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Diffraction, self-focusing, and the geometrical optics limit in laser produced

plasmas

R. Marchand, R. Rankin, C. E. Capjack, and A. Birnboim®
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G7 Canada

(Received 22 January 1986; accepted 27 January 1987)

The effect of diffraction on the self-modulation of an intense laser beam in an initially uniform
hydrogen plasma is investigated. A formalism is used in which the diffraction term in the
paraxial wave equation can be arbitrarily reduced by the use of a weight factor ¢. In the limit
where ¢ approaches zero, it is shown that the paraxial wave equation correctly reduces to the
geometrical optics limit and that the problem then becomes formally equivalent to solving the
ray-tracing equations. When ¢ = 1, the paraxial wave equation takes its usual form and
diffraction is fully accounted for. This formalism is applied to the simulation of self-
modulation of an intense laser beam in a hydrogen plasma, for which diffraction is shown to be

significant.

I. INTRODUCTION

The success of direct drive laser fusion requires that tar-
gets be irradiated with laser beams that maintain their illu-
mination uniformity up to the critical density surface. The
importance of having a uniform laser intensity is twofold.
First, hot spots in modulated laser beams can stimulate reso-
nance absorption, parametric processes, and, subsequently,
the production of hot electrons. Second, if hot spots genera-
ted in the underdense plasma are able to penetrate to the
critical density surface, thermal smoothing of the inward
heat flux may not be sufficient to prevent fluid instabilities,
such as Rayleigh-Taylor, from occurring. This latter effect
may be especially important in experiments done with short
wavelength lasers. For these reasons, there have been many
studies made of the dynamics of intense laser beams in plas-
mas.'™ Basically, two approaches can be followed. In one,
geometrical optics is assumed and the beam is modeled by a
large number of rays which are governed by ray-tracing
equations.'™ In the second approach the wave nature of the
beam is retained but its direction of propagation is assumed
to be mainly along a given axis. The governing equation is
then the paraxial wave equation.”® In both cases, refraction
and inverse bremsstrahlung absorption are easily taken into
account. The advantage of the geometrical optics approach
is that it can readily be applied to cases where the rays are not
all propagating along a given axis, or even to cases where
some of the rays are reflected close to the critical density
surface. On the other hand, the physical optics approach
accounts for diffraction, which is important when the beam
is tightly focused or modulated. In general, a comparison
between the two approaches should prove useful in assessing
the validity of the physical assumptions required in either
case. Unfortunately, a direct comparison is not straightfor-
ward because of the very different numerical techniques
used. For example, in ray-tracing codes a large number of
rays must be used in order to accurately model a smoothly
varying laser beam. Differences between the predictions of
ray tracing and paraxial wave codes may be caused by statis-
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tical errors in accounting for the beam intensity, as well as by
physical effects such as diffraction, or the beam not being
paraxial.

In this article, we present a simple and convenient meth-
od for directly comparing results obtained in the geometrical
optics limit with those obtained from solving the paraxial
wave equation. The method consists of modifying the parax-
ial wave equation in such a way that diffraction can effective-
ly be turned on or off. In the latter case the geometrical
optics limit is recovered and the problem is formally equiva-
lent to that of solving the ray-tracing equations. The general
formulation of the problem is given in Sec. II and it is illus-
trated with a simple example in Sec. I11. Results are present-
edin Sec. IV for the case of the modulation of an intense laser
beam in an initially uniform hydrogen plasma. A summary
of our results and some concluding remarks are given in
Sec. V.

lil. GENERAL FORMALISM

In this section, we show how the paraxial wave equation
can be modified so as to artificially reduce the effect of dif-
fraction. When diffraction is neglected, the resulting equa-
tion is shown to reduce to the proper geometrical optics limit
and the problem becomes equivalent to that of solving the
ray-tracing equations.

The derivation of the paraxial wave equation has been
given elsewhere.® In short, if the laser beam propagates
mainly along a given axis, say the z axis, and if the wave-
length and wave period are much shorter than any other
macroscopic length and time scales, respectively, the wave
electric field can be expressed as

E(rz,t) = [2rw/k(2)c?]V*E(r,z,t)
Xexp(i fzdz’ k(z') — iwt), (1)
0

with |k(z) ™! 9& /02|, |~ 9E /| <|€|. In Eq. (1) ris the
position vector in the plane perpendicular to z and the local
wave vector k(z) is defined by the local dispersion relation
w* = k?*(z)¢* — w2(2), w, being the plasma frequency as a
function of z, evaluated at a conveniently chosen radius, say
7o, which may also be a function of z. In the following, for
simplicity, we assume that r, = 0. Substituting Eq. (1) into
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Maxwell’s equations yields the paraxial wave equation
/3 1 06 i 2 i
—= 4 —= = Vig— , 2
9z v, (z) ot 2k(z) i$ 2k(z) o 2)

where v, (z) = k(z) ¢’/ is the beam group velocity, V3 is
the Laplacian in the coordinates perpendicular to the z axis,
and

0= w},(;’,z) (1 _ n(0,2)

[

) — k(DK (r2)  (3)

n(r,z)
accounts for refraction (real part) and inverse bremsstrah-
lung attenuation® (imaginary part). In Eq. (3), o, (r,z) and
n(r,z) are the plasma frequency and free electron density as
a function of r and z, respectively.

The method used to study the effect of diffraction is
essentially the same as the one used elsewhere to model spa-
tial beam incoherency in a well underdense plasma.'® It con-
sists of multiplying and dividing, respectively, the diffractive
(V?) and refractive (Q,) terms in Eq. (2) by a constant ¢
which can be varied between O and 1. It was shown in Ref. 9
that for plasma densities much less than critical, i.e.,
k(z) = k,, this prescription preserves the correct ray-tracing
equations in the limit where geometrical optics is valid. We
now extend the proof to cases where the z dependence of the
local wave vector is non-negligible, and show that in the limit
where ¢ approaches zero, Eq. (2) formally reduces to the
geometrical optics limit. This is done by considering the
Wigner integral"!

7

d?r r r
r ,t,k)=f *(r+— ,t) (r— —_ ,t)
frz Py '3 5 7 13 5~

Xexp(ik r') . (4)
An equation for fcan be obtained from Egs. (2) and (3). We
find, after modifying the diffractive and refractive terms as
prescribed above,

of 1 4f ik, v.Q, o o
< — v — .
9z v,(2) Ot  k(z) oS uk(z) Ik, +k(z)f
__i [d¥7][; *( _r’_) D
*Zk(z)J- 2 [Q rty)erm

r ~ ~ A
- —.y * — _ —
> (@*() Q(l’ 5 + Q(r)

v, @(r)]s“ *(r + r? ,z,t)§ (r - _r2_ ,z,t)

Xexp(ik, '), (3)

where @ =Q,/t +iQ;. With the change of variables
« =k, and p =r'/t, this equation becomes

af 1 df K V.9 4 o
o 9 V. f— LY =
dz + v, (z) ot + k(z) S 2k(z) ok + k(z)f
= iLz iig[/\ *( ﬁ) — Py *
kD) ) ar (2 Py merm

— 2w, D “A(“ﬂ) o) — b
L2 1 O*(r)—-Q|r L2 + Q(r) L2

‘v, @(r)]s‘ *(r + L—g— ,z,t)§ (r - L% ,Z,t)

xXexp(ikep) . (6)
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It is clear that for any reasonably well-behaved function Q,
the right side of Eq. (6) vanishes in the limit where ¢ ap-
proaches zero. Hence, in that limit the paraxial wave equa-
tion is equivalent to a first order partial differential equation
for the distribution function f, with characteristics given by

dr _ K

—=—, (7
dz k(z)
e _ — NG (®)
dz 2k(2)

or equivalently,
d d
z(,u(o,Z)é) = V,u(r2), (9)

where use has been made of the relation between &k (z), Q,,
and the index of refraction u; k(z) = u(0,2)k,and Q, =k}
[42(0,z) — p*(r,z) ], where ko, = w/c is the wave vector of
the beam in vacuum. For comparison, the equation govern-
ing rays in the geometrical optics limit is given by'?

d{ dx

ds(’u ds ) Vi
where p is the index of refraction as a function of r and z,
x = r + z2 is the three-dimensional position vector, and dsis
the element of length measured along the ray trajectory.

We now show that Eq. (10) reduces to Eq. (9) in the
paraxial limit when g is maximum on axis, or when the plas-
ma density is well below critical. In the paraxial limit, 4 /ds
can be approximated by d /dz in Eq. (10). Also, assuming
that u is parabolic in » with a maximum on axis, i.e.,
p(r,z) =(0,2) (1 — a:rr), where a is a positive definite
2 X 2 matrix, the largest angle between the ray trajectory and
the z axis can be estimated to be of order a\/A , where a is the
maximal radial excursion and A is the largest eigenvalue of a.

(10)

Thus, in the paraxial limit, because ayA <1, & can be ap-
proximated to lowest order by £2(0,z) in the left side of Eq.
(10). Of course, the r dependence of u in the right side of Eq.
(10) cannot be neglected because it contributes to the per-
pendicular component of the gradient to lowest nonvanish-
ing order. Hence, the perpendicular component of Eq. (10)

reduces approximately to Eq. (9). It is worth noting that the
assumption concerning the parabolic dependence of i, with
a maximum on axis, is not needed if the plasma is well under-
dense. In that case, u ~ 1 to lowest order in the left-hand side,

and the perpendicular component in Eq. (10) again reduces

to Eq. (9).

lil. EXAMPLE PROBLEM

In this section we illustrate the technique just described
with a simple example: that of a Gaussian beam propagating
in a parabolic waveguide. To be specific, the electron density
is assumed to be axially uniform and to vary in » according to

n,(r) =ny(1 + r*/a®) . (11)
Attenuation caused by inverse bremsstrahlung is neglected
for simplicity. It is well known that the standard (with

¢ = 1) paraxial wave equation admits solutions correspond-
ing to the intensity

I(rz) = [I/mo(z)*lexp| — P/o(2)?], (12)
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where o(z) is a periodic function of z.'* The solution of our
model paraxial wave equation (with the diffractive and the
refractive terms, respectively, multiplied and divided by ¢) is
very similar to that of the standard case. It can be shown that
it also admits solutions corresponding to the intensity given
in Eq. (12), with

o(2) = o,{cos?(Kz) + [sin®(Kz)]/(kKo3/1)*}?,
(13)

where g, = 0(z=0), k = (w/c)[1 — w2 (0)/*]"?, and
K = w,(0)/kca, w,(0) being the plasma frequency com-
puted at 7 = 0. In the derivation of Eq. (13) it is assumed,
without loss of generality, that o has an extremum atz = 0.
It is easy to verify that Eq. (13) agrees with the predictions
of geometrical optics in the limits where ¢ »0,'* and with
those of standard physical optics when ¢ = 1.°

An interesting point to note about Eq. (13) is that, if
oo = (t/kK Y2 then o(z) = 0, is independent of z. This
value of ¢ is the radius of the so-called lowest radial eigen-
mode. Also, if 0., and o,,,, represent the minimum and
maximum values of o, it can be seen that 0, Omax = t/kK;
i.e., the radius of the lowest order eigenmode is the geometric
mean of minimum and maximum radii. An important prop-
erty of Eq. (13) is that the period of oscillation 7/K is inde-
pendent of «. This is because, as explained in the previous
section, the paraxial wave equation has been modified in
such a way as to preserve the proper ray-tracing equations.
Finally, the radius of the lowest eigenmode is seen to ap-
proach zero, as ¢ approaches zero. Equivalently, for a given
o,, the beam can be made to focus into an arbitrarily small
spot at z = 77/2K, by taking ¢ sufficiently small. This is why ¢
can be thought of as a knob with which diffraction can be
reduced by an arbitrary amount.

We now turn to the numerical implementation of this
simple example. Specifically, we consider a 0.266 pm laser
beam propagating in a waveguide with an electron density
on axis equal to 10% of the critical density, and a radial
density scale length a = 252 um. The period of oscillation
and the lowest mode radius (with ¢ = 1.0) are then 7/
K=2.5 mm and (kK)~'/? =5.96 um, respectively. The

0.010

0.1000

FIG. 1. Contour lines of the laser flux computed for the ¢ = 0.5 test case of
Sec. I11. The flux is normalized with respect to the maximum incident value.
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10"
8.0

FIG. 2. Same as Fig. 1, except that ; = 0.25.

paraxial wave equation is solved numerically using cubic
splines on a uniform 40X 40 grid extending 18 yum inr and 5
mm in z. The radius of the incident beam is always set equal
to the ¢ = 1 lowest eigenmode radius, g, = 5.96 um.

Results are shown in Figs. 1 and 2 for ¢ = 0.5 and
¢+ = 0.25, respectively, for which Eq. (13) predicts radii o/
0, = 0.5 and 0.25 at the foci. The intensity on axis should
then be, respectively, 4 and 16 times that at z = 0. The con-
tour plots show intensities slightly in excess of these values.
This is because errors introduced by the use of a finite grid in
the solution of the wave equation. In particular, the lowest
order mode radius is found numerically to be smaller than
the analytic value by approximately 5%. The important fea-
tures to note about Figs. 1 and 2, however, are that the spot
size at the focus does scale as predicted analytically, and the
focusing length is independent of ¢.

IV. SELF-FOCUSING

We now use the formalism described in Sec. II to assess
the effect of diffraction during the self-modulation of an in-
tense laser beam in a hydrogen plasma. Specifically, we con-
sider one of the cases presented in Ref. 3. A 266 nm Gaussian
laser beam is incident on an initially uniform fully ionized
hydrogen plasma with 7, = 1keV, T, /T; = 30, and an elec-
tron density 7, = 2.52X10?! cm ™. For the above wave-
length, n, is 0.16 of the critical density. Initially, the incident
laser intensity on axis is assumed to rise instantaneously
from zero to I, = 10" W/cm®. This input intensity remains
constant thereafter. The radial profile of the incident beam is
Gaussian; i.e., I(r,z = 0) = I, exp( — r*/0”), witho = 300
um, corresponding to a FWHM of 0.5 mm. In the simula-
tion, the plasma and laser beam are assumed to be cylindri-
cally symmetric. A two-dimensional Eulerian code is used to
model the plasma dynamics on a 40X 40 mesh of dimension
1 and 5 mm in the 7 and z directions, respectively. The elec-
tron heat conductivity is taken as the harmonic mean of the
Spitzer and the free-streaming values, with a flux limiter of
39%. The paraxial wave equation is solved in cylindrical ge-
ometry using cubic splines.® The laser—plasma interaction
includes inverse bremsstrahlung absorption and refraction.
The importance of diffraction is estimated by comparing re-

Marchand et al. 1523

8G:6€'Gl 202 JoqWBAON 80



0n
]
(-] %
o \ Y
81 ‘
(-] .
L e
-
2
24
-—
[3 \
E i
o 4
b '
© o -3
S Lo = ':
° ': \ E i
(-] ' \ H
s i i H
T T T
20 3.0 40 8.0
Z(mm)

FIG. 3. Contour lines of the laser flux at time ¢ = 0. The flux is normalized
with respect to its maximum incident value. The laser beam is incident from
the left.

sults obtained with: = 1.0 and ¢ = 0.5. Although the parax-
1al wave solver used in the simulations can account for the
ponderomotive force, this force is ignored for consistency
with Ref. 3.

(b)

R(mm)
0.15 020

0.10

0.0 1.0 2.0 3.0 ] 4.o A 5.0
Z(mm)

FIG. 4. Contour lines of electron density (a) and the laser flux (b) comput-
ed with diffraction (« = 1.0) at 1 nsec. The electron density is in percent of
the critical density. The laser flux is normalized with respect to its maxi-
mum incident value.
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Figure 3 shows the contour lines of the laser flux at the
beginning of the simulation. Initially, the laser beam is well
collimated. As it propagates into the plasma, it is attenuated
by inverse bremsstrahlung absorption without any refrac-
tion, or significant diffraction.

Figure 4 shows the electron density and the laser flux
computed at 1 nsec with diffraction fully taken into account
(¢ = 1). For comparison, Fig. 5 shows those profiles com-
puted at the same time, but when diffraction is artificially
reduced by selecting ¢ = 0.5. The density profiles in Figs.
4(a) and 5(a) are qualitatively similar and show a number
of interesting features. As expected, the plasma is heated
near the axis, and made to expand outwards. There results a
minimum in the electron density near the axis, which is re-
sponsible for focusing the laser beam. There is also a steep
density gradient along r=0.5, z=1.0 mm and r=0.2,
z = 2.5 mm. This front is caused by the sudden heating of the
plasma near the axis, and it propagates outward at approxi-
mately the sound speed. In Figs. 4(b) and 5(b) the laser
beam self-focuses off axis at approximately z = 2 mm. Foci
also occur near z = 4 mm. In Fig. 4(b), the 4 mm focus lies
on axis, while in Fig. 5(b), it is positioned near the axis. The
simulation done with reduced diffraction (¢« = 0.5), how-
ever, yields a maximum intensity at the first focus that is a

0.28

(b)

R(mm)
0.15 0.20

0.10

0.05

" Z(mm)

FIG. 5. Same as in Fig. 4, but computed when diffraction is turned down
(¢=0.5).
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0.10

0.0 5.0

" Z(mm)

FIG. 6. Contour lines of the laser flux computed with reduced diffraction
(¢ = 0.5), but using the same plasma density and temperature profiles as
those that resulted in Fig. 4. The laser flux is normalized with respect to its
maximum incident intensity.

factor 1.4 larger than that computed with (= 1. Corre-
spondingly, the variation in the laser intensity takes place on
ashorter scale length when diffraction is reduced. The situa-
tion is different with the on-axis focus, where the laser inten-
sity is higher when computed with « = 1. We note, inciden-
tally, that the position of the on-axis foci observed here is in
reasonable agreement with the 5 mm focusing length read
from Fig. 4(b) of Ref. 3.

The results shown in Figs. 4 and 5 are obtained by ad-
vancing the fluid and laser wave equations for many time
steps and it may be thought possible that the differences ob-
served arise because of the accumulation of a large number
of small errors. Thus, in order to single out the effects of
diffraction, we show, in Fig. 6, the laser flux computed with
¢ = 0.5, but using the same plasma density and temperature
profiles as those which resulted in Fig. 4. The only source of
differences between Figs. 4(b) and 6 is the reduction of dif-
fraction in Fig. 6. These differences are seen to be consider-
able, and are qualitatively similar to those that occur in Figs.
4(b) and 5(b). In particular, the intensity is larger at the
first focus, and modulations occur on a shorter scale length
when diffraction is reduced.

V. SUMMARY AND CONCLUSION

We present a simple method for estimating the impor-
tance of diffraction using the paraxial wave equation and a
variable weighting parameter ¢. The importance of diffrac-
tion is assessed directly, by comparing results obtained with
different values of +. The method consists of multiplying and

1525 Phys. Fluids, Vol. 30, No. 5, May 1987

dividing the diffractive term (the Laplacian) and the refrac
tive term (the real part of Q) in the wave equation, respec
tively, by an arbitrary constant :. When ¢ = 1, the paraxia
wave equation has its usual form and diffraction is correctl
taken into account. In the limit where ¢ approaches zero
however, diffraction becomes negligible and the wave equa
tion formally reduces to the geometrical optics limit ir
which the usual ray-tracing equations are recovered.

The formalism is used to assess the effects of diffractio
on the self-focusing of an intense laser beam in an initiall'
spatially uniform fully ionized hydrogen plasma. The cas
examined has also been considered in Ref. 3 where diffrac
tion was not accounted for. Diffraction is found here to pla:
a significant role in the propagation of the beam since, i
effect, it reduces the laser intensity at the foci of the fila
ments, and thus causes the beam modulations to becom
spatially smoother. We recali that the ponderomotive forci
has not been included in our simulations. Because the effec
of the ponderomotive force is expected to be particularl:
important in regions where the laser intensity varies on :
short scale length, it follows that diffraction should also b
important when modeling laser beam filamentation, whicl
is driven primarily by the ponderomotive force.
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