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Abstract

The inner magnetosphere hosts a variety of different plasma environments. The

transition from one region to the next extends over considerable lengths where adjacent

plasmas merge gradually. Plasma waves play an important role in coupling these re-

gions by facilitating particle and energy flows necessary to maintain or restore a state

of dynamic equilibrium. Most types of plasma waves undergo dispersion as they move

through regions with changing properties, affecting energetic particle populations in the

process.

In this thesis, the effects of Dispersive Alfvén Waves (DAW) on electron plasmas

are investigated for different scenarios using numerical simulations. To this end, the

Drift Kinetic (DK1D) Vlasov solver [Watt et al., 2004] has been extended to include

inhomogeneous background plasma conditions while preserving self-consistency between

field and particles. A density model has been added which consists of a mixture of two

plasmas: an ionospheric contribution composed of singly ionized oxygen which decays

quickly with altitude, and a magnetospheric hydrogen plasma that is assumed spatially

uniform. The resulting density variation gives rise to a realistic temperature profile along

geomagnetic field lines.

The occurrence of regular and inverse suprathermal electron energy dispersion re-

ported by Cameron [2015] is addressed using a simpler version of the code valid for

uniform plasmas. Regular energy dispersion is divided between cases with a single

suprathermal component and those accompanied by a locally enhanced thermal popula-

tion. Simulations reveal that the first kind of signatures form primarily under conditions

of low wave phase speed and strong wave dispersion, ultimately producing electron ac-

celeration to energies significantly higher than that predicted by Fermi-like interactions.

Regular energy dispersion, on the other hand, shows evidence of an enhanced thermal

population at larger wave phase speeds. The occurrence of high energy electron disper-

sion over Fermi-like electron energy dispersion is favored by a decrease of perpendicular
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wavelength and an increase of the plasma temperature and wave amplitude. Recent ob-

servations of inverse electron energy dispersion by the Canadian ePOP micro-satellite are

explained as being due to the relative motion of the satellite and the source of wave emis-

sion. It is demonstrated that, for a source moving in the cross-plane of the background

magnetic field and emitting Alfvén waves parallel to the field, inverse electron energy

dispersion will be observed by a satellite whose trajectory is also in the cross-plane of

the background field.

The DK1D code is also used to determine the efficiency of electron trapping by

Shear Alfvén Waves (SAW) in the magnetosphere. This process is shown to be limited

by Landau damping at short perpendicular wavelengths. For the range of parameters

considered, simulations reveal that waves do not survive to reach the inertial region. This

strong influence of particle trapping and self-consistent Landau damping is an indication

of possible over- or under-estimates of the energy gain of accelerated electrons in studies

that disregard self-consistent wave-particle interactions.

Lastly, the efficiency of the Electron Cyclotron Instability (ECI) resulting from field-

aligned electron acceleration by inertial Alfvén waves within and above the Ionospheric

Alfvén Resonator (IAR) is investigated. Since the motion of these accelerated electrons

preserves their magnetic moment the mirror force induces the formation of unstable

horseshoe distributions. Electron distributions from simulation data are fitted to an

analytical representation that enables the convective length associated with wave am-

plification of Auroral Kilometric Radiation (AKR) to be calculated. Simulation results

show that AKR generation is most efficient where the ratio ωpe/ωce is a minimum, and

exclusively for electron number densities ≤ 105 cm−3, in accordance with observations.

Enhanced efficiency of AKR generation can be obtained by increasing both the back-

ground plasma temperature and the perpendicular wavelength. At altitudes above the

IAR, the interference of reflected and incident waves coincides with a sudden termination

of the conditions for AKR amplification.
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Preface

Appendix C of this thesis has been published as A. V. Artemyev, R. Rankin, and

M. Blanco, “Electron trapping and acceleration by kinetic Alfvén waves in the inner

magnetosphere”, Journal of Geophysical Research: Space Physics, Vol. 120, 10305-

10316, doi:10.1002/2015JA021781, 2015. I was responsible for deriving the two-fluid

equations in the appendix of the paper and the expression for the effective potential in

terms of the scalar potential through substitution of the vector potential from the wave

equation. These equations indicate that electrons escape the wave at an altitude which

depends on wave parameters, which motivated the analysis presented in the publication.
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Chapter 1

Introduction

The objective of this thesis is to evaluate the possible association between Auroral Kilo-

metric Radiation (AKR) with source in the Alfvénic acceleration region and the for-

mation of unstable electron distributions driven by dispersive Alfvén waves at auroral

latitudes where the convergent magnetic field favors the formation of horseshoe dis-

tributions. In order to accomplish that, computer simulations using a self-consistent

Drift-Kinetic (DK1D) code [Watt et al., 2004] with a dipolar magnetic model were run

to obtain numerical electron distributions under varying background plasma conditions

and realistic parameters that determine the wave dispersion. Resulting unstable distribu-

tions are analyzed within the theoretical framework of the Electron Cyclotron Instability

(ECI); the resonant curves are integrated to obtain estimations for frequency modes and

damping rates.

Terrestrial radio emissions into space were first discovered by spacecraft in 1965 and

studied ever since. Among these emissions, a rather broad frequency range from ∼ 1

kHz to a few MHz show amplitudes that surpass the background level by several orders

of magnitude; this component maximum power peaks within the 100− 600 kHz interval,

which corresponds to wavelengths of around 1 km. For this reason, it is known as Auroral

Kilometric Radiation (AKR) Paschmann et al. [2003]. AKR is the most powerful source

of terrestrial radiation. It propagates mostly in the RX mode, and to less extent, in the

LO and Z modes. Power emission ranges between 107 W during weak substorms to 109

W during strong substorms. Analogous emissions have been detected in the polar regions

of other magnetized planets like Jupiter and Saturn. Wave amplification is driven by the

so-called Electron Cyclotron Instability (ECI) [Chu, 2004], a process where the relativis-

tic mass shift associated to the fast rotational motion of the non-thermal component of

the electron distribution induces azimuthal bunching in phase-space; bunched electrons
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may then amplify elliptically polarized free wave modes via coherent gyroresonant in-

teraction. Azimuthal bunching causes coherent amplification at the expense of the free

energy of the plasma, in the same way as a maser. The efficient generation of intense

radiation is, however, conditioned to the absence or otherwise weak action of dissipation

processes. Under such conditions, the plasma cannot dispose of the excess of energy, and

it remains stored in the particle distribution [Treumann, 2006]. Optimal conditions for

wave amplification at the source region include low density of the thermal plasma and a

strongly magnetized environment. The former condition reduces wave energy loss due to

Landau damping, as well as thermalization of the plasma due to collisions and long-range

Coulomb interactions that tend to disorganize the coherent motion and cause shielding.

The latter ensures gyromotion in the plane perpendicular to the magnetic field. Both

these conditions are readily found in the near-Earth magnetospheric environment. The

physical mechanism for plasma energization in this region is, however, not that triv-

ial. The driving mechanism responsible for AKR is unstable horseshoe distributions

in velocity or momentum phase space, which form in high latitude regions where the

converging magnetic field presents strong gradients, and upward (downward) currents

(electric fields) form as a product of magnetosphere-ionosphere coupling processes. An

electric field oriented anti-parallel to the geomagnetic field ensures high emission rates of

AKR through important modifications of the plasma properties: in combination with the

magnetic mirror force, it accelerates ions upward, driving them into the magnetosphere;

magnetospheric electrons, on the other hand, are accelerated downward by anti-parallel

electric fields. The mirror force opposes electrons downward motion, with the result that

only electrons with small pitch angle can reach low altitude. Ionospheric electrons are

prevented from moving upward in the parallel electric field, with the net effect being

that plasma within regions of the parallel potential drop is highly energetic and of low

density, implying optimal conditions for the conversion of energy into radiation.

The magnetic-field-aligned electrostatic structures that develop in the upward current

region are not the only source of field-aligned potential structures that can accelerate

electrons. Parallel electric fields and associated upward currents can also appear as

a consequence of the propagation of Shear Alfvén Waves (SAW) in regions where the

perpendicular scale (relative to the geomagnetic field) of the waves is comparable to the

ion acoustic gyroradius [Hasegawa, 1976] or the electron skin depth [Goertz and Boswell,

1979]. This effect has been widely studied in the context of electron acceleration in

high altitude regions and is regarded as an important mechanism to enhance electron

precipitation that generates auroras [Wygant et al., 2000; Watt and Rankin, 2009]. It

is also speculated to energize plasmas capable of feeding the ECI that powers AKR

[Su et al., 2007, 2008]. Evidence for this comes from the fact that AKR signatures
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have recently been observed inside the Alfvénic acceleration region (Su et al. [2008];

Hanasz et al. [2008] and others), raising the possibility of an association with Inertial

Alfvén Waves. To this date, the viability of parallel electric fields of Alfvénic origin

as a possible driver of AKR has not been evaluated quantitatively, which motivates

the studies presented here. Previous attempts to study this process [Su et al., 2007]

have used a non-self-consistent approach that leaves out important physics, particularly

the damping of waves. It will be demonstrated that with fewer assumptions, the self-

consistent DK1D code predicts distribution functions that are highly favorable to the

generation of AKR. The model includes wave growth and damping, and by the simple

assumption of a constant electrostatic field along the magnetic field line, it relates the

distribution function to the background plasma properties analytically.

The primary objective of this research is to establish whether there is a causal con-

nection between AKR signals originated in the Alfvénic acceleration region and electron

energization produced by the shear Alfvén propagation. In other words, to determine

if modification of the plasma distribution function due to wave-particle interactions can

generate unstable distributions, and determine the parameters and conditions with the

right characteristics to explain observational results of AKR emissions. The SAW con-

sidered in this study are in the inertial regime, which corresponds to perpendicular

wavelengths (with respect to the geomagnetic field) on the order of an electron skin

depth c/ωpe in the plasma. Ions are treated as a cold neutralizing background while the

waves of interest have frequencies well below the ion gyro-frequency. The methodology

consists of a self-consistent numerical Vlasov solver [Watt et al., 2004] that accounts

for inhomogeneity in the magnetic field and kinetic wave dispersion. For this work, the

DK1D code has been modified to include inhomogeneous conditions of electron density

and temperature, while the self-consistency of the equilibrium distribution function is

achieved by introducing an electrostatic potential into the spatial domain. This new

formulation allows us to move up and down the spatial domain and study how the dis-

tribution function and wave fields at a given altitude are affected by different ambient

plasma conditions along the geomagnetic field. It is shown that interaction of the in-

ertial SAW with the electron plasma leads to the formation of horseshoe distributions

that can be unstable to AKR if a gyroresonant interaction is established between the

energetic plasma and the presence of free space modes. The relativistic condition for

gyroresonance draws an ellipse whose location in phase space depends on the electron

gyrofrequency and local wave propagation properties; by comparing unstable distribu-

tions obtained through simulation with the respective resonant surfaces, we intend to

identify the parameters and locations along the magnetic field where the distributions

are more unstable to AKR.
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1.1 The magnetospheric environment

In the immediate neighborhood of the stars, high speed flows of ionized plasma and

magnetic fields known as solar wind are continuously released as a byproduct of fusion

reactions taking place in their core. For the case of our Sun, the solar corona temperature

reaches ∼ 106 K; the large thermal energy of the particles allows a significant fraction

of electrons (1/2) and a small fraction of ions (1/100) to overcome the gravitational

force and escape into interstellar space. The resulting charge imbalance establishes large

electrostatic structures that help surface ions surpass the solar gravitational field [Parks,

2003]. Solar wind properties depend strongly on its heliocentric distance, but some of

them, like the flow velocity and particle energies, reach an asymptotic value at long

distances where the gravitational field is close to zero.

Table 1.1: Typical solar wind properties at 1 AU heliocentric distance (From Kivelson
and Russel [1995])

Proton density (cm−3) 6.6
Electron density (cm−3) 7.1
He2+ density (cm−3) 0.25
Flow speed (km/s) 450
Proton temperature (K) 1.2× 105

Electron temperature (K) 1.4× 105

Magnetic field (nT) 7

Typical values of solar wind close to Earth are given in table 1.1. Despite these

ultra-low densities and its collisionless nature (the mean free path between collisions is

in the order of ∼ 1 Au) [Kivelson and Russel, 1995], the solar wind has essential effects

in driving solar-planetary interactions. Solar wind flows slowly erode the atmosphere of

unmagnetized bodies until total depletion, and reshape the magnetic field on magnetized

planets into a raindrop-like shape; compressed on the dayside and extended on the

nightside regions. Since these effects are driven by the dynamic pressure of the solar wind,

one can think of planets as streaming supersonically inside a nonviscous, conducting

plasma fluid.

The frontier between the terrestrial environment and outer space is ultimately deter-

mined by the surface where pressure effects produced by momentum flux carried by the

solar wind balances the magnetic stresses of Earths magnetic field, and thermal pressure

of the plasma enclosed by it. This frontier is known as the magnetopause, and the cavity

contained by the geomagnetic field is the magnetosphere. From the divergence-less nature

of magnetic fields in general, it follows that advected interplanetary magnetic field lines
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transported within the solar wind cannot just traverse the geomagnetic field. Further-

more, since both solar wind and magnetospheric plasmas are highly magnetized, neither

can the solar wind plasma move through the magnetopause. Instead, magnetic field lines

bend over, and solar wind particles are deflected around the Earth; the solar winds mo-

mentum flux and built up magnetic pressure pushes and deforms the geomagnetic field,

compressing it on the sunward direction (stagnant point is ∼ 10 RE), and stretching it at

nightside into a long magnetotail (∼ 102−103 RE). Along the magnetopause, differences

between the magnetic field configuration in the solar wind and magnetospheric regions

produce current sheets that flow according to Ampére’s law. Close to Earth, the solar

wind speed is an order of magnitude higher than both the sound (60 km/s) and Alfvén

(40 km/s) speeds. Therefore, before reaching the magnetopause, a standing Bow Shock

forms in the shape of a hyperbolic surface beyond which the solar plasma is thermalized

to subsonic velocities and higher densities. The region between the Bow Shock and the

magnetopause is known as the Magnetosheath.

Figure 1.1: A noon-midnight representation of the magnetospheric environment upon
interaction with the solar wind at times of southward IMF. Dotted (crossed) circles
show currents flowing outside (inside) the page. (From Kivelson and Russel [1995])

Even though particle momentum of the solar wind is most responsible for shaping the

magnetospheric region, the advection of interplanetary magnetic field (IMF) lines have a

tremendous impact in the state of dynamic equilibrium shown in Figure 1.1, by effectively

driving the convection processes that take place in the outer magnetosphere through re-

connection of field lines in various sections of the magnetopause. Magnetic reconnection

takes place at regions of finite conductivity and low plasma speed where magnetic field

lines of markedly different orientation converge. At the point where this superposition

of fields is close to zero, the magnetic stress is too low and fails to maintain the local
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Figure 1.2: Another representation of the magnetosphere showing dayside reconnection.
Red lines belong to the geomagnetic field, white lines are part of the solar wind. Advec-
tion of solar wind magnetic fields against the Earths field leads to reconnection. (From
https://www.nasa.gov/mission_pages/sunearth/science/magnetosphere2.html)

plasma magnetized, so in that region particles can move freely across field lines, enabling

mass interchange between the Magnetosphere and Magnetosheath regions. At the noon

point of the Magnetopause, for example, when the IMF is predominantly southward,

magnetic pressure builds up by the constant advection of solar wind, effectively pushing

the magnetosphere towards the Earth. This magnetospheric compression causes the den-

sity of geomagnetic field lines to increase, eventually restoring the equilibrium. There is

convection of both solar and geomagnetic field lines with opposite orientation that, when

converging to the same point, tend to cancel each other out. Since field lines never end, a

solar magnetic line diffusing into the null point breaks and reconnects with a geomagnetic

field line, turning into a single line that traverses the Earth’s core and extends into open

space on both north and south sides (see Figure 1.2). This topologically modified line is

then advected tailward as it is dragged by its ends in outer space by the solar wind while

carrying a mixture of solar and terrestrial plasmas; this warm plasma fills a section of

the Magnetotail composed with high latitude magnetic lines called Plasma Mantle. As

the solar wind continues flowing and stretching these open field lines anti-earthward, the

magnetic pressure of new reconnected lines will eventually drive them to lower latitudes

into the Tail Lobes, where additional plasma from the ionosphere contributes to creating

higher density (still < 10−1 cm−3) and lower temperature conditions. Eventually, at

distances in the order of hundreds of Earth radii, the north and south arms of the mag-

netic line will collapse again at low latitudes, causing them to break and reconnect into

https://www.nasa.gov/mission_pages/sunearth/science/magnetosphere2.html
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a single closed magnetospheric line and a free magnetic field line to be incorporated to

the solar wind. During this process of magnetotail reconnection, inflows of lobe particles

are energized to form ion and electron beams streaming earthward along the recently

closed geomagnetic field lines. A fraction of particles constituting these beams bounces

back due to the mirror force as tailward beams [Kivelson and Russel, 1995]. These coun-

terstreaming beams are unstable to several wave modes, so eventually, the streaming

particles are thermalized and deposited towards lower latitudes. The region containing

these beams of fast particles (∼ 102 km/s) is known as the Plasma Sheet Boundary Layer

(PSBL); and the hotter (Ti = 2 − 20 keV, Te ∼ 0.4 − 4 keV), denser (∼ 0.1 − 1 cm3)

region of thermalized plasma is the Plasma Sheet [Paschmann et al., 2003].

Both the PSBL and plasma sheet are connected to the ionosphere at high latitudes

in the nightside auroral region, where geomagnetic field lines converge into the Earth

surface. At lower latitudes, on the other hand, a toroidal region, the plasmashpere,

stands between them, constrained inside dipolar field lines up to altitudes of ∼ 5 − 6

Earth radii. Its outer boundary features strong gradients of increasing temperature and

decreasing density as one moves towards the plasma sheet. The plasmasphere is filled

with cold (∼ 1 eV) plasma of ionospheric origin, with densities one or two orders higher

than the plasma sheet [Paschmann et al., 2003]. As opposed to the outer regions of

the magnetosphere, where the solar wind and reconnection processes dominate plasma

dynamics, the plasma flow in this region is driven by the Earth rotation.

Coexisting approximately in the same region as the plasmasphere are the Radiation

Belts, where trapped high energy particles (> 1 MeV) bounce back and forth along

magnetic field lines up to a latitude that depends on the value of their magnetic moment,

while drifting around the Earth by the action of the gradient and curvature drifts that

result from the geomagnetic field inhomogeneity. The drifting of particles with energies

between 20 and 300 keV is responsible for most of the ring current [Kivelson and Russel,

1995].

1.2 Auroral plasma region

The existence of magnetic field-aligned electric fields appears somewhat counter-intuitive

considering the high conductivity of plasma in Earth’s magnetosphere. At high latitudes,

however, observations reveal that the right conditions exist to allow the formation of

field-aligned electrostatic and electromagnetic structures. The associated field-aligned

potential drops develop in field-aligned currents imposed by magnetosphere-ionosphere

coupling processes. Such currents are carried mainly by magnetospheric electrons that

stream freely down magnetic field lines toward the ionosphere. As they move into regions
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of stronger magnetic field, those electrons with pitch angles outside the loss cone are mir-

rored back toward the magnetosphere. At sufficiently low altitude, perhaps extending

up to an Re or so, insufficient electrons exist within the loss cone, and in this situation,

it is thought that electrostatic potential drops develop; they accelerate electrons within

the loss cone to form aurora. Figure 1.3 includes in situ data corresponding to a pass

of the NASA FAST spacecraft as it moves over the nightside auroral oval towards the

pole, overviewing in its path upward current (purple), downward current (green) and

Alfvénic acceleration (red) regions. From inspection of the first panel, there is an appar-

ent correlation between upward (downward) current regions and the negative (positive)

gradient of the background magnetic perturbation. The two regions that concern us are

the upward current and the Alfvénic acceleration regions.

1.2.1 Upward current region

The upward current region between 16:44:30 UT and 16:46:30 UT in Figure 1.3 shows

several characteristic features of plasmas in this region. From the electron energy spec-

trogram (third panel), the relatively narrow energy peak (of the order of several keV)

defines a high energy band of current-carrying electrons of magnetospheric origin that

have survived the mirror force and are accelerated by a potential drop located above

the observation point. Typical of this type of structure, the peak in energy detected

by the satellite increases as it moves towards the center of the upward current region,

and decreases once it passes the center; this is why this region is commonly known as

an inverted V. The electron pitch angle spectrogram (fourth panel) covers most of the

spectrum almost homogeneously, although the low-density up-going electron flow indi-

cates that this region is dominated by precipitating electrons. The ion energy spectra

in the fifth panel shows evidence of a thermal ion plasma, while on the sixth panel en-

hancements in the density of particles with pitch angles close to 135 and 225 degrees can

be seen; these enhancements are known as ion conics, and correspond to ions that are

heated transversely by electromagnetic ion cyclotron (EMIC) waves [Paschmann et al.,

2003].

1.2.2 The Auroral Density Cavity

The upward current region changes drastically when the FAST satellite happens to cross

through a potential drop. Figure 1.4 shows data from another pass of the spacecraft.

According to Ergun et al. [1998], the DC-active intervals in panel (a) of Figure 1.4

indicate the satellite is crossing a region with parallel electric fields. During this interval,

the thermal component practically disappears for both electrons and ions (see panels (f)
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Figure 1.3: In situ data for an auroral pass by the FAST spacecraft, as it moves poleward
in the nightside auroral oval. First panel plots the magnetic field perturbation relative
to the IGRF magnetic field model. Second panel shows DC electric field perturbations.
The next four panels show electron and ion energy and pitch angle distributions. (From
Paschmann et al. [2003])
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Figure 1.4: ((a) DC electric field. (b) The Langmuir probe current. A 2 nA current
corresponds to ∼ 1 cm3 cold plasma or ∼ 0.1 cm3 warm plasma. (c) Wave power as
measured by the Plasma Wave Tracker. The white line indicates the electron cyclotron
frequency. (d) High frequency electric field power. The white line indicates the electron
cyclotron frequency. (e) Low frequency, perpendicular wave power. (f) Electron energy
flux distribution. (g) Electron pitch angle distribution. (h) Ion energy flux distribution.
(i) Ion pitch angle distribution. (From Ergun et al. [1998])
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and (h)), and all that is left are upward ion and downward electron beams. The pitch

angle distribution for electrons looks very isotropic except at 180o. Ion conics, in this

case, turn into ion beams of energy ∼ 1 keV directed upwards. All these features are

consistent with the presence of an electric field directed upwards. The region inside the

upward current density containing parallel electric fields, low-density plasma, and ion

and electron beams is known as the auroral density cavity. Panel (c) shows a strong

enhancement of emission power as the second density cavity is crossed (from 18:58:55

UT to 18:59:30 UT approximately). The emission power is enhanced for frequencies

approaching the electron cyclotron frequency, which is what is expected for AKR.

Electron distributions at the AKR source region (not included in Ergun et al. [1998])

have also been reported. Figure 1.5a shows a phase space diagram of the electron “horse-

shoe” distribution taken by FAST at a time of strong wave emissions below the electron

cyclotron frequency. Positive parallel velocity indicates down-going electron motion,

and negative parallel velocity corresponds to the up-going motion of electrons along the

magnetic field line. The region of energies below 1 keV is omitted since most of it consists

of photoelectrons [Ergun et al., 2000]. The diagram shown in Figure 1.5b illustrates the

energy flow in the cycle of formation and diffusion of the horseshoe distribution; (1)

low energy particles are energized in the presence of the parallel potential and stream

downwards, (2) these electrons move to regions of stronger magnetic intensity since their

associated magnetic moment must remain constant. Their perpendicular kinetic energy

must increase at the expense of parallel momentum, thus moving them away from the

horizontal axis, (3) AKR is produced through the resonant interaction of the free wave

modes in the plasma with the unstable distribution, thermalizing the distribution in the

process.

1.2.3 Alfvénic acceleration region

At latitudes slightly equatorward of the polar cap boundary (the boundary between

open and closed geomagnetic field lines), there is a region where SAWs are observed and

where Alfvénic wave activity becomes especially intense; it is commonly referred to as the

Alfvénic acceleration region. In the context of Figure 1.3, the FAST satellite crosses the

Alfvénic acceleration region between 16:49 and 16:50 UT approximately (red shadowed

section in the first panel). This section of the satellite trajectory reveals plasma with

energy extending to several keV, with a broad spectrum of energies for both electrons and

ions. It is in stark contrast to the spectrum associated with an inverted-V. The electron

pitch angle distribution in the fourth panel shows electron beams in both the upward and

downward directions, while the ion pitch angle distribution (sixth panel) shows enhanced
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(a) Electron velocity distribution obtained
by the FAST spacecraft inside the auroral
cavity. (From Ergun et al. [2000])

(b) A schematic of energy flow in a horse-
shoe distribution. (From Strangeway et al.
[2001])

Figure 1.5: Horseshoe distribution

conics. In the acceleration region, background plasma conditions are dependent on the

magnetospheric-ionospheric coupling processes continually taking place, which implies

that dayside activity can be noticeably different from nightside activity. The higher

energy levels of the background plasma in the region of Alfvénic activity are related

to the presence of a warmer magnetospheric plasma that is injected in the process of

reconnection. According to Paschmann et al. [2003], Alfvén waves are generated as a

relaxing mechanism that allows the mixture of magnetospheric and ionospheric plasma to

reach a convective equilibrium; some of the energy is converted into electron acceleration,

which in turn excites higher energy waves that enhance ion conics.

From all the physical processes that can take place in the Alfvénic acceleration region,

we are interested in those producing downward electron beams that evolve into horseshoe

distributions. At high altitudes where the MHD approximation holds, no wave mode can

generate beams. At lower altitudes, however, where the wavelength perpendicular scale

becomes comparable to the motion scale for the particles, wave dispersion properties

change considerably and become highly dependent on the background plasma properties.

At this level, SAWs couple with the background plasma to become Dispersive Alfvén

Waves (DAWs) that sustain magnetic field-aligned electric field components capable of

producing electron acceleration. DAWs are further classified into Kinetic Alfvén Waves

(KAWs) that propagate at high altitudes where the plasma is warm, and the background

magnetic intensity is small (so the thermal speed, vte is higher than the Alfvén speed vA.
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See section 2.4.2), and Inertial Alfvén Waves (IAWs) that are common at lower altitudes

where the plasma is colder and the Alfvén speed takes higher values (vA > vte).

Most of the in situ measurements obtained from the Alfvénic acceleration region

were gathered by the Polar, Freja and FAST spacecrafts at altitudes corresponding to

the inertial regime (although Polar also samples the kinetic domain at a higher altitude

as well). An approximation of the dispersion relation for IAW is given by [Stasiewicz

et al., 2000] (
ω

k∥vA

)2

=
1

1 + (k⊥λe)2
, (1.1)

where λe = c/ωpe is the electron inertial length. The electric to magnetic field ratio is

E⊥
B⊥

= vA
√
1 + (k⊥λe)2 (1.2)

and a parallel electric field such that

E∥

E⊥
=

k∥k⊥λ
2
e

1 + (k⊥λe)2
. (1.3)

Alfvénic activity recorded by the above-mentioned spacecrafts is usually identified

through the ratio of the perpendicular electric to the perpendicular magnetic field ampli-

tude. If we imagine that the wavelength associated with k⊥ changes along the field line

proportionally with the local radius of the magnetic flux tube, we find that the quantity

k⊥λe scales as
√
B/n. Lysak and Song [2000] found that for the dipolar approxima-

tion for the magnetic intensity and an exponentially decaying model for the density, the

electric field parallel component found with equation (1.3) takes its maximum value at

altitudes that match the region of auroral acceleration, suggesting that inertial effects

play an important role in electron acceleration. Measurements at different altitudes from

Freja [Louarn et al., 1994] (600-1750 km), FAST [Chaston et al., 1999, 2000] (350-4180

km) and Polar [Wygant et al., 2000, 2002] (4-6 Re geocentric) have detected high am-

plitude electromagnetic signals (∼ 102 mV/m, ∼ 101nT ) associated with local density

depletions (∼ 10%) and strong Poynting fluxes (∼ 10−3 − 10−2 W/m2). These Poynt-

ing fluxes are predominantly downwards but often accompanied by a smaller upward

Poynting flux component and field-aligned counter-streaming electron fluxes, which is

consistent with the propagation of IAW and ionosphere-reflected IAW. By applying the

Poynting flux theorem in the MHD limit, Wygant et al. [2000] mapped high altitude

Poynting flux data to 100 km altitude and found that the mapped values are too high as

compared to typical ones, which suggests that a considerable amount of Poynting flux
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energy is dissipated in its transit to the ionosphere as Joule heating and plasma accel-

eration. Numerical simulations of IAWs propagating in both uniform and non-uniform

background magnetic field lines [Watt and Rankin, 2009] subsequently revealed that en-

ergy in the form of Poynting flux could travel with little loss in regions where vte > vA

due to nonlinear trapping of electrons into the wave potential. Once the wave reaches

the inertial regime, the parallel component of the electric field decreases in magnitude,

allowing energetic electrons to escape and sink the energy of the wave. This process is

a key ingredient in the study of how horseshoe distributions form, as will be discussed

later.

The data shown in Figure 1.6, which corresponds to a dayside oval crossing of the

FAST satellite illustrates many of the features just described. The field amplitudes for

the first and second panel indicate E⊥/B⊥ ∼ 5000 km/s. The third panel shows sig-

nificant density depletions associated with some of the higher amplitude perturbations.

The fourth panel shows mostly downward Poynting flux, and the integrated electron

flux is always directed downwards. The sixth panel shows evidence of so-called elec-

tron bursts, which correspond to a few broadband enhancements of electron differential

energy flux with energies up to ∼ 100 eV. The electron pitch angle distribution in the

seventh panel shows that these electron bursts are moving downwards; their signature

is strongly correlated with the most important depletions of low energy plasmas (see

the third panel). The ion spectrum shows that there is an important contribution of

magnetosheath particles [Chaston et al., 2000].

By comparing the features of Alfvénic acceleration in the dayside oval with elec-

tron acceleration in the auroral cavity inside an inverted-V potential drop, we see a few

common elements which can lead to AKR emission; these are parallel electric fields,

downward electron acceleration, and density depletion. However, there are also striking

differences that work against high efficiency for AKR generation in the Alfvénic region;

first, the associated electric fields are short lived as opposed to the inverted-V electro-

static potentials, which translates into much less energy to build unstable distributions;

and second, the energized distributions are broadband, as opposed to beam-like. The

bottom line is that the process of AKR generation (if any) is expected to be much less

efficient than the one taking place in the auroral cavity. This efficiency is intrinsically

bound to background plasma properties like plasma temperature and the perpendicular

wavelength scale. The purpose of the studies presented here is to quantify the efficiency

of AKR generation by IAW.

The formation of unstable distributions from electron bursts has been reported in

Su et al. [2008], and their findings are shown here in Figure 1.7. According to the

publication, such unstable distributions are more likely to be found in the nightside
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Figure 1.6: Data for NASA FAST satellite cusp crossing at an altitude of 1000 km.
1st panel: N-S electric field component. 2nd panel: E-W magnetic component. 3rd

panel: electron density (black) and hot electron density (blue). 4th panel: field aligned
downward poynting flux (black) and integrated electron energy flux (×5) (green). 5th

panel: spectrum of electric field fluctuations. The remaining panels show electron and
ion energy and pitch angle fluxes. (From Chaston et al. [2000])



CHAPTER 1. INTRODUCTION 16

auroral region, since lower rates of ionization in the ionosphere (compared to the dayside

auroral region) yields lower plasma densities. For the cases studied by Su et al. [2008],

the ratio of the plasma frequency to the electron cyclotron frequency ranges from 0.15 to

0.5, which is at least one order of magnitude higher than for the intense AKR observed

in upward current regions. The efficiency of the electron-cyclotron maser instability is

given by the condition (ωpe/ωce)
2 ≪ 1 [Treumann, 2006]. Under this condition, the

generation of AKR as a result of Alfvénic activity is expected to be much less intense

than the AKR originating in the auroral density cavity.

Figure 1.7: Electron velocity distributions observed by the NASA FAST spacecraft dur-
ing electron burst events. Dashed lines remark each specific distribution type. (From Su
et al. [2008])
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Chapter 2

Basic plasma physics

2.1 Plasma definition

The term plasma is used to address a quasineutral mixture of ionized atoms or molecules

and electrons that present collective behavior. Plasma substances rank fourth in a hier-

archy that characterizes matter by the strength of molecular bonds of their constituent

molecules, and for that reason is considered the fourth state of matter.

Atomic interactions result in bond energies that create molecules and tend to organize

them and keep them together. These potential bonds continuously compete against the

thermal kinetic energy of the molecules; the relative strength of these energies ultimately

establishes an equilibrium that determines the state of matter. By increasing the tem-

perature, one effectively increases the particles kinetic energy, which eventually leads to

a change of phase: a solid becomes liquid; a liquid becomes gas. The processes of melt-

ing and evaporation occur at a constant temperature and only after a certain amount

of energy called latent heat has been transferred into the substance. On the other hand,

molecular bonds are absent in gaseous substances, and interactions are practically lim-

ited to direct collisions. Further heating of the gaseous substance increases the strength

and frequency of molecular collisions; strong collisions will provide electrons with enough

kinetic energy to surpass the binding forces and escape the atom, thereby inducing ion-

ization. The transition from neutral to ionized gas does not require any latent heat; it

occurs gradually as the temperature increases.

Ionization changes the behavior of the gas, relative to its neutral state. While in a

neutral medium trajectories are dictated by collisions, in the ionized medium they are

driven by long-range Coulomb interactions and electromagnetic fields. The above brings

collective effects into the picture: charged particles interact with many other charged
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particles simultaneously, and the seemingly erratic molecular movement of the neutral

gas turns into a more ordered motion dictated by Maxwell’s equations. One of such

effects has to do with the fact that internal fields resulting from charge imbalance tend

to be canceled by the rapid movement of the electrons as they move to the regions

of higher potential. This process is known as shielding and is the reason behind the

apparent quasineutrality of macroscopic plasmas. At sufficiently short scales, however,

quasineutrality breaks down; instead, mobile electrons (and not so mobile ions) are

continually moving to nullify any external or self-consistent electric fields, their high

inertia makes them overshoot their position of equilibrium.

2.1.1 Plasma characterization

From the discussion above one can see that the plasma concept is somehow more blurred

than the simple conceptual definition given in the first line of this section. Both the

ionization degree and shielding concepts hint at the existence of time and spatial scales

for the system to be considered as plasma.

Debye length

It is clear that, as one considers shorter spatial scales in a region with nonzero charge

distribution, the shielding effect eventually fails and an increasingly stronger electric

potential is measured. For larger scales, on the other hand, the collective behavior of

the surrounding charges enhances the local shielding. To estimate this effect, one can

imagine introducing some positive charge Q inside a region of plasma constituted by

electrons and ions; the charge will attract the surrounding electrons and repel the ions.

The resulting potential due to the charge Q of the new configuration is, to first order

approximation, equal to its original coulomb potential in the absence of plasma, times

an inverse exponential term that represents the attenuation due to the shielding of the

neighboring charges as the distance r increases [Bittencourt, 2004]:

ϕD =
1

4πϵ0

Q

r
exp

(
− r

λD

)
. (2.1)

The parameter λD is known as the Debye length, which depends on the temperature T

and density ne of the plasma,

λD =

√
ϵ0kBT

nee2
, (2.2)

where ϵ0 = 8.85×10−12C2/Nm2 is the free space permittivity, kB = 1.38×10−23 J/K is

the Boltzmann constant, e = 1.602 × 10−19C is the elementary charge. Notice that the
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presence of the exponential term in (2.1) indicates a strong attenuation of the resulting

electric potential for distances higher than the Debye length. At lower distances, on the

other hand, shielding is not as effective and there is charge imbalance. This argument

defines a criterion for the definition of plasma, in terms of the characteristic scale L,

λD ≪ L. (2.3)

Plasma frequency

The spatial scale, represented by the Debye length, together with the mean energy of

the distribution (represented by the thermal velocity), determine a time scale through

the relationship

λDωp = vt, (2.4)

where the plasma frequency is given by

ωpe =

√
nee2

meϵ0
. (2.5)

The plasma frequency can be derived by considering a slab of single ionized ion-electron

pairs initially in equilibrium. If the electrons are all moved slightly relative to the ions

and then left free, they will establish oscillations with frequency ωpe around the ions

[Nicholson, 1983].

Neutral particles are invisible to long-range interactions, causing direct collisions that

disturb the collective motion of charged particles. A useful criterion to determinate a

plasma reads:

ωpeτc ≫ 1, (2.6)

where τc is the average collision time between charged particles and neutrals. Figure 2.1

shows typical ranges of λD and ωp for different plasma environments.
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(a) Debye length (b) Collision frequency

Figure 2.1: Ranges of typical parameters for several geophysical plasmas. (From Baumjo-
hann and Treumann [1997])

2.2 Single charged particle motion

The motion of charged particles in plasmas is intrinsically nonlinear, in that said charge

carriers are themselves a source of electromagnetic radiation. As the electric and mag-

netic fields at a given moment in time drive the motion of the plasma, the redistribution

of particles causes reconfiguration of the fields, which will now affect the particles ac-

cording to the new configuration. This process continuously repeats itself indefinitely.

On the other hand, when the mean free path between collisions is long, and when the

time scale is short enough as to let the particles to be affected by the external fields

within this free path, it is possible to obtain tractable solutions for the trajectories of

individual particles.

The nonrelativistic motion equation for a charged particle in the presence of electric

and magnetic fields is:

m
dv

dt
= q (E+ v ×B) . (2.7)

Next, the dynamics of particle motion is addressed for some illustrative configurations

of the external fields.

Electric field

Consider first a charged particle in the presence of an external electric field, and zero

magnetic field. From 2.7, it is clear that the particle accelerates in the direction of the

electric field if the sign of the charge is positive, and in the opposite direction if the charge
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is negative. The component of velocity perpendicular to the field remains invariant.

Constant magnetic field

Regardless of its configuration, magnetostatic forces do not exert work on charged par-

ticles. Notice that the dot product of the velocity times the motion equation in the

absence of electric field leads to a statement of conservation of kinetic energy:

v ·
(
m
dv

dt

)
=
d(1/2mv2)

dt
= 0, (2.8)

since the term v · v × B is identically zero. If the field is not just constant but also

homogeneous, the cross product v × B also proves the invariance of the velocity com-

ponent parallel to the field. For this reason, it is convenient to consider the parallel and

perpendicular motions separately. The projected motion along the magnetic field in this

case is just constant velocity motion. As for the transverse motion, one can write, since

B is constant:

m
dv⊥
dt

= q
dr⊥
dt

×B,

d

dt

[
mv⊥ = qr⊥ ×B

]
. (2.9)

The expression in squared parenthesis gives v⊥ in a form that characterizes circular

motion:

v⊥ = Ωc × r⊥, (2.10)

with angular, or cyclotron frequency:

Ωc = −qB
m
. (2.11)

From (2.10), one obtains the radius rc = r⊥ of the circular perpendicular trajectory:

rc =
v⊥
Ωc

=
mv⊥
|q|B

. (2.12)

Furthermore, the orbital trajectory of the charged particle can be regarded as a circuit

with current given by the particles charge divided by the period of gyration. Associated

to said current, the magnitude of the magnetic moment µ = IA can be obtained:

µ =
|q|Ωc

2π
πr2c =

1

2
|q|Ωcr

2
c , (2.13)
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which, in terms of the magnetic intensity and the perpendicular velocity through the

relations (2.12) and (2.11) becomes,

µ =
1
2mv

2
⊥

B
. (2.14)

The total particle trajectory draws a helix; the charge moves at constant velocity

in the parallel direction while circling the magnetic field line. The frequency of the

rotational motion is often so high that the exact position of the particle is of little

practical importance. In such cases one considers the trajectory of the gyrocenter, which

is defined as the particles average position over the time it takes to complete one gyration:

rg(t) =

∫ t+τ

t
dt′ v(t′), (2.15)

where τ = 2π
Ωc

.

2.2.1 Particle drifts

Perhaps the most immediate application of gyromotion leads to the concept of particle

drift. For instance, consider the case of an electric field E⊥ directed somewhere in the

plane normal to B. The motion perpendicular to the magnetic field looks like

m
dv⊥
dt

= q (E⊥ + v⊥ ×B) . (2.16)

It is convenient to observe the motion from a different reference frame which moves with

constant velocity, vE, such that we can write v⊥(t) = u⊥(t) + vE. Then we get

m
du⊥
dt

= q (E⊥ + u⊥ ×B+ vE ×B) . (2.17)

This equation asserts that there is a reference frame from which the first and third

terms on the right-hand-side cancel out, and all the observer sees is the circular motion

described in the previous case. The relative velocity of this frame is given by

vE =
E⊥ ×B

B2
. (2.18)

Note that this can also be expressed in terms of the electric force as vE = FE×B/(qB2).

In general, the presence of additional forces perpendicular to the magnetic field, as well

as nonuniformities or gradients on the magnetic field, modify the helical motion and

cause additional drifts. Table 2.1 summarizes the particle drifts for some special cases.
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A general expression for the average motion due to an arbitrary force F is the following:

vF =
1

ΩC

(
F

m
× B

B

)
. (2.19)

Table 2.1: Guiding center drifts and their resulting currents. (From Baumjohann and
Treumann [1997])

E ×B drift vE =
E×B

B2

Polarization drift vP =
1

ΩcB

dE

dt
jP =

ne(mi +me)

B2

dE

dt

Gradient drift v∇ =
K⊥
2qB3

(B×∇B) j∇ =
ne(µi + µe)

B2
(B×∇B)

Curvature drift vC =
mv2∥

qrcB2
(rc ×B) jC =

2ne(Ki∥ +Ke∥)

(rcB)2
(rc ×B)

Here K = 1/2mv2, and the subindices e and i refer to electrons and ions respectively.

2.2.2 Magnetic mirror force

To illustrate this effect, consider the particle motion in a magnetostatic setup that is

axially symmetric to the ẑ direction, and which intensifies weakly with increasing z; the

following expression describes this field [Bittencourt, 2004]:

B(r, θ, z) = B0ẑ+ (r · ∇)B, (2.20)

assuming that the second term is small when compared to B0. If we substitute (2.20)

into (2.7), subtract the zero-order motion, and eliminate second and higher order terms,

we obtain

m

(
dδv

dt

)
= q(δv ×B0) + qv0 × [r0 · (∇B)], (2.21)

where r0 and v0 represent the circular motion or zero-order trajectory. The first term

on the right hand side consists of small oscillations which add to zero when averaged

over one period of gyration. As for the second term, notice that r0 · (∇B) = r0∂B/∂r.
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On the other hand, recall that v̂0 = −θ̂ for ions and v̂0 = θ̂ for electrons. Thus, the

second term of the right hand side can be written as two components, one parallel and

one perpendicular to the magnetic field orientation, given by

F∥ = 2µ
∂Br

∂r
ẑ (2.22)

and

F⊥ = −2µ
∂Bz

∂r
r̂ (2.23)

respectively. Notice also that the quantity |q|r0v0 = mv20/(2B0) = µ after substituting r0

according to equation (2.12). The perpendicular force causes a gradient drift as indicated

in table 2.1. As for the parallel force, we are interested in its average value over a gyration

period

⟨
F∥
⟩
= 2µ

(
1

2π

∮
dθ
∂Br

∂r

)
. (2.24)

Consider the condition of divergentless magnetic field in cylindrical coordinates

∇ ·B =
1

r

∂

∂r
(rBr) +

1

r

∂Bθ

∂θ
+
∂Bz

∂z
= 0. (2.25)

By expanding the first term, and assuming a weak variation such that ∂Br/∂r ≃ Br/r,

we can write

∂Br

∂r
= −1

2

(
1

r

∂Bθ

∂θ
+
∂Bz

∂z

)
. (2.26)

Average of the first term in the right hand side of (2.26) over one gyration is identically

zero, as it can be noticed from the fact that it consists of a closed path integral of a

derivative with respect to θ. To evaluate the second term, one assumes that the variation

is approximately constant over the gyration. Furthermore, one uses the fact that Bz ≃ B.

After these considerations we have⟨
∂Br

∂r

⟩
= −1

2

∂B

∂z
, (2.27)

and (2.22) takes the rather simple form

⟨F∥⟩ = µ
∂B

∂z
(−ẑ). (2.28)

This equation indicates that charged particles decelerate (accelerate) as they move into

regions of higher (lower) magnetic intensity. The parallel force is commonly known as
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mirror force since it can cause charged particles to reflect into regions of lower magnetic

field.

2.2.3 Invariance of the magnetic moment

An important simplification in the study of particle trajectories arises as a consequence

of kinetic energy conservation of charged particles when affected by the mirror force.

Consider the parallel movement as described by equation (2.28), which multiplied by

v∥ = dz/dt becomes

msv∥
dv∥

dt
= −|µ|∂B

∂z

∂z

∂t
(2.29)

d(12msv
2
∥)

dt
= −

1
2msv

2
⊥

2B

dB

dz
(2.30)

dK∥

dt
= −K⊥

B

dB

dt
. (2.31)

On the other hand, consider also the following statement of energy conservation:

dK

dt
=
dK∥

dt
+
dK⊥
dt

= 0, (2.32)

from which dK∥/dt = −dK⊥/dt follows. By substituting the parallel kinetic energy term

into (2.29), we obtain

1

K⊥

dK⊥
dt

− 1

B

dB

dt
= 0. (2.33)

The last equation can also be written as

d

dt
[ln(K⊥)− ln(B)] = 0, (2.34)

which is equivalent to the condition

K⊥
B

= const. (2.35)

2.2.4 Particle motion in the geomagnetic field

Even though orbital theory does not provide an accurate description of most plasma

phenomena, some principles of single particle motion have been found useful to depict

the large-scale steady motion of plasma within the inner magnetosphere. In this region,

the magnetic configuration is often described as a dipole field with magnetic moment
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ME = 8.3×1022 Am2. The vector that represents this dipole is tilted 11.5o relative to the

Earth’s spin axis. Regarding a modified spherical coordinate system (r, ϕ, λ = θ− π/2),

oriented such that the ẑ axis goes along the magnetic moment direction, the geomagnetic

field is expressed as

BG(r, λ) =
µ0ME

4πr3

(
2 sinλ(−r̂) + cosλλ̂

)
. (2.36)

A relationship describing the shape of magnetic field lines is found through the con-

dition

ds×BG = 0, (2.37)

where ds = drr̂+ rdλλ̂ represents an arc element along the field line. This leads to

r(λ) = REL cos2 λ, (2.38)

where RE ≃ 6370 km and L is the so-called L-shell or McIllwain parameter, which

indicates the geocentric distance of the field line intersection with the equatorial plane

in units of Earth radius. Substitution of equation (2.38) into (2.36) allows to express the

geomagnetic field magnitude in terms of latitude for a given field line L

B(λ, L) =
BE

L3

√
1 + 3 sin2 λ

cos6 λ
, (2.39)

where BE = µ0ME/(4πR
3
E) = 3.11× 10−5 T. Furthermore, by taking r = RE in (2.38)

one obtains the latitude at which any given field line intersects the Earths surface

λE = arccos
√
L−1. (2.40)

Figure 2.2 presents a schematic of the typical motion of charged particles within

the geomagnetic field. According to the ideas presented in the previous subsections,

these particles draw helicoidal trajectories around magnetic field lines. As they move to

higher latitudes where field lines converge, the mirror force causes deceleration in the

direction parallel to the magnetic field and, if the force is strong enough, it will induce

particle reflection and trapping, forcing bounce motion between certain latitudes known

as mirror points. For a particle moving about some given field line, the mirror points

are determined solely by the particles pitch angle:

α = arctan

(
v⊥
v∥

)
. (2.41)
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Figure 2.2: Typical trajectory for particles trapped in the geomagnetic field. Notice that
the equatorial loss cone has been labeled as θ. (From https://download.e-bookshelf.

de/download/0003/9138/32/L-X-0003913832-0002397570.XHTML/index.xhtml)

Alternatively, the bouncing motion can be explained through conservation of mag-

netic momentum. According to equation (2.35), as the particle moves towards higher

latitudes into regions of stronger magnetic intensity, its perpendicular kinetic energy

must also increase to maintain µ constant. Due to energy conservation, an increase of

K⊥ comes at the expense of K∥. Trapped particles will reflect at a location where K∥

becomes zero, i.e., its pitch angle reaches π/2 radians. For a particle located at latitude

λ, the pitch angle required to reach the mirror point Bm is given by the condition

mv2 sin2 α(λ)

2B(λ)
=
mv2 sin2 π

2

2Bm
, (2.42)

α(λ) = arcsin

√
B(λ)

Bm
. (2.43)

Not all particles lingering in the inner magnetosphere are trapped. At altitudes

of approximately 100 km from Earth’s surface, the adiabatic motion described above is

interrupted by collisions and particles are lost to the atmosphere. For simplicity, consider

the population of escapees as the particles that reach the latitude λE defined by equation

(2.40). From (2.43) it follows that precipitating particles have pitch angles equal to or

less than the following threshold limit, known as the loss cone.

αl(λ) = arcsin

√
B(λ)

B(λE)
. (2.44)

Notice that the loss cone at a given latitude is uniquely determined by the ratio of

magnetic intensities between the point where the loss cone is being measured and the

https://download.e-bookshelf.de/download/0003/9138/32/L-X-0003913832-0002397570.XHTML/index.xhtml
https://download.e-bookshelf.de/download/0003/9138/32/L-X-0003913832-0002397570.XHTML/index.xhtml
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surface of the Earth. For instance, the equatorial (λ = 0) loss cone takes the value (see

Figure 2.2)

αl,eq = arcsin2

(
cos6 λE√

1 + 3 sin2 λE

)
= arcsin2

(
1√

4L6 − 3L5

)
. (2.45)

Besides its bouncing motion in between poles, plasma particles also drift as a con-

sequence of the inhomogeneous nature of the geomagnetic field. Both gradient and

curvature drifts (see table 2.1) induce westward motion for positively charged particles

and eastward flow for negative ones. The resulting current flows westward around the

Earth and is known as the ring current. Within the plasmasphere, a E ×B drift occurs

due to the induced corotation of the plasma with the Earth as a result of collisional

coupling with the atmosphere [Gurnett and Bhattacharjee, 2005]; however, this drifting

motion does not cause charge separation.

2.3 Elements of plasma kinetic theory

Plasmas, like gases, are systems composed by very large numbers of particles. As with

gaseous systems, any practical attempt to describe the macroscopic state of a plasma has

to be based on statistical principles. A key element on this formulation is the concept of

distribution function ; a mathematical entity that contains all the physical information

of the system in terms of space phase coordinates and time. The distribution function

fs(r,v, t) represents the density of particles of species s in the immediate neighborhood of

the phase-space location (r,v) (Notice that in this context, the phase-space coordinates

r and v constitute a set of 6 orthogonal coordinates, often known as µ-space). By

definition, integration over the velocity space gives the particle density as a function of

the position:

ns(r, t) =

∫
v
d3v fs(r,v, t). (2.46)

In general, notice that fs(r,v, t) bins particles into groups that share the same dy-

namical state. For one of such conglomerates, the total amount of certain property, say

χ(r,v, t), inside a phase-space volume d3rd3v around (r,v), is given by the quantity

χ(r,v, t)fs(r,v, t)d
3rd3v. Therefore, the macroscopic average ⟨χ(r,v, t)⟩ can be conve-

niently expressed in terms of the weighted sum over the velocity space, divided by the

number of particles within the spatial volume element, ns(r, t)d
3r,

⟨χs(r, t)⟩ =
1

ns(r, t)

∫
v
d3v χ(r,v, t)fs(r,v, t). (2.47)
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Equation (2.47) provides a systematic tool to define macroscopic properties from the

microscopic state represented by the distribution function. For instance, the average

velocity us(r, t) describing the macroscopic drift of the bulk plasma is obtained by setting

χ = v in equation (2.47):

us(r, t) =
1

ns(r, t)

∫
v
d3v vfs(r,v, t). (2.48)

In general, these macroscopic properties are defined as a function of the so-called

moments of the distribution function. The moment of order k is expressed as

M(k) =

∫
v
d3v vk fs. (2.49)

The amount Γs(r, t) = nsus(r, t) is known as the particle flux density, each of its compo-

nents is equal to the number of particles crossing the location r per unit time. Notice that

both the particle density and particle flux correspond to the zeroth and first moments

of the distribution, respectively. Other physical quantities are associated to higher order

moments: the momentum flow dyad is given by the second moment as Π = msM
(2),

while the total energy flux triad E = msM
(3). In the special case when us = 0, the

former reduces to the pressure tensor, while the second becomes the thermal energy flux

tensor [Bittencourt, 2004].

2.3.1 The Boltzmann equation and the Vlasov equation

Another advantage of having particles sorted together in phase-space bins is that it

becomes easier to track the distributions time evolution. Consider one such group of

particles inside an infinitesimal phase-space volume element d3rd3v. The subsequent

motion of these particles is identical since they have the same initial position and ve-

locity. After some time, these particles will have moved to a different location within

phase-space, but the number of particles remains invariant. Although microscopically

the phase-space volume will deform in time due to slight differences in position and

velocity between particles within the infinitesimal volume, it can be demonstrated [Bit-

tencourt, 2004; Baumjohann and Treumann, 1997] that macroscopically these variations

are negligible. This leads to the following statement of conservation:

D

Dt
fs(r,v, t) =

∂

∂t
fs(r,v, t) + v · ∇rfs(r,v, t) + a · ∇vfs(r,v, t) = 0. (2.50)

Furthermore, a more careful treatment [Nicholson, 1983] of the time derivative of the
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density of states in the Γ-space asserts that the variation of the density of the number

of states is identically zero; this result is known as Liouville’s theorem.

The invariance expressed in equation (2.50) could be thwarted if collisions in the

system occur frequently. Inclusion of a source term associated to the effect of collisions

results in the so called Boltzmann equation:

∂

∂t
fs(r,v, t) + v · ∇rfs(r,v, t) +

qs
ms

(E+ v ×B) · ∇vfs(r,v, t) =
δ

δt
fs(r,v, t)

⏐⏐⏐⏐
c

(2.51)

2.3.2 Fluid equations

The Boltzmann equation expresses the conservation of the number of particles within the

volume d3rd3v. Likewise, a statement of conservation for the macroscopic property χ(v)

is obtained by simple integration of the Boltzmann equation in the following fashion∫
v
d3v χ(v)

(
Dfs(r,v, t)

Dt
=

δfs(r,v, t)

δt

⏐⏐⏐⏐
c

)
(2.52)

provided that fs(r,v, t) has compact support in velocity space. Thus, by setting χ = ms,

χ = msv, and χ = 1/2msv
2; one obtains equations for mass, momentum, and energy

conservation, respectively. On the other hand, it is impossible to obtain a closed system

of equations using this method exclusively, as the integration of the k-th moment returns

its conservation in terms of the moment k+1. An important part on setting a fluid theory

consists of truncating the number of conservation laws up to a certain moment k and

setting a separate condition defining the higher order moment involved. The choice of

such a closure condition will naturally cause the fluid theory to be valid within the range

of systems where the condition is valid. There are several plasma fluid formulations in

the literature, suitable to describe plasmas with different properties. We do not include

their derivation here due to space limitations, but we use the magnetohydrodynamic

approximation in section 2.4.1, and the two-fluid approximation in section 2.4.2.

2.3.3 Linear Kinetic Theory

The fluid description of plasmas is appropriate in cases where the distribution is close to

a thermodynamical and Coulomb collisional equilibrium. To describe the dynamics of

non-equilibrium systems, variations of the distribution function must be accounted for

explicitely. Within the treatment of collisionless plasmas, the complete set of equations

is composed by the Vlasov equation in terms of the self-consistent electric and magnetic

fields; the Maxwells equations; and the definition of the charge and current densities in
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terms of the distribution function:

ρ =
∑
s

qs

∫
v
d3v f(v), (2.53)

j =
∑
s

qs

∫
v
d3v vf(v). (2.54)

Later on in section 2.4.3 we use this approach to derive solutions of the dispersion

equation valid for the same approximations as the DK1D algorithm and prove that

obtained solutions coincide with the general solution found in Lysak and Lotko [1996]

when Ti → 0.

A different approach, which has been widely used to analyze wave propagation and

dispersion in magnetized plasmas, consists of considering the plasma as a dielectric

medium. Under this premise, j is treated as a displacement current. Ampere’s equation

has the form

∇×B = µ0
∂D

∂t
=

1

c2
∂K ·E
∂t

, (2.55)

where D = ϵ0K ·E is the electric displacement vector and K is the effective dielectric

tensor.

We consider wave solutions with space-time variations of the form exp [i(k · r− ωt)].

Thus Ampere and Faraday’s equations become, respectively

k×B = − ω

c2
K ·E (2.56)

and

B =
k×E

ω
. (2.57)

Substitution of (2.57) into (2.56) leads to the relation

k× k×E+
(ω
c

)
K ·E = 0. (2.58)

Finally, evaluate the triple product on the left hand side, a×b×c = b(a·c)−c(a·b), and
introduce the index of refraction, n = ck/ω, to obtain a general form of the dispersion

equation:

(
nn− n2I+K

)
·E = 0. (2.59)

Here I represents the unit dyad. Nontrivial wave solutions can be found by setting the
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determinant of the expression in between parenthesis to zero.

2.4 Alfvén waves in magnetized plasma

2.4.1 Ideal MHD waves

Consider wave propagation within a conducting, nonviscuous and compressible plasma

with density ρ0 = (mi +me)n0 ≃ min0 embedded in an uniform background magnetic

field B0 = B0ẑ. The normal wave modes are determined by the following physical

relations:

• Continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.60)

• Momentum conservation

ρ
Dv

Dt
= −∇p+ J×B. (2.61)

• The adiabatic energy approximation, pργ = const, can be written as

∇p = c2s∇ρ, (2.62)

where cs =
√
γp/ρ =

√
γkBT/mi is the adiabatic sound speed.

• Low-frequency Ampere law

∇×B = µ0J. (2.63)

• Faraday law

∇×E = −∂B
∂t
. (2.64)

• Ohm’s law for ideal MHD

E+ v ×B = 0. (2.65)
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From this system, equations (2.61), (2.62), and (2.63) can be combined in the form

[Bittencourt, 2004]

ρ
Dv

Dt
+ c2s∇ρ+B× (∇×B)

µ0
= 0. (2.66)

Similarly, we can dispense of the electric field by combining equations (2.64) and (2.65):

∂B

∂t
−∇× (v ×B) = 0. (2.67)

We consider the propagation of a small, low-frequency perturbation. This perturba-

tion triggers first-order changes in the plasma and fields:

v(r, t) = δv(r, t)

n(r, t) = n0 + δn(r, t) (2.68)

E(r, t) = δE(r, t)

B(r, t) = B0 + δB(r, t).

The first step towards deriving the dispersion equation consists of linearizing equa-

tions (2.60), (2.66) and (2.67) by substituting the tentative solutions (2.68) and sup-

pressing all second-order terms. This leads to the following system of equations:

∂δn

∂t
+ n0∇ · δv = 0. (2.69)

n0
∂δv

∂t
+ c2s∇δn+B0 ×

(∇× δB)

miµ0
= 0. (2.70)

∂δB

∂t
−∇× (δv ×B0) = 0. (2.71)

Next, take the time derivative of (2.70):

n0
∂2δv

∂t2
+ c2s∇

∂δn

∂t
+

B0

min0
×
(
∇× ∂δB

∂t

)
= 0, (2.72)

and substitute ∂δv/∂t and ∂δB/∂t from (2.69) and (2.71), respectively. This gives

∂2δv

∂t2
− c2s∇(∇δv) + vA × (∇× [∇× (δv × vA)]) = 0, (2.73)

where we have introduced the Alfvén speed vA = B0/
√
min0µ0.

Without missing any of the physics, we chose a reference system orientated so that
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the wavenumber is given by k = kxx̂ + kz ẑ, making an angle θ with the external field.

Also, we introduce a test solution in the form of a plane wave δv = v0e
i(k·r−ωt). Then

we obtain [Bittencourt, 2004]

−ω2v0 + c2skk · v0 − vA × (k× [k× (v0 × vA)]) = 0. (2.74)

Using the identity a× b× c = ba · c− ca · b, and after some straightforward algebraic

manipulations, the previous relation can be expressed in matrix form as

⎡⎢⎣ω
2 − (kzvA)

2 − k2x(c
2
s + v2A) 0 −c2skxkz

0 ω2 − (kzvA)
2 0

−c2skxkz 0 ω2 − (cskz)
2

⎤⎥⎦ · δv = 0. (2.75)

The possible modes are given by the determinant:

[
ω2 − (kzvA)

2
] [
ω4 − k2(c2s + v2A) + (k2zvAcs)

2
]
= 0. (2.76)

The Shear Alfvén wave

Notice that equation (2.75) reveals an uncoupled wave mode δv = δvŷ perpendicular to

both the background magnetic field and the wave vector, and with phase speed ω/k =

vA cos θ. From equation (2.71), it follows that in this case the magnetic perturbation

oscillates along the same axis as the velocity pertubation

δB = −B0

vA
cos θδv. (2.77)

The electric field is obtained from Ohm’s law (2.65)

δE = −δvB0x̂. (2.78)

The Poynting flux, S = E × B/µ0 indicates that the energy flow is parallel to the

background field, independently of the propagation angle θ.

Magnetoacoustic modes

The second factor in the right-hand-side of (2.76) reveals two modes with phase velocities

(ω
k

)2
=

1

2

[
v2A + c2s ±

√
(v2A + c2s)

2 − (2vAcs cos θ)2
]

(2.79)
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known as fast(+) and slow(-) magnetoacoustic waves. For these waves, the motion occurs

in the plane defined by the wave vector and the magnetic field.

Figure 2.3: Phase diagrams for the MHD Alfvén wave modes. (From [Baumjohann and
Treumann, 1997])

Figure 2.3 displays the phase speed of the three MHD modes as a function of θ. In

general, the phase speed for the fast mode has a minimum value of max(vA, cs) when

propagating parallel to the background magnetic field, and increases with larger θ up to√
v2A + c2s for θ = π/2. The phase speed of the slow mode, on the other hand, decreases

from min(vA, cs) when θ = 0, to zero at θ = π/2.

2.4.2 Dispersive Alfvén waves

The so-called Dispersive Alfvén Waves (DAWs) are originally shear modes for which

ideal MHD conditions break down as the perpendicular scale decreases to the order of

the ion acoustic gyroradius or electron skin depth. When that is the case, particles can

no more be treated as frozen into the plasma, and consequently, one must account for

currents both perpendicular and parallel to the background magnetic field, and parallel

electric fields. Perpendicular currents are provided through polarization drift, which is

essentially carried by the more massive ions [Stasiewicz et al., 2000]:

j⊥ =
nmi

B2
0

∂E⊥
dt

. (2.80)
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Non-MHD effects are introduced in Ohm’s law [Paschmann et al., 2003]

δE+ δv ×B0 =
me

n0e2
∂j

∂t
− ∇p
n0e

, (2.81)

from where we can obtain an expression for the parallel electric field

δE∥ =
me

n0e2
∂j∥

∂t
− mic

2
s

n0e

∂δn

∂z
. (2.82)

Notice that equation (2.62) has been invoked to eliminate the pressure. Taking the time

derivative of the previous equation, and substituting the term ∂δn/∂t from the continuity

equation, yields [Paschmann et al., 2003]

∂δE∥

∂t
=

me

n0e2
∂2j∥

∂t2
− mic

2
s

n0e2
∂2j∥

∂z2
. (2.83)

Next, let’s introduce the time derivative of Faraday’s equation:

−∂
2δB

∂t2
= ∇× ∂δE

∂t
= ∇×

(
δ∂E∥

∂t
ẑ +

∂δE⊥
∂t

)
. (2.84)

Substituting the electric field components from (2.80) and (2.83), we obtain

−∂
2δB

∂t2
=

(
me

n0e2
∂2

∂t2
− mic

2
s

n0e2
∂2

∂z2

)
∇× j∥ +

B2
0

n0mi
∇× j⊥. (2.85)

The last equation we need is the curl of Ampere’s law, which can be written as

−∇2
∥δB−∇2

⊥δB = µ0
(
∇∥ × j⊥ +∇⊥ × j∥

)
. (2.86)

Therefore, equation (2.85) becomes

∂2δB

∂t2
=

(
λ2e

∂2

∂t2
− (ρsvA)

2 ∂
2

∂z2

)
∇2

⊥δB+ v2A∇2
∥δB, (2.87)

where λe = c/ωpe is the electron inertial length, and ρs = cs/ωci is the ion acoustic

gyroradius. Fourier analysis of this equation leads to the following dispersion relation:(
ω

k∥vA

)2

=
1 + (k⊥ρs)

2

1 + (k⊥λe)2
. (2.88)

The two-fluid effects considered here introduce a nonzero electric field component

parallel to the magnetic field. In order to get an approximation of this parallel field, we

assume that the electron inertial effect closes the polarization current identically. Then
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we have ∇ · j = 0 or

∇∥ · j∥ = −∇⊥ · j⊥ = − 1

µ0v2A

∂(∇⊥ · δE⊥)

∂t
, (2.89)

where we have used the definition of the polarization current, equation (2.80). Now we

can differentiate (2.83) with respect to the coordinate z to get,

∂2δE∥

∂z∂t
= µ0

(
λ2e

∂2

∂t2
− (ρsvA)

2 ∂
2

∂z2

)
∂j∥

∂z
. (2.90)

Finally, substituting ∂j∥/∂z from equation (2.89), and using Fourier analysis to solve for

δE∥, leads to

E∥ =

(
ρ2s − λ2e

1 + (k⊥λe)2

)
k∥k⊥E⊥. (2.91)

Equation (2.91) indicates that pressure and inertia effects act oppositely in contributing

to the parallel electric field. In the inertial limit (λe > ρs), the parallel electric field

accelerates the electrons carrying the parallel current, and decelerates them if pressure

effects are more important. The criterion to differentiate between the cold and warm

regimes is derived from the ratio,

ρs
λe

=
vte
vA
, (2.92)

where vte =
√
Te/me. Alfvén waves propagating within regions where vte > vA are

known as Kinetic Alfvén Waves. Waves propagating in regions where vA > vte are called

Inertial Alfvén Waves.

2.4.3 Kinetic theory of dipersive Alfvén waves

As a final point, we want to find wave solutions using the linear kinetic theory approach,

to obtain the wave dispersion relation associated with equations (3.15), (3.22) and (3.25)

which are solved in the DK1D code. As stated earlier, a number of simplifications have

been made (see section 3.1.1 for a detailed explanation). Among these:

1. the perpendicular current is given by the polarization drift and is carried by the

ions, which implies that,

∂j⊥
∂t

=
1

µ0v2A

∂2E⊥
∂t2

. (2.93)
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2. the parallel component of the current density is due only to electron motion, and

it is calculated through its definition,

j∥ =

∫
d3vv∥fe(v, r). (2.94)

Here fe is the electron distribution. Notice that in the stationary case, we expect

j∥ = 0, which means that the integration will be performed on the perturbation

part of the distribution only, which exists due to the presence of the wave.

3. the displacement current term is neglected in Ampere’s Law equation. Under this

assumption, and substituting the magnetic field from Faraday’s law, we have

∇⃗∇⃗ · E⃗ − ∇⃗2E⃗ = −µ0
∂j⃗

∂t
. (2.95)

We seek to find wave solutions through linear theory. Following the usual treatment,

the distribution is expressed as the superposition of a perturbation (due to the presence

of the wave) to the unperturbed velocity and position dependent distribution,

f(r,v, t) = f0(r,v) + f1(r,v, t). (2.96)

The perturbation is assumed to propagate as plane waves, as well as the wave fields:

f1(r,v, t) = f1(v)e
i(k·r−ωt), (2.97)

E(r, t) = −∇ϕ0(z) +E1(r, t) = −∂ϕ0(z)
∂z

ẑ +E10e
i(k·r−ωt), (2.98)

B(r, t) = B0(z) +B1(r, t) = B0(z)ẑ +B10e
i(k·r−ωt). (2.99)

By substituting these expressions in equation (3.20) and expanding, the following is

obtained:

∂f1
∂t

+v∥
∂f0
∂z

+v∥
∂f1
∂z

+

(
− q

m

∂ϕ0
∂z

+
q

m
E1 · ẑ −

µe
m

∂B0

∂z
− µe
m

∂B1 · ẑ
∂z

)(
∂f0
∂v∥

+
∂f1
∂v∥

)
= 0.

(2.100)

Some simplifications take place at this point. First, compare the previous equation with
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its zero-order version,

v∥
∂f0
∂z

+

(
− q

m

∂ϕ0
∂z

− µe
m

∂B0

∂z

)
∂f0
∂v∥

= 0, (2.101)

which simplifies the equation (2.100) into:

∂f1
∂t

+ v∥
∂f1
∂z

+

(
− q

m

∂ϕ0
∂z

+
q

m
E1∥ −

µe
m

∂B0

∂z
− µe
m

∂B1∥

∂z

)
∂f1
∂v∥

+(
q

m
E1∥ −

µe
m

∂B1∥

∂z

)
∂f0
∂v∥

= 0. (2.102)

Next, eliminate all second order terms (recall that B1∥ = 0 since A = A∥ẑ) to obtain:

∂f1
∂t

+ v∥
∂f1
∂z

−
(
q

m

∂ϕ0
∂z

+
µe
m

∂B0

∂z

)
∂f1
∂v∥

= − q

m
E1∥

∂f0
∂v∥

. (2.103)

For simplicity, let us take the case when spatial variations of the electrostatic potential

ϕ0(z) and magnetic field B0(z) are locally negligible. The perturbation of the distribution

takes the form:

f1 =
iqe
me

E∥∂f0/∂v∥

k∥v∥ − ω
. (2.104)

Solution of the dispersion equation for Maxwellian plasma

Consider an initially stationary Maxwellian plasma with thermal velocity ute =
√
2kBT/m,

f0(v) =
n0

(
√
πute)3

e−(v/ute)2 , (2.105)

from which the parallel current can be calculated as

j∥ = iϵ0E∥ω

(
ωpe

k∥ute

)2

Z ′
(

ω

k∥ute

)
, (2.106)

where Z ′
(

ω
k∥ute

)
is the derivative of the plasma dispersion function,

dZ(ξ)

dξ
=

1√
π

∫ ∞

−∞
dx

e−x2

(x− ξ)2
,

= −2[1 + ξZ(ξ)], (2.107)
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with

ξ =
ω

k∥ute
. (2.108)

Now, we include the two components (2.106) and (2.93) into (2.95) and rearrange them

in the following form⎛⎝k2⊥ +
(

ω
k∥λeute

)2
Z ′(ξ) −k∥k⊥

−k∥k⊥ k2∥ −
(

ω
vA

)2
⎞⎠ ·

(
E∥

E⊥

)
= 0. (2.109)

The determinant of last expression gives the dispersion relation, which can be written as(
ω

k∥vA

)2

= 1 +
(k⊥ρs)

2

1 + ξZ(ξ)
. (2.110)

It is convenient to demonstrate that this relationship is consistent with the two-fluid

solution given in (2.88). As indicated by Stasiewicz et al. [2000], the kinetic and inertial

limits are mutually exclusive and must be taken one at a time. Let’s consider first the

kinetic case. In equation (2.88), λe → 0 and we obtain(
ω

k∥vA

)2

= 1 + (k⊥ρs)
2. (2.111)

In equation (2.110), this limit corresponds to the case of hot electrons for which ξ → 0,

by taking the limit one trivially recovers the limit case (2.111).

The inertial limit, on the other hand, corresponds to the limit ρs → 0, so that (2.88)

reduces to (
ω

k∥vA

)2

=
1

1 + (k⊥λe)2
. (2.112)

In the kinetic relationship (2.110) this limit correspond to the case of cold electrons,

for which we have 1 + ξZ(ξ) ≃ −1/(2ξ) = −(k∥vte/ω)
2 [Lysak and Lotko, 1996] (Here

vte =
√
2ute). This can be rearranged into

(
ω

k∥vA

)2
(
1 + k2⊥

[
ρsvA
vte

]2)
= 1. (2.113)

The factor inside the squared parenthesis is equal to λe (see equation 2.92), and one can

see that the resulting relation takes the form of equation (2.112).

Lysak and Lotko [1996] solved the dispersion equation for SAWs in the kinetic and
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inertial regimes. The expression for the dispersion relation found by them is (equation

6), (
ω

k∥vA

)2

=
µi

1− Γ0(µi)
+

(k⊥ρs)
2

Γ0(µe)[1 + ξZ(ξ)]
. (2.114)

Here µi = k⊥ρi, µe = k⊥ρe (ρx = Tx/mxΩ
2
x is the gyroradius for species x, Ωx represents

the gyrofrequency of particles of species x), ρ2s = Te/miΩ
2
i = (vteλe/vA)

2 is called the

ion acoustic gyroradius, ξ = ω/k∥ute, and Γ0(µ) = e−µIo(µ) is the modified Bessel

function. For a small value of µ, the modified Bessel function is approximated as Γ0(µ) ≈
1−µ+(3/4)µ2. If we consider both small ion (Γ0(µi) ≈ 1−µi) and electron (Γ0(µe) ≈ 1)

gyroradius, and make the above mentioned substitutions, equation (2.114) turns into

(2.110).
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Figure 2.4: Contour solutions of the dispersion equation (2.114) for the case of small
ion gyroradius. Left: phase velocity ω/(k∥vA). Right: damping rate ωI/ωR. Numbers
indicate the value pointed at by the adjacent crosses.

Solutions for the case of small ion gyroradius are presented as contour lines of the

phase velocity (left) and damping rate (right) in Figure 2.4. The two distinct regions

illustrated in the phase velocity diagram correspond to the kinetic and inertial regimes.

In the kinetic regime, typical of higher temperatures, the phase velocity is proportional

to the quantity k⊥λe. Cold plasmas, on the other hand, belong to the inertial regime,

and here phase velocities decrease with increasing k⊥λe. Notice that the rather straight-

forward condition (2.92) is exclusively accurate for the fluid case and does not hold here.

The phase velocity graph also indicates that, for a given k⊥λe, the wave propagates

faster at higher temperatures. The damping rate, on the other hand, is everywhere an

increasing function of temperature and the k⊥λe parameter.
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Chapter 3

DK1D numerical code

The Drift Kinetic 1-Dimensional (DK1D) numerical Vlasov solver was developed, main-

tained and progressively improved from 2002 to 2010 by Dr. Clare Watt at the University

of Alberta, in close collaboration with Dr. Robert Rankin and Dr. Richard Marchand,

and under the sponsorship of the Canadian Space Agency (DK1D user manual, unpub-

lished).The code simulates the interaction between small-scale shear Alfvén waves and

non-relativistic electron plasma distributions along the dimension parallel to the back-

ground magnetic field, and accounts for electron inertia and pressure effects, while the

influence of ions is included indirectly under the assumptions of quasineutrality and as

carriers of the perpendicular current through the polarization current [Stasiewicz et al.,

2000] only. A significant improvement of its formulation, relative to other numerical

approaches being implemented at the time, is the inclusion of both wave-particle and

particle-wave interactions, which derives in the possibility of studying particle accelera-

tion and wave dispersion simultaneously.

In this chapter, the Vlasov-Maxwell coupled system of equations including electron

inertial effects is derived and presented, in parallel with a detailed enumeration of the

simplifying assumptions of the model. The corresponding discretized model is also de-

scribed thoroughly, as well as a fair description of the Corner Upwind Transport Method

used to solve the Vlasov equation.

The DK1D numerical code has been the cornerstone of several publications. Next,

we present a summary of some scientific contributions:

• The first results were introduced in a study on the evolution of the wave fields and

electron dynamics under uniform conditions of density, temperature, and magnetic

intensity [Watt et al., 2004]. These simulations showed that a fraction of the dis-

tribution undergoes a resonant interaction with the wave of the Fermi kind; these
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electrons are reflected ahead of the wave forming beam-like structures, time dis-

persed in nature, such that the energy spectrum of the advected electrons increases

with time. The maximum energy of these populations corresponds to velocities on

the order of twice the Alfvén speed. On the other hand, significant heating was

observed in the bulk plasma at the location of the wave. It was suggested that heat-

ing in this region entails an inhomogeneous increase in the phase velocity within

the waves spatial domain, causing the original waveform to deform due to different

sections of the wave moving at different speeds. Changes of the dispersive nature

of the plasma as the wave crosses a given location increase the levels of Landau

damping, and from the free energy of this process, electrons that are originally

non-resonant can become resonant.

• [Watt et al., 2005] expanded in more detail on the formation of these thermally

enhanced features, also called SupraThermal Electron Bursts (STEB), this time

focused on the effect of changes in wave amplitude and the perpendicular scale.

High wave amplitude and shorter scales are most appropriate for nonlinear beam

formation structures. The nonlinear evolution tends to cause wave steepening in

the leading section of the wave pulse, which in turn distorts the symmetry of the

associated parallel electric field. A careful analysis using particle orbits of energized

electrons from before and after the wave reached the observation point suggested

that, while resonant electrons endured strong energization enough as to escape the

wave, the thermal component of the plasma would sustain a process such that the

wave-particle interaction is not strong enough as to prevent the wave to move past

them, leaving these particles in a region of smaller magnitude and opposite sign

electric field that prevents the formation of beams and thermalize the plasma into

the suprathermal signature.

• In Watt et al. [2006], a more realistic dipolar magnetic field variation was in-

troduced which allowed observing the effects of the spatial gradient on the Alfvén

speed, and the effect of the mirror force. Variation in the Alfvén speed profile affects

the phase velocity of the waves directly, while the mirror force effectively arranges

longitudinal-to-transverse kinetic energy transport under the magnetic momentum

conservation principle. Under these conditions, beam and plasma heating showed

that, as the wave pulse travels into regions of higher magnetic intensity and Alfvén

speed, so does increase the minimum energy of the resonant electrons. It was then

suggested that the slowest populations of beamed or advected particles could be

accelerated at more than one point as the wave catches up with them due to its

increasing phase velocity. On the other hand, the simulations showed that the



CHAPTER 3. DK1D NUMERICAL CODE 44

combined action of electron acceleration and mirror force generate signatures very

similar to electron conics.

• Theoretical prediction in the cold plasma limit states that parallel electric field

generated by short scale effects maximizes for k⊥δe = 1. [Watt and Rankin, 2007b]

studied the nonlinear evolution of parallel electric fields in this context. These

simulations showed that both the amplitude of the field and particle energization

reach higher levels for k⊥δe > 1, which correspond to slower moving waves. It was

suggested that the nonlinear particle-wave interaction might be more efficient for

slower moving waves.

• Lorentzian distributions present a Maxwellian-like shape with high-velocity tails.

These tails are longer for decreasing values of its κ parameter. Simulations using

Lorentzian distributions under homogeneous conditions [Watt and Rankin, 2007a]

showed increased levels (relative to the Maxwellian case) of energy flux associated

with the beam of resonant electrons. These beam enhancements occur due to the

higher number of resonant interactions with the electrons found at the tail of the

distribution. Solutions of the linear dispersion equation for this kind of distribution

yields higher damping rates for plasmas with lower values of κ, so that wave-particle

interactions are stronger for these cases.

• Particle transport from the plasma sheet and their likelihood of causing auroras

were investigated in [Watt and Rankin, 2009] for a plasma embedded in a dipolar

magnetic field. It was found that under kinetic conditions, a rather efficient wave-

plasma energy interchange where the wave traps resonant electrons, preventing

the wave from damping. Once the wave moves into more inertial conditions, the

parallel electric field decreases and the trapped resonant electrons escape the wave.

• Also within the context of warm plasma transport and auroral displays, [Watt and

Rankin, 2010] investigated the conditions under which these energetic particles

can trigger auroras. Using numerical simulations of wave propagation originated

well into the magnetosphere, they calculated the advection of parallel energy flux

at r ≃ 2.8 RE . These measurements were further scaled to ionospheric altitudes

≃ 100 km under the assumptions that particle fluxes are composed of field-aligned

electrons only, and that there are no other electron acceleration mechanisms. By

comparing these results with real observations, it was concluded that waves with

sufficient amplitude generate values of particle energy flux that are comparable to

particle fluxes associated with auroral events.
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3.1 Mathematical model

3.1.1 Simplifying assumptions

The DK1D code solves numerically a set of equations derived under the following sim-

plifying assumptions:

1. electrons are strongly magnetized, so their gyro-trajectory moves tightly along

magnetic field lines. Ions, on the other hand, are not fully magnetized, and their

relatively high mass prevents them from moving rapidly by the action of the IAW.

In other words, electrons are responsible for parallel currents, while any cross

currents are attributed to ions. The continuity equation for each species,

∂ns
∂t

+∇ · (nsvs) = 0, (3.1)

when used in conjunction with the definition of current density, js = nsqsvs, yields

the following equations:

∂ni
∂t

= − 1

qi
∇ · j⊥, (3.2)

∂ne
∂t

= − 1

qe
∇ · j∥. (3.3)

2. electron trajectories are described in terms of gyro-averaged motion. As stated

before, the cross field drift of electrons is assumed negligible.

3. wave solutions are given in terms of potentials instead of fields,

E = −∇ϕ− ∂A

∂t
, (3.4)

B = ∇×A. (3.5)

Furthermore, if we recall that we are considering shear mode waves, i.e., the wave

magnetic perturbation is perpendicular to the background magnetic field, it can

be verified that this is consistent with setting A = A∥ẑ; then we can express the

field quantities as,

B = ∇A∥ × ẑ, (3.6)
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E∥ = −∇∥ϕ−
∂A∥

∂t
, (3.7)

E⊥ = −∇⊥ϕ. (3.8)

4. all perpendicular variations have the form eik⊥x, where x is the coordinate perpen-

dicular to the geomagnetic field and k⊥ is considered a function of z.

5. the displacement current term of the Amperes law is neglected,

∇×B = µ0j. (3.9)

This particular assumption has to be handled with care; the displacement current

term becomes important for low altitude and high Alfvén velocity regions.

6. quasineutrality holds at all times; this constrains the validity of the model to low-

frequency modes.

7. the magnetic moment µ = K⊥/B of the electrons is a constant of motion.

3.1.2 Derivation of the wave equation

With the assumptions we have made, let us first write the parallel component of the

current density in terms of the potentials by using (3.6),

∇× (∇×A∥) = µ0j∥. (3.10)

This equation becomes, under assumption 4,

A∥ =
µ0
k2⊥
j∥. (3.11)

As mentioned previously, the parallel current is attributed exclusively to the elec-

trons. The parallel current found in (3.11) can be substituted in (3.3),

∂ne
∂t

= − ∂

∂z

(
k2⊥A∥

µ0

)
. (3.12)

On the other hand, the expression for the polarization current is replaced in (3.2), leading
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to,

∂ni
∂t

= −ik⊥
(
ρm
B2

0

)
∂E⊥
∂t

, (3.13)

using assumptions 3 and 4 we obtain,

∂ni
∂t

= −
(
k2⊥ρm
B2

0

)
∂ϕ

∂t
, (3.14)

finally, with the quasineutrality condition (assumption 6) we obtain the wave equation,

∂ϕ

∂t
= −

(
vA
k⊥

)2 ∂(k2⊥A∥)

∂z
. (3.15)

3.1.3 The gyro-averaged Vlasov equation

For a plasma embedded in an external magnetic field B0 = B0b̂, particles perform

gyromotion in a plane perpendicular to the magnetic field. Whenever the time scale

of particle gyromotion is small compared to the variation in time of the external fields

(as is the case with low-frequency waves), and the cyclotron radius is small relative

to the spatial variation of the fields, the important physics can be described by the

gyro-averaged motion of electrons. To calculate the gyro-averaged motion, imagine the

instantaneous position r of the particle as a superposition of its gyro-averaged position

R and the actual position of the electron relative to such averaged position,

r = R+
v × b̂

Ωe
, (3.16)

where Ωe = qeB0/me is the gyrofrequency of the electrons. The velocity of the gyro-

averaged trajectory is given by,

dR

dt
= v∥b̂+ vd. (3.17)

Given the conditions mentioned above, we can express the distribution function

through a new system of variables,

f(r,v, t) → f(R, v∥, µ, t), (3.18)

where v∥ = v · b̂ and µ = mv2⊥/(2B0). Using these coordinates the Vlasov equation takes
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the form,

∂f

∂t
+
dR

dt
· ∂f
∂R

+
dv∥

dt

∂f

∂v∥
+
dµ

dt

∂f

∂µ
= 0, (3.19)

which, using assumptions 2 (vd = 0) and 7 (constant µ), becomes:

∂f

∂t
+ v∥

∂f

∂z
+

(
qe
me

E∥ −
µ

me

∂B0

∂z

)
∂f

∂v∥
= 0. (3.20)

Notice that the parallel acceleration includes the parallel electric force and the magnetic

mirror force.

For numerical convenience [Watt et al., 2004], the DK1D code uses the canonical

momentum per unit mass instead of the parallel velocity,

p∥ = v∥ +
qe
me

A∥. (3.21)

Substituting the field quantities in terms of the wave potentials, we finally get,

∂f

∂t
+

(
p∥ −

qe
me

A∥

)
∂f

∂z
+

[
qe
me

{(
p∥ −

qe
me

A∥

)
∂A∥

∂z
− ∂ϕ

∂z

}
− µ

me

∂B0

∂z

]
∂f

∂p∥
= 0.

(3.22)

3.1.4 Moments of the distribution function, calculation of the vector

potential

The response of the wave to the plasma is obtained when the vector potential is known.

This is derived from equation (3.11) in the new set of coordinates. By defining M(n) as

the n-th moment of the distribution function:

M(n) = 2π

∫
dµdp∥

B0

me
pn∥f(z, p∥, µ), (3.23)

the parallel current is expressed as,

j∥ = qM(1) +
q2

m
A∥M(0), (3.24)

which, when substituted in (3.11) leads to:

A∥ =
µ0qeM(1)

k2⊥ − µ0
q2e
me
M(0)

. (3.25)
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Figure 3.1: Representation of the geomagnetic field as an ideal dipolar field (dashed
lines). The spatial simulation domain (bold line) corresponds to a section of one of these
dipolar lines

3.2 Background plasma setup

This section describes in detail the spatial profiling of some relevant physical quantities

associated with the plasma environment. Background plasma properties and their spatial

variation are essential in determining the dispersive properties driving wave propagation.

Of these properties, both the magnetic field and the distribution function are especially

relevant; the distribution function, in turn, relies on the plasma density and temperature.

Other properties can be easily defined from the magnetic field and density models, by

specifying additional parameters.The easiest configuration consists of a homogeneous

plasma where all these physical properties are constant throughout space. However, for

this project, we require an inhomogeneous model that resemble the Alfvénic acceleration

region more realistically.

3.2.1 Space configuration and magnetic field

Within the magnetospheric context, the simulation domain runs tangent to a given

magnetic field line of the idealized dipolar configuration shown in Figure 3.1. The spatial

coordinate z represents the arc-length distance relative to the position of the ionospheric

end of the field line. The geomagnetic field model follows the dipolar approximation

presented in section 2.2 (see equation 2.39). The magnetic field line itself, represented

in spherical coordinates, was also presented (see equation 2.38 on page 26).

We are still to find a relationship between these coordinates and the arc-length dis-

tance s measured from the equator. Starting from (ds)2 = (dr)2 + r2(dλ)2, and using
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equation (2.38), we can express the variation of arc-length as a function of the latitude

as:

ds

dλ
=

√
r2 +

(
dr

dλ

)2

= req cos(λ)

√
1 + 3 sin2(λ). (3.26)

The form of the anti-derivative of last equation can be written as:

s(λ) =
1

2

(
sinλ

√
1 + 3 sin2 λ+

ln(
√
3 sinλ+

√
1 + 3 sin2 λ)√

3

)
, (3.27)

where we have chosen s(0) = 0. Thus, s(λ) gives the displacement along the field line

from the equatorial plane up to any given latitude λ. It is immediate to see that, for

any given location on the field line, the combined length of its altitude z and coordinate

s give the total distance from the equatorial plane to the surface of the Earth along the

geomagnetic field line, sE = s(λ)+ z(λ). In terms of the latitude, the value for the total

length of the field line is found by evaluating equation (3.27) at the latitude λE where

the field line intersects the Earth surface. Therefore, the z coordinate as a function of

latitude follows the relationship,

z(λ) = sE − s(λ), (3.28)

where sE = s(λE). Equation (3.28) ultimately allows the magnetospheric environment

to be mapped into the computational domain.

3.2.2 Perpendicular scaling

The perpendicular scale length, δ⊥(λ), is interpreted as the radius of the magnetic flux

tube at latitude λ. The code assumes magnetic flux conservation inside the flux tube,

which can be expressed as:

πδ2⊥I
BI = πδ2⊥(λ)B(λ), (3.29)

in terms of typical ionospheric values for perpendicular length and magnetic intensity,

δ⊥I
and BI . Then the corresponding perpendicular wavenumber, k⊥ = 2π/δ⊥, in terms
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of the magnetic intensity, is given by,

k⊥(λ) =
2π

δ⊥I

√
B(λ)

BI
. (3.30)

3.2.3 Plasma model

The mass content within the inertial and kinetic regions is essentially composed of plas-

mas of magnetospheric and ionospheric origin. At lower altitudes, the ionospheric com-

ponent presents strong spatial gradients until it is practically depleted at higher altitudes.

Since the Alfvén speed has a marked dependence on the ion plasma density, studies of

wave propagation at low altitudes require inhomogeneous conditions for plasma density.

We define the density as the mixture of a magnetospheric plasma composed of hydrogen

ions and electrons, which for practical purposes has constant density along the whole

domain, and plasma of ionospheric origin composed of singly-ionized oxygen atoms; this

oxygen component decays with altitude depending on a scale factor z0 as follows:

ne(z) = nH + nO exp

(
− z

z0

)
. (3.31)

Based on this expression, we define the ion mass as a weighted average of the relative

abundance of each species,

mi(z) = mP

(
nH +AOnOe

−z/z0
)

n(z)
, (3.32)

where mP represents the proton mass, and AO is the atomic number for oxygen.

Nonuniform density introduces a spatial dependency on the electron distribution

function, such that the time-independent Vlasov equation is identically zero. This is

accomplished by defining a space-dependent electrostatic potential across the whole sim-

ulation domain [Bittencourt, 2004]. The mathematical construction that consistently

couples the distribution function to the density model (5.1) is not part of the original

DK1D code, but it has been incorporated as part of this investigation. Details of this

implementation are included in the next chapter.

3.3 Code Workflow

This section aims to bring a practical (although not exhaustive) review of the inner

workings of the simulation code. A simplified schematic of the main steps of a simulation

workflow is presented in Figure 3.2. In DK1D it is possible to run a simulation from the
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Figure 3.2: Flowchart for DK1D
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beginning or to extend a simulation previously run. To run a completely new case, specify

trr = 0 into the initial parameters file (see next subsection). To extend a simulation,

modify the tmax field to a higher value; in this case, the parameter trr was updated by

the program to indicate the number of time steps the simulation reached last. In this

documentation, we discuss the steps concerning new simulations only.

3.3.1 Input parameters

The program starts by locating and loading the file ’DK1Dn.in’, which includes the essen-

tial information necessary to construct the initial profiles and initialize the distribution

function. A short description of the initial parameters is provided in table 3.1.

Table 3.1: Initial parameters in DK1Dn

Parameter Description

Space domain

Loweralt (m) lower altitude of simulation domain
Upperalt (m) higher altitude of simulation domain
∆z (m) distance between grid points
L-shell (Re) radial extent of magnetic field line in equatorial

plane
λI (m) perpendicular scale at ionospheric end of mag-

netic field line

Plasma

κ κ value for lorentzian distributions
nH (m−3) magnetospheric plasma density
nO (m−3) ionospheric plasma density
z0 (Re) spatial decay rate of oxygen density
Tc (eV) plasma temperature of cold particles
Tw (eV) plasma temperature of warm particles

Wave
ϕ0 (V) wave amplitude of initial perturbation
f (Hz) wave frequency of initial perturbation

Time discretization
trr initial iteration number (0 for new simulations)
ts (s) time interval between data saves
tmax (s) total simulation time

Numerical stability
Cf Courant Factor. Affects time step value
mvth Multiple of thermal velocity. The momentum

grid extend up to mvth times the thermal speed
of the plasma

There are some implicit rules which the program infers depending on the values of

some of the parameters. One of them was already mentioned; the value of the trr param-

eter defines if the simulation consists of a new case or a continuation of a previous one.

Another rule is associated with the initial oxygen density. By setting this value to zero,
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the user implicitly indicates that homogeneous conditions of density and temperature

are to be implemented. In this case, the program ignores the TC value and assigns TW as

the temperature all across the domain, and the potential is set to zero. The kappa value

sets a rule for the program to choose between Maxwellian or Lorentzian distributions.

Since a Lorentzian distribution approximates a Maxwellian as κ → ∞, we have set a

threshold value. κ ≥ 99 will implement Maxwellian distributions.

3.3.2 Magnetic field and Background plasma setup

Physical properties of the medium are stored on one-dimensional arrays of the size of

the spatial discretization array; so that for each physical property, its value and the

position where it is defined are associated with the same index. Within the code, the

spatial domain is localized within the magnetospheric context by the L-shell value of the

magnetic field, and the lower and upper values of the coordinate system whose origin is

set at the ionospheric end of the field line arbitrarily set at 110 km above the Earth’s

surface. The distance between consecutive grid points ∆z determines the numerical

spatial resolution.

A uniform grid provides simplicity in the numerical scheme. However, the coordinate

z to which this uniform grid is associated is not a common choice to define locations on a

spherically symmetric system. For this reason, additional arrays store the locations of the

discretized points regarding their radial and latitudinal coordinates. The relationships

z(λ) and r(λ) were derived in section 3.2.1. Since we did not find an analytic expression

for the relation λ(z), in order to obtain the latitude coordinate for a given altitude, a

bisection method iterates the right-hand side of the equation

z(λ) = sE − 1

2

⎡⎣sinλ√1 + 3 sin2 λ+
ln
(√

3 sinλ+
√

1 + 3 sin2 λ
)

√
3

⎤⎦ (3.33)

until a numerical value approximates the left-hand side with some desired level of toler-

ance. The array of latitudes is required in order to obtain the discretized magnetic field

values through equation (2.39).

3.3.3 Dispersion equation solution

Once the background plasma properties have been established, it will be necessary to

obtain an initial solution for the dispersion equation, to be used later on during the wave

input stage. In the cold limit, such solution takes the form given in equation (2.88) on
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page 36. The value of this approximation is used as an initial guess into a subroutine

that uses Newton’s method to find a much better approximation to the solution of the

dispersion equation 2.110.

3.3.4 Distribution function setup

At every location along the spatial domain, the particle distribution function defines

a two-dimensional phase grid where the parallel and perpendicular components of the

distribution are stored. For reasons of practical convenience, phase coordinates are

the magnetic moment instead of the perpendicular velocity, and the parallel canonical

momentum per unit mass instead of the parallel velocity. Grid spacing in both the

magnetic moment and parallel momentum increases geometrically, so that resolution

changes monotonically as grid values increase. The base momentum resolution is usually

set to a few tenths of the thermal velocity, while both the geometric factors by which the

resolution changes and the higher limits of the momentum grid, often require some trial

and error strategy based on educated extrapolation and previous experience, as one can

not usually predict the final energization levels of the plasma.

Courant condition

A similar approach to determining the top limits of the momentum domain is also

followed in order to ensure numerical stability. The Courant condition for the two-

dimensional Upwind Method has the form (see B.26),

0 < max

(⏐⏐⏐⏐Vmax∆t

∆z

⏐⏐⏐⏐ , ⏐⏐⏐⏐Pmax∆t

∆p

⏐⏐⏐⏐) ≤ 1, (3.34)

where Vmax and Pmax are (hopefully) good estimates of the maximum parallel momentum

that simulation particles can reach, and the maximum force per unit mass these particles

will withstand, respectively. This condition is used to obtain a time step unit,

dt = min

(⏐⏐⏐⏐Cf∆z

Vmax

⏐⏐⏐⏐ , ⏐⏐⏐⏐Cf∆p

Pmax

⏐⏐⏐⏐) , (3.35)

3.3.5 Data output

Once all preliminary stages of the simulation are done, and the program is ready to

run the time marching loop, a file ’DK1Dn.out’ is generated and saved in the physical

memory. This file contains necessary information about initial parameters, grid size and

resolution of the distribution function, time resolution, and the initial solution of the

dispersion equation.
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Numerical solution for wave fields and the particle distribution function are stored

into physical memory at time intervals given by the ts parameter, starting at t = 0 s.

Most quantities are stored in a single file each, which is progressively updated as time

evolves. On the other hand, solutions of the particle distribution function at a given time

are saved into individual files as the amount of data is often high enough as to cause

memory problems during post-processing.

3.4 Numerical Scheme

3.4.1 Space discretization

As indicated in section 3.2.1, the spatial domain consists of a section of a magnetic field

line determined by its L-shell value.

The spatial discretization defines two uniform grids with cells of size ∆z, one of the

grids is shifted in position by a distance ∆z/2 relative to the other to accommodate for

the wave potentials to be leap-frogged in space. Space and time leap-frogging has become

a standard implementation within the framework of electromagnetic codes, ensuring

efficient administration of computational resources while keeping second order accuracy

on the numerical calculations, at the expense of not having the full knowledge of both

potentials at the same locations nor simultaneously [Birdsall and Langdon, 2005]. Figure

(3.3) illustrates the arrangement of both the scalar and vector potentials as required by

the finite difference version of the wave equation (3.15):

ϕ
t+1/2
i+1/2 − ϕ

t−1/2
i+1/2

∆t

(
vAi+1/2

k⊥i+1/2

)2 k2⊥i+1Ai+1 − k2⊥i−1Ai−1

∆z
= 0. (3.36)
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Figure 3.3: Spatial and temporal staggering of wave potentials define the spatial dis-
cretization.
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Figure 3.4: Scalar potential update scheme

3.4.2 Wave update 1/2: scalar potential

The wave equation describes the temporal evolution of its electrostatic potential. From

its numerical version, equation (3.36), we get:

ϕ
t+1/2
i+1/2 = ϕ

t−1/2
i+1/2 −

∆t

∆z
+

(
vAi+1/2

k⊥i+1/2

)2

(k⊥i+1Ai+1 − k⊥i−1Ai−1) (3.37)

The diagram in Figure (3.4) illustrates the time advance of the scalar potential at each

location, in terms of the surrounding information according to (3.37). Inspection of this

equation reveals that the value of the Alfvén speed and the perpendicular wavenumber

must be known at the point where the scalar potential is defined since the potential

depends directly on these variables. On the other hand, a dependence with the spatial

variation means that both the perpendicular scale (again) and the vector potential are

to be staggered in adjacent positions. Finally, the time derivative indicates that the

updated value of the potential depends on its previous value at the current location.

Boundary conditions

Due to the positioning of the discretized scalar potential inside the simulation domain

(see Figure 3.4), this potential is devoid of boundary conditions. However, the gradient

of the scalar potential appears explicitly in the Vlasov equation, which requires some

assumption about the value of the potential just outside the ends of the spatial domain.

For the simulations that take part in this project, the gradient of the scalar potential at

the boundaries has been set to zero.

3.4.3 Distribution function update

The Vlasov equation (3.20) has the form of an advection equation in the dimensions z

and p∥ (see equation (B.23) on page 171):

∂fe(z, p∥, µ, t)

∂t
+ a

∂fe(z, p∥, µ, t)

∂z
+ b

∂fe(z, p∥, µ, t)

∂p∥
= 0, (3.38)
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with advection coefficients,

a = p∥ −
qe
me

A∥, (3.39)

and,

b =
qe
me

[(
p∥ −

qe
me

A∥

)
∂A∥

∂z
− ∂ϕ

∂z

]
− µ

me

∂B

∂z
. (3.40)

The DK1D program uses the Corner Transport Upwind Method summarized in appendix

B to advance the distribution function in time. Its updated form can be written as:

f t+1
ijk := f tijk −

∆t

∆z

(
a+ij∇zfijk + a−i+1,jk∇zfi+1,jk

)
− ∆t

∆p

(
b+ijk∇pfijk + b−i,j+1,k∇pfi,j+1,k

)
− ∆t

∆z
(Fi+1,jk − Fijk)−

∆t

∆p
(Gi,j+1,k −Gijk) .

(3.41)

The top line of this equation corresponds to the first order Upwind Method is two dimen-

sions, while the terms on the second line encompass the corrections due to contributions

from diagonally located cells and second order limited corrections. These terms are

conveniently expressed as correction fluxes:

Fijk = −1

2

∆t

∆p

(
a−ijb

−
i,j+1,k∇pfi,j+1,k + a+ijb

−
i−1,j+1,k∇pfi−1,j+1,k + a−ijb

+
ijk∇pfijk

+a+ijb
+
i−1,jk∇pfi−1,jk

)
+

|aij |
2

(
1− ∆t

∆z
|aij |

)
δzijk, (3.42)

and,

Gijk = −1

2

∆t

∆z

(
a−i+1,jb

−
ijk∇zfi+1,jk + a−i+1,j−1b

+
ijk∇zfi+1,j−1,k + a+ijb

−
ijk∇zfijk

+a+i,j−1b
+
ijk∇zfi,j−1,k

)
+

|bijk|
2

(
1− ∆t

∆p
|bijk|

)
δpijk. (3.43)

The gradient limiters δz and δp, implemented in order to ensure convergence and avoid

unwanted harmonic behavior, are known as monotonized central difference limiters [van

Leer, 1974]. These gradients are given by the expressions:
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Figure 3.5: Vector potential update scheme

δzijk = minmod [2∇zfi−1,jk , 2∇zfijk , ∇zfi−1,jk +∇zfijk] , (3.44)

δpijk = minmod [2∇pfi,j−1,k , 2∇pfijk , ∇pfi,j−1,k +∇zfijk] . (3.45)

The minmod function is defined in equation (B.21).

Boundary conditions

The behavior of the distribution at the boundaries is affected by the field-aligned electric

current driven through the boundary in the previous timestep. This current is interpreted

as a result of the drift VD of the core distribution, j∥ = neqevD. Substituting the current

with the form of Ampére’s law given in equation (3.11), and solving for VD, leads to,

vD =
k2⊥A∥

µ0qene
. (3.46)

The distribution function at the boundaries has the same form as the unperturbed case,

except for a correction of the velocity due to the passing current:

fe(v, vD) = fe0(v − vD). (3.47)

3.4.4 Wave update 2/2: vector potential

The self-consistent coupling between the wave and the recently evolved distribution func-

tion takes place at the update calculation of the vector potential, which requires the

numerical integration of the zeroth and first moments of the distribution at every loca-

tion, according to equation (3.23). Numerical integration of these moments is performed

combining the trapezoidal method and cubic spline integration. The numerical vector

potential is calculated as:

An+1
i =

µ0qeM
n
i (1)

k2⊥i + µ0
q2e
me
Mn

i (0)
, (3.48)
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in accordance with equation (3.25).

Boundary conditions

The value of the vector potential at the boundaries is obtained by assuming that the

parallel current changes negligibly across the cells at the edges of the simulation domain.

Under such assumption, equation (3.11) leads to:

At
0 = At

1

(
k⊥1

k⊥0

)2

, and At
N = At

N−1

(
k⊥(N−1)

k⊥N

)2

. (3.49)

3.4.5 Wave input

znz− 1
2

znz znz+ 1
2

Figure 3.6: A traveling wave pulse moving into the simulation domain.

Waves are introduced into the computational domain through its upper boundary,

on an early stage of the simulation that typically lasts a few wave periods. The incoming

perturbation is imagined as a traveling wave pulse propagating downwards at some

known speed vw without dispersion up until the point where it is introduced into the

simulation domain. This point of entry corresponds to the location closer to the boundary

where the scalar potential is defined (z = znz− 1
2
according to Figure 3.6). Thus the scalar

potential during the wave input stage is set to

ϕ(znz− 1
2
, t) = ϕ0 exp

(
− t− t1

t2

)2

sin(ωt). (3.50)

where t1 and t2 determine the shape of the Gaussian envelope. From (3.40), it follows that

potential gradients must also be provided at the location znz, and at time t := t+∆z
vw

+∆t
2

due to spatial and temporal staggering. The scalar potential gradient is obtained as

∂ϕ

∂z
=

1

vw

∂ϕ

∂t

⏐⏐⏐⏐
t+∆z

vw
+ dt

2

. (3.51)

On the other hand, the vector potential gradient is given in terms of the temporal

variation of the scalar potential, according to the wave equation (3.15). In most cases,
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one can safely neglect the gradient of the perpendicular scaling at the position where the

wave is introduced, and therefore use the simplified form,

∂A∥

∂z
= − 1

v2A

∂ϕ

∂t

⏐⏐⏐⏐
t+∆z

vw
+ dt

2

. (3.52)
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Chapter 4

Acceleration of suprathermal

electrons in the topside

ionosphere

Electron time dispersion events appear in energy spectrograms of spacecraft data as

high-intensity traces whose average energy decreases monotonically over time [Kletzing

and Torbert, 1994]. Typical energies of these events range in the hundreds of eV, but

sometimes they can reach several keV, similar to inverted V structures. As opposed to

inverted V structures, on the other hand, which present energetic particles at most pitch

angles, these dispersive events portray a much stronger parallel component, while their

intensity falls off rapidly with increasing pitch angles [McFadden et al., 1987; Kletzing

and Torbert, 1994; Andersson et al., 2002; Tanaka et al., 2005].

Initially, these signatures were considered the footprint of field-aligned acceleration

over a localized source. Under an impulsive process working over a significant fraction

of the local velocity spectrum, the faster electrons of the initial distribution would be

accelerated to higher velocities than slower ones, thus generating a time dispersive fea-

ture. By measuring the time interval ∆t between the arrival of particles at two different

given energies, the distance d from the detector to the source of accelerated particles is

approximated as

d =
∆t

1/v2 − 1/v1
, (4.1)

where v1 and v2 are the velocities associated with the two energies involved. This ap-

proach is often known as time-of-flight (TOF). TOF assumes a single source location
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and time injection for all particles. If this were the case, a simple linear regression model

between ∆t and 1/v would unveil both the source distance and the time of injection

from the regression parameters. Uncertainties for these derived quantities are bound to

the payloads time sampling rate [Tanaka et al., 2005], so further detail on the origin and

evolution of these events had to wait until instrumentation became capable of resolving

finer structures.

Eventually, improved capabilities of later spacecraft and instrumentation established

the nonlocal nature of many plasma dispersion occurrences. McFadden et al. [1987]

studied sounding rockets data in association with flickering aurora. They performed a

cross-correlation analysis between different energy channels for some of the dispersed

signatures and contrasted their estimations against the relation (4.1). 3 out of 4 events

presented strong variability between the source distances as calculated using correlated

data from different channels, thus proving that these events correspond to field accelera-

tion over extended sources along field lines. Further research supported this hypothesis.

For instance, Clemmons et al. [1994] studied two cases of electron dispersion at alti-

tudes near 1750 km, using data from the Freja spacecraft. Their first measurement used

TOF analysis on an event in which particle energies reached a few tenths of keV. Linear

regression for this event showed very high correlation, and the source of injection was

estimated in the range between 6.2 and 6.8 Re, or at a latitude of −15 ± 10o. In their

second case, data were further reclassified in pitch angle bins. Bins of low pitch angle

data (< 60o) consistently indicated the location of the source around 850 km above the

spacecraft. However, estimations using bins of broader pitch angle data deviated consid-

erably, thereby suggesting that larger pitch angle electrons originated at higher altitudes

along the magnetic field line than particles with lower pitch angles. Tanaka et al. [2005]

studied similar time dispersed signatures, using data from a sounding rocket flyby with

an altitude of 1102 km in the high latitude cusp region. They reported a chain of events

with a periodicity of 0.5 − 1.0 s, and energies ranging 20 − 250 eV, both inside and

outside inverted V structures. Besides the linear TOF estimation, ∆t versus 1/v data

were fitted with a second-degree polynomial; the changing slope of the quadratic curve

is consistent with differentiated injection locations for particles with different energies.

Said quadratic fitting achieved higher correlation than linear regression, therefore sup-

porting the idea of particle acceleration occurring over an extended region along the field

line. In most cases, the coefficient of the quadratic term was negative, indicating that

more energetic electrons were injected at higher altitudes. As a third alternative, pitch

angle distribution was also considered; by redefining ∆t in equation (4.1) as an integral

in space where the particles speed is parametrized regarding its adiabatic motion inside

a dipolar magnetic field, to account for the effect of pitch angle dispersion. Estimations
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using this approach were not inconsistent with previous findings, but their uncertainty

was large as to prevent a conclusive statement.

Kletzing and Torbert [1994] attempted to replicate dispersive signatures as the result

of electron acceleration by a quasi-static structure that would cause precipitation along

field lines. It was found that agreement with the measured distributions was heavily

conditioned to the imposition of an additional plasma component that could not be

generated consistently by the model. Later on, Kletzing and Hu [2001] published a

simulation where an inertial Alfvén wave accelerates electrons as it travels down the field

line. Although their model is not self-consistent in calculating the perturbed plasmas

response over the wave, they succeeded to replicate time dispersive bursts with similar

characteristics to the ones found in observations. They argued that the variation of the

Alfvén speed along the field line is an essential factor in achieving these signatures.

More recently, Cameron [2015] surveyed data from the ePOP satellite and reported

the occurrence of time dispersive events reaching energies up to 350 eV, with maximum

intensities around 100 − 150 eV. Pitch angle spectrograms of these events indicate that

these populations are mostly field-aligned, which seem inconsistent with large-scale ac-

celeration where the mirror effect would have caused pitch angle scattering and thereby

suggesting ionospheric origin. TOF estimations located most of these events sources at

altitudes between 2000− 2500 km. Although projections based on TOF analysis showed

decent agreement with data, the physical mechanism driving these perturbations remains

ambiguous; since the source of particle acceleration was not far from the detector, both

a localized source, as well as a moving source could show similar dispersion.

In this chapter, we consider field-aligned acceleration by inertial waves which develop

and propagate close to the topside ionosphere. At this location, the predominance of

oxygen plasma causes the local Alfvén speed to drop considerably, compared to higher

altitudes where density decreases and ions become much lighter. These conditions make

it plausible for low plasma temperature to interact effectively with the inertial pertur-

bation and cause electron acceleration via Landau or Fermi resonance. One aspect that

calls for attention is the fact that energy levels associated with the events reported in

Cameron [2015] seem excessively high in comparison to the expectations derived from

the basic theory of Fermi interactions. Recall that (see section A) accelerated electrons

bounce off the wave potential as long as their initial speed, as measured in the wave

frame of reference, falls in the range [0, vϕ(=
√

2eϕ/me)]. In the observer’s frame, the

speed of these particles after the interaction is 2vw − v0. Roughly speaking, we have

vw ≈ vA, and we consider that the bulk of interactions occurs for particles with speed

v0 ≈ vth. Therefore, it seems that these electrons should escape the wave at speeds

comparable to the thermal speed of the plasma, and so the dispersive signature should
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appear at energies on the thermal level (not higher than a few tenths of eV in this case).

Certainly, one can increase the potential of the wave arbitrarily to cause wave-particle

interactions with faster particles; however, the amount of additional interacting electrons

drops out quickly as vϕ moves into the tail of the distribution.

4.1 SEI on e-POP

The enhanced Polar Outflow Probe (e-POP) consists of an ensemble of 8 scientific in-

struments (see table 4.1) designed to obtain high-resolution data relevant for studies of

mesoscale and microscale processes associated with plasma outflow in the polar iono-

sphere, and the influence of auroral currents over these processes [Yau and James, 2015].

E-POP orbits the Earth since late November 2013 on board of the CAScade, Small-

sat, and IOnospheric Polar Explorer (CASSIOPE) mission, on an elliptical path with a

perigee of 325 km, an apogee of 1500 km, and an inclination of 81o. To optimize for the

different investigations, each of the instruments on e-POP operates with different modes

or atitudes. Technical aspects like measurement data rate, time resolution, instrument

orientation, and the location within the orbit at which these modes are activated depend

significantly on the objectives of their respective investigations.

Table 4.1: ePOP instrumentation. (From Yau and James [2015])

Instrument Principal investigator Scientific output

CER Coherent EM radio to-
mography

Dr Paul Bernhardt Electron content

FAI Fast auroral imager Dr Leroy Cogger Infrared and visible im-
ages

GAP GPS attitude and pro-
filing experiment

Dr Richard Langley Spacecraft position and
attitude

IRM Imaging rapid mass
spectrometer

Dr Andrew Yau Low energy (0.5100 eV)
ion detector

MGF Fluxgate Magnetometer Dr DonWallis 3D magnetic field and
currents

NMS Neutral mass spectrom-
eter

Dr Hajime Hayakawa 0.12 km/s neutral parti-
cles

RRI Radio receiver instru-
ment

Dr Gordon James Radio wave propagation

SEI Suprathermal electron
imager

Dr David Knudsen Low energy electron de-
tection

Relevant to this investigation, the Suprathermal Electron Imager (SEI) was included

as part of the e-POP instrumentation with the objective of studying relevant aspects
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Figure 4.1: ePOP instrumentation on Cassiope. (From https://epop.phys.ucalgary.

ca/payload/)

of ion flow and wave-particle interactions associated with low energy populations in

the high-altitude Ionosphere [Knudsen et al., 2015]. In essence, the SEI consists of a

charged-coupled detector (CCD), on top of which a system of hemispherical electrodes

are placed to filter and deflect entering particles towards the detector (Figure 4.2). The

top hemispheric section presents a circular aperture that allows particles within ±4o

the nadir-ram plane inside. The hemispheric pieces are charged to different voltages,

so that in the region in between them a radial electric deflects incident particles onto

different regions of the detectors surface, according to their incident energy per charge.

Through this technique, SEI is capable of measuring pitch angle and energy distributions

of suprathermal (< 1 keV) ions and electrons at a very high rate (100 s−1).

Figure 4.2: Schematic setup of the SEI device. (From Cameron [2015])

https://epop.phys.ucalgary.ca/payload/
https://epop.phys.ucalgary.ca/payload/
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4.1.1 Electron dispersion events in the topside Ionosphere

Using recent data from the SEI on ePOP, Cameron [2015] classified a number of low

energy dispersive features as regular and inverse. Inverse dispersion, as opposed to the

regular case described at the beginning of this chapter, refers to instances where SEI

detects lower energy electrons in advance of the high energy ones. We have borrowed a

few representative cases intended to evaluate their compatibility with processes involving

electron acceleration due to Alfvénic activity at the topside ionosphere. Unfortunately,

hardware malfunction after e-POP was launched prevents the accurate reading of the

detector gain (Knudsen, personal communication), so color intensities are expressed in

arbitrary units.

Regular dispersion

Figure 4.3: Dispersion event detected by the SEI on August 28, 2014. Energy (top)
and pitch angle (middle) spectrograms. The shadowed region of the magnetic field
perturbation (bottom) corresponds to the time interval from the two top panels. (From
Cameron [2015])

Figure 4.3 presents energy (top) and pitch angle (middle) spectrograms of an event

that took place on August 28, 2014. The satellite altitude during this event was 1089.5
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km, and the source was estimated to be at altitude 2730 km. A distinctive intensity

enhancement occurs between 0.5 and 1.0 s, which can be appreciated in both panels.

Although there is an increase in the number of counts at practically all energies (including

thermal electrons) during this interval, the signature shows higher levels of energetic

electrons which decrease over time during the interval between 0.5 to 0.7 s approximately,

with what seems to be a time-dependent increase for thermal energies. Pitch angle

distribution for the same time interval, shown at the lower panel, remains confined to

relatively low angles, which is considered an indication that source electrons are cold

[Cameron, 2015], most likely from ionospheric origin. A somewhat resembling signature

is presented in Figure 4.4. Based on previous considerations, both the apparent absence

of thermal plasma and the narrow pitch angle range of the bursty feature, are consistent

with an even colder plasma source than the previous example. This event was recorded

at an altitude of 387 km, and the source location was estimated to have an altitude of

840 km.

Figure 4.4: Dispersion event detected by the SEI on July 24, 2014. Energy (top) and
pitch angle (middle) spectrograms. The shadowed region of the Magnetic field perturba-
tion (bottom) corresponds to the time interval from the two top panels. (From Cameron
[2015])

Similar time dispersive features as the ones just presented were reported at early
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stages during the wave input phase of numerical simulations with the D1KD code (see

Watt et al. [2004]). There are, however, a few inconsistent aspects that suggest important

modifications to the physical mechanism based on Fermi interactions put forward by

Kletzing [1994], perhaps the most conflictive of them is the relatively high energies of

the faster electrons. As pointed out in appendix A, under particle acceleration of the

Fermi kind, interacting electrons are expected to reach speeds roughly given by 2vw−v0.
Since the bulk of the distribution moves at a rate given by the thermal speed (so that

v0 ≃ vt for most electrons), the highest intensity of the differential flux should appear at

much lower energies than the ones reported on many of e-POP events. Another apparent

contradiction against the Fermi acceleration mechanism is the absence of thermalized

plasma at dispersive feature’s foot in Figure 4.4. According to Watt et al. [2005], as a

result of particle-wave interactions, electrons that are initially non-resonant can become

resonant if they spend enough time within the spatial domain of the pulse. Since the

center of the wave potential constitutes a point of repulsion, as discussed in appendix

A, electrons tend to slow down in the frame of reference of the wave while inside said

potential. This effect is observed in the absolute frame as an enhancement of thermal

plasma traveling with the wave. Such thermal component seem to be present in Figure

4.3, but not in Figure 4.4.

Inverse dispersion

Events categorized as inverse dispersion consist of instances where suprathermal elec-

trons with low energy reach the SEI in advance of high energy ones (see top panel in

Figure 4.5). The pitch angle distribution shown in the middle panel indicates that this

signature consists of downward streaming electrons with little transverse momentum,

most likely from an ionospheric source. In fact, Cameron [2015] considered only events

with narrow pitch angle distributions as inverse dispersion since, at least in principle,

inverted V structures can show a similar energy footprint as the one shown here. As

pitch angle distributions for inverted V events typically presents a broad spectrum of

transverse energy, inverse dispersion events with narrow pitch angle spectra are easily

differentiated from inverted structures.

Inverse dispersion signatures like the one in Figure 4.5 are difficult to explain in

the context of inertial Alfvénic acceleration. There is one particular scenario that (in

principle) favors it; recall that, for a single wave pulse propagating through the plasma,

its magnetic-field-aligned electric field suffers a nonlinear steepening in amplitude [Watt

et al., 2005] which causes a gradual increase of the energy of the resonant particles.

In this scenario, particle-wave interactions that result in faster electrons take place at
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Figure 4.5: Energy (top) and pitch angle (bottom) spectrograms showing an inverse
time dispersive signature. (From Cameron [2015])

later times; a stationary observer at the right location down the field line could see

a beam of electrons where slower particles move ahead of faster ones. We estimate

that, for this effect to be perceptible in the simulations, both the wave and its nonlinear

evolution would have to occur at an unusually slow pace to keep the faster electrons from

catching up with slower ones. We attempted to implement such favorable conditions in

a number of simulations. However, slow-moving pulses, as it will be shown below, cause

an additional effect that dominates over the Fermi-like interaction.

Alternatively, Cameron and Knudsen [2016] proposed a simple heuristic model with

which they were able to obtain some consistent results. Their model consists of an

anti-earthward electric field structure contained inside a section of a flux tube with

certain extension Ld along the field line, moving transversely across magnetic field lines.

As this structure moves into regions of undisturbed plasma at rest, it induces electron

precipitation which can be detected by a spacecraft located at a lower altitude. For the

case of a constant electric field E∥ throughout its domain, and provided such domain

is wide enough as to allow all electrons to reach its low altitude end, then the amount

of energy gained by each particle corresponds to the work of moving it from its initial



CHAPTER 4. ACCELERATION OF SUPRATHERMAL ELECTRONS 71

position to the bottom of the electric field. The values of such energies depend directly

on each particles initial position, the range of energies will be 0 < eE∥z/m < eE∥Ld/m.

Under these conditions, it was found that both regular and inverse dispersion were

possible, depending on the location and velocity of the detector. Later on, we try this

approach considering the cross field propagation of Alfvén waves.

4.2 Regular dispersion in the topside ionosphere

In this section, we present results of numerical simulations exploring a scenario where

Alfvénic activity drives the generation of regular and inverse dispersion with similar

characteristics as some of the events observed by ePOP. Building up from the estimations

made in their study, we consider wave pulses generated not farther than 2000 km away

from the spacecraft detector. Under such short distances, spatial variations in the plasma

properties derived from the inhomogeneous geomagnetic field are expected to have a

much lesser impact on the distributions time evolution than the wave-plasma interaction.

This assumption allows us to use a simpler version of the Vlasov solver which considers

only the parallel distribution, at the cost of losing the physics associated with variations

in pitch angle and its effects on the plasma. Since ePOP events reveal very little activity

at high pitch angles, we can afford to ignore sources of pitch angle diffusion.

Other than the spatial localization of the spacecraft during events, ePOP data does

not report (to my knowledge) any other information regarding the physical state of the

background plasma. Moreover, as it was pointed out in the previous section, spectro-

grams show only relative values of differential flux in arbitrary units. These limitations

prevent us from making quantitative estimations of these signatures intensity. Instead,

we focus on exploring the formation of dispersive structures under changing conditions of

the ionospheric environment; we seek to find the conditions (if any) under which electron

energies can reach considerably larger values than the ones expected under Fermi-like

interactions. To do so, we have analyzed data from 3 sets of simulations, each of them

characterized by an unique value for the Alfvén speed parameter (vA1 = 2 × 103 km/s,

vA2 = 6×103 km/s, vA3 = 104 km/s, respectively). Each set includes a baseline case with

the following parameters: perpendicular scale λ⊥ = 0.5 km, plasma density ne = 200

cm−3, temperature T = 2 eV; the external magnetic intensity depends on both the

plasma density and Alfvén speed. The amplitude and frequency of the wave for these

cases are ϕ = 5 eV, and f = 1 Hz, respectively. These simulations are complemented

with additional cases that consider the variation of several relevant parameters with

respect to their baseline case, one at a time.

Each simulation consists of a magnetic field aligned region 0 ≤ z ≤ 5000 km, contain-
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ing a Lorentzian (κ = 5) plasma constituted by single ionized oxygen. At z = 5000 km,

an Alfvén wave is introduced during the interval 0 < t < 2t1 according to the expression

ϕ(t) = −ϕ0 exp

[
−
(
t− t1
t2

)2
]
. (4.2)

Here t1 = 0.5τ , and t2 = τ/
√
4 ln 100 is chosen to ensure the wave enters smoothly into

de simulation domain. τ = 1/f is the period of the wave, or in this case the time it takes

for the pulse to move across the point of injection.

Figure 4.6: Electron dispersion signatures for three cases with vA = 6000 km/s. (left) ex-
pected interaction. (right) Dispersive signatures for different values of the perpendicular
scale (dashed line marks the expected energy of Fermi-resonant electrons).

Analysis of data from these simulations suggests that a different mechanism, driven

by a large inductive response occurring in regions of low Alfvén speed (few ∼ 103 km/s),

can cause particle acceleration at much larger energies than the energy of Fermi-resonant

electrons. The efficiency of this process also depends on other plasma properties. Figure

4.6 shows three simulation cases featuring different perpendicular scales; the background

plasma corresponds to vA = 6000 km/s. Notice that for λ⊥ = 1 km, the disturbed plasma

shows beam formation of resonant electrons at the energy level predicted by the Fermi

interaction, indicated by the discontinuous line. At shorter scales, on the other hand,

accelerated electrons form up a structure consisting on a stream of particles with rapidly

decreasing velocities. Sketches to the left of each spectrogram indicate the expected

redistribution of velocities after a Fermi-like interaction. Note that for λ⊥ = 1 km, the
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Figure 4.7: Electron dispersion signatures for three cases with vA = 10000 km/s. (left)
Expected interaction. (right) Energy-time spectrogram for different values of tempera-
ture (dashed line marks the expected energy of Fermi-resonant electrons).

wave merely interacts with electrons at the tail of the distribution, while for cases with

lower scales the interaction seems largely nonlinear since it includes large sections of the

core plasma.

Similarly, Figure 4.7 compares dispersive forms for cases with different temperatures.

Cases with Te = 0.5 and Te = 2 eV evidence Fermi acceleration and beam formation at

the expected energies. As for the case with Te = 10 eV, electron acceleration surpasses

the Fermi level. Therefore, an increased temperature enhances the inductive response

and produces high energy dispersion. As a final example, Figure 4.8 shows that the in-

ductive response is also proportional to the wave amplitude; signatures at higher energies

are the result of a larger field-aligned vector potential component.

4.2.1 Fermi-like dispersion vs nonlinear dispersion

Figure 4.9 compares the baseline cases with vA = 2×103 km/s (left) and vA = 104 km/s

(right). Each panel represents electron advection in a way that is analogous to ePOP

spectrograms, i.e., as seen by an stationary detector. We will refer to the simulation with

vA = 2×103 km/s as case 1, and vA = 104 km/s as case 2. Top panels show energy-time

spectrograms at z = 3000 km, or 2000 km away from the source, while bottom panels

measure dispersion at z = 0 km (5000 km away from the source). White dashed lines
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Figure 4.8: Electron dispersion signatures for three cases with vA = 6000 km/s. (left)
Expected interaction. (right) Energy-time spectrogram for different values of the wave
amplitude (dashed line marks the expected energy of Fermi-resonant electrons).

have been superimposed to indicate the energy of resonant electrons under Fermi-like

interactions.

Panels (1a) and (2a) mimic a realistic scenario where the source distance with respect

to the satellite is 2000 km. This distance falls within the range of ePOP events. In (1a),

there is a significant enhancement of differential flux during the interval 1.0 < t < 1.5

s approximately; this population of fast electrons has exceeded several times the energy

threshold for resonant Fermi-like interactions. As for case 2, electron acceleration in

(2a) happens below the dashed line. Notice that, by increasing the Alfvén speed, the

pulse now is expected to propagate faster, allowing Fermi-like resonant particles to reach

energies of almost 40 eV.

These differences are more pronounced if the source is located further apart. The

bottom panels in Figure 4.9 show electron dispersion at distance 5000 km away from

the source. Such a large distance might pose a conflict with the assumption of uniform

plasma, but we include them with the only purpose of providing additional evidence

towards the differentiation between these simulations. Panel (2b) confirms that Fermi-

type interactions drive electron acceleration for the case when vA = 104 km/s, as it is

evident by the characteristic beam of resonant electrons [Kletzing, 1994; Watt et al.,

2004, 2005] from t ∼ 2 − 2.4 s that travels ahead of the wave. In contrast, panel (1b)

shows no beam formation by the bulk of accelerated electrons, which continues to stream
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at speeds far outside the range expected by Fermi interactions.

Figure 4.9: Downward electron differential flux for cases with (1) vA = 2 × 103 km/s,
and (2) vA = 104 km/s. Source distances are (a) 2000 km, and (b) 5000 km from the
source.

The behavior obtained for case 1 shows a much different scenario when contrasted

with the most common notion of wave-plasma interaction based on Fermi acceleration.

Even though these results are consistent with rather high energy populations that are

observed within the cold ionospheric environment in some of the ePOP events, this result

must be treated with healthy skepticism. Before going further, we decided to put some

additional work into strengthening the codes numerical implementation, particularly

the conditions ensuring that both the potentials and their derivatives fulfilled the wave

equation through the boundaries during the wave input stage. Still, these changes had

little effect, and after rerunning these cases, similar results were obtained.

At this point, it is of interest to examine wave dispersion and their effects regarding

electron acceleration. For the wave pulse described by equation (4.2), the corresponding

E∥ consists of a bipolar structure that causes electron deceleration in the wave frame.

Figure 4.10 shows the time variation of (a) the perpendicular magnetic perturbation, (b)

the perpendicular electric field, (c) the parallel electric field, (d) the parallel current, and

(e) the parallel electron energy flux, at z = 3000 km. The continuous line refers to case

1 that causes high energy signatures, while the dashed line on each graph corresponds

to case 2 driven by Fermi-like interactions. After traveling 2000 km, case 2 presents only

mild dispersion and steepening of the leading section of E∥ [Watt et al., 2005; Watt and
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Rankin, 2007b]. On the other hand, the parallel field for case 1 shows a much different

structure, including a 180o phase change, and a considerable shorter spatial extent.

Other field components also differ considerably between these cases. The much larger

magnetic perturbation (B⊥ ∼ k⊥A) suggests that this pulse has a strong electromagnetic

component. Finally, notice that despite a much lower Alfvén speed, the wave in case 1

propagates faster with respect to case 2.

Figure 4.10: (a) perpendicular magnetic intensity, (b) perpendicular electric field, (c)
parallel electric field, (d) parallel current, (e) energy flux as a function of time at z = 3000
km. The continuous line corresponds to the case vA = 2×103 km/s, while for the dashed
line vA = 104 km/s.
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This particular field configuration causes a much different particle-wave interplay.

In the wave frame, interacting electrons incoming from either the front or back of the

pulse become attracted towards the point where the electric field changes sign, inducing

them to quickly stream past the wave, as opposed of being slowed down and eventually

reflected, as in case 2. During their passing through the wave, their average energy is

higher than their initial energy. Therefore, one expects to see an enhancement in differ-

ential flux at energies larger than the thermal level. For this reason, the suprathermal

component often observed ahead of the wave [Kletzing, 1994; Watt et al., 2005] is absent

in the top-left panel of Figure 4.9.

Figure 4.11: Drift speed associated to the inductive response of the plasma to Alfvénic
perturbation vs the initial phase speed of the wave.

Animations of the time evolution of the wave indicate that for the case where vA =

2 × 103 km/s, strong damping occurs immediately after the pulse is injected into the

simulation domain. At the same time, a large perturbation appears carrying its own

fields. From Amperes law, the large B⊥ (see Figure 4.10) induces a strong field-aligned

current. Given their inertia and large density in this region, the cold electrons are the

most likely candidate to carry the parallel current necessary to support A∥. Within

the code, boundary conditions provide this current by adding the correct drift velocity

term to the electron distribution [Watt et al., 2005]. Therefore, this drift speed can

be regarded as a measure of the plasmas inductive response due to the perturbation.

Figure 4.11 plots the maximum drift speed of electrons carrying the induced current
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during the wave input phase of the simulation, as a function of the initial phase speed

of the wave. Through visual analysis of the time evolution of the electron distribution

and the electric field, each simulation has been classified according to whether linear

or nonlinear interactions are driving electron precipitation. The graph shows that high

energy dispersive signatures tend to occur for slower moving waves.

4.2.2 Reproducing ePOP signatures through simulations

It would be useful to find a set of parameters with which to replicate the main physical

features of the ePOP events shown in section 4.1.1. We studied the formation and

evolution of dispersive forms for all simulations briefly mentioned earlier in this chapter.

Based on these cases, one tries to identify patterns in the behavior of the distribution

after independent variation of the following parameters: the Alfvén speed, the wave

frequency, the wave amplitude, the plasma temperature, and the perpendicular scale.

These results should help to find more appropriate initial conditions for the next round

of simulations. This strategy is straightforward and can be iterated as needed, yet its

execution required much more time than we expected for the following reasons:

• There is empirical evidence (Clare Watt, personal communication) that the numer-

ical solver breaks down in cases of very low plasma temperatures due to the sharp

gradients in the velocity distribution. This issue concerns directly the atmospheric

region that is a subject of study in the present chapter. Moreover, this is the reason

that motivated the use of Lorentzian instead of Maxwellian distributions, since the

former have longer tails than the latter. Unfortunately, this effect does not take

place at a specific temperature threshold, and often even increasing the momentum

resolution to any reasonable level will show little improvement at best. Personal

experience indicates that aspects like the numerical resolution in space and time,

as well as other properties of the plasma, seem to play a part in this limitation.

We have invested a considerable amount of time and computational resources try-

ing to delimitate a technical or empiric criterion that would make it possible to

avoid such behavior. However, given the multidimensionality of factors involved,

to date, this has not been possible, and simulations with numerical problems are

still a common occurrence when one attempts to simulate ionospheric plasma.

• Important initial parameters associated with the background plasma, like temper-

ature and density, not only determine the shape of the distribution; they also affect

the dispersive properties of the propagating wave. This two-fold dependence in-

troduces an inherent nonlinearity to the wave-particle interaction, which makes it

difficult to induce any desired specific response to the resonant electrons.



CHAPTER 4. ACCELERATION OF SUPRATHERMAL ELECTRONS 79

Table 4.2: Input parameters and other derived quantities for cases that simulate ePOP
events.

event on Aug. 28 event on Jul. 24

plasma density ne (cm−3) 2000 200

plasma temperature T (eV) 20 10

kappa coefficient κ 7 5

magnetic field B (µT) 99.0 5.2

perpendicular scale λ⊥ (m) 700 500

Alfvén speed vA (km/s) 12000 2000

thermal speed vth (km/s) 2350 1570

wave phase speed vw (km/s) 8700 1200

wave amplitude ϕ0 (V) 40 5

wave frequency f (Hz) 5

source distance d (km) 2642.3 858.4

Figure 4.12: (top) Differential flux as a function of energy and time for a simulation
showing Fermi-driven dispersion. (bottom) SEI data from Aug. 28, 2014.

Eventually, simulation cases which (to my judgment) present features that approxi-

mate the ePOP events were obtained. Table 4.2 summarizes the initial parameters used

in these two simulations. Figure 4.12 compares one of such cases (top panel) against

the ePOP event reported on Aug 28, 2014 (bottom panel). The time extension of the

main dispersive feature is ∼ 0.2 s, and the fastest electrons have reached energies higher

than 300 eV. The magnetic peak of the pulse (not shown) is ∼ 20 nT; this is less than

half of the measured magnetic perturbation reported by the fluxgate magnetometer on

ePOP at the moment of the event. According to Cameron [2015], these magnetic mea-
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surements for most of the ePOP events are not over the level of noise detected by the

instrument, so at least we can assert that the magnetic perturbation in the simulation

is not inconsistent with the MFG measurement.

Figure 4.13: (top) Differential flux as a function of energy and time for a simulation
showing non-Fermi dispersion. (bottom) SEI data from July 24, 2014.

Analogously, the top panel in Figure 4.13 shows electron acceleration similar to the

SEI data from July 24, 2014. In this simulation, the peak magnetic perturbation of

the wave is 13 nT (not shown), which again falls below the reading of ePOPs MFG

instrument. Electron advection is driven by the sizeable inductive response to the slow

wave, so following case 1 discussed previously, no bulk heating occurs due to the change

in phase with respect to the input wave. The maximum intensity of differential flux takes

place at ∼ 100 eV, and although its intensity decays rapidly after 200 eV, the fastest

electrons reach energies of ∼ 300 eV.

4.3 Inverse dispersion

In this section, we revisit [Cameron and Knudsen, 2016] concept of inverse dispersion as

a result of the relative motion of the satellite detector relative to a moving source. We

propose a modified mechanism consisting of IAW moving earthward along magnetic field

lines as the source of particle acceleration. At the topside ionosphere, electron inertia

effects dominate [Hasegawa, 1976] and cause the shear Alfvén mode to become dispersive.

Stasiewicz et al. [2000] gives the linear approximation for the dispersion relation of an
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IAW:

ω

k∥
=

vA√
1 + (k⊥λe)2

, (4.3)

where vA is the local Alfvén speed, and λe = c/ωe is the electron skin depth. The group

velocity describes how the wave energy is distributed

∂ω

∂k
=

vA√
1 + (k⊥λe)2

b̂− k⊥λ
2
eω

1 + (k⊥λe)2
x̂. (4.4)

The phase velocity of a traveling localized IAW perpendicular to the ambient field

constitutes a source of downward electron precipitation that could potentially have a

similar effect as an electrostatic source moving at speeds well above the ExB drift speed.

4.3.1 Dispersion as seen by the observer

To consider perpendicular wave dispersion, we visualize it as an Alfvén wave source

moving in the cross plane of the magnetic field line. The premise is simple: a sensor

moving in the same direction as the source of accelerated particles, but with some time

delay with respect to it, should see first the population of interacting electrons that

has accelerated the least, and, as it catches up to the source, it will eventually detect

the resonant population. Figure 1 illustrates this scenario: an Alfvén wave source (black

circle) moves perpendicular to the ambient field at some arbitrary speed vS . As it travels,

emits a perturbation that propagates downward parallel to the ambient field. Note that

the waves emitted at earlier times travel ahead than waves emitted more recently. An

observer equipped with an SEI detector follows this source at some vertical distance

below with speed vD. Provided that vD > vS , the observer should detect later stages of

the interaction at first, and then earlier ones corresponding to more recent emissions.

We can construct the energy-time signature of the distribution function as seen by

the observer as it moves in the cross-field direction. Consider a situation where the

observer shows up delayed by certain time t0 after the wave has been emitted at the

same x-coordinate. Notice that, at the same time, the stage of the emission at a location

∆x to the right corresponds to t0 − ∆tS , where ∆tS is the time it takes the source to

move a distance ∆x. To this correction we must also add the time ∆tD it takes for the

observer to move the same distance ∆x. Therefore, the stage of the simulation seen by

the observer is given by t0−∆tS +∆tD. The relation between time intervals is given by

∆x = vS∆tS = vD∆tD. (4.5)



CHAPTER 4. ACCELERATION OF SUPRATHERMAL ELECTRONS 82

Figure 4.14: Physical scenario: a detector follows a source of Alfvén waves on its trajec-
tory perpendicular to the background magnetic field.

This can be trivially generalized for successive displacements. The electron distribution

detected by the observer at a location n∆x to the right of its initial position corresponds

to the signal as observed by a stationary observer at a time given by

tn = t0 + n

(
1− vD

vS

)
∆tD. (4.6)

Perhaps the most drastic simplification we make is that the moving source produces

the same wave at every location n∆x on its perpendicular path. This condition is

required since the DK1D model does not directly account for plasma evolution perpen-

dicular to the background magnetic field.

4.3.2 Simulation

The numerical algorithm procures the electron distribution function conveniently stored

as a three-dimensional array f(z, p∥, t). To obtain an output that is analogous to the

energy dispersed spectrograms of in situ data, a computer script sorts the distribution

local to the detector into energy bins, which in turn is used to calculate the so-called

differential energy flux:

JE =
2

m2
e

E2f(E), (4.7)

where f(E) represents the distribution function in terms of the energy E = 1/2mev
2.
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The parameters of this simulation intend to mimic conditions typical of the topside

ionosphere, although some of them were stretched out from more typical values to en-

sure that inertial effects were effective. We consider oxygen plasma which is assumed

uniform across the simulation domain with ne = 2× 103 cm−3 and Te = 20 eV. We have

implemented a Lorentzian distribution with κ = 7. The magnetic field is also uniform

with value B0 = 10−4 T (Alfvén speed ∼ 12000 km/s), and the perpendicular scale is

λ⊥ = 0.7 km. The Alfvénic perturbation consists of a Gaussian pulse with amplitude

ϕ0 = 40 V and time extent T = 0.2 s.

Figure 4.15: (Top) Inverse dispersion event captured by the SEI instrument on March,
2014. (Bottom) Reconstruction of the differential flux reaching a detector that moves at
speed vD = 1.4vS .

Figure 4.15 contrasts one of the ePOP events against the time-corrected energy spec-

trogram according to the guidelines described in section 4.3.1. These two cases present

close agreement of the time length of the dispersive feature and the spectrum of en-

ergies to which interacting electrons are energized. Thus, the simulation and analysis

presented here proves that Alfvénic acceleration can be interpreted as inverse dispersion

due to the relative motion of the detector with respect to the source. As a consequence,

the distortion of dispersive signatures will depend on the relative location and speed

of the observer. Figure 4.16 shows that the effect of modifying the relative speed is a

stretching or enlarging of the dispersive form; a faster observer will obtain a signature

with a lower temporal footprint, while a slower moving one will see enlarged dispersion.
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Figure 4.16: Differential flux as seen by the detector moving at different speeds vD
relative to the source.

4.4 Summary

This chapter explored the formation of electron dispersion signatures due to field-aligned

acceleration by Inertial Alfvén Waves (IAW) under conditions typical of the topside

ionosphere. This was motivated by recent observations using the SEI instrument on

ePOP, which reported field-aligned electron acceleration to suprathermal energies (∼ 102

eV) and source locations between 1000 − 3000 km altitude in three different categories:

regular dispersion with and without heating of the local background plasma, and inverse

dispersion.

Numerical simulations using the original DK1D code showed similar dispersive forms

for each of these categories under specific conditions. Regular dispersion with background

heating was found to be consistent with wave-particle interactions of the Fermi kind

under local Alfvén speeds of several 1000 km/s and higher. For conditions such that

the local Alfvén speed takes lower values, on the other hand, wave dispersion showed

a very strong inductive response including large damping of the original perturbation,

and electron acceleration to energies significantly larger than the energy predicted by

Fermi interactions. In these cases, the electron dispersion signature presented similar

characteristics as the cases of regular electron dispersion without enhanced heating of

the thermal component obtained by the SEI instrument. Finally, it was demonstrated

that events of inverse dispersion are consistent with field-aligned electron acceleration
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as observed by a detector that follows the cross-field path of the source of IAW, if

the detector is faster than the source. In this scenario, the temporal extension of the

dispersive signature is inversely proportional to the speed of the detector relative to the

source, but the energy gain of the accelerated electrons does not depend on it.

The studies presented in this chapter shed further light on the role of Alfvén waves in

producing aurora at northern latitudes. They also provide a methodology for interpreting

wave particle interaction processes observed by low-orbit satellites in their investigation

of the near-Earth space environment.
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Chapter 5

Inhomogeneous conditions in

DK1D

The original implementation of the DK1D numerical solver considers only uniform den-

sity and temperature conditions of the background plasma. This representation is consis-

tent with the kinetic regime of Alfvén wave propagation, where variations in the plasma

properties take place over spatial scales of a few Earth radii so that gradients along

the magnetic field can reasonably be considered negligible. Moving closer to Earth, on

the other hand, the gradual transition towards the ionospheric environment features

strong gradients towards higher densities and lower temperatures, drastically changing

the Alfvén speed over much shorter spatial scales. Therefore, the study of dispersion

effects in the inertial region cannot be correctly modeled by using the assumption of

homogeneous plasma conditions.

One of the main contributions of this thesis is the implementation of inhomogeneous

conditions of the background plasma density and temperature in the DK1D code, through

the inclusion of a time-independent electrostatic potential. Said potential introduces a

force term in the Vlasov equation, which is to be used to couple the resulting distribution

function to a given density model. Physically speaking, the potential forces electrons to

accumulate in what represents the ionospheric end of the simulation domain.

Care must be taken, however, in choosing a density model that ensures the initial

distribution function to be consistently defined at the beginning of the simulation. We

address the problem of building the electron distribution in such a way that: (i) the

distribution is in its stationary state, (ii) integration of the distribution over velocity

space yields a given density profile at every position inside the simulation domain, as the

formal definition requires, (iii) integration of the second moment of the distribution is
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consistent with predetermined boundary temperatures. It has been previously demon-

strated [Tikhonchuk and Rankin, 2002; Blanco, 2011] that by including an electrostatic

potential ϕE(z), which is given as a function of position along the geomagnetic field,

a simple two-component Maxwellian plasma distribution with constant temperatures is

sufficient to account for how the plasma temperature varies from cold to warm as the

altitude increases. Note that this is not the only equilibrium state possible; it is the

simplest one and contains the realistic assumptions that temperature (density) increases

(decreases) with altitude; it also includes a heavy mass component of cold oxygen, which

exists due to magnetosphere-ionosphere coupling.

5.1 Plasma density model

A simplified model of the background plasma density within the spatial region establishes

the coexistence of two plasma species with different source: a rather energetic solar wind

component, composed by hydrogen ions and electrons, which for practical purposes has

constant density across the spatial domain; and a singly-ionized component of ionospheric

oxygen that decays exponentially with altitude depending on a scale factor z0, as follows:

ne(z) = nH + nO exp

(
− z

z0

)
. (5.1)

5.1.1 Consistency of the distribution function

The spatial dependency on density expressed in (5.1) must be encapsulated on the elec-

tron distribution function for consistency, since integration of the distribution in velocity

space yields the former identically. Additionally, the distribution must be a solution of

the time-independent Vlasov equation,

v · ∇f(r,v, t) + a · ∇vf(r,v, t) = 0, (5.2)

so that we can assure it corresponds to the plasma’s stationary state. For conserva-

tive systems, this is accomplished by defining a space dependent electrostatic potential

across the whole simulation domain, for which a force term (mea = −qe∇zϕE(z)) is as-

sociated; this new contribution on the second term of the left hand side in equation (5.2)

ultimately cancels the spatial variation that raises from the first term (see Bittencourt

[2004] for a detailed demonstration). In practical terms, the distributions dependency

on the potential is found by including the potential energy term as part of the total

energy dependence on the distribution function. For instance, the potential shows up in
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a Maxwellian distribution as:

f0(r,v) =
n0

(
√
πvte)3

exp

[
−
(
1/2mev

2 − ϕE(z)

kBT

)]
, (5.3)

where vte =
√

2kBT/me stands for the electron thermal velocity. For convenience, in

this chapter we redefine the temperature and potential to be expressed in energy units

by writing T = kBT and ϕE = eϕE .

5.2 Inhomogeneous Maxwellian plasma

A single Maxwellian can reproduce a given density profile, but it predicts uniform tem-

perature conditions. Since clearly we expect to find temperature gradients in the transi-

tion region, it is convenient to consider the plasma as the mixture of two noninteracting

plasma species, warm and cold, with different constant temperatures, Tw and Tc, and

background densities, nw and nc [Tikhonchuk and Rankin, 2002]. The resulting distri-

bution reads:

fe(z, v) =
∑
s=c,w

ns
(
√
πvts)3

exp

[
−
(
v

vts

)2

− ϕE(z)

Ts

]
. (5.4)

Integration of (5.4) in the velocity domain yields a second representation of the

plasma density; in this case the spatial dependence is encapsulated into the electrostatic

potential

n(z) =
∑
s=c,w

ns exp

(
ϕE(z)

Ts

)
. (5.5)

Briefly notice that the cold and warm background densities ns are not free parameters,

but constrained by the fact that equations (5.1) and (5.5) must yield the same values at

every location.

The temperature profile is obtained upon calculation of the second moment of the

distribution function (5.4), its final expression is:

T (z) =
1

n(z)

∑
s=c,w

nsTs exp

(
ϕE(z)

Ts

)
. (5.6)

Finally, we need an expression for the electrostatic force due to the potential, FE(z) =

−∇zϕE(z). This force is found by calculating the parallel gradient on both sides of
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equation (5.10) and solving for ∇zϕE(z), from which one obtains, in units of eV/m:

FE(z) =
∇zn(z)∑

s=c,w
ns
Ts

exp
(
ϕE(z)
Ts

) . (5.7)

5.2.1 Determination of the potential

Typically, nc and nw are obtained by applying boundary conditions for density at each

end of the field line. Notice, however, that doing so would introduce the potentials at the

same locations as unknown parameters. By setting the potential to zero at the equator,

and by requiring the background cold and warm densities to be positive definite, one finds

a closed interval of possible solutions for the potential, which can be shown consists of

positive potentials, while negative potentials lead to no possible solutions [Blanco, 2011].

The following workaround provides a simpler path to an acceptable solution of the

potential: we can fairly argue that the warm plasma is mainly constituted by magneto-

spheric electrons, so that,

nw ≃ nH2 . (5.8)

Furthermore, by arbitrarily choosing the value of zero potential at the equatorial end of

the field line (ϕE(zeq) = 0) and evaluating n(zeq), we get

nc = nO exp

(
−zeq
z0

)
. (5.9)

Now that we have determined the cold and warm densities, we can define the elec-

trostatic potential itself, as the solution to the condition:

nH + nO exp

[
− z

z0

]
=
∑
s=c,w

ns exp

(
ϕE(z)

Ts

)
. (5.10)

Even though (5.10) guarantees a unique solution for the potential at every position,

the equation cannot be solved analytically unless Tc = Tw. For other cases, a numerical

solution can be obtained using the Interval Bisection method with the following condition

f(ϕE) := n(z)−
∑
s=c,w

ns exp

(
ϕE
Ts

)
= 0. (5.11)

It is only after these potentials have been found that a discrete array of temperatures

can be calculated using equation (5.6).
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5.2.2 Maxwellian plasma in equilibrium

At this point, we deviate from the discussion to test the model just described. Here we

present a test simulation where no perturbation is excited to corroborate with numerical

data that the plasma remains stationary in time.

Table 5.1: Input parameters for a stationary plasma simulation.

altitude domain (km) 0 ≤ z ≤ 1.6× 104

magnetic field line L = 9
perpendicular scale at the ionosphere (km) λI = 2
background hydrogen density (cm−3) nH2 = 17
background oxygen density (cm−3) nO2 = 6× 104

oxygen decay scale (RE) z0 = 0.15
cold plasma temperature (eV) Tc = 1
warm plasma temperature (eV) Tw = 5
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Figure 5.1: (From left to right, top to bottom panels) Spatial dependence of: Mag-
netic intensity; particle density; plasma temperature and electrostatic potential; Alfvén
and thermal speed; electron skin depth, ion acoustic radius, perpendicular scale; and
electrostatic force caused by the potential.

Input parameters for this case are listed in table 5.1, these determine the plasma

properties and their variation in space, which are displayed in Figure 5.1. The spatial
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variation of the magnetic intensity and particle density are explicitly evaluated through

the expressions given in (2.39) and (5.1), respectively. The left middle panel shows the

Alfvén speed, the thermal speed, and the phase speed of the wave according to the disper-

sion equation (2.110); the Alfvén velocity is higher than the thermal speed everywhere,

indicating the dominance of inertial conditions all across the simulation domain. Large

density of ionospheric oxygen produces considerable attenuation of the Alfvén speed at

low altitudes. Thus it is clear that implementation of inhomogeneous conditions be-

comes an important element in determining wave propagation and dispersion, therefore

justifying this investigation. The right-middle panel shows the resulting electrostatic

potential and plasma temperature. Notice that temperatures at the boundaries are in

good agreement with Tc and Tw. The potential generates an electrostatic force on the

electrons, which is displayed in the right-bottom panel.

Figure 5.2: (top) Plasma temperature as a function of position. (bottom) Electron
distribution at several locations.

Figure 5.2 shows in its top panel the electron temperature variation across the simu-

lation domain; in the lower portion of the figure we have displayed, from left to right, the

local electron distribution at locations z = 0.5, 1.0, 1.5 and 2.0 RE , respectively. There

is a clear correspondence between the temperature trend and the spread in velocity of

the local distribution of electrons; while at z = 0.5 RE most of the particles present low

velocities, as it is expected for a low-temperature plasma, the local velocity distribution
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at z = 1.0 RE and z = 1.5 RE spread out as there is an increase of temperature; There

is no further visible change in the electron distribution at z = 2.0 RE , since there is no

noticeable temperature variation for distances z ≥ 1.25 RE .

Animations of the time evolution for density and the distribution function (not shown

here) confirmed that the electron configuration remains stationary in the absence of

Alfvénic perturbations. The electrostatic potential causes the plasma to remain in its

stationary state.

5.3 Inhomogeneous Lorentzian plasma

Maxwellian statistics are widely used because they approximate well collisionless plas-

mas while allowing a rather straightforward mathematical treatment in MHD and kinetic

theory. More realistic astrophysical plasmas, however, are more Maxwellian-like distri-

butions with high-energy tails [Summers and Thorne, 1991; Pierrard and Lemaire, 1996]

(and references therein). Lorentzian distributions are often useful to model such plas-

mas. Initially, this project was intended to be carried out using Maxwellian plasmas only.

Unfortunately, implementation of these distributions often leads to numerical instability.

There are reasons to believe that the sharp velocity gradient might partially cause such

behavior in the distribution grid at low temperatures. Eventually, these numerical issues

forced us to also implement Lorentzian distributions in this code, since they have been

proven to be more numerically stable than Maxwellian distributions [Watt and Rankin,

2007a, 2010].

5.3.1 Basic properties of the Lorentzian distribution

Lorentzian distributions have the form:

fκ(v) = Aκ

(
1 +

v2

κv2κ

)−(κ+1)

. (5.12)

The normalization constant Aκ is found through integration of the lowest moment that

leads to the density

nκ = 4πAκ

∫ ∞

0
dv v2

(
1 +

v2

κv2κ

)−(κ+1)

. (5.13)

Notice that integration is performed in spherical coordinates, and that the distribution
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is assumed isotropic. It is convenient to introduce a new variable,

x =

(
1 +

v2

κv2κ

)−1

, dx = −2vdv

κv2κ

(
1 +

v2

κv2κ

)−2

, (5.14)

in terms of which, equation (5.13) turns into

nκ = 2πAκ(κv
2
κ)

3/2

∫ 1

0
dx

√
x− 1xκ−3/2. (5.15)

The resulting integral has the form of a β function:

β(p+ 1, q + 1) =

∫ 1

0
dxxp(1− x)q, (5.16)

with solution given by

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (5.17)

where Γ(x) is the Gamma function. The density integral turns into:

nκ = 2πAκ(κv
2
κ)

3/2Γ(κ− 1/2)Γ(3/2)

Γ(κ+ 1)
. (5.18)

Substituting Γ(3/2) =
√
π/2, and solving for Aκ we find

Aκ =
nκ

(πκv2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)
, (5.19)

so the explicit form of the Lorentzian distribution is:

fκ(v) =
nκ

(πκv2κ)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

v2

κv2κ

)−(κ+1)

. (5.20)

Next, let’s calculate the kinetic pressure. Since we assume the plasma to be isotropic,

there is no need to calculate the pressure tensor. Instead, notice that

p =
1

3

∫
d3vmv2fκ(v)

=
4πm

3
Aκ

∫ ∞

0
dv v4

(
1 +

v2

κv2κ

)−(κ+1)

. (5.21)

This integral can be solved following a similar treatment as the integration for the density.
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Performing the change of variable (5.14), one eventually reaches the expression,

p =
2πm

3
Aκ(κv

2
κ)

5/2Γ(κ− 3/2)Γ(5/2)

Γ(κ+ 1)
. (5.22)

By substitution of Aκ from (5.19), and by using the property Γ(x) = (x − 1)Γ(x − 1),

one obtains

p =
nκmκv

2
κ

2κ− 3
. (5.23)

If we assume that the equation of state of the plasma follows the ideal gas approximation,

p = nT , then the thermal velocity of the Lorentzian plasma is found to be

vκ =

√
2T

m

κ− 3/2

κ
. (5.24)

At this point, it is worth noticing that the velocity distribution (5.20) as a probability

function is required to remain finite (as well as positive and real), this condition restricts

the range of meaningful kappa values to κ > 1/2. Moreover, defining a real thermal

speed that characterizes the average energy requires κ > 3/2. Higher moments of the

distribution will impose more restrictive conditions [Treumann, 1999]. For a given tem-

perature, the Lorentzian thermal velocity, and therefore its mean energy, is lower than

the Maxwellian counterpart at the same temperature. As κ→ ∞, vκ →
√

2T/m.

5.3.2 Lorentzian plasma in the presence of an external potential

The stationary state under the influence of an external potential ϕe(r) is obtained by

introducing the potential energy term in the energy distribution; this leads to the form:

fκ(r, v) = Aκ

(
1 +

1/2mv2 − ϕe(r)

κTκ

)−(κ+1)

, (5.25)

where Tκ = (κ − 3/2)T/κ = 1/2mv2κ. The expressions for density and kinetic pressure

can be obtained using the same procedure discussed in the previous section. First of all,

define the following quantity:

x(r) = 1− ϕe(r)

κTκ
, (5.26)

so we can write (5.25) in a form that resembles (5.12):

fκ(v, r) =
Aκ

x(r)κ+1

(
1 +

v2

κv2κx(r)

)−(κ+1)

. (5.27)
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The previous expression is integrable as long as x(r) > 0, and integration is carried on

using the same approach used for the case of no potential. Following that procedure,

one obtains for the density

n(r) = n0

(
1− ϕe(r)

κTκ

)1/2−κ

, (5.28)

while the kinetic pressure yields

p(r) =
n0mκv

2
κ

2κ− 3

(
1− ϕe(r)

κTκ

)3/2−κ

. (5.29)

Again, assuming the plasma behaves like an ideal gas, so that p(r) = n(r)T (r), one

obtains for the temperature

T (r) = T0

(
1− ϕe(r)

κTκ

)
, (5.30)

where n0 and T0 represent the density and temperature at the point of zero potential;

typically and just out of convenience, we arbitrarily choose it to be the upper boundary

of the simulation. One should notice that, as opposed to the Maxwellian case, the

Lorentzian formulation establishes the temperature to be explicitly dependent on the

potential.

5.3.3 Solution to the dispersion equation for Lorentzian plasma

If one intends to use Lorentzian distributions, it must be able to obtain wave solutions

for the corresponding dispersion equation. As we did previously for the Maxwellian case,

we want to derive the dispersion equation that is consistent with the physics on which

the numerical algorithm is grounded. First, we find the parallel current by integrating

the perturbation (2.104) into (2.94). In order to save a few steps in this derivation, we

use the one-dimensional form of the distribution

fκ0(v) =
n√
πvκ

Γ(κ+ 1)

κ3/2Γ(κ− 1/2)

(
1 +

v2

κv2κ

)−κ

. (5.31)

The perturbation fκ1 due to the wave is given by (2.104), which once obtained is to be

integrated as indicated. For simplicity, from here onwards we write v instead of v∥. Then

we have

j∥ = −
2iE∥

µ0
√
πk∥v2κλ

2
e

Γ(κ+ 1)

κ3/2Γ(κ− 1/2)

∫ ∞

−∞
dv

v2

v − ω/k∥

(
1 +

v2

κv2κ

)−(κ+1)

. (5.32)
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Note that we can write v2/(v − a) = v + a + a2/(v − a). This substitution results in

thee integrals, the first of which is zero since it is an odd integral. At this point is

convenient to introduce a change of variable s = v/vκ, and define ξ = ω/(k∥vκ). We get

the expression

j∥ = −
2iE∥

µ0
√
πk∥vκλ2e

Γ(κ+ 1)

κ3/2Γ(κ− 1/2)[
ξ

∫ ∞

−∞

ds

(1 + s2/κ)(κ+1)
+ ξ2

∫ ∞

−∞

ds

(s− ξ)(1 + s2/κ)(κ+1)

]
. (5.33)

The first integral can be expressed in term of hypergeometric functions [Mace and Hell-

berg, 1995]. In the simulations presented here, however, we stick to integer values of

kappa, for which we can use the following relation [Gradshteyn and Ryzhic, 2000]∫ ∞

−∞

dx

(ax2 + bx+ c)n
=

(2n− 3)!!πan−1

(2n− 2)!!(ac− b)n−1/2
, (5.34)

with a = 1/κ, b = 0, c = 1, n = κ+ 1. This lead us to∫ ∞

−∞

ds

(1 + s2/κ)(κ+1)
=

(2κ− 1)!!π
√
κ

(2κ)!!
(5.35)

The double factorial in the numerator is equal to 2κΓ(κ+1/2)/
√
π. On the other hand,

it is not difficult to see that (2κ)!! = 2κκ! = 2κΓ(κ+1). The second integration in (5.33)

has the form of the so called modified plasma dispersion function [Summers and Thorne,

1991]:

Zκ(ξ) =
1√
π

Γ(κ+ 1)

κ3/2Γ(κ− 1/2)

∫ ∞

−∞

ds

(s− ξ)(1 + s2/κ)(κ+1)
, Im(ξ) > 1. (5.36)

Making the necessary substitutions, and after a good deal of algebra, one finally gets

j∥ = −
2iE∥

µ0λ2ek∥vκ

[
ξ

(
1− 1

2κ

)
+ ξ2Zκ(ξ)

]
. (5.37)

The rest of the derivation is very much like the Maxwellian case, and the reader

can retrace the steps followed in section 2.4.3; it consists of substituting the current

components (5.37) and (2.93) into (2.95), and expressing the result as the multiplication
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of a matrix times the electric field vector. Eventually, one obtains⎛⎝k2⊥ − 2
(

ξ
λe

)2 [(
1− 1

2κ

)
+ ξZκ(ξ)

]
−k∥k⊥

−k∥k⊥ k2∥ −
(

ω
vA

)2
⎞⎠ ·

(
E∥

E⊥

)
= 0. (5.38)

The determinant of the previous matrix equalized to zero gives the dispersion equation:

(
ω

k∥vA

)2

+ 2

(
ξ

k⊥λe

)2
[
1−

(
ω

k∥vA

)2
] [(

1− 1

2κ

)
+ ξZκ(ξ)

]
= 0. (5.39)

Finally, notice that ξ = [ω/(k∥vA)]vA/vκ. Making this substitution, and solving for

ω/(k∥vA), we obtain the form(
ω

k∥vA

)2

= 2 +

(
k⊥λevκ
vA

)2 [(
1− 1

2κ

)
+ ξZκ(ξ)

]−1

. (5.40)

5.3.4 Electrostatic potential for an oxygen decaying Lorentzian atmo-

sphere

We seek to set up a stationary Lorentzian in equilibrium, such that it self-consistently

fits the plasma model, (equation 5.1). One can, as in section 5.2.1, consider a mixture

of cold and warm plasma species, which are to reproduce the density model (5.1), while

consistently yielding the predefined boundary temperatures Tw and Tc. By following this

approach, however, one eventually realizes that the natural dependency of temperature

with the potential prevents finding a consistent solution for the potential.

One can always simply find the potential that follows the explicit density and tem-

perature variations given in equations (5.28) and (5.30). We need an expression for the

electrostatic force due to the potential, Fe(z) = −∇zϕe(z). This force is found by cal-

culating the parallel gradient on both sides of equation (5.28) and solving for ∇zϕe(z),

from which one obtains, in units of eV/m:

Fe(z) = κTκ
∇zn(z)

n(z)

(
1− ϕe(z)

κTκ

)
. (5.41)

This formulation defines the temperature in terms of a unique parameter T0; this might

be less convenient than the Maxwellian formulation, which allowed us to set the bound-

ary temperatures arbitrarily. Alternatively, one could enforce arbitrary values for the

temperature at the boundaries by freeing the kappa parameter.
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5.4 Electron acceleration by Inertial Alfvén Waves under

inhomogeneous conditions

Next, we test the modifications introduced in the previous sections, by observing a case

of wave propagation through the Ionospheric Alfvén Resonator (IAR). The IAR extends

along magnetic field lines, from the topside ionosphere to the location where the Alfvén

speed becomes maximum. In between these two points, the ionospheric oxygen decays

sharply with altitude on scales that can be compared to the wavelength of incoming

perturbations and, as a consequence, nonlinear effects become relevant. Particularly, the

plasma conductivity ΣA = (µ0vA)
−1 modifies the reflection coefficient so that incoming

waves suffer partial trapping and reflection; natural modes of the IAR range from 0.1−1.0

Hz [Lysak, 1991].

There have been previous attempts to describe electron acceleration under inhomo-

geneous conditions. In some models, inhomogeneity araises self-consistently from the

adiabatic motion of particles inside a magnetic mirror configuration, subject to addi-

tional constraints, like quasineutrality [Chiu and Schulz, 1978] or charge separation ac-

cording to Poisson equation [Pierrard and Lemaire, 1996]. In these cases, the resulting

distribution imposes an electrostatic potential in space. These models have been use-

ful to describe the main characteristics of inverted V structures. However, they cannot

describe the existence and time evolution of transient fields often found in the auroral

acceleration region [Louarn et al., 1994; Chaston et al., 2000; Stasiewicz et al., 2000;

Andersson et al., 2002; Chaston et al., 2002a; Ergun et al., 2005], sometimes even in the

presence of inverted V potentials [McFadden et al., 1987; Chaston et al., 2002b; Chen

et al., 2005; Tanaka et al., 2005]. These features are better explained in terms of Alfvénic

activity instead. Models grounded on Alfvén wave propagation rely mostly on dispersive

effects due to short perpendicular scales to justify the existence of field-aligned electric

fields in an otherwise highly conductive media [Hasegawa, 1976; Goertz and Boswell,

1979]. Since the dispersive properties depend on the background plasma, one can de-

scribe the time evolution of fields and currents once the spatial gradients in the plasma

are provided; however, these models do not describe the self-consistent evolution of these

due to particle acceleration. Nonetheless, their use in conjunction with test particles has

reproduced many dispersive features frequently observed. Thompson and Lysak [1996]

used a test particle approach based on this idea, but also including a procedure to en-

force energy conservation. This study suggested Landau resonance, and the presence of

an anti-earthward electrostatic field, as primordial mechanisms for particle acceleration.

Regarding wave propagation, it showed that resonant harmonics are favored within the



CHAPTER 5. INHOMOGENEOUS CONDITIONS IN DK1D 99

IAR, and that partial reflection takes place off the density gradient. The model also re-

produced electron conics, but only with the addition of a large electrostatic field across

the simulation domain.

Su et al. [2004] implemented a linear gyrofluid solver to evaluate wave propagation

under conditions typical of the dayside auroral region. Their model considered the motion

of oxygen and hydrogen ions and electrons in a dipolar geomagnetic field, and subject

to given initial spatial profiles describing the plasmas composition and temperature.

According to their model, the formation of structures associated with electron resonance

was subjected to a rather large ionospheric oxygen component extending over ∼ 3RE

altitude. The high density in oxygen effectively decreases the phase speed of the wave to

closer values relative to the thermal speed of the cold plasma, thereby allowing for higher

levels of Landau and Fermi resonances. This condition is, however, in disagreement with

the general notion of plasma composition in the topside ionosphere, which estimates the

scale of oxygen decay rate well below 1RE . Even though the study demonstrated the

effect of increased oxygen levels in the dayside region, their assumption draws important

implications regarding other properties of the plasma that also affect wave propagation,

and should have been further justified. Incidentally, Chaston et al. [2000] were able to

reproduce Suprathermal Electron Bursts (STEB) using the same scheme as in Thompson

and Lysak [1996], using parameters retrieved from the FAST spacecraft while over the

dayside oval; in this case, the oxygen density decayed over a distance ∼ 1/3RE .

Using a somewhat different approximation based on charge and current neutrality

valid for the inertial regime exclusively, Kletzing and Hu [2001] identified dispersed

electron signatures similar to rocket measurements as a result of wave propagation under

nonuniform conditions. Instead of using test particles, in this case, the distribution

function for a given observation time is constructed by backtracking the phase space in

time, one velocity at a time, using the time evolution of the electric field. Assuming a

given solution of the equilibrium distribution, it is possible to map its time evolution

following Liouville’s theorem. More recently, Shi et al. [2013] introduced a partially

kinetic formulation based on the DK1D to simulate the movement of hot electrons,

complemented with a linear fluid approximation in charge of cold particles. This model

revealed various aspects of wave propagation under inhomogeneous conditions. The

numerical algorithm used here is different from the one presented by Shi et al. [2013] in

that the whole plasma is treated kinetically.
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5.4.1 Test simulation: Wave-plasma interaction in the Ionospheric Alfvén

resonator

Simulation parameters for this case were set to similar values as in Shi et al. [2013],

for comparison purposes. These are summarized in table 5.2. The wave consists of a

Gaussian pulse with amplitude ϕ0 = 100 V and f = 5 Hz.

Table 5.2: Input parameters for simulation of plasma under inhomogeneous conditions.

altitude domain (km) 0 ≤ z ≤ 2× 104

magnetic field line L = 9
perpendicular scale at the ionosphere (km) λI = 1.57
background hydrogen density (cm−3) nH2 = 8
background oxygen density (cm−3) nO2 = 2.5× 105

oxygen decay scale (RE) z0 = 0.07
warm plasma temperature (eV) Tw = 50

Figure 5.3: Spatial variation of macroscopic parameters: magnetic field (top left); elec-
tron density (top right); Alfvén and thermal speed (middle left); average kinetic ener-
gy/temperature and potential energy due to the electrostatic potential (middle right);
the perpendicular scale, the ion gyroradius, and the skin depth (bottom left); the force
due to the electrostatic potential (bottom right).

Figure 5.3 presents the spatial variation for the resulting macroscopic properties.

Profiles for the magnetic intensity and plasma density correspond to equations (2.39)
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and (5.1), respectively. Other profiles depend on the stationary electrostatic potential,

which has been plotted in the middle right, together with the temperature profile. This

potential is naturally constant in the region of constant density; its variation at low

altitudes provides an electrostatic force (bottom-right) whose effect is to balance the

magnetic gradient and the pressure gradient. Spatial variation of the Alfvén speed (left-

middle panel) presents a sharp increase due to the exponential drop of ionospheric oxygen

until it reaches its maximum at ∼ 1RE ; for higher altitudes, it decreases gradually due to

the variation in magnetic intensity. Notice that vth < vA across the simulation domain,

so inertial conditions dominate everywhere.

Figure 5.4 shows the wave field intensities (top 3 panels), plus the parallel current

and energy flux (bottom two panels). The fourth panel shows the Alfvén speed profile,

and the corresponding Alfvénic conductivity ΣA = (µ0VA)
−1. The wave advances from

the lower-right corner, moving towards lower altitudes as time increases. The speed of

the wave is inferred as inversely proportional to each of the fields trace inclination. It can

be seen that the pulse travels faster in the region 0.7 ≤ z ≤ 2.0 Re and moves slower at

low altitudes where vA drops due to the drastic increase of oxygen. A bifurcation can be

appreciated in all the fields at z ≃ 1.25RE and t ≃ 1.75 s, indicating the partial reflection

of the wave off of the sharp gradient in density at that location. The reflected wave is

such that its perpendicular electric (magnetic) field has opposite (the same) polarization

as the incident wave. The reflected component of the electric field is positive; therefore,

it produces upward electron acceleration.

The parallel electric field starts as a bipolar structure, its leading section is positive

and produces downward electron acceleration. In the E∥ graph there is a signature that

remains close to the upward boundary during practically the whole simulation; this is

considered a numerical artifact maybe as a result of imperfect coupling between wave

and plasma due to the boundary conditions. As per the actual electric field, it undergoes

considerable damping during the first 0.5 s into the simulation; its amplitude increases

again shortly after due to nonlinear steepening of the leading section of the wave as

described in Watt et al. [2005]. The thickness of the red trace becomes much narrower

than the blue trace, an indication of steepening occurring in the positive section. Once

it enters the IAR region (z < 1RE), the electric field decreases rapidly. It can be argued,

that due to the increased availability of cold electrons originated from the ionization of

ionospheric oxygen in this region, the parallel electric field is effectively short-circuited,

and these cold electrons become carriers of the current that supports the wave. Notice

that at low altitudes the current seems to adopt a dipolar configuration. According to

Shi et al. [2013], the displacement caused by currents carrying the wave induces a current

in the opposite sense to restore charge balance. Although in their publication the total
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Figure 5.4: Wave propagation as a function of time and altitude. From top to bottom
panels: B⊥, E⊥, E∥, the Alfvén speed profile, parallel current and parallel energy flux.

current was zero because both currents seemed to cancel each other, the dipolar nature

of the current at low altitudes is consistent with this interpretation.

Figure 5.5 shows a time sequence of the total differential flux as a function of position

and parallel speed. Downward (upward) flux corresponds to negative (positive) velocities.

We have normalized this quantity to the initial density at every location in order to

decrease the intensity at low altitudes, so that the color scale in the figure can capture

better flux variation. The corresponding profiles of E∥(z) and j∥(z) are shown at the



CHAPTER 5. INHOMOGENEOUS CONDITIONS IN DK1D 103

bottom. Differential flux snapshots show locally increased (decreased) levels of downward

(upward) flux at all times. The direction of wave propagation determines this asymmetry.

The electron’s bahavior due to the interaction is described in appendix A; basically, the

electric field induces downward motion on its leading section and upward motion on its

trailing side. In the wave frame of reference, counterstreaming electrons are decelerated

which causes particles to remain under the wave for a longer time span than they would

have in the case of no wave, therefore causing the accumulation of particles traveling

with the wave. A fraction of these trapped electrons were initially moving upward in the

absolute frame of reference, which explains the local decrease in upward flux at t = 1.2

s, z = 1.5RE .

Downward acceleration comes in two flavors: resonant and nonresonant. The former

refers to electrons that, in the wave frame of reference, have initial kinetic energy just

under the amount needed to overcome the potential. Resonant particles appear as the

sharp trace at larger (negative) speeds. The nonresonant population is manifested as an

enhancement of downward (v < 0) differential flux (see equation 4.7 on page 82) covering

a broader spectrum of lower energies. On the trailing side of the pulse, downward

moving electrons that catch up with the wave, but cannot overcome the potential, are

also reflected and can potentially form upward beams if the conditions are appropriate.

However, due to the relative speed of the wave, in the absolute frame of reference these

beams fall in the thermal level, effectively contributing to plasma heating behind the

wave.

Once the pulse advances from the Alfvén speed peak, its speed decreases drastically,

causing many nonresonant electrons to become resonant and form low energy beams. A

secondary beam can be seen at z ∼ 0.6 Re and after t = 1.7 s. Large energy transfer

is also expected in this region due to increased levels of Landau resonance [Shi et al.,

2013]. In the same region, and from 1.7 s onwards, an important increase of upward flux

takes place and extends towards higher altitudes. Note that these particles move behind

the reflected wave, so they cannot be accelerated by it. Instead, the rapid decrease of

vA suppresses the source of downward impulse, and most of them are reflected by the

mirror force.
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Figure 5.5: Time evolution of differential flux (top), and E||(z) and j||(z) (bottom) as a
function of velocity and position.

5.5 Summary

In this chapter, the formulation of an extended version of the DK1D code [Watt et al.,

2004] is introduced. This modified algorithm incorporates an spatially inhomogeneous

plasma density model constituted by a mixture of magnetospheric hydrogen and iono-

spheric single-ionized oxygen, the last of which decreases exponentially with altitude.

The distribution function in its stationary state is made consistent with the plasma

density by defining a time-independent electrostatic potential across the spatial domain

[Tikhonchuk and Rankin, 2002]. The altitude dependence of the magnetic field and the

plasma density results in a sharp increase of the Alfvén speed followed by a gradual

decline at higher altitudes. The code supports both Maxwellian and Lorentzian distri-

butions.
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A simulation intended to observe the time evolution of wave-plasma interaction in

the magnetosphere-ionosphere transition region was also presented. It was found that

the wave suffered partial reflection around the location where the Alfvén speed takes

its maximum value. Both incident and reflected waves induce electron acceleration in

their respective directions of propagation as a result of wave-particle Fermi interac-

tions. Similar behavior has been previously reported in Chaston et al. [2002a]; Shi et al.

[2013]. On the other hand, a fraction of the original pulse is transmitted into the top-

side ionosphere, where its phase speed decreases considerably due to the large density of

ionospheric electrons. Furthermore, these cold electrons become carriers of the current

required to support the wave, effectively suppressing the field-aligned component of the

wave electric field. With the strong attenuation of E∥ at altitudes just below the point

of maximum vA, previously accelerated electrons traveling with the wave suddenly lose

their source of downward impulse, and are shortly after reflected by the magnetic mirror

force. The lack of these electrons within the IAR should lead to weak intensity horseshoe

distributions that are the subject of chapter 7.
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Chapter 6

Electron trapping by Kinetic

Alfvén Waves in the inner

magnetosphere

Up until now, we have addressed processes for which the underlying physical mechanism

involves Fermi-like interactions between Inertial (IAW) or Kinetic Alfvén Waves (KAW)

and magnetospheric electrons. Basically, the perturbation is considered as a moving

potential wall against which low energy electrons (in the reference frame of the wave)

bounce off elastically. This effect requires the potential to be negative relative to the

background plasma. A positive potential, on the other hand, constitutes a potential

well, where low energy electrons can become trapped and unable to escape until they

can overcome the wave potential, whether through some form of energy gain or if the

wave undergoes damping.

The dynamics of trapped particles is inherently nonlinear. In fact, the linear stage

of the interaction derives into the well-documented picture of Landau damping. It is

mostly the trapped electrons who modify the distribution and ultimately cause wave

damping or growth, depending on the sign of ∂f0(v)/∂v at v ≃ ω/k. During this stage,

the induced density perturbation grows linearly in time, eventually breaking down the

linear approximation. By the time this happens, slightly slower and faster electrons have

been speeded up and slowed down, respectively. Altogether, the distribution of resonant

electrons has formed a plateau within some range of velocities ω/k±vtr, effectively halting

further damping since under the new configuration ∂f/∂v ≃ 0 in the neighborhood of

the wave phase velocity.

Nonlinear trapping has been found to occur in the parallel potential of inertial and
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kinetic scale Alfvén waves. Using a self-consistent numerical code, Rankin et al. [2007]

explained how Landau damping of standing Alfvén waves is suppressed by warm plasma

effects at altitudes within the kinetic regime. Wave dispersion of these standing modes

can induce parallel electric fields, where trapping can develop if Landau damping is low.

It was demonstrated that a decrease of the perpendicular scale favors electron trapping

by increasing vtr, even in cold plasma where the little number of resonant electrons limits

the trapping process. In the kinetic regime, higher temperatures enhance trapping due

to the increase in E∥. Electron trapping on standing waves effectively dissipates wave

energy through damping. On traveling shear Alfvén pulses, on the other hand, trapping

has been shown to suppress Landau damping [Watt and Rankin, 2009], enabling these

waves to survive longer during their propagation from high to low altitudes. At lower

altitudes where inertial conditions become dominant, these waves are heavily damped,

and electrons escape forming beams of energy up to a keV or so.

Recently, Artemyev et al. [2015b] investigated trapping by KAW of electrons with

energies up to ∼ 100 eV at equatorial latitudes, using a theoretical model of trap-

ping into an effective potential generated by the scalar and vector potentials parallel

to geomagnetic field lines. This model described wave dispersion in the kinetic limit

(ω = k∥vA
√
1 + (k⊥ρs)2(1 + Ti/Te)), although nonlinear effects were ignored. Particle

motion is driven by the effective potential and the mirror force of an external geomag-

netic field. Simulation of particle trajectories showed that trapped electrons undergo

many bounces in the effective potential of the wave; at each bounce, the trapped particle

must gain enough parallel momentum to keep up with the increasing speed of the wave,

while the mirror force transfers some of that gain into faster gyromotion. The electric

field decreases as the wave moves to regions of cold plasma. By the time the mirror force

becomes stronger than the wave electric field force, the electron has increased its energy

in several 100 eV, and undergo a considerable decrease in its equatorial pitch angle.

The content of this chapter is arranged as follows: section 6.1 is devoted to providing a

basic notion on the nonlinear dynamics of trapped particles for the case of an electrostatic

wave in a uniform plasma. Section 6.2 reviews the theory for propagation of KAW into a

locally dispersive medium; this formulation goes beyond O’Neil theory in that it accounts

for inductive effects. Then, in section 6.3, we present results of Vlasov simulations of

kinetic scale Alfvén waves that show evidence of nonlinear trapping, discuss conditions

under which trapping is important, and compare these results against the predictions

made by the model presented in section 6.2.
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6.1 The dynamics of trapped distributions

As a starting point, let us consider an electrostatic wave:

ϕ(x, t) = ϕ0 cos(kx− ωt) (6.1)

E(x, t) = −∇ϕ(x, t) = E0 sin(kx− ωt), E0 = k⊥ϕ0 (6.2)

propagating in the x̂ direction within a uniform, demagnetized (or magnetized parallel

to the wave vector), and initially undisturbed plasma. In the frame of reference moving

with the wave, x→ x− ω/kt, the motion equation for the particles is

me
d2x

dt2
= eE0 sin(kx). (6.3)

Notice that, for small amplitude oscillations, sin(kx) ∼ kx, and equation (6.3) predicts

harmonic motion with frequency

ωb =

√
ekE0

me
. (6.4)

Solutions for larger amplitude orbits are not so trivial [O’Neil, 1965]. Time integration

of (6.3) leads to

We =
1

2
mev

2 − eϕ0 cos(kx), (6.5)

where We is a constant representing the electron energy in the wave frame of reference.

Figure 6.1: Phase space trajectories of particles as seen in the wave frame. (From
Treumann and Baumjohann [1997])

The contour lines shown in Figure 6.1 describe the phase space trajectories associated
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with the motion (6.3). Each line corresponds to a different value of We in equation

(6.5). Particles whose kinetic energy is larger than the wave potential will surf over

the crests, periodically increasing their speed momentarily, while particles for which the

potential term dominates become trapped and forced into closed trajectories. An electron

represented by the separatrix between trapped and untrapped electrons has total energy

We = 0, and its top speed defines the interval of velocity vtr over which particles are

trapped:

vtr = 2

√
eϕ0
me

. (6.6)

Dawson [1961] investigated the Landau damping evolution during its linear stage,

based on a physical model in which the main part of the plasma is considered separately

from the resonant contribution. Their linearized system included the continuity and

momentum equations, coupled with the Poisson equation with a source field of the

form (6.2), and initial conditions n1(t = 0) = 0 and v1(t = 0) = 0. The kinetic

energy of the particles was considered up to second order. It was determined that the

density perturbation grows linearly with time; except close to the resonance, where this

perturbation grows like t2; this defines a time frame that takes for the perturbation to

become the same order as the background density,

tl =

√
me

eE0k
, (6.7)

after which the linear approximation breaks down. The first order solutions were used

to estimate the energy of resonant electrons and demonstrated that, as time progresses,

most of the absorption is concentrated in the resonant electrons. If the wave has not

damped away by the time when only the trapped particles interchange energy with the

wave, then trapping becomes dominant, the trapped electrons cannot absorb any more

energy, and Landau damping gives way to an asymptotic equilibrium.

The exact behavior of the distribution under nonlinear conditions was later derived in

O’Neil [1965]. Analogous to Dawson [1961], the resonant and nonresonant components

of the distribution were treated separately. He obtained exact solutions of the Vlasov

equation for the resonant electrons in terms of elliptic functions. He also calculated

the generalized damping rate and demonstrated that it reduces to the Landau result

for t/tl ≪ 1. For cases where t/tl ≃ 1, the damping coefficient becomes oscillatory; it

was argued that this behavior is caused by the trapped electrons at the bottom of the

potential well, which carry their density coherently with them as they oscillate. Trapped

electrons doing larger amplitude oscillations, on the other hand, tend to thermalize as
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a consequence of phase mixing. As t/tl → ∞, even the most resonant electrons lose

coherence, and the damping coefficient eventually becomes zero.

Putting aside the complex inner physics of Landau damping and particle trapping,

it should be clear that both processes compete to drive the motion of resonant par-

ticles. Nonlinear trapping can be neglected only under the condition [Treumann and

Baumjohann, 1997]

ωb ≪ γL, (6.8)

where γL is the Landau damping coefficient.

The concepts exposed so far are strictly valid for monochromatic or nearly monochro-

matic waves. If the wave packet is constituted by several wave modes, each component

will attempt to induce their own trapping domain. The nonlinear overlap between dif-

ferent resonances prevents the formation of trapping islands, and favors stochastic mo-

tion instead. In this scenario, Landau damping can continue indefinitely. Furthermore,

stochastic motion leads to plasma heating [Karney, 1978].

6.2 A model for electron trapping by KAW based on linear

dispersion

The occurrence of particle trapping within the kinetic regime makes a compelling case:

due to the condition vth > vA ∼ ω/k, one can infer that the resonant electrons could

potentially fall in the subthermal section of the distribution where Landau damping is

not optimal. In this scenario, nonlinear trapping could take place, provided that most

of the spectral power of the wave belongs to a single frequency.

There is available literature on the dynamics of trapped particles in electromagnetic

waves, the bulk of which takes advantage of the Hamiltonian formulation (I found the

presentation in Shklyar and Matsumoto [2009] particularly enlightening). In this section

we deviate from this formalism in favor of a simpler model [Artemyev et al., 2015b] (see

appendix C) of magnetospheric plasma embedded in a dipolar magnetic field B(z, L)

(2.39) that considers linear dispersion. This analysis disregards the effect of the electric

field transverse component, as well as the drifting of particles due to the magnetic field

curvature; and considers strongly magnetized electrons, such that their magnetic moment

µ is a constant of motion. The wave equation (3.15), for the case of high-frequency waves,

reads

∂ϕ

∂t
+ v2A

∂A

∂z
= 0. (6.9)
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We consider a wave input ϕ = ϕ0 cos(ψ), with phase ψ =
∫
dz′ k∥(z

′) − ωt. A solution

for the wave vector potential that satisfies equation (6.9) is A = (ω/k∥)ϕ/v
2
A. Dispersion

of the original wave pulse generates the parallel electric field

E∥ = −∂ϕ
∂z

− ∂A

∂t

= −k∥

[
1−

(
ω

k∥vA

)2
]
ϕ (6.10)

= k∥(k⊥ρs)
2ϕ,

where we have substituted in the kinetic limit of the dispersion equation (2.111). Notice

that, to first order, E∥ = −∇Φ, where Φ = [1− (vw/vA)
2]ϕ is an effective potential. The

forces that determine the particle trajectory are the mirror force (see equation 2.28 on

page 24) and the electric force due to the wave:

m
dv

dt
= −µ∇zB(z)− eE∥(z, t). (6.11)

In the absence of waves, electrons bounce between mirror points, and their gyroaver-

aged trajectories can be uniquely parameterized by their total energy h and equatorial

pitch angle αeq,0. On the other hand, a KAW will gradually increase its speed as it trav-

els down the field line. Trapping occurs at a certain location zr where the wave catches

up with an electron that has resonant speed vr = vw(zr) = ω/k∥(zr). The likelihood of

trapping decreases with latitude since (i) the wave phase speed moves gradually towards

the tail of the distribution where there are fewer electrons available for resonance, and

(ii) the parallel electric field decreases in amplitude as it moves into colder plasma. The

resonant position zr(h, αeq,0) at which a given electron could get trapped is obtained

through the condition

h =
1

2
mv2r + h sin2(αeq,0)B(zr). (6.12)

Once the particle is under the domain of the wave, its energy will depend on the

effective potential. The particle motion consists of a superposition of transport at speed

vw(z), plus fast longitudinal oscillations inside the effective potential. Trapped elec-

trons must increase their parallel momentum in order to keep up with the wave, while

simultaneously the mirror force transfers some of this gain into their perpendicular gy-

romotion. As the wave moves deeper into the geomagnetic field, the magnetic force

becomes stronger. At some point ze, the mirror force overcomes the parallel electric

field, and the particle is forced out of the potential. Thus, the escape point is obtained
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through the following condition

h sin2 αeq,0∇zB(ze) = emax(E∥(ze)). (6.13)

Once an electron escapes, its subsequent motion consists of periodic bouncing be-

tween new mirror points, now located at higher latitudes as a consequence of their

increased energy. The following relation gives the location of the mirror point zm:

1

2
mevw(ze)

2 + h sin2 αeq,0B(ze) = h sin2 αeq,0B(zm) = H, (6.14)

where H is the particle’s total energy after escaping the wave. The equatorial pitch angle

for the new trajectory is given by the invariance of the magnetic moment, leading to

sinαeq =

√
Beq

B(zm)
. (6.15)

Artemyev et al. [2015b] set up and solved 104 trajectories of particles initially dis-

tributed uniformly in space and pitch angle, upon interaction with a wave of given

amplitude. Once the wave reached latitude λ = 45o, the trapping probability was es-

timated as the ratio of particles for which H > 1.5h, to the total number of particles

(see Figure C.5 in the appendix C). The dependence in ϕ0 is expected since vtr ∝
√
ϕ0

provides a larger fraction of the distribution interacting with the wave. For λ⊥ = 650

km, the probability of trapping maximizes for particles with initial energies ∼ 200− 300

eV, and drops for particles with higher energies since, as the total energy of an electron

increases, a large pitch angle is required so that their parallel speed is low enough to fall

in the interval of resonance. At lower transverse wavelengths, on the other hand, the

wave phase speed increases, and electrons with most pitch angles can become resonant.

6.3 Simulation results

In this section, we present results of simulations that explore the formation of trapping

islands after interaction of the plasma with a kinetic wave pulse, each simulation provid-

ing different conditions of temperature and perpendicular wavelength. All background

plasma properties and their variation along the spatial domain were implemented follow-

ing the guidelines discussed in chapter 4 for inhomogeneous plasma. Table 6.1 summa-

rizes the parameters that are common to all cases; the spatial domain extends ∼ 6.3RE

along the magnetic field line that is 9RE away from the Earth in its equatorial end.
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Table 6.1: Initial parameters common to all simulations

Magnetic field line L = 9
Altitude domain (km) 104 ≤ z ≤ 5× 104

Background hydrogen density (m−3) nH2 = 106

Background oxygen density (m−3) nO2 = 1010

Scale factor of oxygen decrease (Re) z0 = 0.2
Wave frequency (s−1) f = 2
Kappa κ = 8

In the initial stage of every simulation an electromagnetic wave with scalar potential

ϕ(t) = ϕ0 sin (ωt) exp

[
−
(
t− 3τ

2τ

)2
]

(6.16)

is introduced at the equatorial end of the simulation domain and propagates to lower

altitudes. In order to incorporate waves with identical energy input in all cases, we

use the fact that E⊥ = −∇⊥ϕ; by fixing E⊥ to some arbitrary value, the initial scalar

potential amplitudes will be constrained by a relation of the form ϕ0/λ⊥I = const.

Table 6.2: Temperature, ionospheric perpendicular wavelength and initial wave ampli-
tude for each case study. Estimation of the phase speed, trapping speed, Landau damping
coefficient, and bounce frequency of trapped electrons at the wave input location.

Simulation Tw λ⊥I ϕ0 vw vtr γL ωb

(eV) (km) (V) (km/s) (km/s) (s−1) (s−1)

1 200 1 225 4380 12581 8.26 18.03

2 200 2 450 3260 17793 4.18 34.26

3 200 4 900 2330 25163 1.70 67.90

4 500 1 225 6740 12581 8.52 11.73

5 500 2 450 4790 17793 4.52 23.36

6 500 4 900 3050 25163 2.07 51.86

We include six simulations cases combining two different temperatures and three

values for the ionospheric perpendicular wavelength (see Table 6.2). The spatial variation

of several plasma properties as functions of altitude is shown in panels (a)-(f) of Figure

6.2. It is expected that, on its way into the inertial regime some degree of electron

trapping occurs, and that the trapped electrons will escape the wave close to the point

of separation between the kinetic and inertial regions [Watt and Rankin, 2009], where

Landau damping is most effective. The intersection between Alfvén and thermal speed

profiles indicates the separation of the inertial and kinetic regions. At low altitudes, the

rapid decrease in electron density shown in panel (a) represents the depletion of cold
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Figure 6.2: Background plasma properties for cases 1-6 specified in table 6.2, as a function
of the coordinate z. (a) Magnetic intensity. (b) Electron density. (c) Alfvén and thermal
velocities. (d) Electrostatic potential for inhomogeneous equilibrium. (e) Perpendicular
wavelength. (f) Temperature. In panel (c), the kinetic regime for cases 1-3 extends along
the region z > 4.44RE , and z > 3.7RE for cases 4-6.

ionospheric plasma. The oxygen decrease rate is determined by the scale factor z0 in

equation (5.1), and it is indirectly responsible for the non-uniformity of the temperature

and electrostatic potential profiles.

We also obtained numerical solutions to the dispersion relation (equation 5.40 on

page 97), in terms of the secondary parameters vte/VA and k⊥λe at every point within

the spatial domain. Although these solutions are only approximate, they should give

a first glance of what to expect in the simulations regarding wave propagation at high

altitudes (where the wave is introduced in the simulation). Phase speeds and growth rates

for all simulations are plotted in Figure 6.3. These preliminary solutions indicate that,

for the incoming wave pulse, phase velocities and damping rates are both proportional

to temperature and the k⊥ parameter (this temperature trend reverses in the inertial

region). Overall, larger phase speed cases are also associated with stronger Landau

damping. Table 6.2 includes specific values of the wave solution corresponding to the

upper boundary location. These are to be compared against the expected trapping speed
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(6.6) and the bounce frequency (6.4).

The wave input associated with these simulations correspond to E⊥ ≃ 53 mV/m.

Wave potential amplitudes used in these simulations are in the same order as other

studies regarding Alfvén waves in the magnetosphere [Watt and Rankin, 2010; Artemyev

et al., 2015b]. The energy required to escape said potentials is comparable or even higher

than the temperature for some of the cases, implying that large sections of the bulk

distribution take part of the interaction. If these wave amplitudes are typical for the

kinetic region, then it is reasonable to think that electron trapping frequently occurs

in the magnetosphere. The estimated Landau coefficients and frequencies of trapping,

when evaluated in the condition (6.8), support that idea.

6.3.1 Plasma behavior under the influence of a SAW

Wave dispersion of the shear Alfvén pulse at high altitudes produces a parallel electric

field E∥/E⊥ ∼ k∥k⊥(λevth/vA)
2 ∝ T/λ⊥, where k∥ is the parallel wavenumber and λe is

the electron skin depth. This field should have a considerable amplitude at the top of

the simulation domain when the local plasma is warm enough. As one moves into lower

altitude, however, the field amplitude decreases due to rising of the Alfvén speed. On

the other hand, vw ∝ vA (see top graph in Figure 6.3) and the wave increases speed while

moving into an increasing magnetic intensity region, keeping up with some of the fast

electrons and even catching up with some energetic ones that might have escaped the

wave. The leading crest of the wave should generate a beam of electrons with increasing

parallel velocities. Inside the wave packet, though, accelerated electrons that overcome

the wave speed move into a region where the electric field changes sign, so these particles

start losing energy to the wave again; it is here where electron trapping takes place.

Figure 6.4 represents the time history of simulation 5 through snapshots of both

field-aligned electric field component and distribution function. Other cases present

similar behavior, with differences which will be discussed below. Downward electron

acceleration takes place at the crests (E∥ > 0), while valleys (E∥ < 0) induce upward

acceleration. The self-consistent response of the plasma quickly distorts the sinusoidal

pulse, attempting to steepen the crests, as described in Watt et al. [2005]. Trapping

regions form consistently at the crests of the wave, such that the maximum (negative)

speed of the trapped electrons is proportional to the local electric field magnitude. If

there is a difference in the field magnitude between a crest and the valley immediately

ahead of it, the fastest electrons within the trapping island will have enough energy to

move past the valley and form downgoing beams, thereby sinking a fraction of the wave

energy through Fermi acceleration. A clear example of this can be seen at t = 2 s, and
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Figure 6.3: Solution to the dispersion equation as a function of position. Wave phase
speed vw (top), and damping coefficients (bottom) for all the simulation cases.

in a lesser degree at t = 1 s. The wave pulse takes t = 3 s to be injected into the spatial

domain. After this time and in the absence of a source, the wave seems to damp away

at a faster rate than before. By the time t = 5 s the pulse is practically gone, the last of

previously trapped electrons are now free and form velocity dispersed signatures, and the

distribution at high altitudes remains significantly disturbed due to the slow advection

of low energy electrons from the upper boundary.

Figure 6.5 compares the field-aligned distribution function and the corresponding

parallel electric field at t = 3 s, as a function of altitude for the whole set of simulations.
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Figure 6.4: Time evolution of E∥(z) (top) and fe(z, v∥, µ = 0) (bottom) for simulation
case 4 (T = 500 eV, λ⊥I = 2 km).

We refer to the first three cases as the low-temperature limit, while cases 4 to 6 constitute

the high-temperature limit. There are differences in the color scale between simulations

with different temperatures; the most intense corresponds to the lower temperature cases.

As previously speculated, most cases show trapping to some extent. In general, trapped

electrons stick to regions where the electric field peaks, the range of parallel velocities

over which they concentrate is proportional to the perpendicular length.

In both the low and high-temperature limits, the electric field plots show much

stronger wave damping at lower values of the perpendicular wavelength. The wave
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Figure 6.5: Field-aligned distribution (top) and parallel electric field (bottom) as a
function of altitude at t = 3 s for all simulation cases.

phase speed is also higher at lower scales; this might not seem too evident from the

electric field graphs, but should become clear by the relative position of corresponding

trapping islands between simulations. The behavior of the wave in terms of these two

aspects (damping and phase speed) correlates well with the solutions provided in Figure

6.3, which indicated a marked increase of the damping coefficient al lower perpendicu-

lar lengths. On the other hand, for otherwise identical conditions, cases with increased

temperature show a mild decrease in the E∥ amplitude. This seems also consistent with

Figure 6.3 (bottom panel), which shows that the damping coefficient presents modest
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growth for cases with increased temperature in the region z > 6 RE . However, recall

that according to the fluid approximation, the ratio of E∥ amplitudes between cases with

different temperatures is expected to be roughly similar as the ratio of temperatures, that

is, wave amplitudes in the high-temperature limit would in principle be 2.5 times the

amplitude at a lower temperature. For the cases shown here, it seems that the damp-

ing nearly counteracts the temperature variation of the electric field. A similar effect

seems to occur for variations in the perpendicular scale, where larger wave amplitudes

are expected at shorter scales (E∥ ∝ λ−1
⊥ ); since higher damping rates occur at lower

scales, once again the inherent dependence of the electric field is counteracted by the

increased damping rates. This might be a factor for which, Based on the cases shown

here, the trapping process seems more efficient at intermediate scales, as it follows from

the more consistent shape among the islands of trapped electrons (cases 2 and 5), and

from the fact that E∥ maintains a constant amplitude over larger distances. It is not

clear if the wave damping at altitudes just below 6.5RE in cases 3 and 6 is caused by

the partial destruction of the trapping islands, or vice-versa. It looks plausible that, as

a consequence of damping on the leading crest, beam formation would take place due

to the difference of amplitude between subsequent crests, effectively removing the most

energetic electrons of the trapped population.

O’Neil [1965]’s theory identifies Landau damping and particle trapping as mutually

exclusive stages of the wave-particle interaction, yet in these cases, it seems evident

that both processes are at work simultaneously. We are not in a position to describe

the microphysics of this system due to its strong nonlinearity and inhomogeneity. We

can say, however, that the extent to which the underlying assumptions that support

O’Neil theory are fulfilled (uniform plasma, electrostatic wave, invariance of the wave

amplitude in the average sense) is challenged here. Even though we have implemented

a simple model that brings uniform conditions of density and temperature in the region

where the wave is most influential, the dipolar field introduces wave dispersion through

modification of k⊥, vA, and E∥. Watt and Rankin [2009] reported that, on simulations

using homogeneous conditions, trapping persists throughout the spatial domain. Local

wave dispersion induced by inhomogeneous conditions, and nonlocal dispersion due to

the nonlinear wave-particle interactions, might cause redistribution of the spectral energy

into additional waves modes, which would undermine the efficiency with which closed

orbits halt Landau damping.

Data from these simulations confirm that the electric field often presents a nonzero

electromagnetic contribution, sometimes of even larger amplitude than the electrostatic

component. The need to include electromagnetic effects into the formulation has moti-

vated the use of Hamiltonian models [Shklyar and Matsumoto, 2009; Artemyev et al.,
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2013, 2014, 2015b] and references within. So far these models are based on linear per-

turbation theory, so important effects like nonlocal dispersion are ignored. At this point,

we would like to evaluate the conclusions on Artemyev et al. [2015b] study (see ap-

pendix C) against the findings presented here. Their low transverse wavelength case

(λ⊥eq = 150 km) compares with simulation cases 3 and 6, for which λ⊥eq ≃ 107 km.

Conveniently, these cases present the lowest levels of Landau damping. On the down-

side and despite these coincidences, there is very little common ground for comparison,

as their data measuring techniques are incompatible with the use of distributions. For

instance, their conclusions on particle energization and the probability of trapping are

based on particles regardless of their final position; this is something we cannot quantify

using distributions, due to the impossibility of fully identify accelerated electrons from

undisturbed ones.

In general, the estimations given in Artemyev et al. [2015b] rely heavily on the wave

being able to survive until reaching high latitudes. The energy of trapped electrons

comes from the wave itself, and the large gain on some of the electrons requires a strong

magnetic gradient efficiently transferring longitudinal momentum into transverse mo-

mentum so that under the subsequent deceleration, the wave is forced to accelerate the

trapped particle further. According to the simulations presented here, even in cases

with lower rates of damping, the wave cannot survive distances over 3 Re before damp-

ing completely. By comparison, in Artemyev et al. [2015b] the wave is let travel from the

equator up to λ = 45o, which means the wave travels more than 7RE in L = 9. More-

over, according to the simulations, as the wave goes into intermediate states of damping,

it continually loses its fastest electrons. Even though it could be the case that the paral-

lel electric field becomes negligible over a significant fraction of its trajectory due to its

dependence on temperature, there is a good chance that the energy gain of the trapped

electrons, and consequent decrease in pitch angle, are significantly overestimated.

6.4 Summary

At altitudes where kinetic effects dominate wave dispersion, the condition vte ≫ vA

suggests low levels of Landau resonance, while favoring the trapping of electrons in

the wave potential. In this chapter, numerical simulations of nonlinear wave-particle

interactions reveal that, at equatorial latitudes, the occurrence of particle trapping in

the wave potential of dispersive Alfvén waves is influenced by Landau damping. Growth

rate estimations based on linear kinetic theory describe damping of these waves fairly

well: wave damping is found to increase significantly with decreasing perpendicular

wavelengths, and shows a moderate increase for increasing temperatures. On the other
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hand, electric field amplitudes and Landau damping increase under the same conditions,

implying that nonlinear dynamics is sensitive to parameters. Electron trapping is found

to be more efficient at intermediate values of the perpendicular wavelength. Although

this condition is consistent with the intrinsic variation of E∥ and the damping coefficient,

other factors play an important role. Wave dispersion and wave-particle interactions

eventually lead to the destruction of the trapping islands at some altitude along the

geomagnetic field.

The significant differences between results of Vlasov simulations and simple analytic

models [Artemyev et al., 2015b] of particle trapping reveals the highly nonlinear nature of

the process and need for better models with increased spatial and temporal resolution.
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Chapter 7

Inertial Alfvén Waves as a

possible driver for AKR

In this chapter, we test the efficiency of AKR formation as a result of electron acceleration

into a converging magnetic field by IAW propagation. As accelerated particles move into

regions of increased magnetic intensity, they increase their pitch angle as per conservation

of their magnetic moment, resulting in the formation of shell or horseshoe distributions

in velocity space. Numerical distributions obtained from simulations are parametrized

so that an analytic representation of them is constructed. This functional form of the

distribution is used to obtain an estimation of the waves growth rate associated with

electron cyclotron resonance, according to Bingham and Cairns [2000].

Given that AKR emissions occur at or near to the local electron cyclotron frequency,

their source can be determined through spatial mapping of its corresponding magnetic

field. This has helped researchers to use remote sensing to understand the vertical

structure of the acceleration region better. Several studies [Hanasz et al., 2001; Olsson

et al., 2004; Su et al., 2007; Morioka et al., 2007, 2008] have reported events at various

altitudes up to ∼ 4.5 Re radial distance. Some of these publications provide evidence

that the vertical distribution of events is particularly sensitive to the plasma density,

such that events occur more frequently around density cavities, during winter months,

and all year round in the evening and midnight sectors, possibly due to lower ionization

rates than their counterparts [Olsson et al., 2004; Su et al., 2008].

Many of these events are correlated with auroral substorms. For example, wideband

bursts (WBB-AKR) [Hanasz et al., 2001] experiment an explosive (< 1 min) intensifica-

tion over a wide range of frequencies (30−900 kHz) triggered at the substorm expansion

phase, followed by a slower decay (∼ 10 min). The higher frequency part of these emis-
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sions was found to rise and decay at time scales of the same order as the expected

saturation time of the ECI, suggesting generation by a saturated ECI. It was pointed

out that the expansion drift speed would depend on the initial altitude of the source;

sources located at lower altitude would present low drift expansion (∼ 100 km/s), while

higher altitude sources would drift at speeds comparable to the local Alfvén speed (∼ 103

km/s).

More evidence on the differentiated behavior of AKR sources with altitude was even-

tually unveiled. The term low-frequency AKR (LFAKR) was used by Olsson et al. [2004]

to denote events in the < 100 kHz range (altitudes ≥ 3 Re), which coincide with the sta-

tistical peak of density cavity formation [Janhunen et al., 2004]. LFAKR occurs almost

exclusively during high substorm activity, primarily in the midnight sector, and with

higher frequency during winter months. Sometimes, strong AKR appears at ∼ 50 kHz;

these correspond to a subclass of LFAKR denominated Dot-AKR. Alfvén wave activity

at the source has been reported simultaneously with LFAKR in some of the events, but

it was pointed out that the lack of it does not necessarily imply the absence of waves.

The mechanism suggested was IAW propagation into pre-existing density cavities. It

was argued that, in the limit of large perpendicular wavelengths, the parallel component

of the electric field should increase with decreasing density. This enhanced component

can accelerate electrons to form horseshoe distributions and produce AKR radiation.

Morioka et al. [2007] identified 2 AKR source regions at different altitudes, which

become active during substorms, and studied their spatial development and evolution.

The lower altitude source is located at 4000-5000 km; in this region, AKR appears both

before and after the substorm onset, showing considerable intensification a few minutes

prior the substorm onset. At higher altitudes (6000-12000 km), a second source devel-

ops abruptly at substorm onset, increasing its intensity by several orders of magnitude

over ∼ 30 s interval. Careful observation of the second source during the development

phase evidences seemingly randomly distributed small AKR structures which intensify

simultaneously, instead of a systematic drift of a single source.

Some observations [Hanasz et al., 2006] have shown simultaneous occurrence, and

similar modulation at Pc5 frequencies, of AKR signals and FLRs, which suggests that

AKR can be produced within the FLR structures. Location of the footprint of the

AKR source is well correlated with discrete auroral arcs that are associated with the

FLRs. Nonlinear effects associated with the coupling of standing SAW with compres-

sional modes can diminish the initially large perpendicular scaling down to values where

inertial effects become important and parallel electric fields can be generated. It was also

argued that the concentration of wave energy in the resonance region would eventually

lead to nonuniform pressure distribution, possibly driven by plasma fluctuations, leading
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to cavity formation. Favorable conditions for AKR are thought to occur only during half

cycle of the FLR period.

7.1 Estimation of growth rates

In this section, we follow the steps of Bingham and Cairns [2000] to evaluate the effect

of a horseshoe distribution on the stability of the transverse magnetic (TM) mode under

which the electron cyclotron resonance is expected to occur. The TM mode describes

emission perpendicular (k∥ = 0) to the background magnetic field in hot plasmas [Bit-

tencourt, 2004]. This mode reduces to the extraordinary mode in cold plasma. The

following analysis is valid assuming that the Larmor radius of the electrons is much

smaller than the perpendicular scale, and that the relativistic mass correction at the

cyclotron frequency,

ωce =
qeB

γme
≃ Ωe0

[
1− 1

2

( p

mc

)2]
, (7.1)

is relevant when evaluating the growth rate exclusively.

7.1.1 Derivation of the dielectric coefficients

We consider emission strictly perpendicular to the background magnetic field. The

dielectric tensor components (see [Gurnett and Bhattacharjee, 2005] pag. 370) evaluated

for a single electron species take the form:
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pe
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Kxy = −Kyx = i
ω2
pe
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. (7.4)

Here Fe0 represents the distribution function normalized to unity, and βe = k⊥v⊥/(qeB).

The other components (except Kzz) involve integration of odd functions in p∥, from −∞
to ∞. Then we have

Kxz = Kzx = Kyz = Kzy = 0, (7.5)
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provided that Fe0 = Fe0(p
2
∥), which is the case for both Maxwellian and Lorentzian

distributions.

Under the assumption re ≪ λ⊥, βe ≃ 0. The Bessel functions take the approximate

values:

J0(βe) ≃ 1

J±1(βe) ≃ ±βe
2

(7.6)

J±(n>1)(βe) ≃ 0.

Evaluation of the small limit argument leads to

ε⊥ = 1 +
ω2
pe
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where we have replaced ε⊥ = Kxx = Kyy and εxy = iKxy = −iKyx. Both expressions

include the term
∫
d3p p⊥ ∂Fe0/∂p⊥. Using integration by parts it is trivial to prove that

2π

∫ ∞

−∞
dp∥

∫ ∞

0
dp⊥ p

2
⊥
∂Fe0

∂p⊥
= −2. (7.9)

On both equations (7.7) and (7.8), the second integration contains a simple pole that lies

over the real axis. Poles of this type have solutions given by the principal value integral,

plus half the residue

lim
ζ→0

1

x− a± iζ
= PV

[
1

x− a

]
∓ iπδ(x− a). (7.10)

Furthermore, Bingham and Cairns [2000] assume that the relativistic correction is es-

sential only for the growth rate, while everywhere else ωce ≃ Ωe0 is taken. This yields

ε⊥ =
ω2 − ω2

uh

ω2 − Ω2
e0

− iα, (7.11)

εxy = −
ω2
peΩe0

ω(ω2 − Ω2
e0)

− iα, (7.12)



CHAPTER 7. IAW AS A POSSIBLE DRIVER FOR AKR 126

with ω2
uh = ω2

pe +Ω2
e0 the upper hybrid frequency, and α given by

α = −π
4
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(7.13)

The dispersion equation

The dispersion relation is obtained by equalizing the determinant of equation (2.59) to

zero, which yields

[
Kxx

(
Kyy − η2

)
−KxyKyx

] (
Kzz − η2

)
= 0, (7.14)

where η is the refractive index. The TM mode mentioned above corresponds to the

expression enclosed in squared parenthesis. The refraction index for this mode can be

written as

η2 = ε⊥ −
ε2xy
ε⊥

. (7.15)

We want to obtain an expression for the imaginary part of the refraction index, which

implies expanding equation (7.15) in its real and imaginary parts ηR and ηI . If we define

r⊥ = ℜ{ε⊥} and rxy = ℜ{εxy}, then we can write (7.15) as

η2 = η2R − η2I + 2iηRηI =
(r⊥ − iα)2 − (rxy − iα)2

r⊥ − iα
(7.16)
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2
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. (7.17)

If we assume that both ηI and α are first-order quantities, then

η2R ≃
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(7.18)
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. (7.19)
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ηI ≃ − α
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Calculation of the α parameter

To evaluate (7.13), it is convenient to switch to spherical coordinates; p =
√
p2∥ + p2⊥,

µ = cos θ, ϕ. The volume integral changes into
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Also,
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)
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Finally, one uses the composition property, δ(h(x)) =
∑

n δ(x − xn)/|h′(xn)| to express

the dirac delta term in terms of momentum instead of frequency. Then (7.13) turns into

α = −(ωpeπmec)
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where the resonant momentum, pR, is equal to

pR = mc

√
2
(Ωe0 − ω)

Ωe0
. (7.25)

The next step is to include the explicit form of the unperturbed distribution; this is

written in the form

Fe0(p) = fm(p) + fh(p)g(µ). (7.26)

The first term in (7.26) consists of a Maxwellian contribution

fm(p) = km exp

[
−
(

p

ptm

)2
]
, (7.27)

while the second term represents the Horseshoe itself, which consists of a shell that takes



CHAPTER 7. IAW AS A POSSIBLE DRIVER FOR AKR 128

its maximum value at some prescribed momentum pb,

fh(p) = kh exp

[
−
(
p− pb
pth

)2
]
, (7.28)

modulated by a factor that causes the shell to fade away as µ → −1. Bingham and

Cairns [2000] choice for g(µ), written in terms of the Heaviside function θ(µ), has the

following form

g(µ) = θ(µ− µ0)

√
µ− µ0
1− µ0

, −1 < µ0 < 1. (7.29)

The constants km and kh in (7.27) and (7.28) determine the ratio of densities between

the Maxwellian and shell distributions, and must be such that Fe0 is normalized to unity.

After substitution and evaluation of (7.27), (7.28) and (7.29) into (7.24), one eventually

reaches the expression
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(7.30)

where

P (µ0) =

∫ 1
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dµ (1− µ2)g(µ) =
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105
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2, (7.31)

and

Q(µ0) =

∫ 1

µ0

dµ (1− 3µ2)g(µ) = − 4

105
(1− µ0)(12µ

2
0 + 18µ0 + 5). (7.32)

The first term in equation (7.30) represents the effect of the unperturbed distribution;

this term is positive, so it induces wave damping. The second term becomes unstable if

the resonant momentum falls in a region where the gradient is positive, in accordance

with the ECI theory. Finally, the last term induces wave damping for a horseshoe with

a low angular opening, but it becomes unstable at large values of µ0.

Bingham and Cairns [2000] illustrated this method by considering a Maxwellian

plasma with temperature 312 eV, and a horseshoe distribution with pb = 0.1mec, pth =

0.02mec, and an opening angle 60o (µ0 = 0.5). nh = 2nm and ωpe/Ωe0 = 1/40. The
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(a) Electron distribution (b) Beam momentum variation

(c) Density variation of the Maxwellian com-
ponent

(d) Angular opening variation

(e) Temperature variation (f) Thermal width variation

Figure 7.1: The top-left panel shows the distribution that results from Bingham and
Cairns [2000]. Subsequent panels compare the original solution, against variation of
different parameters.
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distribution is shown in the top-left panel on Figure 7.1. The rest of panels compare

growth rates for the baseline case (dark line), against small variations of the parameters

that determine the distribution. It is instructive to observe the effect that variations of

these parameters have over the growth rate. The top-right panel in Figure 7.1 shows the

effect of increasing the radius (in momentum space) of the shell distribution. For a beam

of electrons traveling earthward, this radius will in principle increase proportionally to

the magnetic intensity due to conservation of the first adiabatic invariant. Accelerated

electrons, however, can only reach into the converging magnetic field as much as their

energy gain from the interaction allows them. The bottom line is, a horseshoe with longer

radius results from electrons with higher energy gain, and therefore, has more energy

available for wave amplification; this seems reflected in the figure, which indicates higher

growth rates for a horseshoe with a longer radius. The graph also shows a significant

shift in the band of frequencies at which the instability can take place; an increase in

pb will cause emission to occur at lower frequencies. This aspect probably has to do

with the relativistic nature of the process. A somewhat similar effect seems to occur

in the middle-right graph that illustrates the effect of increasing the horseshoes angular

range. The middle-left and lower-left graphs illustrate the change of growth rate due

to the variation of the unperturbed component. Note that an increase on whether the

temperature or density should naturally damp the wave due to interaction with a higher

number of thermal particles. No shift in the spectrum of frequencies seems evident in

these cases. Finally, the lower-right panel shows the effect upon changes in the horseshoe

width. Favorable conditions for wave growth include a narrower horseshoe. The theory

of ECI supports this since, for a distribution with a given density, a smaller width is

consistent with a larger positive momentum gradient.

7.2 Generation of horseshoe distributions by an Inertial

Alfvén Wave

The literature cited in the introductory paragraphs of this chapter gives the notion that

AKR amplification occurs within density cavities of ∼ 104 − 105 m−3. Next, we con-

sider the formation of unstable horseshoe distributions under conditions which should

be favorable for AKR emission. Unfortunately, the algorithm used here often runs into

numerical issues at low densities, and despite multiple efforts, we were not able to obtain

a higher number of working cases spanning a wider variation of the initial parameters.

Still, the cases presented here provide necessary evidence that Alfvénic acceleration can,

in fact, ultimately drive AKR emission. Consider the following scenario for horseshoe
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formation: an initially unperturbed plasma interacts with a kinetic or inertial Alfvén

wave causes electron acceleration parallel to the external magnetic field. After interac-

tion, Fermi-resonant electrons stream down the field line with speeds roughly twice the

Alfvén speed according to Kletzing and Torbert [1994]. Conservation of the magnetic

moment causes pitch angle dispersion as these particles move into regions of more intense

geomagnetic field. This effect gives rise to a partial ring or horseshoe when one observes

the local distribution in a phase diagram; the ring formation appears incomplete due

to the absence of the most field-aligned electrons located inside the loss cone. Since we

cannot use an arbitrary low density due to the occurrence of numerical instability, a

relatively high Alfvén speed is maintained by using a lower L-shell value (L = 5) that

does not correspond to auroral latitudes.

The baseline simulation features a Gaussian pulse with amplitude ϕ0 = 300 V and

frequency f = 4 s−1, propagating down the field line from an initial altitude z = 3× 104

km. All background plasma properties and their variation along the spatial domain

were implemented following the guidelines discussed in chapter 4 for inhomogeneous

plasma. Background densities for hydrogen and oxygen are nH = 105 and nO = 109

m−3 respectively, the oxygen component decays exponentially by a factor z0 = 0.2 Re;

the unperturbed plasma is Lorentzian with κ = 10; the initial temperature is 200 eV

at the upper boundary and decreases at lower altitudes. The perpendicular scale at the

ionosphere is 2 km.

Graphical fitting and growth rate estimation

The procedure used to parametrize the numerical distribution at a given location and

time is, in principle, quite straightforward. A first step consists on obtaining an ana-

lytical representation of the thermal component of the plasma. Figure 7.2 (a) shows

the phase diagram of the local distribution at z = 2 Re (∼ 13000 km) and t = 1.16 s;

the graphs in (b) and (c) plot its projection along the parallel and perpendicular axes

(blue line), respectively. Recall that, in the context of section 7.1, km ≡ fm(p = 0), and

pmt ≡ km exp(−1). The corresponding analytic representation is plotted in red on panels

(b) and (c). Once the thermal component is parameterized, it is subtracted from the

original distribution to obtain the perturbation (see Figure 7.2(d)). One can readily see

that the resulting horseshoe is not entirely centered at the origin. Physical implications

arising from this fact will be discussed below. At this point, a computational script

sweeps through the matrix containing data from the perturbed distribution, identifying

the intensity and coordinates of the horseshoe. This procedure is complicated by the fact

that, especially at large p⊥, both thermal and perturbed contributions overlap close to
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Figure 7.2: Local distribution function at z = 2 Re and t = 1.16 s. (a) Velocity distribu-
tion. (b) Parallel projection of the numerical distribution (blue), and graphical fit of the
unperturbed component (red); (c) Perpendicular projection (blue), and its graphical fit
(red). (d) Velocity distribution of the perturbed component. Contours represent the ob-
tained parametrization of the horseshoe. (e) Parallel projection (blue) of the numerical
perturbation, and graphical fit of the unperturbed component (red); (f) Perpendicular
projection (blue), and its graphical fit (red).

p∥ = 0, which makes it difficult to tell them apart; at this point, we resort to assuming

that the background distribution remains constant. This assumption is likely less accu-

rate at times when the wave is present and moving across their location; this passing of

the wave causes noticeable drifting and distortion of the background distribution, which

further complicates distinction of the perturbation. This script outputs the necessary

data to find the central location, the radius pb, and the function g(µ) of the horseshoe,

while its thermal width is chosen so that it fits the main peak along the p∥ axis (see

panel (e)).

The normalized variation of intensity along the resonant surface is shown in Figure

7.3(a). Also two different forms of the function g(µ) are shown that fit said variation such

that each function minimizes the total sum of squared differences relative to the data

points. The exponential fit follows the data much closer than the Bingham function. The

analytic construction of the horseshoe using an exponential fit has been superimposed

as contours on top of the phase diagram in Figure 7.2(d). As pointed out before, this
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Figure 7.3: (a) Angular variation of the horseshoe distribution intensity (normalized).
(b) Frequency variation of the growth rates associated to each function g(µ).

representation is not symmetrically centered with respect to the thermal component, as

required by the condition (7.5). Nonetheless, since the growth rate calculation requires

evaluation exclusively at the resonant momentum, the error introduced should be small

as long as the thermal particles stay clear from the resonant surface; that is, if the first

term on the right-hand side of equation (7.30) is zero. The imaginary wavenumber as a

function of frequency for the TM mode, in this case, is shown in Figure 7.3(b), there is

a very narrow band, centered at ω = 0.995Ωe0, under which the instability takes place.

The local minimum indicates the shortest convective distance Lc = 2π/kI , which in this

case is equal to 585 m for the exponential fit case (vs. 2800 m using Bingham approach).

Shorter distances indicate higher efficiency in wave amplification since they allow more

foldings within a given region. The estimated latitudinal width of the auroral density

cavity is 100 km, so wave amplification can be expected in this case.

7.3 Optimal conditions for wave amplification

We have established a procedure to estimate convective lengths out of simulation data,

based on the theoretical framework given by Bingham and Cairns [2000]. In this sec-

tion, we use this framework to determine conditions under which wave amplification is

favorable.
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7.3.1 Altitude dependence

Let us start by comparing emission rates at different altitudes along the field line. Recall

that the efficiency of the ECI depends on the condition Treumann [2006](
ωpe

ωce

)2

≪ 1. (7.33)

Figure 7.4: Spatial variation of ωpe/ωce.

Figure 7.4 shows the spatial dependence of this ratio during unperturbed conditions;

the Alfvén speed profile is also overlayed for reference. The highest efficiency of ECI is

expected at z ≃ 1.5RE , where the Alfvén speed seems to increase faster with altitude.

We have measured the convective length at several locations within this neighborhood

in the following way: at each location, the time intervals when horseshoe distributions

occur are determined through visual inspection of the local differential flux; next, their

minimum convective lengths and their corresponding frequencies are calculated using the

procedure outlined in the previous section. These results are summarized in Figure 7.5.

Convective lengths are plotted against their normalized resonant frequency, but the time

variation can be appreciated in that consecutive points joined by each line correspond to

sequential measurements with a sampling time of 0.2 s. For all cases, earlier estimations

present larger convective scales (and lower frequencies relative to Ωe); at later times, as

the horseshoe becomes more dense, especially at larger pitch angles, convective scales

decrease considerably, often dropping by a few orders of magnitude in less than a second.

Notice that, even though in all cases Lc showcases a decreasing trend, there are important

levels of variability from one point to the next, which suggests that these growth rate

estimations should better be trusted in the average sense.

Variability of the convective scale is exceptionally high during later times at altitudes

z = 2 and z = 2.5RE ; this might be at least partially attributable to the presence of
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reflected waves originated at the region of steep Alfvén speed gradient, as discussed in

chapter 4.

Figure 7.5: Maximum convective length at different locations. Earlier estimations cor-
respond to the largest values.

Comparison between different altitudes demonstrates how convective lengths decrease

proportionally to the distance relative to 1.5RE , where ωpe/ωce is minimum. Notice

however, that the average values for altitudes z = 1 and z = 2RE differ by more than an

order of magnitude, despite that the ratio ωpe/ωce is very similar at these locations. The

difference lies in the number of particles that make the unstable populations between

these two locations. At z = 2RE , the wave speed is growing and produces accelerated

electrons continuously. Conversely, at z = 1RE both the wave amplitude and speed have

decreased significantly due to the drastic increase in ionospheric density, and the mirror

force has reflected most of the energetic electrons (see discussion in section 5.4.1).

7.3.2 Variation of other parameters

Table 7.1: Modified input parameters

ionospheric λ⊥ (km) Te (eV) nH m−3

case 1 (baseline) 2 200 105

case 2 4 200 105

case 3 2 500 105

case 4 2 200 106

As a final point of this section, we briefly address AKR efficiency after modification of

some initial parameters. We have complemented the baseline case with three simulations

cases featuring changes of (i) the perpendicular scale at the ionosphere, (ii) the initial
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Figure 7.6: Phase speed (top), growth rate (middle), and parallel electric field (bottom)
along the spatial domain.

temperature, and (iii) the hydrogen density, respectively and one at a time. Specific

values are summarized in table 7.1. Figure 7.6 includes preliminary solutions of the

dispersion relation (equation 6 on Lysak and Lotko [1996], or 2.114 on page 41) and the

2-fluid approximation of the electric field (see equation 2.91 on page 37) for all cases.

Inertial conditions dominate in all these cases. Naturally, larger electric field am-

plitudes are expected at lower values of the transverse scale, which in principle implies

more energy for particle acceleration. On the other hand, increasing the perpendicular

scale has the effect of reducing wave damping and increasing the wave phase speed; a

consequence of faster wave propagation is that resonant electrons would escape the wave
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with larger velocities. An increase of the temperature relative to the baseline case sug-

gests higher wave damping rates, and also a weaker parallel electric field. On the other

hand, it should induce faster wave propagation, which again it means a higher speed of

the resonant particles. Finally, notice that an increase in density radically reduces the

chance of energetic particles altogether. We are not that interested in testing the effect

of increasing the density, but instead want to obtain an estimation of the convective

length, to see if it AKR amplification seems possible in regions outside density cavities.

The convective distances for these cases were estimated at the altitude where condi-

tion (7.33) predicts an optimal efficiency of the ECI, in the same fashion as in the last

subsection. Comparisons of the baseline case with the other simulations are plotted in

Figure 7.7. According to graphs 7.7(a) and (b), an increase of either the perpendicular

scale or background temperature results in lower convective scales, and therefore more

favorable conditions for wave amplification. Case 2 presents enormous variability during

the latter stage of the horseshoe development, at times where large amplitude reflected

waves crossed the point of observation. Note that no such variations are present in Fig-

ure 7.7(b), where no wave reflection takes place due to large wave damping. From the

considerations arising from Figure 7.6, one can infer that more efficient emission of AKR

seems to occur under conditions associated with faster wave propagation, even though

(as in case 2) wave damping is higher. Although lower damping rates should help in

continually feeding the horseshoe with resonant electrons, it did not result in favorable

conditions for AKR.
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Figure 7.7: Comparison of convective scales at z = 1.5RE between the baseline simula-
tion against increased (a) perpendicular scale, (b) temperature, (c) density.
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7.4 Summary

In this chapter, the formation and time evolution of unstable horseshoe distributions as a

result of electron acceleration by an IAW along geomagnetic field lines has been simulated

in the context of an inhomogeneous plasma as described in chapter 5. Numerical data

corresponding to these distributions were subsequently parametrized into an analytic

representation, which was used to evaluate the convective growth length associated with

the efficiency of AKR amplification through the ECI; following Bingham and Cairns

[2000]. Smaller values of the convective length indicate increased wave amplification.

The convective length at altitudes above the IAR decreases by a few to several orders of

magnitude over a few seconds to values well below the size of the auroral cavity, which

is strong evidence that dispersive Alfvén waves can generate AKR.

An estimation of the convective growth length at different locations along the mag-

netic field indicates that optimum conditions for AKR emission occur where the ratio

of the electron plasma frequency to the cyclotron frequency is minimum, roughly at the

same location where the gradient of the Alfvén speed profile is a maximum. At lower

and higher altitudes the convective length increases, indicating lower efficiency of wave

amplification. Within the IAR, AKR emission is very limited because a large fraction of

accelerated electrons is reflected at the higher altitude end of the IAR.

Background plasma properties also affect the efficiency of AKR generation. By run-

ning additional simulations, it was found that lower convective scales are achieved by

increasing the plasma temperature and the perpendicular wavelength. An increase in

the plasma electron density, on the other hand, has the opposite effect of reducing the

efficiency of wave amplification. In all cases, lower convective lengths coincide with an

increased wave phase speed, regardless of the magnitude of wave damping.
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Chapter 8

Conclusion

In this thesis, numerical simulations were used to investigate plasma dynamics upon in-

teraction with dispersive Alfvén wave signals in various interesting contexts. Specifically,

regular and inverted time dispersive signatures of suprathermal electrons in the topside

ionosphere (chapter 4), wave propagation in the Ionospheric Alfvén Resonator (chapter

5), nonlinear electron trapping and transport in the kinetic regime (chapter 6), and gen-

eration of Auroral Kilometric Radiation in the Alfvénic density cavity (chapter 7). To

this end, the original version of the drift kinetic (DK1D) Vlasov solver [Watt et al., 2004]

was improved by expanding its range to include spatially inhomogeneous plasmas, while

maintaining self-consistency between plasma and wave interactions. This was achieved

by setting a time-invariant electrostatic potential across the simulation domain, uniquely

defined by a given density model through the Vlasov condition for stationarity in the

absence of wave fields. Spatial variation of the plasma temperature is also indirectly de-

termined by this potential. Although these modifications were originally considered for

Maxwellian distributions, frequent numerical issues eventually forced us into adapting

the code to work with Lorentzian distributions, which are more numerically stable. A

detailed description of the extended DK1D version is included in chapter 5. As a final

point of this chapter, and as a testing exercise of code performance, wave propagation

across the Ionospheric Alfvén Resonator was presented. Obtained results reproduce a

number of known features commonly reported in observations: wave acceleration and

deceleration modulated by the local Alfvén speed; wave reflection at the sharp den-

sity gradient near the peak of the Alfvén speed profile; electron beams produced by

resonant acceleration, local thermalization by nonresonant interactions with the wave;

strong damping of the parallel electric field in the cold plasma region; upward electron

fluxes due to wave reflection; and upward fluxes due to magnetic convergence.
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In chapter 4, the possible link between Alfvén wave propagation at the topside iono-

sphere and the occurrence of suprathermal dispersion, as recorded by the SEI instrument

on board of ePOP and documented by Cameron [2015], was investigated. Observed

events showed little pitch angle dispersion, and source locations ranged 2000− 5000 km.

Given that the mirror effect was negligible along such short distances, a simplified version

of the code, valid for a uniform magnetic field, was used in these cases. The simulations

presented suggest that the plasma response to the wave becomes increasingly inductive

as the local Alfvén speed is reduced. For cases where vA takes typical values of the lower

ionosphere (a few 1000 km/s), time sequences of the wave show strong damping of the

original pulse, while a secondary structure faster than the original develops bearing its

own fields and currents. In this scenario, dispersive signatures show energy decreasing

electrons at energies well over expectation and with little to no evidence of thermaliza-

tion due to nonresonant interaction. This response was also found to be sensitive to

the perpendicular scale of the wave: with smaller scales enhancing the inductive effect.

It is observed that typically, particle-wave interactions affect large sections of the un-

perturbed distribution to the extent that nonlinear effects are expected. Although a

detailed physical mechanism explaining this behavior is not provided, sets of parameters

which reproduce time dispersive signals with qualitative features and in a similar energy

range to events observed by the SEI instrument are reported. Inverse dispersion was also

attributed to the relative motion between source and detector: a spacecraft that follows

the cross-field path of an Alfvén wave source, at a certain altitude lower than the source,

will detect slow energy electrons ahead of higher energy ones, provided that the detector

speed is faster than the wave source itself. The temporal extent of the energy inversion

is inversely proportional to the vertical distance between the source and detector, but is

also affected by the relative speed of the detector.

Chapter 6 discusses trapping of electrons by Kinetic Alfvén Waves originated near

the equatorial region. Simulations indicate that Landau damping remains an active and

influential factor in wave-particle dynamics for low latitude magnetospheric plasmas,

despite that conditions are more favorable for particle trapping instead. This is an indi-

cation that the nonlinear theory of resonant interactions by O’Neil [1965] is unsuitable

for the system at hand. A parametric study shows that damping rates increase rather

sensitively with decreasing perpendicular scales, and to a lesser degree with increasing

temperatures. Fluid theory predicts a similar dependence of the electric field magnitude

under the same parameters. Thus, Landau damping effects are enhanced when there is

an increase of the electric field. This is related to the fact that trapping of electrons

is more efficient at intermediate values of the wave perpendicular scale. Regardless of

the efficiency of trapping, the simulations reveal that waves are unable to survive for
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distances longer than 3 Re. This emphasizes the importance of studying electron trap-

ping in the magnetosphere using a formulation that incorporates nonlocal dispersive

effects. Disregarding the effects of Landau damping will also likely lead to a large over-

or under-estimation of the energy gain of interacting electrons.

Chapter 7 focused on the formation of unstable horseshoe distributions as a com-

bined result of electron acceleration by inertial Alfvén waves and subsequent pitch angle

dispersion due to magnetic convergence. The time evolution of the local distribution at

selected points along the simulation domain was followed, and clearly identified horse-

shoe distributions that did not overlap with the bulk plasma were analyzed including the

formation of horseshoe distribution before the appearance of electron conics. A compu-

tational procedure applied to the numerical distributions is used to identify the unstable

component and fit it to an analytic expression. These functional representations were

used to evaluate the convective growth length of the transverse magnetic mode following

Bingham and Cairns [2000]. The convective growth length is inversely proportional to

the wave growth rate and so small values are an indication of large emission. In general,

the time evolution at a given location indicates that convective lengths decrease with

time in an average sense, while exhibiting considerable time variability. As a function

of time, the frequency of emission shifts towards the local electron cyclotron frequency.

In some cases, the convective length shows drastic variations, typically by several orders

of magnitude over very short time intervals. These abrupt changes take place where

waves that have been reflected within the IAR reach the simulated point of observation.

Comparison between results at different locations confirms that the maximum efficiency

of the ECI occurs at the location where ωpe/ωce takes its minimum value.

The efficiency of AKR generation due to variations of the plasma temperature and

perpendicular scale was investigated. Comparison cases against the baseline case dis-

cussed in chapter 7 suggests that larger growth rates are associated with waves with

larger phase velocities, regardless of wave damping. Unfortunately, the efficiency of

AKR generation at low values of magnetospheric density could not be investigated as

it was out of the dynamic range of DK1D. However, the density variation of magneto-

spheric electrons was investigated. It was found that for densities one order of magnitude

larger than the ranges reported by in situ or remote observations, in cavities where AKR

has been measured, the estimated convective lengths obtained are of the same order of

size as the auroral density cavity, where no significant emission is expected.

The findings reported in this thesis substantiate the importance of dispersive Alfvén

waves in Earth’s magnetosphere, and identify the need for improved nonlinear and higher-

dimensional simulation codes that have the improved spatial and temporal resolution

needed to address trapping and generation of AKR.
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Appendix A

The Fermi Interaction

A.1 Single particle Fermi interaction

Imagine a charged particle moving to the right at a constant rate v0, with respect to

some laboratory reference frame. An electromagnetic wave catches up to the particle

while moving also to the right with constant speed vw > v0 (Figure A.1a). In a frame

reference moving with the perturbation, however, the wave looks like an electrostatic

field, characterized only by the amplitude of its scalar potential, ϕ0. A seen by the

moving observer, the particle approaches towards the wave with speed v′0 = v0 − vw < 0

(Figure A.1b). Energy conservation in the wave frame provides the velocity of the particle

while under the influence of the wave field,

v′ = ±
√
v′20 +

2eϕ

m
, (A.1)

where the charge is set to q = −e, since we are interested in interactions involving

electrons, and ϕ represents the potential at the position of the electron. The sign of

the potential in (A.1) reveals the nature of the wave-electron interaction: a positive

vw

v0

(a) absolute frame

vw = 0

v′0

(b) wave frame

Figure A.1: A fast wave reaches an electron
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potential becomes an attractor for electrons, while a negative potential constitutes a

repeller. These two scenarios are to be discussed next using simple arguments of particle

motion in a conservative field.

Figure A.2 sketches the potential (left), force and electric field (middle), and energy

(right); all of them as a function of the position in the wave frame. A positive (negative)

force imply acceleration to the right (left). For a positive potential, the force indicates

acceleration towards the position of maximum potential, regardless of where the particle

is located inside the spatial domain of the wave. Thus, an electron entering the domain

of a wave with spatial extension L from the left with constant speed v′0 increases its

velocity until it reaches the center of the wave with a maximum speed of v′(ϕ0). Due to

its inertia, the electron moves further to the right into the region where it experiences

negative acceleration. From the bottom panel, it is clear that the electron leaves the

wave with the same speed it entered. The net effect of the whole interaction consists on

a shift in position ∆x′ relative to the position it would have had if there was no wave:

∆x′ = v′0(t− t0)− L. (A.2)

The time t − t0 it takes for the interaction to take place is a function of the potential

and its dimensions:

t− t0 =

∫ L

0

dx′

v′
=

∫ L

0

dx′√
v′20 + 2eϕ/m

. (A.3)

Notice that a very similar scenario occurs with an electron that enters the wave from the

right. Once under the influence of the wave, its speed increases towards the center of

the wave; this gain in momentum causes the particle to overshoot the point of attraction

and move into the region of positive acceleration where its speed decreases, to finally

abandon the wave at the same speed it entered. In both cases the electrons kinetic

energy is always higher than its initial value, which indicates no possibility for resonant

interaction; particles interacting with this wave rush and move past it, regardless of

initial velocity and orientation.

Consider now the case ϕ(x) < 0 (Figure A.3). In this case, the force accelerates the

particles away from the wave. Two different cases unfold: for initial speeds such that

1/2mv′20 > eϕ0, the electron decreases its speed while in the wave domain to a minimum

speed of
√
v′20 − 2e|ϕ0|/m, but eventually will move to the other extreme of the wave

with final speed equal to its initial speed. If, on the other hand, 1/2mv′20 < eϕ0, the

electron reaches a turning point where its velocity becomes zero, further motion sees the

particle moving back and eventually exiting the wave at the same point it entered with
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ϕ > 0

(a) Electrostatic potential

F⃗ = e∇⃗ϕ
E⃗ = −∇⃗ϕ

(b) Electric field and force

EK = 1/2mv′2

EP = −eϕ
EK + EP

(c) Energy

Figure A.2: Electron interaction with positive potential in the wave frame. The particles
final velocity is unchanged after interaction

ϕ < 0

(a) Electrostatic potential

F⃗ = e∇⃗ϕ
E⃗ = −∇⃗ϕ

(b) Electric field and force

EK = 1/2mv′2

EP = −eϕ
EK + EP

(c) Energy

Figure A.3: Electron interaction with negative potential in the wave frame. The particles
final velocity changes if its initial energy is lower than the wave potential

final speed v′f = −v′0. In the rest frame, the speed at which the electron leaves the wave

is:

vf = 2vw − v0. (A.4)

The single special case of initial velocity v′0 =
√

2eϕ0/m causes the electron to sit still

at the location of maximum potential. Any other value will drive the particle away from

this point.
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v0

vf

vw − vϕ vw

vw

vw + vϕ

vϕ =
√

2eϕ0

me

(a) Final speed as a function of initial speed

v

f(v)

vw − vϕ vw vw + vϕ

(b) Electron redistribution

Figure A.4: Speed mapping on a distribution after a Fermi interaction

A.2 Fermi interaction over a distribution of particles

Lets briefly consider the effect of Fermi interactions over a given distribution. From here

onwards we consider wave-particle interactions with negative potentials unless otherwise

specified. Recall that, even though the potential affects all particles, only electrons whose

initial speed in the wave frame is such that

0 ≤ |v′0| ≤
√

2eϕ0
me

(A.5)

will have net non-zero acceleration. From the point of view of the plasma itself, according

to equation (A.4), the condition (A.5) maps electrons with initial speeds:

vw −
√

2eϕ0
me

< v0 < vw, (A.6)

into the interval:

vw < vf < vw +

√
2eϕ0
me

. (A.7)

The diagram in Figure A.4 illustrates the mapping of speeds before and after interaction

with the wave (left). This mapping advects part of the distribution into forming a beam

after interaction (right).
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Appendix B

The Corner Transport Upwind

method

The following is a summarized description of the modified Upwind Method with high-

resolution corrections, for the case where the advection coefficients are divergent-less

(∇ · v = 0). The entirety of the ideas, terminology, and the mathematical treatment

included here was taken from LeVeque [2002], where the interested reader will find a

much more complete discussion and extension of these ideas into more general cases.

The Upwind Method belongs to the category of Finite Volume Methods (FVM) used

to solve problems where conservation laws are enforced. In this context, if the property

q(x, t) of the system is conserved, it is possible to obtain its evolution by tracking the

flow across each cell boundary and the boundaries of the simulation domain. The Up-

wind approach is used in advection related problems where the direction of the flow of

information is known; exploiting this knowledge leads to a one-sided scheme for q(x, t),

instead of a centered one.

While finite differential methods use pointwise discretization, FVM defines piecewise

continuous functions with compact support Ci of the extent of the i-th cell size; in this

case, discretized quantities represent the cell average value in its domain:

Qn
i ≃ 1

∆x

∫
Ci

dx q(x, tn). (B.1)

Even though the right hand side on equation (B.1) correctly defines the average value

of q(x, t) in the interval defined by the limits of the integral, the functional form q(x, t)

is not known and instead all we have is a simplified representation, piecewise continuous
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and differentiable, q̃(x, t), which is defined under the conditions:

Qn
i =

1

∆x

∫
Ci

dx q̃(x, tn), (B.2)

and,

q̃(xi, t
n) = Qn

i . (B.3)

According to LeVeque [2002], these conditions ensure the approximation is second or-

der accurate provided q(x, t) is a well behaved (continuous and differentiable) function.

Equation (B.2) uses the construction q̃(x, t) to obtain an approximation of the average

value for the interval at each iteration.

B.1 Conservation law

Consider a finite one dimensional region subdivided into N cells of equal size ∆x. The

i-th ’volume’ spans the region Ci = (xi− 1
2
, xi+ 1

2
), where xj = j∆x. Assuming q(x, t)

follows a conservation law, the rate of change of the amount of q(x, t) inside its domain

is given by the fluxes across the boundaries:

d

dt

∫ x
i+1

2

x
i− 1

2

dx q(x, t) = f(q(xi− 1
2
, t))− f(q(xi+ 1

2
, t)), (B.4)

each flux f(q(x, t)) represents the amount of q(x, t) per unit time transported across any

given x. The time integral of equation (B.4), from time tn to time tn+1, provides the

update scheme for q(x, t) in the form:

∫ x
i+1

2

x
i− 1

2

dx q(xi, t
n+1) =

∫ x
i+1

2

x
i− 1

2

dx q(xi, t
n)+

∫ tn+1

tn
dt f(q(xi− 1

2
, t))−

∫ tn+1

tn
dt f(q(xi+ 1

2
, t)).

(B.5)

Analogous to the numerical definition for q(x, t), the flow across the cell boundaries is

regarded as a time average of the traversing amount of the quantity q(x, t) across any

given cell boundary, per unit time,

Fn
i± 1

2

≃ 1

∆t

∫ tn+1

tn
dt f(q(xi± 1

2
), t). (B.6)
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These elements derive into the following numerical algorithm:

Qn+1
i = Qn

i − ∆t

∆z

(
Fn
i+ 1

2

− Fn
i− 1

2

)
. (B.7)

B.2 Upwind Method for advection in 1D

Before presenting the numerical form of the Vlasov equation that provides the time

evolution of the distribution function, let us discuss the main ideas regarding upwind

transport over the equation for advection in one dimension:

∂q(x, t)

∂t
+ u

∂q(x, t)

∂x
= 0, (B.8)

which has the form of the free force Vlasov equation. A typical example of a system

obeying this equation involves a liquid flowing through a pipe of constant cross-section

A. Suppose the fluid has a tracer within, whose is given by Aq(x, t). In this context,

equation (B.4) represents the time variation of the total mass of tracer within positions

xi− 1
2
and xi+ 1

2
along the pipe, which of course depends on the fluxes at the boundaries

only, assuming there are no other sources within the pipe section. Characteristic solutions

for equation (B.8) have the form q(x, t) = q(x− ut), so the tracers linear density profile

simply shifts its position towards the right or left, depending on the sign of u. The amount

of tracer that crosses the boundary per unit time, or flux, is given by f(q(x, t)) = uq(x, t).

xi− 1
2

xi+ 1
2

q(x, tn)

q̃(x, tn)

(a) Constant

xi− 1
2

xi+ 1
2

q(x, tn)

q̃(x, tn)

(b) Linear

Figure B.1: Piecewise approximations q̃(x, tn)
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B.2.1 Upwind method for piecewise constant functions

A first order method for (B.8) is obtained by taking q̃(x, tn) = Qn
i (see figure B.1a).

Assuming that the flow direction is known, advection becomes one-sided:

Fn
i+ 1

2

=

{
uQn

i if u > 0

uQn
i+1 if u < 0.

(B.9)

This dependence naturally imposes a condition on the numerical scheme in order to

ensure conservation at every time step. More specifically, it constrains the velocity of

advection, which is to fall within the range:

0 ≥ |u|∆t
∆x

≥ 1, (B.10)

since evidently, advection at higher velocities introduces information coming form non-

adjacent cells, which openly contradicts the flux description provided. Substituting (B.9)

into equation (B.7) leads to the first order Upwind method for advection:

Qn+1
i =

⎧⎪⎪⎨⎪⎪⎩
(
1− u

∆t

∆x

)
Qn

i + u
∆t

∆x
Qn

i−1 if u > 0(
1 + u

∆t

∆x

)
Qn

i − u
∆t

∆x
Qn

i+1 if u < 0.
(B.11)

Notice that (B.11) correctly expresses Qn+1
i as a weighted sum of its previous value and

the value of the cell from where the flow proceeds. This situation is illustrated in Figure

B.2, showing a hypothetical system where an initial configuration is advected to the right

with constant velocity u. After an iteration, each piecewise section moves to the right so

that the jump initially at xi− 1
2
is now at a distance u∆t inside the next cell. Each new

cell value is computed by averaging the new configuration according to the definition

(B.2).

A common implementation in the form of a single upwind formula, valid for any u

reads:

Qn+1
i = Qn

i − ∆t

∆x

(
u−dQn

i+ 1
2

+ u+dQn
i− 1

2

)
(B.12)

u− = min(u, 0)

u+ = max(u, 0)

dQn
j = Qn

j+ 1
2

−Qn
j− 1

2
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(a) Qn
i−1

Qn
i

Qn
i+1

(b)

(c)

i− 1
2 i+ 1

2

Qn+1
i−1

Qn+1
i

Qn+1
i+1

Figure B.2: The upwind method using piecewise constant functions. (a) Initial configu-
ration. (b) After some time ∆t these volumes shift to the right by a distance u∆t. (c)
The new values Qn+1

i correspond to the weighted average of Qn
i−1 and Qn

i .
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B.2.2 Upwind Method for Piecewise linear functions

The Upwind Method using constant functions (B.11) can be arranged in the form of

forward or backward finite differences, depending on the direction of the flow. In any case,

this means that the approximation is only first order accurate. Higher order accuracy

can be achieved by introducing higher order polynomials in the formulation. Piecewise

linear functions complying with the conditions (B.2) and (B.3) have the form

q̃n(x, tn) = Qn
i + σni (x− xi), (B.13)

where

xi =
(xi− 1

2
+ xi+ 1

2
)

2
= xi± 1

2
∓ ∆x

2
. (B.14)

Just as in the piecewise constant case shown above, one can calculate the new update

by evaluating the shifting according to the characteristic solution, and compute the new

average as defined in equation (B.2). Within the DK1D code, however, the update form

of the distribution function has been coded in terms of the fluxes across the boundaries,

so we are interested in addressing the differencing flux formulation instead. Expressions

for the flux are found by integrating uq̃(x, t) in time at the boundaries, as suggested in

equation (B.6),

Fn
i− 1

2

=
1

∆t

∫ tn+1

tn
dt uq̃n(xi− 1

2
, t)

=
1

∆t

∫ tn+1

tn
dt uq̃n(xi− 1

2
− u(t− tn), tn)

=

⎧⎪⎨⎪⎩
1

∆t

∫ tn+1

tn dt u
[
Qn

i−1 + σni−1

(
xi− 1

2
− u(t− tn)− xi−1

)]
if u > 0

1

∆t

∫ tn+1

tn dt u
[
Qn

i + σni

(
xi− 1

2
− u(t− tn)− xi

)]
if u < 0

=

⎧⎪⎪⎨⎪⎪⎩
u

[
Qn

i−1 +
σni−1

2
(∆x− u∆t)

]
if u > 0

u

[
Qn

i − σni
2
(∆x+ u∆t)

]
if u < 0

. (B.15)

Substitution of these expressions into equation (B.7) lead to the following form for the
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upwind method:

Qn+1
i =

⎧⎪⎪⎨⎪⎪⎩
Qn

i − u∆t

∆x
(Qn

i −Qn
i−1)−

u∆t

2

(
1− u

∆t

∆x

)
(σni − σni−1) if u > 0

Qn
i − u∆t

∆x
(Qn

i+1 −Qn
i ) +

u∆t

2

(
1 + u

∆t

∆x

)
(σni+1 − σni ) if u < 0

. (B.16)

Notice that the use of linear piecewise functions has simply added a second order correc-

tion to the first order upwind formula. The correction term is still undetermined since

the slopes have not been defined yet. Different methods usually take advantage of this

degree of freedom to set the slopes to some common value,

σni = σni−1 =
∆Qn

i− 1
2

∆x
, (B.17)

so that the flux formula can be expressed as

Fn
i− 1

2

= u−Qn
i + u+Qn

i−1 +
|u|
2

(
1− |u|∆t

∆x

)
∆Qn

i− 1
2

. (B.18)

Second order methods provide superior accuracy than first order methods in the

sense that they follow rapid changes more quickly. In regions of high variability, on

the other hand, first order methods react poorly to sudden changes, causing diffusive

effects on the solution. However, first order methods have the advantage that their

numerical solutions preserve monotonicity, while the introduction of nonzero slopes tends

to generate spurious oscillations in regions of rapid change or at sharp discontinuities;

such oscillations could grow and eventually become a source of numerical instability.

In order to avoid this oscillatory behavior, these high-resolution methods usually apply

some limiter value to the slope so to enforce local monotonicity, at the expense of allowing

some degree of diffusion locally. A standard criteria to ensure monotonicity consists on

requiring the method to be total variation diminishing (TVD), or,

∞∑
i=−∞

|Qn+1
i −Qn+1

i | ≤
∞∑

i=−∞
|Qn

i −Qn
i |. (B.19)

For example, the following definition provides a method which is both TVD and second-

order accurate:

σni = minmod

(
Qn

i −Qn
i−1

∆x
,
Qn

i+1 −Qn
i

∆x

)
, (B.20)
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where the minmod function is defined by,

minmod(a, b) =

⎧⎪⎨⎪⎩
a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab < 0.

(B.21)

This choice of slope selects the lower between the right and left differences, in regions

of monotone behavior; slopes with different signs signal a local maximum or minimum,

and the slope is assigned a value of zero. Other methods also apply some limit to the

value of the slope, based on inspection of the surrounding data, in order to minimize

undesired behavior.

B.3 Convergence of the Upwind Method

A major concern about the use of numerical methods as differential equation solvers

is to ensure that the numerical solution is a good approximation to the real one. We

already used a logical/physical argument to introduce the Courant condition (equation

B.10). The Courant condition appears naturally in hyperbolic problems. However, the

Courant condition is only necessary, but not sufficient, to guarantee the convergence of

the numerical solutions.A numerical method is considered convergent if the numerical

solution at the cell points tends to the analytic solution as ∆t→ 0. One way to establish

convergence consists on verifying that the method is both consistent and stable. The

consistency of the numerical solution ensures that the amount of error introduced after

a single iteration is small, while stability asserts that the accumulated error of multiple

iterations remains bounded to some acceptable level.

Evidently, it is easier to establish consistency than stability. A standard criterion for

consistency says that the local truncation error, which is defined as:

τn =
Qn+1 − qn+1

∆t
, (B.22)

goes to zero as ∆t → 0. If the method is proven stable, the local truncation error

indicates its global order of accuracy.

Verifying stability, on the other hand, it is far more involved. It is possible to show

that the first order Upwind Method is stable given that the Courant condition is satisfied;

the demonstration is reasonably uncomplicated (see section 8.3 in Laveque’s book), but

it is not simple enough as to be included here without falling out of the scope of interest

for this investigation. Plus, the proof is not valid for the nonlinear Upwind Method with

limiters. As it turns out, stability on a nonlinear Upwind Method can be established
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provided that the method is TDV, and that the Courant condition is satisfied.

B.4 Upwind Method in two dimensions

Now let us consider the following advection equation:

∂q(x, y, t)

∂t
+ u

∂q(x, y, t)

∂x
+ v

∂q(x, y, t)

∂y
= 0, (B.23)

for which the characteristic solutions has the form q(x, y, t) = q(x − ut, y − vt, t). Gen-

eralization of the Upwind Method for the case of advection in 2 dimensions is fairly

straightforward, although not as trivial as to say:

Qn+1
ij = Qn

ij −
∆t

∆x

[
u+(Qn

ij −Qn
i−1,j) + u−(Qn

i+1,j −Qn
ij)
]

− ∆t

∆y

[
v+(Qn

ij −Qn
i,j−1) + v−(Qn

i,j+1 −Qn
ij)
]
.

(B.24)

Upon close inspection, one notices that this corresponds to uncoupled advection flowing

normal to x or y with constant speed u or v, respectively. One recognizes that, in order to

obtain a method that correctly models advection in any arbitrary direction, there must

be additional terms in the update form for q(x, y, t), to account for flux contributions

from diagonally adjacent neighbors (see Figure B.3).

Analogously to the one dimensional case, lets define each finite volume as the region

within the cell Cij = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
). We regard the approximate value Qn

ij

as the cell average of the quantity q(x, y, tn),

Qn
ij =

1

∆x∆y

∫ x
i+1

2

x
i− 1

2

dx

∫ y
j+1

2

y
j− 1

2

dy q(x, y, tn). (B.25)

Lets assume u > 0 and v > 0. Figure B.3a marks the cell sources of inflow into Cij . The

Courant condition necessary for stability is established by constraining the flow velocity

to less than a cell per time iteration. In this case reads:

max

(⏐⏐⏐⏐u∆t∆x

⏐⏐⏐⏐ , ⏐⏐⏐⏐v∆t∆y

⏐⏐⏐⏐) ≤ 1. (B.26)

Again, the Upwind Method is constructed by:

• defining initial piecewise constant functions q̃(x, y, tn) at each cell;

• evolving the solution in time, q̃(x, y, tn+1) = q̃(x− u∆t, y − v∆t, tn);
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i− 1 i i+ 1

j − 1

j

j + 1

(a) Transverse inflow in 2 dimensions

i− 1 i i+ 1

j − 1

j

j + 1

(b) Each transverse flow is proportional to
the jump at their corresponding cell boundary
(marked red)

Figure B.3: Transverse inflow into cell Cij for the case u > 0 and v > 0

• evaluating the new average over the cell Qn+1
ij through equation (B.25):

Qn+1
ij =

1

∆x∆y

∫ x
i+1

2

x
i− 1

2

dx

∫ y
j+1

2

y
j− 1

2

dy q̃(x− u∆x, y − v∆y, tn)

=
1

∆x∆y

∫ x
i+1

2
−u∆t

x
i− 1

2
−u∆t

dx

∫ y
j+1

2
−v∆t

y
j− 1

2
−v∆t

dy q̃(x, y, tn)

=Qn
ij −

u∆t

∆x
(Qn

ij −Qn
i−1,j)−

v∆t

∆x
(Qn

ij −Qn
i,j−1)+ (B.27)

uv

2

(∆t)2

∆x∆y

[
(Qn

ij −Qn
i,j−1)− (Qn

i−1,j −Qn
i−1,j−1)

+(Qn
ij −Qn

i−1,j)− (Qn
i,j−1 −Qn

i−1,j−1)
]
.

The first three terms of this expansion reproduce the form (B.24). The additional terms

account for diagonally directed fluxes. Figure B.3b marks the boundaries undergoing

inflow into Cij . Take for example the interface between cells Ci,j−1 and Cij . A fraction

of the inflow into Cij from this boundary is ultimately advected into cell Ci+1,j ; clearly,

the modification to the cell average caused by this fraction must be subtracted, since it

does not really contribute to the cell average Qn+1
ij , but it has been already included in

the third term of volume average. The value of the contribution in this case is equal

to Qn
ij − Qn

i,j−1, times the fractional part of the area, 1/2uv∆t2, covered in cell Ci+1,j ;

this corresponds to the fourth term in equation (B.27). The remaining three corrections

correspond each to one of the other diagonal fluxes.

Let us forget about the restriction u > 0 and v > 0. To account for fluxes in any
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i− 1 i

j

u−v+∆Q u+v+∆Q

u−v−∆Q u+v−∆Q

Figure B.4: All possible transverse paths for the jump ∆Qi−1/2,j = Qij −Qi−1,j . (Taken
from [LeVeque, 2002])

arbitrary direction, consider all possible lateral contributions that potentially take place

as the vertical jump ∆Q moves transversely (see Figure B.4). There are four possible

scenarios for transverse flow, depending on the sign of each velocity component; then

four correction terms arise [LeVeque, 2002]:

Gi−1,j− 1
2

= −1

2

∆t

∆x
v−u−(Qij −Qi−1,j),

Gi−1,j+ 1
2

= −1

2

∆t

∆x
v+u−(Qij −Qi−1,j),

Gi,j− 1
2

= −1

2

∆t

∆x
v−u+(Qij −Qi−1,j),

Gi,j+ 1
2

= −1

2

∆t

∆x
v+u+(Qij −Qi−1,j). (B.28)

Similar considerations lead to additional terms arising due to the horizontal cell bound-

aries:

Fi− 1
2
,j−1 = −1

2

∆t

∆y
v−u−(Qij −Qi,j−1),

Fi+ 1
2
,j−1 = −1

2

∆t

∆y
v−u+(Qij −Qi,j−1),

Fi− 1
2
,j = −1

2

∆t

∆y
v+u−(Qij −Qi,j−1),

Fi+ 1
2
,j = −1

2

∆t

∆y
v+u+(Qij −Qi,j−1). (B.29)

The corrections just presented correctly describe advection in any direction, yet the

method is still first order accurate. For higher order corrections one further update each
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of the fluxes as

Fi− 1
2
,j + =

|u|
2

(
1− ∆t

∆x
|u|
)
δi−1/2,j ,

Gi,j− 1
2

+ =
|v|
2

(
1− ∆t

∆y
|v|
)
δi,j−1/2. (B.30)
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Appendix C

Electron trapping and

acceleration by kinetic Alfven

waves in the inner magnetosphere

C.1 Abstract

In this paper we study the interaction of kinetic Alfven waves generated near the equa-

torial plane of the magnetosphere with electrons having initial energies up to ∼ 100 eV.

Wave-particle interactions are investigated using a theoretical model of trapping into an

effective potential generated by the wave parallel electric field and the mirror force acting

along geomagnetic field lines. It is demonstrated that waves with an effective potential

amplitude on the order of ∼ 100 − 400 V, and with perpendicular wavelengths on the

order of the ion gyroradius, can trap and efficiently accelerate electrons up to energies of

several keV. Trapping acceleration corresponds to conservation of the electron magnetic

moment and, thus, results in a significant decrease of the electron equatorial pitch-angle

with time. Analytical and numerical estimates of the maximum energy and probability

of trapping are presented and the application of the proposed model is discussed.

C.2 Introduction

Hot (few keVs) electron populations in Earth’s inner magnetosphere play an important

role in the generation of whistler waves [e.g., Li et al., 2010; Fu et al., 2014; Mourenas

et al., 2015, and references therein] and in scattering electrons into the atmosphere to

produce diffusive aurora [e.g., Arnoldy, 1974; Akasofu, 1974]. Besides convection and
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(or) substorm injections of hot magnetotail electrons into the inner magnetosphere [e.g.,

Gabrielse et al., 2012; Ganushkina et al., 2013, and references therein], local acceleration

of cold ionospheric electrons represents a promising scenario for formation of hot elec-

tron populations. Effective acceleration of cold magnetized electrons is usually provided

by wave-particle resonant interactions. In the inner equatorial magnetosphere sub-keV

electrons (∼ 100 eV) can resonate with electron cyclotron harmonics [e.g., Horne et al.,

2000], upper band chorus waves [e.g., Ni et al., 2011b], very oblique low band chorus

waves [Artemyev et al., 2015a], kinetic Alfven waves (KAWs) [e.g., Hasegawa, 1976;

Wygant et al., 2002], and broad low frequency electrostatic noise that consists of a mix-

ture of electron holes and double layers [Mozer et al., 2015, and references therein].

Excitation and amplification of wave emissions is also closely related to injections from

the magnetotail [Angelopoulos et al., 2002; Ni et al., 2012; Mozer et al., 2014; Malaspina

et al., 2015; Ergun et al., 2015]. Scattering of sub-keV electrons by upper band chorus

and electron cyclotron waves mainly results in precipitation, while parallel electric fields

of very oblique low band chorus waves, KAWs, and electrostatic noise, can effectively

accelerate electrons along magnetic field lines.

Phase velocities of very oblique low band chorus waves are comparable with thermal

electron velocities for electron energies between 100-1000 eV, and thus Landau resonance

interaction is possible [Artemyev et al., 2012]. In contrast, the phase velocity of KAWs is

too low at the equatorial region around L-shells 6−9 to allow these waves undergo Landau

resonance with ∼ 100 eV electrons [situation is different for aurora region where high

amplitude of Alfven velocity becomes comparable with thermal electron energy running

the Landau resonance interaction, see, e.g., Chaston et al., 2000, 2002b]. However, the

amplitude of the wave potential for KAWs is large enough to effectively expand the

range of resonance velocities. Although a full understanding of the interaction between

KAWs and electrons remains unclear, but parallel electric fields are known to play an

important role [Kletzing et al., 2003; Damiano and Wright, 2005; Chaston et al., 2008;

Chaston et al., 2012; Watt et al., 2004, 2005, 2006]. The magnitude of parallel electric

fields in KAWs can be many times larger in the plasma sheet than above the ionosphere

[Watt and Rankin, 2009] and can drive wave-particle interactions via at least three

mechanisms: diffusive-like electron heating [e.g., Hasegawa and Mima, 1978; Potapenko

et al., 2006; Tikhonchuk and Rankin, 2002; Lysak and Song, 2003], acceleration due

to reflection of electrons from the wave potential wall [Kletzing and Torbert, 1994],

and possible electron trapping. The later mechanism was proposed by Hasegawa and

Mima [1976] for soliton-like KAW trapping of electrons into a potential well formed

by parallel electric fields. This classical trapping effect is significantly modified in the

case of inhomogeneous plasma [Laval and Pellat, 1970; Karpman and Shklyar, 1972] and
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magnetic field gradients [Nunn, 1971; Karpman et al., 1974].

Wave propagation along dipole magnetic field lines away from the equatorial plane

has two effects on electrons: 1) the competition of the wave parallel electric field and

mirror force can generate an effective potential well for trapped electrons, and 2) trapped

particles moving with the wave velocity along the spatially growing magnetic field are

accelerated due to conservation of the first adiabatic invariant (magnetic moment). This

mechanism of acceleration works well for very oblique whistler waves [Artemyev et al.,

2012] and for electrostatic double layers [Artemyev et al., 2014]. Recent numerical mod-

elling [Watt and Rankin, 2009, 2010] suggests that a similar mechanism can be realised

in a system with KAWs. Moreover, modern spacecraft observations reveal an abundance

of such waves in the equatorial inner magnetosphere [Chaston et al., 2014; Ergun et al.,

2015] where they are correlated with the presence of low frequency electrostatic noise

[Mozer et al., 2013, 2015; Malaspina et al., 2015]. Thus, detailed parametric investigation

of sub-keV electron trapping and acceleration by KAWs represents an interesting and

important problem.

In this paper we generalize the approach proposed by Artemyev et al. [2014] to

account for electron interactions with KAWs having a finite transverse scale on the

order of the ion gyroradius. We propose a new theoretical model describing electron

trapping by KAWs and estimate the maximum energy that can be gained by trapped

electrons.

C.3 Electron trapping and acceleration

Superthermal electrons can efficiently interact with intense KAW having a pronounced

parallel electric field component. Such fields do not significantly perturb the electron

gyromotion and, thus, the first adiabatic invariant (magnetic moment) is conserved. In

this case, Landau resonance k∥v∥ = ω between waves with frequency ω and electrons

moving with the parallel velocity v∥ should be considered. Resonance implies that the

wave parallel phase velocity ω/k∥ ∼ vA is approximately the same magnitude as the

electron thermal velocity (vA is the Alfven velocity). Around L-shell ∼ 9 the Alfven speed

vA amplitude is generally less than about 2000 km/s, while electron thermal velocities (for

energy 50−500 eV) are about 4000-13000 km/s. Therefore, the resonant condition k∥v∥ =

ω cannot be easily satisfied. However, the presence of a parallel electric field provides an

efficient widening of the resonance region [e.g., Karney, 1978], making resonance more

favorable: v∥ ∈ [ω/k∥ ±
√
eE∥/mek∥] with me and e the electron mass and charge,

respectively. For scalar potential amplitudes Φ0 ∼ E∥/k∥ ∼ 100 − 400 V the resonant

condition can be satisfied easily for electrons with energies up to 550 eV. Electrons in this
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Figure C.1: The assumed shape of the kinetic Alfven wavepacket. The effective scalar
potential is shown).

energy range are consequently trapped by waves into Landau resonance, and are able to

reach higher latitudes than they normally do. As they move along field lines conserving

their magnetic moment they are efficiently accelerated [see examples of such acceleration

mechanism in Artemyev et al., 2012, 2014]. The efficiency of electron trapping and

acceleration by parallel eletric fields of KAWs during this intercation is estimated below.

In our analysis the effects of transverse components of the wave electric field are

neglected (see Discussion) and only parallel electron motion is considered. The wave

parallel electric field is described by an effective scalar potential Φ that includes contri-

butions from the electric scalar potential and the parallel component of the magnetic

vector potential (see Appendix A). The amplitude of the effective potential is Φ0, while

the wave dispersion relation provides the function k∥(z), where z is the field aligned

coordinate (see Eq. (C.6) in Appendix A). The corresponding wave phase ψ is

ψ =

z∫
k∥(z

′)dz′ − ωt+ const. (C.1)

The shape of the wave packet shown in Fig. C.1 includes variations over a few wave

periods [in agreement with numerical models, e.g., Watt and Rankin, 2009].

C.3.1 Equations of motion

The geomagnetic topology characteristic of the inner magnetosphere will be considered

to be a curvature-free dipole magnetic field B(λ) = Beqb(λ) [Bell, 1984] with a plasma
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density defined by ne(λ) = neq cos
ℓ λ where index ℓ = −5 is taken from the empirical

model presented by Denton et al. [2006] for L-shell∼ 6 − 7. The relation between the

field aligned coordinate and magnetic latitude is given by: dz = R0

√
1 + 3 sin2 λ cosλ

and R0 = REL, while the equatorial value of the plasma density neq is given by the

Sheeley et al. [2001] model. The main deviation of magnetic field configuration from the

dipole field at L ∼ 6− 9 (the L-shell range considered in this study) corresponds to the

near-equatorial region where currents of hot injected ions can significantly deform the

magnetic field lines [see, e.g., Tsyganenko et al., 2003]. We explain a possible role of

such magnetic field reconfiguration for KAW interaction with electrons in Discussion.

We introduce the dimensionless spatial coordinate s = z/R0 and normalized time

coordinate t→ tvA,eq/R0, where vA,eq is the equatorial Alfven speed. The corresponding

Hamiltonian of electrons includes three terms: the electron kinetic energy corresponding

to the motion along magnetic field linesmev
2/2 (where v = ṡ), the electron kinetic energy

corresponding to the gyrorotation µB(s) (where µ is the electron magnetic moment), and

the potential energy ∼ Φ [see gyroaveraged equations of motion in Northrop, 1963]. The

dimensionless form of this Hamiltonian can be written as

H =
1

2
v2 + h sin2 αeq,0b(s)− ϕ0w(s)F (ψ), (C.2)

where αeq,0 is equatorial initial pitch-angle, and the function F (ψ) = Φ/Φ0 is shown in

Fig. C.1. The function w(s) is determined by the dispersion relation (see Eq. C.10 in

Appendix), αeq,0 is the initial equatorial pitch-angle, h ≈ 60(Ee/100eV)(L/9)2, Ee is the

initial electron energy, and ϕ0 ≈ 60(Φ0/100V)(L/9)
2. The initial dimensionless particle

energy (in absence of waves) is h, while the dimensionless phase (C.1) is defined by:

ψ = χ

⎛⎝ s∫
K(s′)ds′ − t

⎞⎠ , (C.3)

where K(s) is given by Eq. (C.7), χ ≈ 250(2s/T )(L/9)2, and T is the wave period

(see Appendix A). For all calculations in this paper we use L = 9. However, as Eq.

(C.2) shows, both factors h and ϕ0 depend on L similarly. Thus, change of the L-shell

corresponds to multiplication of the initial energy ∼ v2 on factor (9/L)2.
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Figure C.2: Profiles of functions b(s), ∂b(s)/∂s, K(s), and w(s).

The equations of motion corresponding to the Hamiltonian (C.2) is defined by,

s̈ = −h sin2 αeq,0
∂b

∂s
+ ϕ0

∂w

∂s
F + ϕ0χKw

∂F

∂ψ

≈ −h sin2 αeq,0
∂b

∂s
+ ϕ0χKw

∂F

∂ψ

ψ̇ = χ (Kṡ− 1) (C.4)

where we have taken into account that χ≫ 1. Profiles of functions b(s), ∂b(s)/∂s, K(s),

and w(s) are shown in Fig. C.2. Spacecraft observations in the equatorial magnetotail

suggest that KAWs have a significant amplitude of electrostatic field ∼ 10− 100 mV/m,

while k⊥/k∥ ratio is within the range 10 − 100 [e.g., Chaston et al., 2012, 2014]. Thus,

almost all observed electric field corresponds to the transverse (relative to the background

magnetic field) component. Using the KAW dispersion k⊥ρs ∼ 1 [Hasegawa, 1976] with

the ion acoustic gyroradius ρs ∼ 50−100 km (for L ∼ 7−9, hot ion temperature ∼ 1−10

keV and hot electron temperature 0.1−3 keV [e.g., Denton et al., 2005]), one can estimate

the scalar potential amplitude as Φ0 ∼ 200− 400 V. The corresponding parallel electric

field is about ∼ 1 mV/m [see, e.g., Watt and Rankin, 2012; Chaston et al., 2012]. Thus,

through the paper we consider Φ0 ∈ [100, 400] V and λ⊥ = 2π/k⊥ ∈ [150, 650] km.

C.3.2 Test particle trajectories

To demonstrate the effect of charged particle trapping and acceleration we numerically

integrate Eq. (C.4) for different values of initial electron energy and transverse wave-

length λ⊥ (see dispersion relation and description of wave model in Appendix A).

Four examples of particle trajectories are presented in Fig. C.3. The top panels

show particle trajectories in the phase plane (s, v) where v = ṡ. Initially, electrons

move along closed trajectories shown by grey small circles. This motion corresponds to

electron bounce oscillations between mirror points. On each bounce period, electrons
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pass through the resonance region with ψ̇ = 0 (or v ≈ 1/K±
√
ϕ0/χ). The corresponding

resonant position sres of electrons can be determined from energy conservation in absence

of waves: b(sres) = (2h −K−2)/(2h sin2 αeq,0). As h ∼ 60 for 100 eV electrons, sres is

located very close to the mirror point smir defined by the equation b(smir) = 1/ sin2 αeq,0.

When the wave approaches to sres, electrons can be trapped into the effective potential

well. This potential well corresponds to the competition of two forces acting on particles:

the wave electric field ∼ ϕ0χKwF
′ compensates the mirror force ∼ h sin2 αeq,0b

′. Thus,

the mirror force does not decrease the particle parallel velocity, and the trapped particle

can move with the wave. Trapping is possible only if this effective potential expands

[more precisely, if the area filled by trapped particles in the phase plane increases, see

detailed description of the trapping process in Artemyev et al., 2010, 2012; Neishtadt,

2014]. The wave model described in Appendix A assumes that the wave amplitude

(scalar potential) grows within |λ| < 5◦ region near the magnetic equator. At |λ| > 5◦

waves propagate with a constant scalar potential amplitude and all variation of wave

amplitude corresponds to wave dispersion (see Eq.(C.10) in Appendix A). Thus, only

electrons with large enough equatorial pitch-angles (i.e. with small sres ∼ smir) can

be trapped. For instance, four almost equatorial electrons shown in Fig. C.3 become

trapped and start moving with the wave. The trapped motion (shown by black color)

corresponds to electron transport to higher latitudes (larger s) with the resonant velocity

∼ 1/K. Electron trapped motion corresponds to fast oscillations of wave phase ψ around

a resonant value (while ψ̇ oscillates around zero). The frequency of these oscillations

∼
√
ϕ0χ is high [e.g., Artemyev et al., 2012], and electrons make a lot of oscillations

within the effective potential. In the phase plane (ψ, ψ̇) these oscillations can be shown

as a quasi-periodic electron motion (see Fig. C.4).

During the transport of trapped electrons to high latitudes, the electron energy in-

creases as ∼ h sin2 αeq,0b(s), while the mirror force ∼ h sin2 αeq,0b
′ becomes stronger.

When electrons reach the position s∗ with h sin2 αeq,0b
′(s∗) ≈ ϕ0χK(s∗)w(s∗)maxF ′

(i.e. the mirror force becomes equal to the wave electric field force), the effective po-

tential vanishes and electrons escape from the resonance [a more accurate definition of

the escape coordinate can be found in Arnold V. I. and Neishtadt, 2006]. After escape,

electrons start moving along closed trajectories (bounce oscillations) with larger radius

(see grey circles in Fig. C.3, top panels).

Trapping motion corresponds to two effects: electron acceleration (see middle row of

panels in Fig. C.3) and the decrease of electron equatorial pitch-angle αeq (see bottom

row of panels in Fig. C.3). The later processes is due to electron transport by the

wave to high latitudes. Electrons escape in the vicinity of their new mirror points

∼ s∗ with an energy Hfin ∼ h sin2 αeq,0b(s
∗) and velocity v∗ ∼ 1/K(s∗). Thus, a new
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Figure C.3: Four examples of particle trajectories in (s, v) plane (top panels). Grey
fragments of trajectories show particle bounce oscillations before trapping and after
escape from the resonant. Middle and bottom panes show evolution of particle energy and
equatorial pitch-angle. Grey color shows the time interval of trapping particle motion.

Figure C.4: Particle trajectory in the plane (ψ, ψ̇). Only fragment of trapped motion is
shown.
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equatorial pitch-angle can be calculated as sin2 αeq = (1 − cos2 α∗)/b(s∗) with cosα∗ =

v∗/
√

2Hfin = (h sin2 αeq,0K
2(s∗)b(s∗))−1/2. For large enough s∗ we have sin2 αeq ≈

1/b(s∗) ≪ sinα2
eq,0 ∼ 1, i.e. we can write the ratio sinαeq/ sinαeq,0 ≈

√
Ee/Hfin

where Ee is an initial electron energy. Therefore, electron trapping results in particle

acceleration and transport to lower equatorial pitch-angle range. Both processes are

very effective: electrons shown in Fig. C.3 gain several hundreds of eV and electron

pitch-angles decreases down to ∼ 20◦ − 30◦.

C.3.3 Probability of trapping and maximum energies

Figure C.3 shows that trapped electrons can be effectively accelerated by the wave. How-

ever, the trapping is a probabilistic process [Neishtadt, 1999; Arnold V. I. and Neishtadt,

2006], i.e. only a part of resonant particles can be trapped by waves. The ratio of trapped

particles to the whole population of resonant particles can be called a ”probability of

trapping”. This probability can be determined analytically or numerically [see examples

in Shkliar, 1981; Artemyev et al., 2013]. The probability characterizes the efficiency of

the acceleration mechanism and, thus, represents the important system parameter. We

use the following approach to derive the probability. For a particular value of the initial

energy Ee we consider an ensemble of 104 particles with a uniform distribution of initial

pitch-angles αeq and uniform initial distribution along magnetic field lines. We run a

single wave packet (see Fig. C.2) and numerically integrate particle trajectories. When

wave packet reach latitude λ ∼ 45◦ we stop numerical integration and collect the final

energy spectra. All particles with the final energy Hfin > 1.5Ee are assumed to be accel-

erated due to the trapping mechanism (to exclude the effect of the particle acceleration

due to reflection we consider only Hfin > 300 eV, see Discussion for more details). The

probability of trapping is defined as a ratio of trapped (and accelerated) particles to the

initial number of particles.

Figure C.5(left panel) shows profiles of the probability of trapping as a function of

initial electron energy Ee. For λ⊥ = 650 km the maximum of probability of trapping

corresponds to the initial energies Ee ∼ 150−300 eV. Depending on the wave amplitude

Φ0, 15-40% of resonant particles become trapped and accelerated up to averaged energies

∼ 500 eV (see right panel in Fig. C.5). The probability of trapping decreases with the

increase of Ee for Ee > 300 eV. As an example, the most accelerated particles with

Ee ∼ 500 eV are trapped with a probability < 20%. A low level of probability of

trapping for Ee < 150 eV is due to our criterion of the final energy Hfin > 300 eV. Small

probability of trapping of energetic electrons with Ee ∼ 500 eV corresponds to large

difference between an electron thermal velocity (∼ 13000 km/s) and resonant velocity
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Figure C.5: The left panel shows the probability of trapping as a function of the initial
energy Ee. The right panel shows the average energies gained by trapped particles.

(i.e. Alfven speed < 2000 km/s). Thus, only small population of particles can be trapped.

The situation changes for waves with λ⊥ = 150 km. In this case, the wave electric field

is significantly stronger (see Appendix A) and the range of resonant velocities becomes

wide owing to factor ∼
√
E∥/k∥ [Karney, 1978]. As a result, even energetic electrons

with Ee ∼ 500 eV becomes trapped with a probability ∼ 60− 70%. These electrons are

accelerated up to few keVs on average (see right panel in Fig. C.5). The expansion of the

resonant region in velocity (∼
√
E∥/k∥) space results also to expansion of the resonant

region in the coordinate space (i.e. along magnetic field lines) [e.g., Artemyev et al.,

2010]. Thus, even particles located initially at some distance from the equatorial plane

can be trapped. These two effects (expansion of the velocity and coordinate resonant

ranges) result in the significant increase of the probability of trapping.

KAWs accelerate trapped electrons, transporting them up to the escape position

s∗ defined by equation h sin2 αeq,0b
′(s∗) ≈ ϕ0χK(s∗)w(s∗). Moreover, to be trapped

electrons should have the resonant velocity in the vicinity of the equatorial plane where

wave amplitude increases:
√
2h cosαeq,0 ≈ 1/K(0). Thus, we can combine these two

equations to derive the single equation for s∗:

1

K(s∗)w(s∗)

∂b

∂s

⏐⏐⏐⏐
s∗

=
2ϕ0χ

2h−K−2(0)
(C.5)

Solution of Eq. (C.5) gives s∗ as a function of Ee = h. Thus, we can substitute this

solution to equation for the final energy Hfin ≈ h sin2 αeq,0b(s
∗) = (2h−K−2(0))b(s∗)/2

and obtain the maximum energy gained by trapped electrons. Figure C.6 presents this

maximum energy as a function of initial energy for three values of Φ0 and two values

of transverse wave length λ⊥. The maximum energy is about two times larger than the
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Figure C.6: Maximum of energy gained by trapped particles.

average energy shown in Fig. C.5 (right panel).

C.4 Discussion

We have focused in this paper on electron acceleration produced by trapping in an

effective wave potential, and have not considered Fermi acceleration [Bryant et al., 1991;

Kletzing and Torbert, 1994]. It is known that cold electrons with thermal velocity lower

than (or about) the wave phase velocity can interact with the moving parallel electric

field of a KAW in a manner similar to a ball interacting with a moving wall. Simple

reflection of electrons from such a wall results in an energy gain about ∼ 2mv2A. In

the case of a large amplitude KAW scalar potential, reflected electrons can gain energy

∼ mvA
√
eΦ0/m [see description of this acceleration mechanism for electron interaction

with double layers in Vasko et al., 2015]. The maximum energy of reflected electrons is

consequently less than 100 eV (for Φ0 < 400 V). Therefore, Fermi acceleration can be

responsible for heating of cold ionospheric electrons (< 10 eV) by KAWs, but cannot

produce easily a keV population.

One limitation of our analysis is that we have not taken into account the effect of

transverse electric field components of KAWs. Although the transverse components are

much larger than the parallel one [e.g., Watt and Rankin, 2012, and references therein],

these components can significantly perturb electron motion only in two cases: provided

the cyclotron resonant condition is satisfied, or if the effect of finite electron gyroradius

ρe becomes important. The cyclotron resonance condition is v∥ = (ω−Ωc)/k∥, where Ωc

is electron cyclotron frequency [M. and Lanzerotti, 1974]. The corresponding electron

energy is significantly larger than a typical hot electron temperature, i.e. this resonance

is unavailable for thermal electrons. The second effect of strong electric field gradients
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[when a spatial scale of electric field becomes comparable with the electron gyroraidus,

see Balikhin et al., 1993] requires λ⊥ ∼ ρe. This condition cannot be satisfied for KAW

with λ⊥ ∼ ρs where ρs is an ion acoustical scale (see Appendix A and Hasegawa [1976]).

Thus, transverse electric field components can be neglected from consideration as an

effective acceleration mechanism.

To simplify analytical estimates and numerical model we use the dipole approxi-

mation for the background magnetic field. However, for night-side magnetosphere at

L ∼ 6 − 9 the magnetic field configuration can be substantially deformed by currents

of hot ions injected from the plasmasheet [Tsyganenko et al., 2003; Sitnov et al., 2008].

Such deformation results in decrease of the equatorial magnetic field Beq and stretching

of magnetic field lines. Thus, the equatorial energy of resonant particles ∼ v2A,eq ∼ B2
eq

can be significantly decreased. The final energy of accelerated electrons is defined by

the position where electrons escape from the resonance at high latitudes. In this region

deformations of magnetic field are insignificant [Tsyganenko et al., 2003; Sitnov et al.,

2008]. Therefore, for the deformed magnetic field configuration one can expect the trap-

ping of colder electrons, but the acceleration efficiency (the final energies) should be

the same as for the dipole magnetic field. The escape position s∗ given by Eq. (C.5)

depends on K(s) function including the variation of the plasma density along magnetic

field lines (see Eq. (C.7) in Appendix A). We use the model of the plasma density varia-

tion ne ∼ cos−5 λ presented by Denton et al. [2006]. However, this model is well justified

only for L ≤ 7. The stronger variation of ne with magnetic latitude λ should result in

larger s∗ and, thus, leads to the stronger electron acceleration. Quantitative estimates

of this effect requires more detailed models of ne(λ).

Our calculations have shown that trapping of sub-keV electrons by KAWs results in

an acceleration up to few keV, with a corresponding decrease of the equatorial pitch-

angle. Thus, trapped and accelerated electrons should form predominantly field aligned

distributions or even beams. Subsequent relaxation of these beams should lead to exci-

tation of electrostatic structures [e.g., electron holes and double layers, see modelling in

Gnot et al., 2004; Mottez and Gnot, 2011] and very oblique whistler waves [e.g., Moure-

nas et al., 2015]. This process naturally represents energy cascading from large (ion)

scales corresponding to KAWs, to smaller (electron) scales of double layers and whistler

waves. Indeed, Mozer et al. [2014] and Malaspina et al. [2015] show that intensification

of electrostatic structures is strongly related to plasma injections bringing into the inner

magnetosphere a wide spectrum of KAWs [Chaston et al., 2014; Ergun et al., 2015].

Figure C.5 demonstrates that the electron probability of trapping can become very

large (close to 80%) in certain cases. This strongly nonlinear regime should cause strong

damping of KAWs by the large population of electrons that are trapped and accelerated.
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Figure C.7: Panels (a) and (b) show an example of charged particle trajectory and
the corresponding jump of the equatorial pitch-angle. Grey fragments of the trajectory
show particle bounce oscillations before and after interaction with KAW. Panels (c) show
several examples of jump of particle energy for different values of initial energy.

However, regular detection of strong KAWs by spacecraft [e.g., Wygant et al., 2002;

Chaston et al., 2014] points to a mechanism responsible for wave amplification. One

possibility is due to the competition of effects of trapped and transient particles in

the system with nonlinear wave-particle interaction [e.g., Shklyar, 2011]. Indeed, the

acceleration of trapped particles can be compensated by noticeable deceleration of a

much larger amount of transient particles scattered by the wave electric field. Particles

loosing energy due to interaction with KAW will move ahead of the wave and reflect

from the scalar potential with a velocity decrease [see the similar mechanism of particle

deceleration due to interaction with electrostatic double layers Vasko et al., 2015]. Figure

C.7 shows an example of transient particle trajectory reflecting from the wave potential

with a loss of energy. Particles with different initial energy lose the same energy ∼ 40 eV

corresponding to ∼ mvA
√
eΦ0/m [see Vasko et al., 2015]. In the self-consistent system

this energy should be transferred to waves and can be spent for acceleration of trapped

particles. Thus, for calculation of the nonlinear evolution of the amplitude of KAWs

one should estimate both nonlinear currents of trapped and transient electrons [see the

similar estimates for whistler waves in Shklyar and Matsumoto, 2009; Demekhov, 2011;

Summers et al., 2012]. We leave this problem for further publications.
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Two important properties of electron acceleration by KAWs can be considered in light

of our analysis: formation of field aligned electron population in the region of plasma

injection where most intense KAWs are observed [Chaston et al., 2014; Ergun et al.,

2015], and effective acceleration of sub-keV electrons up to keV energies. The trapping

mechanism we have discussed can potentially explain the formation of electron beams

(or, at least, streams with almost absent gradient of the parallel velocity distribution

function) with peak parallel velocity ∼ (5 − 30) · 103 km/s. To demonstrate this we

numerically integrate 106 trajectories and plot in Fig. C.8 the final velocity distribution

for field aligned electrons (αeq < 30◦). One can distinguish from the figure a beam-like

population of accelerated electrons with average parallel velocities ∼ 7000 km/s. The

initial pitch-angle distribution is uniform, while the final pitch-angle distribution contains

the maximum in the small pitch-angle range αeq < 30◦ corresponding to the accelerated

electron population. This population is generated by a combination of particle reflection

from the potential wall of KAWs [see description of this mechanism of acceleration in

Bryant et al., 1991; Kletzing and Torbert, 1994; Vasko et al., 2015], and electron trapping

and acceleration by KAWs. For L-shell ∼ 6 − 9 the equatorial phase velocity of low

band parallel chorus waves is about ∼ 5000 − 10000 km/s [e.g., Kennel and Petschek,

1966]. Thus, the accelerated field aligned beam should be very unstable relative to the

generation of whistler waves. This regime of generation is similar to triggered whistler

wave emission [e.g., Nunn, 1974; Trakhtengerts et al., 2003]. Therefore, we suggest

that particle trapping can produce high-amplitude KAW-shape electron beams with

substantial source of free energy, while secondary instability of such beams can result in

efficient generation of whistler waves in the region of plasma injection. This scenario is

generally confirmed by statistically higher amplitudes of whistler waves observed in the

nigh-side inner magnetosphere [Meredith et al., 2001; Agapitov et al., 1974].

Although, we demonstrate the rapid acceleration of sub-keV electrons up to several

keVs and transport of these electrons to small pitch-angle range, we should admit that the

proposed model cannot alone describe the formation of electron population precipitating

into atmosphere and corresponding to diffusive aurora. Indeed, final energies of accel-

erated particles are exactly in the range aurora electron energies, but their pitch-angles

being rather small are still quite far from the loss-cone. Thus, the proposed mecha-

nism of electron acceleration can be responsible for formation of aurora electron (small

pitch-angles, keV-energies) population, which should be further transported to loss-cone

by some high-latitude mechanisms. Alternatively, electrons accelerated by KAW can be

further scattered into the loss-cone by chorus waves [M Thorne et al., 2010; Ni et al.,

2014] or electron cyclotron waves [Ni et al., 2011a; Zhang et al., 2014].
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Figure C.8: Velocity distributions of field aligned electrons (αeq < 30◦). Initial distribu-
tion is shown by grey color, while the final (after interaction with KAW) distribution is
shown by black color.

C.5 Conclusions

We have considered a nonlinear mechanism of sub-keV electron acceleration by high-

amplitude KAWs propagating away from the equatorial region. Our main results can be

summarize as:

1. The parallel electric field of KAWs and the mirror force acting on electrons in an

inhomogeneous magnetic field form an effective potential well for electron trapping

and acceleration along magnetic field lines.

2. Trapped electrons can be transported by KAWs up to high latitudes (λ ∼ 40◦)

with a corresponding energy gain up to several keV.

3. Acceleration of trapped electrons corresponds to a rapid decrease of the electron

equatorial pitch-angle: almost equatorial electrons with αeq ∼ 80◦ become field

aligned with αeq < 30◦ during a single trapping event.

4. Large amplitude of wave electrostatic potential significantly expands the range of

electron velocity resonantly interacting with KAWs: even electrons with ∼ 500 eV

can be trapped and accelerated.
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Appendix C.6: model description

To model kinetic Alfven wave propagating away from the equatorial plane we use the

dispersion relation provided by Hasegawa [1976]:

ω = k∥vA

√
1 + k2⊥ρ

2
s (1 + Ti/Te) (C.6)

where vA = B(λ)/
√

4πne(λ)mi is an Alfven velocity, ρs =
√
2Temic/eB(λ) is an ion

acoustic scale, k∥ and k⊥ are components of wave vector. Dispersion relation (C.6) was

derived for plasma beta (ratio of plasma and magnetic field pressures) larger than the

electron to ion mass ratio. For L = 6.6 (geostationary orbit) the conservative estimate

of the plasma beta gives ∼ 0.1−0.2 (for hot proton density ∼ 1−2 cm−3 and hot proton

temperature ∼ 1 − 10 keV [see Denton et al., 2005]). Thus, Eq. (C.6) can be applied

to describe KAW dispersion at L > 6.6 (the equatorial plasma beta generally increases

with L).

Due to absence of a reliable information about ion and electron temperature varia-

tion along magnetic field lines, throughout the paper we consider the constant ion and

electron temperatures Te = 100 eV, Ti = 1000 eV. This approximation corresponds to

the assumption of particle temperature isotropy and Maxwell distributions [see, e.g.,

Whipple E. and M., 1991]. The wave frequency is ω = 2π/2s. To model variations

of the magnetic field B(λ) and electron density n(λ) with the magnetic latitude λ we

use the dipole model and Denton et al. [2006] model with ne = neq cos
−5(λ), while the

equatorial value of neq is provided by Sheeley et al. [2001]. We introduce the equatorial

perpendicular wave number λ⊥ and use the approximation k⊥ = (2π/λ⊥)
√
B(λ)/Beq

[see Watt and Rankin, 2012, and references therein]. Thus, Eq. (C.6) can be rewritten

as: k∥ = (R0ω/vA,eq)K(λ) where

K(λ) =
1

b(λ)

√
ne(λ)

neq

(
1 +

κ2

b(λ)

)−1/2

(C.7)

b(λ) = B(λ)/Beq, vA,eq is an equatorial value of Alfven velocity, R0 = REL is a scale of

magnetic field inhomogeneity, κ = 2π
√
2Temic

√
1 + Ti/Te/λ⊥eBeq. We also use dimen-

sionless parameter χ = R0ω/vA,eq ≈ 250(2s/T )(L/9)2 and T = 2 s is a wave period.

In the kinetic Alfven wave the approximate relation between parallel component of

the vector potential A∥ and scalar potential φ can be written in following form [see, e.g.,

Watt and Rankin, 2010]:
∂A∥

∂z
= − c

v2A

∂φ

∂t
(C.8)
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where z = R0

∫ √
1 + 3 sin2 λ cosλdλ is a field aligned coordinate. Assuming, that φ and

A∥ depend on phase ψ =
∫ z
k∥dz − ωt we solve Eq. (C.8): A∥ = cωφ/k∥v

2
A. Thus, the

total parallel electric field can be written as:

E∥ = −∂φ
∂z

− 1

c

∂A∥

∂t
= −k∥

(
1− ω2

k2∥v
2
A

)
φ = k∥k

2
⊥ρ

2
s (1 + Ti/Te)φ (C.9)

We introduce the generalized potential Φ = −Φ0w(z)f(ψ) and write E∥ = −k∥Φ =

−∂Φ/∂z with

w(z) = g(z)k2⊥ρ
2
s (1 + Ti/Te) = κ2g(z)/b(z) (C.10)

where function g(z) defines the growth of the scalar potential from zero value up to an

amplitude Φ0. We use g(z) corresponding to the monotonical increase of Φ within 5◦

near the equatorial plane. For |λ| > 5◦ function g is equal to one.
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