- ( ? [ ,

C-j — Z.q 4 F q  4  / " f  2 4- , C4 =  F x 4- ,
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b(a + b?
2 ( a - b )  ’

d0 = - 2 l 3RA + 4l2R2( f o + D Q) - 6 l 1( T 2 + D 1) + 2l2RA(E0 + S o ) 
d x = 2l3R3A - 4 l 2( f x + D x) + 4l2(T0 + D o - E )  + 4l2RA(Ex + 5 .)  
d2 = -2 l 3RA + 8l2R2(fx + D x) - 8 l 2(T3 + D3) 
d3 = - 2 l 3R3A - 2 l 2( T o + D 0) + 4l z(T0 + D 0) - 4 l 2E + 8l2(Tx + Di )  + 

6l2RA(E2 + S 2) - 4 l 2R2(E0 + S o) 
d4 =0 
ds = —4lz R2 (T0 +~Do-E)  + 8lz(Tx +D ,) + 8 / 2 R* ( £ 3 + S i ) - 8 l 2R 2(Ex + Si) 

+ 12IZ(T1 + ~Dz) 
d6 = - 4 l 2R2E

In the above expressions, the coefficients Tx and Ex can be written in terms of Sx and Dx by 

using (3.23). Hence, the only remaining unknown coefficients are again Sx and Dx.

Next, we employ a method similar to that used in Chapter 2 by substituting the 

following expression (Appendix) into (3.34):

yll + b 'sm 29 = £  I lke,2ke = X  I 2k (ei2k* + e" 2ke) + I 2XI
k = -

M-1
  'V '  t /  i2 kd  , —i2 k9  \  , r

k = 0  

.vr—i
'V 1 r  (  i2 k8  , —i2 k d  \  . r= +e ) 2.1/

k=0

:2M 0 , -i2M O

, ,2 M B  + e - , 2 M B  _ 7 7 ( e „ t . v , - 1,P + e i

L e‘26 + e "28 
+ R 4 R2

k=Q

e- -  + g - - -  -Tjie-2̂ - " 8 +enM-xns) 
1 + 772 -r j(e i28 + e~'26)

x-T j(e i28 -he-'28)

We obtain
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n -  0
x 2e-“ + *4<TM + *,*-“• -  x10<Ts'» ♦ x lX * " " * " ' - - / £ > . *

/t=0 n= 0

x3eia + xse2i0- x 7e3i* -x ,e ™  + x ^ U  Keil”+2'0 -  f c u  „e«*+4'0 ~ r & U ne"+ x ,  + in 6

n —0 n=0

X ^ ( e ' ‘2“  + e ',-‘® )(x-/7(ei2* + e_,2fl)) +- / ,  vf (ei2m + e -2"e -r?(e‘21"-"* +  e ‘2O~M)0))
.*=0

^ P ne' (n+m + ^ ° ne - ‘^ )0 + c 0 + Cle - ‘e + c 2e i0 +  f 2e ‘20 +  c 3e ~ i20 +  c 4e~ n0 +  f 4e ~ l-lAO
,n —0 n-Q

(3.38)

where

T] — [ / R 2 , x =  1 + r j2 , x l = x d 0 —r}d3 — r]d4 , x 2 = x d v - r j d 5 - r / d2, 
x 3 = x d 2 - r j d \ , x4 = x d z - r j d 6 - r j d0x 5 =  x d 4 - r jd0 , x6 = x d 5 - r \ d x, 

x-j T]d2, Xg x /̂g T jd j , x9 i*jd 4 0, X(q r]d5, X| j n^6

(3.39)

Furthermore, by equating coefficients of e ind in ( 3.38), we finally obtain

(3-40>
*=0

Hence Wnk and Qn are finally related to coefficients 5,- and A . For example, for M—5 and

iit9
e  , we obtain
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W}0 = xPx -2r/P3 — c2rj,W3l -  xP3 -2i]Px -r}P5 + c2x - c xi]

W 12 =  x P 5 ~ rlP i r!P i  ~ c 4 tj +  c xx - c 2 j7 
FF33 =  x P 7 -  7]PS -  T]Pq +  C4 x  -  C,77 -  T jO x

wu = xp9 -  nP7 -n P n -  c j i + x o x -  tjo3

^35 = p„ - i p , - n o ,  + 03 ,2 , =  - * ’ + * v > - ” c /3
A

(3-41)

The relationship between above coefficients and S’,- and Z), can be expressed as follows:

p,  =  i„ 4  + G ^  + J .  = It*. +(A, +
2{hx + h2 )R-2Mn+i + {hx -  h2 )(l + R - 4 )Â „+2 + (hx + h2 )M„ + {hx -  h2 )R~2 N n 

=  [(/?, + h2 )R~2(a 2D/i+4 +  A 3T„+4)+{hx - /z ,) (a 4£„+4 + A 5S„+4 )]/?~2 +

2{hx + h2)R~2(A2Dn+2 + A 3 r „ +2 )+(/2, - h 2)(l + R-4i A 4E n+2+ A 5S,l+2)

+ (hx + h2 )(a 2Dn + A 3T „)+ (hx —h2)R ~ ( a 4 E„ + A 5Sn)

(hx+ h 2)R~2

+  2 (hx + h 2)R -2 

+  {hx + h 2)

A 2D  , + A > //-1-4
3 ĵ 2(n-h4)+2

. , D  n+4 ,  -v S  n+4

1 h+2
3 7? 2<H+2)+2

+ (/2. - / 22)| “ ■‘^ 2(h+4 , +2

(/?4 - l ) )  + A 55 „ +4 

I • , Dn+2
+(ih - h 2t i+ R ~ i i  A

R 2(«-t-4)+4 R-

R 2{tt+2)+2 +  ( az -f- 3) S  h-4-2
/?2(//+2)+4

a n  a ^ "A .-,D,, +  A 3  r —
R ,+

+  {hx - h 2 )R~2

( R 4 - I ) ) +  A 5S ll+2 

S„f  n
a 4( - £ t + (« + D ^ r ( ^ 4 -  D) + a ss .** ' 2/I-+-2 /?
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Oh = Fn+2-  H n+4 -  K m = 2(A, + A2 )R-2 N ii+2 + (V -  h2 )(l + R-4 ]Mn+l -  

(A, +h2)Nn+4 -  (A, — h2)R~2M ii+4 -  [(A, +h2)R-2N„ +(A, -A 2 )A/„]/T2 

= 2(A, 4- A2)/? “ ( a 4 £ ’ii+2 + A s S , ,+ 2  )+ (A, — A2 )(l + /? 4 Xa2 D,i+2 +- A2Tn+2) 

-  (A, + A, )(a4£ '„ +4 + As S ,,+4) -  (A, -  A, )R~2 ( a 2 D ll+4 + A3 r „+4 ) -  

[(A, + A, )/?"2 ( a 4£„ + AsS„ ) + (A, -A 2 )(a 2 D„ + A 3r „ ) ] ^ - 2

= 2(A, + A2 )/T 2
£ > 2
!(n+2)-t-2

+ (/i, - /i,) ( l  + «  41 A, D„-a + A j

(a, + a2) A4( - tU«+4)+2

C _  N
"+4 (/?4 -L)) + A55„+42(//+4)-f4

y

(A, -A 2 )/T2 A-, Dn+4 + A, //+4
3 2̂(«+4)+2

(A, ■+■ A2)/? A4( - ~ +  + l ) - ^ ^ - ( / ? 4 -1)) + AS5'„ -t-(A,-A2 / a , D „  + A 3—: iT 2

2/2

K. = 2/2

U„ =  2 /21- /?4 (r„ + D„)(«  + 1) + 2R \T n+i + Dn+2)(« + 3) -  (7 \*4  +  D„,4 )(/i +  5)J=

-  A4 + Dn )(« + I) + 2R2 + Dn+l){n + 3) -  ( ^ 7 T  +  ^  Xu + 5)

-2 /? 2(7'„+i + Owi )(h + 2) + 2(r„+3 + D„.3)(rt + 4) + /?4(£„+4 + S„+4)(/j + 5)
— 2R'(E  +- S'n+2 )(« + 3) + (.£„ + S n ){n +-1) + 2R~(Tn + Dn)(« + L) 4- (Tn+2 4 Dn+z ){n + j)_

-  2R' <;J s k r  + o . •.)(» + 2) + X - J s b r  + ><" + 4> + « '  +

<" + 51 - ^ S t r ( R4 -1) + X» + 5) -  2/f4 + (n + 3 ) ^ ^ - ( R 4 - 1) + SVa)(» + 3)

2/ S n , n n l l ,1 T U T I .
R

2/2

+ ( - ^ T  + c« + -  I) + ^  X” + 1) + 2R2( - j k r  + Dn ){n + 1) + ( J : ; l 2 + Dn,2 )(/» + 3)/?2,‘

Depending on the level o f accuracy required, we may select different values o f M  in 

Eq.(3.40) corresponding to a set o f M  linear equations and finally obtain the coefficients 

Si and Dj.
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3.3 NUMERICAL EXAMPLES AND DISCUSSION

3.3.1 Interfacial Stress

In the present thesis, the interfacial stress is composed of two parts: <Jnormai-, the 

component of stress along the normal direction to the interface; Olangcmiau the component 

o f stress along the tangential direction to the interface.

Let b = 1 and consider the case o f  an epoxy matrix surrounding a glass inclusion. The 

material properties o f the matrix and the inclusion are described by (Huang and Hu 

1995):

Ei = 2.76 Gpa, Vi =0.35, /// = 1.02 Gpa 

Ej = 72.4Gpa, k? = 0.2, =30.17Gpa,

where, E  is Young’s modulus and v is Poisson’s ratio.

In practice, the imperfect interface parameter h is rendered dimensionless by division 

by fillb , where fit is the shear modulus of the matrix, and b is the minor axis of the 

ellipse. In this calculation, two cases are considered, /zi=/z2 and h\=2>h  ̂ (Basically, the 

imperfect interface parameters are related to Young's modulus and Shear's modulus, 

therefore, it is reasonable to assume h\=3fi2, see Hashin, 1991b). The results from these 

two cases are compared and discussed.

In what follows, we present results for three different ranges o f the aspect ratio a/b. In 

each case, the number o f coefficients in the corresponding series is chosen so that the
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error in the numerical calculations is maintained below 1%. This is achieved simply by 

calculating an increasing sequence of partial sums from each o f the (uniformly 

convergent) infinite series representations and noting the minimum number of 

coefficients required to ensure that the difference between any two subsequent partial 

sums is less than 1%.

CASE 1 When 1 < a/b < 3.5, only the coefficients S’o(Do), SiCDi) and SSfDi) are 

necessary to achieve the desired accuracy. From (3.22) and (3.23), considering (3.11), it 

is easy to find <fh and Q 2  expressed in terms of Sq(Dq), S\(D[) and ^(A O . Furthermore, ifh 

can be obtained from (3.19). For example, in the present case

IS S0 3S, ( 2z
R z ' R R3 I

r 2 z \  S,
+ (̂ t )/ R

(2 z y

K* J
(3-42)

Once (fh and \ffi are obtained, we can calculate the stress distribution inside the inclusion. 

In Figures 3.2 and 3.3, the stress distribution along the interface (normal and tangential 

directions) in the two cases h\=h2 and /zi=3/?2 is plotted for the value a/b=3.5 and 

different values o f the parameter h. When h= 100, the local stresses reach maximum 

values for both cases. The present computations also indicate that there is no significant 

difference between the cases h\=h2  and h\=3li2. Hence, for practical inclusion (structural) 

design, to satisfy the basic requirements we need only consider the case h[=/i2 -
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Figure 3.2: Normal and tangential stresses along the interface with a/b=3.5

and h\ — h^ = h when the remote stress is 5xo-

xO 0.2
,h=100

h=0.0001-h=1000
-0.2

2.5-
-0.4 h=0.001
-0.6

h = 0 .1

-0.8h=0.001
h=0.1

0.5 h=0.000f - 1.2
h=1000

0.2 0.4

Figure 3.3: Normal and tangential stresses along the interface with a/b = 3.5 and

h \ = 3/z2 = h when the remote stress is Ŝ o .
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CASE 2 When 3.5<a/b<7, only the coefficients Sq(Dq), S\(D i), S2(D2) and ^3( ^ 3) are 

necessary to achieve the desired accuracy. As above, we can obtain 0>, Q 2 and y/i 

expressed in terms So(D0), S\(D\), S2(D2) and S2(D2). The corresponding interfacial stress 

distributions are presented in Figures 3.4 and 3.5.

^ n o rm a l 8 (rad)
'xO 0 2 0  4 0 6 0  8

T+-
’x0

-0.2•h=2005 l=0.0001
-0.4

-0.6
-0.8

4
,h=0 00

3
h=0.1

-1.2 
-1.4

2 h=0.00l h=0 I

-1.6 
-1.8

1

0 0.4 0.6 0.8
0(rad)

0.2

Figure 3.4: Normal and tangential stresses along the interface with a/b = 7 and

h\ = h2 = h when the remote stress is Sxq.

xQ xO 0.26 h=15
•h=200 -0.2

-0.4

-0.6
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4
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h=0.1
3

h=0.0012
h=0 1,

h=0.0001 -1.61

h=2000 0.2 0.4 0 6  0.8
0 (ra d )

h=L5

Figure 3.5: Normal and tangential stresses along the interface with a/b = 1

and h y -3 h 2 = h when the remote stress is Sx0 -
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CASE 3 When 7<a/b<\0, only the coefficients Sq(Dq), SKA), S2CA), S3(A ) and S4(A )

are necessary to achieve the desired accuracy. Again, we can obtain <fc, Qz and y/z 

expressed in terms o f So(A)), S i(A ), 6 2 (A ), S3(A ) and S4(A )- The corresponding 

interfacial stress distributions are presented in Figures 3.6 and 3.7.

9 {rad)
‘xO 0.2 0.4 0 6  0.8

■° 2t\h=0.0001
-0.4 4 V  “A  
-0.B -1 ^
-0.8- \h=0.001/

r*-
’x0-►

h=L00

*■
-1.2
-1.4
- 1.6
- 1.8

■h=0.1

lh=0.1
h=0 001

h=infimtyh=0.0001

h=1001 20.2 0 80 4

Figure 3.6: Normal and tangential stresses along the interface with a/b = 10 and

h i = hz = h when the remote stress is Sxq.
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0.2 0.4 0.6 0.8'xOh=5
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1

0 1.20.2 0.4 0.6

Figure 3.7: Normal and tangential stresses along the interface with a/b =10 and

h i = 3hz = h when the remote stress is Sxq.
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It is noted that for values a/b> 10 o f the aspect ratio, the procedure is similar although a 

much larger number o f  coefficients is required to evaluate the corresponding series to the 

desired accuracy.

From Figures 3.2 to 3.7, it is clear that the homogeneously imperfect interface 

parameter h does not significantly change the locations o f the maximum normal and 

tangential tractions along the interface although it does indeed change their magnitudes.

It should be noted here that the imperfect interface model employed in the present 

paper allows for the possibility o f a negative normal displacement jump across the 

interface. At first, this might seem to contradict the physical grounds on which the 

present problem is based (that the displacement jump cannot be negative). However, as 

explained in Hashin(1991b), since the imperfect interface model actually represents a 

compliant thin interphase layer, jumps in the normal displacement across the interface 

are defined by normal deformations of this intetphase layer which can occur in both 

outward and inward directions. This implies that this interphase layer tolerates a limited 

negative normal displacement bounded by the original thickness o f  the interphase layer. 

Consequently, a negative normal displacement jump across the interface is acceptable 

provided it is smaller than the thickness of the original interphase layer (see Hashin, 1991 

b). Our computations indicate (see Figures 3.2-3.7) that, in all cases discussed here, the 

negative normal displacement jump is indeed sufficiently small to be acceptable in this 

context.

Again, since Figures 3.2 to 3.7 show no significant difference in the results obtained 

between the cases h\=Ii2  and /z 1=3 /22, the following discussions are based solely on the 

results from the case h\—hi.
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We employ two different methods to analyze and understand the relationship 

between the imperfect interface parameter h and the failure o f  the interface. Firstly, we 

calculate the peak resultant traction (stress) along the interface (henceforth referred to as 

the peak traction).

The peak traction is found by calculating the maximum (or peak) value o f the 

resultant traction Gresuitant/Sxo along the interface for a given aspect ratio and a given value 

o f the parameter h. Here, CTreSuitant is defined by the relation

^"resultant 'y  ^"norm al ^"tangential

and 5x0 represents the remote loading (along the major axis o f the ellipse). This peak 

traction is found always to occur at the point 0 = 0 .  Figure 3.8 plots the peak traction as a 

function of the imperfect interface parameter h for different aspect ratios.

From Figure 3.8, it is clear that, for each aspect ratio (except a/b= I which is 

discussed below), the peak traction is a non-monotonic function o f the interface 

parameter h. Consequently, for each aspect ratio, there is a unique value of the interface 

parameter h which corresponds to maximum peak traction. The collection of these values 

o f h defines the parameter /z*(see Figure 3.10).
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Imperfect Interface Parameter h

Figure 3.8: Peak traction along the interface varies as a function o f the

interface parameter h = h \ = hi when the remote stress is SxQ.

In contrast to the results established for the circular inclusion where the maximum peak 

traction appears at h = (see Ru, 1998b), the results established here indicate that the 

maximum peak traction for an elliptic inclusion depends on the imperfect interface 

parameter and the aspect ratio o f the ellipse. To explain this, we note that for the present 

interphase layer model (Hashin, 1991b), in order to keep the thickness o f the adhesive 

layer between the elliptic inclusion and the matrix uniform, unlike the innermost edge, 

the outer edge o f  the interphase layer cannot be elliptical. This is perhaps why, in the case
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o f a homogeneously imperfect interface, values o f h* correspond to different values of

local maximum stress for different values of the aspect ratio a/b (for the circular inclusion 

with homogeneously imperfect interface the outer edge o f the interphase layer is 

circular). This makes the stress distributions along the interface extremely complicated in 

the case of an elliptic inclusion.

Next we consider the strain energy density criterion used by Achenbach & Zhu 

(1990). For the simple interphase model considered here, the strain energy criterion is 

particularly appropriate since it includes the effects o f both normal and shear tractions 

across the interphase. The energy per unit (length) interphase, U, is defined as:

2 _ 2  
t t   ^ n o r m a l , tangential

By introducing crnonral = c r ^ ,  / S t0 and (Tangcntial = <7tang,ntiaI / 5 t0, we obtain, in

2k l h 2

dimensionless form:

tangentialnormal (3.44)
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Figure 3.9: Peak energy per unit interphase varies as a function of the imperfect 

interface parameter h = h \ = fi2 when the remote stress is Sxo-

It is now reasonable to assume that the interface will fail when U  reaches a critical value, 

Ucr, which depends on the material properties. Figure 3.9 plots the peak (defined as in 

the case o f peak traction above) strain energy per unit interphase U  as a function of the 

imperfect interface parameter /z(=/zi=/z2). It is clear from Figure 3.9 that U is again a 

non-mo no tonic function o f  the interface parameter h. This means that we can again 

define a new parameter h* defined by values o f h which correspond to maximum values 

o f the peak strain energy per unit interphase along the inclusion-matrix interface (see 

Figure 3.11).
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We pause briefly to consider the case o f  the aspect ratio a/b= I (circular inclusion). 

For a/b— 1, from Figure 3.8, the peak traction is no longer a non-monotonic function o f 

the interface parameter h with the value o f h* occuring at h = °° (as in Ru, 1998b). From

Figure 3.9, however, U is indeed a non-monotonic function o f the interface parameter h 

with fi =0.7. In Figure 3.9, we may conclude that, since h* appears only within a range 

corresponding to minimal stiffness o f the spring layer, the energy density criterion is 

suitable for extremely soft interphase layers. According to Hashin (1991b), the imperfect 

interface condition arises from the assumption of a thin flexible coating o f  thickness 

t « b  with shear modulus JHC<< min{(iu /J-i} between the inclusion and the matrix. The 

physical meaning of the parameter h and the energy density criterion are therefore 

consistent with Hashin's definition. However, for a slightly harder interface, the peak 

traction criterion (Figure 3.8) should be used to determine failure.

It should be mentioned here that Achenbach & Zhu (1990) define the strain energy 

density by the strain energy o f the interphase layer per unit length along the interface. If 

the critical value of the strain energy density corresponding to interfacial failure is o f

interest, a physically more reasonable definition is Ucr (as defined above) divided by the 

thickness o f  the interphase layer since this more appropriately represents the strain- 

energy density o f the interphase material. In adopting this new definition, it is readily

seen that the critical value U cr should be proportional to the thickness of the interphase 

layer and that it then approaches zero as the thickness o f  the interface layer vanishes 

(which corresponds to h = since h is inversely proportional to the thickness o f the 

interphase layer).
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Since values of h* correspond to local maximum peak stresses and maximum values

of U  and are related to the mechanical properties and thickness of the adhesive layer 

between the inclusion and the matrix, the parameter h* may be used as a control 

parameter when designing composites involving elastic inclusions. For example, for the 

remote loading Sxo and aspect ratio a/b= 1 (circular inclusion), the peak traction in Figure 

3.8 corresponds to the value h* = 0 0  (perfect bonding). However, when a/b=3.5, the peak 

traction corresponds to h* =100. Since h* is rendered dimensionless by division by ////b, 

for a specific aspect ratio, we can avoid the maximum peak traction, or indeed minimize 

the maximum peak traction by adjusting mechanical properties (for example, the shear 

moduli o f the matrix), and the thickness o f the interphase layer (related to b).

The relationship between the parameter h* and the aspect ratio a/b is presented in 

Figures 3.10 and 3.11 for the two different failure criteria.
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Figure 3.10: The relationship between h* and a/b using the resultant traction criterion

when h\ = h2  = h.
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Figure 3 .11: The relationship between h* and a/b using the interfacial energy

density criterion for h\ = fi2 = h.
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3.3.2 Average Stress Inside Inclusion

It is o f interest also to investigate the effect o f  the imperfect interface parameter h on the 

average stress (defined in Eq. (2.25)) inside the elliptic inclusion under different remote 

loadings (Ru & Schiavone, 1997; Ru, 1998b). The relationship between average stress 

and the imperfect interface parameter h{=h\=hi) is given in Figures 3.12 to 3.14 for three 

different remote loadings.

6.00 i ►
xO

5.00 -

4.00 -

3.00 -

2.00

1.00  -

o.oo
* ^  >

Imperfect interface parameter h

Figure 3.12: Effect o f the imperfect interface parameter h on the average stress ( ——)
S,o

inside the inclusion for h \ = hi = h when the remote stress is Sxq.
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We note that in Figure 3.12, the average stresses ——and — induced inside the
S,o S*

( j  <J
inclusion are significantly smaller than —— ( with —^  being close to zero), the

S,o .̂rO

difference being dependent on the parameter h and the aspect ratio of the ellipse.

1.6

1.4 -

as

*  ^  ^  ^  ^

Imperfect interface parameter h

Figure 3.13: Effect of the imperfect interface parameter h on the average stress ( ——)
S..0

inside the inclusion for h \ = hz = h when the remote stress is S’yo-
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We note that in Figure 3.13, the average stresses —— and - 2 -  induced inside the

S .v O  S y O

inclusion are significantly smaller than —— (with —— being close to zero), the difference
5 , 0  5 v 0

being dependent on the parameter h and the aspect ratio o f  the ellipse.
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Figure 3.14: Effect o f the imperfect interface parameter h on the average stress ( ——)

5.nO

inside the inclusion for h\ = hi — h when the remote stress is Sxyo-

<J C7
We note that in Figure 3.14, the average stresses —— and —— induced inside the

5 . r v - 0  5 J r 0

inclusion are extremely smaller than ——
5.oo
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From Figure 3.12, it is clear that the effect of the imperfect interface parameter h on 

the average stress inside the inclusion increases with the aspect ratio o f the ellipse when 

the remote loading is Sxo (along the major axis of the ellipse). However, for the other two 

remote loadings Syo (along the minor axis o f  the ellipse) and Sxyo (pure shear), Figures 

3.13 and 3.14 indicate that the effect o f the imperfect interface parameter h on the 

average stress inside the inclusion decreases with the aspect ratio of the ellipse. In 

particular, for the remote loading Syo, the average stress inside the inclusion is hardly 

affected by aspect ratios a/b> 10. For all remote loadings, our results indicate that the 

average stresses inside the inclusion are monotonic functions of the imperfect interface 

parameter h.

The above results also indicate that the average stress alone is insufficient to describe 

the debonding and failure o f the interface. It is the local stress (maximum) that decides 

where the debonding and failure will occur. For example, from the stress distribution 

along the interface in Figure 3.2, the maximum local stresses occur at Q -  0. These 

stresses are much greater than those in the case of perfect bonding although the average 

stresses (see Figures 3.12 to 3.14) are smaller.

Again it should be noted here that the imperfect interface model employed in the 

present paper allows for the possibility of a negative normal displacement jump across 

the interface. This, however, is explained as in Section 3.3.1 o f Chapter 3(p59).
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3.3.3 Internal Stress Distribution

In this section, using complex variable techniques we obtain infinite series 

representations o f the internal stresses which, when evaluated numerically, demonstrate 

how the internal stresses vary with the aspect ratio o f the inclusion and the parameter h 

describing the imperfection in the interface. These results can be used to evaluate the 

effects of the imperfect interface and the aspect ratio of the inclusion on internal failure 

caused by void formation and plastic yielding within the inclusion.

From Figures 3.15 — 3.17, it is clear that the non-uniformity o f the stresses inside the 

inclusion is very strong and that the homogeneously imperfect interface parameter h O 00) 

significantly changes the stress distribution inside the inclusion. The local stresses reach 

peak value at 6 = 0 .  Henceforth, we denote by h* the particular value of the imperfect 

interface parameter h corresponding to maximum peak stress. For example, for a/b=3.5, 

from Figure 3.15, the maximum peak stress corresponds to the value h = h* =100.
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Figure 3.15: Non-uniformity o f internal stresses along the interface when the remote

stress is Sxo with a/b=3.5 for h\=hz=h
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Figure 3.16: Non-uniformity o f internal stresses along the interface when the remote

stress is Sxq with a/b-1 for h\=h-}=h

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•xO
h=5 h=5

h=100h=100
h=100000 0.08

0 0 6 - h=0.1
0 0 4

h=0.000l0.02
h=0 0001

0.2 0.4 0.6 0.80.6 0.8 1 
h=infinity 6{rad)

h=100000
-0.02

h=0.0001
-0.04

h=100-0.06
’xO

-0.08

ii=0. l
-0.1

-0 . 12 -

-0.14- h=5

'S'xO

Figure 3.17: Non-uniformity o f  internal stresses along the interface when the remote

stress is *Sxo with a/b= 10 for h\=h2=h
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3.3.4 Mean Stresses and Von Mises Stresses

It is well known that the mean stress attains its maximum value on the boundary o f the 

domain (Wheeler, 1996). However, there is no similar conclusion for von Mises stress 

(Wheeler, 1996). Despite this, the present calculation for the elliptic inclusion shows that 

the maximum value of the von Mises stress does indeed occur at the boundary. Figure 

3.18 plots the stress distribution along the x  and y  axes for an elliptic inclusion with 

aspect ratio a/b=3.5 when the remote stress is 5xo- It is indicated that the maximum 

stresses in the case of crxx occur along the interface.
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yyb
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Figure 3.18: The stress distribution along the x  and y  axes for remote stress SKo with

a/b=3.5

Again, since there is no significant difference in the results obtained between the cases hi 

= hj ~ h and h\ = 3/zo = h, the following discussions are based solely on the results from 

the case h\ = hi — h.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We once again employ two different criteria to analyze and understand the 

relationship between the imperfect interface parameter h and the failure o f  the interface.

Firstly, we calculate the mean stress along the interface. We use the following 

definition o f mean stress:

&  mean =  x x  + (3.45)

Figures 3.19, 3.20 and 3.21 plot the stress distributions for the mean stress for different 

values o f  a/b.

m e a n

h=100 
h=1000 

h=l 00000
h=inhruty

h.=0.0001

0.6 0.8 1 
9  (rad")

Figure 3.19: Non-uniformity o f  mean stress along the interface when the remote stress is

Sxo with a/b=3.5 for h\=hz=h
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Figure 3.20: Non-uniformity o f mean stress along the interface when the remote stress is

Sxo with a/b—1 for h\=h-r=h
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Figure 3.21: Non-uniformity o f mean stress along the interface when the remote stress is

S xo with a/b= 10 for h \= h -r= h
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From Figures 3.19, 3.20 and 3.21, it is clear that the mean stress inside the inclusion is 

non-uniform for different values o f  the imperfect interface parameter h The local

mean stresses again reach peak values at 6= 0. The specific values o f h* (corresponding 

to maximum peak stress) are the same as those obtained in Figures 3.15, 3.16 and 3.17 in

crn. crn,
which we note that the values o f —— and —— are much smaller than the corresponding

S xo Sx0

<7
values —— when the remote stress is Sxo- Consequently, the mean stresses are mainly 

‘S'.rO

determined by <J”
s x0

Next, we calculate the von Mises equivalent stress. The von Mises equivalent stress 

is defined as (see Dowling, Norman E., 1993 ):

^ V o n  _M ises ■■ J ~ [k «  - <ryy f  + {cr„. -<r=T +(<r=- Y ]+ <*% + (3-46)

For plane strain,

^((y.XT+ etv'l ), &XZ 0
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Figure 3.22: Non-uniformity o f  the von Mises stress along the interface when the remote

stress is Sxo with a/b=3.5 for h\=h^=h
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Figure 3.23: Non-uniformity o f the von Mises stress along the interface when the remote

stress is Sxo with a/b=l for h\=hr=h
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Figure 3.24: Non-uniformity o f the von Mises stress along the interface when the remote

stress is S xq with <2/6=10 for h \= h -r= h

Figures 3.22, 3.23 and 3.24 plot the von Mises equivalent stress distributions along the 

interface for different values o f the aspect ratio a/b. From Figures 3.22, 3.23 and 3.24, it 

is clear that the von Mises equivalent stresses inside the inclusion are non-uniform for 

different values of the imperfect interface parameter h C*00). The local von Mises 

equivalent stresses again attain peak values at at Q -  0. The specific values of h* 

(corresponding to the maximum peak von Mises stress) are again the same as those in

<7n. <JXV
Figures 3.15, 3.16 and 3.17 in which we note that the values o f —— and —— are much

? S'
° . t 0  x O
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smaller than the corresponding values —— when the remote stress is Sxo- Consequently,
■S,o

the von Mises stresses are mainly determined by — .
S.xO

All of the above results are based on the remote loading Sxo. We note that similar 

conclusions may be obtained for the remote loading S'yo- However, the case of the remote 

loading Sxyo, which characterizes pure shearing, merits individual attention. The 

corresponding results are presented in Figures 3.25 — 3.27.
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Figure 3.25: Non-uniformity o f internal stresses along the interface when the remote

stress is 5'xyo with a/b=3.5 for h\=h-^h
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Figure 3.27: Non-uniformity o f the von Mises stress along the interface when the remote

stress is Sxyo with a/b=3.5 for h\-hi=h
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In Figure 3.25, the internal stress distribution at the interface is plotted for the value 

a/b=3.5 and different values o f the parameter h i = hi = h when the remote loading is Ŝ yo- 

Figures 3.26 and 3.27 plot the corresponding mean stress and von Mises equivalent stress

<7o.
distributions. It is clear that all stresses are largely controlled by ——. When h=70, the

S.tvO

local stress, mean stress and von Mises equivalent stress reach maximum peak values.

Since we obtain practically the same values o f h* for each o f the different stress 

criteria (local stress, mean stress and von Mises equivalent stress), we need select only 

one of these to get the critical value h* of the interface parameter. For example, Figure 

3.28 plots the peak mean stress as a function of the imperfect interface parameter h. This 

peak mean stress is calculated at the value 0= 0.

<jvv
In Figures 3.15, 3.16 and 3.17, we note that the values o f —— are much smaller than

S,o

<7
the corresponding values o f —— when the remote stress is Sxo- Thus, the mean is mainly

S . tO

determined by .
,r0
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Figure 3.28: The peak mean stress along the interface varies as a function o f the 

imperfect interface parameter h when the remote stress is S'xo for h\—h-f=h

The maximum peak mean stress in Figure 3.28 corresponds to values of the parameter h*. 

For the circular inclusion, we know that the maximum peak mean stress is realized at 

h=oo (see Ru, 1998b). However, for the elliptic inclusion, the maximum peak mean stress 

is related to the imperfect interface parameter and the aspect ratio o f the inclusion. Again, 

since values of h* correspond to local maximum peak stress and are related to the 

mechanical properties and thickness of the adhesive layer between the inclusion and the 

matrix, the parameter h* may be used as a control parameter when designing composites 

involving elastic inclusions. For example, for the remote loading and aspect ratio 

a/b= 1 (circular inclusion), the maximum peak stress in Figure 3.28 corresponds to the
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value h = 0 0  (perfect bonding). However, when a/b=3.5, the maximum peak stress 

corresponds to /r*=!00. Since h* is rendered dimensionless by division by fiiPo, for a 

specific aspect ratio, we can avoid the maximum peak traction, or indeed minimize the 

maximum peak traction by adjusting mechanical properties and the thickness o f the 

interphase layer. The relationship between the parameter h* and the aspect ratio a/b is 

given in Figure 3.29.
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Figure 3.29: The relationship between h* and a/b for h\—hr=h
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3.4 SUMMARY OF RESULTS OBTAINED

This chapter presents a semi-analytic solution o f the problem o f an elliptic inclusion with 

homogeneously imperfect interface in plane elastostatics. Numerical computations and 

analysis o f the subsequent results have led to the following conclusions:

1. The interface imperfection has a significant effect on stress fields inside the inclusion 

and near/along the interface. In addition, the corresponding stress distributions are 

closely related to the interface parameter describing the imperfection and the aspect 

ratio o f the ellipse. It has also been indicated that the definition o f the imperfect 

interface and the physical explanation of the interface parameters used in Hashin 

(1991b) are indeed suitable for describing the nature o f the interface. Consequently, 

using only average stress is insufficient to describe the debonding and failure of the 

material interface since both are controlled by interfacial stresses which are 

themselves closely related to the imperfect interface parameter and the aspect ratio of 

the ellipse.

2. The effect o f the imperfect interface parameter on the average stress inside the 

inclusion increases with the aspect ratio o f the ellipse when the remote loading is 

along the major axis o f  the ellipse but decreases with the aspect ratio of the ellipse 

when the remote loading is either pure shear or along the minor axis of the ellipse. 

For all remote loadings, our numerical calculations indicate the average stresses 

inside the inclusion are monotonic functions of the imperfect interface parameter.

3. Our numerical results show that the peak interfacial traction and peak strain energy 

density are non-mono tonic functions of the imperfect interface parameter h.
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Consequently, for different aspect ratios, we have found a unique finite value h* o f  the 

parameter which corresponds to maximum peak traction or maximum peak

strain energy density along the interface. Hence, since the parameter h characterizes 

the properties and thickness o f the adhesive layer between the elliptic inclusion and 

the matrix, it is possible to predict and control the debonding and failure o f  the 

interface by identifying the value h* for a given aspect ratio. In addition, this means 

that, for a specific aspect ratio, it is possible to minimize peak interfacial stress by 

adjusting the mechanical properties and thickness of the adhesive layer.

4. The strain energy density criterion used in this paper is suitable for very soft 

interphase layers. For slightly harder layers, we may use the relationship between 

peak interfacial traction and h* to predict the failure o f the interface.

5. The interface imperfection has a significant effect on the internal stresses. The 

internal stress distribution is closely related to the interface parameter h describing the 

imperfection and the aspect ratio of the ellipse.

6. Our numerical results show the peak mean stress and peak von Mises equivalent 

stress are both non-monotonic functions o f the imperfect interface parameter. This 

allows us to find a finite value h* of the parameter hQ£0,°°) which corresponds to the 

maximum peak mean stress or the maximum peak von Mises equivalent stress. 

Consequently, it is possible to predict and control the debonding and failure o f the 

interface by identifying the h* which depends on the aspect ratio o f the ellipse and the 

properties and thickness o f the adhesive layer between the inclusion and the matrix. 

This is a direct consequence o f the fact that values of h* correspond to maximum peak 

stress along the interface. Furthermore, we have shown that, for a specific aspect
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ratio, it is possible to minimize peak stress by adjusting the mechanical properties and 

thickness o f the adhesive layer.

7. For the cases discussed in this chapter, the mean stress and von Mises equivalent 

stress give practically the same value o f h*.
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C H A PT E R  4

THERMAL STRESS ANALYSIS OF AN ELLIPTIC 

INCLUSION WITH A COMPLIANT INTERPHASE 

LAYER IN PLANE ELASTICITY

4,1 INTRODUCTION

Mechanical failure resulting from residual stresses induced by thermal mismatch in 

composite materials and electromechanical devices has received considerable attention 

recently (see, for example, Wikstrom et al, 1999; Gouldstone et al, 1998; Ru, 1998a; 

Shen, 1998; Dao et al, 1997; Gleixner et al, 1997; Wu et al, 1996; Lee and Erdogan, 

1995; Yeo et al, 1995; Williamson et al, 1993). Most o f the existing studies have focused 

on multilayered material systems. However, many practical problems require a 

systematic study o f the effects of interphase layers on thermal mismatch induced stresses 

in inclusion/matrix systems. For example, the failure o f interconnect lines due to thermal 

stress-induced voiding has become a major issue in the design o f reliable integrated 

circuits. In this case, the line is subjected to large tensile stresses upon cooling from high 

passivation deposition temperatures. For example, Niwa et al (1990) and Korhonen et al 

(1991) have modeled the passivated line as an elongated ellipsoid surrounded by an
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infinite homogeneous matrix. One of the most effective procedures for the reduction o f  

thermal stresses concerns the addition o f  an intermediate layer, with appropriate 

geometry and theromechanical properties, between different material components where 

elevated thermal stresses occur. This procedure has been widely used in many practical 

problems where the thermal mismatch-induced stresses are o f  vital importance to 

mechanical integrity, such as thermal barrier coatings (see, for example, Lee and 

Erdogan, 1995), electromechanical devices (see, for example, Wu et al, 1996), and metal- 

ceramic composites (see, for example, Williamson et al, 1993). In doing so, the problem 

is reduced to one o f  the analysis of thermal stresses within an elliptic inclusion 

surrounded by an interphase layer. Unfortunately, in contrast to the well-known uniform 

stress state within a single elliptic inclusion perfectly bonded to the surrounding (infinite) 

matrix, as illustrated in th is thesis, the stress field within an elliptic inclusion surrounded 

by an interphase layer is  extremely complicated and intrinsically nonuniform (see also, 

for example, Shen et al, 1999a,b). Recently, for anti-plane shear deformations, Ru et al 

(1999) proved that the residual/thermal stress can be reduced to a fraction of its original 

value when a compliant interphase layer is inserted between the elliptic inclusion and its 

surrounding matrix. O f- greater theoretical and practical interest, however, is the 

corresponding plane problem. Namely, the effect o f a compliant interphase layer on the 

thermal stresses induced "by the plane-strain deformations o f  an elliptic inclusion.

In many cases, the compliant layer between the inclusion and the surrounding 

material (matrix) may be- considered to be a very thin interphase layer, or, in the context 

of this thesis, as an imperfect interface. To the author's knowledge, the solution of the 

problem associated w ith  plane deformations o f an elliptic inclusion with a
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homogeneously imperfect interface (or compliant interphase layer) subjected to a uniform 

change in temperature has not been recorded in the literature.

In this chapter, we use the homogeneously imperfect interface model mentioned in 

Chapter 3 to study the effect o f a compliant interphase layer on thermal stresses in an 

elliptic elastic inclusion embedded within an infinite matrix under a uniform change in 

temperature. Both elastic mismatch and thermal mismatch will be considered. Using 

complex variable techniques we obtain infinite series representations o f the 

corresponding stresses which, when evaluated numerically, demonstrate how the peak 

thermal stress varies with the parameter h describing the imperfect interface (the 

interphase layer) (Shen et al, 1999c,e).

4.2 PROBLEM FORMULATION

As in Chapter 3, for plane deformations, the displacement components (ux,uv), stress (or 

traction) components ( 0 ^, crv>., crx>)  and the components o f the resultant force (FrrFv.) in 9? 

referred to a Cartesian coordinate system are given in terms o f two analytic functions <f(z) 

and y^z) by (Muskhelishvili, 1963):

(4.1)

(4.2)

(4.3)
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Fx +iFy =-i[_<i>{z) + z<P'{z) + ¥ (z)yp (4.4)

Here, z —x+iy is the complex coordinate, v  is Poisson's ratio, k=3-4v for plane strain and,

k=(3-v)/(I+ v) for plane stress and [ ]qp represents the change in the corresponding

function in moving from point p  to point q along any arc pq.

Across the interface F, the boundary displacements and tractions are written in 

normal-tangential (( n,t) -) coordinates as:

2(i{un + iut) = [rc<p(z) -  z<f>' (z) -  , (4.5)

=<t>\z) + < p 'iz ) -W '(z )  + \i/'{z)]elip{z) , (4.6)

where n is the outward unit normal at z g T  also represented, in complex form, by e,p<:> 

(where p  defines the angle between the normal direction n and the positive x-axis). 

Assume that the elliptic inclusion is bonded to the matrix by a homogeneously imperfect 

interface. The interface conditions are then given by

fcnn-i& n ,]] = 0, <J„„ = K (z)[j>„]]■-/z,(z)u°n, Gm = /z,(z)§u , ]]■-h2(z)u° on r  (4.7)

Again, as in Chapter 3, here hi and hi are two non-negative interface parameters and 

[[*]] = (*)i — (*)2 denotes the jump across F  u° are the displacements induced by

the uniform (stress-free)eigenstrains {f °x, e °n., e °xv}.
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If we consider only residual stresses resulting from eigen-strains, the stresses at 

infinity must be zero. Thus, the asymptotic conditions at infinity are given by

0 ,(z )= o (l), ^ ( z )  =  o(l), [z| —» oo

From the second and third expressions in equation (4.7) we can now write

h, — h-, r . -I h. + h
+ “ 'J J + - Ly "[[“ „ + ^ j ] + -  ~ih2u°] , (4.8)

where, from Equation (4.5), we have

2 ftu ,, +  iu , ] ]  =   ----------[ / r ,0 , ( z ) - 2 0 , ' ( z )  - y /{( z ) ] - - ---------- [ x 20 2 ( z ) - z 0 2 ’ ( z ) - yr2 ( z ) ] ,  o n  T
/A

(4.9)

20>„ -  «/, ]] =  ----- [r, (r) -  M  ’(z) -  (z)]——----- [*r2 0, (z) -  z<p2' (z) -  ^ 2 (z)], on r.
Mi Mi

(4.10)

If the uniform eigen-strain in the inclusion is {<£°r , ., £°.}, and we fix the corresponding 

displacement as follows

«o = , v0 = y e 0 + x£°xv,

9 4
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we may obtain

k ,  +  \ = e  ip(=)\e lz  +  e 2 z  + i£3z j ,

k ,  “  iut Jo = e'P(:) \eiz + e2z -  i£3z \ .

Here

£° +£°
£, =

£° - £ °  X X  VT £-, =£° w  s w  rv (4.11)

Therefore we have

[hxu°„ ~ ifh lll ] = ~ h' t ,  ~ + (£2 + i£i ^  k  z + (e2 -  i£3 Jzje'*-'’, z e  T.

(4.12)

The geometry of the problem is simplified by mapping the ellipse into the unit circle 

using the same procedure as in Chapter 3. This time, however, the complex potentials 

0o(£) and QoLE) are now expanded into their respective Laurent series in the matrix and 

in the inclusion as follows:

(4.13)
H=0 «=0
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& (£) = S (S „ £ " +I + ^ (̂ - ("+,,) , a 2(^) = X ( A ^ " +, + ^ , r <"+,))- (4-14)
//=0 //=0

Note that the constant terms have been omitted since they have no effect on the stress 

distribution. Furthermore, (3.17) combined with (4.13 ) and (4.14 ) yields the following 

relation (see Gong & Meguid, 1993):

(« = o,i,2,3......) (4.15)

Consequently, (4.15) allows us to express the coefficients Tn, En in terms of the 

coefficients Dn, Sn. The traction continuity condition (see Eq. (3.20)) now becomes:

Z a ? -1**1’ + S ( c . + r . r ’*")
« = 0  n - 0 n - 0  //=0

Noting that % — e on the interface, comparing coefficients, we obtain

C„ = £ „  + S a,Ca =E„ +S„ , («=0,1,2,3........), (4.16)

Aa =Tn + D n ,A „ = T tt+ D n , (n=0,1,2,3....... ) ,  (4.17)

9 6
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Thus the coefficients An, Cn can be expressed in terms of the coefficients Dn, Sn. The only 

unknown coefficients are therefore Dn, Sn. These can be obtained from the interface 

condition (4.8) as follows.

By the same procedure of Eqs. (3.27)-(3.30) in Chapter 3, the interface condition 

(4.8) becomes

Q '© ]  =

( —  [k ^  ©  -  Q , © ] -  —  [kJ ,  ©  -  £2 ,© ]1 +
4 I//, f t  I

e‘e {—  [r, ^ © - Q ,  © ] -  —  [«-, ̂ ©  -  Q , © ]

> ' ( ^ ' ( ^  2 ^2 m\Z)e~‘e \sxm + {e2 + i£i )m]+- ~ 2 m \c ,)e e \ex m + (£2 - i £ 2 )m]|.

(4.18)

For thermal stresses resulting from a uniform change in temperature,

£° = £° , £° = 0 => £. = £° =£° ,£-,=£-, =0 x x  . i t ’ .rv I x x  .vy’ 2 3

Using (3.11), we can eliminate 2, from the right-hand side of this expression and obtain: 

[m\Z)]2m £ ) - e 2idQ'(Z)] =
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m Vl + b‘ sin2 0 —\ (/*, —h^)m'e 10 K,0 , - £ 2 , fC2<p2 -Q .2
Mi

+ (/z, + h2)m'e‘e ------------------ =—=------— — 2s, m
Mi Mi

2s xm

z e  r,

where b ={a2-b2)/b2. From (4.13)-(4.17), noting that £ = e'° on the interface, we obtain 

the final form o f the interface condition (4.8):

m'Vl + 6*sin 2e ^ L { { h x — h2 )On +(/z, +h2)Qn}
o

z e f \ (4.19)

where

j n 8Q . = 8 ,-S ,er“ - g se-'-K + -£ iV „ e
« = 0  tt—Q

-  M nR -2e-"e + ]T N„R-2eH"+2)0
n = 0 «= 0

= - £i « + z t . 8 2 = ~ . 8 , = M -  +AJr„)

= (a 4£ „ + A 55„1a i = —  (l + /r,),A, = fC, 1
Ml Ml

K . K , 1 IA 3 ---------------A4 —------------,A 5 —----- 1— —.
Mi Mi Mi Mi Mi Mi

(4.20)
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Furthermore, in this case, we have

=
(or, - a , ) A T  AaAT

(4.21)

where AT  is the uniform change (cooling) in temperature, and a  denotes the coefficient o f 

thermal expansion.

From (3.11) and (4.13)-(4.17), the interface condition (4.19) becomes

k  + d[e~'e + d 2e ,e + d ie~2ie + d 4e2'9 + d5e~2W + d be~i,e + ̂ U lle i(,,+2)6 + ^ V ne~i
L /;= 0  n =0

(n + 4 )9

= aV  1 + b‘ sin2 6  x

+ X ^ ' ('*2,'+ Z O .e
(n+2)&  , X ' 1 /->  —■/"(//-r4)6?

/i=0 h=0
+ c0 + c,e"* + c2e i0 + f 2ei2e + c3e~'2e +c4e~iW + f 4e~iA0

(4.22)

where

Un =212 [- R \T „ +  Dn)(« +1) + 2RZ(Tn+i + Dn+, )(« + 3) -  (7V4 + D„+4 ){n + 5)J

K =211
-  2Rz{Tn̂ x + Dn+i )(n + 2) + 2(Tn.^ + D„+3)(« + 4) +
/?4(£n+4 +5„+4)(« + 5 )-2 /? 2(£n+, + ^ 2 ) («  + 3) +
(E„+Sn)(« + 1) + 2 Rz(Tn +D„ )(n + 1) + (F„+, + D„+2)(« + 3)

(4.23)
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At ~  4 i+4 + Gn+2 + J n , On — / r„+2 77;(+4 ,
Fn = 2(h{ + /z2 )/T 2 M, + (/z, +

G„ = 2(/z, 4- h2 )R-2M n + (/z, -  h2 )(l + " 4 )w,,,

H„ = fa  + h2 )~N „ +{hl — h2 )R~2M  n, J n = (/z, + h2)~M ,< + (/z ,- h 2)R-2N n, 

= [(*. + h2 )r -2 N„ + (/z, -  /z2 )M„ ]/T2,

4 , = [(4 + h2)R~2Mn + (/z, - /z 2 )A „]/r2,

/ i  = ( 4  + 4 )5 - ,  - g 3/T 2 )+(/z, - h 2)(gl + g 2R -2\  

f 2 =  {hx + h2 )g i -  (/z, -  h2 )gz ,

A  = ( 4  + 4 ) ( - g - 2 - g lR~2)+{hl - h 2)(g3 - g lR~2\

A  = [ ( 4  + h2)g l - (/z, - h2)g3]/?“2,
Cq f x + L2 + Gg + H0 ,cx = Lx + H  [, c2 = L2 -+- Gx, 
c3 Z,g -+- F0 + H  2 + / 3 ,c 4 = F t + / / 3,

b{a+bf 
2(a -b )  ’

d0 = 4 l 2R2( f o + D 0) - 6 l 2( f 2 + D2) + 2l2RA(E0+So)
d{ = -4 /2(f, + £>,) + 4/2(ro+Z>o) + 4/2/?4(£,+Si)
d 2 = 8 l 2R2(Ti + Dl) - 8 l 1(Ti +D,)

r/ 3 = -2 / 2(Fo+D0) + 4/2(ro+D0) + 8 / 2 (7;+ £>■) + ►
6l2R \ E 2 + S 2) - 4 l 2R2(E0 + S o)
dA = 0

r/5 = - 4 l 2R2{T0 +Do) + 8l2(Tt +Di)  + 8l2R \ E 2 + S2)
- 8 / 2̂ 2(£, +5,) + l2 /2(r2 + Z>2)
d6 = 0

In the above expressions, the coefficients 7) and can be written in terms of 5, and Dt by 

using (4.15). Hence, the only remaining unknown coefficients are again S-, and D,.

Next, we employ a method similar to that used in Chapter 2 by substituting the 

following expression (see Appendix) into (4.22):
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Vl + 6 *sin2 0  = £  I 2ke‘2ke = £  / 2, (e'2** + e"'2" ) + / ,
W-l + e - i S M »  + e <

•« J—i ' ■ 1M . ,2a , -,20a-=-~ *=o I e + e
1 + -

i^ 1 . . . .  . . .  a ‘ 2 M e  + e ~ ' 2 m

S  '  1 + /7 -*7(e + e - '2e)
e,2«0  + e -,2A/0 _ 77(e,2c,v/ - 1)0 + c .A/-I

= Z / 2*(e,"W + e",'2“ ) + / 2At.o 2"  x~ n{e i2e + e~i20)

We obtain

«=0
x2e-ffl + x 4< r2‘* + x 6<r 3'* +xse~lia - x l0e~SiS - x ^ 0 + x ^ V ^ 1̂ 0 -  r ^ V ne ' ^ 2''0 -r}% V ne

n=0 n=Q

- r f£ ,U ne1̂ 0 - n ^ U ne'n'+ x, + x 3e‘e + x5e2'0 - x 1e1'0 - x 9e*‘0 + x^U „ t
n=0

,/(/i+2)0

n=0 tf=0

A
A/—I
£  / M (e'2** + e - 2̂  )(x -  rj(ei20 + e - 20)) + l 2M (e‘2M0 + e~i2Me -  n(ei2lM~"e + ei2"-M)*))

. k-Q

+ £ 0 „<
,/T=0 /t=0

-U n+ 4)0 + c0 + Cle - 0 +c2e ,e + f 2e‘20 + c3e~‘20 + c4e~i30 + f 4e-t46

(4.26)

where

rj =  1 / R 2 , x  =  l +  r j2 , x t = x d 0 - T j d 2 - r j d 4 , x 2 = x d [ - r j d 5 - r j d2, 
x3 = xrf, - r j d l , x A = x d 2 - i ) d 0 , x 5 = —T]d0,x6 =xors 
x7 = r jd 2 , x8 = - r j d i , x 9 = J ] d 4 = 0 ,x i0 = r jds , x n = 0

(4.27)

Furthermore, by equating coefficients of e '^ in  ( 4.26), we finally obtain
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~ Z K ,lu = Q .
k=o

(4.28)

Hence Wn/c and Qn are finally related to coefficients 5,- and A- For example, for M= 5 and
• j p

e , we obtain

W3o = xPx - 2tjP3 - c-jj, W3l = xP3 - 2r]Px - tjP5 + c2x - c {rj 

w n  = xps ~ # 3  ~ np7 ~c*n  + -  c2rj
w33 = xPi - nps - np 9 + c+ x -c xr j - n o { 
fV34 =  xPq -JjPj -TjPu ~ c4r] + xOx - tj0 3

fr»  = p „ - n P , - n o ,  + o 3, q , =  - ^ + x U < - n u ,

(4.29)

Depending on the level o f accuracy required, we may select different values of M  

corresponding to a set o f M  linear equations and finally obtain the coefficients S', and A .

4.3 NUMERICAL EXAMPLES AND DISCUSSION 

4.3.1 Interfacial Stress

It is well known that the interphase layer is often the site o f  nucleation o f damage and 

voids or cracks. In some instances, interfacial separation leads directly to catastrophic 

failure, while in other circumstances failure results from void nucleation as a result o f a
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sequence o f inclusion decohesion events. Consequently, it is of practical interest to 

examine the interfacial stresses in the presence o f a compliant interphase layer.

Let b = 1 and consider the case o f a silicon matrix surrounding an aluminum 

inclusion. The material properties are described by (see Pottinger et al, 1994; Evans et al, 

1991):

ct| =2.5x10'6/°C; E  \ = 190Gpa; v,= 0.28, //, =74.22 Gpa, 

a 2=25xl0'6/°C ;£2 = 62Gpa; v2= 0.33, fi2= 23.31 Gpa

where, E  is Young’s modulus and v is Poisson’s ratio.

By the same procedure in Chapter 3, we obtain the corresponding stress field.

CASE 1 When I < a/b < 3.5, only the coefficients Sq(D o), S \ (D \ )  and S2( D 2) are 

necessary to achieve the desired accuracy. From (4.14) and (4.15), considering (3.11), it 

is easy to find tfh and Q 2 expressed in terms o f So(Do), S { (D \ )  and S2( D 2). Furthermore, y/i 

can be obtained from (3.19). For example, in the present case

v 1 j

( 2 z Y  , S 2 

R J
(4.30)

Once (fh and \jh are obtained, we can calculate the stress distribution inside the inclusion . 

In Figures 4.1 and 4.2, the stress distribution along the interface (normal and tangential 

directions) in the two cases h\=h2 and h\=3h2 is plotted for the value a/b=3.5 and
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different values o f the parameter h. When h=50, the local stresses reach maximum values 

for both cases. The present computations also indicate that there is no significant 

difference between the cases h\=h.2  and h\=3h.2. Hence, for practical inclusion (structural) 

design, to satisfy the basic requirements we need only consider the case h\=h.2 .

dirad)A aE.A T

h=5000

fi=10

0 2  0.4 0.6 0 8  1
9{rad)

12  1.4

0,80.4

h= l
-0.01-

-0.02 h=5

-0.03

h=10
-0.04

-0.05
h=5000

Figure 4 .1 : Normal and tangential stresses along the interface for a/b—3.5 in plane strain 

under a uniform change in temperature for h\=fi2=h

B{rad)AaE,AT

h=5000

h=mfimty

0.2

h=t
-0.01

-0 02 h=5

-0.03

h=10-0.04

-0.05

h=5000
h=500.2 0.4 0.6 0.8 1

Birad)

Figure 4.2: Normal and tangential stresses along the interface for a/b—3.5 in plane strain 

under a uniform change in temperature for h\=3h2=h
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CASE 2 When 3.5<a/b<l, only the coefficients So(Dq), S\(D[), SziDz) and S^D i)  are 

necessary to achieve the desired accuracy. As above, we can obtain <fh, Z2? and y/z 

expressed in terms Sq(D0), Si(Z)i), SziDz) and S^Z^). The corresponding interfacial stress 

distributions are presented in Figures 4.3 and 4.4.

A o E ,A T
h=600 

6̂000 
h=in£nity

h=10

0 (ra d )

06 0.8 1 
9(rad)

0.2 0.4 0.6

h=10-0.01

-0.02

h=20-0.03

-0.04

-0.05-
h=60

-0.06-

h=6000
h=600

Figure 4.3: Normal and tangential stresses along the interface for a/b=l in plane strain 

under a uniform change in temperature for h\=hz=h
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^ n o rm a l

A aE 1A T
h=600 

f=«000

h=20

0.6 0 8  1 
9(rad)

1 2  14

6(rad)
0 2  0.4 0 6  0 8

h=10-0.01

-0 02

-0.03 h=20

-0.04

-0 05
h=60

-0 06

Figure 4.4: Normal and tangential stresses along the interface for a/b-1  in plane strain 

under a uniform change in temperature for h\=3h2=h

CASE 3 When 7<a/b<\0, only the coefficients Sq(Dq), S\(D i), SziDj), S3(£>3) and S4(Z)4) 

are necessary to achieve the desired accuracy. Again, we can obtain (fh, Q i and y/z 

expressed in terms o f  So(A)h Si(£>0, SiiDj), £3(^)3) and S4(Z)4). The corresponding 

interfacial stress distributions are presented in Figures 4.5 and 4.6.
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Figure 4.5: Normal and tangential stresses along the interface for a/b= 10 in plane strain 

under a uniform change in temperature for h\=h2=h
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Figure 4.6: Normal and tangential stresses along the interface for a/b—10 in plane strain 

under a uniform change in temperature for h\=2>li2=h

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is noted that for values a/b> 10 o f the aspect ratio, the procedure is similar although a 

much larger number o f coefficients is required to evaluate the corresponding series to the 

desired accuracy.

From Figures 4.1 to 4.6, it is clear that the homogeneously imperfect interface 

parameter h significantly influences the stress distribution although the aspect ratio o f the 

elliptic inclusion does not significantly change the locations o f the maximum normal and 

tangential tractions along the interface and their magnitudes. It is found that the normal 

stresses are always positive along the entire interface. Consequently, any possible 

overlapping associated with the imperfect interface model used in this chapter (see, 

Achenbach & Zhu 1990 and Hashin 1991b) cannot occur in the present thermal stress 

problem.

Again, since Figures 4.1 to 4.6 show no significant difference in the results obtained 

between the cases h\=hj and /zi=3 /z2, the following discussions are based on the results 

from the case h\=h2  or /zi=3 /z2-

By using the same procedure in Chapter 3, we first calculate the peak resultant 

traction (stress) along the interface (henceforth referred to as the peak traction).

The peak traction is found by calculating the maximum value of the resultant traction 

r̂esultant/AcxE\AT (see, Hu 1991) along the interface for a given aspect ratio and a given 

value o f the parameter h. Here, t7reSuitant is defined by the relation

^"resultant y  ^"normal ^"tangential
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and AaE\AT  represents the stress induced by the uniform change (cooling) in the matrix 

temperature. This peak traction is found always to occur at the point 0 - 0 .  Figure 4.7 

plots the peak traction as a function o f  the imperfect interface parameter h for different 

aspect ratios.

Figure 4.7: The peak resultant traction along the interface varies as a function o f the 

imperfect interface parameter h in plane strain under a uniform change in temperature for

h  i =3 h 2=h

From Figure 4.7, we may obtain the sam e conclusions as in Chapter 3: for each aspect 

ratio (except a/b= 1), the peak traction is a non-monotonic function o f the interface 

parameter h. Consequently, for each aspect ratio, there is a unique value o f the interface

r e s u l t a n t

* = i
— *

Imperfect interface parameter h
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parameter h which corresponds to maximum peak traction. The collection o f these values 

o f h define the parameter h*(see Figure 4.12).

Next we consider the strain energy density criterion used by Achenbach & Zhu 

(1990). As mentioned before, for the simple interphase model considered here, the strain 

energy criterion is particularly appropriate since it includes the effects o f both normal and 

shear tractions across the interphase. The energy per unit interphase, U, is defined as:

2 2 
£ y    ^"norm al , tangential

2 /z, 2  h2

By introducing = <rnormal / A aE {A T  and crtangentiaI = crlangential / AaE, A T , we obtain, in

dimensionless form:

— 2 |= 2
  ^"normal | tangential .  .  3 * 7 ^

2/7, 2 ^
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Figure 4.8: The interfacial strain energy (U  ) along the interface for a/b=3.5 in plane 

strain under a uniform change in temperature for h\=ih-y=h
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Figure 4.9: The interfacial strain energy (C/ ) along the interface for a/b=l in plane strain 

under a uniform change in temperature for h i =Zhr=h
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Figure 4.10: The interfacial strain energy (U  ) along the interface for a/b= 10 in plane 

strain under a uniform change in temperature for h i= 3 h r = h

It is now reasonable to assume that the interface will fail when U reaches a critical value,

U Cr ,  which depends on the material properties. Figures 4.8, 4.9, 4.10 plot the interfacial 

strain energy distribution along the interface for different aspect ratios of the ellipse in the 

case h—h\—3hi. It is shown that the compliant layer (described by the homogeneously 

imperfect interface parameter h) does significantly influence the interfacial strain energy 

distribution. In particular, when h reaches a specific value, the peak interfacial strain 

energy reaches its maximum value.
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Figure 4 .11 : The interfacial strain energy density varies as a function of the imperfect 

interface parameter h in plane strain under a uniform change in temperature for h\—1h^=h

Figure 4.11 plots the peak (defined as in the case o f peak traction above) strain energy

per unit interphase U  as a function o f the imperfect interface parameter /z(=/zi=3/zi)- It is

clear from Figure 4 .1 1  that U  is again a non-monotonic function of the interface 

parameter h. This means that we can again define a new parameter h* defined by values 

o f h which correspond to maximum values o f the peak strain energy per unit interphase 

along the inclusion-matrix interface (see Figure 4.13).

Since values o f h* correspond to local maximum peak stresses and maximum peak

values of U and are related to the mechanical properties and thickness of the adhesive 

layer between the inclusion and the matrix, the parameter h* may be used as a control 

parameter when designing "thermal inclusions"(see Hu 1991). For example, in the case of
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a uniform change (cooling) in temperature and the aspect ratio a/b=l (circular inclusion), 

the peak traction in Figure 4.7 corresponds to the value h*=oo (perfect bonding). 

However, when a/b=3.5, the peak traction corresponds to h*=50. Since h* is rendered 

dimensionless by division by fi/fb, for a specific aspect ratio, we can avoid the maximum 

peak traction, or indeed minimize the maximum peak traction by adjusting mechanical 

properties and the thickness o f the interphase layer (related to b ).

In addition, from Figures 4.7 and 4.11, we note that the effect o f the interphase layer 

(the interface parameter h) on the peak traction and peak strain energy density is sensitive 

to small aspect ratios (<5) o f the elliptic inclusion , but not to larger values o f  a/b. It 

should be emphased that in the present case, the normal stresses are always dominant 

compared to the shear stresses(see Figures 4.1 -4.7). This explains why other parameters 

such as the interfacial strain energy are not significantly affected when we use different 

values of hi (which is related to the shear stress).

The relationship between the parameter h* and the aspect ratio a/b is presented in 

Figures 4.12 and 4.13 for the two different failure criteria.
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Figure 4.12: The relationship between h* and a/b using the resultant traction criterion

when h \ = 3hz = h.
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Figure 4.13: The relationship between h* and a/b using the interfacial strain energy

density criterion for h\ =3 hj= h.
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4.3.2 Internal Stress Distribution

The thermal mismatch induced residual internal stresses which arise in thin metal layers 

can be extremely large (see, for example, Spaepen & Shull, 1996; Thompson, 1996; 

Thouless et al, 1993; Besser et al, i994;Venkatraman et al, 1990). These stresses are 

sensitive to variables such as layer thickness, thermal treatment and the presence o f a 

passivation (see, for example, Shull & Spaepen, 1996; Venkatraman et al, 1990). For 

example, the reliability o f microelectronic devices is strongly influenced by the internal 

stresses which develop in the interconnect structures. Sources o f such internal stresses 

include: (a) thermal expansion/contraction mismatch between dissimilar materials, such 

as the interconnect, dielectric and passivation layers, caused by temperature excursions 

introduced during processing, manufacture and service, (b) non-equilibrium 

conditions,(c) various mechanical processes used to create geometrical and topological 

changes during etching and pattering o f interconnect lines and during planarization, (d) 

diffusion and chemical reactions which occur at and across interfaces during thermal 

excursions,(e) the passage o f electric current in the conduction lines which introduces 

nonuniform atomic transport and (f) the absorption o f substances such as water vapor. 

Consequently, in the present section, we consider the effect o f a compliant interphase 

layer on internal thermal stresses arising from a uniform change in temperature. Using 

complex variable techniques, we obtain infinite series representations o f both the thermal 

mean stress and von Mises equivalent stress which, when evaluated numerically, 

demonstrate how each varies with the parameter h describing the compliant layer. 

Remarkably, both the peak mean stress and peak von Mises stress are found to be non-
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monotonic functions o f  h. This allows us to identify, in each case, a specific value h* o f  

the interface parameter h which corresponds to maximum peak stress. We also obtain 

another value hR o f h below which the peak (mean or von Mises) stress within the 

inclusion is smaller than that corresponding to a perfect interface. In particular, when the 

interphase layer is designed so that the value o f h is close to unity, the internal peak 

thermal stress is reduced to a fraction o f its original value in the absence of the interphase 

layer.
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Figure 4.14: Non-uniformity o f internal stresses along the interface for a/b=3.5 in plane 

strain under a uniform change in temperature for h\=hr=h
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Figure 4.15: Non-uniformity of internal stresses along the interface for a/b—1 in plane 

strain under a uniform change in temperature for h\=fi2=h
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Figure 4.16: Non-uniformity o f internal stresses along the interface for a/b= 10 in plane 

strain under a uniform change in temperature for h\=h2=h

From Figures 4.14 — 4.16, it is clear that the non-uniformity o f the stresses inside the 

inclusion is very strong and that the homogeneously imperfect interface parameter 

parameter h (*oo) significantly changes the stress distribution inside the inclusion. The 

local stresses reach peak value at 6=0 .  Henceforth, we denote by h* the particular value 

o f the imperfect interface parameter h corresponding to maximum peak stress. For
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example, for a/b=3.5, from Figure 4.14, the maximum peak stress corresponds to the 

value h= h*=50.

4.3.3 Mean Stresses and Von Mises Stresses

By uing the same procedure in Section 3.3.4 in Chapter 3, we obtain the mean stress and 

von Mises stress. Figure 4.17 plots the stress distribution along the x  and y  axes for an 

elliptic inclusion with aspect ratio a/b=3.5 under a uniform change in temperature. It is 

indicated that the maximum stresses in the case o f trxx occur along the interface.
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Figure 4.17: The stress distribution along the x andy  axes for a/b=3.5 in plane strain 

under a uniform change in temperature for h \-hi=h

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Firstly, we calculate the mean stress (defined in Eq. (3.45)) along the interface. 

Figures 4.18, 4.19 and 4.20 plot the stress distributions for the mean stress for different 

values of a/b. Again, from Figures 4.18, 4.19 and 4.20, it is clear that the mean stress 

inside the inclusion is non-uniform for different values o f the imperfect interface 

parameter h Ca»). The local mean stresses again reach peak values at 9 = 0. The specific 

values of h* (corresponding to maximum peak stress) are the same as those obtained in 

Figures 4.14, 4.15 and 4.16.

A aE xA T

h=5000
h= 1 0 0 0 0

h=infinity

0 0.2 0.4 0.6 0.8 1

0 ( r a d )
1.2 1.4

Figure 4.18: Non-uniformity o f  mean stresses along the interface for a/b=3.5 in plane 

strain under a uniform change in temperature for h\=h2=h

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A aE ^A T
h = 6000.35%

h=6000
h=60000

0.3

0 .2
h=60

0.15

h= 1 00.05

0.2 0.4 0.6 0.8
8 ( r a d }

Figure 4.19: Non-uniformity of mean stresses along the interface for a/b=l in plane strain 

under a uniform change in temperature for h\=hx=h 
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Figure 4.20: Non-uniformity o f mean stresses along the interface for a/b—10 in plane 

strain under a uniform change in temperature for h\=h?=h
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Similarly, next, we calculate the von Mises equivalent stress (defined in Eq. (3.46)). 

Figures 4.21, 4.22 and 4.23 plot the von Mises equivalent stress distributions along the 

interface for different values o f the aspect ratio a/b. From Figures 4.21, 4.22 and 4.23, it 

is clear that the von Mises equivalent stresses inside the inclusion are non-uniform for 

different values o f the imperfect interface parameter h Q£°°). The local von Mises 

equivalent stresses again attain peak values at 6 = 0. The specific values of h* 

(corresponding to maximum peak von Mises stress) are different from those in Figures 

4 .14-4 .16 .
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Figure 4.21: Non-uniformity o f the von Mises stresses along the interface for a/b=3.5 in 

plane strain under a uniform change in temperature for h\=fi2=h
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Figure 4.22: Non-uniformity of the von Mises stresses along the interface for a/b—1 in 

plane strain under a uniform change in temperature for h\=hz=h 
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Figure 4.23: Non-uniformity o f the von Mises stresses along the interface for a/b= 10 in 

plane strain under a uniform change in temperature for h\=h^=h
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Again, Figure 4.24 plots the peak mean stress as a function o f the imperfect interface 

parameter h. This peak mean stress is calculated at the value 0 —0. However, using the 

von Mises stress criteria, we obtain very different values o f h* when using mean stress 

and local stress criteria. Figure 4.25 plots the peak von Mises stress as a function o f the 

imperfect interface parameter h. This peak von Mises stress is calculated at the value 6 = 

0 .
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Figure 4.24: The peak mean stress at the interface varies as a function of the imperfect 

interface parameter h in plane strain under a uniform change in temperature for h\-hf=h
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Figure 4.25: The peak von_Mises stress at the interface varies as a function o f the 

imperfect interface parameter h in plane strain under a uniform change in temperature for

hi=h2=h

The maximum peak mean and von Mises stress in Figures 4.24,4.25 corresponds to 

values o f the parameter h*. For the circular inclusion, we know that the maximum peak 

mean and von Mises stress is realized at h = °o (see Ru 1998b). However, for the elliptic 

inclusion, the maximum peak mean and von Mises stress is related to the imperfect 

interface parameter and the aspect ratio of the inclusion.

Again, since values o f h* correspond to local maximum peak stresses (mean and von 

Mises stresses) and are related to the mechanical properties and thickness o f  the adhesive 

layer between the inclusion and the matrix, the parameter h* may be used as a control 

parameter when designing "thermal inclusions" (see Hu 1991). For example, in the case
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o f a uniform change (cooling) in temperature and the aspect ratio a/b=\ (circular 

inclusion), the peak mean traction in Figure 4.24 corresponds to the value h*=°° (perfect 

bonding). However, when a/b=3.5, the peak traction corresponds to h*=50.

It should be noted that our computations indicate that the mean stress is a non­

monotonic function o f  the aspect ratio a/b (see Figure 4.24), but that the von Mises stress 

is indeed a monotonic function of a/b (see Figure 4.25).

In order to study how we might reduce the thermal stresses, we will compare the 

results presented in Figures 4.24 and 4.25 with the corresponding results from the case o f 

perfect bonding. It is noted that the peak mean and peak von Mises stresses go through 

the same values as they do in the case o f perfect bonding before reaching maximum 

values. The corresponding value of h is denoted by hR. This implies that we can reduce 

the thermal stress as long as we keep h< hR. For example, for a/b=2.5, when we select 

h=l (corresponding to a reasonably thick interphase layer, i.e.a thickness o f about 1/5 the 

size o f the inclusion), the thermal stress may be reduced to a fraction o f its original value 

(obtained in the case o f perfect bonding). This conclusion is the same as in Ru et al 

(1999) for anti-plane shear. This conclusion also proves that by inserting a compliant 

(very soft) layer between the inclusion and the matrix we can significantly reduce the 

thermal stress. Figures 4.26 and 4.27 are plotted using the same values obtained in the 

case o f perfect bonding once h reaches hR.
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Figure 4.26: The critical mean stress (corresponding to hR ) at the interface varies as a 

function of the imperfect interface parameter h in plane strain under a uniform change in

temperature for h\=hx=h
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Figure 4.27: The critical von_Mises stress (corresponding to hR ) at the interface varies 

as a function o f the imperfect interface parameter h in plane strain under a uniform

change in temperature for h\-h-f=h
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Since h is rendered dimensionless by division by fJ-iPo, for a specific aspect ratio, we 

could avoid the maximum peak stress, or indeed minimize the maximum peak stress by 

adjusting mechanical properties and the thickness o f  the interphase layer (related to b). 

The relationship between the parameter h* and the aspect ratio a/b  is given in Figures 

4.28 and 4.29.
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Figure 4.28: The relationship between h* and a/b  for the mean stress’ criterion
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Figure 4.29: The relationship between h* and a/b  for von_Mises’ stress criterion

Since hR is rendered dimensionless by division by /i//b and represents a critical value in 

reducing the thermal stress, for a specific aspect ratio, we could decrease the value o f h R 

by reducing the shear moduli of the interphase layer (very soft), and adjusting the 

thickness o f  the interphase layer. The relationship between the parameter h R and the 

aspect ratio a/b  is given in Figures 4.30,4.31.
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Figure 4.30: The relationship between hR and a/b  for the mean stress’ criterion
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Figure 4 .31: The relationship between A*and a/b for von_Mises’ stress criterion
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4.3.4 Average Stress Inside Inclusion

As a comparison, Figures 4.32 and 4.33 plot the effect of the interphase layer on the 

average stress (defined in Eq.(2.25)) inside the inclusion in plane strain under a uniform 

change in temperature. It is indicated that the average stresses are increasing with 

parameter h for different aspect ratios a /b . This is in a strong contrast to peak mean stress 

and von Mises stress which have been found not to increase with h (see Figures 4.24, 

4.25). In addition, for all cases, our results indicate that the average stresses inside the 

inclusion are monotonic functions o f the imperfect interface parameter h.
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Figure 4.32: Effect o f the imperfect interface parameter h on the average stress

(----- 2— ) inside inclusion in plane strain under a uniform change in temperature
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Figure 4.33: Effect of the imperfect interface parameter h on the average stress

( ----- - — ) inside inclusion in plane strain under a uniform change in temperature
A aE xAT

4.4 SUMMARY OF RESULTS OBTAINED

This chapter presents a study o f the effects of a compliant interphase layer and the aspect 

ratio on the thermal mismatch induced residual internal stresses inside an elliptic 

inclusion embedded within an elastic matrix subjected to a uniform change in 

temperature. Numerical computations and analysis o f the subsequent results have led to 

the following conclusions:
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1. The compliant interphase layer has a significant effect on the thermal stress 

distribution along the interface and the internal thermal stresses. In particular, it has 

been shown that the effect o f the interphase layer (described by the interface 

parameter h) on the peak traction and peak interfacial strain energy density is 

particularly significant for an elliptic inclusion with relatively small aspect ratio (<5), 

but not for larger values of a/b.

2. Our numerical results show the peak interfacial traction and peak interfacial strain 

energy density are non-monotonic functions o f the interface parameter(/z) describing 

the compliant interphase layer. Consequently, for different aspect ratios, we have 

identified a unique finite value h* o f  the parameter 0,°°) which corresponds to 

maximum peak traction or maximum peak interfacial strain energy density along the 

interface. Hence, since the parameter h is determined by the properties and thickness 

o f the adhesive layer between the elliptic inclusion and the matrix, it is possible to 

control the debonding and failure o f the interface by designing the value h for a given 

aspect ratio. This means that, for a specific aspect ratio, it is possible to minimize 

peak interfacial stress by adjusting the mechanical properties or thickness of the 

adhesive layer.

3. It has been indicated that the normal stresses are always positive along the entire 

interface. Therefore, any possible overlapping associated with the imperfect interface 

model used in this chapter cannot occur in the present problem. This result shows that 

the imperfect interface model is particularly suitable for thermal stress analysis o f 

elastic inclusions with a compliant interphase layer.
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4. The present computations also indicate that there is no significant difference between 

the cases h \ = h z  and h \ = b h 2 . This is due to the fact that the interfacial stresses caused 

by thermal contraction o f the inclusion are dominated by the normal component so 

that the tangential interface parameter hi plays an insignificant role.

5. Our numerical results show the peak mean stress and peak von Mises equivalent 

stress are both non-mo no tonic functions of the parameter h .  This allows us to find a 

finite value h *  of the parameter h  0*0,°°) which corresponds to the maximum peak 

mean stress or the maximum peak von Mises equivalent stress. Consequently, it is 

possible to predict and control the debonding and failure o f the interface by 

identifying the value h *  which depends on the aspect ratio o f the ellipse and the 

properties and thickness o f the adhesive layer between the inclusion and the matrix. 

This is a direct consequence o f the fact that values o f ii correspond to maximum 

peak stress along the interface. Furthermore, we have shown that, for a specific aspect 

ratio, it is possible to reduce peak thermal stresses by adjusting the mechanical 

properties and thickness o f the adhesive layer. We have also obtained another value 

h R of h  below which the peak (mean or von Mises) stress within the inclusion is 

smaller than that corresponding to a perfect interface. By designing the interphase 

layer so that h  is close to unity, we may reduce the peak internal thermal stress to a 

fraction o f its original value obtained in the absence of the interphase layer.

6. For an elliptic inclusion with moderate aspect ratio, a reasonably thick interphase 

layer (for example, a thickness o f about 1/5 the size of the inclusion) can reduce the 

thermal stress to a fraction of its original value (perfect bonding) if the interphase 

layer is much more compliant than the matrix. However, the peak stresses in the
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presence o f an interphase layer could be even bigger than those obtained in the 

corresponding case o f  perfect bonding if  the interphase layer is not sufficiently 

compliant and/or not sufficiently thick. In other words, inserting a compliant 

interphase layer will not unconditionally reduce the peak thermal stress within the 

inclusion.

7. Our computations indicate that the m ean stress is a non-monotonic function o f the 

aspect ratio a/b , while the von Mises stress is a monotonic function o f the aspect ratio 

a/b. These results also show that the effect o f the interphase layer on the mean stress 

is sensitive to small aspect ratios (<5) o f  the  elliptic inclusion. For the cases discussed 

in this chapter, the mean stress and von Mises equivalent stress give different values 

of h*. Thus we have a choice o f two different failure criteria to characterize the 

internal failure o f the inclusion.

1 3 8
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE STUDY

In this dissertation, the problems o f an elliptic inclusion with an imperfect interface, 

representing an interphase layer, subjected to several different types of loading are 

studied using a spring-type interface model. Such a spring-type interface model allows 

displacement discontinuities across the inclusion/matrix interface. By using complex 

variable techniques, we obtain infinite series representations o f  the stresses which, when 

evaluated numerically, demonstrate how the stress field inside the inclusion varies with 

the aspect ratio o f the ellipse and parameters describing the imperfect interface.

In the present study, the interphase is modeled by a distribution of mechanical 

springs. The constants h (for anti-plane), hi and /z? (for plane deformations) are the 

coefficients of these springs. Within this approach the composite is modeled as a two- 

phase material with imperfect interfacial conditions applied along the interface between 

the single inclusion and its surrounding matrix. The single-cell model adopted in the 

analysis is a much simpler model than other available multi-cell composite models 

commonly used by others. This model, as discussed in Schmauder et al, 1992, is suitable 

for modeling composites with fiber volume fractions up to 40%. Under this condition, the
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interaction among neighboring fibers and its influence on the stress fields o f the overall 

composite system can be neglected. Therefore a single fiber model should describe the 

stress and displacement fields inside and around the inclusion reliably for low or medium 

fiber volume content composites.

In Hill 1961,1972, Hill indicated that the possible displacement discontinuities across 

the inclusion/matrix interface are governed by the local rather than by the global material 

properties of the composite. Under the present model, this conclusion still holds. The 

analyses presented in this dissertation are for anti-plane and planar elastic systems. 

Though the last two problems discussed are formulated under the plane strain conditions, 

plane stress solutions for the same problems can be readily found by adjusting the 

material constants o f  the composite (Timoshenko, 1970).

As shown in this study, it is straightforward to use the spring-type interface model to 

simulate the complex behavior o f the interface. It is, however, rather difficult to 

physically measure these parameters. Certain techniques have been proposed to 

characterize these interactions (Narkis et al, 1988), but further studies are needed to gain a 

better understanding o f  interfacial bonding so that the interfacial bonding stiffness 

defined in this study can be correlated to measurable interphase material properties. The 

focus of this study is based upon the mathematical merit of such interface parameters 

rather than their physical characteristics.

In addition, all the solutions discussed in this dissertation are based on the single 

inclusion model. For large fiber volume fraction composites, the solutions are less 

reliable and other modeling techniques such as the periodically spaced hexagonal array 

model proposed by Achenbach and Zhu,l990, may be considered. It should also be noted
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that interfacial decohesion is assumed to occur within the elastic regime without taking 

into account any plastic deformation.

The understanding of the localized elastic field o f  a composite provides the necessary 

vehicle for calculating its effective properties. Such methods as proposed in Chuistensen 

and Lo,l979; Hashin,1990; Jun and Jasiuk,1993, may be applied in this regard. The exact 

evaluation o f the effective elastic properties o f composites will help to improve the 

design of such structures. Since in this dissertation we are interested in the local elastic 

field o f the composite, the calculation o f the effective (global) properties are not included 

in the framework o f this research.

It was noted in Section 3.3.1 o f Chapter 3 that a possible negative normal 

displacement jump is an issue o f major concern for the present imperfect interface model. 

There are two different methods available to address this issue. The first one is to modify 

the imperfect interface model by assuming the continuity o f normal displacement at all 

points where a compressive normal traction occurs (Achenbach & Zhu, 1989,1990). The 

second one tolerates a limited negative normal displacement jump bounded by the 

original thickness o f the interphase layer (Hashin, 1991b). As explained in Section 3.3.1 

o f Chapter 3, the interphase layer can sustain a tensile normal traction as well as a 

compressive normal traction. Consequently, a negative normal displacement jump is 

acceptable provided it is smaller than the original interphase thickness. It is readily seen 

that the negative normal displacement jump appearing in all figures o f the present 

research is sufficiently small and therefore acceptable.

In summary, the problems o f an elliptic inclusion embedded in an infinite matrix 

with a homogeneously imperfect interface subjected to mechanical and thermal loading
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are studied. A spring-type imperfect interface model is proposed. Complex variable 

techniques are used to obtain infinite series representations o f the stresses which, when 

evaluated numerically, demonstrate how the stress field inside the inclusion varies with 

the aspect ratio o f  the ellipse and parameters describing the imperfect interface. For the 

first time, we investigate systematically the role o f the imperfect interface parameters on 

the stress field and average stress. Numerical results are presented to show the validity of 

the analyses along with a discussion of the implication o f  the localized elastic field to the 

possible failure mechanism o f the composite. The following observations can be drawn 

from the numerical examples studied in this research:

• The interface imperfection has a significant effect on stress fields in and near the 

inclusion (along the interface). The non-uniformity o f  stress is closely related to the 

interface parameter describing the imperfection and the aspect ratio of the ellipse. It 

has also been indicated that the definition o f the imperfect interface and the physical 

explanation o f the interface parameters used in Hashin (1991b) are indeed suitable for 

describing the nature o f the interface. Consequently, using only average stress is 

insufficient to describe the debonding and failure o f the material interface since both 

are controlled by interfacial stresses which are themselves closely related to the 

imperfect interface parameter and the aspect ratio of the ellipse.

• It is possible to predict and control the debonding and failure o f the interface by 

identifying a distinct value (h*) o f the interface parameter which depends on the 

aspect ratio o f the ellipse and the properties and thickness o f the adhesive layer 

between the elliptic inclusion and the matrix. This is a direct consequence o f the fact 

that values o f  h* correspond to maximum peak stress (including mean and von Mises
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stress) along the interface. Furthermore, we have shown that, for a specific aspect 

ratio, it is possible to avoid or minimize peak stress by adjusting mechanical 

properties and the thickness o f  the interphase layer.

• For plane deformation, the peak interfacial traction and peak strain energy density 

have been found to be non-monotonic functions o f the imperfect interface parameter 

h. Consequently, for different aspect ratios, we have found a unique finite value h* of 

the parameter h(^0,oo) which corresponds to maximum peak traction or maximum 

peak strain energy density along the interface. Hence, since the parameter h 

characterizes the properties and thickness of the adhesive layer between the elliptic 

inclusion and the matrix, it is possible to predict and control the debonding and 

failure o f the interface by identifying the value h* for a given aspect ratio. In addition, 

this means that, for a specific aspect ratio, it is possible to minimize peak interfacial 

stress by adjusting the mechanical properties and thickness o f the adhesive layer.

• In the case o f mechanical loading (Chapter 3), the magnitudes and ranges of the 

negative normal stresses are very small, thus any possible overlapping associated with 

the imperfect interface model used in this chapter can be considered to be reasonable 

(interphase has a thickness).

• In the case o f thermal loading (Chapter 4), the normal stresses are always positive 

along the entire interface. Therefore, any possible overlapping associated with the 

imperfect interface model used in this chapter cannot occur. This result shows that the 

imperfect interface model is particularly suitable for thermal stress analysis of elastic 

inclusions with a compliant interphase layer.
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•  In the case o f thermal loading (Chapter 4), we also obtain another value hR o f h 

below which the peak (mean or von Mises) stress within the inclusion is smaller than 

that corresponding to a perfect interface. By designing the interphase layer so that h is 

close to unity, we may reduce the peak internal thermal stress to a fraction of its 

original value obtained in the absence of the interphase layer. However, the peak 

stresses in the presence o f an interphase layer could be even bigger than those 

obtained in the corresponding case of perfect bonding if the interphase layer is not 

sufficiently compliant and/or not sufficiently thick. In other words, inserting a 

compliant interphase layer will not unconditionally reduce the peak thermal stress 

within the inclusion.
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APPENDIX

INFINITE SERIES REPRESENTATION FOR THE

EXPRESSION V itsin2*

In order to solve the equation (2.20) in Chapter 2 using infinite series, it is necessary to

find a series representation for the expression Vl + 6* sin2 6 . To this end, note that for 

any integer k,

J-VI + b ’ sin2 0  s in kddd  = 0,
o

l i t

J"Vi + b' sin2 6 cos(2k  + 1 )dd& = 0.

Thus,

2 / r    2 / r ______ ______________

JV l + 6* sin2 Q cos[2(& +  Vji\ddd = JVl +  b' sin2 0 [cos(2&0) cos(20) — sm {2kd)s\n (29)\dd  =
o o

2 it

JV l +b* sin2 0 cos(2kO)cos(2d)dd -\------   JVl + 6* sin2 d[l +b* sin2 d\cos(2kd)dd  =
o 36 o

) J V l+ 6* sin2 0 [cos[2(it +1)0] +  cos[2(£ - 1 )]]d0 + 2k(2+t b ) JV l +b' sin2 0 cos(2 kd)d0  
2 3 o 36 0

( A 2 )

If we define
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t 2 /r  ________________________

I 2k = ---- |V l+ 6 * s in 20cos(2Z:0)</0 (A3)
J IT J271 0

we have l 2k = I_2t and

A k , r A £ 2k(2  +  b ')  T
"*■ ) ^ 2 ( k + \ )  ~  ( -  _ ) ^ 2 ( i - D  +  2k  (A4)

Next, writing

Vl +6* sin2 6  = £ Iik{e‘2ke + ^ ) • (A5)
k=0

we note that, for large £, the right-hand side o f (A5) approaches a geometric series. To 

find the ratio of this geometric series, let us assume that for large k,

2̂(i+l)
~ r ~ =T1-1 2k

Also, for large k, Eq. (A4) can be reduced to:

/  = _ /  ^ 2 + b ' h
l 2 ( k +l )  * 2 ( k - l ) ^  l 2 k '

Consequently,

+ l ~ 2 ~ T - rl =  Q (A6)b

1 5 8
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Noting the expressions for b* and R * in Eqs. (7) and (12), we have

2 + b '  
b *

r 2 +  b' *
b'

-1
R

< 1

which implies that the geometric series is convergent. We can now rewrite (A5) as:

■Jl +  b ' s m - e  = % I u (e ‘2“  +
k=  0 k = 0

and consider the second term, on the right-hand side as a geometric 

(approximately).

Thus

Vl + 6* sin2 9  s  £ / 2, (c '2W + ) + I 2M
k = 0

. V - l

/ 2 * ( e  )  +  / 2A/
i= 0

hub ,-nsie

1 -T je iW I-Tie i2e 
e n m + e -i2ue __ + jzu-mw  ]

I 1 - >26 , -ne'_ ( e ' - + e — )

The expression (A8) is sufficiently accurate for a given suitably large number M.
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