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Abstract

Global change is altering ecological communities and the food webs they support, re-

ducing food web persistence. While a variety of features likely impact the dynamics of

perturbed food webs, the relative importance of intrinsic factors (i.e. characteristics

of the food web itself) and extrinsic factors (i.e. the type of perturbation experi-

enced) is still unclear. Food web shape, which I define jointly by the species richness

distribution and the biomass distribution across trophic levels, may be a useful tool

in understanding persistence dynamics. I use a size-based food web model to investi-

gate how 1) persistence dynamics vary across different food web shapes, and 2) how

food web shape interacts with perturbation type (pulse, press, and periodic pulse)

to influence species loss and biomass change over time. I show that while food webs

in the natural world can take on all forms of biomass and species richness distribu-

tion, these shapes aren’t likely stable without external forcing on the system, and

that food webs with bottom-heavy species distributions are the most persistent. In

addition, I show that when perturbed, the number of species lost and magnitude of

change in biomass is driven jointly by endogenous mechanisms (i.e. food web shape),

and exogenous mechanisms such as the trophic level of the perturbed species. These

findings can be useful when forecasting how communities of interest may react to

increasingly turbulent perturbation regimes caused by anthropogenic global change.
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Chapter 1

Introduction

Understanding how energy flows through ecosystems is one of the most important

lines of ecological inquiry, dating back to the discipline’s beginnings (Elton 1927;

Lindeman 1942). As the basic unit upon which growth and reproduction is based,

understanding how organisms obtain energy, and how that energy flows through a

system is a challenging problem that still has many unanswered components (Pringle

2020). Researchers often attempt to understand how these energy fluxes may happen

by modeling them as food webs; connected and often closed systems with the connec-

tions between different organisms representing the energy flowing from one organism

to another, usually via consumption. Food webs are in turn then often represented

as networks, with nodes quantified as species, and the flow of energy represented as

the edges between the nodes. The study of food webs really blossomed in the 1970s

when many ecologists began to focus on the structure of food webs (Cohen 1978; May

1973, 1983; Pimm 1982, and others). That is, beyond constructing single food webs

such as the much-studied Benguela food web (Yodzis 1998), studying the processes

and patterns common to many if not all food webs (May 1983).

While studying food web properties is an area of active basic research, it has

important and timely implications for applied conservation as well. With anthro-

pogenic change accelerating rates of biodiversity loss, preserving ecosystems and the

functions they provide is paramount. The structure of the food web is known to con-
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fer more benefits in terms of ecosystem services than simply the number of species

present (Tylianakis et al. 2010). Given that some species will inevitably be lost as

ecosystems change (McCarthy et al. 2012), the effects of loss on overall structure is

essential, Insights from theoretical works can be of huge use in these efforts. For

example, through simulation modeling McDonald-Madden et al. (2016), demonstrate

that studying robustness (the ability of a food web to resist secondary extinctions

when an initial extinction occurs) (i.e. Dunne et al. 2002)can reveal how and when

food webs respond to changing conditions.

Among elements of food web theory that confer useful information to conservation

initiatives, food web persistence, or the percentage of species remaining in a network

following some event (Pascual & Dunne 2006), is a response measure that is generally

used to measure the system’s response to disturbance or perturbation. Persistence is

a useful measure since it focuses on the discrete event of extinction. That is, a change

in persistence is only recorded once a species fully goes extinct. Since the IUCN term

of extinction and its precursors (i.e. threatened, endangered) are typically the unit of

measure for conservation, persistence, is a helpful way to quantify those extinctions

in a network food web.

Myriad additional metrics have been developed and used to try and quantify the

structure of a food web, all of which are related to persistence. Connectance, or the

proportion of realized trophic links vs. possible links in a food web, is perhaps the

simplest. Connectance has been successfully used to predict persistence in model

food webs (Gravel, Canard, et al. 2011; Rooney & McCann 2012), with higher con-

nectance typically equating to higher persistence. In addition, modularity, a measure

of how compartmentalized a food web is, has also been positively linked to persistence

(Stouffer & Bascompte 2011). Beyond these two common network metrics McLeod

& Leroux (2021) revealed that the prevalence of different omnivory motifs (i.e. small

non-divisible units of omnivore interactions) impacted persistence both negatively

and positively.
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All these metrics are no doubt useful and likely relevant for well-resolved empirical

food webs. Metrics such as modularity and the prevalence of omnivory motifs are

challenging to utilize as predictors of persistence in food webs as they are perturbed by

human activities. In particular, calculating such metrics rely on a relatively complete

description of the food web prior to and during perturbation, which is notoriously

difficult due to the scale and intensity of sampling required (Berlow et al. 2004). Given

the limitations of current approaches, alternative ways to predict and persistence for

empirical, complex webs are needed.

Numerous studies have hypothesized that the distributions of diversity (i.e. number

of taxa) and biomass across trophic levels affects the structure of food webs over

time. May (1973) proposed that one of the main things that could be driving food

web stability (where stability is defined as the ability of a system to return to an

equilibrium after perturbed, which is notably different from persistence, but related),

could be trophic diversity, that is, the species richness across trophic levels. May

(1983) further suggested that this simple and tractable metric could be a way to

understand and model the persistence of food webs. Along with the number of species

at different trophic levels, the amount of biomass at those different trophic levels is

a measure of structure as well; possibly one that confers information about stability

properties (Reuman et al. 2008). Previous studies have quantified how either the

distribution of species richness or biomass across trophic levels affects dynamics over

time in empirical and model systems (Fath & Killian 2007; McCauley, Gellner, et al.

2018; Turney & Buddle 2016). However, less attention has been focused on the extent

to which these measures predict persistence.

Food webs do not exist in vacuums; they are affected by a number of different

perturbations, which take a number of forms, varying in their duration, magnitude,

and repetition (Arens & West 2008; Bender et al. 1984). We know that the frequency

of these perturbations, as well as their intensity is increasing as a direct result of

anthropogenic change (Ross et al. 2009). However, not every component of these per-
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turbations is completely unpredictable. For instance, there are typically three types

of perturbations: those that happen just once (pulse perturbations), those that occur

cyclically (periodic pulse perturbations), and those that are a steady perturbation on

the system (press perturbations). In addition, the effects of perturbations are usually

focused on one trophic level (Kouki & Salo 2020), not dispersed across the entire

system.

Here, I use simulation experiments to investigate how food webs with different

“shape” – defined jointly by the distribution of species richness and biomass across

trophic levels— persist over time in the face of various disturbance types. In Chapter

2, I construct size-based food web models that vary in consider both species richness

and biomass distributions across trophic levels, taken jointly to be a measure of species

shape, and investigate how these factors affect species persistence within the food webs

over time. While food web architecture and structure have been evaluated before as

factors that affect stability (Rooney & McCann 2012), I attempt to distill food shape

down to these two simple distributions (richness and biomass) across trophic levels,

and then show how these factors compare to other measures often linked to persistence

such as connectance and modularity (Dunne et al. 2002; Stouffer & Bascompte 2011).

This analysis also allows me to evaluate the extent to which the variety of food shapes

observed in nature are likely to persist in the absence of disturbance or perturbation

(i.e. such as from human sources of global change).

In Chapter 3, I extend this food web modeling to look at how food web shapes

(again defined by richness and biomass distributions across trophic levels) respond to

different perturbations. Specifically, I examine how different types of perturbations

(Bender et al. 1984), and different targets of the perturbation (i.e. higher trophic

levels vs. lower levels) may be important for persistence. These analyses allow me to

determine whether endogenous factors such as food web shape, or exogenous factors

such as type of perturbation or trophic level of perturbation are more relevant for

predicting food web responses and persistence (Arens & West 2008).
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Finally, in Chapter 4, I synthesize and discuss key findings from Chapters 2 and 3

— in particular, that species richness distribution can largely determine both short-

and long-term persistence of food webs—and discuss next steps for future research.
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Chapter 2

The persistence of size-based food

webs and their shapes

2.1 Introduction

2.1.1 Ecological Persistence in the Anthropocene

Since the industrial revolution, degradation of ecological systems has continued to

accelerate. From declining individual survival (Dusenge et al. 2019) to wholesale

ecosystem collapse (Pinek et al. 2020), anthropogenic global change has been affecting

the stability and persistence of ecological processes (Pettorelli et al. 2012). Protect-

ing and managing ecological systems requires first better understanding the processes

that structure them, and how these structures in turn affect stability over time. In

particular, the structure of species interactions within an ecosystem, rather than just

the number of species present, is likely more important for preserving ecosystem func-

tion (McCann 2007; McMeans, McCann, Tunney, et al. 2016; Tylianakis et al. 2010).

Thus, a useful level of biological organization for understanding ecological persistence

and stability is the food web, modeled as a set of predator-prey interactions (McCann

2011).

Many factors are thought to impact persistence (i.e. the proportion of extant

species over time) of food webs including compartmentalization/modularity (Stouffer

& Bascompte 2011), connectance (Dunne et al. 2002; Gravel, Canard, et al. 2011),

and interaction strength (McCann et al. 1998). The effect of these attributes (in
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both magnitude and direction) on food web stability has been debated for decades,

myriad network metrics having been derived in the literature to try and find patterns

in what determines persistence of food webs (Delmas et al. 2019). The success of this

approach has been often successful, but still somewhat mixed, with large simulation-

based studies recently adding some much needed clarity (Domı́nguez-Garćıa et al.

2019). However, determining the effects of these attributes on real food webs that are

of management interest suffers from persistent challenges with empirical measurement

(Berlow et al. 2004; Laska & Wootton 1998).

2.1.2 Food Web Shape

Food web shape may confer information about how persistent a given food web may

be over time. In the literature, food web shape sometimes relates to the distribution

of species richness (Turney & Buddle 2016), but also often is referred to with respect

to the distribution of biomass across trophic levels (Jonsson 2017). These measures

are less useful when referred to alone without the added context of the other, and

are relevant in different ways for conservation and management of ecosystems. For

example, maintaining food webs with high species richness contributes to food web

stability (Zhao et al. 2019) directly by promoting redundancy in ecological niches

(A. L. Downing & Leibold 2010; Loreau 2000), which is a key goal of biodiversity

conservation. On the other hand, maintaining food webs with high biomass, often in

the context of higher trophic levels, is of special interest in harvested systems such as

fisheries or sport hunting.

Ecologists have long held consistent hypotheses about the distribution of species

richness and biomass within food webs. Early theory by Elton (1927) and Lindeman

(1942) suggested that food webs should have a pyramidal shape in both biomass and

species richness, with large numbers of species and high proportions of biomass at low

trophic levels, and fewer species/lower biomass at higher trophic levels. Lindeman’s

theory of ecological efficiency states that since energy transfer between trophic levels
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is inefficient, there will tend to be progressively fewer species the further up the food

chain the energy travels. This is well-founded as an observation in the literature

(Bar-On et al. 2018; Hessen et al. 2004). A study of consumer-resource biomass,

showed that predator biomass scales sub-linearly to their prey biomass (Perkins et al.

2022), generally resulting in a pyramidal shape (Trebilco et al. 2013). This makes

sense in light of the fact that species-energy curves generally point to species richness

increasing with more available energy (i.e. biomass) (Evans et al. 2005). Further,

in a meta-analysis of this topic, Turney & Buddle (2016) show that across a set of

published food webs from a variety of ecosystem types, the average proportion of

species present across trophic levels, follows a generally pyramidal shape. However,

empirical support for this hypothesis depends on how the “closed” system is defined in

terms of space/time. For example, Tunney et al. (2012) showed that when a modeled

system was joined across different habitat types, the trophic level with more biomass

shifted to the higher trophic level, resulting in a top-heavy biomass distribution.

Moreover, in nature, multiple richness distribution shapes are common, ranging

from top- to bottom-heavy. For example, Turney & Buddle (2016)’s findings are in

contrast to a similar study that found that the majority of food webs across a variety

of systems had a top-heavy richness distribution (Fath & Killian 2007). As Schmitz &

Leroux (2020) point out, adaptations to enhance trophic transfer efficiencies can result

in examples across ecosystems that demonstrate the opposite - that is, higher trophic

levels are in fact more biomass-rich than lower ones (Bar-On et al. 2018; McCauley,

Gellner, et al. 2018). A study of a large number of published food webs show that

the more common distribution shape is a bottom-heavy one, that is, more species

at lower trophic levels (Turney & Buddle 2016), there are still cases wherein food

webs take the opposite shape (top-heavy), specifically in terrestrial systems (Turney

& Buddle 2016).
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2.1.3 Persistence and stability of food web shapes

While there are clearly a variety of food web shapes (i.e. biomass and richness distri-

butions) in nature, it’s not immediately clear whether some of these shapes are inher-

ently more persistent. It could simply be that these different shapes have somewhat

equal stability/persistence in the environment. However, endogenous mechanisms

such as increasing biomass transfer efficiency across trophic levels suggest pyramidal

shapes (McCauley, Gellner, et al. 2018; Slobodkin 2001). Conversely, conventional

wisdom of classic Jaccobian stability (i.e. whether or not a system re- turns to equilib-

rium when perturbed) would suggest that networks with top-heavy species richness

would be more mathematically stable, since it’s long been proposed that a larger

number of weak interaction strengths leads to stability (Gilbert et al. 2014; McCann

et al. 1998), and only species at higher trophic levels are capable of omnivory. Thus,

maintenance of a variety of food web shapes in nature could be due to various exoge-

nous mechanisms, such as temporal subsidization like mast tree fruiting (Curran &

Leighton 2000; King 1983) or anthropogenic change, that alter food web shapes from

some set of basal shapes that may exist in the absence of perturbation.

To test this idea, we simulated size-based food web models with all possible combi-

nations of species richness and biomass distributions, producing nine food web shapes

(Fig. 2.1 panel D). We then examined the extent to which food web shape affected

properties such as modularity and connectance, and whether these properties in turn

also affected persistence over time. Finally, we assessed the extent to which each

shape persisted over time in the absence of perturbations, and evaluated whether

each food web’s original shape could be determined from the state of the system at

the end of the simulations.
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2.2 Methods

2.2.1 Food Web Shape and Network Construction

We considered three distinct distributions of species richness (i.e., top-heavy, uni-

form, and bottom-heavy) and three distinct distributions of biomass (i.e., pyramidal,

uniform, and inverted) in a fully factorial design resulting in 1000 food webs in each

of the 9 specific shapes (see Fig. 2.1).

Each food web contained 20 species, divided between resources and consumers.

In order to accurately reflect a bottom- vs. top-heavy shape, we considered only

consumers and resources as our trophic levels of interest (Note: omnivores would fall

in between these two trophic levels). We considered a food web to be uniform if it

has the equivalent number of consumers and resources, while a top-heavy food web

had a 1.5:1 ratio of consumers to resources, and a bottom-heavy food web had a

1:1.5 ratio of consumers to resources (Fig. 2.1 A). We then assigned each species in

a given web a body size based one a random draw from an exponential distribution

with the rate parameter, λ (Millard 2013), from an analysis of empirical body size

data in size-structured food webs (Brose, Archambault, et al. 2019) (Fig. 2.1 B, see

Appendix A for more details).

Next, we assigned a biomass shape to the food web based on these body sizes.

To model the distribution of biomass across trophic levels in our network food webs,

we start with the definition that a system with more biomass as the top of the web

(i.e. inverted pyramid) has more consumer (C) biomass than resource (R) biomass at

multiple trophic levels (Sandin & Zgliczynski 2015). Species were divided into each

group according to their body size, and the initial biomass of each species was drawn

according to a truncated normal distribution where the mean of the random sample

was a weighted value of the body size divided by the number of species (Fig. 2.1

C)). For example, for a given species with a body size in the upper third (large), the
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biomass was drawn via a truncated normal distribution [0.05, 1] where initial biomass

B ∼ N (
vl
nl

, 0.005),

where vl is the weighted value v for large species l, and nl is the number n of large l

species. Thus, in this sample the mean, µ is given by vl
nl

and the standard deviation is

σ2 = 0.005. This network construction process resulted in 1000 connected networks

per richness and biomass distribution combination (hereafter referred to as shape).

Simulation of Network Dynamics

To simulate biomass changes and persistence (the percentage of extant species) in

these networks through time, we employ a consumer-resource model similar to that

of Awender et al. (2021) and the classic model of Yodzis & Innes (1992). The biomass

of all populations in the network is denoted as the vector X, and each population, i

has a biomass, Xi, which is modeled as

dXi

dt
= Pi(Xi)− µiXi + µiXi

N−1
∑

j=0

ηiFi(Xj)−
N−1
∑

j=0

ηjµjXjFj(Xi)

eji
.

Here, X = (X0, X1, ..., Xn) is the vector of biomass for n species, Pi is the pro-

duction (growth) of species i, µi is the body-size specific metabolic rate, ηi is the

maximum consumption rate relative to it’s metabolic rate. Fi(Xj) is the functional

response of species i consuming species j, and eji a measure of efficiency, is the frac-

tion of biomass of j that is actually metabolized by species i. We further define the

production Pi as

Pi(Xi) =







0 if
∑N−1

j=0
Fi(Xj) ̸= 0

riXi(1−
Xi

Ki

) if
∑N−1

j=0
Fi(Xj) = 0







.

where ri is the growth rate, and Ki is the carrying capacity.

The functional response Fi(Xj), is given calculated following Stouffer & Bascompte

2010 and McLeod & Leroux (2021).
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Fi(Xj) =
aijXj

β0 +
∑N−1

n=0
ainXn

.

Here, aij is the interaction strength of species i consuming species j. We con-

structed our interaction matrices by random draws of possible interaction strengths

between values 0.01 and 1.0 for all possible interactions (resources cannot eat con-

sumers), then to ensure a food web that resembled food webs we see in nature, we

re-sampled the number of interactions in the network down so that the network con-

nectance was between 0.1 and 0.2, which is the range we see in nature McLeod,

Leroux, et al. (2021).

Since the time-scale of the system is normalized to the mass-specific growth rate

of the basal species, we can state all ri = 1. Additionally,

µi =
ax
ar

(

Mi

Mb

)

−1/4

,

and

ηi =
ay
ax

where ax, ar, and ay are allometric constants, and Mi is the body size of the i as

described in Brose, Williams, et al. (2006), and Mb = 1. To allow for comparison

with other works of similar intention, we use the same parameter values as Brose,

Williams, et al. (2006) and Stouffer & Bascompte (2010) : eij = 0.85;K = 1, ar =

1, ax = 0.2227, ay = 1.7816.

2.2.2 Analysis of Networks

We simulated our 9000 networks over 25,000 time steps to ensure the initial transient

dynamics stabilized. At the end of each time series we calculated a) the connectance

(i.e. proportion of realized links), b) the modularity (i.e. compartmentalization),

c) trophic level (defined as the average trophic level of a species’ prey), and d) the

predator:prey species richness and biomass proportions (See Appendix B for more
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information on how each of these were calculated). In order to understand how per-

sistence and other network metrics are affected by the network shape, we performed

a series of regressions with responses of 1) consumer-resource biomass/richness pro-

portions, 2) connectance, and 3) persistence. This served to help us ask two main

questions. First, do the nine distinct food web shapes retain their distinct biomass

and richness distributions over time? Second, how does the shape of a network impact

it’s persistence?

To assess whether or not food webs retained their shapes, we calculated proportions

of consumers to resources for both biomass and species richness, which are numerical

measures of the distributions we use to generate our food web shapes. Taken together,

they are a way to jointly measure the shape of each food web. To quantify change

in overall food web shape through the course of the simulation, we performed a mul-

tivariate analysis of variance (MANOVA) on the joint measure of consumer-resource

richness and biomass proportions at the beginning and the end of the timeseries to

see if the 9 food web shapes remain distinct over the course of the timeseries.

Although food web stability has long been considered in the context of mathe-

matical stability (Ives & Carpenter 2007; McCann 2000), there are multiple ways to

define, measure, and understand their persistence and stability (Donohue et al. 2016).

When food webs are considered as networks (Dunne 2006; Pascual & Dunne 2006),

with nodes representing species and edges representing energy transfer between those

two nodes, persistence can be understood as how many species in a network maintain

some amount of biomass over the time span of interest McLeod & Leroux 2021; Stouf-

fer & Bascompte 2010. Connectance and modularity co-vary strongly with richness

and biomass distributions, so to confirm that persistence patterns were not due to

an effect of connectance, we conducted our persistence analysis in two steps. First,

we separate out all nine food web shapes, and performed a regression on persistence

with both modularity and connectance as explanatory variables. To look at the effect

of biomass and richness distribution on end-of-simulation persistence, we performed
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a simple factorial analysis of variance (ANOVA) with a crossed fixed effect between

richness distribution and biomass distribution. All analysis was performed in Julia

v1.8.1 (Bezanson et al. 2017) and R v4.2.2 (Team 2022).

2.3 Results

2.3.1 Persistence of Food Webs and their Shapes

After the initial transient dynamics of the food webs stabilized, the end persis-

tence values ranged from just below 0.8 to 0.3, with species richness distribution

but not biomass distribution determining the mean network end persistence (Fig.

2.2). Bottom-heavy networks with the majority of species in lower trophic levels

were the most persistent, and experienced the shortest period of transient dynam-

ics. Richness distribution across all three levels were significantly different from each

other (F: 1149.02, p-value: <2e-16, Table 2.1), with top-heavy richness distributions

experiencing the lowest persistence with a mean persistence of 0.31. Uniform richness

distributions had a higher average persistence of 0.57, and bottom-heavy networks

had a mean persistence of 0.75. Biomass distribution had no significant effect on

persistence at any level (F: 0.19, p-value = 0.83, Table 2.1).

At the beginning of the timeseries, there are nine distinct consumer-resource pro-

portion groupings, made up of the three species’ richness distributions crossed with

the three biomass distributions (Fig. 2.3 panel A, Table 2.2). However, by the

end of the timeseries, only species’ richness distribution is structuring the consumer-

resource ratios (Fig. 2.3 panel B, Table 2.2). This shows that, on the timescale

of these simulations, any effect of biomass distribution, or the interaction between

biomass distribution and species’ richness distribution, on the shape of the network

is negligible. Instead, at the end of the timeseries, we can see three distinct shapes

of networks arising determined by the species richness shape (Fig. 2.4). These three

shapes do not have significantly different predator-prey biomass proportions, but do
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in fact have different predator-prey richness proportions with the top-heavy food webs

having a mean predator-prey richness proportion of ∼ 0.28, the uniform webs having

a mean proportion of ∼ 0.17 and the bottom-heavy webs of ∼ 0.11 (Fig. 2.4, panels

A, B, and C respectively).

All network shapes were significantly different from their starting values in both

measures of species richness and biomass proportions (Fig. 2.3 panels A and B; Fig.

2.5), indicating a shift in shape across all networks. Across the three species rich-

ness distribution groups, the proportions of both biomass and species richness are

different (i.e. the error bars between top-heavy, uniform, and bottom-heavy species

richness distribution groups are non-overlapping, Fig. 2.5). Across the three biomass

distribution groups however, there is little difference in the response of the richness

and biomass proportions. That is, the error bars between pyramidal, uniform, and

inverted pyramid biomass distributions are nearly all overlapping, indicating no sig-

nificant difference between the groups (Fig. 2.5).

2.3.2 Relationship between shape and other measures

While we know richness distribution had an effect on the persistence and outcome of

the webs, we wanted to see if other network metrics such as modularity and con-

nectance had an effect as well. Our regression of the effect of connectance and

modularity on connectance in each of the 9 different food web shapes showed that

connectance had a significant effect in 8 out of the 9 shapes (Table 2.3). Since con-

nectance had the least effect on networks with a pyramidal biomass distribution, we

verified that biomass distribution as a categorical variable didn’t have an effect on

connectance at the end of the timeseries when tested with a separate ANOVA (Ta-

ble 2.4). This result shows that connectance is statistically significant in predicting

persistence, but, if we look at the model estimates and associated standard errors,

we see that there is overlap between all of the groups. Therefore, the effects that

we see of richness distribution on persistence are in fact not able to be explained
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by connectance alone. Across all food web shapes, modularity had no effect on the

persistence at the end of the timeseries.

2.4 Discussion

Decades ago, May (1973) noted a disparity between our theoretical models of food

webs and what we see empirically. Despite nature being replete with examples of large

complex networks, in theory, diversity in fact destabilizes community dynamics, and

thus, complex networks should not exist in nature. Since then, researchers have been

attempting to reconcile this paradox by trying to explore the architectural properties

of food webs that may enhance food web stability and persistence. Previous work has

highlighted how factors like omnivory (Gellner & McCann 2012), spatial dynamics

(Gravel, Massol, et al. 2016), and modularity (Stouffer & Bascompte 2011) can all

perhaps explain this mismatch between theoretical predictions and empirical reality.

Here, we show how food web shape, conceptualized as the joint effect of species rich-

ness and biomass distributions across trophic levels, contributes to species persistence

in simulated food webs. Our analyses demonstrate that bottom-heavy richness net-

works are the most persistent type of webs, while top-heavy richness webs are the

least persistent. Moreover, the species lost in these simulations were not random;

instead, we show that despite nine different initial shapes, all webs converged on a

similar shape after transient dynamics stabilized. This shape is characterized by hav-

ing a bottom- heavy species richness distribution, and an inverted pyramidal biomass

distribution. In addition, we note that despite modularity being a well-documented

boon to persistence in networks (Stouffer & Bascompte 2010), connectance was the

network measure that had the largest effect on the persistence of networks aside from

shape. It’s worth noting as well that the connectance was not correlated across the

starting shapes, and that each initial starting shape had an even distribution of the

same connectance values.

The effects of species richness distributions on food web persistence we observed
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through simulation mirror what we see in the real world. Empirically, many docu-

mented food webs display a bottom-heavy richness shape (Turney & Buddle 2016).

Indeed, all our webs that started off with a top-heavy species richness, that structure

disappeared, replaced by a bottom-heavy richness distribution (Fig. 2.4). Virtually

no webs end up having a richness proportion higher than 0.5, despite all of the top-

heavy webs starting above ∼0.7. This indicates that across all our different food web

shapes, larger bodied consumers at higher trophic levels are likely the ones usually

going extinct (Jacob et al. 2011). There may be many mechanistic reasons for what

we see in our results. What is likely the case however, is that with respect to top-

heavy species richness webs overall, there is simply not enough energy at the lower

trophic levels to support top-heavy food webs.

Embedded in the idea of a interaction strength is the fact that a single organism

will have a competitive ability to consume some set of organisms that will inevitably

be greater or lesser to its competitors. We know that coexistence can be largely driven

by variability in a system (e.g., Hallett et al. 2019), and in our system, we intentionally

eliminated this variability, thus precluding the opportunity for competitive advantages

to fluctuate. Thus, the explanation is likely that a) the rates of energy transfer from

lower trophic levels to higher trophic levels are not sufficient to offset the inefficiencies

in consumption, and b) often multiple consumers are competing for only a handful of

resource species, and without any environmental or demographic stochasticity, there

is no mechanism with which coexistence of multiple species can be maintained.

We saw a consistent pattern of consumer-resource biomass proportions moving

towards high values over time, typically above 0.6 (i.e. ≥ 60% of all biomass is con-

centrated in consumer species), across all food web shapes. In this configuration, the

networks have shifted to a bottom-heavy species richness distribution, but smaller

biomasses of each resource species—meaning there are a larger number of resource

species with smaller biomasses supporting a few consumer species with high biomass

levels. Ecologically, this configuration indicates a shortening and contracting of the
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food web as a whole, with food chain length shortening (lower mean trophic level

means the dis- appearance of higher trophic level consumers), and the networks grav-

itating to a bottom-heavy species richness distribution. This trend is also observed

in real food webs; for example, in aquatic food webs, top-heavy biomass structure

appears to be more common than previously thought.

There are some mechanistic reasons why this type of shape pattern may occur,

particularly in marine ecosystems. Woodson et al. (2018), noted a high prevalence of

two key phenomena in marine systems that can drive these patterns: first, generalist

predators that can consume a variety of prey types, and second, large body-sized

predators consuming low trophic level organisms can help in overcoming some of the

traditional challenges to inverted pyramidal biomass distributions. These two mech-

anisms might speak to two factors at play in our simulations. First, when predators

are more generalist, they are more likely to have more interactions that are therefore

weaker (Closs et al. 1999), which can in turn lead to increased stability (McCann

2000). Second, presence of large-bodied organisms able to consume low-trophic level

items may eliminate much of the lost trophic transfer efficiency (Lindeman 1942;

Woodson et al. 2018) that can, if exhibited, result in pyramidal biomass distribu-

tions.

Top-heavy biomass distribution but bottom-heavy species richness is found in mul-

tiple systems. For example, in Lake Liambezi in Namibia, a recent study on the eco-

nomically important fish ecosystem there described how tilapiine cichlids, the lowest

trophic position in the fish community, were the most speciose group, but had very

little biomass compared to fish species further up the food web (Peel et al. 2019). This

shape is also consistent with patterns observed in many temperate North American

lake systems (Del Giorgio & Gasol 1995) with ratios of heterotrophs to autotrophs,

and large diversity of planktonic species compared to higher-trophic level fish species

(Soininen et al. 2012).

Lakes are in fact a good real-world example of food webs that are well-described
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by models like ours. They are relatively closed with respect to energy flow compared

to, for example, marine systems, and have a limited number of species. Additionally,

they can be considered well-mixed (though see McMeans, McCann, Humphries, et al.

(2015) for a discussion of this), and have high resource turn-over rates (D’Alelio et al.

2016). For example, resources that are planktonic in nature exhibit this higher rate

of turn-over, which is a mechanism that Wang et al. (2009) noted can create inverted

biomass pyramids. These mechanisms in concert result in lake food webs that exhibit

the “end-state” food web forms we show here.

It could be the case that anthropogenic activities are driving the occurrence of

shapes that differ from what these results suggest is expected. On pristine coral reefs

for example, biomass distributions are typically inverted pyramids, with higher pro-

portions in higher trophic levels, such as sharks and other predatory fishes (Stevenson

et al. 2007). However, over-fishing these large commercially valuable species can result

in a shift of this biomass distribution, to take on pyramidal shapes with the majority of

biomass at lower trophic levels (Sandin, Smith, et al. 2008). Anthropogenic climate

change and it’sits associated warming can also alter food web shape, but in the

opposite direction, with warming in freshwater ponds resulting in food webs shifting

from pyramidal to top-heavy with lower biomass in producer species (Shurin et al.

2012).

Anthropogenic stress is also causing significant change in species richness in a range

of ecosystems. While in aquatic systems we generally predict higher proportions

of bottom-heaviness of species richness (Turney & Buddle 2016), top-down fishing

pressures can further reduce species diversity and biomass at higher trophic levels.

In freshwater systems, stocking of a handful of top-predator fish species for sport

fishing is a common occurrence, which reduces diversity due to competition between

and/or predation on the native fish populations (e.g. Su et al. 2021), but can increase

or maintain the biomass present at that trophic level due to the large influx of the

stocked fish. Similarly, for invasive species such as Asian carp in the Mississippi river
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basin, we know diversity of native sport fish plummets upon invasion (Chick et al.

2020), but the biomass of the Asian carp typically balloons, resulting in low diversity

but high biomass in higher trophic levels. Our results suggest that this could in fact

represent a persistent food web shape, but that finding would be conditional on the

system not experiencing further upheaval.

Anthropogenic effects on food webs and ecosystems are only increasing. The mod-

els and associated analyses we present here provide a means to understand which

pre-disturbance food web shapes are likely to be more resilient to future stress and

perturbation . The capacity for a food web to be resistant or resilient to pertur-

bation is likely also dependent on the type of perturbation the web is experiencing

(Leroux & Loreau 2012; Montoya, Woodward, et al. 2009). It’s not yet clear how the

interaction between the shape of a food web and the type of perturbation that web

is experiencing may jointly structure the response to perturbation, and given that

we know food webs experience stressors ranging from consistent press perturbations

(e.g. consistent fishing pressure) to periodic pulses (e.g. El Nino/La Nina events), it is

paramount that we further develop our knowledge of how structure and perturbation

jointly affect the persistence and stability of food webs.

2.5 Conclusion

With increasing interest in predicting the effects of various anthropogenic activities

on food webs, our analyses highlight that food webs are not all created equal in

terms of their long term persistence even in the absence of perturbation. We show

here that while food webs in the natural world can take on all forms of biomass and

species richness distribution, most shapes are not likely to be maintained over time

without external forcing on the system. With a set of long time scale simulations

we show that food webs tend to become bottom-heavy with respect to their species

richness distributions, and have inverted pyramidal biomass distributions. Without

consistent forcing, whether through changes, human interference, or both, specialist
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consumer species likely become extirpated due to competition with generalists who

can spread out their energy requirements across multiple prey items. Our results are

most closely represented in nature by lake ecosystems which are likely more consistent

with respect to our model assumptions including a lack of external inputs than other

more open systems like oceanic marine food webs. Understanding how food web

shapes arise mechanistically is important for subsequently understanding the impact

of perturbations on those food webs. Effective understanding and forecasting of food

webs as important ecosystem structures will require an approach that goes beyond

consideration of only a single factor. Proactive management and conservation of these

complex systems in the Anthropocene requires not only understanding how factors

such as species richness and biomass distributions structure these webs in nature, but

what these factors alongside others (e.g. perturbation type) can tell us about how

food webs will react to change, which components of them are most sensitive, and

how best we as stewards can mitigate these effects.

2.6 Tables

Persistence ANOVA (Categorical)

Term Deg.
Free

Sum Sq Mean
Sq

F value P-value

Biomass Dist. 2 0.004 0.002 0.19 0.827

Richness Dist 2 25.625 12.813 1149.02 <2e-16

Biomass * Richness 4 0.043 0.011 0.96 0.429

Table 2.1: Regression values from the categorical persistence regression. The end
values persistence for each network were regressed against the categorical groups of
the networks.
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Consumer-Resource Ratios MANOVA

Timepoint Term Deg.
Free

Pillai-
Bartlett
Statistic

Approx
F-
Statistic

F deg.
Free-
dom

P-value

Beginning

Biomass Dist. 2 0.9409 367.83 (4,
1656)

<2e-16

Richness Dist 2 0.8785 324.28 (4,
1656)

<2e-16

Biomass * Rich-
ness

4 0.4421 58.74 (8,
1656)

<2e-16

End

Biomass Dist. 2 0.0026 0.545 (4,
1656)

0.7031

Richness Dist 2 0.542 153.89 (4,
1656)

<2e-16

Biomass * Rich-
ness

4 0.007 0.723 (8,
1656)

0.6710

Table 2.2: Results of a Multivariate Analysis of Variance (MANOVA) performed on
the two consumer-resource ratios performed at the beginning and separately at the
end of the timeseries
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Generalized Linear Regression of Shape Groups

Biomass Dist. Richness Dist Term Est. Std
Err

P-value Sig.

Pyramid Top-heavy
Connectance -1.28 0.39 0.001 **

Modularity -0.68 1.03 0.51

Pyramid Uniform
Connectance -0.78 0.34 0.024 *

Modularity 0.05 0.93 0.958

Pyramid Bottom-heavy
Connectance -0.03 0.40 0.94

Modularity -0.30 0.87 0.73

Uniform Top-heavy
Connectance -1.42 0.23 3.54e-10 ***

Modularity -1.44 0.97 0.14

Uniform Uniform
Connectance -1.56 0.18 3.0e-14 ***

Modularity 0.28 0.80 0.73

Uniform Bottom-heavy
Connectance -1.51 0.17 5.9e-14 ***

Modularity 0.84 0.78 0.28

Inverted Top-heavy
Connectance -1.41 0.23 1.9e-08 ***

Modularity -0.43 1.19 0.72

Inverted Uniform
Connectance -1.2 0.22 2.9e-07 ***

Modularity -0.2 0.84 0.84

Inverted Bottom-heavy
Connectance -1.13 0.27 6.6e-05 ***

Modularity -0.7 0.97 0.46

Table 2.3: Generalized linear regressions for each of the nine shape groupings of
richness and biomass distribution. Each data grouping was regressed on connectance
and modularity. The significance groupings are 0 < p < 0.001: ***, 0.001 < p < 0.01:
**, 0.01 < p < 0.05: *, and p > 0.1 does not get a marking.
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Connectance ANOVA

Term Deg.
Free

Sum Sq Mean
Sq

F value P-value

Biomass Dist. 2 0.002 0.0001 0.224 0.800

Richness Dist 2 0.0379 0.0189 34.927 <2e-16

Biomass * Richness 4 0.0008 0.0002 0.393 0.814

Table 2.4: Factorial analysis of variance with connectance at the end of the timeseries
as the response variable, and the two shapes, biomass and richness, as the fixed effects

2.7 Figures

Figure 2.1: Conceptual diagram showing all possible food web shapes comprised
of the three distinct biomass distributions and three distinct richness distributions.
A) Describes how richness shapes were drawn, in three distinct distributions. B)
Body sizes were drawn as random samples from an exponential distribution where
the distribution was parameterized from the literature. C) Once body sizes were
assigned, all organisms were divided into size (an approximation of trophic level),
and each species was assigned a biomass based on a random draw from a truncated
normal distribution, with mean dependent on body size.
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Figure 2.2: Mean network persistence across the timeseries simulated, grouped by
each of the three types of richness and biomass distribution respectively.

Figure 2.3: Beginning and end states for the consumer-resource proportions, along
with connectance at the end state.
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Figure 2.4: End states for consumer-resource richness and biomass proportions re-
spectively.

Figure 2.5: Change in all measured variables from the beginning of the timeseries
to the end. zero represents the beginning value, and the points represent a distance
from that initial value. Note that the confidence intervals here were calculated using
standard error for difference which is defined as

√

SE2

1
+ SE2

2
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Chapter 3

Species richness across trophic

levels mediates the outcomes of

perturbations on food webs

3.1 Introduction

The timing, duration, and intensity of anthropogenic disturbances (i.e., perturba-

tions) to ecological communities are increasing globally (Crain et al. 2008; O’Gorman

et al. 2012). Understanding how ecosystems will respond to intensifying perturbation

is crucial for maintaining services like water filtration, flood control, and fisheries

stocks (Schmeller & Bridgewater 2021). Food webs are a standard way to measure

flows of energy through ecological communities (Cohen et al. 2012), with research

increasingly focused on understanding how their structure will be altered by chang-

ing perturbation regimes in order to inform conservation and management (Dietze

et al. 2018; Lewis et al. 2023; Massoud et al. 2018). Responses to disturbance (mea-

sured through metrics like stability (May 1973; Pimm 1982), persistence (Montoya,

Rodŕıguez, et al. 2003), and robustness (Dunne et al. 2002; Estrada 2007b)) may be

driven by the characteristics of the food web itself (i.e., endogenous factors), the form

of the perturbations on the food web (i.e., exogenous factors), and the interaction

between the two.

How response to perturbation is measured is another key consideration. Anthro-
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pogenic change often happens fast; species can be reduced to a fraction of their initial

biomass incredibly quickly (e.g., passenger pigeons (Brooks 1955), bison (Boyd &

Gates 2006), and cod (Bailey 2011)), but true extinction often takes much longer,

and often likely occurs not from a continuation of the original pressure from humans,

but from demographic stochasticity that occurs at low numbers (Cuenda et al. 2020).

We often focus on cases where a species is completely lost from a system (Montoya,

Pimm, et al. 2006), thus quantitatively changing the structure. While this is useful,

the relative frequency of complete extinction in real systems is minuscule compared

to scenarios where relative abundance (and therefore biomass) are affected. Since

the 16th century, only 680 described vertebrate species have been pushed to extinc-

tion, whereas up to 1 million species were considered “threatened” by the IUCN as

of 2023 (IUCN 2023), meaning that they have suffered ≥ 80% abundance decline,

which almost certainly has led to an even greater reduction in biomass (Birkeland &

Dayton 2005; Jerardino et al. 1992; Raab 1992; Ricker 1981). Thus, it’s important

to track both metrics of change (i.e. extinction and abundance decline) in a system

when perturbed. While secondary extinctions can and do occur (Brodie et al. 2014),

much of these secondary effects are reduced “performance” of other species following

a primary extinction (Estes et al. 2011).

3.1.1 Endogenous Factors Affecting Persistence

Metrics such as connectance (Dunne et al. 2002) and modularity (Stouffer & Bas-

compte 2011) have been proposed to predict food web response to disturbance and

also co-vary with factors like ecosystem type (Bramon Mora et al. 2018). However,

such network metrics are hard to measure in empirical systems. Additionally, since

these metrics are correlated across other types of food web information, it could be

that these more accessible and simple measures of food web characteristics such as

ecosystem type, species diversity across trophic levels, or biomass distribution across

trophic levels, could give good measures of food web persistence or robustness (Mc-
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Cauley, Gellner, et al. 2018; Zhao et al. 2019). Indeed, the distribution of species

richness and biomass across trophic level, considered jointly as a food web’s “shape”,

may be very useful in providing insight into whether or not food webs respond simi-

larly to perturbations.

3.1.2 Exogenous Factors Affecting Persistence

When considering how food webs might respond to perturbations however, it is im-

portant to recognize that the endogenous mechanisms are not the only ones at play.

Exogenous factors, most importantly the type of perturbation experienced, are also

essential to consider (Bender et al. 1984). The timing, intensity, and length duration

of perturbations likely all affect how food webs responds (Reice 1994; Wurff et al.

2007). Common types of perturbations include pulse perturbations (single, short,

and typically high magnitude) such as droughts or disease, press perturbations, (sin-

gle, long-term, low-magnitude) press perturbations such as harvesting, and periodic

pulse perturbations, (cyclic short, medium-impact) such as forest fire regimes or El

Nino/La Nina events (Jentsch & White 2019; Yang & Naeem 2008). While we know

that both press and pulse perturbations can cause extinction events (Arens & West

2008), it has also been shown that type of perturbation can affect the transient dy-

namics of communities in model systems (Inamine et al. 2022). However, it’s still

unclear how this exogenous factor interacts with the endogenous factors to impact

not only extinction events but biomass dynamics in a whole community.

Persistence may also be affected not just by perturbation type, but by what part

of the food web the perturbation acts on. Typically perturbations are linked to taxa-

or functional group specific effects (Kouki & Salo 2020) and thus operate within a

particular trophic level rather than across than multiple species at different trophic

levels. Indeed, Dunne et al. (2002) as well as Estrada (2007a) have noted that an-

thropogenic impacts on food webs are non-random in terms of the trophic level they

affect, and often affect either the top or the bottom of the food web, sending effects
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cascading through the system. Indeed, the literature is replete with discussion of

how top-down vs. bottom-up processes driven by perturbations structure food webs

themselves (Kitching 2001; Marczak et al. 2011; Power 1992), such as exploitation

of top predators in marine food webs causing cascading effects down the food web

(Baum & Worm 2009), or the bleaching of corals (foundational species in reef food

webs) caused by anthropogenic change (Pandolfi et al. 2011) which in turn impacts

higher trophic level organisms such as fish by affecting resources available for foraging,

shelter, and reproduction (Ruppert et al. 2013).

3.1.3 The Interplay of Endogenous and Exogenous Factors

We can consider the perturbation itself and the trophic level of the perturbation

(consumer-affected or resource-affected) to be exogenous factors, and the shape of

a food web, the species richness and biomass distributions as endogenous factors

structuring food web response to perturbation.

The goal of this chapter is to explore how endogenous and exogenous factors con-

tribute to extinction and changes in biomass in food webs subjected to perturbations.

To investigate the exogenous and endogenous factors structuring food web responses

to perturbations we considered two endogenous factors and one exogenous mechanism.

Our endogenous factors were 1) the shape of the food web being perturbed, and 2)

whether or not the perturbation happened at the top or the bottom of the food chains.

Our exogenous mechanism was the type of perturbation the food web experienced.

It is likely that multiple factors affect the response to perturbation, but it’s less

clear when different factors are more influential. Here, we ask what the relative

impact of exogenous vs. endogenous mechanisms is in affecting food web responses

to perturbations, and also attempt to unpack how these differences may play out

when the focus shifts from species extinction to shifts in biomass distributions.
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3.2 Methods

In the same manner as Chapter 2, we constructed a set of food webs with 20 species

each, divided between consumers and resources, and simulated perturbations across

all networks. During the simulations we tracked our variables of interest, and at the

end of the simulations, used effect sizes from ANOVA analysis to determine which

factors played a roll in affecting which outcomes.

3.2.1 Food Web Shape

We define food web shape as being described by the distribution of species rich-

ness across trophic levels and the distribution of biomass across trophic levels (See

Chapter 2 for more detail). With respect to species richness, food webs could be

composed mainly of consumers (3:2 consumer-resource ratio, termed top-heavy), an

even number of consumers and resources (termed uniform),or the majority of species

being resources (2:3 consumer-resource ratio, termed bottom-heavy). Our food webs

were size-structured, so each species had a body size drawn from an exponential

distribution with a separate rate parameter λ for consumers and resources. We pa-

rameterized our distribution with empirical data from body sizes in size-structured

food webs documented in nature (Brose, Archambault, et al. 2019). Similarly for our

biomass distributions, we consider a case where there is more resource biomass than

consumer biomass, regardless of number of species (termed pyramid), a case with

more consumer than resource biomass (termed inverted pyramid), and a case with

even amounts.

3.2.2 Simulations

Once all food webs were constructed, we used a consumer-resource model based on

that of Yodzis & Innes 1992 with additions from Awender et al. 2021. All biomass in

the network across all species is denoted for n species as X = (X0, X1, ..., Xn), and

each species, i has a biomass, Xi. The model for the rate of change of biomass into
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or out of species Xi is given by:

dXi

dt
= Pi(Xi)− µiXi −miXi − µiXi

N−1
∑

j=0

ηiFi(Xj)−
N−1
∑

j=0

ηjµjXjFj(Xi)

eji
. (3.1)

Here, production (growth) of species i is given by the function Pi, with the body-

size specific metabolic rate µi, mi as the baseline mortality rate from perturbation

(0 unless stated otherwise) and ηi as the maximum consumption rate relative to

it’s metabolic rate. The model is governed by the functional response Fi(Xj) where

species i is consuming species j. Not all biomass lost from j is consumed by i, and

eji is the proportion actually metabolized. We further define the production Pi as

Pi(Xi) =







0 if
∑N−1

j=0
Fi(Xj) ̸= 0

riXi(1−
Xi

Ki

) if
∑N−1

j=0
Fi(Xj) = 0







. (3.2)

Here, r is the growth rate, and K is the carrying capacity. The time-scale of the

system is normalized to the growth rate of the resource species, so in our case for all

i, ri = 1. The functional response is a type II functional response of the form:

Fi(Xj) =
aijXj

β0 +
∑N−1

n=0
ainXn

. (3.3)

The interaction strength here is aij. The interaction matrix of all species comes

from a random draw of possible interaction strengths between 0.01 and 1.0 for any

consumer-resource pairing. This matrix was then re-sampled down such that the

connectance of the web was between 0.1 and 0.2. Connectance was given as the

proportion of realized L vs possible S2 possible interactions in a network, L
S2 .

For our metabolic rates an efficiency, we use the form of Brose, Williams, et al.

2006; Stouffer & Bascompte 2010

µi =
ax
ar

(

Mi

Mb

)

−1/4

(3.4)

ηi =
ay
ax

(3.5)
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with allometric constants ax, ar, and ay, the body size of species i given by Mi

and Mb = 1. For other constants in our model we use consistent parameter values

eij = 0.85;K = 1, ar = 1, ax = 0.2227, ay = 1.7816.

These models were then simulated for 25,000 time-steps to allow the food webs

to stabilize. To perform these simulations we used the deSolve package (Soetaert,

Petzoldt, et al. 2010, 2015) in R 4.2.2 (Team 2022).

3.2.3 Perturbations

We simulated the food web for 25,000 time steps before subjecting the food webs to

any perturbation to ensure that transient dynamics had died down. After 25,000 time

steps, four species were randomly chosen from each food web - two resources and two

consumers - as the species to be perturbed. The resources represented the bottom-up

type perturbations, and the consumers represented the top-down. We then performed

our second set of simulations, and here, each of the four randomly selected species

species was then subjected to three types of perturbations: pulse, press, and periodic

pulse. That is, for each initial food web simulated, 12 additional simulations took

place – three simulations (one each for each perturbation type), for each of the four

species randomly drawn to be perturbed. To ensure that perturbations would be

comparable, we standardized the quantity of perturbation per unit time following the

method of Leroux & Loreau 2012. The perturbation was given as

C = zu
1

f
(3.6)

where C is the constant quantity of perturbation per unit time, z is the pulse

magnitude, u is the pulse duration, and 1/f is the frequency of the pulse. For our

purposes, we chose C = 4000. u, in the pulse and periodic press simulations, had

a set value of 100 time steps, and f was either equal to one for the press and pulse

simulations, or 10 for the periodic pulse simulation. z then varied according to the

values for each given situation. We then used the resulting values of z in place of m
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in Eq. 1 to represent the mortality due to perturbation.

We simulated each of the scenarios (108,000 simulations in total. 9000 initial food

webs, with 12 subsequent simulations for each initial web. One of each of the three

perturbation types for each species drawn (4 species ere drawn) for 5000 time steps).

Along the simulation, we tracked how many species went extinct (extinction was

considered to be a biomass of <1e-30), when they went extinct along the timeseries,

and how the biomass of the system changed on the whole, and also as a proportion

between consumers and resources. We focused on percent change in biomass as our

metric of interest as opposed to absolute biomass, as it better captures the departure

(or lack thereof) of a system from it’s previous state.

Since our data were conveniently factorial and satisfied basic assumptions, we per-

formed analyses of variance (ANOVAs) on the number of species lost, the time of

first and second extinction, and on the percent change in biomass at the end of the

simulations. The explanatory variables included the variables associated with the

endogenous factors which were food web shape (biomass and richness distributions)

and the exogenous variable perturbation type. All analysis was performed in Julia

v1.8.1 (Bezanson et al. 2017) and R v4.2.2 (Team 2022).

3.3 Results

As our model food webs were perturbed, we found that species loss and biomass

changes occur over a significantly different time frames. While both diversity and

biomass changed rapidly at the very beginning of the simulation, biomass dynamics

stabilized relatively quickly (Fig. 3.1 panels C vs. D;after just 50 time steps for all

perturbation types), whereas secondary extinctions continued to occur throughout

the timeseries, with the second extinction coming after an average of 1988 time-steps

(Figure 3.2).More than 99% of food webs lost at least one species, but not all food

webs showed large changes in biomass. In those that did, magnitude of biomass loss

varied widely; most food webs lost a relatively modest amount of biomass (15%),
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some food webs lost more than 30% of their original biomass.

While our analysis of factors affecting the percentage of biomass lost during food

web perturbation did not explain much variance (R2 = 0.07), there were some pat-

terns regarding which food webs were most affected. In particular, the interaction

between species richness distribution type and trophic level of the organism being

perturbed being the most important factor with respect to effect size (73% of ex-

plained variance; Table 3.1), followed by the trophic level of the perturbed species

itself (17% of explained variance; Table 3.1). In fact, food webs where the perturbed

organism was a consumer lost 11.9% of the network’s biomass, while food webs with

the resources perturbed lost 18.4% of their biomass (Fig. 3.2). The interaction be-

tween the trophic level of the perturbed species and the species distribution of the

web was significant, but only in simulations where the resource was perturbed. In

fact, the largest change by far was in simulations where a web with top-heavy species

richness had a resource species that was perturbed. This resulted in, on average, a

28.7% decline in biomass. However, top-heavy food webs where the consumer was

perturbed in fact had the lowest amount of biomass lost, an average of 6%, with that

mean value not significantly different than zero (Fig. 3.2).

Overall, both exogenous and endogenous factors were important in determining

food web responses to perturbation. However, the importance of each variable de-

pended on the response we measured (Fig. 3.2). Number of species lost was explained

to a slightly better degree by our model (R2 = 0.14), with the endogenous factors

being the most important. Here, species richness distribution accounted for 72% of

explained variance (Table 3.2). Across all simulations, virtually every food web lost

at least one species, but not all food webs lost more than one. At the end of the

timeseries across all food webs, there were an average of 1.56 species lost. While

the scenarios that lost the largest percent biomass (food webs with top-heavy species

richness distributions and perturbed resources) were the same food webs who lost the

most species (Fig. 3.2), the least-affected food webs were those with bottom-heavy
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richness distributions, regardless of the trophic level of the perturbed species. Within

that group, only food webs with perturbed resources were all significantly different

than the other variable groupings (Fig. 3.2).

There was no effect of the type of perturbation on either the percentage of biomass

lost, nor the number of species lost at the end of the simulations (Table 3.1, Table

3.2). There was however an effect on the time to first extinction. Again, only a

moderate amount of variation in time to first extinction was explained by our model

(R2 = 0.18), and of that, 78% of it was explained by perturbation type. In fact,

for food webs exposed to both pulse and periodic pulse perturbations, an extinction

occurred near the beginning of the time series (Fig 3.3). Conversely, it took longer

(on average, 146 time steps) for the first extinction to come about in food webs facing

press perturbations However, a second extinction, if it occurs, happened on average

much later, after more than 1980 time steps. Trophic level of the perturbed organism

most strongly influenced timing of the second extinction, accounting for 62% of the

explained variance in that ANOVA (R2 = 0.18).

3.4 Discussion

In the present work, we show that two key processes - extinction and biomass change

- can happen on vastly different scales when a food web is perturbed. The effect

of perturbations on a food web are felt near-instantaneously in terms of changes in

species biomass; a result that is somewhat intuitive since our perturbation acts on

the mortality term, decreasing biomass directly. The first extinction then follows rel-

atively quickly. However, after the first extinction, the timescales of the two processes

become somewhat divorced; after the initial decrease in biomass, we see little further

change in biomass across the timeseries. Secondary extinctions on the other hand, oc-

cur much later in the timeseries. Thus, species destined to eventually go extinct have

already had their biomass substantially reduced, and the decline from “functionally

extinct” to fully extinct is what takes most of the time. Our analyses suggest a type
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of extinction debt (Kuussaari et al. 2009) is at play, wherein the initial perturbation

drives the perturbed species to extinction, and then the cascading effects are not felt

for a significant period of time. Similarly, Arnoldi et al. (2018) demonstrate that

long-term dynamics following pulse perturbations are more often controlled by rare

species. Efforts to model habitat destruction as a pulse perturbation also showed that

extinction debt can occur long after the habitat itself has been destroyed (Tilman &

J. A. Downing 1994). Our results support growing bodies of work showing that the

initial effects of perturbations are not likely to tell the whole story, and knock-on

effects like extinction debt are essential to consider; an important effect when consid-

ering conservation and management action following ecosystem disturbance.

Across our different food webs, we saw a much stronger influence of species rich-

ness distribution than biomass distribution on response to perturbation. In partic-

ular, food webs with a top-heavy species rich- ness distribution were the least able

to withstand species loss following perturbation. Overall, we found that species rich-

ness distribution across trophic levels can act to buffer or exacerbate the effects of

perturbation. This relates to the finding of Zhao et al. (2019) that horizontal diver-

sity (the number of species at a given trophic level), confers stability to food webs

subject to perturbation However, these are the very types of stabilizing factors that

anthropogenic change is having an effect on (Rooney, McCann, et al. 2006). Our

results suggest that food webs with the top-heavy signature are not resilient to per-

turbations, regardless of the type of perturbation. These results are interesting when

interpreted alongside our analysis in Chapter 2, which showed that top-heavy food

webs are also the least persistent over time when when not perturbed. In- deed, food

webs with bottom-heavy species richness are generally the most persistent in response

to perturbation (i.e., they have the fewest species lost after perturbation). Thus, at

least for species richness, strategies for persistence translate well; food webs that are

generally more persistent in the absence of perturbations, are still more persistent

when perturbed. Moreover, we found that top-heavy food webs lose significantly
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more species than other food webs when resource species are perturbed, indicating

that while top-heavy food webs may be less persistent in a system without perturba-

tion, they do not have a reduced ability to buffer perturbations if the consumer is the

one perturbed. Other works have described this phenomenon as well, in a set of mod-

eling experiments McCauley, Gellner, et al. (2018) showed that top-heavy food webs

were less stable than bottom-heavy food webs. Factors like weak omnivory (Gellner

& McCann 2012) can actually stabilize top-heavy food webs, or if we consider a more

open system, for example one with some kind of allochthonous subsidy (McCauley,

DeSalles, et al. 2012), then this can also act to stabilize some of these less stable

systems.

We found that the trophic level perturbed (exogenous) affected both the number

of species lost and the amount of biomass lost from perturbed food webs, but only in

the context of the food web shape (endogenous). This indicates that it is essential to

consider both types of effects (i.e. endogenous and exogenous) concomitantly rather

than separately to gain a full understanding of how food webs may be affected by

perturbations. For example, when looking at biomass, we can see that the magnitude

of loss in these top- heavy food webs can only really be understood if we also consider

the trophic level perturbed. We show that when top-heavy food webs have a top-down

perturbation, the loss in biomass is minimal (sometimes not significantly different

than zero), but when the perturbation is bottom-up there is a much greater loss of

biomass. This is logical since if the web has relatively few resource species, many

consumer species are relying on only a few resources, and therefore the loss of just

one will have a far more pronounced effect on how those consumer species are able to

maintain higher levels of biomass.

Perhaps the most surprising result was the lack of effect of perturbation type on

either biomass or species loss, potentially due to a combination of timing of the

perturbations and a lack of capacity for the system to rebound. The average time

to first extinction was 56 time-steps indicating that it happened very quickly. This
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model does not include a mechanism for rebounding (e.g., nutrient influx or subsidy

à la Leroux & Loreau (2012)), so the only way that a species experiencing a decline

could rebound is through some form of release of consumption pressure, or an increase

of available biomass to consume. An increase in available biomass to consume can

happen in one of two ways either via direct increase in prey biomass from some sort

of subsidy (Polis et al. 1997; Spiller et al. 2010; Yang & Naeem 2008), or reduced

competition from the decrease in biomass of a competing predator (Chase et al. 2002).

The type of perturbation did have a large effect on time to first extinction, which is

not especially surprising, but since that effect is not present for the second extinction,

it is likely that since the perturbed species does not often recover, the shape of the

web and other factors play more of a role after the first extinction.

Often management objectives aim to preserve some aspect of a food web’s structure

to serve socio-economic purposes, such as a target species’ biomass for harvesting

(Bailey 2011) or the diversity of extant species that confer some separate cultural

importance (Amberson et al. 2016). Understanding the extent to which components

of the food web that actually confer the focal service are likely to be impacted by

perturbation, given the food web’s shape, can help to guide decision making. For

example, our model systems indicate that if a bottom-heavy richness web experiences

a top-down perturbation (i.e., consumer species is perturbed), then the number of

species that will be less than the average number lost across other food web types,

but the biomass lost from the system will be higher than average (∼20%). That

number of species lost might be manageable if maintaining diversity is the primary

goal. However, if the goal is harvest-oriented, 20% of biomass lost, especially if that

biomass is coming from the larger-bodied consumers, may be a significant blow to

that market, and therefore worth exerting significant effort to try and avoid (e.g.,

Newfoundland cod fishery (Hutchings & Rangeley 2011)).

Perturbation frequency and intensity is increasing (Mann et al. 2017), and it is

nearly inevitable that most food webs will experience some type of perturbation. At-
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tempting to predict exactly when and where that will happen is perhaps a Sisyphean

task, but predicting how a given food web will respond is something we can and should

do to aid in effective adaptive management efforts by making preemptive efforts to

understand how best to respond when these perturbations inevitably occur. Our re-

sults highlight that there is not a single best predictor of which food webs experience

loss in species or biomass following perturbations; rather, there is a suite of factors,

both exogenous and endogenous, that are impacting different facets of a food web’s

response to perturbation. Indeed, we likely must consider both types of factors in

order to draw a clear picture of the overall response. Understanding how a food web

is shaped, and knowing which trophic level may be most susceptible to a perturbation

is an excellent, proactive step towards preventing, buffering, or containing negative

effects.

3.5 Tables
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Variance explained of each variable on change in biomass

Parameter η2 % of Explained Variance

Biomass Dist. 0.0000826 0.00120

Richness Dist. 0.00388 0.0565

Perturbation Troph. Lev. 0.0118 0.172

Perturbation Type 0.0000000495 0.000000721

Biomass Dist. × Richness Dist. 0.00111 0.0162

Biomass Dist. × Perturbation
Troph. Lev.

0.000512 0.00746

Richness Dist. × Perturbation
Troph. Lev.

0.0500 0.729

Richness Dist. × Perturbation
Troph. Lev. × Biomass Dist.

0.00124 0.0180

Table 3.1: η2 values, and the percentage of explained variance each variable accounts
for, for each term in ANOVA performed on the regression of number of species lost.
Percent of explained variance is calculated by dividing the η2 value of a variable by
sum of all η2 values.
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Variance explained of each variable on species lost

Parameter η2 % of Explained Variance

Biomass Dist. 0.000453 0.00324

Richness Dist. 0.100 0.717

Perturbation Troph. Lev. 0.00128 0.00920

Perturbation Type 0.00000739 0.0000529

Biomass Dist. × Richness Dist. 0.00130 0.00929

Biomass Dist. × Perturbation
Troph. Lev.

0.000922 0.00660

Richness Dist. × Perturbation
Troph. Lev.

0.0337 0.241

Richness Dist. × Perturbation
Troph. Lev. × Biomass Dist.

0.00180 0.0129

Table 3.2: η2 values, and the percentage of explained variance each variable accounts
for, for each term in ANOVA performed on the regression of number of species lost.
Percent of explained variance is calculated by dividing the η2 value of a variable by
sum of all η2 values.

3.6 Figures
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Figure 3.1: Timeseries of the simulations, showing the dynamics of both species
lost and percent change in biomass between the trophic level of perturbed organism
(consumers vs. resources) and the different types of perturbations.
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Figure 3.2: Measures of species lost and percent change in biomass across the two
endogenous factors (food web shape divided between biomass and species richness
distribution, and the trophic level of the perturbed organism), and the one exogenous
mechanism (perturbation type).
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Figure 3.3: Measures of mean timing of first extinction based jointly on the trophic
level perturbed, and the type of perturbation exacted on the system.
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Chapter 4

Conclusions

My thesis explores of the effects of food web shape on persistence and response to

perturbations. In Chapter 2, I used a simulation approach to explore how species rich-

ness distribution and biomass distribution across trophic level impacted persistence

of food webs in the absence of perturbation, and showed how inherent instabilities

tend to push these simulated food webs towards a somewhat universal shape that

mirrors what we see in some natural food webs. In Chapter 3, I utilized the models

I developed in Chapter 2 to explore relationships between food web shape and per-

sistence under a range of perturbation types. I also showed that food web shape, an

endogenous mechanism, combined with exogenous mechanisms to jointly structure

the response of persistence.

I found that the distribution of species richness across trophic levels is an important

factor in determining food web persistence, whether simulating food webs in a vacuum

or under perturbation regimes. However, I also found that the trophic level perturbed

(an exogenous factor) and the species richness distribution (an endogenous factor)

jointly structured the food webs response in terms of the number of species lost

as well as how biomass changed in food webs exposed to perturbations. Thus, even

with a perfect understanding of a food web’s structure, the outcome of a perturbation

regime is still dependent to some extent on factors that are often less predictable prior

to the event (Arens & West 2008; McDonald-Madden et al. 2016). The dependence
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on both factors is not unexpected since when a perturbation happens at a trophic

level that is relatively speciose, the food web itself is supported by that redundancy in

species at the same trophic level, allowing it to buffer the effects from the perturbed

species. This is in line with the findings of Sanders et al. (2018), who showed a similar

result in an empirical study, demonstrating that secondary extinctions were less likely

when trophic redundancy was high.

Additionally, I demonstrated how different types of responses to the perturbation

play out over very different timescales. When looking at species loss, and secondary

loss particularly, the extinction event itself tended to happen on a significantly longer

timescale than biomass loss. Biomass loss stemming from the perturbation or it’s

knock-on effects happened very quickly, typically within only a handful of time steps.

However, the loss of a secondary species was much slower to occur, and even loss of

an initial species took longer particularly under press perturbations. This indicated

that across the different food web shapes, many webs experienced something akin to

extinction debt (Kuussaari et al. 2009) wherein the majority of the biomass was lost

quickly, but the species teetered on the edge before finally going extinct much later in

the simulations. These timescales also were affected by the trophic level perturbed,

where the time to first extinction, particularly in example of a press perturbation,

took significantly longer when the species perturbed was a resource species compared

to a consumer species.

Research on food webs in recent years has been primarily interested in understand-

ing how stability, broadly termed, can be understood, specifically in the context of

global change (Binzer et al. 2016; Emmerson et al. 2005). Much of this work has

focused on trying to develop an understanding of which complex network measures

can determine stability (or persistence) of those food web. In this thesis I ask if per-

haps another approach, more easily estimated from empirical systems, could perform

well in describing how persistence plays out in both long-term, stable systems, and

in short-term systems subject to perturbation regimes. I show how species richness
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distribution across trophic levels, first proposed by May 1983, may in fact be a useful

measure that could be applied to conservation related questions.

There is room for further work, however. First, one of the dominant factors known

to be a good predictor of food web stability and persistence is the number of species

in the network (McCann 2007; Rooney & McCann 2012). Currently, it’s not clear

how the results shown here would hold when tested across a variety of food web

sizes, but I suspect it is likely that the same patterns would remain. Additionally,

persistence is just one response measure. Some studies take stability and parse it

into resilience, which is how quickly a system returns to its reference state after a

perturbation, and resistance, which is a measure of how resistant a system is to a

large displacement, when it is in fact displaced from its reference state (Vallina & Le

Quéré 2011). The results I present here are applicable to thinking about resistance,

since persistence is conceptually similar, but it’s not clear how food web shape would

impact the resilience of a food web, if considered in its equilibrium state.

While in Chapter 3 I note that characterizing species richness across trophic levels

is not a silver bullet solution to understanding persistence, this thesis attempts to

inspect the use of this easily measurable, conceptually simple metric as a way to

better inform food web models generally. As global change continues, it’s less and

less likely that food webs will become any easier to measure or predict, and so a

flexible and adaptable set of approaches are needed to forecast what these webs will

do in the future. Here I show that species richness distribution across trophic levels

could provide a single, simple approach to understanding and predicting food web

response to perturbations.

48



Bibliography

Amberson, S. et al. (2016) “The Heartbeat of Our People”: identifying and measuring
how salmon influences quinault tribal well-being. Society & Natural Resources , 29.
Publisher: Taylor & Francis, 1389–1404.

Arens, N. C. & West, I. D. (2008) Press-pulse: a general theory of mass extinction?
Paleobiology , 34. Publisher: Cambridge University Press, 456–471.

Arnoldi, J.-F. et al. (2018) How ecosystems recover from pulse perturbations: A theory
of short-to long-term responses. Journal of theoretical biology , 436. Publisher:
Elsevier, 79–92.

Awender, S., Wackerbauer, R. & Breed, G. A. (2021) Stability of generalized ecological-
network models. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31.
Publisher: AIP Publishing.

Bailey, K. M. (2011) An empty donut hole: the great collapse of a North American
fishery. Ecology and Society , 16. Publisher: JSTOR.

Bar-On, Y. M., Phillips, R. & Milo, R. (2018) The biomass distribution on Earth.
Proceedings of the National Academy of Sciences , 115. Publisher: National Acad
Sciences, 6506–6511.

Baum, J. K. & Worm, B. (2009) Cascading top-down effects of changing oceanic
predator abundances. en. Journal of Animal Ecology , 78, 699–714.

Bender, E. A., Case, T. J. & Gilpin, M. E. (1984) Perturbation experiments in com-
munity ecology: theory and practice. Ecology , 65. Publisher: Wiley Online Library,
1–13.

Berlow, E. L. et al. (2004) Interaction strengths in food webs: issues and opportunities.
Journal of animal ecology , Publisher: JSTOR, 585–598.

Bezanson, J. et al. (2017) Julia: A fresh approach to numerical computing. SIAM
review , 59. Publisher: SIAM, 65–98.

Binzer, A. et al. (2016) Interactive effects of warming, eutrophication and size struc-
ture: impacts on biodiversity and food-web structure. Global Change Biology , 22.
Publisher: Wiley Online Library, 220–227.

Birkeland, C. & Dayton, P. K. (2005) The importance in fishery management of
leaving the big ones. Trends in ecology & evolution, 20. Publisher: Elsevier, 356–
358.

Boyd, D. P. & Gates, C. C. (2006) A brief review of the status of plains bison in North
America. Journal of the West , 45. Publisher: KANSAS STATE UNIVERSITY,
15.

49



Bramon Mora, B. et al. (2018) Identifying a common backbone of interactions under-
lying food webs from different ecosystems. Nature Communications , 9. Publisher:
Nature Publishing Group UK London, 2603.

Brodie, J. F. et al. (2014) Secondary extinctions of biodiversity. Trends in ecology &
evolution, 29. Publisher: Elsevier, 664–672.

Brooks, M. (1955). The Passenger Pigeon: Its Natural History and Extinction.
Brose, U., Archambault, P., et al. (2019) Predator traits determine food-web ar-

chitecture across ecosystems. Nature ecology & evolution, 3. Publisher: Nature
Publishing Group, 919–927.

Brose, U., Williams, R. J. & Martinez, N. D. (2006) Allometric scaling enhances
stability in complex food webs. Ecology letters , 9. Publisher: Wiley Online Library,
1228–1236.

Chase, J. M. et al. (2002) The interaction between predation and competition: a
review and synthesis. Ecology letters , 5. Publisher: Wiley Online Library, 302–
315.

Chick, J. H. et al. (2020) Invasive silver carp is empirically linked to declines of
native sport fish in the Upper Mississippi River System. en. Biological Invasions ,
22, 723–734.

Clauset, A., Newman, M. E. & Moore, C. (2004) Finding community structure in
very large networks. Physical review E , 70. Publisher: APS, 066111.

Closs, G. P., Balcombe, S. R. & Shirley, M. J. (1999). Generalist predators, interaction
strength and food-web stability. Advances in Ecological Research (ed. by ), pp. 93–
126. Elsevier.

Cohen, J. E. (1978) Food webs and niche space, Princeton University Press.
Cohen, J. E., Briand, F. & Newman, C. M. (2012) Community food webs: data and

theory, Springer Science & Business Media.
Crain, C. M., Kroeker, K. & Halpern, B. S. (2008) Interactive and cumulative effects

of multiple human stressors in marine systems. Ecology letters , 11. Publisher:
Wiley Online Library, 1304–1315.

Csardi, M. G. (2013) Package ‘igraph’. Last accessed , 3, 2013.
Cuenda, S., Llorente, M. & Capitán, J. A. (2020) Collapse and recovery times in

non-linear harvesting with demographic stochasticity. Applied Mathematics and
Computation, 380. Publisher: Elsevier, 125236.

Curran, L. M. & Leighton, M. (2000) Vertebrate responses to spatiotemporal variation
in seed production of mast-fruiting Dipterocarpaceae. Ecological Monographs , 70.
Publisher: Wiley Online Library, 101–128.

D’Alelio, D. et al. (2016) Ecological-network models link diversity, structure and
function in the plankton food-web. en. Scientific Reports , 6. Number: 1 Publisher:
Nature Publishing Group, 21806.

Del Giorgio, P. A. & Gasol, J. M. (1995) Biomass distribution in freshwater plankton
communities. The American Naturalist , 146. Publisher: University of Chicago
Press, 135–152.

Delmas, E. et al. (2019) Analysing ecological networks of species interactions. Biolog-
ical Reviews , 94. Publisher: Wiley Online Library, 16–36.

50



Dietze, M. C. et al. (2018) Iterative near-term ecological forecasting: Needs, oppor-
tunities, and challenges. Proceedings of the National Academy of Sciences , 115.
Publisher: National Acad Sciences, 1424–1432.
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Appendix A: Empirical Body Size

Data

Since these body size distributions typically delineate between Consumers and Re-

sources, we also divided organisms into these two groups. To assign each organism a

body size, we drew from an exponential distribution with rate parameter λ. To get

our value from our empirical data, we fit an exponential curve to the body size data

present for each of those groups to get the rate parameter for each curve, λ. This

was performed using the EnvStats package in R (Millard 2013). With these empirical

parameters in hand, for every organism in all of our networks, we randomly drew

a body size value from an exponential distribution, with rate parameter λ based on

whether or not an organism was a consumer or a resource.
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Appendix B: Network metrics

Connectance, C, is calculated as the proportion of realized L vs possible S2 possible

interactions in a network, C = L
S2 . Modularity was calculated using the iGraph

package in R (Csardi 2013) following the approach of Clauset et al. 2004 wherein the

modularity of a graph with respect to some particular division, measures how good

the division is, or how separated are the different node types from each other. To

calculate trophic level, we used the NetIndices package (Soetaert, Kones, et al. 2009),

and calculated a trophic Level measure for each network of a) the average trophic level

of all prey items (i.e. all organisms being consumed), and b) the average trophic level

of all predatory items (i.e. all organisms consuming any other organism(s)). We then

calculated a biomass-corrected version of each of these values. Last, we calculated the

consumer-resource richness and biomass proportions. This is simply the proportion of

the extant species richness or biomass that belong to predators vs. prey where a high

consumer-resource proportion means that most of the species richness or biomass is

concentrated in consumer species, whereas a low proportion indicates most richness

or biomass is concentrated in resource species.
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