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ABSTRACT 

Pressure pulse is a high amplitude dynamic excitation of a porous medium which can be 

generated by injecting a low-frequency pulse of fluid into the medium. The process of 

pressure pulsing is a potential method for improving productivity and increasing recovery 

from oil reservoirs.  

In this work enhanced oil recovery via the application of pressure pulsing is simulated by 

coupling geomechanics and pressure pulse equations. While the inclusion of geotechnical 

relationships leads to static changes in the rock properties, the pressure pulse equations 

capture the dynamic variations in porosity which allow improvement in oil recovery. The 

isothermal pressure pulse equations are derived based in part on the De la Cruz-Spanos 

theory. An iterative, fully coupled reservoir simulator was developed to analyze the 

effects of pressure pulses in reservoir fluid flow and oil recovery. Moreover, a system of 

equations derived by Osorio was solved to develop a 3D finite difference, fully implicit 

geotechnical model which simulated elastic deformations during production from a 

reservoir. 

A series of sensitivity analyses were run to investigate the effects of rock and fluid 

properties on the pressure pulse propagation. Also, the impact of boundary conditions and 

geotechnical properties on permeability variation was studied. The results confirmed that 

the frequency of pressure pulses should be well tailored to the rock and fluid properties 

(e.g. permeability, rock compressibility, porosity, viscosity) so that an optimum pressure 

gradient can be generated within the reservoir in order to improve oil flow. The 

developed pressure pulse coupled reservoir simulator was used to investigate the reasons 

for unsuccessful pressure pulse laboratory experiments performed by BP at their Sunbury 

facilities. The conclusion that can be drawn from these results is that highly compressible 

materials in contact with the porous medium (such as Neoprene, rubber, or like materials 

used as membranes to protect the specimen during testing) can dampen the impulse that 

is applied to the porous medium, adversely affecting the propagation of a porosity-

pressure wave and thereby resulting in no significant increase in fluid flow. It was 
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concluded that boundary conditions are crucial for a successful pressure pulse experiment 

in the lab. As for the static changes, boundary conditions are the most important factors 

determining permeability variations with pore pressure changes in the reservoir. Two 

domain models yield a greater change in permeability than single domain models. 
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δ   Derivation from the unperturbed value, dilation factor 

εij   Strain tensor 

εii   Bulk strain 

φ   Porosity 

η   Percentage of the rock space, 1-φ 

λf   Mobility 

μ   Viscosity [cp] 

ν   Poisson’s Ratio 

ρ   Density [kg/m3, lb/cft] 

σ’   Effective stress [psi, kPa, MPa] 

σij   Stress tensor [psi, kPa, MPa] 

σm   Mean stress [psi, kPa, MPa] 

υf   Fluid velocity [m/s] 

υs   Solid velocity [m/s] 

fξ    Bulk viscosity [cp] 
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1 INTRODUCTION 

 
1.1 Statement of the Problem 
 
In practical terms, pressure pulsing is simply the high-amplitude dynamic excitation of a 

porous medium which, under a pressure gradient, increases the flow rate of liquid along 

the direction of the pressure gradient. Mechanical means of excitation involve injecting a 

low-frequency pulse of fluid into the medium creating many different waves, such as 

seismic waves.  

 

Low-frequency pulses of fluid in a porous medium also create a slow strain wave called 

the porosity dilation wave which results from the interactions and deformations between 

the fluid and matrix in the porous media. The porosity dilation wave travels at velocities 

on the order of 5–150 m/s and is characterized by a spreading front of elastic porosity 

changes which are responsible for the flow rate enhancement effect. A field example of 

the impact of pressure pulsing on the oil rate is shown in Figure 1-1. Pressure pulsing is 

applied to a heavy oil field which was approaching to the end of its life. As soon as the 

pressure pulsing started the drop in the oil rate slowed significantly. 

 
Figure 1-1: Field example of the benefit of pressure pulsing on the oil production 
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As waves of increased and decreased porosity pass through a medium they induce the 

pore fluid to flow. In addition to significantly increasing the flow of the pore fluid, 

pressure pulsing also has an associated reservoir pressurization effect that is seen in both 

the field and laboratory1,2,7. The flow enhancement effect is integrally linked with the 

reservoir pressurization effect. As the porosity diffusion wave moves through the porous 

medium, it is accompanied by an increase in pressure. The cause of this pressurization is 

that as the porosity wave dies off, it leaves the fluid with no place to go. The fluid, in 

turn, causes the matrix to elastically compress, which leaves that portion of the reservoir 

pressurized. It is important to note here that the distance the porosity diffusion wave 

travels is dependent on variables such as fluid viscosity, confining stress, porosity, 

permeability, and pore geometry. Therefore, because the confining pressure has been 

increased in this portion of the reservoir, the next diffusion wave and accompanying fluid 

can permeate even further. The end result is that the entire reservoir becomes pressurized. 

 

1.2 Objectives and Scope 
 

While a theoretical framework exists for pressure-pulsing theory and field evidence has 

been obtained to confirm the concept, no capability currently exists for modeling the 

influence of pressure pulsing on multi phase flow within a reservoir. 

 

The main research objectives are:  

i. develop an iterative, fully coupled procedure that permits the analysis of 

pressure pulsing by modeling the propagation of porosity waves in a reservoir.  

ii. In addition to a model of pressure pulsing, a 3D finite difference, fully implicit 

geomechanical model will be developed to simulate the physical phenomena 

occuring during production from reservoirs with stress-sensitive mechanical and 

fluid-flow properties. The combined effect of stress changes (elastic 

deformations), fluid flow and reservoir property changes on oil recovery will be 

evaluated by a fully coupled procedure that integrates pressure pulsing, 

geomechanics and reservoir simulation (BOAST, Black Oil Applied Simulation 

Tool). 
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In this study a simplified black oil simulator, rather than a compositional simulator, is 

used. For low-volatility oil systems, consisting mainly of methane and heavy 

components, this model can be used to describe the hydrocarbon equilibrium. In this 

model it is assumed that gas can dissolve both in water and in oil. 

 

In the geomechanical model only elastic deformations are assumed. This is realistic as 

long as the injection pressure does not exceed the formation fracture presssure. For most 

oil reservoir simulators, porosity is a simple function of pore pressure, however in this 

study, the governing equations describing the deformation of the solid part of the rock are 

fully coupled with governing equations describing the changes in pore pressure. 

 

Our goal is to build a two-phase numerical reservoir simulator capable of modeling the 

process of pressure pulsing. No experimental work will be conducted in this research. 

After completing the numerical analyses, field/lab data, obtained from various industrial 

sources, will be used for history match and sensitivity studies. 

 
 
1.3 Organization of Thesis  
 
The literature search is presented in Chapter 2. It provides an overview of the existing 

laboratory and theoretical works studying the effects of elastic wave excitation in porous 

media. In Chapter 3 an introduction and overview of BOAST (Black Oil Applied 

Simulator Tool) is given. The workflow and main parts of the algorithm are reviewed in 

this chapter. The main oil simulation equations are presented which will be combined 

with pressure pulsing and geomechanical theory in subsequent chapters. Chapter 4 

focuses on the concept of geomechanics in reservoir production. A coupled solution of 

the fluid flow and stress deformation model is presented by developing a fluid flow 

model and a linear poroelastic model. A numerical analysis is also presented which 

reviews the approaches taken to discretize nonlinear partial differential equations of fluid 

flow and stress deformation. 
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Chapter 5 is devoted to the concept of pressure pulsing. It provides an overview of the 

background, field and laboratory studies performed in the literature. It introduces the new 

pressure pulsing theory and compares it with well-known theories, i.e. Darcy and Biot 

theories. Chapter 5 also presents the mechanisms of pressure pulsing and addresses why 

pressure pulsing can be used as an enhanced oil recovery method. Finally, theory 

development and derivation of wave equations are presented. 

 

Chapter 6 details a method to decoupling geomechanics and pressure pulsing in BOAST.  

Such a methodology encompasses all the knowledge and understanding gathered from 

the theoretical work and can be applied elsewhere, i.e. other commercial reservoir 

simulators. Following the methodology, both the pressure pulse model and 3D 

geomechanics model are validated against lab results and literature. For the pressure 

pulse model, the results of two laboratory core flood tests are used in validation; the first 

one conducted by Davidson, et al.3 and the other by Dusseault, M.B71.  As for the 3D 

geomechanical model, the results of our study are compared to the work of J.G. Osario, et 

al.63.  Finally a sensitivity study is conducted both for the pressure pulsing and for the 3D 

geomechanical model. 

 

Chapters 7 and 8 present the conclusions and recommendations based on a study of the 

assumptions taken and results of our research. 
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2 LITERATURE REVIEW  
 

The existence of coupled diffusion dynamic processes in porous media is well 

documented in the literature.  

 

Empirical evidence is found in many papers from Russia describing enhanced production 

from oil reservoirs due to earthquakes. These papers report increased production rates 

and the release of fines into production wells following seismic events20. Also, a 

comprehensive review of field, laboratory and theoretical work studying the effects of 

elastic wave excitation was performed by Beresnev and Johnson30. The authors found 

that, due its effect on permeability, elastic wave excitation could increase production of 

hydrocarbons from porous media. 

 

Fundamental work on the application of elastic wave theory to fluid-saturated porous 

media was performed by Biot12. In this work, Biot described the propagation of elastic 

wave a saturated porous medium and derived the Biot equation. Biot12 developed a 

theory for the propagation of stress waves in a porous elastic solid containing a 

compressible viscous fluid. He studied both the low frequency range, where the 

assumption of Poiseuille flow is valid, and the higher frequencies. In his papers he 

established relations between stress and strain for static deformation then analyzed the 

wave propagation when the fluid is viscous and non-viscous. The breakdown of 

Poiseuille flow beyond the critical frequency is discussed for pores of flat and circular 

shapes. The emphasis of the treatment is on cases where fluid and solids are of 

comparable densities. 

 

Biot’s work was used by numerous authors studying porous media. Deresiewicz and 

Rice13 used the equation to study wave scattering in a saturated medium. Birch14 noted a 

strong nonlinear dependence of modulus on pressure, and a nonlinear stress-strain 

relation due to structural discontinuities in the form of cracks, grain boundaries, etc. Stoll 

and Bryan15 and Norris38 characterized the wave attenuation mechanism in a poroelastic 

medium and demonstrated how these effects might be incorporated into Biot’s equation. 
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Hamilton16 proposed to describe the static and dynamic nonlinear behavior by expanding 

the modulus in Hook’s law as a power series in strain. Bonnet32 reviewed some 

extensions of Biot’s equations and derived the complete basic singular solution in the 

frequency domain for dynamic poroelasticity problems by analogy with thermoelasticity.  

 

Zobnin, Kudryavtsev and Parton33 explored the flow in inhomogeneous porous systems 

through the analysis of model periodic structures and obtained an integral differential 

equation that describes the motion of a viscous fluid in a rigid porous medium of periodic 

structure. Depollier, Allard and Lauriks34 pointed out that the homogenization process of 

Biot’s equation only applied for a significantly small viscosity fluid. Zinov’yeva et al.35 

demonstrated that rock showed a large nonlinear response under relatively small strain. 

Hassanzadeh36 developed the Biot acoustic formula by adopting a finite difference 

algorithm based on a homogeneous approach. Zhu and McMechan37 studied the 

poroelastic wave equation based on a homogeneous approach. Norris38 discussed the 

analog between the equation of static poroelasticity and the equation of thermoelasticity 

including entropy, and derived a method of determining the effective parameters in an 

inhomogeneous poroelastic medium using known results from the literature on the 

effective thermal expansion coefficient and the effective heat capacity of a disordered 

thermoelastic continuum. Johnson and McCall39 proposed that as the wave propagates, 

there is a local increase in the density and modulus during compression and a local 

decrease in density and modulus during rarefaction. Zimmerman and Stern40 obtained a 

series of solutions for the plane compression wave scattering by a spherical poroelastic 

inhomogeneity medium, which started from Biot’s poroelastic model. Dai, Vafidis and 

Kanasewich41 simulated the seismic wave propagation in a porous medium by using a 

particle velocity-stress, finite-difference method. The modeling enabled them to obtain 

the particle velocity fields of the volume-averaged solid and fluid motion, and the 

volume-averaged solid stress and fluid pressure wavefields. Furthermore, this method 

enabled them to model the seismic response of a heterogeneous medium without 

introducing numerical approximations of the space derivatives of the physical 

parameters. Abousleiman et al.42 addressed the phenomena of mechanical creep and 

deformation in rock formations coupled with the hydraulic effects of fluid flow. Johnson 
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et al.43 developed a relationship between the nonlinear elastic parameters of rocks and the 

stress-induced effects on waves propagating in rocks. Li, Cederbaum and Schulgasser44 

noted that axial fluid diffusion in vibrating beams could easily provide a very strong 

damping mechanism.  

 

Ochs, Chen and Teufel66 investigated the rock stress response to the transient fluid 

pressure in a well with a stationary vertical fracture within the framework of Biot’s 

poroelasticity. Laboratory observation of elastic wave propagation provided evidence to 

verify the theoretical and modeling approaches. Brown45 pointed out that in the absence 

of viscosity, a flow pattern minimizes the inertial effects of the fluid; while in the absence 

of the inertial forces, a flow pattern minimizes the viscous resistivity to flow. At 

intermediate frequencies, both inertial and viscous forces are significant and any 

developed flow pattern must be a compromise that minimizes neither viscous nor inertial 

effects. Winkler and Nur46 illustrated that shear wave attenuation is more sensitive in 

fully saturated rock than that of compression waves, and the attenuation of both shear 

waves and compression waves are significantly different in fully saturated rock and 

partially saturated rock. Williams et al.67 showed that both velocity and attenuation of 

elastic waves could be correlated with porous medium permeability. Chang, Liu and 

Johnson47 predicted the in-situ rock permeability through low-frequency tube wave 

stimulation. Winkler, Liu and Johnson51 indicated experimentally that in oil-field 

boreholes, Stoneley-wave observations will generally be made in the low-frequency 

range of theory and suggested that Stoneley wave velocity and attenuation may be 

indicative of the formation permeability. Auriault48,49 investigated the macroscopic 

quasistatic description of a deformable porous medium with a double porosity constituted 

by pores and structures, based on a homogeneous technique. The work exhibited a 

coupling between the flow and the pores and structures. Auriault48,49 demonstrated that 

macroscopic behavior of the double porosity medium shows two characteristic 

pulsations, one corresponds to the quasistatic viscous fluid flow through the microporous 

medium, and one is the characteristic pulsation of the dynamic fluid flow in the fractures. 

Bernabe50 evaluated the standard frequency dependence of dynamic permeability during 

the transition from macroscopic viscous flow at low frequency to inertial flow at high 
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frequency, and observed that in networks with large amount of storage pore space, the 

fluid compressibility could affect the result drastically. 
 

Pan52 investigated single-phase intermediate frequency stimulation by modeling the 

coupling of the solid and liquid motions at the pore scale. Starting from the basic Navier-

Stokes equation which is suitable for describing fluid flow in pores and combining with 

the homogenization process, Pan derived five separate characteristic macroscopic models 

to describe the macroscopic behaviour of deformable porous media. Pan showed that the 

response of a porous medium to harmonic perturbations depended on the parameters of 

the pore structure, the properties of the fluid and the frequencies of the excitation signal. 

The elastic wave vibration had a positive impact on fluid flow under harmonic 

perturbation. 

 

Odeh and McMillen28 derived a nonlinear differential equation which can approximately 

describe the space-behavior of a small propagating pressure pulse in an air-saturated 

porous medium. Haskett, Narahara and Holditch29 studied pressure transients analytically 

utilizing gas flow in small volumes and stated that the result is very sensitive to both 

porosity and permeability.  

 

De la Cruz and Spanos79 attempted to formulate macroscopic relations for equilibrium 

thermodynamics from the well-understood pore scale description. They used volume-

averaged equations to provide the linkage to pore scale thermodynamics. In this study, 

porosity is treated as a new purely macroscopic variable and its natural thermodynamic 

role was investigated. In Biot’s theory porosity is not explicitly taken as a variable. The 

de la Cruz - Spanos porous media model was formulated from basic physical properties 

to describe wave propagation in porous media. Most importantly, this model includes 

porosity as a dynamic variable that plays a fundamental role in both the thermomechanics 

and thermodynamics of the porous medium. 

 

Spanos and coworkers4,21 introduced pressure pulse flow enhancement as a non-

conventional EOR method, describing it with both lab experiment results and field 
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evidence. The porosity diffusion wave, which is responsible for flow enhancement, and 

its foundations were explained. A brief synopsis of the two major applicable theories of 

wave propagation in fluid filled porous media, conventional (Biot) wave propagation 

theory and the most recent multi-component (de la Cruz-Spanos) theory, was given. A 

five spot pattern field trial, conducted by Wascana Energy Inc., was investigated with the 

results showing that pressure pulsing increases the fluid gradient across the sand 

destabilization zone and decreases the water content of the produced fluid. 

 

Geilikman, Spanos and Nyland5 showed that a porosity diffusion wave propagates from a 

seismic source in fluid-saturated porous media. It was observed that this process would 

cause a travelling pulse of pressure associated with the spreading front of porosity and 

would result in variations in fluid levels in the earth’s crust following a seismic event. 

Analytical solutions were given to describe porosity and pressure changes as a function 

of spatial coordinates and time. 

 

Hickey and coworkers6 introduced a one-parameter family of compressibilities which 

included the drained and undrained compressibilities as members. The family of 

compressibilities were also used to obtain an expression for the pore pressure build-up 

coefficient.  

 

De la Cruz and his coworkers7,9 discussed the concept of macroscopic pressure difference 

between two immiscible incompressible fluid phases flowing through homogeneous 

porous media. In their study the analysis is restricted to the case of incompressible, slow, 

quasi-static flow. 

 

Dusseault, Shand and Davidson8 investigated performing pressure pulse workovers on 

heavy oil wells. According to their study, pressure-pulsing had a combination of various 

effects, including perforation unblocking, far field excitation and good placement 

chemical dispersion. Pressure-pulsing remolded and liquefied compacted sand around the 

wellbore, prevented sand blockage and helped the Cold Heavy Oil Production 

Stimulation (CHOPS) well start producing sand during primary completion attempts. 
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Moreover, the authors showed pressure-pulsing could be used when the well became 

disconnected from the far-field pressure and gravity driving forces and in cases when it is 

desired to place a workover chemical in a well-dispersed fashion around a well. Because 

the sharp pulses tended to suppress fingering and partially overcome capillary blockage at 

pore throats, treatment chemicals were well-dispersed around the wellbore. 

 

De la Cruz and Spanos7,9 presented a complete set of equations to describe low-frequency 

seismic wave phenomena in a fluid-filled porous medium. A straightforward analysis of 

equations yielded predictions of wave velocities and attenuations as functions of 

frequency. The attendant thermal aspects are explicitly taken into account. 

 

In summary, a study of the literature has shown that the effects of elastic wave excitation 

on production of hydrocarbons have been observed and reported. The fundamental theory 

of propagation of elastic waves in saturated porous media has been developed by Biot. 

Numerous authors have studied different methods to simulate seismic wave propagation 

in porous media. The macroscopic models to describe the macroscopic behaviour of 

elastic wave propagation have also been developed and studied in the literature. Our 

literature search shows that a theoretical framework exists for pressure-pulsing theory 

and field evidence has been obtained to confirm the concept. However, no capability 

currently exists for modeling the influence of pressure pulsing on two-phase flow within 

a reservoir. 
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3 BOAST ALGORITHM 

 
BOAST was selected to serve as the structural framework for implementing the coupled 

pressure pulse and geomechanical models proposed in this thesis.  It is a three-

dimensional, three-phase black oil applied simulation tool and was released by the US 

Department of Energy in 1982. As it is a public domain program, it has been extensively 

used by various research, academic and industry organizations53,54. 

 

The BOAST II program simulates isothermal, Darcy flow in three dimensions. It assumes 

reservoir fluids can be described by three fluid phases (oil, gas and water) of constant 

composition with physical properties that depend on pressure only. Technically, BOAST 

II is a finite-difference, implicit pressure-explicit saturation (IMPES) numerical 

simulator. It contains both direct and iterative solution techniques for solving systems of 

algebraic equations. 

 

Figure 3-1 shows the basic structure of the BOAST algorithm.  While further information 

can be obtained from the BOAST User’s Manual53, the main parts in the algorithm are 

explained below: 

 
Initialization Data (1-8): Initialization data files, i.e. restart and post plot options, 

reservoir model grid dimensions and geometry, porosity and permeability distributions, 

relative permeability and capillary pressure data, fluid PVT data, initial pressure and 

saturation distribution, matrix solution method, run control and diagnostic parameters and 

aquifer parameters are specified. These files are read only once at the beginning of the 

simulation. They must be read in the order shown in flow chart. Detailed explanations for 

each step are given in the next section. 
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Recurrent Data: Recurrent data files are read repeatedly during the course of the 

simulation run.  These data include the location and specification of wells in the model, 

changes in well completions and field operations over time, a schedule of well rate and/or 

pressure performance over time, time step control information for advancing the 

simulation through time, and controls on the type and frequency of printout information 

provided by the simulator. 

 

1- Read Input Files: Input files with grid coordinates; rock and fluid are read into the 

program.   

 

2- Call GRIDSZ: From the data given in an input file, grid block length (DX(I,J,K)), 

gridblock width (DY(I,J,K)), gridblock gross thickness (DZ(I,J,K)), gridblock net 

thickness DZNET(I,J,K) and node mid-point elevations (EL(I,J,K)) are established. 

 

3- Call PORPRM: From the data given in an input file, the three dimensional porosity 

and permeability distributions, VP(I,J,K), KX(I,J,K), KY(I,J,K), KZ(I,J,K), are read 

either as constant values over the entire grid or on a block-by-block basis. 

 

4- Call TRANS: Using the input given above in subroutines 2 and 3, the transmissibility 

arrays, TX(I,J,K), TY(I,J,K) and TZ(I,J,K), are calculated. The transmissibility in the x-

direction is: 

 

),,1(1*),,(),,(1*),,1(
),,(1*),,1(1012656.0),,(

KJIAKJIDXKJIAKJIDX
KJIAKJIAKJITX

−+−
−

=
),,1(1*),,(),,(1*),,1(

),,(1*),,1(1012656.0),,(
KJIAKJIDXKJIAKJIDX

KJIAKJIAKJITX
−+−

−
= (3.1)

 

where ‘A1’ is a function of both the permeability in the x-direction and the gridblock area 

perpendicular to the x-direction. 

 

),,1(),,1(),,(*2
),,(*4

KJIDXKJIDXKJIDX
KJIDXFACX

++−+
=

 
(3.2)
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),,(*),,(*),,(*),,(1 KJIDZNETKJIDYKJIKXFACXKJIA =  (3.3)

 

The transmissibility in the y-direction is: 

 

),1,(2*),,(),,(2*),1,(
),,(2*),1,(2012656.0),,(

KJIAKJIDYKJIAKJIDY
KJIAKJIAKJITY

−+−
−

= (3.4)

 

where ‘A2’ is a function of both the permeability in the y-direction and the gridblock area 

perpendicular to the y-direction. 

 

),1,(),1,(),,(*2
),,(*4

KJIDYKJIDYKJIDY
KJIDYFACY

++−+
=

 
(3.5)

 

),,(*),,(*),,(*),,(2 KJIDZNETKJIDXKJIKYFACYKJIA =  (3.6)

 

The transmissibility in the z-direction is: 

 

)1,,(3*),,(),,(3*)1,,(
),,(3*)1,,(3012656.0),,(

−+−
−

=
KJIAKJIDZKJIAKJIDZ

KJIAKJIAKJITZ (3.7)

 

where ‘A3’ is a function of both the permeability in the z-direction and the gridblock area 

perpendicular to the z-direction. 

 

)1,,()1,,(),,(*2
),,(*4

++−+
=

KJIDZKJIDZKJIDZ
KJIDZFACZ

 
(3.8)

 

),,(*),,(*),,(*),,(3 KJIDYKJIDXKJIKZFACZKJIA =  (3.9)

 

5- Call TABLE: The following data/tables are read: 
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• Relative permeability and capillary pressure tables 

• Irreducible water saturation, initial saturations, bubble point pressure 

• PVT properties (viscosity, formation volume factor, solution gas ratio)  

• Rock compressibility 

 

6- Call UINITL: The initial conditions are established within this subroutine. The initial 

pressure distribution, P(I,J,K), is either calculated by the program for equilibrium 

conditions given the location of the gas/oil contact and oil/water contact and pressure at 

both contacts, or it can be read on a block-by-block basis as in the case of a non-

equilibrium initialization. Phase saturations, SO(I,J,K), SW(I,J,K), SG(I,J,K), can be read 

as constant values over the entire grid, or the entire SO and SW distributions can be read 

on a block-by-block basis. In the latter case, the program calculates the SG distribution 

for each block as SG=1.0-SO-SW. 

 

7- Call CODES: Several codes for controlling diagnostic output for use in program 

debugging are provided. These codes are normally set to zero. Since activating any of 

these codes will generate an extremely large volume of output, it is advised not to 

activate them. Run control parameters, e.g. maximum number of time steps, factor for 

increasing/decreasing time step size, limiting maximum water/oil or gas/oil ratio for a 

producing oil well, limiting minimum/maximum field average pressure, are specified in 

this section. Additionally, solution methods, such as direct solution, successive 

overrelaxation method, are determined. 

 

8- Call AQUI: Aquifer model option (no aquifer, steady state, Carter-Tracy etc.) is 

selected.  Also, the aquifer parameters, e.g. location, thickness, porosity, permeability, 

compressibility, and external radius are determined and written in an output file. 

 

9- Recurrent Calculation loop: This is where a new time step is started. 

 

10- Restart Algorithm Loop: This part controls the print of restart records and is 

skipped if the restart records are specified to not be written. 
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11- Recurrent Data: This section includes the location and initial specifications of wells 

in the model, time step control information for advancing the simulation through time, a 

schedule of individual well rate and/or pressure performance, changes in well 

completions and operations over time, and controls on the type and frequency of printout 

information provided by the simulator. 

 

12- Re-Entry Point For Repeated Time Step: The time step size is updated in this 

section and pressure and saturations will be solved for the repeated time step. For the 

initial time step, oil, water, gas, total compressibilities and original fluids in place are 

calculated. Otherwise, a material balance is run and the pressure-saturation distribution is 

written. 

 

13- Outer Iteration Loop for IMPES: Seven diagonal matrices for the solution of the 

flow equation are established. With the solution method chosen earlier, pressures are 

solved iteratively after which new fluid saturations are calculated. Also, with a simplified 

geomechanical model, porosities are updated. 

 

The method by which the pressure and saturation equations are built and solved by the 

IMPES procedure is explained in Appendix A. Pressure equation derived in Appendix A 

is: 
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Equation (3.10) is called the pressure equation because no explicit time derivatives of 

saturations are present. BOAST numerically solves the flow equations for Po then, it finds 

So, Sw and Sg from flow equations given in Appendix A ((A.13), (A.14), (A.15)) and 

from So+Sw+Sg =1. 

 

The finite difference form of the pressure equation leads to a system of linear equations 

for each grid block, N=I×J×K unknowns Pi,j,k
n+1, where 1<i<I, 1<j<J, 1<k<K. Here, 

Pi,j,k
n+1 denotes the pressure at grid block (i,j,k) at the new (n+1) time level. This system 

of equations can be written as: 
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(3.14)

 

Various methods exist for solving such a system of linear equations, but generally these 

methods fall into one of the two groups – direct methods or iterative methods. BOAST 

has the option of selecting one of two direct methods (BAND or D4), or selecting an 

iterative technique (LSOR) to solve its system of equations.  
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14- Pressure and Saturation Convergence: If the difference between the new 

calculated pressure and saturations and the previous iteration’s pressure and saturations 

are greater than the convergence criteria then the iteration is repeated until the 

convergence is reached. 

 

15- Update: When the convergence criterion is reached, the fluid properties and 

compressibilities are updated.  

 

16- Repeat Time Step?: If the present time step pressure and saturation values are not 

much greater than the previous time step, then the time step size is made larger, the 

pressure and saturations are reset to the previous value and all calculations are repeated 

for the same time step. Otherwise, the new pressures and saturations, a well report, time 

step summary, material balance errors and average reservoir pressure are printed and 

arrays are updated and the next time step is initiated.  

 

17- If Maximum Time Step Reached: If the maximum time step is reached then the 

post plot package is called, results are printed and the simulation is terminated, otherwise, 

it goes to back to #10 to start a new time step.  
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4 GEOMECHANICS 

 
4.1 Background 
 

The ability of a reservoir to produce fluid is influenced by several factors, such as 

reservoir pressure, the type of drive mechanism and reservoir permeability. In general, 

the effect of factors such as reservoir pressure and the type of drive mechanism on 

reservoir productivity changes with the degree of reservoir depletion. The effect of 

reservoir absolute permeability, however, is usually considered to remain the same during 

the producing life of the reservoir regardless of degree of reservoir depletion.  

 

For stress-sensitive rocks however published laboratory studies indicate that the absolute 

permeability may change significantly with variation of the pore pressure and the stress 

state57,58,59. On the other hand field observations show that the pore pressure and stress 

state changes throughout the reservoir as well as with time60,61,62. The combined effect of 

these suggest that the reduction of permeability due to changes in the pore pressure and 

stress state as production from the reservoir takes place, may have significant effects on 

the productivity of stress-sensitive reservoirs. To study the impact of permeability 

reduction on reservoir productivity, it is necessary to fully couple the governing 

equations describing the deformation of the solid part of the rock with governing 

equations describing the changes in pore pressure.  

 

A 3-D finite difference, fully implicit model, which was developed by Osorio et al.63,64 is 

employed in this research to represent the physical phenomena occurring during the 

production from reservoirs with stress-sensitive mechanical and fluid-flow properties. 

The model considers two different physical domains: 1) an inner domain representing the 

reservoir, where fluid flow and rock deformation occur; and 2) an outer (surrounding) 

domain representing the extended stress-disturbed region caused by reservoir depletion. 

The physical system is illustrated in Figure 4-1. The inclusion of the surrounding domain 

leads to realistic modeling of the actual geomechanical boundary conditions taking place 

in the subsurface. The size of the surrounding or outer domain is assumed to be large 
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enough to assure that its boundaries are not “perturbed” by the production/injection of 

reservoir fluids during the time period of interest. 

 

 

Figure 4-1:  Physical system representing the 2-domain approach 
 

In both the inner and outer domains, the solid deformation is determined by changes in 

the effective stress acting on the solid skeleton of the porous rock. Any change in the 

pore pressure of the inner domain results from the combined effect of two different 

physical processes: 1) expansion/compression of reservoir fluids due to fluid 

production/injection; and 2) expansion/compression of the solid part of the rock due to 

changes in the local stress state. However, since there is no fluid production/injection 

from/into the outer domain, any change in the pore pressure of the outer domain is caused 

only by expansion/compression of the solid part of the rock due to changes in the local 

stress state. 

 

The model is based on the simultaneous solution of three sets of non-linear differential 

equations: 1) a fluid-flow model, describing the pore pressure distribution in the porous 

system; 2) a stress-deformation model, describing the deformation of the solid part of the 

rock, and 3) a well performance model, describing the inner boundary conditions. 
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The development of the governing equations is based on the following general 

assumptions:  

• Isothermal, multi-phase fluid flow in the inner domain,  

• The pore space of the outer domain is filled with fluids, but no fluid flow is 

allowed in the outer domain,  

• The rock is assumed to be isotropic with respect to the rock mechanical 

properties,  

• The mechanical properties and the permeability are assumed to be functions of the 

mean effective stress,  

• The deformation of the solid part of the rock behaves as a non-linear elastic 

medium with small strains, and 

• All fluid-flow/geomechanical coupling effects in the well model are assumed to 

take place through the permeability terms. 

 

The primary variables in the resulting system of governing equations are the 

displacements and the pore pressure. Therefore, its solution requires the definition of 

initial values for the pore pressure and the displacements. The initial pore pressure 

distribution is calculated in BOAST initialization data section. However, in practice, the 

initial displacements are unknown.  

 

To deal with this difficulty, the approach taken in this study treats the displacements and 

the pore pressure in incremental form from initial conditions, i.e. the change in the 

primary variables, rather than their absolute values, are computed as production from the 

reservoir evolves.   

 

The physical system is represented in Cartesian coordinates and discretized by means of a 

block centered grid. The nonlinear equations are approximated by using second-order 

approximations in space. A fully-implicit procedure is adopted for maximum numerical 

stability. A Picard-like iteration is used to solve the nonlinear equations where the 

nonlinear terms are updated as soon as new values for one of the dependent variables is 

computed. The linear equations are arranged as a 4×4 block matrix system corresponding 
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to each of the four primary unknowns (i.e., the incremental displacements in the x, y, and 

z directions or the pore pressure). The numerical procedure used to solve this system of 

equations involves a block Gauss-Seidel iteration. The iterative sequence includes 

evaluation of nonlinear properties as function of pore pressure and stress state.  

 

It is assumed that the orientation of the x-y-z coordinate system is aligned with the initial 

orientation of the principal stresses. This implies that the initial shear stresses in the x. y. 

and z directions are zero. Also, it is assumed that the stress state at the boundaries of the 

outer domain are equal to the initial stress state and do not change. 

 

4.2 Fluid Flow Theory: 
 

Combining the fluid flow equations for isothermal, single-phase flow64 and multiphase 

flow65, three basic principles of fluid flow, mass conservation, Darcy’s law and equation 

of state, are obtained for multiphase, isothermal fluid flow. 

 

Mass Conservation: 
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Darcy’s Law: 
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Equation of State (isothermal fluid compressibility): 
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An additional relation required to complete the formulation of governing equations is: 

 

1=+ wo SS . (4.8)

 

In Equations (4.1) through (4.7), ‘ρ’ is the fluid mass density (mass per unit fluid 

volume), ‘v’ is the fluid velocity vector, ‘c’ is the fluid compressibility, and the subscripts 

‘o’, ‘w’, and ‘s’ refer to the oil, water and solid phase, respectively. Also, ‘∇’ and ‘∇·’ 

denote the gradient and divergence, respectively, ‘μ’ is the fluid viscosity, ‘K’ is the 

absolute permeability, ‘kr‘ is the relative permeability, ‘φ’ is the effective porosity, ‘P’ is 

the fluid pressure, ‘S’ is the saturation, ‘g’ is the acceleration due to gravity, ‘gc‘ is the 

gravitational constant, ‘q’ is the produced fluid volume per unit time and ‘t’ is time. 

 

The following section describes the development of the governing equations for fluid 

flow : 

 

Introducing Darcy’s law into Equations (4.1) to (4.2) gives 
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Assuming that g = gc and expanding the left hand side of Equations (4.9) and (4.10) 

gives: 
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Equations (4.10) and (4.11) can be rearranged to provide: 
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Defining the material derivative d(·)/dt with respect to a moving solid: 
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Equation (4.15) links a Lagrangian concept to a spatial or Eulerian description. Note that 

for nondeformable media the material derivative is equivalent to a partial derivative since 

vs=0. Applying Equation (4.15) to Equation (4.13) and (4.14) gives: 
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Expanding the left hand side of Equations (4.16) and (4.17) results in: 
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Expanding the first term of the solid mass balance equation, Equation (4.3), and applying 

Equation (4.14) gives: 
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For constant solid mass and noting that φ=Vp/Vb and Vb= Vp+Vs where Vb, Vp and Vs are 

bulk, pore and solid volume, respectively, Equation (4.20) is equivalent to 
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Thus, the divergence of the solid velocity simply reflects the rate of change of bulk 

volume. Note that Equation (4.21) is nothing more than a statement of the solid mass 

balance, since it is derived exclusively from Equation (4.3). From Equation (4.21), vs=0 

(nondeformable) implies dVb=0. 
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Applying the relation dφ/φ= dVp/Vp- dVb/Vb and Equation (4.21) to Equations (4.18) and 

(4.19) results in 
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The form of Darcy velocities can be simplified by defining the potential Φp of phase p as 
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Equation (4.22) and (4.23) can be written as: 
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Equations (4.25) and (4.26) are key fundamental equations in this study. The right-hand-

side of Equations (4.25) and (4.26) basically represents the rate of change of fluid 

density, pore volume and fluid saturation. 

 

The presence of oil and water phase pressures in these equations complicates the 

problem. We simplify the handling of the phase pressures and potentials in the flow 
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equations by using the capillary pressure concept. Let us define the difference in phase 

pressures as 

 

wocow PPP −= . (4.27)

 

The difference Pcow is the capillary pressure for oil-water system. Experimentally, Pcow 

has been observed to be principally a function of water saturation. Using capillary 

pressure the water phase potential can be written as: 
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The gravity and capillary contributions to the phase pressures have been collected in the 

terms CGo and CGw: 
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Combining Equations (4.29) and (4.30) with Equations (4.25) and (4.26) and rearranging 

yields 
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The change of fluid density term dρp/ρp is rel
  

.ated to fluid compressibility by the 

following equations 
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Here, Pd is the differential pressure, Pd=Pc-P, where Pc and P are confining pressure and 

fluid pressure, respectively. In other words, an imposed confining pressure dPc is 

considered to be the sum of two incremental pressures, dPd and dP, i.e., dPc=dPd+dP. 

Differential pressure is also known as effective stress, P−=′ σσ . 

 

The second partial derivative in Equation (4.35) is assumed to be the unjacketed bulk 

compressibility cs (=1/Ks) measured by allowing the fluid to penetrate the connected 

pores such that the fluid pressure acts fully on the “solid phase”. Under such a condition, 

the change of confining pressure is equal to the change of pore-fluid pressure, i.e., dPc-

dP, and hence dPd=0 or Pd=constant. Constant solid mass is assumed which implies that 

the fluid is chemically inert with the solid phase. 

 

Inserting Equations (4.33), (4.34) and (4.35) into Equations (4.31) and (4.32), fluid flow 

equations can be written in terms of compressibilities, pore pressure and differential 

pressure. 
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Neglecting the small quadratic term ( )2
pp Pc ∇⋅∇ , the above equations become:  
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4.3 Linear Poroelastic Theory: 
 

Poroelastic theory describing fluid-solid coupling was developed in a series of papers by 

Biot12,17. Perfect elastic medium (linear, reversible and non-retarded mechanical 

behavior) with small strains are assumed in this study. Isothermal conditions are also 

assumed.  
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The three basic principles of poroelastic theory are: stress equilibrium, strain-

displacement and strain-stress-pressure relations. They are synonymous with the mass 

balance, Darcy’s law, and equation of state of the fluid –flow modeling. Mathematically, 

the porelasticity equations are:  

 

Stress Equilibrium: 
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Strain displacement relation: 
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(4.41)

 

Strain-stress pressure: 
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(4.42)

 

In Equations (4.40), (4.41) and (4.42), εij and σij are the components of the bulk strain 

tensor and total stress tensor, respectively. The term ui is the component of solid 

displacement vector u(ux,uy,uz) and E, G (which is equal to E/[2(l+v)]), and v are the 

Young’s modulus, shear modulus, and Poisson’s ratio for the solid skeleton under drained 

conditions, respectively. Finally, Kb (which is equal to l/cb) is the drained jacketed bulk 

modulus and α is the poroelastic parameter or effective stress coefficient. A more detailed 

discussion of α will be given later. Body forces and inertial effects are neglected in 

Equation (4.40). Small strains are implied in Equation (4.41). The stress and strain are 
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taken positive in tension whereas fluid pressure p is positive for compression. Note that 

this differs from conventional geomechanics where compression is positive. 

 

It is more convenient to express stress in terms of strain because the total stress satisfies 

the equilibrium equation, Equation (4.40). Solving Equation (4.42) for stress gives: 

 

ijijijij PeG δα−δλ+ε=σ 2
  
.
 

(4.43)

 

The constants in Equation (4.43) are given below: 
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The term e is the volumetric strain which can be represented by strain tensors: 

 

zzyyxxe ε+ε+ε= . (4.46)

 

The term        is the mean stress: 

3/)( zzyyxxm σ+σ+σ=σ . (4.47)

 

The rate of displacement (u) gives the velocity of the solid: 
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The stress equilibrium can then be rewritten as: 
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We can write the equilibrium equations in terms of the incremental displacements and 

incremental pore pressure. This results in: 
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(4.57)

 

where uΔ is the incremental displacement vector given by  

 

( )Tzyx uuuu ΔΔΔ=Δ , . (4.58)
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It is assumed that there is no incremental displacement at the boundaries. Mathematically, 

zero incremental boundary conditions can be expressed as: 

 

 0),,,( =Δ boundaryx tzyxu   

0),,,( =Δ boundaryy tzyxu . (4.59)

 0),,,( =Δ boundaryz tzyxu  

 

4.4 Numerical Analysis Approach 
 

The system of nonlinear partial differential equations represented by Equations (4.38), 

(4.39) and (4.57) is discretized using second order finite difference approximations on a 

cell-centered grid in Cartesian coordinates. A fully implicit time marching procedure is 

adopted here for maximum numerical stability. 

 

4.4.1 Notation Convention 
 
The finite difference approximation of the pore pressure Equations (4.38) and (4.39) can 

be written in general form as the following matrix equation: 
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(4.60)

 

In Equation (4.60), ΔP, ΔUx, ΔUy, ΔUz represent the discretized approximation of the 

incremental pore pressure and the incremental displacements in the x-, y- and z- 

directions, respectively. Al,ΔX is a coefficient block matrix, the first subscript, l, is the 

equation number and the second subscript, Δx, indicates the unknown vector ΔX (i.e., ΔP, 

ΔUx, ΔUy or ΔUz) which post-multiplies the block matrix Al,ΔX. Due to the nonlinear 

behavior of Equation (4.60), the block matrix terms Al,ΔX and the vectors Fl are functions 

of the solution.  

 

The four matrix equations can be written in a block Gauss-Seidel fashion: 
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First Equation: 
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Second Equation: 
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Third Equation: 
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Fourth Equation: 

 

[ ] [ ] [ ] [ ]
[ ] zzU

yUxUPzU

FUA

UAUAPAFUA

z

yxz

=Δ

Δ−Δ−Δ−=Δ

Δ

ΔΔΔΔ

,4

,4,4,44,4

  
.
 

(4.64)

 

These matrix equations can be expressed as seven-point stencils of the form: 
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(4.65)

 

where the stencil elements Bi,j,k, Ni,j,k, Wi,j,k, Ci,j,k, Ei,j,k, Si,j,k, and Ti,j,k represent the matrix 

coefficients of the difference equation for ΔXi,j,k-1, ΔXi,j+1,k, ΔXi-1,j,k, ΔXi,j,k, ΔXi+1,j,k, ΔXi,j-
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1,k, and ΔXi,j,k+1 respectively. The values ΔX refer to elements of the unknown vector ΔX. 

The stencil coefficients and the values Fi,j,k are functions of the unknowns, Xt+Δt= Xt+ΔX.  

 

4.5 Discretization of the Pore pressure Equation 
 

Following the notation in Equation (4.65), the finite difference approximation of 

Equation (4.61) is given as: 
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For the outer domain, the finite difference approximation of Equation (4.61) is given by 
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The finite difference approximations of Equations (4.62) through (4.64) are given, 

respectively, as 
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Discretization of the porosity equation is as follows 
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Solving for 1
,,

+n
kjiφ  gives 
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4.6 Numerical Solution Procedure 
 

Due to the nonlinear behaviour of flow and stress equilibrium equations, the solution 

must be found iteratively63,68. A Picard like, block Gauss Seidel iteration method, where 

nonlinear terms are updated as soon as one of the dependent terms are calculated, is used. 

According to this method, initial values for 1+nP , 1+Δ n
yU  and 1+Δ n

zU are guessed. Then, 

the coefficient matrices ( XlA Δ, ) and the vector ( XF ) are calculated and solved for 1+Δ n
xU . 

Using the new values for 1+Δ n
xU  the coefficient matrices ( XlA Δ, ) and the vector ( yF ) are 

computed and solved for 1+Δ n
yU . Then using the new values for 1+Δ n

xU  and 1+Δ n
yU  the 

coefficient matrices ( XlA Δ, ) and the vector ( zF ) are computed and solved for 1+Δ n
zU . 

Finally, with the new values of 1+Δ n
xU , 1+Δ n

yU  and 1+Δ n
zU  the coefficient matrices ( XlA Δ, ) 

are the vector pF are updated and solved for 1+nP . This procedure is repeated until the 

convergence is reached after which the process moves to the next time step. Once the 

displacements and pore pressure are known, the stress state can be determined from 

Equation (4.41) and Equation (4.43). Then the shear modulus, bulk compressibility, rock 

compressibility, permeability and porosity can be found from lab-generated charts. 
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5 PRESSURE PULSE EQUATIONS 

 

5.1 Background 
 
Declining oil recovery is of major concern in the oil industry. Common EOR methods 

have a number of limitations, such as high cost, or possible harmful ecological 

consequences. Searching for new methods of stimulation is currently an urgent focus to 

engineers as well as geophysicists. The use of elastic wave excitation has been suggested 

as an alternative EOR method4,21. 

 
5.2 Mechanisms 
 

5.2.1 Non-Conventional EOR Methods 
 

During the 1970's, in Russia, earthquakes were observed to have affected the fluid levels 

in petroleum reservoirs4. In most cases, the fluid levels were reported to have increased, 

leading to enhanced flow from the reservoir. It has also been observed that the water/oil 

ratio during an earthquake swarm may change69. Wells with initially large water/oil ratios 

were observed to have lower post-earthquake-swarm water/oil ratios and vice-versa in 

wells with initially low water/oil ratios. Earthquakes and explosions have also been 

known to affect underground fluid levels (water table and oil reservoir levels) in some 

areas18. These observations led to the concept of seismic excitation enhancing the flow of 

(underground) fluids in porous media. The concept of seismic excitation involves 

applying small strain excitation, of magnitude 10-10 to 10-6, either at the surface above the 

reservoir, or underground within the reservoir. However, because of the high rates of 

amplitude attenuation and geometric spreading associated with the application of surface 

excitation, very high-energy sources would be necessary to apply sufficient energy to the 

reservoir4.  In addition, Spanos et al.21 postulate the low strains that are generated by 

seismic excitation makes it unlikely that enough strain energy would be generated to 

substantially affect fluid flows. 

 

Conventional recovery ratios in many reservoirs are as low as 20-40% of the original oil 

in place (OOIP). Improved recovery technologies may increase these numbers by as 
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much as 10-15% (i.e. to 30-50% of the OOIP). Only exceptionally is more than 60-65% 

of the OOIP recovered from a single conventional oil reservoir. Various physical 

processes (linked to Darcy flow, capillarity, viscosity, permeability, heterogeneity, and 

pressure gradients) dictate the amount of oil recovered by conventional methods. 

 

Capillary blockage leads to isolation of bodies of oil because the capillary entry pressure 

cannot be overcome under static flow conditions. In cases of unfavorable mobility ratio 

(where the viscosity ratio of oil displacing to displaced fluids is far less than 1), the less 

viscous phase channels through the more viscous phase, even if the permeability is 

perfectly homogeneous. This is called viscous fingering, and is endemic in gas or water 

flooding of more viscous oils. Water coning and gas coning to oil wells under production 

are forms of viscous fingering, and they lead to sudden declines in oil production. 

 

The presence of channels of different permeability leads to flow channelling, where most 

or all the displacing fluids flow to the producing well through the most permeable zone, 

leaving other zones undeveloped or underdeveloped. For example, residual oil saturation, 

a concept related to Darcy fluid flow through porous media, is the result of bypassing of 

oil during a water displacement test, and this value is typically between 10% and 50% of 

the original oil in place. 

 

The basic physical process behind oil and gas exploitation is fluid flow. It has long been 

supposed that the physics of Darcy flow dictates recovery ratios that can be attained in 

multiphase systems. However, along with gravity drainage methods, pressure impulse 

flow enhancement has recently been found to be effective. This is achieved through the 

input of dynamic energy70.  

 

5.2.2 Darcy Theory and Biot Theory 
 

There is a broad range of possible frequencies of mechanical excitation of the fluid phase 

or the solid phase of a liquid-saturated porous medium (Figure 5-1).  
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Figure 5-1:  Range of frequencies for dynamic excitation21 
 

Conventionally, there have been two theoretical formalisms for this broad range of 

excitation frequencies: for high frequencies Biot-Gassman wave mechanics theory forms 

the foundation of analysis, and for low frequencies (“zero frequency”), Darcy diffusion 

theory is the basis of analysis. 

 

Biot theory was largely laid out in the period 1945-1965. It is a wave mechanics theory 

that is considered valid for excitation frequencies greater than 10Hz. Biot-Gassman 

theory ignores megascopic diffusion effects (∂P/∂t terms) and deals only with inertial 

effects, leading to an expression of the form70: 
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z
PC

t
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=
∂
∂  

  
; (5.1)

 

where ‘C’ is a parameter based on the physical properties of the medium, but not 

including permeability and viscosity. Highly complex versions of this equation are used 
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to analyze dynamic behavior of porous media. Therefore, diffusion processes cannot be 

addressed within a Biot-Gassman context. 

 

Biot also assumed that porosity is a scalar physical parameter. However, recent work70 

has shown that for porous media, porosity is a thermodynamic variable, similar to 

pressure and temperature. For a complete description of the energy state of a porous 

medium, the porosity must be stipulated. 

 

Wave theory predicts the existence of many of the known strain waves in porous media, 

but fails to predict the existence of a slow displacement wave (v ~ 150m/s) that is often 

observed in earthquakes. This displacement wave arrives well after all the known strain 

waves, and is characterized by a low vibration frequency spectrum. 

 

At the low end of the excitation spectrum, Darcy theory deals with flow through porous 

media subject to number of assumptions: 

 

• The liquids are incompressible and the strains are small. This restriction has been 

modified in order to analyze gas flow to wells. 

 

• There are no dynamic (inertial) effects; therefore all motion is described by a set 

of diffusion equations. For example, for the simplest one dimension case of 

compaction, the differential equation is of the form: 
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; 

 

where ‘C’ is a diffusivity parameter that describes the porous medium in terms of 

permeability, viscosity, and solid phase compressibility. 

 

It is widely accepted that Darcy theory is acceptable to describe the behavior of porous 

systems subjected to excitation frequencies of less than ~10-4 – 10-5 Hz. The pore liquids 
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do in fact behave incompressibly in this dynamic range, leading to a pure displacement 

process through the pores. 

 

Thus, slow excitation can be described by a diffusion equation (∂u/∂t terms) where the 

liquid behaves incompressibly, whereas rapid excitation can be described by a wave 

equation (∂2u/∂t2 terms) where the liquid undergoes strain but not displacement. This 

discussion, expressed diagrammatically in Figure 5-1, leads to the conclusion: there must 

be a range of three orders of magnitude of excitation frequency between these limits 

where both diffusion and dynamic aspects are of primary importance in porous media 

mechanics. Furthermore, there must be a transition zone where the liquid phase 

undergoes a transition from compressible to incompressible behavior.  

 
5.2.3 The Porosity Dilation Wave 
 

The shortcomings of Biot and Darcy theory have been largely overcome by the 

development of a set of coupled diffusion-dynamic differential equations. This was 

achieved in the conventional manner, satisfying all the laws of conservation. Porosity is 

introduced as an explicit thermodynamic variable, so that the ∂φ/∂t and ∂2φ/∂t2 terms are 

found in the equations. The equations are mixed hyperbolic and parabolic. In our study 

these equations are solved numerically and coupled into BOAST. The velocity solution 

of these equations predicts the existence of a slow displacement wave. This wave, which 

is called the porosity dilation (PD) wave, is not a strain wave: it is a coupled liquid-solid 

displacement wave, and it has the following properties 70. 

 

• The PD wave is a body wave of small elastic porosity dilation that propagates 

through a liquid-saturated porous medium. Gas was observed to dampen the PD 

wave. 

 

• The wave cannot exist without liquid-solid coupling, and it is preferentially 

generated through excitation that is dominated by moderate frequency energy 

(0.1-1 Hz), in the range where the liquid evidences a transition to incompressible 

behavior. 
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• With regard to conventional strain waves such as compressional and shear waves, 

the PD wave is analogous to the relationship between a tsunami (a liquid 

displacement wave) and a liquid-transmitted compressional wave (the “P” liquid 

strain wave). In fact, the velocity ratios are similar (roughly 1/20th). 

 

The theoretical9,12,17,69, laboratory3 and field demonstration4,8 of the existence of the PD 

wave helps explain several physical phenomena that to date have escaped rigorous 

analysis. For example, post-earthquake flow rate enhancement in oil wells can be 

explained by the micromechanical effects associated with the PD wave.  The unusual 

delay in response, which occurs long after all strain waves and surface waves have 

transmitted, can be linked to the low velocity of the PD wave. Similarly, delayed 

triggering of sympathetic earthquakes, groundwater response in low-frequency vibrations 

(such as storm-wave induced inland flow in porous sediments), and other phenomena can 

perhaps be better understood by PD wave mechanics. 

 

5.2.4 Benefits to Flow Process  
 

Figure 5-2 shows the change in pore volume as a porosity dilation wave passes through 

the matrix. This is important because the induced variations in porosity are responsible 

for the flow rate enhancement effect. As waves of increased and decreased porosity pass 

through a medium, they induce the pore fluid to flow, significantly increasing flow. In 

addition to increasing flow, pressure pulsing also has an associated reservoir 

pressurization effect that is seen in both the field and laboratory3,4,8. 
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Figure 5-2:  Pulsing at the pore scale. 

 

Pressure pulsing creates the PD wave, which transits through the system, and results in 

the acceleration (a) of a small amount of the fluid mass (m) into and out of the pore 

throats (Figure 5-3). This gives rise to a force, F = m·a, and if the force is divided by the 

area (A) of the pore throat that is blocking the flow, it is clear that a dynamic pressure ∆P 

= F/A is generated at the throat. For immiscible two-phase systems, if ma/A > γow/2r, the 

dynamic ∆P can overcome the capillary barrier, and cause phase breakthrough. Once 

breakthrough has been achieved, fluid can flow through the pore easily and oil production 

can continue with fewer sources of impedance. If capillary barriers are overcome, there 

will be less bypassed oil in situations such as bottom-water drive: excitation in the 

bottom-water zone will help generate a more planar front. This process will increase the 

ultimate oil recovery factor in such cases.  
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Figure 5-3:  Pulsing overcomes capillarity 

 

The diagram in Figure 5-4 represents a case of viscous fingering around a wellbore. 

These cases typically arise when a low viscosity liquid is injected into a porous medium 

containing a higher viscosity liquid; examples are water floods or chemical treatments in 

heavy oil reservoirs where the viscosity differences are so large that viscous fingering 

completely dominates the process, leading to early low-viscosity phase breakthrough, 

poor chemical contact with the reservoir, and so on. With pulsing, there is high dynamic 

energy near the wellbore to help overcome the barriers to flow that generate viscous 

fingering, but far from the well, the pulsing energy is diminished by geometric spreading. 

Thus, viscous fingering and channelling effects near the wellbore tend to be overcome, 

and this increases efficiency. 
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Figure 5-4:  Viscous Instabilities 
 

Pore throats accumulate fine-grained fluid-transported minerals as well as precipitates 

such as asphaltenes or minerals coming out of solution because of geochemical or 

pressure changes. The presence of these solids leads to the development of massive 

restrictions around producing wellbores. Many chemical treatments and technologies 

exist to attempt to dissolve or dislodge this material so that the well can be become a 

good producer again. Pressure pulsing helps loosen existing pore blockages and reduces 

the creation of future blockages because of the acceleration of the fluids into and out of 

the pores.  
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5.3 Theory Development 
 

The derivation of the wave equations for porous media depends upon a set of basic 

equations and the equations of motion. The basic equations are the continuity equations, 

the pressure equations, and the porosity process equation. These equations permit the 

derivation of the solid dilation and porosity equations1,2,6,7,9,21. 

 

5.3.1 Fluid Phase Equations 
 

5.3.1.1 Continuity 
 

The continuity equation for the fluid is 

 

( ) ( ) fff
f mv

t
&=⋅∇+

∂
∂

φρ
φρ

  
; (5.2)

where the source term 
t

m
m f

f ∂
∂

=&  is the rate of mass of fluid injected.  The wave 

phenomena will be examined as deviations from (perturbations of) an unperturbed 

physical state physical state ofρ  (density), oφ  (porosity), ofv  (velocity). The unperturbed 

physical state satisfies the continuity equation, i.e. 

 

( ) ( ) ofofofo
ofo mv

t
&=⋅∇+

∂

∂
ρφ

ρφ

 
; (5.3)

 

and fm&  is usually set to zero. For deviations from the unperturbed state, the following 

equations are derived: 

 

δφφφ += o ; (5.4)

ffof δρρρ += ; (5.5)
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ffof vvv δ+= ; (5.6)

ffof mmm &&& δ+= . (5.7)

 

Consequently, it is observed that  

 

fofofoof δρφδφρρφφρ ++= ; (5.8)

 

to first order. Furthermore, we have 

 

ffoofofofofofofooff vvvvv δρφδρφδφρρφφρ +++= . (5.9)

 

The following two equations are obtained by reorganizing Equations (5.8) and (5.9) to 

accentuate a common factor fooρφ , 

fo

f
foo

o
foofoof ρ

δρ
ρφ

φ
δφρφρφφρ ++=

  
; (5.10)

ffoo
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f
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o
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φ
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. (5.11)

 

Thus to first order, the continuity equation may be written as:  
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 (5.12)

 
Rearranging terms, Equation (5.12) may be written as: 
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 (5.13)

 

Since the unperturbed state satisfies the equation of continuity, this equation reduces to  
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or, grouping terms, 
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Using the chain rule, Equation (5.15) can be rewritten as:  
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 (5.16)

 
and which, after collecting terms, can be rewritten as: 
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(5.17)

 

Again, because the unperturbed state satisfies the continuity equation, this equation 

reduces to 
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Expanding and regrouping terms in Equation (5.18) provides the following: 
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If the unperturbed state is restricted to a no-flow, homogeneous and isotropic system 

without sources, then we have 

0=fom&  0=fov ; (5.20)

 

and that immediately gives 

 

0=
∂

∂
t

fooρφ

  
; (5.21)

 

from the equation of continuity. Additional assumptions include: 
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0)( =∇ fooρφ ; (5.22)

 

and the unperturbed fluid density and porosity are separately independent of time: 

 

0=
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∂
t
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 0=
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t
foρ

  
. (5.23)

 

With restrictions on the unperturbed state, the equation of continuity becomes: 
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Dividing Equation (5.24) through by the common factor fooρφ :  
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and extracting out the time independent terms, Equation (5.25) may also be written as  

 

( )
foo

f
f

f

foo

m
v

tt ρφ
δ

δ
δρ

ρ
δφ

φ
&

=⋅∇+
∂

∂
+

∂
∂ )(1)(1

  
. (5.26)

 

Writing the fluid velocity as the time derivative of the fluid’s displacement: 
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. (5.27)
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The unperturbed state is 0=fu . Equation (5.27) can be rewritten as: 

 

t
u

v f
f ∂

∂
=

)(δ
δ

  
. (5.28)

 

The continuity equation may now be written as 
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which may be immediately integrated to give 
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Replacing the terms by their definitions, this integrated form is 
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Isolating the velocity and fluid displacement, these equations give  
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5.3.1.2 Pressure 
 

The density terms in Equation (5.32) and (5.33) can be written in terms of pressure. The 

(adiabatic) bulk modulus of the fluid is defined by 

 

f

f

ff dP
dV

VK
11

−=
  
; (5.34)

 

where the specific volume of the fluid is ffV ρ/1= . Consequently: 
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A book keeping parameter fc  can be defined by writing the above expression as 

 

f
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K
c ρ

ρ
1

=
  
; (5.36)

 

fc  is called the compressibility factor. Normally, 1=fc . As ∞→fK , the fluid becomes 

incompressible. The same limit can be achieved (in a computer program) by keeping 

fK finite and letting 0→fc . Following equation can be written:  

 

f
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δ
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where offf PPP −=δ . Using the definition of the bulk modulus, the following equation 

can be written:  
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or, using the definitions of the terms 
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Substituting this expression into the integrated continuity equation, the fluid’s pressure 

equation can be obtained: 
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A useful form of this equation is  
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The time derivative of the fluid’s density-pressure relationship gives 
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or, replacing the terms by their definitions, 
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Substituting this expression into the continuity equation gives: 
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which could have also been obtained by taking the partial time derivative of the pressure 

equation. This equation may be rewritten as: 
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in the limit as ∞→fK the following equation is obtained: 
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This also means 
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5.3.2 Solid Phase Equations 
 

5.3.2.1 Continuity  
  

The continuity equation for the solid is 
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where 

 

φη −= 1 . (5.49)

 

The analysis proceeds in direct correspondence with the analysis of the fluid’s equation 

of continuity. Deviations from an unperturbed state osρ , oη , osv that satisfies the 

continuity equation is examined, i.e. 

 

( ) 0)(
=⋅∇+

∂
∂

ososo
oso v

t
ρηρη

  
. (5.50)

 

The deviations from the unperturbed state are written as:  
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and observe that  

 

δφ
φφ

ηη
ηηδη

−=
−−=

−−−=
−=

)(
)1()1(

o

o

o

  
. (5.54)

 

Consequently, it is observed that 
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soososos δρηδηρρηηρ ++= ; (5.55)

 

to first order. Furthermore, 

 

ssoososososososooss vvvvv δρηδρηδηρρηηρ +++= . (5.56)

 

Reorganizing these two equations to accentuate a common factor fooρφ , the following 

equations are obtained  
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Substituting these expressions into the continuity equation, the following can be obtained 

(omitting all of the interim calculations) 
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Now, expressing η in terms of φ : 
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 (5.60)

  

For porous media, the solid is normally motionless, i.e. 

 

0=sov ; (5.61)

 

that immediately gives 
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from the equation of continuity. Since 
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then 
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Assuming the unperturbed solid represents a homogeneous and isotropic system: 

 

0)( =∇ sooρη . (5.65)

 

With the restrictions to the unperturbed state, the equation of continuity is 
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Dividing through by the common factor fooρφ : 

 

( ) 0
)()(

=⋅∇+
∂

∂
+

∂

∂

s
so

s

o v
tt

δρ
δρ

η
δη

  
. (5.67)

 

Extracting out the time independent terms, this equation may also be written as  
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or, replacing the deviations by their definitions, 
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Writing the solid velocity as the time derivative of the solid’s displacement:  
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The unperturbed state is 0=su , then 

 

t
uv s

s ∂
∂

=
)(δδ

  
. (5.71)

 



 59

The continuity equation may now be written as 
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which may be immediately integrated to give 
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Replacing the terms by their definitions, this integrated form is 
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In terms of porosity, this equation is 
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5.3.2.2 Pressure 
 

A pressure term will be introduced in Equation (5.75). The (adiabatic) bulk modulus of 

the solid is defined by 
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where the specific volume of the solid is ssV ρ/1= . This definition assumes the solid is 

undergoing a pure compression (no shear). Consequently; 
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To first order Equation (5.77) may be written as: 
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so that 
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Substituting this result into the integral of the continuity equation, the following can be 

obtained:  
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Expressing this equation in terms of porosity, the pressure equation is 
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or, rearranging, 
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Another useful form of this equation is  
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The time derivative of the pressure equation is 
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5.3.3 Porosity 
 

The porosity equation is needed to complete the system of equations for a porous 

medium. Spanos, et al.21 showed that this equation takes the form 
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where  

 

0>sδ  and 0>fδ .         
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It was assumed 
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for the unperturbed state. Thus the porosity equation becomes 
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This equation may be integrated. This gives us 
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5.3.3.1 Solid Dilation 
 

Knowing that the displacement of fluids and solids are a function of fluid pressures, the 

dilation of the solid can be related to the perturbations in porosity and fluid pressure. It is 

obtained by combining the integrated porosity equation with the fluid’s pressure 

equation.   

 

Combining the integrated porosity equation (5.89) and the fluid’s pressure equation 

(5.41) gives  
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Combining terms and rearranging this equation give 
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or, dividing through by sδ  
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According to Spanos and Udey’s definitions21
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Equation (5.92) becomes the solid dilation equation: 
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The time derivative of the solid dilation equation is 
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Taking the gradient of the solid dilation equations gives 
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or, equivalently 
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where we have assumed the unperturbed pressure satisfies 0=∇ ofP . 
 

5.3.4 Coupled Wave Equations 
 

Spanos and Udey defined that21 
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so that  
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We employ φα  and pα  as independent variables in our derivations below. The constraints  
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leads to 
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5.3.5 Summary of Fluid and Solid Equations 
 

Before introducing the equation of motion and wave equations, the following is a 

summary of some useful equations derived in the previous sections. 

 

The continuity equation for the fluid equation leads to 
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The solid dilation equation is 
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with time and spatial derivatives given by 
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Combining Equation (5.104) and (5.106): 
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5.3.6 Wave Equation 
 

The standard equation for a damped wave ),( txϕ  is 
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where ρ is the effective density, a is the attenuation, b is the bulk attenuation, and oυ is 

the undamped wave speed. The factor ϕf is a normalization factor; a typical choice is 
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The wave operation W(f, ρ , a, b, oυ ) can be defined as 
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Thus, the standard wave equation may be expressed as 
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In the next sections solid and fluid wave equations will be derived. 

 

5.3.6.1 Solid Equation of Motion 
 

The solid’s equation of motion in the isothermal case is 
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where sf  is the external force density and K is a macroscopic permeability term21. 

The divergence of the equation of motion Equation (5.113) produces the following 

equation: 
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and collecting terms, it simplifies to the following form: 
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KM the matrix bulk modulus can be defined as: 
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Substituting KM into Equation (5.115), the solid dilation equation becomes: 
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Substituting in the expressions for ( )su⋅∇  and ( )sf vv ⋅∇−⋅∇  produces the following 

equation which includes necessary terms to form standard wave equation. 
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Furthermore, expanding terms 
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Putting all porosity terms on the left and all other terms on the right and collecting terms: 
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With a few more steps Equation (5.120) can be written in standard wave form. First the 

effective densities sφρ  and psρ  are introduced 
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In addition, the porosity’s bulk modulus φK  is defined by 
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Substituting these definitions into the solid equation gives 
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and then, factoring out densities and normalization factors, the following equation can be 

obtained 
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Comparison with the wave standard form Equation (5.111) now permits the porosity’s 

solid attenuation to be identified and defined as 
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the porosity’s solid bulk attenuation by 
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and the porosity’s solid wave speed by 
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For the right hand side of the solid wave equations the pressure’s solid attenuation can be 

identified and defined by 
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the pressure’s solid bulk attenuation by 
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and the pressure’s solid wave speed by 
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Consequently, the standard form of the solid wave equation is 
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The porosity-solid wave operator can be defined by 

 

),0,,,1( sss
o

s aWW φφφφ υρ
φ

=
  
; (5.133)

 

and the pressure-solid wave operator by 
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Then the solid wave equation above may be expressed as 
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5.3.6.2 Fluid Equation of Motion 
 

The fluid equation of motion is: 
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where Mμ is given by 
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and sλ  is a shear modulus enhancement factor.  Defining Mσ  
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Substituting this expression into the wave equation and noting that  
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With a few more steps Equation (5.140) can be written in standard wave form. Taking the 

negative divergence )(−∇⋅  of the equation of motion. 
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Now substituting for )( fv⋅∇ , ( )sv⋅∇  and ( )sf vv ⋅∇−⋅∇   
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expanding terms gives 
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Collecting terms  
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which becomes, after some minor simplifications 
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Rearranging so all porosity terms are on the left hand side and pressure terms are on the 

right hand side: 
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Finally, collecting terms 
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To cast the fluid equation above into the standard wave equation form, first, the effective 

densities are defined 
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so that the fluid equation becomes 
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Factoring out the density and normalization terms now produces 
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Comparing terms in the fluid equation to the standard form Equation (5.111) permits to 

identify the standard coefficients. For the left hand of the fluid equation the porosity’s 

fluid attenuation is defined by 
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the porosity’s bulk attenuation by 
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and the porosity’s fluid wave speed by 

 

02 =fφυ . (5.153)

 

For the right hand side of the fluid equation the pressure’s fluid attenuation (actually a 

gain) is defined by 
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and the pressure’s fluid bulk attenuation by 
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With these definitions, the fluid equation in standard form is given by 
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When the fluid is incompressible, the fluid’s wave speed (the speed of sound in the fluid) 

is defined by 
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Defining the porosity-fluid wave operator by 
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and the pressure-fluid wave operator by 
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Then the fluid wave equation above may be expressed as 
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5.3.7 The Porosity Wave 
 

The incompressible limit is taken by letting ∞→fK . In a computer program this can be 

achieved by setting 0=fc . In this limit, the solid wave equation becomes 
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If there are no source terms or only point source terms then this equation reduces to 
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This equation describes an undamped porosity wave. Without attenuation it would travel 

with speed sφυ . Under conditions where the inertial term (the second time derivative) is 

very small, this equation reduces to a diffusion equation. 
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which can be rewritten as  
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where the diffusion coefficient sDφ  is  
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in the incompressible limit, the fluid wave equation becomes 
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Isolating the fluid pressure gives 
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This equation shows how the fluid pressure responds to the porosity wave. It is observed 

that as the wave propagates (either as a wave or diffusively) it loses energy to the porous 

medium, and the pressure (typically increases) in response to this energy loss.  

 

5.4 Discretization of the Fluid and Solid Wave Equations 
 
5.4.1 Discretization of the Fluid Wave Equations 
 

Assuming the injected mass rate is constant and it is a point source then the fluid wave 

equation (5.167) reduces to  
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where 
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Writing Equation (5.169) in a matrix form: 
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where 
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F includes rest of the terms which is a function of porosity. 

 
5.4.2 Discretization of the Solid Wave Equations 
 
Assuming the injected mass rate is constant and it is a point source then the solid wave 

equation reduces to  
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where 
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and where  
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5.5 Summary 
 

In this chapter porosity wave equation, both for the solid and fluid, is derived. The 

process of derivation started with the basic equations, continuity equations, pressure 

equation, porosity equation and equation of motions. Terms as porosity, density, velocity 

and source, at a given time, are written as a function of deviations from unperturbed state. 

Using the definition of the fluid bulk modulus, pressure equation is derived from the solid 

and fluid continuity equations. Also, fluid and solid phase displacements as a function of 

pressure is derived to obtain solid dilation equation. Next, combining solid dilation 

equation with equations of motion (fluid and solid) wave equations, propagating solid 

and fluid, are developed. Finally, assuming incompressible limit, porosity wave equations 

are derived from wave equations. These equations relate porosity to fluid pressure. It is 

these equations which are coupled with fluid flow equations in BOAST to estimate 

effects of pressure pulsing on fluid flow. Coupling procedure will be discussed in the 

next chapter. 
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6 COUPLING GEOMECHANICS AND PRESSURE PULSES IN BOAST 
 

6.1 Methodology 
 

A diagram of the relation of the BOAST algorithm to the decoupled pressure pulsing and 

geomechanical model is presented in Figure 6-1.  During each timestep, the pressure 

pulse subroutine (PPS) obtains the initial value of the pressure, saturation, porosity and 

fluid/solid properties from BOAST as input.  It then solves the wave equations and 

calculates the pressure disturbance and the new porosity distribution as a result of the 

porosity wave propagation (dynamic porosity change).  At the same time step, the 

BOAST algorithm solves for the pressure distribution due to static injection or 

production.  The new reservoir pressure at the end of the timestep is then determined by 

adding the pressure disturbance from the PPS  to the BOAST solution (Figure 6-3).   
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Figure 6-1:  BOAST with Geomechanics and PPT Algorithm 
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PPS takes the initial value of phase pressures, phase saturations, porosity from BOAST, 

solves the wave equations and calculates the new porosity due to wave propagation. The 

equations required for this were presented in Chapter 5 (Pressure Pulse Equations). 

However, a mass source term, pulse source term and seismic source term should be 

included in the fluid continuity equation, fluid equation of motion and solid equation of 

motion, respectively. 

 

Adding a mass source term, m& , in the fluid continuity equation gives 
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Having the mass source term, the pressure equation and solid dilation equation will be 
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(6.3)

 

Re-substituting the modified fluid continuity equation and solid dilation equation into 

these equations the new fluid and solid wave equations are developed. 

 

Pressure pulsing causes a number of changes in fluid and solid properties which should 

be calculated along with pressure and porosity. Initially, pore is filled with water and oil, 

with initial saturations of S1 and S2 (1- S1) for water and oil, respectively. Assuming that 
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all the porosity change will be filled by water, the initial saturations S1 and S2 are updated 

to modified saturations, S1’ and S2’. It can be argued that not all of the new void space 

would be filled by water. However, assuming that the majority of the porosity 

disturbance occurs near the water injection wellbore, it is a valid assumption. 

 

 

 

Figure 6-2:  Diagram of the Relation of Increasing Porosity and Fluid Saturation 
 

Redistribution of saturations in gridblocks will cause modifications in capillary pressures, 

the pressure difference between the phases. Capillary pressure is directly related to phase 

saturations. Using the equation developed by Spanos21, capillary pressure is updated both 

for static pressure changes and dynamic changes.   
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The first order time derivative of saturation in Equation (6.4) represents saturation 

changes due to pressure change across the porous media and the second order derivative 

represents dynamic changes due to acceleration effects, i.e. pressure pulsing. Ultimately 

the capillary pressure curves for each porosity-modified gridblock should be updated 

using Equation (6.4).  

 

Changes in the porosity can drastically affect the absolute permeability of the porous 

medium. Various models exist for the porosity-permeability relationship with the 

Water Oil Initial size of the 

pore: initialφ  

Water φΔ  
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predicted permeability varying depending on the model selected. Rock permeabilities 

will be recalculated using Carmen-Kozeny equation and focus will be given to the 

sensitivity of parameters: 
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Relative permeabilities, which modify the absolute permeability in multi fluid system, 

will also be modified with the changes in the saturations. The relation of the relative 

permeability to saturations is given with the following equations 21: 
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The injectivity of the well is directly related to formation porosity and permeability. 

When changing the porosity the new injection rate is calculated.  
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The porosity change, φ , in the right hand side of Equation (6.10) requires pressure 

change, oP∇ , or injection rate change, wq , on the left hand side. As the pressure difference 

between across the porous media is assumed constant in pressure, only the injection rate 

will be modified. 

 

As discussed above, after modifying saturations, porosity and injection rate, PPS then 

submits these modified values to BOAST to solve pressures and saturations at the next 

time step. In addition to this, porosity will again be updated with geotechnical coupling. 
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Figure 6-3:  PPT and BOAST 

 



 92

 
6.2 A 1D Validation of the Pressure Pulse Model 
 
The pressure pulse model was validated against the results of laboratory core flood tests 

conducted by Davidson, et al.3.  A schematic of the laboratory setup used by these 

researchers is shown in Figure 6-4. 

 

In these tests a cylindrical cell with a diameter of 6 cm and a length of 30 cm was used.  

Sand was poured into the cell, compacted using vibrodensification and sealed.  A 1 MPa 

axial stress was then applied to the dense sand pack through a piston.  The cell was 

equipped with pressure transducers along the axis of the cylinder.  All walls were 

impermeable (no flow boundary condition) and the entry regions in the cylindrical cell 

were small in order to ensure the flow was one-dimensional along the axis of the 

cylinder. 

 
 

Figure 6-4:  Experimental setup used in the pressure pulse test of Davidson, et al. 3 
 

In this particular experiment, ~35% porosity and 5-8 D permeability sand was used.  The 

sand was initially saturated with 35 cP oil and displaced with water.  Initially a constant 

head delta P, 0.35 psi, was established across the cell and flow was allowed to come to a 

Overburden Stress
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steady state rate.  The sand pack was then excited by pressure pulsing near the inlet port 

every 1.5-2 sec, typically for 3-7 minutes.  Pulsing was stopped for a similar interval, 

started again, and a number of cycles were carried out followed by a quiet period without 

excitation.   

 

Excitation of the porous medium was created by a sudden manual squeeze or impact with 

a hammer on the inlet tube just before the inlet port.  The impulse entered the porous 

medium and was converted largely to a porosity diffusion wave that was accompanied by 

a small pressure change.  Because there was no change in the reservoir and exit tube 

level, the macroscopic pressure change across the cell remained constant while the short 

term impulses were applied periodically for several minutes.  

 

Figure 6-5 shows the experimentally measured results from monitoring three pressure 

transducers, “A”, “B” and “C”, at different locations along the axis of the cylindrical cell.  

The y-axis represents the measured pressure difference between the inlet and the location 

of the pressure transducer.  At the transducer just adjacent to the inlet orifice (“A”), there 

is a sharp pressure accumulation occurring with each pulse.  This continues with time but 

begins to increase less rapidly until pulsing is stopped, at which point the system almost 

immediately enters into a classical pressure decay response.  The next two transducers, 

“B” and “C”, each successively further from the inlet orifice, showed a slower response 

and a delayed peak pressure.  This occurred as the “pressure bulb” diffused along the 

cylinder axis even after excitation ceased. 

 

In order to mimic this laboratory experiment, a 1D simulation model was constructed.  

The model consisted of 262 gridblocks in the x dimension with each gridblock measuring 

0.2 ft in the x, y and z directions.  A large number of gridblocks were used in order to 

eliminate pressure build up due to boundary effects.  The porosity was 35% and 

permeability was 5 D.  The model was saturated with 35 cP oil at an initial pressure of 1 

MPa and was then displaced with water.   
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This model was then simulated using the pressure pulse model developed in this work.  

Flow within the model was allowed to come to steady state after which pulsing began at 

six minutes and continued for five minutes. 

 

Figure 6-6 shows the pressure response predicted by this simulation.  The x axis is in 

terms of 1/6 minutes and the y axis is the pressure difference between the inlet and the 

measured point.  Three different measured points were examined similar to the three 

tranducers used in the experimental apparatus:  “P1” represented a point near the 

injection point while “P2” and “P3” were each successively further away from the inlet.   

 

A comparison of Figure 6-5 and Figure 6-6 shows that there is good agreement between 

the lab data and the simulation result.  The predicted pressure increase at each point in the 

porous medium is nearly identical to the measured results.  Additionally, the maximum 

pressure at each point, labelled “2”, “3” and “4” in Figure 6-5 (“1” denotes the onset of 

pulsing), is reached at the same time in both the simulated and measured results.   
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Figure 6-5:  Experimentally measured pressure drops at three locations in the 
porous medium (reproduced from the work of Davidson, et al.3). 
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Figure 6-6:  Predicted pressure drops at three locations in the porous medium 

 
 
Additionally, Figure 6-7 and Figure 6-8 show the experimentally measured and the 

simulated production volumes, respectively.  In each figure two curves are shown:  one 

resulting from a test with a steady state flowrate and the other with the added effects of 

pressure pulsing.  Again, good agreement is seen between the measured and simulated 

results.  After 30 minutes of flow, the experimentally measured produced volume is 

around 100 cc while the results of the simulation using the PPT model show a total 

produced volume of around 95 cc.  The produced volume using the steady state injection 

rate was around 70 cc for both the experiment and the simulation. The incremental 

recoveries for lab and simulation are, 43% and 36%, respectively. 

 

This good agreement between measurements and simulated results validated the pressure 

pulse model. 
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Figure 6-7:  Experimentally measured cumulative production for cases with and 

without pressure pulsing (reproduced from the work of Davison, et al.3) 
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Figure 6-8:  Predicted cumulative production for cases with and without pressure 

pulsing 
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An additional set of experimental results was compared to simulation results in order to 

provide a second independent validation of the pressure pulse code developed in this 

work. Details can be found in Appendix B. 

  

6.3 Validation of the 3D Geomechanics Model 
 

The geomechanics model presented in an earlier section of this work and implemented 

into the code was then validated versus previous studies.  For this an oil reservoir was 

simulated using the model by two different approaches.  In the first approach (Case 1) the 

reservoir permeability was assumed to be a function of only the pore pressure (the total 

stress being constant) while in the second (Case 2) the reservoir permeability was 

considered to be a function of both the pore pressure and total stress.  The results of these 

simulations were then compared to the work of J.G. Osario, et al. 63, 68 

 

The discretized grid used in each approach consisted of 65 blocks with 300 ft grid 

spacing in each of the x and y directions and 25 blocks with 40 ft grid spacing in the z 

direction. The grid was divided into an inner domain representing the reservoir and an 

outer domain representing the boundary. The inner domain consisted of gridblocks 27 

through 39 in the x and y directions and gridblocks 11 through 15 in the z direction (i.e., 

the ratio of the outer:inner:outer domain in each direction is 2:1:2). One well was 

producing from layers 11 through 15 at a constant flow rate of 1,500 STB/D. The initial 

reservoir pore pressure and total vertical stress were 7000 psia and 9000 psia, 

respectively. The ratio of initial total stress in the both x and y directions to the initial 

total stress in the z direction was 0.9. Other parameters of this model are presented in 

Table 6.1. 
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Table 6.1:  Additional parameters used in simulations validating the geomechanics 
model 

 
Bulk compressibility in the outer domain, 1/psi 2.5x10-6 

Shear modulus in the outer domain, psi 3.0x105 

Solid compressibility, 1/psi  1.0x10-7 

Dt, days 100 

Reference layer 11 

Oil, API  35.8 

Bubble Point pressure, psi 1200 

Solution gas-oil ratio, SCF/STB 238 

Initial porosity 0.3 

 

 

Non-deformable lateral and bottom boundaries and constant vertical stress on the top 

boundary were used as boundary conditions63,68.   

 

These parameters were used to calculate the mean effective stress on the model porous 

medium at different times and locations. Then using Figure 6-9, Figure 6-10, and Figure 

6-11 (reproduced from the work of Osorio68) the bulk compressibility, shear modulus 

initial permeability of the porous medium were determined. 
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Figure 6-9:  Bulk compressibility versus mean effective stress (Osorio68) 
 

 

Figure 6-10:  Shear modulus versus mean effective stress (Osorio68) 
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Figure 6-11:  Permeability versus mean effective stress (Osorio68) 

 

 

Figure 6-12 and Figure 6-13 show the PPT-BOAST simulated permeability distribution 

at the intersection of the mid layer and the vertical plane containing the well after 100, 

500, 1000, 2000, 3000 and 4000 days of production for Cases 1 and 2, respectively. As 

can be seen in these figures, the permeability reduction is greater when the permeability 

is assumed to be function of only the pore pressure (Case 1) than when it is considered to 

be a function of both the pore pressure and total stress (Case 2). This result is confirmed 

when considering that as pore pressure declines with time, the total stress on the porous 

medium should also decrease.  For Case 1, holding the total stress constant leads to a 

calculated mean effective stress that is greater than that for Case 2. As shown in Figure 

6-12, this greater mean effective stress leads to a greater reduction in the reservoir 

permeability. 
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Permeability as a Function of Pore Pressure
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Figure 6-12:  Predicted permeability profile at various times for Case 1 
(permeability is a function of only pore pressure) 
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Figure 6-13:  Predicted permeability profile at various times for Case 2 
(permeability is a function of both pore pressure and total stress) 



 102

 
 
This result agrees with Osorio’s results as shown in Figure 6-14 and Figure 6-15.   

 

 

Figure 6-14:  Predicted permeability profile at various times and where 
permeability is a function of only pore pressure (reproduced from Osorio) 

 

 

Figure 6-15:  Predicted permeability profile at various times and where 
permeability is a function of both pore pressure and total stress (Osorio68) 
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6.4 Sensitivity Analysis of the Geomechanics Model 
 
A sensitivity analysis was performed to examine the effects of four variables of the 

geomechanics model on the predicted permeability behaviour.  These four variables 

were:  1- Outer boundary conditions, 2- Layer locations with respect to the layer 

boundary, 3- The elastic moduli of the outer domain, and 4- Using a single domain 

instead of a two-domain model. 

 
6.4.1 Outer Boundary Conditions 
 
Three different sets of boundary conditions were investigated:  

 

Case 1:  Non-deformable lateral boundaries (zero incremental displacement) and constant 

vertical stress on the top and bottom boundaries equal to the overburden and 

underburden, respectively (zero incremental stress). 

 

Case 2:  Non-deformable lateral and bottom boundaries (zero incremental displacement) 

and constant vertical stress on the top boundary equal to the overburden (zero 

incremental stress). 

 

Case 3:  Non-deformable bottom boundary (zero incremental displacement), zero 

incremental horizontal displacements on the lateral boundaries and constant vertical 

stress on the lateral and top boundaries. 

 

Figure 6-16 shows the permeability reduction at the intersection of mid layer and the 

vertical plane containing the well after 300 and 4000 days of production while Figure 

6-17 shows the same information for the upper and lower layers.  The results presented in 

these figures indicate that the set of boundary conditions associated with Case 2 and Case 

3 yield the same permeability reduction.  However, the boundary conditions of Case 1 

yield a greater permeability reduction than the boundary conditions of Cases 2 and 3.  

This difference is insignificant at early times, but increases as production time increases.   
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This result indicates that for cases with non-deformable boundaries, less compaction 

occurs due to decreases in reservoir pressure.  This results in a lower reduction in the 

reservoir permeability versus cases with deformable boundaries. 

 

Permeability Profile at Mid-Layer
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Figure 6-16:  Predicted permeability profile at the intersection of mid layer with the 
vertical plane containing the well after 500 and 4000 days of production for Cases 1, 

2, and 3 
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Permeability Profile at Upper and Lower Layers
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Figure 6-17:  Predicted permeability profile at the intersection of the upper and 

lower layers with the vertical plane containing the well after 500 and 4000 days of 
production for Cases 1, 2, and 3 

 
 
6.4.2 Layer Locations with Respect to the Layer Boundary 
 
Figure 6-16 and Figure 6-17 also show that for each of the boundary condition cases, the 

reduction is the permeability is maximized at the middle layer.  The explanation for this 

behaviour may be that the rock deformation is at its maximum in the mid-layer, where 

fluid flow occurs in all directions, and at a minimum in the upper and lower layers, where 

fluid flow is constrained by the non-permeable layers of the outer domain.  This 

argument can be proved by examining the volumetric strains at the intersection of the 

middle, upper and lower layers with the vertical plane containing the well.  Figure 6-18 

clearly shows the volumetric strain is at its maximum at the mid-layer and minimized at 

the upper and lower layers. 
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Volumetric Strain Profile at Mid-Layer
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Figure 6-18:  Predicted volumetric strain profile at the intersection of the mid layer 

and the upper and lower layers with the vertical plane containing the well 
 
 
6.4.3 Elastic Moduli of the Outer Domain  
 
The effect of the outer boundary conditions on the reservoir permeability depends upon 

the mechanical properties of the rock in the outer domain.  This effect can be observed by 

varying the Young’s modulus (Eo) of the outer domain.  Figure 6-19 shows the 

permeability profile at the intersection of the mid-layer with the vertical plane containing 

the well for two cases where the Young’s modulus equalled 72,000 psi and 720,000 psi.  

In this figure, the permeability is examined for each case at 500 and 4000 days. 
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Permeability Profile at Mid-Layer
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Figure 6-19:  Predicted permeability profile at the intersection of the mid layer with 

the vertical plane containing the well after 500 and 4000 days of production for 
Young’s moduli of 72,000 and 720,000 psi 

 
 
These results indicate that the reservoir permeability decreases less with time as the rock 

elastic moduli of the outer domain increases.  This behaviour is a reflection of the fact 

that the higher the Young’s modulus, the lower the ability of the outer domain to deform.  

As the outer domain loses its ability to deform, it imparts less compaction on the 

reservoir and therefore less reduction in the reservoir permeability. 

 
 
6.4.4 Using a Single Domain Instead of a Two-Domain Model   
 
The inclusion of the outer domain dramatically increases both the computer storage 

requirements and program execution time.  This issue raises the question of how much 

the solution would change if the outer domain were not included in the model. 

 

Figure 6-20 and Figure 6-21 show the permeability profile at the intersection of the mid-

layer and the vertical plane containing the well as a function of time.  The curves in 

Figure 6-20 were obtained by solving the governing equations for the inner domain only 
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while the curves in Figure 6-21 were obtained by running the model including both the 

inner and the outer domains.  For the purpose of comparison, both figures were plotted on 

same scale.  When the inner and outer domains are taken into account, the geomechanical 

boundary conditions are applied far from the reservoir boundaries.  When only the inner 

domain is simulated, the geomechanical boundary conditions must be applied at the 

reservoir boundaries.   
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Figure 6-20:  Predicted permeability profile at the intersection of the mid layer with 

the vertical plane containing the well for various times for a one domain model 

 



 109

Permeability Profile (Two-domain model)
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Figure 6-21:  Predicted permeability profile at the intersection of the mid layer with 

the vertical plane containing the well for various times for a two domain model 
 
 
Figure 6-20 and Figure 6-21 clearly show that the permeability profile curves obtained 

from the two-domain and the single-domain models differ considerably.  At all times, the 

two-domain model yields a greater change in the permeability profile with time versus 

the single-domain model.  This behaviour can be explained by the fact that as the pore 

pressure at the reservoir boundaries declines, the geomechanical conditions at the 

reservoir boundaries change in two ways: 1) incremental displacements at the boundaries 

become different than zero, and 2) due to rock expansion or compression, the local stress 

state at the boundaries may vary with time.  These reservoir boundary deformation effects 

included in the two-domain model but not in the single-domain model are translated into 

an extra permeability decrease. 
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6.5 Sensitivity Analysis of the Pressure Pulse Model 
 
As can be seen in the pressure pulse theory development section, the most important 

parameters in determining the porosity and pressure profiles are: 
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porosity’s solid wave speed: 
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According to the derivations presented in Chapter 6, these parameters are functions of the 

following reservoir and fluid properties: (1) Permeability, (2) Viscosity, (3) Porosity, (4) 

Rock compressibility, and (5) Pulse frequency. 

 

In order to investigate how these reservoir and fluid properties affect the impact of 

pressure pulsing on the reservoir pressure and production, over 50 simulation cases were 

run. The base model used in this study had a grid size of 262×11×11 gridblocks with each 

grid block measuring 0.2 ft in each direction.  Initially a constant head pressure drop was 

established across the model and the flow was allowed to come to a steady state rate.  

Pressure pulsing was then applied at times 6, 15 and 22 minutes near the inlet port every 

1.5-2 sec for 3 minutes.  Each of these three cycles was then followed by a quiet period 

without excitation.   

 

Volumetric strain was used as a wellbore boundary condition (source). One can define 

the pulse tool and amplitude in terms of pressure and convert this into volumetric strain. 

However, for the sake of simplicity, the reservoir is decoupled from the wellbore and the 
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strain is taken as a pulse source. The size of the pulse is represented by 8x10-5 pore 

volumes per timestep. Other inputs are shown in Table 6.2. 

Table 6.2: Input data for sensitivity analysis 

Parameter Value* Parameter Value* 
αφ 1 (I) λs 0.05 (I) 
αp  0.1 (I) μs [GPa] 2.3 x1010 (I) 
aφs, Q-1 48.5x103 (.C) μf [GPa] 0.001 (I) 
aps, Q-1 -21.8x104 (.C) μm [GPa] 1.7 x1010 (.C) 
aφf, Q-1 30x104 (.C) ρs, kg/m3 2650 (I) 
apf, Q-1 13.5 x104 ρf, kg/m3 1000 (I) 
bps, Q-1 0.0 (.C) ρ12, kg/m3 0 (I) 
bφs, Q-1 0.0 (.C) ρφs, kg/m3 2650 (.C) 
bpf, Q-1 2x10-6 (.C) ρps, kg/m3 265 (.C) 
bφf, Q-1 7.4x107 (.C) ρφf, kg/m3 1000 (.C) 
δs 0.27 (.C) ρpf, kg/m3 1000 (.C) 
δf 0.03 (.C) σm, Pa 1.2 x10-4 (.C) 
φo  0.3 (I) Vφf

2, m2/s2 0.0 (.C) 
Ks, Pa 3.3x1010 (I) vpf

2, m
2/s2 2.2 x106 (.C) 

Kf, Pa 2.2 x109 (I) Vφs
2, m2/s2 1.9 x106 (.C) 

K, mD 1000 (I) vps
2, m2/s2 2.5 x106 (.C) 

Kφ, Pa 5.1 x1010 (.C) ξf, Pa 0.0028 (I) 
Km, Pa 6.5 x1010 (.C)   

 
*   I = input variable,  C = computed variable 
 

One should be cautious when interpreting the sensitivity results from this small-scale 

model. The models should be scaled up appropriately to investigate field scale recoveries 

and sensitivities. Additionally, the field scale frequency, pulse duration, and amplitude 

will likely be different than the ones applied at the lab scale. 

 

6.5.1 Permeability Sensitivity 
 
In order to investigate the impact of permeability on the pressure pulsing process, nine 

simulation cases were run with isotropic permeabilities of 7000 mD (Run1), 5000 mD 

(Run2), 3000 mD (Run3), 1000 mD (Run4), 500 mD (Run5), 300 mD (Run6), 200 mD 

(Run7), 100 mD (Run8) and 50 mD (Run9).  In each of these cases, the fluid viscosity 
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was 2000 cP, the porosity was 35%, the rock compressibility was 3×10-6 psi-1 and the 

pulse frequency was 0.25 Hz. 

 

Figure 6-22 to Figure 6-30 show the cumulative production volume results for Runs 1 to 

9, respectively.  In each figure, one curve shows the predicted volumes from a case with 

steady-state injection while the other shows the effects of adding pressure pulsing. The 

plots show that pressure pulsing increased the production in each case.  
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Figure 6-22:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 7000 mD (Run1) 

 

Time Steps (1 Step=0.000058 Days) 
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Production vs Time Step
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Figure 6-23:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 5000 mD (Run2) 
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Figure 6-24:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 3000 mD (Run3) 

 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Production vs Time Step
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Figure 6-25:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 1000 mD (Run4) 
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Figure 6-26:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 500 mD (Run5) 

 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Production vs Time Step
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Figure 6-27:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 300 mD (Run6) 
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Figure 6-28:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 200 mD (Run7) 
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Time Steps (1 Step=0.000058 Days) 
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Figure 6-29:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 100 mD (Run8) 
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Figure 6-30:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a permeability of 50 mD (Run9) 

 

 
Figure 6-31 summarizes the results of these cases by plotting the cumulative volume 

produced from pressure pulsing in 30 minutes versus permeability. As can be seen in 

Figure 6-22 to Figure 6-30, the relationship between permeability and the cumulative 
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production at 30 minutes is not linear.  This is highlighted by the results shown in Figure 

6-31.  It shows that the cumulative volume produced at 30 minutes from pulsing 

decreases with decreasing permeability but then begins increasing, reaching a local 

maximum around 1000 mD, after which it begins decreasing once again. Figure 6-32 

then plots the ratio of the cumulative volume produced from pulsing to that produced by 

steady-state injection versus permeability.  Figure 6-32 shows that the maximum benefit 

due to pulsing (measured as a ratio of the cumulative production due to pressure pulsing 

to the cumulative production without pressure pulsing) occurs at a permeability of 300 

mD. 
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Figure 6-31:  Predicted cumulative production at 30 minutes versus permeability for 

cases with and without pressure pulsing 
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Ratio of Cumulative Production with Pressure Pulse to 
Cumulative Production with no Pulse (vis=2000cp)

0
2
4
6
8

10
12
14
16
18

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

Permeability (md)

Ra
tio

 
Figure 6-32:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability 

 
 

Both of these figures indicate the existence of an optimum permeability at which pressure 

pulsing is most effective.  This behaviour can be explained by considering that when the 

reservoir permeability is high, the pulse attenuation is small.  At very small attenuations, 

energy from one point to another is released very fast and the pulse diffuses very quickly 

through the reservoir.  This does not allow a significant pressure gradient to develop and, 

therefore, flow is not enhanced.  At very low permeabilities, though, the pulse attenuation 

is high and the pressure builds only near the injection point.  Because of the slow 

velocity, the pulse is not able to propagate far into the reservoir in order to stimulate flow.    

 

In order to test this argument, pressure profiles due to pressure pulsing for each of the 

permeability cases are presented in Figure 6-33 to Figure 6-41.  In these plots, “A” 

represents a point near the injector while “B”, “C” and “D” represent points successively 

further away. 
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Figure 6-33:  Predicted pressure profile at four locations for a model with a 

permeability of 7000 mD (Run1) 
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Figure 6-34:  Predicted pressure profile at four locations for a model with a 

permeability of 5000 mD (Run2) 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Pressure vs Time Step
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Figure 6-35:  Predicted pressure profile at four locations for a model with a 

permeability of 3000 mD (Run3) 
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Figure 6-36:  Predicted pressure profile at four locations for a model with a 

permeability of 1000 mD (Run4) 
 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Pressure vs Time Step
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Figure 6-37:  Predicted pressure profile at four locations for a model with a 

permeability of 500 mD (Run5) 
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Figure 6-38:  Predicted pressure profile at four locations for a model with a 

permeability of 300 mD (Run6) 
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Time Steps (1 Step=0.000058 Days) 
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Pressure vs Time Step
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Figure 6-39:  Predicted pressure profile at four locations for a model with a 

permeability of 200 mD (Run7) 
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Figure 6-40:  Predicted pressure profile at four locations for a model with a 

permeability of 100 mD (Run8) 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Pressure vs Time Step
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Figure 6-41:  Predicted pressure profile at four locations for a model with a 

permeability of 50 mD (Run9) 

 
 
Figure 6-33 and Figure 6-41 show the pressure profiles due to pressure pulsing for the 

reservoirs with the highest and the lowest permeabilities, 7000 mD and 50 mD, 

respectively.  Note that where the permeability is very high, the pressure increases the 

same amount everywhere in the reservoir and the sharp pressure gradient needed to 

increase fluid rate is not created.  However, for low permeabilities pressurization occurs 

only around the injection well and areas far from the injection wells remain unpressurized 

and flow is not stimulated by the pulses.  Therefore, an examination of the pressure 

profiles show that for a given frequency there is an optimum permeability where we 

achieve the maximum ratio of cumulative production with pulse to cumulative production 

with no pulse. 

 
 
6.5.2 Viscosity Sensitivity 
 
In order to investigate the impact of fluid viscosity on pressure pulsing, nine simulation 

cases were run with viscosities of 4000 cP (Run10), 2000 cP (Run11), 1000 cP (Run12), 

700 cP (Run13), 300 cP (Run14), 50 cP (Run15) and 5 cP (Run16).  In each of these 

cases, the permeability was 200 mD, the porosity was 35%, the rock compressibility was 

3×10-6 psi-1 and the pulse frequency was 0.25 Hz. 
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Figure 6-42 to Figure 6-48 show the cumulative production volumes for Runs 10 to 16, 

respectively, and Figure 6-49 and Figure 6-50 summarize these results.  Figure 6-49 plots 

the cumulative volume produced through 30 minutes for both the steady-state and 

pressure-pulse tests versus fluid viscosity.  Figure 6-50 then plots the ratio of the 

cumulative production due to pressure pulsing to that produced by steady-state injection 

versus fluid viscosity.  Following are the figures followed by discussion of the results: 
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Figure 6-42:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 4000 cP (Run10) 
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Figure 6-43:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP (Run11) 
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Figure 6-44:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP (Run12) 
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Figure 6-45:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP (Run13) 
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Figure 6-46:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP (Run14) 
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Figure 6-47:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 50 cP (Run15) 
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Figure 6-48:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 5 cP (Run16) 
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Figure 6-49:  Predicted cumulative production at 30 minutes versus fluid viscosity 

for cases with and without pressure pulsing 
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Figure 6-50:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus fluid viscosity 
 

According to Darcy’s Law, changes in the fluid viscosity have an inversely-proportional 

effect on the fluid flow rate.  This trend is apparent in the steady-state results of Figure 

6-49 which show that the cumulative production at 30 minutes increases with decreasing 

fluid viscosity.  However, for cases with pressure pulsing, these figures show that as the 

viscosity decreases from 4000 cP, the cumulative production increases, peaks around 300 

cP and then decreases.  Figure 6-50 meanwhile shows that the maximum benefit due to 
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pulsing occurs at a viscosity of 1000 cP.  This figure also shows that for fluids with a 

viscosity of 5 cP, there is no benefit gained from pressure pulsing.  

 

As was observed with changes in permeability, these results indicate the existence of an 

optimum viscosity at which pressure pulsing is beneficial.  Once again, this fluid 

enhancement effect can be attributed to the internal pressure build-up.  In order to test 

this argument, pressure profiles due to pressure pulsing for each of the viscosity cases are 

presented in Figure 6-51 to Figure 6-57.  
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Figure 6-51:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 4000 cP (Run10) 

 

Time Steps (1 Step=0.000058 Days) 
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Pressure vs Time Step
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Figure 6-52:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 2000 cP (Run11) 
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Figure 6-53:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 1000 cP (Run11) 
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Time Steps (1 Step=0.000058 Days) 
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Figure 6-54:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 700 cP (Run13) 
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Figure 6-55:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 300 cP (Run14) 
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Figure 6-56:  Predicted pressure profile at four locations for a model with a fluid 
viscosity of 50 cP (Run15) 
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Figure 6-57:  Predicted pressure profile at four locations for a model with a fluid 

viscosity of 5 cP (Run16) 

 
 
Figure 6-51 and Figure 6-57 show the pressure profile for the reservoirs with the highest 

and the lowest viscosities, 4000 cP and 5 cP, respectively.  Note that when the viscosity 

is very low the magnitude of the pressure increase is small and propagates through the 
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porous media quickly.  A sharp pressure gradient is not achieved which is necessary to 

increase the fluid flowrate.  However, for high viscosities pressurization occurs only 

around the injection well and areas far from the injection well remains unpressurized.  It 

can be concluded that, generally, the energy-preserving ability of light oil is weaker than 

that of viscous oil.  If the frequency of light oil is too low, the previous pulse drops too 

much before the next pulse is added, leading to a poor build up effect.  For a given 

frequency there is an optimum viscosity where we achieve the maximum ratio of 

cumulative production with pulse to cumulative production with no pulse. 

 

As can be seen from both the permeability and viscosity sensitivity analyses, for a given 

frequency, the incremental oil recovery reaches a maximum at some intermediate value 

of both the permeability and viscosity.  Therefore, an additional sensitivity analysis 

consisting of 49 simulation runs was conducted to determine, for a given viscosity, the 

optimum permeability at which the incremental recovery is maximized.  Figure 6-58 to 

Figure 6-64 plot the ratio of the cumulative production with pressure pulsing to the 

cumulative production without pressure pulsing at various permeabilities for fluid 

viscosities of 4000, 2000, 1000, 700, 300, 50 and 5 cP, respectively.  Each of these cases 

uses a porosity of 35%, rock compressibility of 3×10-6 psi-1 and a pulse frequency of 

0.25 Hz. 

 

These figures show that the higher the viscosity, the greater the permeability at which 

incremental recovery is maximized.  This shows that it is both permeability and viscosity 

which determine the maximum efficiency for a given frequency. 
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Figure 6-58:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 4000 cP 
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Figure 6-59:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 2000 cP 

................................................................................................................................................ 



 135

Ratio of Cumulative Production with Pressure Pulse to 
Cumulative Production with no Pulse (vis=1000cp)
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Figure 6-60:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 1000 cP 
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Figure 6-61:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 700 cP 
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Ratio of Cumulative Production with Pressure Pulse to 
Cumulative Production with no Pulse (vis=300cp)
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Figure 6-62:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 300 cP 
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Figure 6-63:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 50 cP 
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Ratio of Cumulative Production with Pressure Pulse to 
Cumulative Production with no Pulse (vis=5cp)
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Figure 6-64:  Predicted ratio of cumulative production with pressure pulsing to 

cumulative production without pressure pulsing versus permeability for a model 
with a fluid viscosity of 5 cP 

 

Figure 6-65 summarizes the incremental oil recoveries for each fluid viscosity and plots 

them versus permeability on a log scale.  Interestingly, at the optimum permeability for 

each viscosity, the incremental recovery is constant and equal to 15 (meaning that the 

cumulative production due to pressure pulsing was 15 times the cumulative production 

due to steady-state injection). There are a few points to consider when interpreting these 

results: 

o The incremental recovery of 15 times the base recovery is specific to this 

example, as the geometry, frequency, source change incremental recovery will 

vary depending on the application. 

o The incremental recovery obtained in simulating lab scale should not be applied 

to field scale applications. In the field scale, the efficiency would not be as high as 

that at the lab scale, i.e., it is harder to stack up waves on top of each other as the 

energy will dissipate radially. Moreover, it would require much higher 

frequencies and amplitudes to pressurize the reservoir and these might be limited 

by the constraints of the pulsing tool. 

o A typical Alberta heavy oil field has a permeability of 10 D and oil viscosity of 

4000 cp. According to Figure 6-70, a sample core from Alberta heavy oil field 
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would have only 2 times the incremental oil recovery with a pulse frequency of 

0.25 Hz.  

Assuming the frequency of the pulsing tool is fixed, for a given permeability there is only 

a small range of viscosities where very high recoveries can be achieved. Outside that 

range, the incremental recovery will be limited. 
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Figure 6-65:  Summary of the effect of fluid viscosity on the predicted ratio of 

cumulative production with pressure pulsing to cumulative production without 
pressure pulsing versus permeability 

 
 
6.5.3 Porosity Sensitivity 
 

Generally speaking, the porosity of real petroleum reservoirs is about 20-30% or less.  In 

order to analyze the effect of porosity, simulation runs were conducted for porosities of 

20, 35 and 45%.  Because many factors can affect the fluid rates, simulation runs were 

conducted for various viscosity and permeability values at each porosity, rather than 

changing only the porosity values.  This provided an opportunity to simultaneously 

investigate the effects of permeability, viscosity and porosity.  

 

For the three tested porosities, Figure 6-66 to Figure 6-94 present the results for various 

combinations of viscosity (ranging between 4000 and 50 cP) and permeability (ranging 
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between 1000 and 8 mD).  In each case, the rock compressibility was 3×10-6 psi-1 and the 

pulse frequency was 0.25 Hz. 
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Figure 6-66:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 4000 cP, a porosity of 0.45 and a 
permeability of 2000 mD 
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Figure 6-67:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of  4000 cP, a porosity of 0.45 and a 
permeability of 1150 mD 

Time Steps (1 Step=0.000058 Days) 



 140

 

Production vs Time Step

0

20

40

60

80

100

120

140

0 60 120 180 240 300 360

Time Step (0.000058 day)

Pr
od

uc
tio

n 
(c

c)

no pulse with pulse

 
Figure 6-68:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 4000 cP, a porosity of 0.45 and a 
permeability of 1000 mD 
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Figure 6-69:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 4000 cP, a porosity of 0.45 and a 
permeability of 700 mD 

 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Production vs Time Step
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Figure 6-70:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.45 and a 
permeability of 700 mD 
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Figure 6-71:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.45 and a 
permeability of 500 mD 
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Time Steps (1 Step=0.000058 Days) 
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Production vs Time Step
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Figure 6-72:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.45 and a 
permeability of 400 mD 
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Figure 6-73:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.45 and a 
permeability of 500 mD 

 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Figure 6-74:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.45 and a 
permeability of 250 mD 
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Figure 6-75:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.45 and a 
permeability of 100 mD 
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Figure 6-76:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP, a porosity of 0.45 and a 
permeability of 300 mD 
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Figure 6-77:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP, a porosity of 0.45 and a 
permeability of 175 mD 
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Figure 6-78:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP, a porosity of 0.45 and a 
permeability of 75 mD 
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Figure 6-79:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP, a porosity of 0.45 and a 
permeability of 130 mD 

 

Time Steps (1 Step=0.000058 Days) 

Time Steps (1 Step=0.000058 Days) 
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Figure 6-80:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP, a porosity of 0.45 and a 
permeability of 75 mD 
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Figure 6-81:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 50 cP, a porosity of 0.45 and a 
permeability of 25 mD 

 

Time Steps (1 Step=0.000058 Days) 
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Figure 6-82:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 50 cP, a porosity of 0.45 and a 
permeability of 12 mD 
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Figure 6-83:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 50 cP, a porosity of 0.45 and a 
permeability of 7 mD 
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Production vs Time Step
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Figure 6-84:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.2 and a 
permeability of 90 mD 
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Figure 6-85:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.2 and a 
permeability of 80 mD 
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Figure 6-86:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 2000 cP, a porosity of 0.2 and a 
permeability of 60 mD 

 

Production vs Time Step

0

20

40

60

80

100

120

140

0 60 120 180 240 300 360

Time Step (0.000058 day)

Pr
od

uc
tio

n 
(c

c)

no pulse with pulse

 
Figure 6-87:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.2 and a 
permeability of 60 mD 
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Figure 6-88:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.2 and a 
permeability of 40 mD 

 

Production vs Time Step

0

20

40

60

80

100

120

140

0 60 120 180 240 300 360

Time Step (0.000058 day)

Pr
od

uc
tio

n 
(c

c)

no pulse with pulse

 
Figure 6-89:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 1000 cP, a porosity of 0.2 and a 
permeability of 30 mD 
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Figure 6-90:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP, a porosity of 0.2 and a 
permeability of 28 mD 
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Figure 6-91:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 700 cP, a porosity of 0.2 and a 
permeability of 15 mD 
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Figure 6-92:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP, a porosity of 0.2 and a 
permeability of 20 mD 
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Figure 6-93:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP, a porosity of 0.2 and a 
permeability of 12 mD 
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Figure 6-94:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a fluid viscosity of 300 cP, a porosity of 0.2 and a 
permeability of 8 mD 

 

 

The optimum permeability (the permeability at which the incremental recovery of 

pressure pulsing over steady-state injection is maximized) is then summarized in Figure 

6-95 and Figure 6-96 for porosities of 20, 35, and 45% and for viscosities of 4000, 2000, 

1000, 700, 300 and 50 cP.  These figures show that the higher the porosity, the greater the 

optimum permeability at that viscosity.  This indicates that the low attenuation associated 

with high permeability levels is rebuilt with high porosities.  In other words, for the 

higher porosity levels, the energy is maintained in the pores and not let go.  Also, the 

higher the porosity, the lower the optimum viscosity for a given frequency.   

 

Given basic information about a reservoir, these figures could allow an engineer to 

quickly evaluate the effectiveness of pressure pulsing technology. 

 

Time Steps (1 Step=0.000058 Days) 
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Figure 6-95:  Summary of the optimum permeabilities at which pressure pulsing is 

beneficial versus porosity for various values of fluid viscosity 
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Figure 6-96:  Summary of the optimum permeabilities at which pressure pulsing is 

beneficial versus fluid viscosity for various values of porosity 
 
 
6.5.4 Compressibility Sensitivity 
 

It has been shown previously that the porosity diffusion wave is a result of the 

interactions and deformations between the fluid and solid matrix in the porous media.  
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The porosity diffusion wave refers to a spreading front of porosity that accompanies a 

traveling pulse of pressure generated within a fluid-saturated porous media.  Thus, it is 

the porosity variations in the reservoir which cause the pressure build-up and flow 

enhancement seen in pressure pulsing.  Porosity dilation theory states that porosity 

diffusion is a function of wave speed and that the speed of the wave is determined by the 

compressibility of the solid matrix.  Therefore, higher rock compressibilities lead to 

slower wave speeds and greater porosity variation.  At very small rock compressibilities 

(i.e. high wave speeds), pulse energy is transferred very fast such that no change in 

porosity takes place. Therefore at high wave speeds no flow enhancement occurs.  This 

argument can be summarized as below: 

High comp -> Low attenuation : wave travels long distances at low velocity 

Low comp -> High attenuation : wave travels fast and dies off very quickly 

 

Three simulation runs presented here demonstrate the arguments above.  Figure 6-97, 

Figure 6-98 and Figure 6-99 show the cumulative production plots for porous media with 

solid compressibilities of 3×10-7, 3×10-5 and 3×10-4 psi-1, respectively.  For each case, the 

fluid viscosity was 2000 cP, the permeability was 200 mD, the porosity was 35% and the 

pulse frequency was 0.25 Hz. 
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Figure 6-97:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a rock compressibility of 3x10-7 psi-1 

Time Steps (1 Step=0.000058 Days) 
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Figure 6-98:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a rock compressibility of 3x10-5 psi-1 
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Figure 6-99:  Predicted cumulative production for cases with and without pressure 

pulsing for a model with a rock compressibility of 3x10-4 psi-1 
 

 

These figures show that flow enhancement is improved with higher compressibility 

formations.  This result agrees with the BP lab experiment that utilized a highly 

compressible membrane to stabilize the core sample.  In that experiment, the porosity 
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Time Steps (1 Step=0.000058 Days) 
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wave “chose” to go through the highly compressible membrane leaving the relatively low 

compressible sample unpressurized.   

 

6.5.5 Frequency Sensitivity 
 

To this point, the sensitivity analysis of the pressure pulse model has focused on 

parameters that for a particular reservoir are unchangeable properties:  rock permeability, 

porosity, compressibility and fluid viscosity.  This analysis so far is only useful for 

identifying reservoirs which could have successful implementations of pressure pulse 

technology.  It has not been useful in providing any tuneable parameters which could 

make pressure pulse technology successful for any particular reservoir. 

 

A basic property of a pulse is the application frequency.  Frequency, as defined here, is 

the time interval between two pulses.  Most importantly, the frequency of a pulse is an 

operational parameter that can be controlled independent of the reservoir rock and fluid 

properties. 

 

The simulation runs conducted in the previous sections of this work were mainly at a 

frequency of 0.25 Hz.  Because different frequencies may have different pulse 

enhancement effects, some sensitivity analysis of excitation frequency is necessary to 

find the impact of frequency on fluid recovery.  Six different application frequencies 

were selected for this sensitivity analysis:  0.1, 0.25, 0.4, 0.8, 1.0, and 2 Hz.  The 

incremental cumulative production for two different viscosity fluids (4000 and 50 cP) is 

shown in Table 6.3 below.  In each of these cases, the permeability was 200 mD, the 

porosity was 35% and the compressibility was 3×10-6 psi-1. 
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Table 6.3:  Incremental cumulative production versus pulse frequency for fluid 
viscosities of 4000 and 50 cP 

 

Frequency (Hz) 
Incremental Cumulative Production 

(%) 
4000 cP 50 cP 

0.1 39 0 
0.25 115 0 
0.4 101 16 
0.8 83 82 
1 79 108 
2 74 61 

 

 

The results show that, as with other parameters, the incremental cumulative production 

achieves a maximum at a certain frequency.  This behaviour can be explained that if the 

pressure pulse is generated in a porous medium, it will take some time for the pressure to 

dissipate because of viscous effects.  If the frequency is very low the next pulse is applied 

after the previous one dies-off, so no synergy is created to enhance the flow.  However, 

for very high frequencies, pulses are applied too rapidly that it doesn’t allow pressure to 

dissipate.  Also, in the field applications, this pressurization should be observed carefully 

as high pressure build ups might cause reservoir rock to fracture.   

 

It is also observed that a low viscosity fluid requires a higher frequency pulse to 

maximize the enhance flow whereas a higher viscosity fluid requires a lower frequency 

pulse.   

 

As it is seen from the previous sensitivity analysis, pressure pulsing was not successful at 

very low viscosity fluids and high permeability reservoirs.  Looking at the pressure 

profiles at these two cases, it is observed that there was no internal pressure build up to 

enhance the fluid flow.  This was because the pressure from each pulse would return to 

the initial pressure in the medium before the next pulse was added, leading to a poor 

build-up effect.  If the frequency was too low, the wave length would become too large, 

making the start of the next pulse out of the best range.  This situation is shown in Figure 
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6-100.  We can see that there is almost no pressure build up effect with a very low 

frequency of liquid pulsing.   

 

The frequency of pressure pulsing has to be in right range to achieve a good recovery.  

Figure 6-101 shows higher frequency pressure pulsing.  

 

 
Figure 6-101:  Schematic showing the desired behavior of optimal frequency 

pressure pulses 
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Figure 6-100:  Schematic showing the undesired behavior of low frequency pressure 
pulses 
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The next pulse is applied before the full decay of the previous pulse, so the synergism 

will build up a high gradient of hydraulic head, forcing the liquid to flow more quickly.  

It is clear that the frequency plays an important part in achieving the pressure build-up 

effect.  The frequency determines if the next pulse is applied in the best range of the 

previous pulse. 

 

In Chapter 6 the sensitivity of the output of pressure pulsing on simulation models is 

investigated at the lab scale. One should be cautious when interpreting sensitivity results 

from these small scale models. Flow rate is proportional to ΔP/Δl, where P is pressure 

and l is distance from the inlet to the outlet. At the lab scale, a small ΔP across the core is 

required to achieve a certain flow rate. However, at the field scale, a greater ΔP is 

necessary to attain the same magnitude of flow rate. Moreover, in order to match the 

recoveries, even higher flow rates and ΔP will be required at the field scale. Therefore, 

one can argue that pressurization due to pressure pulsing should be greater at the field 

scale versus the lab scale meaning a large amplitude source is required in practice. A 

higher frequency and longer duration of pulses should also be achieved in the field in 

order to propagate sharp pressure gradients further into the reservoir, closer to the 

production well. However, these amplitudes and frequencies may not be reasonable due 

to the fracture pressure and tool capacity constraints. Therefore, lab scale recovery factors 

should not be applied to the field scale. It should also be noted that consolidated versus 

unconsolidated formations will have different recovery factors for a given amplitude-

frequency pressure pulsing.   The lab scale models should be scaled up by “tuning” 

certain parameters to investigate field scale recoveries and sensitivities. The selection of 

the appropriate tuning parameters deserves further research. 
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7 CONCLUSIONS 
 

This dissertation has introduced the concept of pressure pulsing and geomechanics in the 

reservoir and addressed how to represent these physical phenomena in reservoir 

simulations. The research has focused on developing an iterative, fully coupled procedure 

that permits the analysis of porosity changes, both dynamic (propagation of porosity 

waves in the reservoir) and static (effective stress changes).  The effects of pressure 

pulses on the fluid flow and production has been analyzed. In addition to pressure pulses, 

the combined effect of stress changes, fluid flow and reservoir property changes on oil 

recovery has also been evaluated by a fully coupled procedure that integrates pressure 

pulsing, geomechanics and reservoir simulation (BOAST, Black Oil Applied Simulation 

Tool).  On the basis of the results from this investigation, the following conclusions are 

derived: 

 

(i) The study indicates the existence of an optimum set of reservoir parameters for a 

given frequency at which pressure pulsing is most effective.  The optimum point 

changes for different reservoirs and varies with each of the input parameters. For 

instance, in the example used in the sensitivity analysis (2000 cp, porosity 35%, 

rock compressibility 3x10-6 psi-1, frequency 0.25 Hz) the optimum permeability 

was 1000 mD. Little to no benefit was observed for permeabilities less than or 

greater than 1000 mD. This behaviour can be explained by considering that when 

the reservoir permeability is high, the pulse attenuation is small.  At very small 

attenuations, energy from one point to another is released very fast and the pulse 

diffuses very quickly through the reservoir.  This does not allow a significant 

pressure gradient to develop and, therefore, flow is not enhanced.  It is observed 

that where the permeability is very high, the pressure increases the same amount 

everywhere in the reservoir and the sharp pressure gradient needed to increase 

fluid rate is not created.  At very low permeabilities, though, the pulse attenuation 

is high and the pressure builds only near the injection point.  Because of the slow 

velocity, the pulse is not able to propagate far into the reservoir in order to 

stimulate flow. Pressurization occurs only around the injection well and areas far 
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from the injection wells remain unpressurized and flow is not stimulated by the 

pulses.  Therefore, an examination of the pressure profiles show that for a given 

frequency there is an optimum permeability where we achieve the maximum ratio 

of cumulative production with pulse to cumulative production with no pulse. 

 

(ii) It is concluded that, generally, the energy-preserving ability of light oil is weaker 

than that of viscous oil.  If the frequency used in the case of a light oil is too low, 

the previous pulse dissipates too much before the next pulse is added, leading to a 

poor build up effect.  For a given frequency there is an optimum viscosity where 

the maximum ratio of cumulative production with pulse to cumulative production 

with no pulse is achieved. 

 

(iii) The results from the study indicate that the low attenuation associated with high 

permeability levels is rebuilt with high porosities.  In other words, for the higher 

porosity levels, the energy is maintained in the pores and not allowed to release.  

Also, the higher the porosity, the lower the optimum viscosity for a given 

frequency.   

 

(iv) Porosity dilation theory states that porosity diffusion is a function of wave speed 

and that the speed of the wave is determined by the compressibility of the solid 

matrix.  Therefore, higher rock compressibilities lead to slower wave speeds and 

greater porosity variation.  At very small rock compressibilities (i.e. high wave 

speeds), pulse energy is transferred very fast such that no change in porosity takes 

place. Therefore at high wave speeds no flow enhancement occurs. 

 

(v) The results show that, as with other parameters, the incremental cumulative 

production achieves a maximum at a certain frequency.  This behaviour can be 

explained that if the pressure pulse is generated in a porous medium, it will take 

some time for the pressure to dissipate because of viscous effects.  If the 

frequency is very low the next pulse is applied after the previous one dies-off, so 

no synergy is created to enhance the flow.  However, for very high frequencies, 
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pulses are applied too rapidly such that pressure isn’t allowed to dissipate.  Also, 

in the field applications, this pressurization should be observed carefully as high 

pressure build-ups might cause the reservoir rock to fracture.   

 

(vi) Three sets of boundary conditions were investigated in this study. It is observed 

that bottom the boundary condition is the most important factor determining 

permeability variation. This result indicates that for cases with non-deformable 

boundaries, less compaction occurs due to decreases in reservoir pressure.  This 

results in a lower reduction in the reservoir permeability versus cases with 

deformable boundaries. 

 

(vii) For each of the boundary condition cases studied, the reduction in the 

permeability is maximized at the middle layer.  The explanation for this behaviour 

may be that the rock deformation is at its maximum in the mid-layer, where fluid 

flow occurs in all directions, and at a minimum in the upper and lower layers, 

where fluid flow is constrained by the non-permeable layers of the outer domain.  

This argument is proved by our study showing the volumetric strain is at its 

maximum at the mid-layer and minimized at the upper and lower layers. 

 

(viii) The results indicate that the reservoir permeability decreases less with time as the 

rock elastic moduli of the outer domain increases.  This behaviour is a reflection 

of the fact that the higher the Young’s modulus, the lower the ability of the outer 

domain to deform.  As the outer domain loses its ability to deform, it imparts less 

compaction on the reservoir and therefore less reduction in the reservoir 

permeability. 

 

(ix) The inclusion of the outer domain dramatically increases both the computer 

storage requirements and program execution time.  However, the study shows that 

the permeability profile curves obtained from the two-domain and the single-

domain models differ considerably.  At all times, the two-domain model yields a 

greater change in the permeability profile with time versus the single-domain 
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model.  This behaviour can be explained by the fact that as the pore pressure at 

the reservoir boundaries declines, the geomechanical conditions at the reservoir 

boundaries change in two ways: 1) incremental displacements at the boundaries 

become different than zero, and 2) due to rock expansion or compression, the 

local stress state at the boundaries may vary with time.  These reservoir boundary 

deformation effects included in the two-domain model but not in the single-

domain model are translated into an extra permeability decrease. 
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8 RECOMMENDATIONS 

 
The  model developed in this study represents an advancement in the simulation of oil 

reservoirs with an iterative, fully coupled procedure that permits the analysis of pressure 

pulsing by modeling the propagation of porosity waves in a reservoir. In addition to a 

model of pressure pulsing, a 3D finite difference, fully implicit geomechanical model is 

developed to simulate the physical phenomena occuring during the production from 

reservoirs with stress-sensitive mechnical and fluid-flow properties.  Although the model 

is verified by lab tests some additional features must be investigated or modified to use 

the model for more complicated situations. A few aspects to be considered for future 

research are: 

 

(i) Applying pressure pulsing as EOR is a very new  technique in the industry. There 

is very few field data which has been released to the public knowledge. Due to the 

lack of field data, the pressure pulse model is verified with only lab experiments. 

However, large scale field results could be different from small scale lab results as 

waves propagate 3D rather than 2D. It is highly recommended to collabrate with 

industry to obtain field data and compare them with the pressure pulse model 

developed in this research. 

 

(ii) The theory developed in this study shows that as porosity wave propagates it 

causes porosity and saturation changes. The dynamic saturation changes are in 

addition to the saturation changes due to injection and/or production. It is caused 

by inertial effects due to pressure pulsing. As is widely known, capillary pressure 

is a function of saturation.  The equations developed in this dissertation link 

capillary pressure changes to the dynamic saturation changes, however, only the 

static capillary pressure is taken into account in the simulation developed. It is 

recommended that future work incorporate dynamic capillary pressure changes 

into the simulator.   
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(iii) Pore structure has long been recognised as one of the key factors determining the 

shape of relative permeability curves.  The permeability of a phase relates to pore 

throat size and hence to saturation at a given capillary pressure. In many data sets, 

there is a strong relationship between permeability and mobile oil saturation. For 

instance, the small permeability sandstone has much higher end point saturations 

than high permeability sand.  Our study shows that as the porosity wave 

propagates in the rock, porosity and permeability changes. Additional work is still 

required to update relative permeability curves in the simulation as the rock 

permeability changes in a grid block. 

 

(iv) Volumetric strain was used as wellbore boundary condition (source). One can 

define the pulse tool and amplitude in terms of pressure and convert this into 

volumetric strain. However, for the sake of simplicity, reservoir is decoupled from 

the wellbore and the strain is taken as a pulse source. There are two basic options 

for pulse generation: use of the entire tubing string as a drop weight, forcing all 

the casing liquid below the pressure pulse tool throught the perforations; and, use 

of a bottom hole independent piston driven by mechanical hydraulic means. In 

our equations the pressure pulse source term is an input in the equations. Research 

is required to define the pressure pulse source term as a function of the pulse 

generating tool. This would allow including drop weight, wellbore length, 

perforation size and intervals in the calculation of source term in the simulation 

tool.  

 

(v) In this study the primary focus was the lab scale. However, it is important to 

investigate the large scale, both spatially and with time, in applying this 

simulation tool to field scale processes. Additional effort should be put to 

understanding the scaling parameters.  

 

(vi) The success of pressure pulsing in the laboratory depends on right boundary 

conditions. Spacing between the rubber membrane and the core can act as a thief 

zone which would become a preferential path for dilation waves. Another set of 
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experiments using proper boundary conditions should be conducted and the 

results should be compared with the existing lab results (which used the improper 

boundary conditions). 

 

(vii) This study assumes permeability is a function of mean effective stress, meaning 

that it changes in the same amount in every direction. However, it is known that 

fractures occur in the direction of maximum principal stress and perpendicular to 

the minimum principal stress. It should be further investigated if the permeability 

change in the minimum and maximum axes behave differently. 

 

(viii) The geomechanical model developed in this study was validated with the results 

from literature.  The results clearly show that permeability of stress-sensitive 

reservoirs may significantly change through the reservoir production life.  This 

change is highly dependent on reservoir conditions and production scenarios. It is 

recommended that the results of our model be validated with field data and 

investigate the impact of permeability changes on actual reservoir production and 

compare with our model. 

 

(ix) This study uses only fluid-flow analytical solutions as the well inflow equations.  

The geomechanical coupling effects are considered through the permeability 

changes. It should be investigated if the well productivity might be influenced by 

the stress-induced permeability change. Also, it is recommended to study the 

effects of well radius change due to geomechanics on the skin factor. 
 

(x) In this study cartesian coordinates are used because of the restrictions of the oil 

simulator. Multi noded quadrilateral grids might allow for higher order of shape 

functions and a finer mesh near the wellbore and near the reservoir-sideburden 

interface to better capture the larger stress and strain gradients in these areas.  To 

deal with large scale processes, such as far-field stress chages, coarser grids can 

be used at areas where stress and strain change slowly.  
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APPENDIX A – IMPES PROCEDURE 
 
The method by which the pressure and saturation equations are built and solved by the 

IMPES procedure is explained below: 

 

 

 

 

 

 

 

 

Figure A-1:  Conservation of mass 
 

Figure A-1 shows the conservation of mass in a unit volume of reservoir.  ‘Jx’ represents 

the flux of mass into the unit volume in x-direction, ‘q’ is the mass injected or produced 

from the unit volume of reservoir and ‘Jx+Δx’ is the flux of mass leaving the unit volume.  

According to this, mass in and mass out can be written as: 

 

Mass in = ( ) ( ) ( )[ ] tyxJzxJzyJ zzyyxx ΔΔΔ+ΔΔ+ΔΔ ; (A.1)

Mass out = ( ) ( ) ( )[ ] tzyxqtyxJzxJzyJ zzzyyyxxx ΔΔΔΔ−ΔΔΔ+ΔΔ+ΔΔ− Δ+Δ+Δ+
.
 (A.2)

 

Also, the mass difference between one time step and another is given as: 

 

Mass 
accumulation 

= ( ) ( )[ ] zyxCC
tpttp ΔΔΔ−

Δ+

 
.
 (A.3)

 

Here, ‘J’ is mass flux, ‘q’ is a sink or source term and ‘Cp’ is the concentration of phase 

p. Dividing the equation by Δx Δy Δz Δt and rearranging gives: 

 

Jx (mass in) Jx+Δx (mass out) 

q (mass out) 
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As Δx, Δy, Δz  and Δt goes to zero: 
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The mass flux, ‘J’, is described as followed: 

 

p
p

psc
p v

B
J vρ

=
  
;
 

(A.6)

 

where the ‘ρ’ is density, ‘B’ is formation volume factor, and ‘v’ is velocity. The subscript 

‘p’ refers to the fluid phase (oil, water or gas) and ‘sc’ refers to standard conditions. In 

the case of a gas reservoir, solution gas ratios are also included in the equations (more 

information on this case can be seen in the BOAST manual53). 

 

The fluid concentrations are defined as: 

 

p

ppsc
p B

S
C

φρ
=

  
;
 

(A.7)

 

where ‘φ’ is the porosity and ‘S’ is the fluid saturation.  

 

Using these equations in Equation (A.5), the mass conservation becomes: 
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The Darcy fluid velocity is defined as: 
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(A.9)

 

where ‘λp‘ is the phase mobility and defined as 
p

rp
p

k
μ

λ =  where ‘krp‘ is relative phase 

permeability and ‘μp‘ is phase viscosity. 

 

Substituting the velocity equation (A.9) into the mass conservation equation (A.8) and 

writing it in vector form: 
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Introducing the concept of capillary pressure, the water phase pressure can be written in 

terms of oil pressure: 

 

COWow PPP −= ; (A.11)

oCGOg PPP += . (A.12)

 

So now the mass conservation equations for each phase can be written in terms of oil 

phase pressure as: 
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−⎟
⎠
⎞

⎜
⎝
⎛ +∇∇−∇∇

w

w

wsc

w
COW

w

w

w
o

w

w

B
S

t
q

P
z

B
K

P
B

K φ
ρ

ρλλ
144

vv

  
;
 

(A.14)
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Constructing Pressure Equations: 

Applying the chain rule to the right hand side of the flow equations, we can write the 

RHS in terms of the pressure derivative: 
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knowing that So+Sw+Sg =1, then: 
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Substituting Equation (A.19) into Lg (A.18): 
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Now, we have three equations and three unknowns (Po, So, Sw). Multiplying the oil 

equation (A.16) by (Bo-RsoBg), the water equation (A.17) by (Bw-RswBg) and the gas 

equation (A.20) by Bg and adding the results together gives: 
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This equation can be greatly simplified by combining terms resulting in: 
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where … 
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and  
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Employing these definitions, Equations (A.16), (A.17) and (A.20) in (A.22) gives: 
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Equation (A.28) is called the pressure equation because no explicit time derivatives of 

saturations are present. BOAST numerically solves the flow equations for Po then, it finds 

So, Sw and Sg from flow equations given in (A.13), (A.14), (A.15) and from So+Sw+Sg =1. 

 

The partial differential flow equations presented earlier are approximated by algebraic 

equations known as finite difference equations. The finite difference equations are 

obtained by replacing derivatives with approximations derived from truncated Taylor 

series expansions. Converting partial differential equations to finite difference form is 

explained in Basic Applied Reservoir Simulation56 and BOAST manual53. The finite 

difference pressure equation can be presented in a relatively simple form by making the 

following definitions:     
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All the parameters in Equations (A.32) through (A.38) are evaluated at the present time 

level (n). The pressure equation (A.28) then becomes: 
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APPENDIX B – VERIFICATION OF PPT CODE WITH BP EXPERIMENT 
 
BP petroleum company performed laboratory experiments at their Sunbury facilities 

attempting to evaluate the applicability of pressure pulse technology to the enhanced 

recovery of oil. 71  The results of these tests offer another example for validation of the 

PPT numerical simulation.  While these experiments were unsuccessful in stimulating 

increased oil production, simulations using the PPT model indicate that the failure was 

likely due to the method in which the experimental apparatus was constructed.  

Additionally, the results of these simulations lead to recommendations for constructing 

future successful tests. 

 

In these experiments, the porous medium was created from sandstone core plugs covered 

by a PVC membrane.  This membrane covered medium was then placed in a cylindrical 

steel cell and subjected to a 2000 psi uniaxial stress.  A brief schematic is given in Figure 

B-1. 

 

Figure B-1:  Schematic of the pressure pulse experiment performed by BP 
 
 

The sample used in these tests had a porosity of 20% and permeability of 30 mD.  The 

sand was oil wet and was saturated with water as the mobile phase.  Initially, a constant 

provides constant pressure 
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Core holder 
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head was created across the cell and flow was allowed to come to a steady-state rate.  

After a steady-state period, the sand pack was excited by pressure pulsing near the inlet 

port at varying pulse heights and frequencies.  Pulsing was stopped for some interval and 

then started again and a number of cycles were carried out. 

 

The measured pulsed flow results are given in Figure B-2 for a series of different 

pressure drops and are compared to the flowrates expected due to Darcy flow.  The 

pulsed flow results are represented by an average of all the data points collected during 

the pulse and therefore do not represent the minimum or maximum flowrates generated 

by the pulse.  These results show no clear benefit from pulsing over the frequencies and 

amplitudes tested for this system and led to the conclusion that pressure pulsing offered 

no benefits over steady-state flow. 
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Figure B-2:  Flowrate versus pressure resulting from the BP pressure pulse test 

 
 
In order to understand why pressure pulsing did not lead to enhanced flow through the 

core, the experiment was simulated with the PPT-BOAST algorithm.  In these 

simulations a 3D model was used consisting of seven layers with 17 gridblocks in the x–

direction and 7 gridblocks in the y-direction.  The first and seventh layers represented the 

membrane while the internal layers represented the porous medium.  An x-z cross section 
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is shown in Figure B-3.   The gridblocks representing the porous medium were given a 

permeability of 3 mD and a compressibility of 1x10-5 psi-1 while the space between the 

membrane and the porous media was modeled with a small permeability and large 

compressibility (0.3 mD and 0.1 psi-1). 

 

 
Figure B-3:  Cross-section of the simulation model of the BP pressure pulse test 

 

Two sets of simulated pressure transitions were examined:  Figure B-4 shows the 

pressure transition in the porous medium and Figure B-5 shows the pressure transition in 

the membrane.  In these figures, “A” represents the pressure near the injector, “B” 

represents the pressure at the mid-point in the sample, and “C” represents the pressure at 

the producer.  As can be seen in the figures, there is a much larger pressure transition in 

the membrane than in the porous media.  The membrane shows a pressure response due 

to the pulsing while there is virtually no reponse in the porous medium.  This result 

shows that the pressure pulse did not propagate through the sample but instead 

propagated through the more compressible PVC membrane surrounding the porous 

medium.  Therefore, a porosity wave was never generated in the porous medium. 
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Pressure vs Time Step (Layer 4- porous media)
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Figure B-4:  Predicted pressure response at three locations within the porous 

medium 
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Figure B-5:  Predicted pressure response at three locations within the membrane 

 
 
The conclusion that can be drawn from these results is that highly compressible materials 

in contact with the porous medium (such as Neoprene, rubber, or like materials used as 

membranes to protect the specimen during testing) can dampen the impulse that is 

applied to the porous medium, adversely affecting the propagation of a porosity-pressure 
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wave and thereby resulting in no significant increase in fluid flow.  This is due to the 

pulse wanting to follow the path of least resistance to deformation or, in other words, the 

path of highest compressibility.  If this path is through a material external to the porous 

medium then a porosity wave will not be generated and pressure pulsing will have no 

effects.  It is therefore recommended that for laboratory experiments attempting to 

examine the effects of pressure pulsing the core should be jacketed in a material that is 

much more rigid than the matrix itself. It should be noted that in the field, it is most likely 

that the path of least resistance to deformation would be through the fluid saturated 

reservoir rock.   
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